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ABSTRACT

Simulation-driven verification is a promising approach that provides formal

safety guarantees for otherwise intractable nonlinear and hybrid system mod-

els. A key step in simulation-driven algorithms is to compute the reach set

over-approximations from a set of initial states through numerical simula-

tions. This thesis introduces algorithms for this key step, which relies on

computing piece-wise exponential bounds on the rate at which trajectories

starting from neighboring states converge or diverge. We call this discrep-

ancy function. The algorithms rely on computing local bounds on the matrix

measure of the Jacobian matrices. We discuss different techniques to com-

pute the matrix measures under different norms: regular Euclidean norm or

Euclidean norm under coordinate transformation, such that the exponential

rate of the discrepancy function is locally minimized. The proposed meth-

ods enable automatic reach set computations of general nonlinear systems

and have been successfully used on several challenging benchmark models.

All proposed algorithms for computing discrepancy function give soundness

and relative completeness of the overall simulation-driven safety verification

algorithm. We present a series of experiments to illustrate the accuracy and

performance of the approach.
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Chapter 1

INTRODUCTION

1.1 Need for Simulation-driven Verification

The 21st century has witnessed phenomenal growth in cyber-physical systems

(CPS), which tightly couple physical processes with software, networks, and

sensing. Most cars today come with cruise control which helps maintain

the speed. In the near future, the vehicles will be equipped with automatic

braking and steering systems to avoid collisions. Finally, fully self-driving

cars are also being built to improve road safety and efficiency. Unmanned

aerial vehicles are starting to share increasingly crowded airspace with com-

mercial and passenger air traffic, autonomous satellites will soon coordinate

with one another and service aging satellites, networked medical devices are

being implanted for health monitoring and drug delivery. Reliability and se-

curity lapses of such cyber-physical systems routinely disrupt communities,

and in many occasions have led to catastrophic failures, with major damage

to infrastructure and people. For example, a software glitch in the Toyota

Prius is the prime cause for a massive recall of 1.9 million cars, which caused

significant monetary loss and damage to the reputation of the company.

Recent breakthroughs in verification techniques have shown great poten-

tial for improving the design and certification processes for cyber-physical

systems [1, 2, 3, 4, 5]. Early stage successful applications of the verification

techniques can be found in automotive power-train control systems [6, 7],

medical devices [8, 9], aerospace brake systems [10] and power plants [11].

The two predominant approaches for enhancing the reliability and safety of

CPS are based on dynamic analysis and static analysis. The former usually

generates traces from the models or the real systems to find possible de-

fects. It is computationally inexpensive and therefore is popular in industry.

However, it suffers from incompleteness: it is impossible to cover all possible
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(uncountably infinite) behaviors of the system in finite time using finite num-

ber of traces. Static analysis, on the other hand, analyzes the formal models

of the system to infer properties about all possible behaviors. This is done

either by computing (or approximating) the reachable states or by deducing

properties of the model using specific proof rules. Wherever feasible verifi-

cation provides powerful system-level reliability guarantees, however, most

verification techniques for cyber-physical systems do not scale to large, re-

alistic models because reachability computations suffer from the state-space

explosion problem and the deductive approaches require significant human

insight in constructing the right proof obligations.

Recently, a third way of enhancing reliability has gained traction [5, 12, 13,

14, 15, 16]. This uses simulation traces for providing system-level reliability

guarantees by appropriately generalizing an individual trace (generated from

a test or a simulation) to a set of executions and then verifying the property

for this generated set. The success of this approach hinges on good gener-

alizations which can lead to coverage of all possible behaviors from a finite

sequence of traces. In the context of cyber-physical systems [5, 13, 14], this

generalization has been achieved by exploiting the smoothness of the contin-

uous dynamics of a system. The scalability of simulating complex non-linear

dynamics has enabled this approach to successfully verify interesting classes

of hybrid systems.

1.2 Main Results: Soundness, Relative Completeness,

and Precision

Consider a dynamical system ẋ = f(x) and its solution ξ(x0, t) starting from

the initial state x0 (please see Section 2.2 for more details). Following the

simulation-driven reachability approach of [5, 17, 18], we over-approximate

the reachable states of the system by first computing a numerical simulation

of ξ(x, t) from a specific initial state x0, and then symbolically computing

a reachtube from this simulation that contains all solutions starting from a

neighborhood of x0 that contains the initial set. Next we will check the inter-

section of the over-approximation reachtube with the unsafe region, decide

if there is no intersection or if there exists a counter-example, or if neither is

true, then start over from a smaller neighborhood around the initial set. The
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bottleneck for this approach is the algorithms to compute the reachtube, that

is, to compute the over-approximation of the set of states that are reachable

from a set of initial states for nonlinear systems using simulations.

Consider a function β that provides upper bounds on the distance between

the trajectories at any time, that is, ‖ξ(x1, t) − ξ(x2, t)‖ ≤ β(‖x1 − x2‖, t),
for any state x1, x2 in the state space. If we use the function to bloat the

simulation to get the reachtube, the reachtube is then guaranteed to contain

all the reachable states of the system. We call such a function that bounds on

the distance between any two trajectories a discrepancy function. There are

several concepts that are related to discrepancy function, for example, sensi-

tivity analysis [2], incremental Lyapunov functions [19], contraction metrics

[20], matrix measures [21] etc. However, finding the discrepancy function

automatically for general nonlinear systems is still a challenging problem.

Inspired by [21, 20], an upper bound c on the matrix measure of the sys-

tem’s Jacobian matrix Jf (x) can be used as an exponential upper bound

on the distance between neighboring trajectories. Closed-form expressions

for matrix measures are in general difficult to obtain for nonlinear systems.

For example, for matrix A, the matrix measure under Euclidean norm is the

largest eigenvalue of the symmetric part of the matrix λmax((A + AT )/2).

However, if we can over-approximate all possible values of the system’s Ja-

cobian matrix Jf (x), we can obtain an upper bound on the matrix measure

of the Jacobian matrix without knowing its closed form. This is achievable

because the Jacobian matrix is a function of states and the procedure is: (a)

use constant interval matrices to bound the variation of the Jacobian ma-

trix over a small part of the state spaces, (b) compute the upper bound of

the matrix measure of the interval matrix. In this thesis, we will introduce

two algorithms LDF2 and LDFM to compute the upper bound of the matrix

measure of the interval matrix.

The two different algorithms will focus on two different matrix measures.

LDF2 computes the matrix measure under 2-norm, i.e., the largest eigenvalue

of the symmetric part of the Jacobian matrix. We will use a matrix pertur-

bation theorem to transform the problem of bounding the largest eigenvalue

to bounding the 2-norm of a matrix valued function. The algorithm is more

efficient (faster) than the other since no optimization problem is involved.

The second algorithm LDFM focuses instead on computing the local opti-

mal bound of the matrix measure under linear coordinate transformation,
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which leads to a more accurate discrepancy function. The idea is to search

all possible linear coordinate transformation such that the matrix measures

under the transformed coordinates are minimized. It involves solving several

optimization problems using semidefinite programming and therefore is more

computationally expensive than the previous method. We will also provide

two techniques for computing the optimal bound on the matrix measure of

the interval matrix. The first method uses the vertex matrices of the inter-

val matrix, and the second uses interval matrix norms. The vertex matrices

approach provides more accurate results but is more expensive, while the in-

terval matrix norm approach is faster but less accurate. Both approaches are

less conservative than the former fast algorithm as they find locally optimal

exponential change rates.

In summary, the contributions of this thesis are as follows:

(a) We provide two algorithms, namely LDF2 and LDFM, for over-approximating

reachtubes for nonlinear models. Although in this thesis we concentrate

on the reachability analysis of nonlinear dynamical systems, with appro-

priate handling of guards and transitions as shown in [5], these algorithms

can be used in hybrid verification tools like C2E2 [5] and Breach [2].

(b) We show that the proposed algorithms for computing discrepancy func-

tion preserve the soundness and the relative completeness of the overall

verification algorithm.

(c) We establish that algorithm LDFM returns locally optimal exponential rate

for estimating the distance between neighboring trajectories. Moreover,

for contractive models, the error in over-approximation using the algo-

rithm LDFM converges to 0—a desirable property that existing simulation-

driven verification algorithms do not have.

(d) We compare prototype implementations of the algorithms with Flow* [1]

on a suite of linear and nonlinear system examples; the results suggest

that this method provides significant advantages for large and complex

systems.
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1.3 Related Work

Several recent approaches have been proposed to obtain proofs about (bounded

time) invariant or safety properties from simulations [2, 17, 18, 22]. One such

approach is sensitivity analysis, which is a technique to systematically sim-

ulate arbitrary nonlinear systems with inputs [2]. The technique relies on

computing the sensitivity matrix, a matrix that captures the sensitivity of

the system to its initial condition x0. This is then used to give an upper

bound on the distance between two system trajectories. For general nonlin-

ear models, this approach may not be sound, as higher order error terms are

ignored when computing this upper bound. In [23], the authors provided

sound simulation-driven methods to overapproximate the distance between

trajectories, but these methods are mainly limited to affine and polynomial

systems.

The idea of computing the reachable sets from trajectories is motivated by

notions of incremental stability [19], which provides techniques to measure

the distance between trajectories. In this work, we do not require systems to

be incrementally stable, and we allow bounded parameter variation in the dy-

namics. Similar ideas have been considered based on abstraction techniques

to synthesize controllers [24].

Other approaches for reachable set estimation for nonlinear systems op-

erate directly on the vector field, leading to computations involving higher-

order Taylor expansions [1]. In contrast, our technique performs operations

on the symmetric part of the Jacobian matrix of the vector field. By ob-

taining bounds on this matrix, we conservatively and accurately characterize

the reachable set of states over bounded time. The matrix bounds can be

obtained for a broad class of nonlinear systems.

The work closest to ours is the reachability analysis using matrix measures

[21], where the authors prove that the matrix measure of the Jacobian ma-

trix can bound the distance between neighboring trajectories of the system.

The technique in [21] requires the support of user-provided matrix measure

functions. However, it is generally difficult to find the closed-form matrix

measure. For instance, for the 2-norm case, the matrix value function is

equivalent to the closed-form eigenvalue function of the Jacobian matrix. In

contrast, our approach automatically computes the bounds on 2-norm or

locally optimal matrix measures.
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Techniques such as ours that perform reachable set over-approximations for

continuous (non-hybrid) systems are crucial components of many frameworks

for hybrid systems verification. For example, our approach can be used to

provide the annotations for hybrid models used by the C2E2 tool to perform

verification, as in [18]. Future work will evaluate the performance of our

technique for hybrid examples, but in this work, we focus on reachable set

over-approximations for continuous nonlinear dynamical systems.

1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, we provide no-

tations and background information that will be used throughout the thesis.

Then we give an overview of the simulation-driven verification approach in

Chapter 3. Chapter 4 contains the main results: different algorithms to

compute the discrepancy function and how to use them to do reach set com-

putation. The algorithms provided in Chapter 4 can be used directly as the

core function in the verification algorithm in Chapter 4. In Chapter 5, we

use benchmark models to illustrate the accuracy and the performance of the

proposed algorithms, followed by the conclusion in Chapter 6.
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Chapter 2

PRELIMINARIES

In this chapter, we will introduce definitions, background information, and

basic results which will be used throughout the thesis.

2.1 Sets, Functions, Vectors and Matrix Norms

2.1.1 Functions

The set of all real numbers is denoted by R. The n-dimensional Euclidean

space is defined by the set of all n-dimensional vectors x = [x1, x2, · · · , xn]T ,

where x1, x2, · · · , xn ∈ R, and is denoted by Rn.

A function f mapping a set S1 to a set S2 is denoted by f : S1 7→ S2. A

function f is uniformly continuous if ∀ε > 0,∃δ > 0 such that ∀‖x − y‖ <
δ ⇒ ‖f(x) − f(y)‖ < ε. The δ here is independent of x, but only depends

on ε. For example, the function f(x) = x2, x ∈ R is continuous but not

uniformly continuous.

A continuous function f : Rn → R is smooth if all its higher derivatives and

partial derivatives exist and are also continuous. For example, any polyno-

mial function is smooth. A function is called Lipschitz continuous if it has a

Lipschitz constant L ≥ 0 for which every x, y ∈ Rn, ||f(x)−f(y)|| ≤ L||x−y||.
A function f : R≥0 → R≥0 is a class K function if it is continuous, strictly

increasing, and f(0) = 0. For example, f(x) = x, x ≥ 0 is a class K function.

2.1.2 Vector norms

The norm ‖x‖ of a vector x is a real valued function with the properties [25]:

1. ‖x‖ ≥ 0, ∀x ∈ Rn, ‖x‖ = 0 if and only if x = 0.
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2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ Rn.

3. ‖cx‖ = |c|‖x‖,∀c ∈ R and x ∈ Rn, where | · | means the absolute value.

The p-norm of a vector is defined as

‖x‖p = (|x1|p + · · · |xn|p)
1
p , 1 ≤ p <∞

and ‖x‖∞ = maxi |xi|.
Hereafter, if not specifically stated otherwise, ‖x‖ refers to the 2-norm,

also known as the Euclidean norm

‖x‖2 =
(
|x1|2 + · · · |xn|2

) 1
2 =

(
xTx

) 1
2 .

The most frequently used norms are 1, 2 and∞ norms. They are equivalent

in the sense that the following relationship between the different norms is

well-known [26]:

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2, ‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞, ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

For symmetric matrices A and B, the inequality A � B (A � B) means

that B − A is positive (negative) semi-definite and A ≺ B (A � B) means

B − A is positive (negative) definite.

If we perform linear coordinate transformation for the vectors x, the norm

of the vectors under the new coordinates would be different. This motivates

the linear transformed norm of a vector x: ‖x‖M ,
√
xTMx, where M is

a positive definite matrix M ∈ Rn×n. We call it the M -norm of the vector

x. For any M � 0, there exists a nonsingular matrix C ∈ Rn×n, such

that M = CTC. So ‖x‖M ≡ ‖Cx‖. That is, ‖x‖M is the 2-norm of the

linearly transformed vector Cx. When M = I is the identity matrix, ‖x‖I
coincidences with the 2-norm.

2.1.3 Sets

A set S is said to be bounded is there exists a constant c > 0 such that for all

x ∈ S, we have ‖x‖ ≤ r. A subset S ⊂ R is said to be open if for ∀x ∈ S, we

can find an arbitrary small neighborhood of x, Nε(x) = {y ∈ Rn | ‖y−x‖ < ε}
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such that Nε ⊂ S. A set S is said to be closed if its complement in Rn is

open. A set S is said to be compact if it is closed and bounded.

For δ ≥ 0, a δ ball around x is defined as Bδ(x) = {x′ ∈ Rn | ||x′−x|| ≤ δ}.
We call δ the radius of the ball. For a set S ⊆ Rn, the set of S bloated by δ

is defined as Bδ(S) = ∪x∈SBδ(x). The Minkowski sum of two sets of position

vectors S1 and S2 in Euclidean space is defined to be the addition of each

vector in S1 and each vector in S2; i.e., the Minkowski sum of S1 and S2 is

defined as {x+ y | x ∈ S1, y ∈ S2}. Let S ⊕Bδ(0) represents the Minkowski

sum of S and Bδ(0). Therefore, S ⊕ Bδ(0) = Bδ(S). For sets S1, S2 ⊆ Rn,

hull(S1, S2) is their convex hull. The diameter of a compact set S is defined

as dia(S) = supx,y∈S ‖x− y‖. The notation EM,c(xc) = {x | ‖x− xc‖2
M ≤ c}

represents an ellipsoid centered at xc, with shape M and size c.

2.1.4 Matrix norms

We denote the transpose of a matrix A by AT . An n ×m matrix A of real

elements defines a linear mapping y = Ax from Rm to Rn. The induced

p-norm of the matrix A is defined as

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

= max
‖x‖p=1

‖Ax‖p.

For p = 1, 2,∞, the p-norm is given by

‖A‖1 = maxj
∑m

i=1 |aij|,
‖A‖2 =

√
λmax(ATA),

‖A‖∞ = maxi
∑n

j=1 |aij|,

where λmax(ATA) is the maximum eigenvalue of ATA. The lower case let-

ters with subscripts denote the corresponding element of a matrix, e.g., aij

denotes the element in the ith row and jth column of A. In the rest of the

thesis, if not specifically claimed otherwise, ‖A‖ also refers to the 2-norm of

A. The matrix norm also obeys some inequalities. If matrices A ∈ Rm×n and

B ∈ Rn×l are real valued matrices, then

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞,

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1,

‖A‖2 ≤
√
‖A‖1‖A‖∞, ‖AB‖p ≤ ‖A‖p‖B‖p.
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The Frobenius norm of an m×n matrix A is a matrix norm which is defined

as the square root of the sum of the absolute squares of the elements:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

(aij)2.

We also have

‖A‖2 ≤ ‖A‖F .

2.2 Dynamical Systems

The continuous evolution of a cyber-physical system can be mathematically

modeled as a dynamical system. Consider an n-dimensional dynamical sys-

tem:

ẋ = f(x), (2.1)

where f : Rn → Rn is locally Lipschitz continuous function describing the

continuous evolution of the physical variables of the cyber-physical system.

A solution or a trajectory of the system is defined as a function ξ : Rn ×
R≥0 → Rn, such that for any initial state x0 ∈ Rn and at any time t ∈
R≥0, ξ(x0, t) satisfies the differential equation (2.1). The initial set of the

system (2.1) is defined as the set of initial states, and we will denote it as Θ

throughout the thesis.

The existence and uniqueness of the solution can be guaranteed by the

Lipschitz continuity of f .

Assume that the function f is also continuously differentiable. The Jaco-

bian of f , Jf : Rn → Rn×n, is a matrix-valued function of all the first-order

partial derivatives of f with respect to x: [Jf (x)]ij = ∂fi(x)
∂xj

. The following

lemma states a relationship between f and its Jacobian Jf which can be

proved using the generalized mean value theorem [17].

Lemma 2.1. For any continuously differentiable vector-valued function f :

Rn → Rn, and x, r ∈ Rn,

f(x+ r)− f(x) =

(∫ 1

0

Jf (x+ sr)ds

)
· r, (2.2)
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where the integral is component-wise.

Proof. In this proof, the i’s in subscript correspond the ith components of

the vector functions. For any t ∈ [0, 1], i ∈ {1, . . . , n}, we define gi(t) :=

fi(x+ tr). Then we have

fi(x+ r)− fi(x) = gi(1)− gi(0) =

∫ 1

0

dgi(t)

dt
dt. (2.3)

Using the chain rule of gradient, we have

dgi(t)

dt
= ∇fi(u)|u=x+tr ·

d(x+ tr)

dt

= ∇fi(u)|u=x+tr · r =
n∑
j=1

∂fi(u)

∂uj

∣∣∣∣
u=x+tr

rj, (2.4)

where ∇fi(u) = [∂fi(u)
∂u1

, ∂fi(u)
∂u2

, . . . , ∂fi(u)
∂un

] is the gradient of function fi. Sub-

stituting (2.4) in (2.3), we have:

fi(x+ r)− fi(x) =

∫ 1

0

(
n∑
j=1

∂fi(u)

∂uj

∣∣∣∣
u=x+sr

rj

)
ds

=
n∑
j=1

(∫ 1

0

∂fi(u)

∂uj

∣∣∣∣
u=x+sr

ds

)
rj.

Since Jf (x+ sr) is the matrix consisting of the components of ∂fi(u)
∂uj

∣∣∣
u=x+sr

,

the lemma holds.

2.3 Simulation and Reach Set

Although it is generally difficult to get the closed-form solution of dynamic

systems, validated simulation libraries, such as VNODE-LP [27] and CAPD

[28], use numerical integration to generate a sequence of states with guaran-

teed error bounds. First we give the following definition of simulation as a

sequence of time-stamped hyper-rectangles.

Definition 2.1. (Simulation) For any x0 ∈ R, τ > 0, ε > 0, T > 0, a

(x0, τ, ε, T )-simulation of the system described in Eq. (2.1) is a sequence of

time-stamped sets {(Ri, ti)
n
i=0} satisfying the following:

11



1. Ri is a compact set in Rn with a diameter smaller than ε, for i =

0, 1, . . . , n.

2. Let ξ(x0, t) be the system trajectory starting from x0 along time. Then

ξ(x0, ti) ∈ Ri, i = 0, 1, . . . , n, and ∀t ∈ (ti−1, ti), ξ(x0, t) ∈ hull(Ri−1, Ri),

for i = 1, . . . , n.

3. τ is called the maximum sampling period, which means that for each

i = 1, . . . , n, 0 < ti − ti−1 ≤ τ . Note t0 = 0 and tn = T .

We call a state x reachable from the initial set Θ if there exist a state θ ∈ Θ

and a time t ≥ 0 such that ξ(θ, t) = x. We call the set of states that are

reachable from the initial set Θ during time [t1, t2] the reach set, and denote

it as Reach(Θ, [t1, t2]). Similarly, we denote the set of reachable states at

time t from initial set Θ as Reach(Θ, t).

Next, we introduce the definition of reachtube, which is also a sequence of

time-stamped hyper-rectangles, but instead contains the all the trajectories

starting from the initial set Θ.

Definition 2.2. (Reachtube) For any Θ ⊆ Rn, T > 0, a (Θ, T )-reachtube is a

sequence of time-stamped compact sets {(Oi, ti)
n
i=0}, such that each Reach(Θ,

[ti−1, ti]) ⊆ Oi, where Θ ⊆ Rn is a set of states, and T is the time bound.

Given an n-dimensional dynamical system as in equation (2.1), a compact

initial set Θ ∈ Rn, an unsafe set unsafe ⊆ Rn, and a time bound T > 0, the

safety verification problem is to check whether Reach(Θ, [0, T ])∩unsafe = ∅.
It has been proven that the safety verification of rectangular hybrid au-

tomata is undecidable [29]. The reachability problem for general nonlinear

dynamical systems is also undecidable [30, 31]. Recent focus has been on

methods to over-approximate the reach set of the system over bounded time.

Existing methods like Taylor models [32] use interval arithmetic [33] to bound

the integration value. However, this method suffers from complexity that in-

creases exponentially with both the dimension of the system and order of

the model. The major contribution of this thesis is the introduction of the

methods to compute reachtubes that are less conservative and less time con-

suming.
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2.4 Interval Matrices

The interval matrices will be used in the thesis to linearly over-approximate

behaviors of nonlinear models. Interval matrices are matrices where each

element is an interval instead of a constant.

We call [B,C] an matrix pair if B,C ∈ Rn×n and bij ≤ cij for all 1 ≤ i, j ≤
n. For a matrix pair [B,C], we define the matrix interval,

Interval([B,C]) , {A ∈ Rn×n|bij ≤ aij ≤ cij, 1 ≤ i, j ≤ n}.

We call A = Interval([B,C]) an interval matrix. Two useful notions are

the center matrix and the range matrix, which are defined as CT([B,C]) =

(B+C)/2, and RG([B,C]) = (C−B)/2, respectively. Then Interval([B,C])

can also be written as Interval([Ac−Ar, Ac +Ar]), where Ac = CT([B,C]),

Ar = RG([B,C]).

Next we introduce the notion of interval matrix norm. We start our dis-

cussion with an arbitrary norm ‖ · ‖ of matrices; it can be 1, 2,∞, or the

Frobenius norm. Later we will pick specific norms for each case. Given a

norm for matrices ‖ · ‖, the corresponding norm on an interval matrix is

defined as:

|||A||| = sup
A∈A
‖A‖ (2.5)

and |||A||| is called the interval matrix norm of A. The following theorem

from [34] provides a method to calculate the norm of an interval matrix from

the norms of its center and range.

Theorem 2.1 (Theorem 10 from [34]). For any interval matrix A,

|||A|||1 = ‖ |CT(A)|+ RG(A)‖1,

|||A|||∞ = ‖ |CT(A)|+ RG(A)‖∞,

|||A|||F = ‖ |CT(A)|+ RG(A)‖F ,

where |A| is the matrix obtained by taking the element-wise absolute value of

matrix A.

For an interval matrix Interval([B,C]), we define

V = VT(Interval([B,C])) = {V ∈ Rn×n|vij = bij, or, vij = cij, 1 ≤ i, j,≤ n}.
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The elements of V are called vertex matrices, the entries of which are the

boundary values of B or C. The cardinality of V is 2n
2
.

Let A = Interval([B,C]), and V = VT(A). We use hull(V) to denote

the convex hull of V . Assume Ai, i = 1, 2, . . . , N are all the elements of V ,

where N is the cardinality of V . Then

hull({A1, . . . , AN}) , {A ∈ Rn×n|∃α1, . . . , αN ≥ 0, and
N∑
i=1

αi = 1, s.t. A =
N∑
i=1

αiAi}.

It can be shown that the convex hull of the vertex matrices for an interval

matrix is the interval matrix itself.

Proposition 2.1. For any interval matrix A, hull(VT(A)) = A.

Proposition 2.1 can be proved by constructing a bijection that maps an

n-dimensional interval matrix to an n2-dimensional hyper-rectangle. Vector-

izing, or flattening, the vertex matrices in A, we obtain the vertices of this

hyper-rectangle. Then Proposition 2.1 holds, since the convex hull of the

vertices of a rectangle is the rectangle itself.

2.5 Discrepancy Function

A discrepancy function bounds the distance between two neighboring tra-

jectories, based on the initial distance between states and the time [17, 18].

That is, given any two trajectories ξ(x1, t) and ξ(x2, t) of the system (2.1)

starting from states x1 and x2 respectively, the discrepancy function β is a

function of initial distance between x1 and x2, and time t. As shown in Fig-

ure 2.1, at any time t, the distance between ξ(x1, t) and ξ(x2, t) should be

no greater than the value of discrepancy function at t. The distance between

any two states can be measured under Euclidean norm or M -norm defined

in Section 2.1. We give the formal definition of the discrepancy function as

follows:

Definition 2.3. Given a positive definite matrix M , a continuous function

β : R≥0 × R≥0 → R≥0 is a discrepancy function of the system in Equa-

tion (2.1) if
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Figure 2.1: An illustration of discrepancy function.

(1) for any pair of states x1, x2 ∈ Rn, and any time t ≥ 0,

‖ξ(x1, t)− ξ(x2, t)‖M ≤ β(‖x1 − x2‖M , t), and

(2) for any t, lim‖x1−x2‖M→0+ β(‖x1 − x2‖M , t) = 0.

According to the definition of discrepancy function, for system (2.1), at

any time t, the ball centered at ξ(x0, t) with radius β(δ, t) contains the reach

set of (2.1) starting from Bδ(x0). Therefore, by bloating the simulation tra-

jectories using the corresponding discrepancy function, we can obtain the

over-approximating reachtube. Similar ideas have been considered based on

abstraction techniques to synthesize controllers [24]. Definition 2.3 corre-

sponds to the definition of discrepancy function (Definition 2) in [18], except

that we allow an arbitrary M -norm as a metric. Note that here we do not

require that trajectories converge to each other. As noted in [18, 21], sev-

eral techniques (contraction metric [20], incremental stability [19], matrix

measure [21], etc.) can be used to find discrepancy functions; however, those

techniques either restrict the class of nonlinear systems (e.g., polynomial sys-

tems, as in [23]) or require crucial user-supplied inputs (e.g., the closed-form

expression of matrix measure function, as in [21]).

2.6 Matrix Measure

The measure, also known as the logarithmic norm, µ(A) of a matrix A ∈ Rn×n

can be seen as the one-sided derivative of ‖ · ‖ at I ∈ Rn×n in the direction
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Table 2.1: Commonly used vector norms and their corresponding matrix
norms and measures adapted from [21]

Vector norm Induced matrix norm Induced matrix measure

|x|1 =
∑

j |xj | ‖A‖1 = maxj
∑

i |aij | µ1(A) = maxj

(
ajj +

∑
i 6=j |aij |

)
|x|2 =

√∑
j x

2
j ‖A‖2 =

√
maxj λj(ATA) µ2(A) = maxj

1
2

(
λj(A+AT )

)
|x|∞ = maxj |xj | ‖A‖∞ = maxi

∑
j |aij | µ∞(A) = maxi

(
aii +

∑
j 6=i |aij |

)
of A:

µ(A) = lim
t→0+

‖I + tA‖ − ‖I‖
t

. (2.6)

Some commonly seen norms and their corresponding matrix measures can

be found in Table 2.1 [21].

Matrix measure is well defined and has been used to measure the distance

between the trajectories. Most results in the rest of this section are from [35]

and [36].

Lemma 2.2. For any A ∈ Cn×n, µ(A) is well defined.

Lemma 2.3 (Basic properties of matrix measure). Let A ∈ Cn×n; then

1. −‖A‖ ≤ −µ(−A) ≤ µ(A) ≤ ‖A‖.

2. µ(cA) = cµ(A),∀c ≥ 0.

3. −µ(−A) ≤ Re (λi(A)) ≤ µ(A),∀i ∈ {1, 2, . . . , n}.

4. If P ∈ Rn×n is nonsingular, then the measure µP of the norm |x|P =

|Px| is given in terms of µ by µP (A) = µ(PAP−1).

The matrix measure has long been used to provide estimates on solutions

of systems of ordinary differential equations. The next proposition is the key

that provides a bound on the distance between trajectories in terms of their

initial distance and the rate of expansion of the system given by the measure

of the Jacobian matrix J(x) with respect to x.

Proposition 2.2. Let D ⊆ Rn and let the Jacobian J(x) = ∂f
∂x

(x) satisfy

µ(J(x)) ≤ c for all x ∈ D. If every trajectory of equation (2.1) with initial

conditions in the line segment {hx0 + (1− h)z0 : | h ∈ [0, 1]} remains in D
until time T , then the solutions ξ(x0, t) and ξ(z0, t) satisfy

|ξ(x0, t)− ξ(z0, t)| ≤ |x0 − z0|ect (2.7)
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for all t ∈ [0, T ].

Proposition 2.2 provides global divergence between trajectories of equation

(2.1) using only information about the system’s Jacobian at each point. It

provides a way to compute discrepancy function. If there exists c < 0 such

that for all (t, x) ∈ [0,∞)×D we have µ(J(x)) ≤ c, then system (2.1) or the

vector field f(x) is said to be contracting with respect to | · |. But here we

do not assume the sign of c.

In this chapter, we established notations and definitions about functions,

matrices and dynamical systems. We have also discussed some useful results

that serve as the background for the remaining chapters.
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Chapter 3

SIMULATION-DRIVEN VERIFICATION

3.1 Safety Verification and Reach Set

Over-approximation

The safety verification problem is to decide whether any reachable state of the

system violates some safety requirement within bounded time. We formalize

the problem of safety verification for dynamical systems as follows:

Given an n-dimensional dynamical system as in equation (2.1), a compact

initial set Θ ∈ Rn, an unsafe set unsafe ⊆ Rn, and a time bound T > 0, we

would like to check if Reach(Θ, [0, T ])∩unsafe = ∅. If there exists some ε > 0

such that Bε(Reach(Θ, [0, T ])) ∩ unsafe = ∅, we say the system is robustly

safe. That is, the system is robustly safe if all states in some envelope around

the system behaviors are safe. If there exists some ε > 0, x ∈ Θ, such that

Bε(ξ(x, t)) ⊆ unsafe over some interval [t1, t2], 0 ≤ t1 < t2 ≤ T , we say the

system is robustly unsafe.

A verification algorithm for checking the safety of the system is said to be

sound if the answers of safety/unsafety of the system given by the algorithm

are correct. The algorithm is said to be relatively complete if the algorithm

is guaranteed to terminate when the system is either robustly safe or unsafe

As we have discussed in Section 2.3, computing the reach set exactly is

undecidable even for the simplest classes of systems. We can instead use

the reachtube, which conservatively estimates all the behaviors of the sys-

tem. A sequence of papers [2, 17, 18, 37] presented algorithms for solving

this problem for a broad class of nonlinear dynamical, switched, and hybrid

systems.

The simulation-driven bounded-time safety verification approach consists

of the following three steps [17]:

1. Simulate the system from a finite set of states xi that are chosen from
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the compact (close and bounded) initial set Θ. The union of the δ balls

centered at xi should contain the initial set: Θ ⊆ ∪iBδ(xi).

2. Bloat the (xi, τ, ε, T )-simulations with discrepancy function such that

the bloated sets are over-approximations of the reachable states from

initial covers Bδ(xi).

3. Check each of these over-approximations, and decide if the system is

safe or not. If such a decision cannot be made, then we should start

from the beginning with finer sampling grids over the initial set.

This approach if useful not only in these bounded-time safety verification

problems, but also in verifying a broader class of system properties (for ex-

ample, temporal precedence [37]).

The most crucial and difficult step in the above procedure is the second

step: how to choose a discrepancy function. On the one hand, the function

should be large enough to give a strict over-approximation of the reach-

able set; on the other hand, it should be small enough so that the over-

approximation is not too pessimistic. Moreover, the value of the function

should converge to 0 as the initial set converges to a single point. In the rest

of the thesis, we first review the simulation-driven verification algorithm in

[17], then discuss algorithms which compute discrepancy function and use it

to compute reach set over-approximations.

3.2 Simulation-driven Verification Algorithm

The simulation-driven verification algorithm implements the simulate-bloat-

check-refine steps discussed in Section 3.1. It has five inputs: 1. initial set

Θ ⊂ Rn, 2. time bound T > 0, 3. unsafe set unsafe ⊂ Rn, 4. initial simulation

precision ε0, 5. initial simulation sampling period τ0, and two outputs SAFE

and UNSAFE. It will terminate and return the correct result if the system

is robustly safe or robustly unsafe.

Algorithm 1 shows the structure of the simulation-driven verification algo-

rithm. It returns SAFE if the reach set Reach(Θ, [0, T ]) has no intersection

with the unsafe set, along with a robustly safe reachtube STB, or returns

UNSAFE upon finding a counter-example, the simulation ψ which has some
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Algorithm 1: Simulation-driven Verification of Dynamic Systems

input: Θ, T, unsafe, ε0, τ0

1 δ ← dia(Θ); ε← ε0; τ ← τ0; STB← ∅;;
2 C ← Cover(Θ, δ, ε);
3 while C 6= ∅ do
4 for 〈θ, δ, ε〉 ∈ C do
5 ψ = {(Rk, tk)

n
i=0} ← Simulate(θ, T, ε, τ);

6 R ← Bloat(ψ, δ, ε);
7 if R∩ unsafe = ∅ then
8 C ← C\{〈θ, δ, ε〉} ;
9 STB← STB ∪R ;

10 else if ∃k,Rk ⊆ unsafe then
11 return (UNSAFE, ψ)
12 else
13 C ← C ∪ Cover(Bδ(θ),

δ
2
, ε

2
)\{〈θ, δ, ε〉};

14 τ ← τ
2

;

15 end

16 end

17 end
18 return (SAFE, STB);

part fully contained in the unsafe region. An illustration of Algorithm 1 is

shown in Figure 3.1.

There are several functions referred to in Algorithm 1. Functions dia() and

Simulate() are defined to return the diameter of set and simulation result

respectively. The Bloat() function takes as the inputs the simulation ψ start-

ing from θ, the size of the initial cover δ and the simulation precision ε, and

returns a reachtube that contains all the trajectories starting from the initial

cover Bδ(θ). It can be done by bloating the simulation using discrepancy

function as described in Section 2.5, which is an over-approximation of the

distance between any neighboring trajectories starting from Bδ(θ). The main

contribution of this thesis includes algorithms for implementing this Bloat()

function and in Chapter 4 we will present these algorithms in detail. Func-

tion Cover() returns a set of triples {〈θ, δ, ε〉}, where θ’s are sample states,

the union of Bδ(θ) covers Θ completely, and ε is the precision of simulation.

There are two important data structures used in Algorithm 1: C is a

collection of the triples returned by Cover(), which represents the subset of

Θ that has not yet been proved safe, and STB stores the updated bounded

time reachtube.
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Figure 3.1: An illustration of Algorithm 1. Blue shape: initial set Θ. Red
shape: unsafe set unsafe. White circles: initial covers. Black trace:
simulation from initial state x0. Green shape: reachtube from initial cover
Bδ(x0), where δ is the radius of the initial cover.

Initially, C contains a singleton 〈θ0, δ0 = dia(Θ), ε0〉, where Θ ⊆ Bδ0(θ0)

and ε0 is a small positive constant. For each triple 〈θ, δ, ε〉 ∈ C, the while-loop

from Line 3 checks the safety of the reachtube from Bδ(θ), which is computed

in Line 5-6. ψ is a (θ, T, ε, τ)-simulation, which is a sequence of time-stamped

rectangles {(Rk, tk)} and is guaranteed to contain the trajectory ξ(θ, T ) by

Definition 2.1. Bloating the simulation result ψ by the discrepancy func-

tion to get R, a (Bδ(θ), T )-reachtube, we have an over-approximation of

Reach(Bδ(θ), [0, T ]). The core function Bloat() will be discussed in detail

in the next chapter. If R is disjoint from unsafe, then the reachtube from

Bδ(θ) is safe and the corresponding triple can be safely removed from C.
If for some k, Rk (one rectangle of the simulation) is completely contained

in the unsafe set, then we can get a counterexample of a trajectory that

violates the safety property. Otherwise the safety of Reach(Bδ(θ), [0, T ]) is

nondeterministic and a refinement of Bδ(θ) needs to be made with smaller δ

and smaller ε, τ .

Firstly, the algorithm requires that the Bloat() function returns an over-

approximation of all the reachable states of the system from the given initial

cover 〈θ, δ, ε〉. This guarantees that the union of all the bloated simulations

STB is an over-approximation of Reach(Θ, [0, T ]), which leads to the sound-

ness of the algorithm. Then, it is required that as δ gets finer (i.e., smaller),
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the value of the discrepancy function will become smaller (i.e., the reachtube

is arbitrary close to the simulation), which guarantees that the algorithm

always terminates. To sum up, if the discrepancy function satisfies all the

requirements as stated in Definition 2.3, it gives us two key properties of the

algorithm [18]:

Theorem 3.1. (Soundness and relative completeness) Consider a nonlinear

dynamical system as described by equation (2.1) with continuously differen-

tiable f(·). Let Θ ⊆ Rn be a compact initial set and unsafe ⊆ Rn be an

unsafe set.

1. Soundness: If Algorithm 1 outputs “SAFE”, the system is safe, that

is, Reach(Θ, T ) ∩ unsafe = ∅; If it outputs “UNSAFE” instead, then

there exists at least one unsafe trajectory with ξ(x0, t) ∈ unsafe with

x0 ∈ Θ and t ≤ T .

2. Relative Completeness: Algorithm 1 always terminates and outputs

“SAFE” if the system is robustly safe. Algorithm 1 always terminates

and outputs “UNSAFE” if there exists at least a trajectory ξ(x0, ·) with

x0 ∈ Θ such that it is robustly unsafe.

In the next chapter, we will introduce different algorithms that implement

the Bloat() function, which compute reachtubes using discrepancy function,

and prove that they satisfy the desirable requirements.
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Chapter 4

LOCAL DISCREPANCY ALGORITHMS

In this chapter, we will discuss several algorithms that realize the Bloat()

function discussed in Section 3.2. They will use the discrepancy function

discussed in Section 2.5, which measures the changing of the distance between

two neighboring trajectories. For general nonlinear systems, the Jacobian

matrix is a function of the state, and we use constant interval matrices to

bound the variation of the Jacobian over small parts of the state space. The

upper bound on the matrix measure of this interval matrix is used as an

upper bound on the matrix measure of the Jacobian matrix over this part

of the state space. We use this bound as the exponential change rate of the

discrepancy function.

We will discover different discrepancy functions under different coordinates

that can fit different uses. We will introduce algorithm LDF2 [17] that uses

discrepancy function under Euclidean norm, which is fast but coarse since

it bloats a simulation uniformly in each direction. We will also introduce

algorithm LDFM [38] that computes the optimal coordinate transformation

to make the reachtube tighter but needs more time. We will introduce two

different version of algorithm LDFM using two techniques for computing the

optimal exponential change rate from the interval matrix. The first method

uses the vertex matrices of the interval matrix, and the second uses interval

matrix norms. The vertex matrices approach provides more accurate results

but is more expensive, while the interval matrix norm approach is faster but

less accurate. Both approaches are less conservative than the algorithm LDF2

as they find locally optimal exponential change rates. A positive side effect of

the current methods is that it bloats a simulation nonuniformly in different

directions. The main results of this chapter are adapted from [17, 38].
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4.1 Interval Matrix and Local Discrepancy Function

The main obstacle to finding a (global) discrepancy function for general non-

linear systems is that it is difficult to measure all the possible rates of conver-

gence or divergence between trajectories over the entire state space. We will

restrict the domain of the discrepancy function to some compact set S ⊂ Rn

instead of Rn in Definition 2.3. It will be shown that such local discrepancy

functions are sufficient for computing the reachtubes.

We first show that under the continuous differentiable assumption of the

system described using equation (2.1), the Jacobian function of the system

over a compact set S can be over-approximated by an interval matrix. Then

we establish that the distance between two trajectories in S satisfies a dif-

ferential equation described using the interval matrix.

Since we assume the system is continuously differentiable, the Jacobian

matrix should be continuous. For compact set S, the elements of the Jacobian

matrix Jf (x) are bounded for all x ∈ S because of the continuity assumptions.

Assuming we can compute the upper and lower bound of each term of the

Jacobian matrix Jf (x) within S, we can over-approximate the integration of

the Jacobian matrix on the right-hand side of (4.1) using an interval matrix.

The following Lemma shows that an interval matrix that contains the possible

values that Jf (x) can take within S exists.

Lemma 4.1. If the Jacobian matrix Jf (x) is continuous, then there exists

an interval matrix Interval([B,C]) over compact sets S such that

∀x ∈ S, Jf (x) ∈ Interval([B,C]).

The lemma follows from the fact that each term is a continuous function

of x, and over the compact domain S, the function has a maximum and

minimum value that define the matrix pair [B,C]. The bounds of such

values can be obtained for a broad class of nonlinear systems using interval

arithmetic or an optimization toolbox.

Then we use the interval matrix which over-approximates the behavior of

the Jacobian matrix over the compact set to analyze the rate of convergence

or divergence between trajectories:

Lemma 4.2. For system (2.1), suppose S ⊆ Rn is a compact convex set, and

[t1, t2] is a time interval such that for any x ∈ S, t ∈ [t1, t2], ξ(x, t) ∈ S. If
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there exists an interval matrix A such that ∀x ∈ S, Jf (x) ∈ A, then for any

x1, x2 ∈ S, and for any fixed t ∈ [t1, t2], the distance y(t) = ξ(x2, t)− ξ(x1, t)

satisfies ẏ(t) = A(t)y(t), for some A(t) ∈ A.

Proof. Given a compact convex set S containing all the trajectories in the

time interval [t1, t2], using Lemma 2.1 we have the following:

ẏ(t) = ξ̇(x2, t)− ξ̇(x1, t) = f(ξ(x2, t))− f(ξ(x1, t))

=

(∫ 1

0

Jf (ξ(x1, t) + sy(t))ds

)
y(t), (4.1)

where y(t) is the distance ξ(x2, t) − ξ(x1, t) starting from x1, x2 ∈ S. The

interval matrix A = Interval([B,C]) satisfies the conditions in Lemma 4.1.

For any fixed t,
∫ 1

0
Jf (ξ(x1, t) + sy(t))ds is a constant matrix. Because

ξ(x1, t), ξ(x2, t) are contained in the convex set S, ∀s ∈ [0, 1], ξ(x1, t) +

sy(t) should also be contained in S. Then at t, Jf (ξ(x1, t) + sy(t)) ∈
Interval([B,C]). Since the integration is from 0 to 1, it is straightforward

to check that ∫ 1

0

Jf (ξ(x1, t) + sy(t))ds ∈ A.

We rewrite (4.1) as

ẏ(t) = A(t)y(t), A(t) ∈ A (4.2)

which means at any fixed time t ∈ [t1, t2], we always have ẏ(t) = A(t)y(t),

where A(t) is unknown but A(t) ∈ A.

How to use the differential equation in Lemma 4.2 to get a discrepancy

function? Given any matrix M � 0, ‖y(t)‖2
M = yT (t)My(t), and by differen-

tiating ‖y(t)‖2
M , we have that for any fixed t ∈ [t1, t2],

d‖y(t)‖2
M

dt
= ẏT (t)y(t) + yT (t)ẏ(t)

= yT (t)(A(t)TM +MA(t))y(t),
(4.3)

for some A(t) ∈ A.

We write A(t) as A in the following for simplicity. If there exists a γ̂ such

that

ATM +MA � γ̂M, ∀A ∈ A,
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then (4.3) becomes
d‖y(t)‖2

M

dt
≤ γ̂‖y(t)‖2

M .

After applying Grönwall’s inequality, we have

‖y(t)‖M ≤ ‖y(t1)‖Me
γ̂
2

(t−t1),∀t ∈ [t1, t2].

γ̂
2

can also be seen as an upper bound of the matrix measure of the family

of matrices A (see Section 2.6). Since µM(A) ≤ γ̂
2
,∀A ∈ A means CAC−1 +

(CAC−1)T � γ̂I,∀A ∈ A, where M = CTC. Pre- and post-multiplying the

inequality by CT and C, we can also get ATM +MA � γ̂M, ∀A ∈ A.

The above provides a discrepancy function:

β(‖x1 − x2‖M , t) = ‖x1 − x2‖Me
γ̂
2

(t−t1).

This discrepancy function could result in less conservative reachtubes, de-

pending on the selection of M and γ̂. Ideally, we would like to identify

the optimal M such that we can obtain tightest bound γ̂. This problem is

formulated as follows:

min
γ̂∈R,M∈Rn×n

γ̂ (4.4)

s.t ATM +MA � γ̂M, ∀A ∈ A

M � 0.

To compute the reach set of a nonlinear model from a set of initial states

over a long time horizon [0, T ], in principle, we could compute a single dis-

crepancy function that holds over the entire duration. For unstable sys-

tems, this would result in large interval matrices, leading to large over-

approximations. To mitigate this problem, we divide the time interval [0, T ]

into smaller intervals [0, t1], [t1, t2], etc., and compute a piece-wise discrep-

ancy function, where each piece is relevant for a smaller portion of the

state space and the time. Assuming we can find an exponential discrep-

ancy function βi(‖x1 − x2‖Mi
, t) = ‖x1 − x2‖Mi

eγi(t−t1) for each time interval

[ti−1, ti], i = 1, . . . , k and tk = T , we can compute the reachtube recursively

by bloating the simulation between [ti−1, ti] using βi then using the reach set

over-approximation at ti as the initial set for the time interval [ti, ti+1].

26



However, solving (4.4) to get the optimal γ̂ for each time interval involves

solving optimization problems with infinite numbers of constraints (imposed

by the infinite set of matrices in A). To overcome the problem, we introduce

two different strategies to use local discrepancy functions. The first one

only considers discrepancy functions under the Euclidean norm and thus

avoids the optimization problem (4.4), while the second tries to transform the

problem (4.4) to equivalent or relaxed problems but with finite constraints.

4.2 Fast Discrepancy Function

In this section, we introduce a method to compute the discrepancy function

without solving optimization problem (4.4), which leads to an algorithm that

can compute the reachtube fast but with possibly larger approximation error

compared to the methods discussed in Section 4.3.

4.2.1 Local discrepancy under Euclidean norm

Optimization problem (4.4) tries to find the optimal metric M such that

the exponential changing rate γ̂ of the discrepancy function is minimized.

Intuitively, solving (4.4) is relatively complicated as the constraints consider

all the possible behaviors of the Jacobian matrix over the local compact set.

What if we fix M = I? Can it simplify the problem to only finding the mini-

mum γ when M can only be the identity matrix? After revisiting Proposition

2.2 and the definition of the matrix measure under the 2-norm case, we can

see that the largest eigenvalue of the symmetric part of the Jacobian matrix

can also be used as the exponential change rate of the system.

Lemma 4.3. For system (2.1), suppose S ⊆ Rn is a compact convex set,

and [t1, t2] is a time interval such that for any x ∈ S, t ∈ [t1, t2], ξ(x, t) ∈ S.

Suppose γ ∈ R satisfies: ∀x ∈ S,

eig((JTf (x) + Jf (x)))/2 ≤ γ; (4.5)

where eig() means the eigenvalue; then for any x1, x2 ∈ S and for any t ∈
[t1, t2],

‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖x1 − x2‖eγ(t−t1).

27



Proof. Let us fix two states x1, x2 ∈ S. We have assumed that for any

t ∈ [t1, t2], ξ(x1, t) ∈ S, ξ(x2, t) ∈ S. Define y(t) ≡ ξ(x2, t) − ξ(x1, t). For a

fixed time t, from Lemma 2.1 we have

ẏ(t) =

(∫ 1

0

Jf (ξ(x1, t) + sy(t))ds

)
y(t). (4.6)

Since S is a convex set, and recalling that ξ(x1, t), ξ(x2, t) ∈ S, we can get

that for any s ∈ [0, 1], ξ(x1, t) + sy(t) ⊆ S.

Differentiating ‖y(t)‖2, we have

d‖y(t)‖2
dt

= ẏT (t)y(t) + yT (t)ẏ(t)

= yT (t)
(∫ 1

0
JTf (ξ(x1, t) + sy(t))ds

)
y(t)

+ yT (t)
(∫ 1

0
Jf (ξ(x1, t) + sy(t))ds

)
y(t).

≤ yT (t)
(∫ 1

0
(2γI)ds

)
y(t) [using (4.5)]

= 2γyT (t)y(t)

= 2γ‖y(t)‖2.

(4.7)

Integrating both sides over t1 to any t ∈ [t1, t2], we have

ln(‖y(t)‖2)− ln(‖y(t1)‖2) ≤ 2γ(t− t1)

⇒‖y(t)‖2 ≤ ‖y(t1)‖2e2γ(t−t1)

⇒‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖x1 − x2‖eγ(t−t1).

However, computing a bound γ on eig(JTf (x) + Jf (x))/2, x ∈ S is difficult

because this bound has to work for the infinite family of matrices. We intro-

duce Algorithm 2 that computes an upper-bound on the eigenvalues of the

symmetric part of the Jacobian function.

Algorithm 2: Algorithm Eig UB.

input: Jf (·), S ⊂ Rn

1 J ← Jf (Center(S));
2 λ ← max(eig(J + JT )/2);
3 Compute A such that ∀x ∈ S, Jf (x) + JTf (x))− (J + JT ) ∈ A ;

4 error ← upperbound of |||A|||2 ;
5 c← λ+ error

2
;

6 return c ;
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Algorithm 2 is based on the matrix perturbation theorem (Theorem 4.1).

First, the Center() function at Line 1 returns the center point of the compact

set S. Then compute the largest eigenvalue λ of the symmetric part of the

Jacobian matrix function at the center point at Line 2. At line 3, use interval

arithmetic to compute an interval matrix A such that A over-approximates

the possible values of the error matrix Jf (x) + JTf (x)) − (J + JT ), which is

the difference between the symmetric part of the Jacobian at any other state

and the center state of the compact set S. Compute an upper-bound error

of the 2-norm of the interval matrix A at Line 4. Finally, the addition of

λ and error/2 is returned as an upper-bound of the eigenvalues of all the

symmetric parts of the Jacobian matrices over S.

Next we will show that the algorithm indeed computes an upper-bound of

the eigenvalues of the symmetric part of the Jacobian matrix over compact

set S (Lemma 4.4).

Theorem 4.1 (Matrix Perturbation Theorem [39]). If A and E are n × n
symmetric matrices, then

λn(E) ≤ λk(A+ E)− λk(A) ≤ λ1(E),

where λi(·) is the ith largest eigenvalue of a matrix.

Corollary 4.1. If A and E are n× n symmetric matrices, then

|λk(A+ E)− λk(A)| ≤ ‖E‖. (4.8)

Since A is symmetric, ‖A‖ =
√
λmax(ATA) = max(|λ(A)|). From Theo-

rem 4.1, we have |λk(A+ E)− λk(A)| ≤ max{|λn(E)|, |λ1(E)|} = ‖E‖.
Using Corollary 4.1, we will next show that the value returned by Algo-

rithm 2 is an upper bound on the eigenvalues of the symmetric part of Jf (x),

where x ∈ S.

Lemma 4.4. If c is the value returned by Algorithm 2, then for ∀x ∈ S :

JTf (x) + Jf (x) � 2cI.

Proof. Consider any point x ∈ S. We define the perturbation matrix E(x) ≡
JTf (x) + Jf (x) − (JT + J), and it is straightforward from Line 3 ∀x ∈
S,E(x) ∈ A. Since JTf (x) + Jf (x) and JT + J are symmetric matrices,

Corollary 4.1 implies that λmax(J
T
f (x) + Jf (x)) − λmax(JT + J) ≤ ||E(x)||.
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The error term computed in Line 4 is the upper bound on ||E(x)||. There-

fore, λmax(J
T
f (x) + Jf (x)) ≤ λmax(J

T + J) + error. In Line 5 set c equals to

λmax((J
T + J)/2)+error/2. Thus, λmax(J

T
f (x) + Jf (x)) ≤ 2c, which imme-

diately indicates that ∀x ∈ S : JTf (x) + Jf (x) � 2cI.

Let S ⊂ Rn be a compact closed set and E : S → Rn×n be a function that

maps a state x ∈ S to an n-by-n matrix. If every entry of E(x), denoted by

eij(x), i, j = 1, . . . , n, is a continuous function over S, then we have ‖E(x)‖ ≤√∑n
i=1

∑n
j=1 ẽ

2
ij, where ẽij = supx∈S|eij(x)|, ∀i, j = 1, . . . , n.1

The third equation of Theorem 2.1 gives us an effective way to compute

the Frobenius norm of the interval matrix A, which can be used as an upper

bound on the 2-norm of A.

According to Lemma 4.1, the upper bound of the symmetric part of the

Jacobian matrix always exists. In Algorithm 2, because Jf is a real matrix,

the maximum eigenvalue λ of (JT + J)/2 is bounded. Assuming that each

component of E(x) = JTf (x)+Jf (x)−JT−J is continuous over the closed set

S, then we can find the upper bound of ‖E(x)‖, so the “error” term is also

bounded. Therefore, the value returned by Algorithm 2 for continuous-term

Jacobian function over compact set is always bounded.

Since Jf : S → Rn×n is bounded as stated earlier, there always exists an

upper bound γ for the eigenvalues of (JTf (x)+Jf (x))/2 that can be computed

using Algorithm 2. Also, the set S above can be chosen to be a coarse over-

approximation of the reach set, obtained using the Lipschitz constant [17].

Using the computed S and γ, Lemma 4.3 provides a bound on the 2-norm

distance between trajectories.

Given the simulation result of ξ(x1, t), for any other initial state x2 such

that ‖x1 − x2‖ ≤ c, we will have that ∀t ∈ [t1, t2], ‖ξ(x1, t) − ξ(x2, t)‖ ≤
ceγ(t−t1). That means that at any time t ∈ [t1, t2], ξ(x2, t) is contained in

the hyber-ball centered at ξ(x1, t) with radius ceγ(t−t1). Thus, a discrepancy

function for system (2.1) over S is given by β(‖x1−x2‖, t) = ‖x1−x2‖eγ(t−t1).

Example 4.1. Consider a 2-dimensional nonlinear system over the set S =

{x = [v, w]T | v ∈ [−2,−1], w ∈ [2, 3]}

v̇ = 1
2
(v2 + w2); ẇ = −v. (4.9)

1The same conclusion can also be obtained by using the fact that ‖A‖2 ≤ ‖A‖F for
any matrix A.
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The Jacobian matrix of the system is[
v w

−1 0

]
. (4.10)

Using Algorithm 2 we obtain γ = 1.0178 as an upper bound on the eigenval-

ues of the symmetric part of the Jacobian matrix over S. Using Lemma 4.3,

we obtain the following discrepancy function for this system:

‖ξ(x1, t)− ξ(x2, t)‖ ≤ ‖x1 − x2‖e1.0178t,

for as long as the trajectories remain inside S.

4.2.2 Algorithm to compute reach set using fast discrepancy
function

In this section, we introduce Algorithm LDF2 which uses Lemma 4.3 and

Algorithm 2 to compute a (Bδ(R0), T )-reachtube of system (2.1), where R0

is the initial rectangle of the simulation ψ.

Algorithm 3: Algorithm LDF2.

input: ψ = {(Rk, tk)
n
i=0},Jf (·),Lf ,δ, ε

1 ∆← δ,b ← zeros(k) ;
2 for i = 1:n do
3 τ ← ti − ti−1;
4 d← (∆ + ε)eLf τ ;
5 S ← hull(Ri−1, Ri)⊕Bd(0) ;
6 γ[i] ← Eig UB(Jf (·), S) ;

7 Oi ← Bδ′ (hull(Ri−1, Ri)) where δ′ = max{(∆ + ε), (∆ + ε)eγ[i]τ} ;

8 ∆ ← (∆ + ε)eγ[i]τ ;
9 R ← R∪ [Oi, ti] ;

10 end
11 return R ;

Algorithm 3 shows the pseudocode for LDF2 used as the Bloat() function

in the verification algorithm. LDF2 takes as input a parameter δ, an error

bound for simulation ε, the Lipschitz constant Lf , the Jacobian matrix Jf (·)
of function f , and a (θ, τ, ε, T )-simulation ψ = {(Ri, ti)}, i = 0, 1, . . . , k. It

returns an (Bδ(R0), T )-reachtube.
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The algorithm starts with the initial set Bδ(R0) and with ∆ = δ. In each

iteration of the for-loop it computes a rectangle Oi of the reachtube corre-

sponding to the time interval [ti−1, ti]. In the ith iteration, ∆ is updated so

that B∆(Ri−1) is an over-approximation of the reachable states from Bδ(R0)

at ti−1 (Lemma 4.6). In Lines 4 and 5, a set S is computed by bloating the

convex hull hull(Ri−1, Ri) by a factor of d = (∆ + ε)eLf (ti−ti−1). The set

S will later be proved to be a (coarse) over-approximation of the reachtube

from B∆(Ri−1) over the time interval [ti−1, ti] (Lemma 4.5). At Line 6 an up-

per bound on the maximum eigenvalue of the symmetric part of the Jacobian

over the set S is computed using Algorithm 2 (Lemma 4.4). At Line 7 the

rectangle Oi is computed as an over-approximation of the reach set during

the time interval [ti−1, ti]. Then ∆ is updated as (∆ + ε)eγ[i](ti−ti−1) for the

next iteration.

Next, we are going to prove that Algorithm 3 returns an (Bδ(R0), T )-

reachtube. Firstly, we need to prove that the set S computed at Line 5

satisfies the assumption in Lemma 4.3. That is, in the ith iteration of the

loop, the computed S is an over-approximation of the set of states that can

be reached by the system from B∆(Ri−1) over the time interval [ti−1, ti].

Lemma 4.5. In the ith iteration of the loop of Algorithm 3,

Reach(B∆(Ri−1), [ti−1, ti]) ⊆ S.

Proof. Let ξ(θ, t) denote the actual trajectory from θ, where θ is the initial

state of ψ. By Definition 2.1 for ψ, it is known that θ ∈ R0 and ∀i =

1, . . . , k, ξ(θ, ti) ∈ Ri.

For a fixed iteration number i, consider state x = ξ(θ, ti−1) ∈ Ri−1 from

Definition 2.1. We know from the definition of a simulation (Definition 2.1)

that for any t ∈ [ti−1, ti], ξ(x, t) ∈ hull(Ri−1, Ri). Now consider any state

x′ ∈ B∆(Ri−1). Since Lf is the Lipschitz constant of f , using Gronwall’s

inequality we have that

‖ξ(x, t)− ξ(x′, t)‖ ≤ ‖x− x′‖eLf (t−ti−1).

Since ‖x− x′‖ ≤ ∆ + ε, we have

‖ξ(x, t)− ξ(x′, t)‖ ≤ (∆ + ε)eLf (t−ti−1).
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Therefore, ξ(x′, t) ∈ hull(Ri−1, Ri)⊕B(∆+ε)e
Lf (ti−ti−1)(0) = S.

Next, we inductively prove thatOi computed at Line 7 is an over-approximation

of the reach set during the time interval [ti−1, ti].

Lemma 4.6. For any i = 1, . . . , k, Reach(Bδ(R0), ti) ⊆ B∆i
(Ri), and

Reach(Bδ(R0), [ti−1, ti]) ⊆ Oi, where ∆i is ∆ after Line 8 is executed in the

ith iteration.

Proof. In this proof, let ξ(θ, ·) denote the trajectory from θ. From the Defi-

nition 2.1 for ψ, we know that θ ∈ R0 and ∀i = 1, . . . , k, ξ(θ, ti) ∈ Ri. Let Si

denote S after Line 5 is executed in the ith iteration. The lemma is proved by

induction on i. Note that the initial set is Bδ(R0), and before the for-loop,

∆0 is set as δ.

When i = 1, we already have Reach(Bδ(R0), t0) = Bδ(R0) = B∆0(R0).

Lemma 4.5 indicates that ∀t ∈ [t0, t1], Reach(B∆0(R0), [t0, t1]) ⊆ S. And

consider state x = θ ∈ R0, we also know ξ(x, t) ∈ hull(R0, R1) and ξ(x, t1) ∈
R1. From Lemma 4.3, it follows that for ∀x′ ∈ B∆0(R0), ∀t ∈ [t0, t1],

‖ξ(x, t)− ξ(x′, t)‖ ≤ ‖x− x′‖eγ[1](t−t0).

At Line 8, ∆1 ← (∆0 + ε)eγ[1](t1−t0). Since γ[1] could be positive or negative,

maxt∈[t0,t1] ‖x− x′‖eγ[1](t−t0) = max{∆1,∆0 + ε}. Therefore,

Reach(Bδ(R0), [t0, t1]) ⊆ hull(R0, R1)⊕Bmax{∆1,∆0+ε}(0) = O1,

and at time t1, ξ(x′, t1) is at most ∆1 distance to ξ(x, t1) ∈ R1, so

Reach(Bδ(R0), t1) = Reach(B∆0(R0), t1) ⊆ B∆1(R1).

Assume that the lemma holds for i = m − 1, which means we have

Reach(Bδ(R0), tm−1) ⊆ B∆m−1(Rm−1). Next we prove the lemma holds for

i = m as well. Consider state x = ξ(θ, tm−1) ∈ Rm−1, ∀t ∈ [tm−1, tm];

by definition it follows that ξ(x, t) ∈ hull(Rm−1, Rm) and ξ(x, tm) ∈ Rm.

∀x′ ∈ B∆m−1(Rm−1),∀t ∈ [tm−1, tm], from Lemma 4.3

‖ξ(x, t)− ξ(x′, t)‖ ≤ ‖x− x′‖eγ[m](t−tm−1).
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Note at Line 8, ∆m ← (∆m−1 + ε)eγ[m](tm−tm−1). Therefore,

Reach(B∆m−1(Rm−1), [tm−1, tm]) ⊆ hull(Rm−1, Rm)⊕Bmax{∆m,∆m−1+ε}(0) = Oi.

Also we have Reach(Bδ(R0), tm−1) ⊆ B∆m−1(Rm−1), so

Reach(Bδ(R0), [tm−1, tm]) ⊆ Oi.

And at time tm, ξ(x′, tm) is at most ∆m distance to ξ(x, tm) ∈ Rm. Hence,

Reach(B∆m−1(Rm−1), tm) ⊆ B∆m(Rm). Recall that Reach(Bδ(R0), tm−1) ⊆
B∆m−1(Rm−1), thus Reach(Bδ(R0), tm) ⊆ B∆m(Rm).

From Lemma 4.6, the following main theorem of this section follows. It

states that the Algorithm LDF2 soundly over-approximates the reachable

states from Bδ(R0).

Theorem 4.2. For any (x, τ, ε, T )-simulation ψ = (R0, t0) . . . (Rk, tk) and

any constant δ ≥ 0, a call to LDF2(ψ, δ, ε) returns a (Bδ(R0), T )-reachtube.

4.3 Local Optimal Discrepancy Function

Algorithm LDF2 has fundamental drawbacks that prevent it from working for

a large class of systems in practice. One drawback is that the bloating factor

(or discrepancy function) computed by Lemma 4.3 grows (or shrinks) with

time exactly at the same rate along all the dimensions of the system, and

this rate is computed by bounding the eigenvalues of the symmetric part of

the Jacobian matrix.

For example, the simple linear system

ẋ =

[
0 3

−1 0

]
x

has eigenvalues ±
√

3i, and therefore has oscillating trajectories. The actual

distance between neighboring trajectories is at most a constant times their

initial distance; however, the discrepancy function computed by Lemma 4.3

will bound this distance between trajectories, in all dimensions, as an expo-

nentially growing function Ceλt, where λ = 1 is the largest eigenvalue of the
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symmetric part of the Jacobian matrix.2

Furthermore, Algorithm 2 uses a coarse method for bounding the largest

eigenvalue of the Jacobian matrix, which leads to an undesirable level of

conservatism to the point that even for certain contractive systems, the com-

puted reach set over-approximation may not converge over time.

To overcome the shortcomings of Algorithm LDF2, we will try to solve the

optimization problem (4.4):

min
γ̂∈R,M∈Rn×n

γ̂

s.t ATM +MA � γ̂M, ∀A ∈ A

M � 0

by replacing the constraints ATM + MA � γ̂M, ∀A ∈ A with infinite

number of matrices with certain representative matrices and analyzing the

consequences of such replacement.

To simplify the presentation, we assume that the solutions (i.e., trajecto-

ries) for (2.1) can be obtained exactly. Later at the end of Section 4.3.4,

we will discuss how the algorithms work with validated simulations with

guaranteed error bounds (see also for a detailed treatment of this [18]).

4.3.1 Vertex matrix constraints method

Proposition 2.1 establishes that an interval matrix is equivalent to the convex

hull of its vertex matrices. That means each constant matrix A in the interval

matrix A will have a representation based on elements of VT(A). This allows

us to simplify the optimization problem in Equation (4.4) to one with a finite

number of constraints, based on the vertex matrices.

The next lemma provides a method for computing discrepancy functions

from the vertex matrices of an interval matrix.

Lemma 4.7. Let S ⊆ Rn be the set of states and [t1, t2] be a time interval

such that for any state x ∈ S, we have ξ(x, t) ∈ S for t ∈ [t1, t2]. Let M be a

positive definite n× n matrix. If there exists an interval matrix A such that

2In [17], a simple coordinate transformation method is introduced to address this prob-
lem, but that requires user intervention and adds an approximation error that is of the
order of the matrix condition number.
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(a) ∀ x ∈ S, Jf (x) ∈ A, and

(b) ∃ γ̂ ∈ R, ∀ Ai ∈ VT(A), ATi M +MAi � γ̂M .

Then for any x1, x2 ∈ S and t ∈ [t1, t2]:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ e
γ̂
2

(t−t1)‖x1 − x2‖M .

Proof. From Proposition 2.1, we know that Jf (x) ∈ A = hull(VT(A)). It

follows from (a) and Lemma 4.2 that for any t ∈ [t1, t2], there exists a matrix

A ∈ A such that ẏ(t) = Ay(t), and A ∈ hull{A1, A2, . . . , AN}. Using this,

at any time t ∈ [t1, t2], the derivative of ‖y(t)‖2
M can be written as:

d‖y(t)‖2
M

dt
= yT (t)ATMy(t) + yT (t)MAy(t)

= yT (t)

((
N∑
i=1

αiA
T
i

)
M +M

(
N∑
i=1

αiAi

))
y(t)

= yT (t)

(
N∑
i=1

αi
(
ATi M +MAi

))
y(t)

≤ yT (t)

(
N∑
i=1

αiγ̂M

)
y(t) [using (b)]

= γ̂yT (y)My(t) = γ̂‖y(t)‖2
M .

By applying Grönwall’s inequality, we obtain ‖y(t)‖M ≤ e
γ̂
2

(t−t1)‖y(t1)‖M .

Lemma 4.7 suggests the following bilinear optimization problem for finding

discrepancy over compact subsets of the state space:

min
γ̂∈R,M∈Rn×n

γ̂ (4.11)

s.t. ATi M +MAi � γ̂M, for each Ai ∈ VT(A)

M � 0.

Letting γ̂max be the maximum of the eigenvalues of ATi + Ai for all i, then

ATi + Ai � γ̂maxI (i.e., M = I) holds for every Ai, so a feasible solution

exists for (4.11). To obtain a minimal feasible solution for γ̂, we choose a

range of γ ∈ [γmin, γmax], where γmin < γmax and perform a line search of γ̂

over [γmin, γmax]. Note that if γ̂ is fixed, then (4.11) is a semidefinite program
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(SDP), and a feasible solution can be obtained by an SDP solver. As a result,

we can solve (4.11) using a line search strategy, where an SDP is solved at

each step. The solution we obtain using this technique may not be optimal,

but we note that any feasible γ̂ and M conservatively capture the behaviors

of the difference between trajectories. Further, in practice, we can always

choose a negative enough lower bound γ̂min, such that if γ̂ < γ̂min, then we

can use γ̂min as a sufficient relaxation (upper bound) for γ̂.

The above process for identifying a feasible (optimal) γ̂ and a correspond-

ing M can be used to compute reach set over-approximations, based on the

discrepancy function β(‖x1 − x2‖M , t) = e
γ̂
2

(t−t1)‖x1 − x2‖M .

Example 4.2. Consider system (4.9) over the given compact set S as in

Example 4.1. By solving optimization problem (4.11), we can get γ̂ = −0.6

and M =

[
2.7263 −1.3668

−1.3668 6.7996

]
. Then by invoking Lemma 4.7, we obtain the

discrepancy function

‖ξ(x1, t)− ξ(x2, t)‖M ≤ ‖x1 − x2‖Me−0.3t,

for as long as the trajectories remain inside S.

Compared with Example 4.1, the interval matrix constraints method pro-

vides a tighter discrepancy function than that provided by Algorithm LDF2

since it computes a local optimal exponential change rate between trajecto-

ries over S.

The over-approximation computed using this method is less conservative

than the method based on the 2-norm (Section 2.3), because the optimal

metric is searched for the minimum possible exponential change rate, which is

achieved by allowing the amount of bloating in each direction to be different,

instead of the uniform rate for all directions as in Algorithm LDF2.

This approach is computationally more intensive than the LDF2 method

due to the potentially O(2n
2
) matrices in VT(A) that appear in the SDP

(4.11). In the next section, we present a second method that avoids the

exponential increase in the number of constraints in (4.11).
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4.3.2 Interval matrix norm method

We present a second method for computing discrepancy functions based on

interval matrix norms, which uses the center and range matrices to character-

ize the norm of the interval matrix A. The next lemma provides a method to

compute a discrepancy function using the matrix norm of an interval matrix.

Lemma 4.8. Let S ⊆ Rn be sets of states and [t1, t2] be a time interval such

that for any x ∈ S, ξ(x, t) ∈ S, for t ∈ [t1, t2], where 0 ≤ t1 < t2 ≤ T . Let

M be a positive definite n × n matrix. If there exists an interval matrix A
such that

(a) ∀ x ∈ S, Jf (x) ∈ A, and

(b) ∃ γ̂ ∈ R, such that CT(A)TM +MCT(A) � γ̂M ,

then for any x1, x2 ∈ S and t ∈ [t1, t2]:

‖ξ(x1, t)− ξ(x2, t)‖M ≤ e

(
γ̂
2

+ δ
2λmin(M)

)
(t−t1)‖x1 − x2‖M , (4.12)

where δ =
√
|||D|||1|||D|||∞, and

D = {D | ∃A ∈ A such that D = (A− CT(A))TM +M(A− CT(A))}

is also an interval matrix.

Proof. Fix any x1, x2 ∈ S. Let Ac = CT(A) and Ar = RG(A), so A =

Interval([Ac − Ar, Ac + Ar]). We can express A as the Minkowski sum of

Ac and G, which we denote as Ac ⊕ G, where G = Interval([−Ar, Ar]) =

{G | ∃A ∈ A such that G = A − CT(A)}. We use a standard property of

norms to bound the 2-norm as follows (see [26], page 57):

‖GTM +MG‖2 ≤
√
‖GTM +MG‖1‖GTM +MG‖∞

≤
√

sup{‖D‖1|D ∈ D} sup{‖D‖∞|D ∈ D}

≤
√
|||D|||1|||D|||∞ = δ, (4.13)

which uses the fact that GTM + MG ∈ D. As λmin(M) is the minimum

eigenvalue of the positive definite matrix M , then ∀y 6= 0,

0 < λmin(M)‖y‖2 ≤ yTMy. (4.14)
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Moreover, ∀G ∈ G, and any vector y ∈ Rn

yT (GTM +MG)y ≤ ‖GTM +MG‖2‖y‖2. (4.15)

Combining the above with (4.13) yields

yT (GTM +MG)y ≤ δ‖y‖2. (4.16)

Since x1, x2 ∈ S and t ∈ [t1, t2], it follows from Lemma 4.2 that ∃G ∈ G,

such that the distance between trajectories y(t) = ξ(x1, t)− ξ(x2, t) satisfies

ẏ(t) = (Ac +G)y(t). Considering the above inequalities, we have that

d‖y(t)‖2
M

dt
= yT (t)

(
(ATc +GT )M +M(Ac +G)

)
y(t)

= yT (t)(ATcM +MAc +GTM +MG)y(t)

≤ γ̂yT (t)My(t) + yT (t)(GTM +MG)y(t)

≤ γ̂‖y(t)‖2
M + δ‖y‖2(t) [using (4.16) ]

≤ γ̂‖y(t)‖2
M + δ

‖y(t)‖2
M

λmin(M)
. [using (4.14)]

The lemma follows by applying Grönwall’s inequality.

In general, Lemma 4.8 provides the discrepancy function

β(‖x1 − x2‖M , t) = e

(
γ̂
2

+ δ
2λmin(M)

)
(t−t1)‖x1 − x2‖M ,

where an M and γ̂ need to be selected. This suggests solving the following

alternative optimization problem to compute a discrepancy function over

compact subsets of the state space.

min
γ̂∈R,M∈Rn×n

γ̂ (4.17)

s.t ATcM +MAc � γ̂M,Ac = CT(A)

M � 0.

Remark 4.1. In Lemma 4.8, δ is computed as
√
|||D|||1|||D|||∞, where D is an

interval matrix. To compute the 1-norm or the infinity-norm of the interval

matrix, Theorem 2.1 provides an efficient way which only needs to compute
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the 1 or infinite norm of the absolute value of the interval matrix’s center

matrix |CT(D)| and the range matrix RG(D).

Example 4.3. For system (4.9) over the given compact set S as in Exam-

ple 4.1, we can obtain γ̂ = −0.8 and M =

[
2.4431 −1.0511

−1.0511 4.5487

]
by solving

optimization problem (4.17), and δ = 1.4162. Applying Lemma 4.8, a dis-

crepancy function for (4.9) is given by

‖ξ(x1, t)− ξ(x2, t)‖M ≤ ‖x1 − x2‖Me0.3081t,

for as long as the trajectories remain inside S.

Compared with Example 4.1 and 4.2, the interval matrix norm method

produces a discrepancy that is tighter than Algorithm LDF2 but more con-

servative than the vertex matrix constraints method.

The computations required to produce the discrepancy using the interval

matrix norm method are significantly less intensive than for the vertex matrix

constraints method. But this comes at the price of decreasing the accuracy

(i.e., increasing the conservativeness), due to the positive error term δ
2λmin(M)

that is added to γ̂
2

in (4.12). In practice, we want to make the compact sets

S small so that δ (and by extension the exponential term in (4.12)) remains

small.

Lemmas 4.7 and 4.8 provide bounds on the M -norm distance between

trajectories. Given the simulation result of ξ(x1, t), for any other initial state

x2 such that ‖x1 − x2‖M ≤ c, we will have that ∀t ∈ [t1, t2], ‖ξ(x1, t) −
ξ(x2, t)‖M ≤ ce

γ′
2

(t−t1) (γ′ = γ̂ for Lemma 4.7 and γ′ = γ̂ + δ
λmin(M)

for

Lemma 4.8). This means that at any time t ∈ [t1, t2], ξ(x2, t) is contained in

the ellipsoid centered at ξ(x1, t) defined by the set of points x that satisfy

‖(ξ(x1, t)− x)‖2
M ≤ ceγ

′(t−t1).

That is, ξ(x2, t) is contained within ellipsoid EM,ceγ
′(t−t1) (ξ(x1, t)) (see the

definition of ellipsoid in Section 2.1.3).
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4.3.3 Algorithm to compute local optimal reach set

Given an initial set Bδ(x) and time bound T , Lemmas 4.7 and 4.8 provide

discrepancy functions over compact sets in the state space and over a bounded

time horizon. To compute the reach set of a nonlinear model from a set of

initial states over a long time horizon [0, T ], we will divide the time interval

[0, T ] into smaller intervals [0, t1], . . . , [tk−1, tk = T ], and compute a piece-

wise discrepancy function, where each piece is relevant for a smaller portion

of the state space and the time.

Consider two adjacent subintervals of [0, T ], a = [t1, t2] and b = [t2, t3]. Let

βa, βb be the discrepancy functions for the intervals a and b. βa defines an

ellipsoid EMa,ca(t2)(ξ(x0, t2)) that contains Reach(Bδ(x), t2) and βb provides

Mb and cb(t) such that Reach(Bδ(x), t2) ⊆ EMb,cb(t2)(ξ(x0, t2)). To over-

approximate the reach set for the interval b, we require that cb(t2) is chosen

so that at the transition time t2:

EMa,ca(t2)(ξ(x0, t2)) ⊆ EMb,cb(t2)(ξ(x0, t2)). (4.18)

It is a standard SDP problem to compute the minimum value for cb(t2) that

ensures (4.18) (see, for example [40]). This minimum value is used as cb(t2)

for computing the reachtube for time interval b.

Let Ea denote the ellipsoid EMa,ca(t2)(ξ(x0, t2)) and Eb denote the ellipsoid

EMb,c(ξ(x0, t2)). The problem of minimizing cb(t2), given Ma,Mb, ca(t2), such

that Equation (4.18) holds can be expressed using the following optimization

problem:

min c

s.t. Eb ⊇ Ea.
(4.19)

Then let cb(t2) be equal to the solution.

We can transfer problem (4.19) to the flowing sum-of-squares problem

using the “S procedure” [41] to make it solvable by SDP solvers:

min c

s.t. c− ‖x− ξ(x0, t2)‖2
Mb
− λ

(
ca(t2)− ‖x− ξ(x0, t2)‖2

Ma

)
≥ 0,

λ ≥ 0.

(4.20)
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4.3.4 Reachtube over-approximation algorithm

We present an algorithm to compute a (Bδ(x), T )-reachtube for system (2.1)

using the results from Section 4.3.1 and 4.3.2. Given an initial set Bδ(x),

which is a ball centered at x, and time bound T , Algorithm LDFM computes

a sequence of time-stamped sets (R1, t1), (R2, t2), . . . , (Rk, tk), such that the

reach set from Bδ(x0) is contained in the union of the sets.

In Algorithm LDFM we assume that the exact simulation of the solution

ξ(x, t) exists and can be represented as a sequence of points and hyper-

rectangles for ease of exposition. At the end of this section (Remark 4.3), we

will introduce how to modify Algorithm LDFM to adopt validated simulation.

The inputs to Algorithm LDFM are as follows: (1) A simulation ψ of

the trajectory ξ(x, t), where x = ξ(x, t0) and t0 = 0, represented as a

sequence of points ξ(x, t0), . . . , ξ(x, tk) and a sequence of hyper-rectangles

Rec(ti−1, ti) ⊆ Rn. That is, for any t ∈ [ti−1, ti], ξ(x, t) ∈ Rec(ti−1, ti). (2) The

Jacobian matrix Jf (·). (3) A Lipschitz constant L for the vector field (this

can be replaced by a local Lipschitz constant for each time interval). (4) A

matrix M0 and constant c0 such that Bδ(x) ⊆ EM0,c0(x). The output is a

(Bδ(x), T )-Reachtube.

Algorithm LDFM uses Lemma 4.7 to update the coordinate transformation

matrix Mi to ensure an optimal exponential rate γi of the discrepancy func-

tion in each time interval [ti−1, ti]. It will solve the optimization problem

(4.11) in each time interval to get the local optimal rate, and solve the opti-

mization problem (4.18) when it moves forward to the next time interval.

The algorithm proceeds as follows. The diameter of the ellipsoid containing

the initial set Bδ(x) is computed as the initial set size (Line 1). At Line

4, Rec(ti−1, ti), which contains the trajectory between [ti−1, ti] is bloated

by the factor δi−1e
L∆t which gives the set S that is guaranteed to contain

Reach(Bδ(x), t) for every t ∈ [ti−1, ti] (see Lemma 4.5). Next, at Line 5, an

interval matrix A containing Jf (x), for each x ∈ S is computed. The matrix

is guaranteed to exist by Lemma 4.1. The “if” condition in Line 6 determines

whether the Mi−1, γi−1 used in the previous iteration satisfy the conditions of

Lemma 4.7 (γ0 when i = 1, where γ0 is an initial guess). This condition will

avoid performing updates of the discrepancy function if it is unnecessary. If

the condition is satisfied, then Mi−1 is used again for the current iteration i

(Lines 7, 8, and 9) and γi will be computed as the smallest possible value such

42



Algorithm 4: Algorithm LDFM

input : ψ,Jf (·),L,M0, c0

initially: R ← ∅, γ0 ← −100
1 δ0 = dia (EM0,c0(x)) ;
2 for i = 1:k do
3 ∆t← ti − ti−1 ;
4 S ← Bδi−1eL∆t(Rec(ti−1, ti)) ;
5 A ← Interval[B,C] such that Jf (x) ∈ Interval[B,C],∀x ∈ S ;
6 if ∀V ∈ VT(A) :V TMi−1 +Mi−1V ≤ γi−1Mi−1 then
7 Mi ←Mi−1 ;
8 γi ← arg min

γ∈R
∀V ∈ VT(A) : V TMi +MiV ≤ γMi ;

9 ctmp ← ci−1

10 else
11 compute Mi, γi from Eq. (4.11) ;
12 compute minimum ctmp such that

EMi−1,ci−1
(ξ(x, ti−1)) ⊆ EMi,ctmp(ξ(x, ti−1)) ;

13 end
14 ci ← ctmpe

γi∆t ;
15 δi ← dia(EMi,ci(ξ(x, ti))) ;
16 Ri ← Bδ′/2(Rec(ti−1, ti)) where

δ′ = max{dia
(
EMi,ctmp (ξ(x, ti−1))

)
, δi} ;

17 R ← R∪ [Ri, ti] ;

18 end
19 return R ;

that Lemma 4.7 holds (Line 8) without updating the shape of the ellipsoid

(i.e., Mi = Mi−1 ). In this case, the γi computed using Mi−1 in the previous

iteration (i−1) may not be ideal (minimum) for the current iteration (i), but

we assume it is acceptable. If Mi−1 and γi−1 do not satisfy the conditions

of Lemma 4.7, that means the previous coordinate transformation can no

longer ensure an accurate exponential converging or diverging rate between

trajectories. Then Mi and γi are recomputed at Line 11. For the vertex

matrix constraints case, (4.11) is solved to update Mi and γi. At Line 12, an

SDP is solved to identify the smallest constant ctmp for discrepancy function

updating such that

EMi−1,ci−1
(ξ(x, ti−1)) ⊆ EMi,ctmp(ξ(x, ti−1)).

At Line 14, we compute the updated ellipsoid size ci such that EMi,ci(ξ(x, ti))
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contains Reach(Bδ(x), ti). An Line 15, the diameter of EMi,ci(ξ(x, ti)) is

assigned to δi for next iteration. At Line 16 the set Ri is computed such that

it contains the reach set during time interval [ti−1, ti]. Finally, at Line 17 R
is returned as an over-approximation of the reach set.

Next, we analyze the properties of Algorithm LDFM. We first establish

that the γ produced by Line 11 is a local optimal exponential converging

or diverging rate between trajectories. Then we prove that Algorithm LDFM

soundly over-approximates the reachable states from Bδ(x).

The next lemma states that Line 11 computes the locally optimal expo-

nential rate γ for a given interval matrix approximation.

Lemma 4.9. In the ith iteration of Algorithm LDFM, suppose A is the approx-

imation of the Jacobian over [ti−1, ti] computed in Line 5. If Ei−1 is the reach

set at ti−1, then for all M ′ and γ′ such that Reach(Ei−1, ti) ⊆ EM ′,c′(ξ(x, ti))

where c′ is computed from γ′ (Line 14), we have that the γ produced by Line

11 satisfies γ ≤ γ′.

Proof. (sketch) The lemma follows from the fact that any M ′, γ′ that satisfies

ATM ′ + M ′A � γ′M ′,∀A ∈ A results in an ellipsoidal approximation at ti

that over-approximates the reach set; however, at Line 11 we are computing

the minimum exponential change rate γ by searching all possible matrices M

for the given interval matrix. Thus, the γ value computed at Line 11 is the

optimal exponential change rate over local convex set S for the given interval

matrix A.

In other words, the computed γ is the optimal exponential growth rate

for any ellipsoidal reach set approximation, based on a given interval matrix

approximation for the Jacobian.

Next, we show that Ri computed at Line 16 is an over-approximation of

the reach set during time interval [ti−1, ti].

Lemma 4.10. For Algorithm LDFM, at ith iteration, if Reach(Bδ(x), ti−1) ⊆
EMi−1,ci−1

(ξ(x, ti−1)), then we have at time ti,

Reach(Bδ(x), ti) ⊆ EMi,ci(ξ(x, ti)),

and

Reach(Bδ(x), [ti−1, ti]) ⊆ Ri.
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Proof. Note that by Lemma 4.7, at any time t ∈ [ti−1, ti], any other trajectory

ξ(x′, t) starting from x′ ∈ EMi−1,ci−1
(ξ(x, ti−1)) is guaranteed to satisfy

‖ξ(x, t)− ξ(x′, t)‖Mi
≤ ‖ξ(x, ti−1)− x′‖Mi

e
γi
2

(t−ti−1). (4.21)

Then, at time ti, the reach set is guaranteed to be contained in the ellipsoid

EMi,ci(ξ(x, ti)).

At Line 16 we want to compute the set Ri such that it contains the reach

set during time interval [ti−1, ti]. According to equation (4.21), at any time

t ∈ [ti−1, ti], the reach set is guaranteed to be contained in the ellipsoid

EMi,c(t)(ξ(x, t)), where c(t) = ctmpe
γi(t−ti−1). Ri should contain all the ellip-

soids during time [ti−1, ti]. Therefore, it can be obtained by bloating the

rectangle Rec(ti−1, ti) using the largest ellipsoid’s radius (half of the diame-

ter). Since eγi(t−ti−1) is monotonic (increasing when γi > 0 or decreasing when

γi < 0) with time, the largest ellipsoid during [ti−1, ti] is either at ti−1 or at ti.

So the largest diameter of the ellipsoids is max{dia
(
EMi,ctmp (ξ(x, ti−1))

)
, δi}.

Thus, at Line 16

Reach(Bδ(x), [ti−1, ti]) ⊆ Ri.

Next, we show that R returned at Line 17 is an over-approximation of the

reach set.

Theorem 4.3. For any (x, T )-simulation ψ = ξ(x, t0), . . . , ξ(x, tk) and any

constant δ ≥ 0, a call to LDFM(ψ, δ) returns a (Bδ(x), T )-reachtube.

Proof. Using Lemma 4.10, when i = 1, because the initial ellipsoid EM0,c0(x)

contains the initial set Bδ(x), we have that EM1,c1(ξ(x, t1)) defined at Line

15 contains Reach(Bδ(x), t1). Also at Line 16, R1 contains

Reach(Bδ(x), [t0, t1]). Repeating this analysis for subsequent iterations, we

have that EMi,ci(ξ(x, ti)) contains Reach(Bδ(x), ti), and Ri contains

Reach(Bδ(x), [ti−1, ti]). Therefore, R returned at Line 17 is a (Bδ(x), T )-

Reachtube.

Remark 4.2. Algorithm 4 uses the vertex matrix constraints method in Sec-

tion 4.3.1. To apply the interval matrix norm method in Section 4.3.2, just
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modify Lines 6, 8, 11, and 14 according to Lemma 4.8 and optimization prob-

lem (4.17). For the interval matrix norm method, the γ computed at Line 11

is the local optimal exponential rate only for the center matrix of the interval

matrix; we add an error to this γ to upper bound the exponential rate for the

entire interval matrix using Lemma 4.8. Such an error term may introduce

conservativeness, but this relaxation decreases the computational cost (see

Section 4.3.6).

Remark 4.3. It is straightforward to modify Algorithm 4 to accept validated

simulations and the error bounds introduced. At Line 4 and Line 16, instead

of bloating Rec(ti−1, ti), we need to bloat hull({Ri−1, Ri}), which is guaran-

teed to contain the solution ξ(x, t),∀t ∈ [ti−1, ti]. Also, at Line 12 and Line

15, when using the ellipsoid EMi,ci(ξ(x, ti)), we use EMi,ci(0)⊕Di.

4.3.5 Accuracy of algorithm LDFM

Theorem 4.3 ensures that Algorithm LDFM over-approximates the reachable

sets from initial set Bδ(x) for time [0, T ]. In this section, we give results that

formalize the accuracy of Algorithm LDFM. In the following, we assume that

R = (R1, t1), . . . , (Rk, tk = T )

is a (Bδ(x), T )-Reachtube returned by Algorithm LDFM.

The first Proposition 4.1 establishes that the bloating factor δi in Line 15

for constructing reachtubes goes to 0 as the size of the initial set Bδ(x) goes

to zero. This implies that the over-approximation error from bloating can be

made arbitrarily small by making the uncertainty in the initial cover 〈x, δ, ε〉
small.

Proposition 4.1. In Algorithm LDFM, for any i, if M0 and c0 are optimal,

in the sense that no M ′, c′ exists such that c′ < c0 and Bδ(x) ⊆ EM ′,c′(x),

then as dia(Bδ(x))→ 0 the size of the bloating factor δi → 0 (Line 15).

Proof. At Line 14, the algorithm updates ci with some bounded number

ctmpe
γi∆t, and ctmp is either inherited from ci−1 (Line 9) or computed by

discrepancy function updating (Line 12) of Mi−1, ci−1. In either case ci goes

to 0 as ci−1 goes to 0. In the discrepancy function updating case (Line 12) this

is because we select the smallest ellipsoid EMi,ctmp(ξ(x, ti−1)) that contains
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EMi−1,ci−1
(ξ(x, ti−1)), where if ci−1 → 0, then ctmp → 0, and thus ci → 0.

If dia(Bδ(x)) → 0, we will have c0 → 0 since M0 and c0 are optimal, and

consequently ci → 0, for each i = 1, . . . , k. From Line 15, it follows that

δi = 2
√
λmax(ciM

−1
i ) (see [42] page 103), and therefore, as ci → 0, δi → 0,

for each i = 1, . . . , k.

The contractive system’s Jacobian matrix has negative matrix measure

under certain coordinate transformation. Next, Corollary 4.2 establishes that

for contractive systems the reachtube computed by Algorithm LDFM converges

to the rectangles that represent the simulation.

Corollary 4.2. Consider a contractive system for which there exists a matrix

M such at ∀x ∈ Rn, Jf (x)TM + MJf (x) � γM , and γ < 0. Compute the

reachtube of the system using Algorithm LDFM, we have as k, T →∞,

|dia(Rk)− dia (Rec(tk−1, T )) | → 0.

Proof. From the contractive condition, we have a uniform matrixM such that

any evaluation of the Jacobian matrix satisfies Jf (x)TM + MJf (x) ≤ γM .

The “If” condition at Line 6 will always hold for Mi = M and γi = γ,

and at Line that ci = ci−1e
γ∆t. Inductively, we obtain ck = c0e

γtk and

γ < 0. So ck → 0 as tk = T → ∞. The bloating factor δk, which is the

diameter of EMk,ck(ξ(x, tk)), also goes to 0. From the definition of Rk, we

have Rk ⊇ Rec(tk−1, T ). The bloating factor for Rec(tk−1, T ) goes 0, so

Rk → Rec(tk−1, T ), and the result follows.

Corollary 4.3. Consider a linear system ẋ = Ax with a Hurwitz matrix

A. Compute the reachtube of the system using Algorithm LDFM, we have as

k, T →∞,

|dia(Rk)− dia (Rec(tk−1, T )) | → 0.

A linear system is contractive if A is Hurwitz as the real part of its eigen-

values are bounded by some constant γ < 0. Pick matrix P such that

PAP−1 is the Jordan form of A, then there exists some ε < 0 such that

(P−1)TATP T + PAP−1 � εI. Pre- and post-multiplying by P T and P , we

get: ATP TP + P TPA � εP TP . Setting M = P TP we see that the contrac-

tive condition is satisfied.

For (even unstable) linear invariant systems, since the Jacobian matrix

A does not change over time, the discrepancy function can be computed
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globally for any time t and x1, x2 ∈ Rn. Therefore, there is no wrap-over

(accumulated) error introduced using Algorithm LDFM. We have also proved

the convergence of the algorithm for contractive nonlinear systems. For non-

contractive nonlinear systems, the over-approximation error might be accu-

mulated. Such wrap-over error introduced by on-the-fly algorithms may not

be avoidable. Therefore, for non-contractive or unstable nonlinear systems,

it is especially important to reduce the over-approximation error in each time

interval, which is what Algorithm LDFM aims to achieve.

4.3.6 Computational considerations of algorithm LDFM

We discuss the computational aspects of AlgorithmLDFM. For an n-dimensional

system model, assume that there are nI entries of the Jacobian matrix that

are not a constant number. At any iteration, at Line 5, the algorithm solves

2nI optimization problems or uses interval arithmetic to get lower and up-

per bounds of each component of the Jacobian. For linear time invariant

systems, this step is eliminated. At Line 6 the vertex matrix constraints

method will compute 2nI matrix inequalities; however, the interval matrix

norm method will compute 1 matrix inequality. At Line 8 or Line 11, the

vertex matrix constraints method will solve 1 convex optimization problem

with 2nI + 1 constraints, but the matrix interval method solves 1 convex op-

timization problem with 2 constraints. The discrepancy function updating

at Line 12 solves 1 SDP problem. The rest of the algorithm from Line 14 to

Line 16 consists of algebraic operations.

From the above analysis, we can conclude that the interval matrix norm

method improves the efficiency of the algorithm as compared to the ver-

tex matrix constraints method, especially when the number of non-constant

terms in the Jacobian matrix is large; however, the interval matrix norm

method introduces the error term δ/λmin(Mi) at each iteration, resulting in

a more conservative result. We can consider the vertex matrix constraints

method accurate but with a greater computational burden, and the interval

matrix method simple but coarse.

The effective efficiency of the algorithm depends on whether the system

is contractive or not. For contractive systems, it is possible that the “if”

condition often holds at Line 6, allowing the algorithm to often reuse the
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previous norm and contraction rate. For non-contractive systems this may

not be the case. Also, the efficiency of the algorithm applied to linear systems

is low, since the interval matrix to which the Jacobian matrix belongs is time

invariant.

As a comparison, Algorithm LDF2 does not need to solve any optimization

problem, except that at Line 6 we need to solve 2nI optimization problems

or use interval arithmetic to get lower and upper bounds of each component

of the error matrix in Algorithm 2. The remaining lines are all algebraic

operations. However, Algorithm LDF2 is a special case of Algorithm LDFM

since it fixes M = I for all the time intervals instead of trying to compute

the optimal Mi to achieve the best exponential converging/diverging rate of

the trajectories.
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Chapter 5

EXPERIMENTAL EVALUATION

We evaluate the performance of the methods proposed in this thesis. We first

use a small linear example to show the level of conservativeness that Algo-

rithm LDFM adds to the exact reach set. Then we use a series of benchmark

examples with different complexities to compare the efficiency and accuracy

of our proposed algorithms with the reach set computation tool Flow*.

5.1 Accuracy of Algorithm LDFM

In this section, we illustrate the accuracy of Algorithm LDFM using an example

for which the exact reach set (at sample time) is known. We use the 2-

dimensional linear system with nilponent term model:

ẋ = (−εI +N)x, (5.1)

where ε = 1/10, I is the identity matrix and N = (0, 1; 0, 0).

We choose two results to be plotted in Figure 5.1 and Figure 5.2, where

the initial set Θ in both cases is a ball with radius 0.2 centered at [1, 1]T

and [0, 0]T respectively. The sampled reachtubes computed using Algorithm

LDFM are shown in red ellipsoids and the sampled exact reach sets are shown

in green ellipsoids. To compute the exact ellipsoid at 1 second snapshots, we

use the forward image of an ellipsoid in discrete-time according to the linear

transformation defined by the above linear system (page 99 of [42]).

Table 5.1 also shows the degree of conservativeness added by the proposed

method. We compare the volume of the reach set as computed from [42]

and by LDFM, both normalized by the volume of the initial set. We choose

the average volume of the reach set, which is the sum of the volumes over

the sampling time divided by the number of samples, and the final volume

of the reach set. Because we are using a linear system, the results should
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be independent from the initial set since the converging or diverging rate

between trajectories for linear systems remains unchanged for the entire state

space. The discrepancy function computed for system (5.1) is

βM(‖x1 − x2‖, t) = ‖x1 − x2‖Me−0.1t,

where M =

[
1.2106 −1.5138

−1.5138 136.1004

]
.

From the numerical results from Table 5.1 we can see that the volume of the

exact reach set sampled per 1 second is around 5% of the over-approximation

reach set computed using Algorithm LDFM at the same sample time. The

conservativeness added at the final time increases with the increase of the

time horizon.

Table 5.1: Conservativeness of Algorithm LDFM on a 2-dimensional linear
system. Initial set: a circle centered at [1, 1] with radius 0.2. TH: Time
Horizon. A/I VR: the ratio of the average volume of the
over-approximation reach set over sampled time points to the initial set
volume. F/I VR: the ratio of the volume of the over-approximation reach
set at the final time T to the initial set volume. Exact/ Algorithm LDFM

ratio: the ratio of the normalized exact reach set with the normalized
reach set over-approximation computed by Algorithm LDFM.

TH(s)
Algorithm LDFM Exact Ellipsoid Exact/ Algorithm LDFM ratio

A/I VR F/I VR A/I VR F/I VR A/I VR F/I VR

10 170.15 98.22 11.15 3.38 6.55% 3.44%
20 117.23 36.13 6.47 0.46 5.52% 1.27%
30 86.42 13.29 4.44 0.06 5.14% 0.47%
40 67.30 4.89 3.36 8.40e-3 5.00% 0.17%
50 54.67 1.80 2.70 1.12e-3 4.95% 0.06%

5.2 Comparison of the Algorithms with Flow*

We implemented a prototype tool in MATLAB based on Algorithm LDF2 and

Algorithm LDFM and tested it on several benchmark verification problems.

Simulations are generated using the validated simulation engine CAPD [28],

which returns a sequence of time-stamped rectangles as required by our al-

gorithm. The optimization problems (4.11), (4.17), and the SDP problems

are solved using SDP3 [43] and Yalmip [44].
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Figure 5.1: Reach set over-approximation using Algorithm LDFM (red
ellipsoid) and exact reach set (green ellipsoid) of linear system with
nilpotent term. Initial set: a circle centered at [1, 1]T with radius 0.2.

We evaluated the algorithm on several nonlinear benchmark problems.

Van der Pol, Moore-Greitzer and Brusselator are standard low-dimensional

examples. The diode oscillator from [21] is low dimensional but has com-

plex dynamics described by degree 5 polynomials. Robot Arm is a four-

dimensional model from [45]. Powertrain is the powertrain control system

proposed in [46] as part of a verification challenge problem [6]. The Power-

train system is highly nonlinear; the dynamic equations contain polynomi-

als, rational functions, and square roots. Saturation is a system analyzed

in [47] that exhibits saturation behavior. Laub-Loomis is a molecular net-

work that produces spontaneous oscillations, and is used as a case study

for NLTOOLBOX [48]. AS Polynomial is a twelve-dimensional polynomial

system [49] that is asymptotically stable around the origin. We also study

one 28-dimensional linear model of a helicopter [3].1 For systems with fewer

than three dimensions, we use the vertex matrix constrains method, and for

systems with more than three dimensions, we use the interval matrix norm

method.

As mentioned earlier, Algorithm LDF2 is a special case of Algorithm LDFM;

1For the initial condition set of the helicopter model, we used 0.1 as the diameter for the
first eight dimensions and 0.001 for the remaining ones, because the reach set estimations
of Flow* became unbounded when using 0.1 as the diameter for all dimensions.
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Figure 5.2: Reach set over-approximation using Algorithm LDFM (red
ellipsoid) and exact reach set (green ellipsoid) of linear system with
nilpotent term. Initial set: a circle centered at [0, 0]T with radius 0.2.

therefore, the reachtubes produced by Algorithm LDFM are always less conser-

vative than those produced by Algorithm LDF2. For example, the reachtubes

computed by Algorithm LDF2 for Saturation and Laub-Loomis expand to fill

the entire user-defined search space, but for the same time horizon the cur-

rent algorithm proves safety. In this experiment, we incorporate the simple

coordination transformation method introduced in [17] to reduce the conser-

vativeness of Algorithm LDF2.

We compare the running time and accuracy of Algorithm LDFM against a

leading nonlinear verification tool, Flow* [1], and also against the Algorithm

LDF2. Analyses of several of these examples have been reported on Flow*’s

website and in those cases we use the given configurations. In other cases, we

set the order of Taylor models to be adaptive and we try different remainder

values in an attempt to get the best result.

As a measure of precision, we compare the ratio of the reach set volume to

the initial set volume. This is a reasonable measure of accuracy because the

tools use different set representations (Flow* uses hypercubes2 and Algorithm

LDFM and the Algorithm LDF2 method use ellipsoids). We calculate two

volume ratios: (a) average volume of the reach set divided by the initial

2Flow* supports other shapes but we chose hypercube to simplify computation.
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volume (sampled at the time steps used in Flow*), (b) the reach set at the

final time point T divided by the initial volume.

The results are shown in Table 5.2. Consider the performance of Algo-

rithm LDFM as compared to Flow*. From Line 1-3 in Table 5.2, we see that

for simple low dimensional nonlinear systems, the performance of Flow* is

comparable to our algorithm. Lines 4-5 and 7-9 show that for more com-

plicated nonlinear systems (with higher order polynomials or higher order

dimensionality), our Algorithm 4 performs much better in terms of running

time without sacrificing accuracy. Moreover, from Line 6 and Lines 10-11, Al-

gorithm LDFM not only finishes reachtube computation much faster, but also

provide less conservative results for even more complicated systems (with

complicated nonlinear dynamic or even higher dimensions). For linear sys-

tems, Algorithm LDFM can provide one global discrepancy function that is

valid for the entire space to do reach set over-approximation, as compared to

Flow*, where even for linear systems, the complexity for each time interval

is exponential in both the dimensionality and the order of the Taylor models.

Algorithm LDFM is more efficient because it is based on the Jacobian, which

has n dimensions, so the complexity of Algorithm LDFM using interval ma-

trix norm method increases polynomially with the dimension, if the interval

matrix norm method is used.

Consider next the performance of Algorithm LDFM as compared to Algo-

rithm LDF2. Algorithm LDF2 requires slightly less computation time in all

but one case; however, as expected, Algorithm LDF2 is more conservative in

every case and in some cases is many orders of magnitude more conservative.

The result confirms that the complexity of Algorithm LDFM is higher than

that of Algorithm LDF2 as discussed in Section 4.3.6, while Algorithm LDFM

is more accurate because it considers more general cases.

To summarize, Algorithm LDF2 computes reachtubes within relatively short

time but with possibly larger approximation error. Algorithm LDF2 produces

more accurate reachtubes at the cost of more time consuming. Results pro-

duced by Algorithm LDF2 compare favorably with the verification tool Flow*

on the examples with higher dimensions or with complex dynamics.
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Chapter 6

Conclusion

We discussed several techniques to compute over-approximation of the reach-

able states from simulation traces, which could be used as the core function

of the simulation-driven verification approaches. The techniques are based

on the new methods to compute the upper bounds on the matrix measures

of the interval matrices, where the interval matrices contain the behaviors of

the Jacobian matrix of the nonlinear system over a compact subset of the

state space. We used the upper bounds on matrix measures as the expo-

nential change rate of the discrepancy functions, which are used to bloat the

simulation traces to get reachtubes.

We provided two different version of the algorithms which use different

matrix measures. The first algorithm is based on the 2-norm matrix measure

and provides a relatively coarse reachtube but the computation is compara-

tively fast. The second class of algorithms instead computes the local optimal

coordinate transformation such that the local exponential change rate of the

discrepancy is minimized, which leads to reachtubes that are less conserva-

tive, but take more time.

We evaluated the accuracy of the local optimal algorithm by computing the

level of conservativeness it adds to the exact reach set. We also demonstrated

the effectiveness of our proposed algorithms by comparing the performance

of the prototype implementations with the Flow* tool. Results show that

our approaches compare favorably with the verification tool Flow* on the

examples with higher dimensions or with complex dynamics.

Future work will include implementing the proposed algorithms in veri-

fication tools like C2E2 for performing bounded time verification of hybrid

systems. We will also extend the methods to handle the variations of param-

eters as well as the variations of initial states.
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[42] A. Kurzhanskii and I. Vályi, Ellipsoidal Calculus for Estimation and
Control. Nelson Thornes, 1997.
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