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ABSTRACT

The structure of light penetration through the canopy plays an important role in water,
carbon, and energy fluxes between the biosphere and the atmosphere. Total foliage and
foliage distribution are major aspects of canopy structure that significantly influence light
and vegetation interaction. Airborne full-waveform LiDAR (Light Detection and Ranging)
data contains large amounts of vegetation structural information, and is a powerful tool for
providing detailed physical information for large areas of vegetation.

In this thesis, we first provide a complete work flow that extracts and processes waveform
LiDAR data for an area of interest. Then we test the feasibility of using waveform LiDAR
data to estimate individual tree biomass with limited field samples. We use a voxelization
method to generate pseudo-waveforms for individual trees and apply a stepwise regression
to find the relationship between pseudo-waveform structural characteristics and biomass
estimated by allometric equations using tree survey data. Next, we present a method for
describing physical canopy clumping structure for individual trees that provides detailed
spatial clumping variations. We utilize the K-means clustering algorithm to extract structure
from the large amount of canopy architecture information provided by full-waveform LiDAR.
Finally we use representative cluster traits to identify structurally significant clusters. This
thesis demonstrates that large amount of canopy structural information can be extracted
from waveform LiDAR data. The fine resolution canopy architecture found by methods

described in this work can provide valuable information for ecological models.

1



ACKNOWLEDGMENTS

I would like to express my profound gratitude to my advisor Dr. Praveen Kumar for all his
support and guidance through out this research. I really appreciate his patience when I am

stuck and am grateful for all the insights and ideas along the way.

I would also like to thank to Zhigang Pan from the National Center for Airborne Laser
Mapping (NCALM) and Dr. Craig Glennie as well as everyone else at NCALM who helped
me start my journey on working with LiDAR data. I could not have started this work with-

out them.

Thanks also goes to all the faculty and students who helped in data collection in the

summer of 2014, both the airborne remote sensing data as well as the field data.

1l



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . .

v
CHAPTER 1 INTRODUCTION . . . . . . . .. 1
1.1 Light and Vegetation Interaction . . . . . .. .. .. ... ... ... .... 1
1.2 Light and Biomass . . . . . . . . . . .. ... 2
1.3 Light and Foliage Clumping . . . . . . . . . . .. .. ... ... ... .... 3
1.4 Waveform LiDAR . . . . . . . . . . . . . 4
1.5 Thesis Organization . . . . . . . . . . .. ... 5
1.6 Figures . . . . . . . L 8
CHAPTER 2 DATA . . . . e 9
2.1 Data Collection . . . . . . . . . .. 9
2.2 Data Processing . . . . . . . ... 10
2.3 Figures . . . . . ..o 15
CHAPTER 3 BIOMASS ESTIMATION . . . . .. ... .. ... . ... .. .... 19
3.1 Methods . . . . . . . . 19
3.2 Results. . . . . . 23
3.3 Figures . . . . . . . 26
CHAPTER 4 FOLIAGE CLUMPING . . . .. ... ... ... ... ... ... 30
4.1 Methods . . . . . . . . 30
4.2 Results. . . . . . . 38
4.3 Figures . . . . ..o e 42
CHAPTER 5 SUMMARY OF RESULTS . . . . . . . . ... .. ... ... .. 55
5.1 Data Processing . . . . . . . . . .. 5%)
5.2 Bilomass . . . . .. e o6
5.3 Foliage Clumping . . . . . . . . . . ... 57
CHAPTER 6 DISCUSSION . . . . . . . e 58
CHAPTER 7 CONCLUSION . . . .. . 61
7.1 Summary of Methods . . . . . . . . .. ... 61
7.2 Results and Conclusions . . . . . . . . .. .. L oo 62
REFERENCES . . . . . . e 64

v



1.1

2.1

2.2
2.3

24

3.1
3.2

3.3

3.4

3.5

4.1
4.2

4.3

4.4

L1ST OF FIGURES

LiDAR acquisition process and symbolic representation of discrete and
full-waveform LiDAR [Fernandez-Diaz and Carter, 2013]. . . . . . . . . . ..

Summary of relations between raw binary files and the pieces of waveform
data each file contains. . . . . . . ... Lo
Summary of steps in processing waveform LiDAR data. . . . . . . .. . ...
Waveform data extracted for a region where each record in the waveform
is converted into a point. . . . . . ...
Waveform data of tree displayed as points by giving geolocating each record.

Examples of pseudo-waveforms for individual trees in Allterton Park-1 site. .
Example of relatively well fitted model. Model based on randomly chosen
80% of data. Blue points are data used in the regression. Red points are
the remaining 20% test data. R? value is based on test data only. . . . . . .
Example of poorly fitted model. Model based on randomly chosen 80%
of data. Blue points are data used in the regression. Red points are the
remaining 20% test data. R? value is based on test data only. . . ... ...
Biomass results from stepwise regression combined with bootstrapping. All
test data are shown in blue. Red circles show the median of all predicted
biomass for each tree. . . . . .. ... L
Biomass prediction results using the most prevalent model from 500 boot-
strap runs shown in Equation 3.3Resultsequation.3.2.3. . . . . . .. ... ..

Simulated point clouds with 30 cluster centers. . . . . . . .. . ... ... ..
K-means cluster evaluation by BIC using a simulated point cloud with 60
clusters. The solid line represents the average of all repeated runs which
are shown as dashed lines. . . . . . .. ... .. ... ...
K-means cluster evaluation by minBdist using a simulated point cloud
with 60 clusters. The solid line represents the average of all repeated runs
which are shown as dashed lines. . . . . . . ... ... ... ... ......
K-means cluster evaluation by Dunn’s index using a simulated point cloud
with 60 clusters. The black line represents the average of all repeated runs,
shown as colored lines. . . . . . . . . .. . ... ...

15
16

17
18

26



4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14
4.15

K-means cluster evaluation by minimum cluster center distance using a
simulated point cloud with 60 clusters. The black line represents the av-
erage of all repeated runs, shown as colored lines. . . . . . .. ... .. ... 44
K-means cluster evaluation by a. Dunn’s index and b. minimum cluster
center distance using the waveform LiDAR data of a tree. The black line
represents the average of all repeated runs, shown as colored lines. . . . . . . 45
a. Waveform data of the tree where high intensity shows as green and
low as blue; b,c. Cluster results for K = 130 and K = 220, each color

represents individual clusters. . . . . . . ... ... 0oL 46
Cluster results for K = 130 and K = 220 colored by cluster intensity. Blue
is less intense, and red the most intense. . . . . . . ... ... ... ... .. 47
Cluster results for K = 130 and K = 220 colored by cluster count. Blue
means less records, and red is more records per cluster. . . . . . ... .. .. 48
Cluster volume for K = 130 and K = 220. Blue represents smaller clusters,
and red represents larger clusters. . . . . . . .. ..o 49
Cluster diameter results for K = 130 and K = 220. Blue is smaller
diameter, and red is larger diameter. . . . . . . .. ..o L 50
Relationship between cluster diameter and cluster volume. Each point
represents a cluster found by K-means. . . . . . ... ... ... ... ... 51
Comparison of the distribution of different cluster traits: average intensity,
number of records, and cluster diameter. . . . . . . . .. ... ... 52

Evaluation of K-means with different number of group (G) using Dunn’s index. 53
Cluster grouping results by K-means for a. K = 130, and b. K = 220.
Different groups are represented by different colors. . . . . . . ... ... .. 54

vi



CHAPTER 1

INTRODUCTION

1.1 Light and Vegetation Interaction

Vegetation is a major component in all climate studies. It is a major source of evapo-
transpiration and respiration. The primary environmental factor that influences vegetation
functioning is solar radiation. The amount of light striking the canopy strongly affects pho-
tosynthesis, which leads to gas exchanges. Therefore, understanding the interaction between
radiation and vegetation is essential in quantifying water, carbon, and energy fluxes between
the biosphere and the atmosphere [Kucharik et al., 1999].

There are several important factors that affect light penetration, and therefore its absorp-

tion, through the canopy. These include:

e Total foliage. The total amount of foliage can be estimated by leaf area index (LAI),
which is one of the most important and thoroughly studies measures of canopy char-

acteristics [Bonan, 1993]. It can also be described through vegetation biomass.

e Vertical foliage distribution. The vertical distribution of foliage can be described by
leaf area density (LAD), generally presented as a probability density function ranging
over the entire height of the canopy. Dutta et al. [submitted] presents a method of

estimating tree-wise LAD using the same dataset as that of this thesis.

e Foliage clumping. The non-random distribution of leaves in the canopy leads to clump-
ing. Many indices have been developed to describe the severity of foliage clumping.
However, the majority of these are large scale estimates that assumes uniform amount

of clumping through out the canopy.

e Leaf orientation. There are currently no accurate estimations of the orientation of each
leaf in the canopy. A mathematical model is generally used as replacement in current

models. Random orientation is generally chosen for simplicity.



e Leaf transmittance. The amount of light that can penetrate each leaf in the canopy
depends on leaf’s internal structure and chemistry. The LiDAR (Light Detection and
Ranging) technology used in this thesis mainly provides structural information, and is

unable to quantify this canopy characteristic.

LiDAR data can be used to estimate the total foliage, its distribution and clumping struc-
ture. In Dutta et al. [submitted], we used discrete LIDAR data, imaging spectrometer data,
and field data to estimate LAD, thus giving us a tree-wise description of vertical leaf distri-
bution. Tree-wise LAD provides a relatively fine scale canopy description. However, LAT and
vegetation biomass, as an estimation of total vegetation, has traditionally been estimated
on the plot level. Foliage clumping, generally described by clumping indices, are also coarse
scale measurements.

As current ecological models increase in resolution, these large scale estimates of vegeta-
tion characteristics can no longer adequately describe variations in canopy structure. The
goal of this thesis is to use waveform LiDAR data to estimate biomass and foliage clumping.
Combined with previous works, we hope to provide fine scale estimates of above ground veg-
etation biomass, foliage distribution, and foliage clumping in order to inform fine resolution

models of vegetation structure.

1.2 Light and Biomass

LAI is one of the most important measurements of total foliage, and it has been widely
studied. Our estimation of LAD in Dutta et al. [submitted] can also be used to find the
LAI of a tree. Above ground vegetation biomass information is also an important vegeta-
tion characteristic used in many ecological models that include terrestrial vegetation in their
simulations. Biomass has strong influences on carbon, water, and nutrient cycles. Tradition-
ally biomass estimation requires intensive, and often destructive, field measurements. This
involves cutting down all sample trees, drying and then weighing each parts of the tree, such
as trunk, branches, and leaves, separately [Bombelli et al., 2009]. With the increase in size
and sophistication of todays models, acquiring enough biomass data with field sampling as
input to such models has become increasingly difficult. Methods exist to estimate biomass
from less demanding field measurements. The most common of such methods is using ex-
isting allometric equations that are based on the previously mentioned destructive sampling

[Ter-Mikaelian and Korzukhin, 1997]. These equations generally require some information



about the trees as input. The most common are diameter at breast height (DBH), i.e., the
diameter of the tree measured at 1.3 m from the ground [He et al., 2013}, and height of
the tree. Measuring DBH and tree height in the field is certainly easier than cutting down
and weighting the entire tree. However, with the increase in model range and resolution,
acquiring enough data, even the simple measurements needed for allometric equation inputs,
might present challenges. One such challenge might be that the areas covered by the model
is just too large to traverse easily. Another reason might be that the data is needed on too
fine resolution to measure. The most common reason, and also the challenge encountered at
our test site, is accessibility. In a dense forest, there are many trees that cannot be measured
simply because one cannot reach it due to either terrain, or, as is our case, dense understory.
These difficulties impede many models from using rigorous biomass data as input and forces
them to use large scale generalized or simulated results. With advances in technology, air-
borne LiDAR has the potential to become a convenient tool for acquiring such information
on a large scale at fine resolution. The first goal of this thesis is to use LiDAR data to

estimate species based tree-wise biomass.

1.3 Light and Foliage Clumping

Clumping of vegetation in forest canopy have important effects on light penetration in the
canopy. It affects photosynthesis and many other land-atmosphere interactions such as
carbon and water fluxes [Chen et al., 2003, Pisek et al., 2013]. Deriving LAI through optical
methods also require knowledge about foliage clumping to obtain the actual LAI [Pisek
et al., 2011, 2013]. In this case, foliage clumping accounts for overlaps in foliage that optical
methods cannot account for. Due to its importance in a wide range of studies, foliage
clumping has been estimated by various methods such as hemispherical photography, sun
fleck analysis, and remote sensing [Chen and Black, 1992, Chen et al., 2005, 2003, Pisek
et al., 2013, Walter et al., 2003]. Apart from the various methods of obtaining clumping,
there are also multiple ways of quantifying it. Currently, the most frequently used description
of clumping comes from Chen and Cihlar [1995a,b] and Chen [1996], where the gap fraction
and gap size information from hemispherical photos are used along with a ray tracing model
to derive a clumping index. Many other indices have been developed, such as that of Pielou
[1962], and are used today in conjunction with that of Chen and Cihlar. These indices
may vary in the method of derivation, but they all describe the canopy on a fairly large

scale. While these traditional clumping indices may be easily ingested by ecological models,



they tend to obscure spatial variations of foliage clump characteristics within the canopy.
The second goal of this theis is to provide a physical description of the density and spatial

distribution of vegetation using LiDAR derived foliage clump characteristics.

1.4  Waveform LiDAR

With advances in technology, airborne LiDAR has the potential to become a convenient tool
for acquiring vegetation structural information on a large scale at fine resolution. Airborne
LiDAR is a growing technology where a laser pulse is shot toward the ground from a moving
aircraft in a sideways back and forth sweeping motion. When the laser pulse encounters an
obstacle, the pulse is scattered back toward the aircraft and the return wave is recorded. The
planes location is recorded by a global positioning system (GPS) unit. The plane’s orientation
in space is recorded by the inertial measurement unit (IMU) on board [Fernandez-Diaz and
Carter, 2013]. By measuring how long it took the laser pulse to return to the plane, the
distance from the plane to the obstacle can be calculated. Knowing the angle at which the
laser pulse is shot enables us to locate the obstacle relative to the plane. Then, with the
plane’s location and orientation in space, we can identify the geolocation of the obstacle.
In other words, we know the longitude, latitude and elevation (with respect to any datum)
of the obstacle that the laser pulse hit. As the aircraft fly multiple passes over the area of
interest, overlapping swaths of land is scanned by thousands of laser pulses per second. This
generates a high resolution 3D model of the land surface.

There are two common types of LIDAR data used today, the multiple return discrete
LiDAR and the full waveform LiDAR. In this study, we will be using both forms of LiDAR
data collected for the same area at the same time. The multiple return discrete LIDAR, or
just discrete LiDAR, as shown by the black dots in Figure 1.1, is where a point is recorded
each time the outgoing laser pulse hits an obstacle. In a forested area, the first return is
generally the top of the canopy, the later returns are likely the understory, and the last
return is generally assumed to be the ground. However, under dense canopies, it is possible
that neither the understory nor the ground is captured. The reason for the multiple returns
is that the laser pulse is not an infinitely thin beam, but spreads out in a narrow cone as
it travels through the atmosphere. The size of the beam is called the footprint of the laser
pulse. When the cone of light hits the top of the trees, only part of the energy within the
footprint is returned, and the rest continues on to generate more returns [Fernandez-Diaz

and Carter, 2013]. When the top of the canopy is dense enough to return all energy of the
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laser pulse, then only one return is generated. The discrete LiDAR is the most popular
LiDAR data used today because it is relatively simple to work with. The discrete LiDAR
data generally contains only up to four returns per laser pulse, the first three, and the last
return. This limit on the amount of data leads to a compact dataset where each data point
contains a lot of information. Therefore, the discrete LiDAR data, or point cloud data, is
small and provides a good representation of the Earth’s surface.

The full waveform LiDAR data is derived from the same physical laser return signal as
the discrete LIDAR. However, where the discrete LIDAR only records a few points, the full
waveform LiDAR digitizes the entire return wave and records the intensity of the return at
1GHz frequency. This translates to one record for about 0.3m travel for the laser. Recording
everything at such high resolution generates a much larger dataset compared to the discrete
LiDAR. Therefore, the waveform LiDAR data is much harder to work with. However, the
full waveform data may be able to resolve finer details not captured in the discrete LiDAR.
For instance, discrete LIDAR only captures the first three and the last return. In complex
canopy structures, the discrete system will miss everything between the third and last return
which the waveform LiDAR will not. Also, when the discrete LIDAR registers a return, there
is a set time interval when it will not register another return. This prevents the discrete
system from recording an obstacle twice. However it also prevents the discrete LiDAR
from observing two closely spaced objects. These situations are resolvable in the waveform
LiDAR. In addition, because the shape of each return wave depends on its interactions with
the canopy and the ground, waveform LiDAR data can provide the most information for
characterizing canopy structure.

Therefore working with LiDAR data presents a trade off. Discrete LiDAR data is easy to
work with, but may miss finer details. Waveform LiDAR data is difficult to work with, but
captures as much vertical structural information as possible. The key is to use a combination
of the two forms of data. Use discrete data when doing larger scale studies, and use waveform

data only when finer details are necessary.

1.5 Thesis Organization

Ecological models involving canopy processes have long since started migrating from the
simpler big-leaf canopy models to more complex models where processes strongly depend
on canopy structure [Chen et al., 2003]. At the same time, models have increasingly higher

resolution as computational power grows. These two advancements in ecological modeling



lead to a strong demand for more detailed descriptions of canopy architecture.

In this thesis, we describes our work of using waveform LiDAR data to provide such
detailed canopy structural information at fine resolution. Four main factors describe canopy
structure as described above, total amount of foliage, foliage distribution, canopy clumping,
and leaf orientation. In Dutta et al. [submitted], we estimate tree-wise LAD as a description
of foliage distribution. In this thesis, we tackle two other factors that describe canopy
structure, total amount of vegetation, and canopy clumping. We estimate total above ground
biomass, as a description of total amount of vegetation, using stepwise multiple regression
between each tree’s pseudo-waveform characteristics and its biomass derived from field data.
The pseudo-waveform is generated by voxelizing all waveform data of the tree. In this
thesis, we provide new physical description of canopy clumping structure by applying cluster
analysis to the waveform data of each tree. Then we classify the clumps found in waveform
data to better understand the connection between clumps in data and actual clumps in the
foliage. Unfortunately, airborne LiDAR cannot provide leaf level descriptions.

The thesis is organized as follows:

e Chapter 1 provides background information on the vegetation characteristics currently
used in estimating fluxes between land and air, why finer resolution descriptions are

needed, and an introduction to airborne LiDAR technology used in this thesis.

e Chapter 2 presents the data used in this thesis as well as the data processing procedure

used to prepare raw waveform LiDAR data into usable form.

e Chapter 3 outlines the steps in using LiDAR data for estimating vegetation biomass

as well as present the results

e Chapter 4 outlines the steps in using LiDAR data for characterizing foliage clumping

and provides the associated results.
e Chapter 5 summarizes results from the two previous chapters.

e Chapter 6 provides discussion about the results as well as issues encountered in the

study.

e Chapter 7 finishes with conclusions from this research and suggestions for future works.



1.6 Figures
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Figure 1.1: LiDAR acquisition process and symbolic representation of discrete and
full-waveform LiDAR [Fernandez-Diaz and Carter, 2013].



CHAPTER 2

DATA

2.1 Data Collection

The data used in this thesis is collected for sites located in the Upper Sangamon River
Basin (USRB) as part of of Critical Zone Observatory for Intensively Managed Landscapes
(IMLCZO). USRB is located in east-central Illinois, which has a humid continental climate
with hot summers and cold winters. Vegetation mainly consists of row crops, corn and
soybean, and some dense mixed forests. The methods in this thesis are mainly targeted
toward application in these dense forests.

In the summer of 2014, both remote sensing data and field data were collected around
the same time. Airborne remote sensing data includes imaging spectrometer data, also
called hyperspectral, and LiDAR data. Lidar data set contains both discrete and waveform
data. Flights to obtain the remote sensing data were conducted by the National Center for
Airborne Laser Mapping (NCALM). Tree survey data was also collected by students and
faculty at the University of Illinois. Only the LiDAR data and field data are used in this
study.

2.1.1 LiDAR Data

The LiDAR data was collected using the Optech Gemini Airborne Laser Terrain Mapper
(ALTM) on the 4th of August 2014. An infrared laser with wavelength of 1064 nm is used.
Nominal flight altitude is 600 m. The scan angle is £18°, resulting in a swath width of 367
m. Nominal swath overlap is 185 m. So on average, all areas are scanned twice by the plane
to increase point density. With laser pulse repetition frequency (PRF) of 100 kHz and two
passes, the resulting discrete point cloud has a density of 7.8 points/ m”. Beam divergence
is 0.8 mrad, which results in a 0.24 m radius footprint at ground level. Compared to others,

this LIDAR system can be considered a small footprint LIDAR with medium to high density.



The discrete LIDAR data was processed by NCALM and is divided into 1 km square tiles.

The waveform data was not processed and remains as separate binary files.

2.1.2 Field Data

Tree survey data was collected from July 315 to August 4" 2014 in order to coincide with
the airborne remote sensing data collection. Four sites within the USBR were sampled
Allerton Park-1, Allerton Park-2, Home Forest Site, and Lake of the Woods. These four
sites are located along the riparian forest corridor of the Sangamon River and are mainly
dense mixed forests as previously mentioned.

For each site, tree characteristics data collected included stem location, species, crown
width, tree height, height of the bottom of the crown, and diameter at breast height (DBH).
Various tools used include tape measures, field GPS, total station, and clinometer. Plot level
LATI was measured using LAI-2200C plant canopy analyzer. Tree species were identified by
comparing leaf samples with published species identification guides [Mohlenbrock, 1973].

2.2 Data Processing

Out of the three datasets used in this thesis, tree survey data (in csv form) and discrete
LiDAR data (as tiled point clouds) can be ingested relatively easily. However, our goal is
to use waveform LiDAR data to quantify details that may not be captured in the discrete
LiDAR data. The discrete LiDAR data was processed by NCALM after they collected the
data, but the waveform data was not. They are given as a set of raw binary files. Figure
2.1 shows a summary of the important waveform data in each file and their relations to
each other. We must first process the waveform data into usable form for our study. One
challenge of working with waveform LiDAR data is the limited software support. So the
waveform LiDAR data used in our study are completely processed by original code using
Python starting with raw binary files using an object oriented approach. The processing

steps are detailed below. A schematic summarizing processing steps is shown in Figure 2.2.



2.2.1 Read Files

The raw waveform LiDAR data is recorded in three separate binary file with different formats
DF2, 1X2, and CSD. In Figure 2.1, files are enclosed in rectangles, and data are enclosed in
ellipses. To construct each waveform, pieces of data must be extracted from all three files.
The DF2 file, shown as light red in Figure 2.1, contains the actual digitized intensities of
the outgoing and return signals as well as time interval information between when the laser
pulse left the digitizer and when it returned. The time interval is the number of cycles of
the digitizer’s processor. A PCount factor is needed to convert the time interval information
in the DF2 file to seconds. This factor is found in the IX2 file, shown as dark red in Figure
2.1, which is an indexing file that corresponds to the DF2 file. Together, the time interval
information and the PCount factor gives the exact linear distance between the start of the
outgoing signal (assumed to be the plane location) and that of the return signal.

To fully geolocate the waveform, plane location and orientation as well as scan angle of
the laser are needed. These location information is recorded in the CSD file, labeled CSD
Record in Figure 2.1, as each laser fires, and each record contains an associated GPS time.
The IX2 file can also be used to retrieve GPS time for each waveform. Waveforms can then
be matched to its corresponding location information using the two GPS times. To retrieve
waveform GPS time from the X2 file, the following equation is used:

T(Wy,) =Ty + (=) 2.)

f

Where T refers to GPS time, and W, is the r'* waveform in frame number f. T} and T},
refers to GPS time of frame f and that of the subsequent frame. Ry is the total number of
waveform in frame f. Here a frame is just an organizational unit used in the IX2 file can
contains around 13000 waveforms. Since the IX2 file only contains GPS time record for the
start of each frame, interpolation is used to assign GPS time location to each waveform. This
process of combining pieces of information from all raw binary files is labeled as Read from
files in Figure 2.2. The result is a Python object that we defined called Wave. It contains

all intensity records of a single wave as well as geolocation information.

2.2.2 Process Waveform

After all information for one waveform is collected, we then geolocate the wave by assigning

location to each digitized intensity record in the waveform. To do this, the range D;, linear
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distance of intensity record ¢ in the return wave from the plane, is calculated. Then rotational
matrices are used to apply scan angle and plane orientation to the range. Calculations are

shown in the following equation:

X X 0 lo
Y| =|v| +R*™|Ra)|0]|~-|l (2.2)
Z Z D; L,

Wi pl

In a simpler representation, equation 2.2 can be written as follows:

Ly, = Ly + R (R, (a)D; — ¢) (2.3)

Where R®Y = R,(Y)R,(P)R.(R). R.(a) represents a 3D rotation matrix that applies
rotation of angle a around the x-axis to some vector in Euclidean space. Similarly, R,(P)
means rotation of angle P around the y-axis. a is the scan angle of the laser, R, P, Y are the
roll, pitch, yaw angles of the plane.

Lyy is the location of one digitized record in the waveform. L, is the location of the plane.
D; is the vector representation of D;, and e is an error term that account for misalignment
and IMU offset. Error values can be found in the header of the CSD file labeled as CSD
Header in Figure 2.1.

Once the wave is geolocated, baseline intensity registered by the sensor is removed from
the wave by subtracting a constant representative value to maintain comparability between
waveforms. This step of geolocating and processing individual waveforms is labeled as Process

Wave in Figure 2.2.

2.2.3 Correct Errors

At this point, the geolocation of each wave is not exactly correct. Empirical offsets in the
data exists due to offset in sensors and datum conversion. The resulting waveform data must
be compares to the discrete LIDAR data produced by NCALM using commercial software
for corrections. These offsets include offset in range, heading, as well as an offset in GPS
time used to match waveform data to plane location and orientation. In order to compare
the waveform to the discrete point cloud data, the record with the max intensity in each
wave is extracted and combined into a set of point cloud data.

Range offset can be found automatically by comparing corresponding data points in each

dataset. Heading offset can be found by comparing the angle of one scan line of data.
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However, GPS time offset must be corrected by guess and check. A GPS time offset results
in one waveform using the geolocation of an earlier (or later) waveform. This error is most
noticeable between two adjacent scan lines in sloped surfaces such as angled roofs. If the
offset exists, then the two adjacent scan lines of the same roof will display a horizontal offset.
So the offset must be corrected by adding a constant to the GPS time of each waveform.
Different constants are tried and checked visually until adjacent scan lines in roofs match.
This process of finding offsets in the waveform data is labeled as Correct Errorsin Figure 2.2.
Once offset values are found, either by automatic or visual comparison, we must restart the
process at the beginning by reading from raw data and geolocate waveforms while including

the calculated offsets.

2.2.4 Extract Waveforms

The previous sections describe how data is extracted from raw binary files and combined
into a list of waveforms (Wave List). However, waveform LiDAR data is large and difficult
to work with, and generally data for the entire site is not needed. Therefore, we develop
an algorithm to extract a section of interest in the waveform data based on discrete LiDAR
point clouds. Using the point cloud of an area of interest, we find all GPS time intervals the
data spans. These intervals will not be continuous in time as the point cloud can contain
data from multiple flight lines and the laser can pass in and out of the area of interest as it
scan along the flight line. By applying the processes described in previous sections to only
waveforms with in the GPS time intervals, we can extract needed waveform information with
minimum computation. Figure 2.3 shows the Allerton Park-1 site, and 2.4 shows the sample
tree used to test the foliage cluster analysis method described in Chapter 4. In order to
display the waveform data for an extracted region, all records in each waveform is converted

into a geolocated point and shown as a point cloud by the free CloudCompare software.

2.2.5 Process Wave List

Once a Wave List extracted for a region of interest, further processing might be needed to
prepare waveform data for our models. This step is labeled as Process Wave List in Figure
2.2. However, different procedures are required for different models. Therefore, this step will
be described in the following Chapter along with studies that use the data produced by the
procedures described in this Chapter.
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2.3 Figures
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Figure 2.1: Summary of relations between raw binary files and the pieces of waveform data
each file contains.
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Figure 2.4: Waveform data of tree displayed as points by giving geolocating each record.
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CHAPTER 3

BIOMASS ESTIMATION

In this chapter, we describe how we used waveform data extracted for individual trees along
with field data in an attempt to estimate above ground biomass for each tree. Traditional
methods for calculating biomass involves destructive sampling of trees. More recent methods
such as using allometric equations also require some field measurements such as DBH and
tree height.

Using airborne LiDAR data may be the only way to find fine scale biomass data for large
areas. LiDAR data gives a detailed description of tree size and structure, with directly
influences biomass. So in this chapter, we attempt to relate a tree’s waveform characteristics
to it biomass calculated from field data.

First we describe the methods used in the analysis, then we present our results. Conclu-

sions will be presented in Chapter 6 and 7.

3.1 Methods

In this section, we first describe how we extract waveform characteristics for individual trees,
then we present our regression analysis that tries to relate the waveform characteristics of

each tree to biomass information derived from field data.

3.1.1 Process Wave List

To find individual trees, the canopy height model is used as input to Envi-Lidar. This
program assumes circular tree crowns and delineates individual trees with location and radius
as output. Next, using the delineated point cloud information as input to the data processing
procedure described in Chapter 2, the list of waveforms, or Wave List, for each tree can be

extracted.
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Using the tree delineated point cloud data, we find trees that match those that were
sampled in the field. After extracting all waveforms for each sampled tree, we combine all
waveforms associated with each tree using a voxelization method which allows up to capture
vertical structure of biomass distribution [Hosoi and Omasa, 2006]. In this method, each
tree is approximated as a cylinder. The height of the cylinder is the vertical range of the
all waveforms in each tree, and the radius is the output from Envi-Lidar when using the
discrete data as input for tree delineation. By dividing the cylinder into 1 cm layers, disk
shaped voxels along the height of the tree are generated. Then by totaling all records that
fall within each voxel, pseudo-waveforms, as shown in Figure 3.1, are generated for each tree.
In order for each waveform to be comparable, each wave record is normalized with respect
to the max intensity in the wave. The equation below demonstrates this process.

w;

Vi=>_

(3.1)

wma:p
V}, is a voxel at a certain height, w; is a wave record, and w,,; is the max intensity of the

wave that contains w;.

3.1.2 Waveform Characteristics

To describe the pseudo-waveform for each tree, we chose several waveform structural char-

acteristics listed below:

e Total energy (tE). Total energy is the total area under the pseudo-wave of each tree.

Found by integrating the wave with respect to elevation.

e Total Height (tH). Total height is the vertical range of the pseudo-wave. The peak
that likely represents ground return is not removed. Our reasoning is that the ground
return characteristics below a tree is also an expression of tree structure. Dense trees
are likely to have less significant ground return compared to foliage return, and the

reverse is true for sparse trees.

e Max energy (maxE). The maximum energy of the wave is the peak intensity value
of the wave. In the case of the pseudo-waveform, this is the x-axis value (pseudo-
intensity) shown in Figure 3.1. Due to normalizing the waveform, this value does not
have a physical meaning, but is an indirect expression of the intensity of all waveforms

for a tree.
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e Median energy (midE). The median energy is the median value of all pseudo-intensity

values of the pseudo-waveform for each tree.

e Relative height at 25% energy (RH25). RH25 is the relative height below which lies
25% of the pseudo-wave’s area. Integrating the pseudo-wave from minimum elevation
to elevation at 25% results in 25% of total energy. Relative height entails a distance
measurement that it is the elevation at 25% energy subtracted by the minimum pseudo-

wave elevation.

e Relative height at 50% energy (RH50). Similar to RH25, this is the height, relative to

the minimum elevation, below which lied 50% of the pseudo-wave’s energy.

e Relative height at 75% energy (RH75). Similar to RH25 and RH50, this is the height,

relative to the minimum elevation, below which lied 75% of the pseudo-wave’s energy.

All wave characteristics above are calculated for the pseudo-waveform of each tree. Some
are energy characters that describes the waveform intensity of each tree, and some are height
characteristics that describes the pseudo-waveform structure and the distribution of energy.
We believe this to be a thorough description of the different characteristics of the pseudo-

waveform.

3.1.3 Field Biomass

In order to relate the pseudo-waveform characteristics described in the previous section to
each tree’s biomass, we must have actual biomass values for some trees for guidance. We
use field tree survey data and existing allometric equations to estimate biomass. There are
many published allometric equations in existing literature. The National Biomass Estimator
Library (NBEL) compiled many of them, and is a great tool for exploring tree biomass
[Wang, 2014]. For each tree, the NBEL requires USDA forest service region code (09 for
Ilinois), DBH, tree height, and tree species as input. As a result, it returns biomass in kg
for the tree calculated using all known allometric equations for the region. We then choose
a reasonable number based on how suitable the original study is to the current situation.
If a species of tree does not have an equation in this region, that of a similar tree, such as
another type of maple for an unknown maple, is chosen.

Currently, since cutting down trees to measure biomass is no longer prevalent, biomass de-
rived from allometric equations is generally accepted as valid biomass measurements. There-

fore, even though these are estimations, we assume that the biomass results estimated from
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field data are correct biomass values. Using the field survey data for the four sites mentioned
in Chapter 2 Section 2.1.2, 33 usable trees are identified and above ground biomass, the mass

of all vegetation above the ground, is calculated for each tree.

3.1.4 Regression

After estimating above ground biomass in the previous section for each surveyed tree, we
can now relate each tree’s pseudo-waveform structural characteristics to its biomass through
linear regression.

The simplest method would be to use multiple linear regression with each tree’s biomass
as the dependent variable and the pseudo-waveform characteristics as explanatory, or in-
dependent, variables. However, when we chose pseudo-waveform characteristics in Section
3.1.2, many of them describe similar traits. This leads to high cross correlation between
explanatory variables, rendering all variables insignificant.

Therefore, we perform stepwise multiple linear regression between biomass estimated from
field measurements and pseudo waveform structural characteristics using Matlabs Linear-
Model. Stepwise regression builds a linear model, but repeatedly add or removed explana-
tory variables based on a given criterion. Criterion used in this thesis is R2. Therefore, by
using a stepwise regression we can filter out the least significant explanatory variables that
may negatively influence the model fit. In order to check the validity of results, we only
use 80% of trees, training data, as input to the stepwise regression model. The regression

generates a model similar in the form to equation 3.2 shown below:

y~1+aol+22+ 2l 22 (3.2)

Here y is biomass, the dependent variable, and xlandz2 represent pseudo-waveform char-
acteristics, the explanatory variables. To test the validity of the resulting model, the remain-
ing 20% of tree data, test data, is used as input and the resulting biomass value is compared

with the value derived from allometric equations.

3.2  Results

Since we choose a random 80% of data as regression input, the results of each repeated

regression analysis are different. Figure 3.2 and 3.3 shows regression results for different
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runs of the stepwise multiple linear regression. One outlier in the data had to be physically
removed for reasonable results. In the model shown in Figure 3.2, the regression results are
fairly good. The R? value is not high by general standards, but is considered pretty good
for this type of study. However, the R? for the model shown in Figure 3.3 is extremely
low. This unstable performance by the stepwise regression method is also evident in that
each run results in a model based on different explanatory variables. In other words, we are
not able to determine the most important pseudo-waveform structural characteristics that
affects above ground biomass of each tree.

The variation in results from the regression analysis is likely due to the limited number
of data points we have. Unfortunately, the inaccessibility of trees to measure due to dense
understory is inevitable in dense forest as we have at USRB. Many other situations can also
lead to limited amount of data. Since limited data is a prevalent problem, we then hope
to test the effectiveness of statistical methods in finding significant explanatory variables.
In order to determine the most significant pseudo-waveform structural characteristics that
indicate biomass, we use a bootstrapping method and run the stepwise regression 500 times.
Each time, the regression is applied to a randomly chosen 80% of the data as training data,
and the remaining 20% is test data used as input to the resulting model which gives a
predicted biomass value.

Figure 3.4 shows the results from the 500 runs of stepwise regression. The y-axis is the
biomass of surveyed trees based on allometric equations and field data. The x-axis indicates
biomass predicted by the model. Each blue point is a test data point, part of the 20% not
used in building the model. Because the training data is chosen randomly, each surveyed
tree has served as test data multiple times to different models. This leads to a horizontal
spread of predicted biomass for each field measured biomass as shown in Figure 3.4. The
red circles indicate the median value of all predicted biomass for each surveyed tree.

The model for each stepwise regression is also recorded and processed. In order to find the
pseudo-waveform structural characteristics that has the most influence on biomass, we want
to find the model that occurs most frequently from randomly chosen training data. Out of
500 runs, there are 149 unique models. By our definition, two models are the same if they
used the exact same explanatory variable and operations between variables. For example,
y ~ xl + 22 is the same as y ~ 22 4+ x1. Their coefficients may differ. The model that

occurred most frequently is:

Biomass ~ 1+ tE + RH50 +tE * RH50 (3.3)
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which occurred 33 time out of 500. This model is relatively simple and only uses two terms,
tE and RH50. Figure 3.5 shows biomass prediction results of using only tE and RH50 as
explanatory variables. In this case, R? value is based on all data instead of just the test
data.

Closely following the model shown in Equation 3.3 in terms of frequency of occurrence

are:

Biomass ~ 1 +midE +tE + RH50 + tE « RH50 (3.4)

Biomass ~ 1 +tE +tH +tE «tH (3.5)

which occurred 32 and 31 times respectively. The model shown in Equation 3.4 is very
similar to that of Equation 3.3. The only difference is the addition of the linear midE term.
The model in Equation 3.5 is similar in form to that of Equation 3.3. The difference here
is the used of tH instead of RH50, which are both height terms. tE occurred in all three

models. RH50 occurred in two. midE and tH each occurred once.
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3.3 Figures
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Figure 3.1: Examples of pseudo-waveforms for individual trees in Allterton Park-1 site.
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Figure 3.2: Example of relatively well fitted model. Model based on randomly chosen 80%
of data. Blue points are data used in the regression. Red points are the remaining 20% test
data. R? value is based on test data only.
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Figure 3.3: Example of poorly fitted model. Model based on randomly chosen 80% of data.
Blue points are data used in the regression. Red points are the remaining 20% test data.
R? value is based on test data only.
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Figure 3.5: Biomass prediction results using the most prevalent model from 500 bootstrap
runs shown in Equation 3.3.
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CHAPTER 4

FOLIAGE CLUMPING

In this Chapter we propose an easily scalable method to estimate physical canopy clumping
structure for individual trees using airborne full-waveform LiDAR data. Canopy clumping
is hard to quantify, since what entails a clump can be subjective. Traditionally clumping
indices are used to describe the amount of clumping on a large scale. These indices are
generally derived using optical tools such as hemispherical photos.

Using airborne LiDAR data will not only provide wide coverage, but can potentially give
a fine scale description of the canopy clumping characteristics that clumping indices cannot
provide. In this Chapter, we attempt a new method that describes clumping structure in
waveform LiDAR data, which should give an indication of actual canopy clumping.

We first describe our method used for clustering the waveform data, then we present the
clustering results. Interpretations of the clustering results and conclusions will be described
in Chapter 6 and 7.

4.1 Methods

In this section we describe why we choose to use K-means clustering, and how we use
simulated LiDAR data test the most applicable method of finding the K in K-means. Then
we present how we cluster the records (each recorded intensity) in the waveform LiDAR data

and our clustering results for a sample tree selected from USRB.

4.1.1 Cluster by K-means

Waveform LiDAR data can provide detailed canopy structural information. However, the
relation between individual waveforms and records in each waveform is unknown. In order

to find patterns in the LiDAR data, clustering analysis can be extremely useful [Jain, 2010].
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Clustering is a form of unsupervised pattern recognition involving only unlabeled data,
such as our waveform LiDAR records [Duda et al., 2012]. The purpose of data clustering
is to find the natural groupings of a set of data, or points, in order to gain insight into the
underlying structure of the data set. Clustering characteristics in LIDAR data can help us
gain insight into canopy foliage clumping.

Cluster analysis is an extremely useful but also difficult process due to the subjective na-
ture of the problem. This challenge has led to an increasing number clustering algorithms
[Jain, 2010]. Two main categories of clustering algorithms are hierarchical and partitional.
Hierarchical clustering recursively combines or divides clusters while partitional clustering
divides the data into a set number of clusters simultaneously. The more resource intensive hi-
erarchical clustering is unsuitable for the large amount of waveform LiDAR data. Therefore,
K-means, a widely used partitional clustering algorithm, is chosen.

K-means is one of the most popular clustering algorithms due to its simplicity, efficiency,
and empirical success [Jain, 2010]. The algorithm seeks to minimize the sum of the squared

errors (SSE) of all clusters shown in Equation below [Jain, 2010]:

JO) =323l — pulP (4.1)

k=1 wecy,

Here, K is the total number of cluster, ¢, represents one cluster, and uy is its center.

Given K, a distance metric (usually Euclidean distance), and a cluster initialization
method, the K-means algorithm first partitions the data into K clusters according to the
given initialization method. Next, it re-clusters by assigning each data point to its closest
cluster center based on the given distance metric. Using cluster centers from new clusters,
re-clustering is repeated until clusters are stable [Jain and Dubes, 1988].

In this thesis, four features for each data point are selected as input to the K-means
clustering algorithm, xyz location based on UTM N16 and record intensity. Point location
serves to group points of close spatial proximity. Intensity is used to group points of similar
return characteristics. In order to only use the most informative data, all records with
intensities below half of the max intensity of their respective peaks are removed. Intensities
are then linearly scaled so that the max value is the range of elevation. Scaling is necessary
for comparability between variables. We use Euclidean distance as the distance metric and

use randomly selected data points as initial cluster centers.
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4.1.2 Cluster Evaluation

The challenge in using K-means clustering is choosing the correct K, the number of clusters,
since what constitutes the correct number of clusters may be subjective [Han et al., 2011].
Often K is determined through trial and error and there may be no justification for selecting
a particular value [Pham et al., 2005]. However many methods exist for selecting the K in
K-means. In this thesis, we consider many representative methods for choosing K. These

include:

e Nominal K [Kodinariya and Makwana, 2013]. The nominal K is a rule of thumb for
selecting K given by Equation 4.2 below:

K =~ \/n/2 (4.2)

It is only based on the total number of data points being clustered by the K-means
algorithm. Therefore it may not be applicable in all situations. However, it does give
a large enough K estimate in our case to ensure we are not over simplifying data

structure.

e Elbow Method [Ng, 2012]. The elbow method is a traditional method for estimating
K in K-means. In this method, clustering results are evaluated by the SSE shown in
Equation 4.1. K-means is run for a range of K values, and the SSE is calculated for
each clustering result. The calculated SSE is then plotted against their respective K
values. In an ideal case, the resulting plot shows a curve with a sharper bend in the
middle, looking like a bent arm. The K value where the curve bends the sharpest, the

elbow, is the correct K to use for K-means.

e Calinski-Harabasz or Pseudo-F Index [Caliriski and Harabasz, 1974]. Similar to the
elbow method, finding the correct number of clusters, K, to use using the Pseudo-F
index also requires running the K-means algorithm for a range of K values. In this

case, the Pseudo-F Index, shown below is used to evaluate cluster results instead of
the SSE.

BGSS/(K —1)

PscudoF =
ST = WGSS/(N — K)

(4.3)

Here BGSS is the between group sum of squares, and WGSS is the within group

sum of squares. BGSS is calculated as the squared error of all cluster centroids, and
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WGS'S is the SSE of the clustering result. NV is the total number of data points, and K
is the number of clusters. This index is named Pseudo-F index because it is analogous
to the F-statistic used by Edwards and Cavalli-Sforza [1965] in cluster analysis. Larger
values indicate tighter and more separated clusters. Ideally a good K value is indicated
by peaks in the plot of this index with respect to the number of clusters [Wilkinson
et al., 2012].

Silhouette Score [Kaufman and Rousseeuw, 2009]. The Silhouette Score is the mean
Silhouette Coefficient or all clusters. This index should also be calculated for clustering
results from a range of K values. The equation for calculating Silhouette Coefficient

for each cluster is shown below:

Silhouette = _bza (4.4)
max (a, b)

Here a is the mean within cluster distance, or the mean distance between all pairs of
data points in a cluster. b is the mean nearest-cluster distance, or the mean distance
from all points in the cluster to the nearest point that is not in the cluster. This
coefficient measures how cohesive each cluster is and how separate it is from neighboring
clusters. As we can tell from Equation 4.4, the coefficient ranges from -1 to 1. Larger
value indicate more distinct clusters. A suitable value of K can be chosen using the
plot of the Silhouette Score, mean Silhouette Coefficient for all cluster, with respect to

K, the number of clusters.

Bayesian Information Criterion (BIC) [Pelleg et al., 2000, Schwarz et al., 1978]. The
BIC used in Pelleg et al. [2000] as the stopping criteria for the x-means algorithm, which
is simply an accelerated K-means clustering that chooses K automatically based on
BIC. The Bayesian Information Criterion, also called the Schwarz Criterion, is first
used by Schwarz et al. [1978]. Since then, many form of the criterion has developed.

The following equation comes from Wit et al. [2012].

BIC = —21(0) + plog(N) (4.5)

~

Here, {(#) is the maximum log likelihood of all clusters, p is the number of parameters
in the clustering data, four in our case. N is the total number of data points. The

BIC measures the posterior probability as an evaluation of a clustering result. Using
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Equation 4.5, minimizing BIC gives the maximum posterior probability. By evaluating
clustering results for a range of K values using BIC, the correct K should ideally occur

at the minimum BIC value.

Dunn’s Index [Dunn, 1973]. This is another cluster evaluation index that measures
the compactness within clusters and separation between clusters. It is defined as the
minimum Euclidean distance between any two points in the data set that belongs to
different clusters.

O )

DIy = (4.6)

max Ay
1<h<K

where the numerator is the minimum Euclidean distance between any pair of cluster
centers, and the denominator is the maximum diameter of any cluster. Here A,, the
diameter of a cluster, is defined as the maximum distance between any two points in
the cluster. It is a measure of the spread of data in a cluster. It can also be define as
the mean distance between all data pairs in a cluster (same as a in Equation 4.4) or
the mean distance between each point and its respective cluster center. Larger Dunn’s

index indicates more tightly grouped clusters.

Minimum Between-cluster Distance (minBdist). The minimum between cluster dis-
tance is an additional index used in this thesis to test for the correct K value in
K-means clustering. The reasoning behind using this measure to evaluate clustering
results is that as K value increases, larger clusters are, ideally, being divided into more
tightly grouped smaller ones. Therefore, when K is small, the minBdist should be
large, and as K increase, minBdist should become gradually smaller until it reaches
the minimum distance between any two data points. Ideally the correct K value should
be when the minBdist starts to decrease more slowly, indicating that any more increase

in K will result in dividing more tightly grouped clusters.

Minimum Center Distance (minCdist). The minimum center distance is also another
index developed in this thesis to estimate the correct K value when K-means is ap-
plied to LiDAR data. This index measures the minimum distance between any two
cluster centers. The reasoning and expected behavior of minCdist is similar to that
of minBdist. When K is small, there should be few clusters where cluster centers are

far apart. As K increase, minCdist should also become gradually smaller since there
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are more and more small clusters. Ideally the correct K value should be when the
minCdist starts to decrease more slowly. This should be an indication that additional

increase in K will result in dividing tightly grouped small clusters.

4.1.3 Point Cloud Simulation

We test the applicability of each method of choosing K mentioned above using simulated
LiDAR point clouds with given degree of foliage aggregation and known number of clusters.
Similar simulation procedures has been used by [de Castro and Fetcher, 1999], then [Walter
et al., 2003]. In these previous works, LAI is needed as input to simulate foliage canopy. In
this thesis, the number of points in the discrete LiDAR point cloud of an area of interest
(N,) is used instead of LAI to represent the amount of foliage in the canopy. Additional
parameters needed as input include the number of clusters (N,), and the cluster percentage
(fraction clumping, F,). F, is a fraction between 0 and 1 used to scale the distance between
each point and its closest cluster center. To generate a point cloud with given degree of
foliage aggregation, the first step is to generate NV, points randomly distributed within the
same volume as that of the original point cloud. Then N, cluster centers are also randomly
located within the volume. Each of the IV, points in the point cloud is displaced toward its

closest center according to

d=(1-F)d (4.7)

The displacement of each point occurs along the vector between the point and its closest
center. d is the original length of the vector, and d’ is the distance after displacement. As
should be clear from Equation 4.7 above, F,. = 0 corresponds to a completely random canopy,

and F. = 1 represents a completely compacted one.

4.1.4 K for Simulated Point Clouds

Once a point cloud with a given number of clusters is simulated, we test the applicability
of each cluster evaluation index by repeatedly clustering the point cloud using increasing
number of clusters (K). Each cluster result is tested with the cluster evaluation methods

mentioned in Section 4.1.2, and an index is generated for each given K. This testing process
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is run multiple times, and an average index from all runs for each K is used to judge the
performance of the cluster evaluation method.

Most cluster evaluation methods mentioned in Section 4.1.2 are unable to correctly identify
the number of clusters in the simulated point clouds. Figure 4.2 and 4.3 shows examples of
failed cluster evaluation methods. Figure 4.2 shows the results from using BIC as cluster
evaluation index on a simulated point cloud with 60 clusters and F, of 0.6. A range of K
values are used to cluster the point cloud and BIC is calculated for each cluster result. In the
resulting line plot, the BIC decreases with increased K, indicating better clustering, however,
it shows no sign that K = 60 is any better than other K values in that range. Therefore, we
cannot use BIC as a cluster evaluation for waveform data clustering when looking correct K.
Another example of a failed cluster evaluation index is minimum between cluster distance.
This index is applied to a simulated point cloud with similar parameters as that of the BIC
test, 60 clusters and F,. of 0.6. Again a range of K values are used for clustering. The plot
of minBdist with respect to K is shown in Figure 4.3. Similar to BIC, this evaluation index
give no indication that the clustering result of K = 60 is any different from others in that
range. Based on the results, we would most likely choose K = 45, which does not agree with
the actual number of clusters.

Only two of the cluster evaluation methods mentioned in Section 4.1.2 yields promising
results. One is the Dunn’s index described by Equation 4.6. The Dunn’s index is also used
for evaluating clustering for a simulated point cloud with 60 clusters and F,. of 0.6. The
results are shown in Figure 4.4. In theory, larger Dunn’s index indicates tighter clustering.
However, the index gradually decreases for increasing number of clusters until the K grows
past the correct cluster number. This method may not be suitable for evaluating cluster
validity given the index value at the correct number of clusters, it does indicate when the
correct number is reached by comparing multiple runs of K-means clustering.

Another cluster evaluation measure that yields good results is the minimum center distance
described in Section 4.1.2. This measure is simply the numerator of Dunn’s index, and its
behavior is similar as well. However, it is significantly smoother compared to the Dunn’s
index as shown in Figure 4.5. From the Figure, it is easy to see that the correct cluster
number occurs after the bend in the graph. The measure generally remains constant with

increasing K after that.
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4.1.5 K for Waveform Data

The cluster evaluation methods that performed well with the simulated point clouds, Dunn’s
index and minCdist, is then applied to the waveform data of the tree of interest. Results are
shown in Figure 4.6. Cluster evaluation results for the waveform data do not show as strong
indication of the correct cluster number as previous simulations. We believe this might be
due to higher point densities in the waveform data as well as less distinct clusters. However,
the results still shows similarities. In the results for Dunn’s index, shown in Figure 4.6a,
the index decreases at first, but seems to reach a plateau after K = 130. There seems to be
another plateau after K = 210. However, the large variations in the index value after this
point prevents any conclusive decisions.

The results from the minimum cluster center distance measure, shown in Figure 4.6b are
also inconclusive. With this measure, we encounter the same problem which plagues the
oldest method for determining K in K-means, the elbow method [Ng, 2012]. Similar to the
ideal elbow method result, the result from the minimum cluster center distance measure has
a distinct bend, or elbow, at the correct number of clusters. However, often times there is
no distinct bend in the result from the elbow method, as is the case with our measure and
the waveform data. In this situation, we can only specify a range that the correct K is likely
to be in. From Figure 4.6b, the range 100 < K < 250 seems to be the center section of the
elbow.

In such ambiguous situations, several K values can be used [Pham et al., 2005]. In this
study, we choose to use K = 130 and K = 220. These numbers are close to the likely K
values from the evaluation using Dunn’s index, they also represent the range of K identified in
the minimum center distance measure. Also, K = 220 is chosen because it also corroborates
with the rule of thumb for selecting K defined as follows where n is the number of data

points.

4.2 Results

Waveform data for an individual tree is extracted, and all records in each waveform are
converted to points in space. The K-means clustering algorithm is then applied to the
waveform data using K = 130,220. The tree used and the cluster results are shown in
Figure 4.7.

Next we calculate the following four traits for each cluster for further analysis.
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e Average Cluster Intensity. The average intensity of all records in each cluster. Results
are shown in Figure 4.8. Clustering results for both K value are very similar to the

unclustered intensity data shown in Figure 4.7a.

e Cluster Count. The number of records in each cluster. Results are shown in Figure 4.9.
There are slight differences for the cluster results from different K values. Clusters for

K = 220 have less variation in the number of records per cluster.

e Cluster Volume. The volume of each cluster calculated by fitting a convex hull around
all points. Results are shown in Figure 4.10. The most notable result is that data for

the tree canopy form significantly larger clusters than data representing the ground.

e Cluster Diameter. The maximum distance between any two points in the cluster.
Results are shown in Figure 4.11. The results for K = 220 have many blue, or small
diameter, clusters. This indicates that there are many small clusters and a few large
clusters. Results for K = 130 seems more evenly distributed with small, medium and

large clusters.

Cluster volume and cluster diameter are both measures of the spread of a cluster. Clusters
with larger diameter should theoretically have larger volume. As expected, we find that they
exhibit a strong positive correlation shown in Figure 4.12. Therefore, cluster volume is not
used for further analysis. Figure 4.13 shows the distribution of values for the three remaining
cluster traits. We can see that their distribution are very similar. This leads us to believe
the K values we chose are in the correct range for describing the data structure.

By plotting the three remaining traits, intensity, count, and diameter, using a 3D scatter
plot, we see distinct groups form in the traits data. To classify these groups, we also use
the K-means algorithm (the term ’groups’ is used to describe to cluster traits to distinguish
from ’clusters’ of the waveform data). First, the three sets of trait data for all clusters are
normalized so that the maximum of each set is one. Then each cluster, each with three traits,
is used as a data point as input to the K-means algorithm. This time, to find the optimal
number of groups we apply the Dunn’s index to evaluate and compare K-means grouping
results as shown in Figure 4.14. From observation the we believe the traits data best fit
into three groups. However, according to Dunn’s index, dividing the data into 2 or 4 groups
result in the best groups. Because 2 groups might not adequately describe the structure in
the traits data, K-means is performed using 4 groups. Results are shown in Figure 4.15.

By observation, we can tell that the groups colored blue and black in Figure 4.15 can be
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considered one group. Because the K-means algorithm is more suitable for spherical clusters,
this elongated cluster in the data was split in two.

Judging from only three groups, where the blue and black groups are grouped into one,
there are several noticeable trends in the traits data. Most noticeably, is that there are very
few differences between results using K = 130 and K = 220. This can be an indication that
the Ks are chosen in the correct range. In terms of the traits data, the elongated group
(colored blue and black) is noticeably separate from the rest of the data. This group have
very low intensity and low diameter. Their count is relatively high but varies. This means
that these low intensity clusters are small and dense. There are also more data points in this
group when compared with the others. The remaining traits data is split into two groups.
In these data, cluster average intensity is positively correlated with cluster diameter, but
negatively correlated with the cluster count, the number of data points in the cluster. This
indicates that data clusters with high intensity, the red group in Figure 4.15, are large but
with sparse data points. There are also the fewest clusters in this group. Compared to the
red group, green group contains clusters with lower intensity, smaller diameter and higher
count. These clusters, similar to those in the elongated group, are also small and dense, but
have significantly higher intensity.

In summary, foliage clumping can be physically described by clustering waveform LiDAR
data. Each cluster is described by three traits: average cluster intensity, number of data
points, and cluster diameter. By using these traits, clumps in vegetation can be grouped

into three main groups

e Group 1. Low intensity group that are small and dense. A majority of clusters fall in

this group

e Group 2. Medium intensity group that are also small and dense. There are relatively

less clusters in this group

e Group 3. High intensity group that are large but sparse. This groups contains the

fewest number of clusters

Of the three groups, group 1, with low intensity, contains the least amount of clumping
information. Waveform data clusters in this group might have resulted from few scattered
leaves or ascending and descending edges of the return laser waveform due to a foliage clump.
Group 2, with clusters similar in size and density to those of group 1, have significantly

higher intensity. They likely represent slightly denser foliage or small foliage clumps. Group

36



3 provides the most information on the structure of the canopy due to foliage clumping.
Clusters in this group have high intensity, indicating strong returns, likely from dense foliage
clump with few to no gaps. Also, since here should be fewer returns in dense areas, the

sparse data of clusters in group 3 is also indicative of dense vegetation.
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4.3 Figures

fc=0.1 fc=0.3

fe=h:5 fc=0.7

Figure 4.1: Simulated point clouds with 30 cluster centers.
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Figure 4.2: K-means cluster evaluation by BIC using a simulated point cloud with 60

clusters. The solid line represents the average of all repeated runs which are shown as
dashed lines.

3.0 T T T T T

Figure 4.3: K-means cluster evaluation by minBdist using a simulated point cloud with 60

clusters. The solid line represents the average of all repeated runs which are shown as
dashed lines.
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Figure 4.4: K-means cluster evaluation by Dunn’s index using a simulated point cloud with
60 clusters. The black line represents the average of all repeated runs, shown as colored
lines.

Figure 4.5: K-means cluster evaluation by minimum cluster center distance using a
simulated point cloud with 60 clusters. The black line represents the average of all
repeated runs, shown as colored lines.
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Figure 4.9
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Figure 4.12: Relationship between cluster diameter and cluster volume. Each point

represents a cluster found by K-means.

47



k! 1 1 1 Y 08

0Zg=> J818welp 121snjo

kY 1 1

0ET=) Jo18Welp 191sn|d

1 Y Y

001

143

0oct

000T

02g=> 431sn|d Jad sjujod

008 009

il il

0ov

002

0€T=Y 481sNn|2 Jad sjuiod

0S

S€

1 2

“Iojomaeip

I9ISTI[D PUR ‘SPIODAI JO IoqUUNU ‘AJISUSIUI 9FRIDAR :SIIRI) I9ISTI[D JUSIOHIP JO UOIINLIISIP o1} Jo uostredwro)) €1 oIN3I]

0zt

0zz=> Ausualul 19)sn|d ueaw

1 il

0L

0ST=) ANsuajul JaIsn|d ueaw

48



a. 130 Clusters b. 220 Clusters

Figure 4.14: Evaluation of K-means with different number of group (G) using Dunn’s index.
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CHAPTER 5

SUMMARY OF RESULTS

In this chapter, we summarize the important results from this thesis. There are three major
parts to this work. The first part is processing raw waveform LiDAR data into a list of
usable Python objects. The next is using a combination of discrete LIDAR data, waveform
data and field data to build a model that can estimate tree biomass based on each tree’s
waveform characteristics. The last part focuses on finding structure in waveform data in

order to quantify canopy clumping structure.

5.1 Data Processing

Data processing is the most difficult and time consuming part of this work. In this part of
the work, we are able to produce a complete work flow that lets users extract geolocated
waveform LiDAR data based on the corresponding discrete LiDAR point cloud. This process
only takes a point cloud LiDAR file in .las format of the area of interest. Discrete LIDAR data
can be easily viewed and extracted by many open source or free software unlike waveform

LiDAR data. The major steps in this work flow are outlined below.
1. Find all GPS time ranges where data exists in the discrete point cloud.

2. Read from all LiDAR binary files and locate all waveform records that fall in any of
the GPS time ranges in the discrete data.

3. Combine raw data for each waveform into a geolocated waveform object based on
Equation 2.2 and 2.3.

4. Extract record of peak intensity of each waveform and convert into LiDAR point cloud.

5. Compare waveform data derived point cloud with discrete LIDAR point cloud. Based
on the comparison correct geolocation errors due to heading, range and GPS time

offsets.
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The work flow is written in Python and has been optimized using shared memory paral-
lelization. This software allows users to extract geolocated waveform data for only areas of
interest. It not only prevent the user from having to work with raw binary files, it also limits

the amount of data the users have to process to only those relevant to their work.

5.2 Biomass

Our goal for this part of the work is to develop a model that can estimate tree biomass
based on the tree’s waveform LiDAR data characteristics. Toward this aim, we first find
biomass using allometric equations found in the National Biomass Estimator Library using
tree survey data for four sites in USBR, Allerton Park-1, Allerton Park-2, Home Forest Site,
and Lake of the Woods. Then we calculate a pseudo-waveform for each surveyed tree using
a cylindrical voxelization method. Next we use stepwise multiple linear regression and try
to relate each tree’s pseudo-waveform structural characteristics to its biomass.

Since the regression is based on only 80% of the data with the remaining 20% serving as
test data, results between regressions are extremely variable. The R? values for fitting the
test data ranges from 0.3 to 0.7. The resulting models are also very variable. In order to find
the major pseudo-waveform characteristics that affect biomass, we then run the regression
500 times each time using a randomly chosen 80% of the data.

The three models that occurs the most frequently are shown in Equations 3.3, 3.4, and 3.5.
Only a few pseudo-waveform characteristics reoccur in these models. The most frequently
used is tE, total pseudo-waveform energy, which occurs in all three models. RH50, relative
height at 50% energy, occurs twice. midE, median energy, and tH, total pseudo-waveform
height, each occur once. The resulting biomass predictions for the 500 regressions are plotted
against biomass calculated based on field survey data in Figure 3.4. In this figure, the red
circles shows the median value for all predicted biomass from 500 different models. The
median and the actual biomass does exhibit a positive trend. However, the trend is not one
to one. The regression models tends to under predict for trees with high biomass values and

over predict for those with low biomass values.
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5.3 Foliage Clumping

In this part of the thesis, we use K-means clustering algorithm to explore the structure
in waveform LiDAR data of individual trees. We first test multiple published methods of
finding the best number of clusters to use based on simulated LiDAR data. Dunn’s index
and minimum cluster center distance are found to be the most suitable. When applied to
the waveform LiDAR data of the sample tree shown in Figure 2.4, K = 130 and K = 220 are
chosen. Using cluster results from the K-means clustering algorithm on waveform LiDAR
data, we find four traits for each cluster, cluster intensity, count, volume and diameter. Then
using cluster intensity, count and diameter, we further group all clusters into three groups.

Group 1 are small and dense clusters with low intensity. Group 2 are clusters similar in
size to that of group 1, but have significantly higher intensity. Group 3 contains large and
sparse clusters with the highest intensity. From these results, clusters in both group 2 and
3 are highly indicative of non-randomness in the foliage. Therefore, the location and traits
of these clusters from waveform LiDAR data can serve as physical representation of foliage

clumping.
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CHAPTER 6

DISCUSSION

In this chapter, we present the conclusions we can draw from the results of two sections of
our work. The first section is our work in trying to estimate tree biomass based on pseudo-
waveform characteristics of each tree. The second part of our work involves describing canopy
clumping structure using waveform LiDAR data.

In our work with using stepwise regression to estimate biomass, each regression returns
varying results. The results differ because a randomly chosen portion of the data is used.
This instability likely means that the data we use in the regression cannot represent the full
dataset, and that results from individual regressions may not reflect real physical processes.

The limited amount of data available was a concern since the beginning of this study.
However, since researchers are likely to run into data limitations frequently, we hope to find
a way to overcome this problem by using a bootstrapping method of running the regression
many times. The results from this method show that the majority of models tends to over
predict biomass for trees with low biomass values, and under predict for trees with large
biomass values. However, the most frequently occurring model does give relatively high R?
value. Because there are two other models that came close to the best one in performance, the
best model may not be a reliable estimator of biomass in application. However, these models
are able to inform us of the pseudo-waveform characteristics that correlates most strongly
with biomass, the total pseudo-wave energy and relative height at 50% energy. Knowing
these characteristics can enable better understanding of how waveform data interacts with
forest canopy.

In the second part of our work, we use the K-means clustering algorithm to find structure
in waveform LiDAR data of individual trees in order to better describe canopy clumping.
From the clustering results, we are able to identify three groups of clusters. Group 1 contains
small, dense clusters with low intensity. The density of the waveform records indicates that
the area is on the edge of a foliage clump, or is an area with sparse or scattered leaves. The
low cluster intensity indicates that the former is more likely, and they may be edge affects

produced in the waveform data by a denser patch of foliage. Therefore, we believe that
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these clusters contains the least amount of foliage, and thus the least amount of structural
information. Group 2 contains clumps of similar size and density to that of group one, but
they have significantly higher intensity. The higher intensity differentiates group 2 clusters
from those in group 1. We can see from Figure 4.15 that groups 2 and 3 are very well
separated from group 1, and not as much from each other. Due to the higher intensity, this
group likely represents areas on the canopy with sparse or scattered foliage that results in
small peaks in the return waveform, or the less dense foliage surrounding dense clump that
are captured in the rising and falling legs of each return waveform. Group 3 contains large
clusters with sparse data. The high intensity immediately indicates a strong laser return
due to dense foliage. The sparseness may also be an indication of foliage density since there
are not as many returns from the area. Therefore, we conclude that group 3 indicates dense
clumps in the canopy, and combined with group 2 clusters, they can serve as indication of
canopy clumping structure.

One difficulty we encounter in this study is choosing K for clustering the waveform LiDAR
data. The difficulty in this choice is likely due to the high density of the waveform LiDAR
data, and that the spatial location of LIDAR data is generally uniform. Clusters are results of
differences in record intensity and vertical distribution. To overcome this issue two different
numbers are chosen based on estimates from two cluster evaluation measures. By comparing
the results of both choices of K shown in Figure 4.13, we notice that the shapes of the
distributions of cluster traits are extremely similar. From Figure 4.15, we can see that the
trends in the traits data are also similar. The most significant difference is the increased
number of clusters in groups 1 and 2 when K is larger. By increasing K, the K-means
algorithm seems to further divide the less intense clusters, but have little effect on the more
intense ones.

Given our conclusion that only the more intense clusters in groups 2 and 3 should serve
as indications of clumping, we believe that reasonable variations in the number of clusters
will not affect the results of the clustering for this application. Therefore, when using this
method on a larger number of trees, we recommend apply the cluster evaluation process
to one representative tree, or simply use the rule of thumb (Eq.4.2) for finding K in the
K-means algorithm.

In summary, for our work in estimating tree biomass using waveform LiDAR data, we are
unable to overcome data limitations. However, using statistical techniques, we find that the
total energy and relative height at 50% energy of pseudo-waveforms of each tree provides

the most information about tree biomass. In our work with characterizing canopy structure,
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we classify the waveform data into three groups, and concludes that groups 2 and 3, those
containing clusters with higher average intensity can serve as an estimate of canopy clumping

structure.
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CHAPTER 7

CONCLUSION

Understanding the interactions between light and the canopy is very important in describing
gas and energy fluxes between land and air. Both canopy structure and leaf chemistry affect
light penetration. In this thesis, we use waveform LiDAR data to inform two important
factors that affect canopy structure, total foliage, and foliage clumping, in order to better
understand light and vegetation interactions.

Because of the importance of these canopy characteristics, many previous studies have been
published. However, most of them, especially those about canopy clumping, are large scale
while assuming uniform vertical canopy properties. In this thesis we describe our methods of
finding biomass and canopy clumping for individual trees using raw waveform LiDAR data

in order to satisfy high resolution models that are being developed with increasing frequency.

7.1 Summary of Methods

Waveform LiDAR data, unlike its discrete counterpart, has very limited software support.
Therefore, in order to work with raw waveform LiDAR data, we first developed a complete
data processing workflow extracts all waveform data for an area of interest by using the
discrete LiDAR data of the same area as input. All records in each waveform are geolocated
and corrected for errors by comparing with the processed discrete LiDAR point cloud.
Using the extracted waveform data and tree survey data from four field sites in USBR,
we first try to estimate biomass of individual trees using stepwise linear regression. Biomass
values for each surveyed tree are calculated using allometric equations from the National
Biomass Estimator Library. These values are used as dependent variables in the regression.
A pseudo-waveform for each tree is calculated by a voxelization method where all waveform
record are averaged in thin cylindrical voxels over the height of the tree. Each cylinder has
the same radius as that of the tree, and 0.2 m in height. Then structural characteristics
of each pseudo-waveform are calculated, including tE, tH, maxE, midE, RH25, RH50, and
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RH75. These characteristics serve as explanatory variable in the regression.

Individual regressions based on 80% training data and 20% test data return variable results
likely due to the limited amount of data. So we apply a bootstrapping method and run 500
regressions based on 80% randomly chosen data. Results are summarized in the section
below.

In the next part of our work, we use the K-means clustering algorithm to find clumping
structure in waveform LiDAR data of individual trees. We first use simulated point cloud
data to test a multitude of cluster evaluation criteria for finding the most suitable K for
the K-means algorithm. From our test, Dunn’s Index and minimum cluster center distance
could best indicate the correct number of clusters specified in the simulated LiDAR data.
However, when these evaluation criteria are applied to the waveform data, the best choice for
K is not apparent. Therefore, two K values are chosen, K = 130, and K = 220. Using these
K values, the K-means clustering algorithm is then used to cluster the waveform LiDAR
data for a sample tree. For each resulting cluster, four traits are found, and three of them,
cluster intensity, count and diameter, are used to classify all clusters by K-means. Results

are presented in the following section.

7.2 Results and Conclusions

In our aim to describe vegetation structure, we used waveform data to tackle two aspects
of canopy structural characteristics, total foliage through biomass, and foliage distribution
through canopy clumping.

For our biomass estimation, from the results of 500 regressions using bootstrapping, we
are not confident in the ability of the best performing model in predicting biomass results.
However, we find that total energy and relative height at 50% energy of each tree’s pseudo-
waveform are the most correlated with tree biomass. This information will be extremely
useful in future studies of biomass estimations, as well as providing insight into the relation
between waveform LiDAR data and total foliage.

In our work with canopy clumping, we classify the cluster results into three groups. Groups
2 and 3, containing relatively high intensity clusters, represents most of the dense foliage
in the canopy and thus provides important information about canopy structure. Using
waveform LiDAR data, we are able to construct an unprecedentedly detailed replication
of physical canopy architecture. In the process we are also able to develop a complete raw

waveform LiDAR processing work flow as well as easily scalable method for describing canopy
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structure.

In summary, we are not able to provide biomass estimations for individual trees based on
our field data alone. However, we believe our method in sound and the results from our study
can provide good insight for future studies. We are able to characterize detailed physical
clumping structure in the canopy using LiDAR data. Our new physical description is unlike
all previous works that seek to generalize the canopy using a single index. This description
of canopy structure may be more difficult to ingest by current models than the traditional
indices, and more work is needed to relate cluster traits to physical cluster characteristics.
However it provides sub-meter characterizations of the canopy that can be extremely useful
in fine resolution models such as those involving ray tracing. With more work, we believe
description of foliage clumping provided in this study can have wide applications in the

future.
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