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ABSTRACT

Computing systems in almost every application domain now support tech-

niques to trade off power and performance. Such techniques are used to

enforce power and thermal constraints, manage power and thermal budgets,

and respond to temperature and aging. Unfortunately, many of the current

techniques are limited in the dynamic range they provide and scale poorly

with technology. Techniques that can supplement or replace current tech-

niques are needed. We propose k-hot pipelining, a novel technique to sup-

port multiple power-performance points in a processor. The key idea is to

provide power and clock to only k stages of an m-stage pipeline (k < m); the

k stages to be powered on change as instructions flow through the pipeline.

Since the remaining m − k stages do not consume power, the technique re-

sults in power savings at the expense of performance. k-hot pipelining can

be software or hardware-controlled, workload-agnostic or workload-adaptive,

and can be used to provide power-performance points not supported by ex-

isting techniques. For one implementation of k-hot pipelining, we show that

up to 49.9% power reduction is possible over the baseline design. Power

reduction is up to 47% over the lowest power point supported by DVFS.
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CHAPTER 1

INTRODUCTION

Most current and emerging computing systems support techniques to trade

performance for power. There are several reasons why such techniques are

supported. In some systems, such techniques help enforce power and thermal

constraints [1–23] As a recent example, renewable energy sources are increas-

ingly being used to power data centers and provide intermittent power. In the

extreme case where only renewable sources are available, this intermittency

requires a way to match power consumed to available power [3]. In some

other systems, such techniques are used to manage power and thermal bud-

gets. For example, various methods for power capping (budgeting average

power through dynamic power constraints) exist to allow under-provisioning

the cooling system [4,5]. There are many systems where such techniques are

used to respond to temperature and aging. For example, architectural per-

formance limiting techniques can be used to limit the maximum temperature

of a chip, providing better lifetime reliability [6].

Unfortunately, current techniques to trade performance for power have

limited dynamic range. Consider dynamic voltage-frequency scaling (DVFS),

for example, which is arguably the most effective and widely used technique

to trade performance for power. However, the voltage and frequency range

Table 1.1: Voltage and frequency ranges for some processors

Voltage (V) Frequency (GHz)
Intel
Pentium M [24] (2004) 0.988-1.340 0.6-2.0
AMD
Windsor X2 [25] (2006) 1.25-1.35 2.0-3.2
FX-8120 [26] (2011) 0.875-1.312 1.4-4.0
Samsung
Exynos 5410 [27] (2014) 0.9-1.25 0.8-1.8
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supported through DVFS is limited. Table 1.1 shows the maximum and min-

imum frequency and voltage for a set of processors for sustained operation.

We see that the voltage reduction provided by DVFS is limited to 100-437

mV for different processors. This is not surprising since the reliability prob-

lems with scaling to low voltages are well documented [28]. Corresponding

power reduction is also limited, particularly considering that a large fraction

of power (30%-55% [29]) is leakage.

To make matters worse, the efficacy of current techniques is diminishing

with time. For example, as can be seen from Table 1.1, the available voltage

range has not scaled commensurately with transistor scaling over the last

several years. Again, this is not surprising considering (a) Dennard scaling

across process generations has slowed down considerably and (b) PVT and

aging variations limit the Vmin of the design. Clearly, new techniques are

needed that can trade performance for power. These techniques can either

be used in conjunction with current techniques to increase the available res-

olution and dynamic range in terms of power or they can be used to replace

current techniques as their effectiveness diminishes in the future.

We propose k-hot pipelining, a novel technique to support multiple power-

performance points in a processor. The key idea is to provide power and clock

to only k stages of an m-stage pipeline (k < m); the k stages to be powered

on change as instructions flow through the pipeline. Since the remaining

m− k stages do not consume power, the technique results in power savings

at the expense of performance. For example, only one stage of a processor

pipeline is on at a time in a one-hot pipeline. The on stage moves through

the pipeline from left to right as an instruction flows through the pipeline. As

another example, a conventional pipeline where all stages are always on can

be considered a full-hot or m-hot pipeline where m is the number of pipeline

stages. k-hot pipelining can be software or hardware-controlled, workload-

agnostic or workload-adaptive and can be used to provide power-performance

points not supported by existing techniques.

For one implementation of k-hot pipelining, we show that up to 49.9%

power reduction is possible over the baseline design. Power reduction is up

to 47% over the lowest power point supported by DVFS. The benefits are

expected to increase with scaling.

In a multi-core setting, k-hot pipelining presents new challenges and oppor-

tunities. A naive application of k-hot pipelining can result in high peak power
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dissipation as well as high power variability due to simultaneous turning-on

of the high-power states in different cores. We investigated k-hot pipelining

implementations specific to multi-core processors. Our multi-core specific

implementation of k-hot pipelining reduces processor peak power by up to

15% and power variability by up to 58% over a naive k-hot implementation.

This research makes the following contributions:

• We present k-hot pipelining, a novel approach to trade performance for

power.

• We implement k-hot pipelining for a five-stage, two-wide in-order pro-

cessor at 65 nm technology node, and show up to 49.9% power reduction

over the baseline design.

• We use k-hot pipelining in conjunction with DVFS, and show that k-

hot pipelining can reduce power by up to 47% over the lowest power

point supported by DVFS.

• We propose multi-core specific optimizations for k-hot pipelining. We

evaluate these optimizations in context of a four-core multi-core pro-

cessor, and show peak power reduction of 15% and power variability

reduction of 58% for this processor.
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CHAPTER 2

RELATED WORK

A large body of work exists on techniques for trading performance for power.

DVFS [9]-[16] scales down processor voltage to decrease power. Since this

decreases the speed of transistors, a corresponding decrease in frequency is

required. Idle cycle injection (ICI) [17,18] is used to dynamically power cap

machines by running an idling instruction for some percentage of the time.

Clock cycle modulation (CCM) [19,30] decreases the duty cycle of the clock

to save dynamic power and meet thermal requirements. Unfortunately, the

power benefits from these techniques are limited. While Vmin

Vmax
is limited for

DVFS due to PVT and aging variations, ICI and CCM target only dynamic

power. Also, with the slowdown of Dennard scaling [31], the range supported

by DVFS is expected to decrease. k-hot pipelining can be applied either in

conjunction with these techniques to increase the resolution and range of

possible power benefits or as a replacement to these techniques.

Other related work includes work on coarse-grained [20–22, 32] and fine-

grained [33–36] power gating. Power gating cuts off power to unused logic,

eliminating static power for the gated logic. However, coarse-grained power

gating has large wake-up and sleep overheads. It also does not reduce peak

power. We use fine-grained power gating at a pipeline stage granularity in

such a way that only k out of m stages in a processor pipeline are on at a

time.

4



CHAPTER 3

MOTIVATION

Consider a canonical scalar, in-order, five-stage processor pipeline (Figure 3.1a).

In steady state, five instructions flow through this pipeline in parallel and

each stage is occupied. Now consider an alternative configuration where only

one instruction flows through the pipeline at a time and only the stage in use

is powered on (Figure 3.1b). Since the powered off stages do not consume

static power, the one-hot operating mode’s power consumption is much less

than the fully on (full-hot) processor. In fact, assuming all pipeline stages

are independent, the one-hot pipeline consumes one-fifth the power of the

full-hot baseline.

The one-hot operating mode is only one of a set of operating modes possible

given power gating at the granularity of a pipeline stage. Any number of

pipeline stages can be powered on simultaneously. We refer to an operating

mode with k simultaneously powered stages as a k-hot operating mode. In

general, for a pipeline with m independent stages, k-hot pipelining will result

in α power savings according to Equation 3.1.

α = 1− k

m
, 0 ≤ k ≤ m (3.1)

k-hot pipelining results in a reduction of not only average power, but peak

power1 as well. Peak power savings can be described according to Equa-

tion 3.2 where Pi is the peak power of the ith stage of the processor and S is

any set of k stages that are on simultaneously during k-hot operation.

β =

∑m
i=1 Pi −max

S
(
∑
i∈S

Pi)∑m
i=1 Pi

(3.2)

Since there are m possible values of k, there are m possible k-hot power-

1measured over a cycle
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IF ID WBEX MEM

(a) m = 5, k = 5

IF ID WBEX MEM

IF ID WBEX MEM

IF ID WBEX MEM

on

off

(b) m = 5, k = 1

Figure 3.1: (a) Full hot mode: each stage is powered on and occupied by a
distinct instruction. (b) One-hot mode: one stage is powered on at a time,
allowing 1 instruction to be in the pipeline.

performance points. Additional points are possible by mixing values of k.

For example, a pipeline operating in one-hot mode half of the time and two-

hot mode the other half of the time will be at a power-performance point in

between that of one-hot and two-hot modes. We discuss a method for mixing

values of k in Chapter 4.

In addition to having high resolution and dynamic range in terms of

power consumption, k-hot pipelining has a bounded performance degrada-

tion. Since the maximum speedup due to pipelining is m×, the performance

of the one-hot pipeline is no more than m× lower than the m-hot pipeline.

Finally, the estimated energy of an ideal k-hot pipeline is equal to the

energy of the original m-hot pipeline. Since k-hot operation can be applied on

top of DVFS, it may be possible to extend the energy optimal DVFS power-

performance point to lower power-performance points (i.e., similar energy at

lower power targets). This means k-hot pipelines may have a larger range of

near energy-optimal operation.
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CHAPTER 4

IMPLEMENTING K-HOT PIPELINES

K-hot pipelining minimally requires one power domain per pipeline stage.

It also requires logic to generate control signals for each domain. In this

chapter, we describe how to generate control signals so that k stages are

powered on in each cycle and, barring stalls, each instruction has the same

latency as in the full-hot pipeline mode.

Consider again the one-hot canonical five-stage pipeline presented in Fig-

ure 3.1b. Each stage requires a dedicated control bit; let these control bits

be active high. Consider the arrangement of these bits into a control vector

where bits from most to least significant correspond to stages from the front

to the back of the pipeline. For example, the control vector of the pipeline

at the bottom of Figure 3.1b is {0, 0, 1, 0, 0}.
Figure 4.1 shows a waveform of the control vector during one-hot operation.

In every cycle, all but one of the bits are zero. At the end of each cycle, the

set bit moves to the next most significant position or, when it is at the least

significant position, rotates back to the most significant. One instruction is

executed every five cycles, and the only stage powered on is the one required

for the current instruction to make progress. We implement the control

vector using a 5-bit rotating shift register where each bit in the shift register

controls a stage in the pipeline.

We use the same 5-bit rotating shift register to control power domains in

a k-hot pipeline but set k bits instead of one. For a pipeline with m stages,

there are
(
m
k

)
choices of m-bit vectors with k bits set. If we continue to

assume that all stages are independent, all control vectors with k bits set

will result in the same average power according to Equation 3.1. This limits

us to m possible power-performance points for an m bit vector.

7



clk

IF

ID

EX

MEM

WB

Figure 4.1: In a one-hot pipeline, one stage is on in each cycle, and only
one instruction is in the pipeline at a time.

Consider extending the m bit vector to n > m bits. A block diagram

for the canonical pipeline with a rotating n bit shift register is shown in

Figure 4.2. The five least significant bits control the power gating of the five

stages. The hotness of the pipeline can now be any rational number of the

form m ∗ k
n
, where k is the number of bits set in the n-bit control vector.

IF ID WBEX MEM

...n-1 0

Figure 4.2: Pipeline block diagram with control register.
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(a) k = 5, v = {0, 0, 1, 1, 0}

(b) k = 2, v = {0, 1, 0, 1, 0}

Figure 4.3: (a) A two-hot example where three pipeline latches, two
pipeline stages and one forwarding unit are on. (b) Another two-hot
example where four pipeline stages and two pipeline stages are on.

Since arrangement of the set bits in the control vector does not matter for

our simple pipeline, an n-bit vector allows n power-performance points, or

n−m more power-performance points than the m-bit vector. The extension

also increases the denominator in Equation 3.1 from m to n. Therefore,

the range of power consumption is increased, and the set of possible power-

performance points is changed.

4.1 Pipeline Stage Interaction

Practical pipeline stages are not independent. Consider the block diagram in

Figure 4.3 corresponding to the canonical five-stage processor. Blocks have

been added for pipeline latches, forwarding logic, and the branch unit. All

three additions are examples of logic shared between stages. Pipeline latches

are shared by their reader and writer; forwarding logic is shared by its source

and destination, and the branch unit is shared by the fetch and resolving

stages.

Sharing complicates the division of the pipeline into power domains. Con-

sider an example power domain configuration for the five-stage pipeline shown

in Figure 4.4 where each block is in its own domain. Our control scheme gen-

erates control bits for each stage which must then be used to generate the

9



Figure 4.4: Power domains and their control signals for a five-stage
pipeline. Some modules are shared between stages and thus have multiple
control signals driving its power.

control bits of all domains in Figure 4.4, including the domains for the added

blocks. The gating control signals for the pipeline latches are calculated as

the logical OR of the connected stages. The branch and forwarding unit

control signals are calculated as the logical AND of both connected stages.

Since stages are no longer assumed to be independent, Equation 3.1 no

longer holds. Therefore, all
(
m
k

)
configurations of a k-hot control vector

may correspond to different power-performance points. Consider the pipeline

latches shown in Figure 4.3, for example. When the control vector is {0, 0, 1, 1, 0}
(Figure 4.3a), three sets of pipeline latches are on. On the other hand, when

the control vector is {0, 1, 0, 1, 0} (Figure 4.3b), four sets of pipeline latches

are powered on, representing a different power/performance point. In Chap-

ter 7, we present our results for k-hot pipelining that maximizes average

power savings for the modeled processor (Chapter 6) for our workloads. We

also show power benefits for the case where for each application, the cho-

sen control vector is one that maximizes power savings for an application.

In general, sharing decreases the power benefits from k-hot pipelining since

shared logic is much more likely to be on for a given control vector than

unshared logic.

4.2 Switching between Values of k

A processor’s power-performance point may need to change to adapt to

changing workloads, power budgets, and power constraints. To switch to

a different power-performance point in a k-hot pipeline, the degree of hot-

10



ness of the pipeline (value of k) needs to be changed. As such, we need

a technique for dynamically changing the control vector ({0, 0, 0, 0, 0, 1} →
{0, 0, 0, 0, 1, 1} to move from one-hot to two-hot, for example) without affect-

ing correctness of execution.1 A method for safely switching between control

vectors also allows us to target non-integer values of k. For example, if we

spend equal time in k = 1 and k = 2, we would achieve an average power

consumption corresponding to k = 3
2

in Equation 3.1.

One way to safely change the control vector to a vector corresponding to

a new value of k is to flush the pipeline, change the control vector, and then

resume execution. The switch will take a maximum of 2m cycles for an m-

stage pipeline: m to drain the pipeline and m cycles to refill the pipeline.

Since bits are only toggled when the control vector is not in use, execution is

unaffected, but draining and refilling the pipeline for every switch is costly.

An alternative method would be to add hardware support for saving and

restoring the instruction state such that a control vector can be changed

safely from one to another.

We can avoid both the performance and hardware overhead of the previous

methods by observing that the IF bit of a control vector can be switched

safely without any correctness concerns (since no instruction will get lost).

Given a set of bits in the current control vector that need to switch in order

to produce a control vector corresponding to the new value of k, we will

simply wait for those bits to rotate into the IF stage and then toggle those

bits to create intermediate control vectors. Since we are only toggling the IF

bit, it will take at most m cycles to modify the control vector corresponding

to the new value of k.

Consider, for example, a six-stage pipeline with a current control vector of

{0, 0, 0, 1, 1, 0}. Let us say that the desired control vector is {1, 0, 1, 1, 0, 0}.
The quickest way to switch to the new control vector is to toggle the IF bit

for three cycles. The sequence of control vectors would be {0, 0, 0, 1, 1, 0} →
{1, 0, 0, 1, 1, 0} → {1, 1, 0, 0, 1, 1} → {0, 1, 1, 0, 0, 1}.

Note that the starting and ending control vectors correspond to two-hot

and three-hot respectively, but the second intermediate control vector is four-

hot. In scenarios where k-hot pipelining is being used to guarantee peak

power, this overshoot may not be acceptable. However, as discussed above,

1Note that a careless switching between control vectors can lead to incorrect execution
since state of an in-flight instruction can get lost.
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it is easy to avoid overshooting the hotness at the expense of greater switching

latency.
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CHAPTER 5

K-HOT AND MULTI-CORE

In a multi-core setting, k-hot pipelining presents new challenges and opportu-

nities. A naive application of k-hot pipelining can result in high peak power

dissipation as well as high power variability due to simultaneous turning-on

of the high-power states in different cores. Consider a two-core system with

two independent five-stage pipelines that have identical one-hot control vec-

tors. Since the control vectors are identical, the same pipeline stage is on in

each core. Therefore, the power consumed by the system in each cycle will

be twice the power consumed by the stage that is on. If there is a large range

of power consumption across stages, the variability of power consumed could

result in voltage noise and unnecessarily high peak power.

As a specific example, consider a five-stage two-core system whose per stage

power consumption is 5 W, 4 W, 5 W, 1 W and 1 W. Figure 5.1a shows the

overall power consumed when each stage is powered on. The peak power is

10 W in IF and EX, and the range between the minimum and maximum is

8 W.

One way to reduce the variability in power consumption and decrease peak

power is to stagger the ones in the control vectors. For example, the one-hot

control vectors in the two-core example could be set to the following:

{1, 0, 0, 0, 0}

{0, 1, 0, 0, 0}

For this selection of control vectors, two copies of the same stage are never

on simultaneously. The power consumption of the system in any cycle will

be an average of both powered stages. The power that the system consumes

in this case is shown in Figure 5.1b where the x-axis now corresponds to the

stage powered in core 0. The peak power and range both decreased by 1 W.

To discuss multi-core k-hot systems further, we consider the control vector

13



sum, which is the vector sum of all current control vectors in the the system.

For example, the control vector sum of the system with identical control

vectors {1, 0, 0, 0, 0} and {1, 0, 0, 0, 0} is {2, 0, 0, 0, 0}, and the control vector

sum in the case of the previous example is {1, 1, 0, 0, 0}. Note that the

range of elements in the first vector (2 − 0 = 2) is larger than the range of

elements in the staggered vector (1 − 0 = 0). Because the control vectors

are constantly rotating and we assume that all control vectors in the system

rotate simultaneously, a control vector sum is equivalent to all other control

vector sums that are a rotation of the original. For example, {1, 1, 0, 0, 0} ≡
{0, 1, 1, 0, 0} ≡ {1, 0, 0, 0, 1}.

(a) Identical control
vectors in a multi-core
system result in a high
peak power since two
copies of the peak power
stage are on
simultaneously.

(b) Staggering the bits in
the control vectors can
decrease both peak and
range of power
consumption across
cycles.

(c) There is another
possible staggering of the
control vectors. The
staggerings best for
decreasing peak power
consumption and
minimizing range of
power consumption are
not necessarily the same.

Figure 5.1: Power consumption of stages in a two-core five-stage system for
different control vector staggerings.

In the previous example (Figure 5.1b), we staggered the bits in the control

vectors to minimize the range of the control vector sum. There is one other

possible staggering of the second control vector, {0, 0, 1, 0, 0}, that minimizes

the range in the control vector sum. Note that any other staggering of bits

where the first bit of the control vector sum is set will be equivalent to one of

the two control vector sums presented so far: {1, 1, 0, 0, 0} and {1, 0, 1, 0, 0}.
Power consumption of the second staggering is presented in Figure 5.1c.

While this staggering does not benefit peak power, it decreases the range

in power consumption by an additional 2 W over the first staggering. The

first staggering decreases the maximum power consumption, while the second

14



staggering increases the minimum by a larger amount than what peak power

was decreased by the first. Optimal peak power and optimal range in power

consumption cannot always be achieved simultaneously.

The previous two examples demonstrate that current control vectors that

minimize the range of the control vector sum can decrease the peak and

range of power consumption. Listing 5.1 presents a method for generating

control vectors that minimizes the control vector sum for a two-core processor

implementing k-hot pipelining. The method involves calling the function

initializeCore(core, k) for each core core for the desired hotness k.

initializeCore, in turn, calls the function incrementK which generates

the appropriate control vector the core.

Listing 5.1: Function to generate control vectors that have decreased peak

power and power variability

c[2] = {{0, 0, 0, 0, 0}, // control

{0, 0, 0, 0, 0}} // vectors

initializeCore(core , k) {

for i in [0, k)

incrementK(core)

}

incrementK(core) {

c_sum = c[0] + c[1] // vector sum

minVal = min(c_sum)

for i in [0, len(c_sum)) {

if ( c_sum[i] == minVal &&

c[core][i] == 0 ) {

c[core][i] = 1

break

}

}

}
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CHAPTER 6

METHODOLOGY

We evaluated k-hot pipelining using a seven-stage implementation of the

DEC Alpha ISA simulated with GEM5 [37]. Microarchitectural parameters

were chosen to be similar to the ARM Cortex-A7 [38] and are enumerated

in Table 6.1. Power consumption of the baseline as well as the k-hot designs

was evaluated using McPAT [39]. We simulated benchmarks from the Spec

CPU2000 [40] and Spec CPU2006 [41] benchmark suites, fast forwarding for 1

billion instructions and executing for 1 billion instructions. To evaluate multi-

core specific optimizations discussed in Chapter 5, we considered sixteen

mixes of four of these benchmarks (Table 6.2) to model a four-core multi-

core system with the assumption that the cores are independent.

Table 6.1: Core characteristics

Implementation 7d2w

Number Cores 1 in-order

Pipeline Depth 7

Pipeline Width 2

Register Files 32 Int, 32 FP

Fetch/Decode/Issue Width 2/2/2

BTB Size 4096 entries

RAS Size 16 entries

Branch Predictor Tournament

ALUs/FPUs/MDUs 2/1/1

Cache Line Size 64B

L1 I$ 32kB, 4-way

L1 D$ 32kB, 4-way

L2 Unified $ 1MB, 8-way

Memory Configuration 2 GB of 1066 MHz DDR3
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McPAT outputs average power consumption of components in the full-hot

processor. To calculate the power consumption of a k-hot pipeline, we use the

values reported by McPAT and the k-hot control vector designating which

stages should be powered on. Each stage requires a set of components to be

powered on, and these sets may not be disjoint. Power consumed in a given

cycle of k-hot operation is the power consumed by the union of all sets of

required components.

State saving logic (e.g., the register file and caches) must always be powered

on. In one set of evaluations, we assume that such logic is always operated

at nominal voltage (1 V), even in the cycles they are not used. We also

perform evaluations where such logic is operated at data retention voltage

(DRV) (300 mV) [42] when they do not need to be accessed. We assume that

SRAM leakage power scales cubically with voltage [43].

Table 6.2: Benchmark mixes used to evaluate multi-core systems

mix0 ammp, applu, apsi, art470 mix8 lbm, libquantum, lucas, mesa

mix1 applu, apsi, art470, facerec mix9 libquantum, lucas, mesa, mgrid

mix2 apsi, art470, facerec, gromacs mix10 lucas, mesa, mgrid, milc

mix3 art470, facerec, gromacs, lbm mix11 mesa, mgrid, milc, omnetpp

mix4 facerec, gromacs, lbm, libquantum mix12 mgrid, milc, omnetpp, soplex

mix5 gromacs, lbm, libquantum, lucas mix13 milc, omnetpp, soplex, swim

mix6 omnetpp, soplex, swim, wupwise mix14 swim, wupwise, ammp, applu

mix7 soplex, swim, wupwise, ammp mix15 wupwise, ammp, applu, apsi

To estimate power gating overheads, we fully implemented power gat-

ing in openMSP430 [44] using an industry-standard unified power format

(UPF) [45] methodology that accounts for all power gating overheads. We

performed this implementation for different numbers of power domains. Based

on this complete implementation of power gating on the openMSP430 [38],

we estimate the overhead due to isolation, retention, header, and footer cells

for our modeled processor to be 5%. We account for this overhead in all of

our reported results. We discuss the effects of power gating overhead further

in Chapter 7. We assume a zero cycle turn-on time for power domains but

discuss the sensitivity of our results to power gating latency in Section 7.4.2.

To calculate performance of a k-hot pipeline, we use the active and idle

cycle counts output by GEM5. The latency of a benchmark run on a k-

hot pipeline is k
m
∗ cactive + cidle where cactive is the number of active cycles,
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cidle is the number of idle cycles, and m is the pipeline depth. This is an

overestimate of latency since cycles spent flushing the pipeline on branch

mispredicts are not subtracted. It also does not account for the decrease in

resource contention due to fewer mispredicts.

Figure 6.1 demonstrates how modules modeled by McPAT are either as-

signed to each of the seven pipeline stages (FETCH and MEM take up two

pipeline stages, DECODE, WRITEBACK, and EXECUTE correspond to

one stage each) or shared across multiple stages. We use this information to

form power domains, so that the logic required by any pipeline stage could

be powered on independently and no state information is lost. We divide our

seven-stage processor into 12 power domains. Each of the seven modules that

store processor state (Branch Predictor (BP), Branch Target Buffer (BTB),

I-Cache, D-Cache, ITLB, DTLB, and register file) is in its own power do-

main. Although these modules are required to be powered all the time to

retain their stored values, having their own power domains allows these mod-

ules to be put in DRV separately. The logic in “Always On” belongs to the

core but is not specifically modeled by McPAT. We conservatively assume

this domain is always powered on. Lastly, since each of the remaining mod-

ules (IFU, LSU, EXEU and MMU) is used by a different set of stages, as

shown in Figure 6.1, each of them is put in its own power domain to ensure

that a module is powered on if and only if a stage that needs that module is

active.

The resulting power domains and their control vectors are shown in Fig-

ure 6.2. In the figure, the twelve rectangles correspond to the twelve power

domains discussed earlier. The power domains are color coded to show dif-

ferent power behaviors: red means the power domain is always powered on;

yellow means the power domain is held at DRV by default, and is fully pow-

ered on when enabled (we do present evaluations in Chapter 7 where these

domains only operate at the nominal voltage); white means the power do-

main is powered off by default, and is fully powered on when enabled. The

five circles (Fetch, Decode, Execute, Memory and Writeback) represent the

control vector bit that corresponds to that stage. An arrow between a control

vector bit and a power domain indicates the enabling relationship between a

control vector bit and a power domain. Having multiple arrows coming into a

power domain means having multiple enablers, and the power domain should

be enabled if any of its enablers is active. Having multiple arrows coming out
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Figure 6.1: Modules required by each pipeline stage.

of a control vector bit means that the control vector enables multiple power

domains when it is set.
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Figure 6.2: Power domains and their control signals.
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CHAPTER 7

RESULTS

This chapter presents our evaluation of k-hot pipelining with and without

DRV and shows that k-hot pipelining can allow significant power reduction

over the baseline design (Section 7.1). We also analyze how performance of

k-hot pipelining is affected by the choice of workload (Section 7.2). In Section

7.3, we show that our staggering-based multi-core specific optimizations allow

significant reduction in the peak power and power variability of a four-core

multi-core processor. In Section 7.4 we present sensitivity studies.

7.1 Power

Figure 7.1 shows the total power benefit of k-hot pipelining relative to a

full-hot baseline for different benchmarks running on an in-order seven-stage

two-wide superscalar design (Table 6.1). For k greater than one, there are

multiple possible control vectors for the same k. Due to module sharing, these

different control vectors result in variable power consumption (Section 4.1).

The primary bars in Figure 7.1 show power reduction from k-hot pipelining

when we use a single vector for each value of k that minimizes the average

power across all benchmarks. The error bars show the power reduction cor-

responding to the best and the worst control vectors for each benchmark.

For these results we assume that all the state preserving logic operates at

1 V even when it is not being accessed. On average, we see roughly a 32%

decrease in power consumption for one-hot, a 13% decrease for two-hot, a

7% decrease for three-hot, and a 1% decrease for four-hot.

There are several reasons why we do not get the ideal savings. First, regis-

ter files, both instruction and data caches, and the TLBs are not power gated

at any time since they hold processor state. A reasonable but more aggressive

implementation of k-hot would be to decrease the voltage of these modules
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Figure 7.1: Total power benefits for k-hot across different benchmarks.

Figure 7.2: Total power benefits for k-hot with DRV across different
benchmarks.

to the DRV when they are not being actively used. DRV reduces the leakage

power consumed during idle cycles of these modules. Figure 7.2 shows the

power consumption of a k-hot pipeline assuming a 300 mV DRV implemen-

tation. On average, we see roughly a 45% decrease in power consumption for

one-hot, an additional 13% benefit compare to the implementation without

DRV. The savings from DRV decrease as we move to larger value of k be-

cause the duty cycle of the applicable structures increases with k, and DRV

can only be applied when the structures are idle.

Second, many modules are shared between multiple pipeline stages. For

example, the execution unit, the most power hungry combinational compo-

nent of the design, is used both in execution stage and the Writeback stage.

During one-hot operation, the execution unit is powered on for two cycles

per instruction compared to one cycle during full-hot operation. Therefore,

the execution unit consumes double the energy per instruction.

Finally, our power calculations are conservative since we do not shut down

modules that can be obsolete during k-hot (e.g., the branch predictor and

forwarding network). Our calculations also do not account for resources

consumed by mispredicted instructions. Previous work has estimated that

resource consumption due to mispredicted instructions accounts for 16% of
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Figure 7.3: Performance degradation for k-hot across different benchmarks.

the total processor power of a six stage pipeline [1].

Note that all reported power values in this and other chapters assume a

5% power overhead for isolation, retention, header, and footer cells required

for power gating (Chapter 6). Any additional power gating overhead will

result in a straightforward subtraction of the additional percentage from the

percentage benefits (e.g., an increase to 10% overhead would decrease the

average savings from one-hot pipelining from 32% to 27%).

7.2 Performance Degradation

Figure 7.3 shows the performance degradation of k-hot pipelining relative

to full-hot. The performance degradation we observe varies widely across

different benchmarks. Without loss of generality, consider one-hot operation.

The smallest performance degradation, 1.65×, is seen during execution of

art470, a memory intensive benchmark (Figure 7.3). The worst performance

degradation, 6.73×, is seen during execution of mesa, a compute intensive

benchmark (Figure 7.3).

Most benchmarks do not see the 1
7
× worst-case performance degradation

from one-hot pipelining. One reason is that the number of idle cycles is con-

stant for all values of k. In other words, compared to full-hot pipelines, k-hot

pipelines executing the same workload spend a smaller percentage of execu-

tion time stalling. As a result, performance of the processor is only slightly

affected by k-hot when running memory intensive workloads like art470 and

swim, since most cycles during full-hot operation were idle, as shown in Fig-

ure 7.4. The other reason is that for low values of k, specifically one-hot and

two-hot, an instruction is fetched after its previous instruction finishes the

execution stage, where branches are resolved. Therefore, branch mispredic-
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Figure 7.4: The fraction of time the processor is active and misprediction
rate vary across benchmarks.

tion does not incur a penalty for one-hot and two-hot. The misprediction

rates of the benchmarks we evaluated are shown in Figure 7.4.

7.3 K-hot in Multi-Core Processors

Chapter 5 introduced the possibility of benefits from staggering set bits across

control vectors in multi-core systems. Staggering the set bits in control vec-

tors minimizes the number of copies of any stage being on in the same cycle,

which decreases the range and peak of power consumption in a system. Stag-

gering can be accomplished by using the initializeCore function presented

in Listing 5.1.

24



Figure 7.5: Peak power savings with control vector staggering and control
vector sum range minimization.

Figure 7.6: Power consumption range savings with control vector staggering
and control vector sum range minimization.

Given four one-hot cores with seven stages each, the range in the control

vector sum is minimized if there are four ones and three zeroes in the vec-

tor sum. Minimal range does not require a particular arrangement of those

numbers, so there are
(
7
4

)
unique staggerings that satisfy the minimal range

requirement. All of these arrangements will have different power characteris-

tics and so will benefit the peak and range of power consumption differently.

Note that the best arrangements for peak power and power variability are

not necessarily the same. Similar choices exist for other values of k.

To evaluate the goodness of a set of control vector staggerings on our

multi-core system, we used the mixed workload discussed in Table 6.2. Every

k-hot control vector has seven possible configurations since it rotates one bit

each cycle. We assumed that the rotation of the control vectors in a multi-

core system always occurs at the same time on every core, so the system

also has seven possible control vector sum configurations. We measured the

average power of a core during each of the seven possible control vector

configurations. Then we found the average power consumed for the each of

the seven possible control vector sum configurations by summing the powers

of the cores during that configuration. We then report the maximum average

power of any configuration as the peak power and the difference between the
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maximum and minimum of any configurations as the power range.

To evaluate the savings possible using our algorithm in Listing 5.1, we

found the peak and range of power consumption relative to no staggering

for every set of control vectors that satisfy the minimal control vector sum

range requirement. The peak and range savings are shown in the hatched

bars of Figure 7.5 and Figure 7.6 respectively. There are many staggerings

that minimize control vector sum range, so there is a range of possible savings

represented by the hatched bar. The top of the hatched bar represents the

lower bound of possible savings from Listing 5.1. The algorithm delivers 15%

peak power savings and a 58% power range decrease on average in the best

case of two-hot.

Minimal range in the control vector sum is neither a necessary nor sufficient

condition for minimizing peak or range of power consumption. Therefore, we

also show the maximum possible savings (though a brute force search of all

staggerings) in the solid bars of Figure 7.5 and Figure 7.6. The maximum

peak power saving is 24% and the maximum decrease in power range is 84%

on average in the best case of two-hot.

7.4 Sensitivity Studies

7.4.1 Technology Node

The previous evaluations used the 65 nm technology node. In this chapter, we

discuss sensitivity of our results to scaling by estimating benefits for a 45 nm

technology node. Figure 7.7 shows the power benefits with DRV. The average

power savings of k-hot pipelining are and 53%. On average, the benefits of

k-hot pipelining using DRV are 3% higher for the 45 nm core compared to

the 65 nm core. K-hot pipelining allows state-saving logic to spend more

time operating at DRV. Since DRV decreases leakage, and leakage increases

with scaling. Because leakage increases with scaling, we expect the benefits

of k-hot pipelining to increase further with technology scaling.
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Figure 7.7: Sensitivity study on technology node - 45 nm, with DRV

Figure 7.8: Sensitivity of power savings from k-hot pipelining to the latency
of power mode transitions
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7.4.2 Power Gating Latency

Results in this chapter are reported assuming zero power gating latency.

Figure 7.8 shows the power consumption of k-hot pipelines relative to the full-

hot baseline for different values of k and different power gating latencies. The

latency is the time to either turn-on or turn-off, and the power consumption

during both periods by a power domain is assumed to be half of the average

power of the power domain when fully powered on. Since modules are shared

between pipeline stages, there may be only one or two cycles between the

time a module can start turning off and the time it needs to be back on. Any

module that would not have time to turn both off and back on again was

kept on.

The results show that k-hot pipelining cannot tolerate a large power gating

latency since modules are turned on and off frequently. The frequency of

turning on and off is even higher than just once every m cycles for an m-

stage pipeline since modules are shared among pipeline stages. Since, for

high values of k, the majority of the pipeline modules are almost always

on anyway, the impact of increasing power gating latency decreases with

increasing k.

To put the results in Figure 7.8 into context, conservatively assume a

turn-on latency of 1.2 million gates to be 200 ns [46]. If we assume that the

turn-off latency scales linearly with gate count, the latency of turning on and

off a pipeline stages will scale linearly with the size of the stage. The largest

stage of TI’s MSP430 microcontroller [44] has 4.6k gates. Therefore, it will

take 0.8 ns to power on. At 25 MHz (the top CPU frequency for MSP430),

this corresponds to 0.02 cycles of power gating latency. The latency (in

cycles) will be even lower in active low power states where frequencies are

scaled. As another example, the largest stage of a 2-issue, 10-stage out-of-

order FabScalar [47] pipeline is 36k gates. Therefore, it will take 6 ns to wake

up the stage. At 667 MHz, its nominal frequency [47], this corresponds to

about 4 cycles. For this processor, k-hot pipelining is useful only in active

low power modes.

In general, k-hot pipelining is most effective for processors with relatively

simple pipelines (i.e., relatively small number of gates per pipeline stage) or

processors running at low frequencies. Since these characteristics are com-

mon across embedded processors targeting IoT, wearables, implantables, and

28



sensors, on one hand, and processors targeting high throughput computing

on the other, we expect k-hot pipelining to be useful for a broad class of

emerging applications.

7.4.3 Clock Gating-based Implementation of k-hot Pipelining

Our above results assume fine-grained power gating at the granularity of a

single pipeline stage. In this chapter, we evaluate the effectiveness of a clock

gating-based implementation of k-hot pipelining where all but k pipeline

stages are clock gated. Since DRV is widely used in industry to reduce leak-

age of SRAM structures [48], we still assume the availability of DRV for

the state-saving structures. Figure 7.9 shows the decrease in average power

from k-hot pipelining implemented with clock gating and DRV relative to

the full-hot baseline. We see that the benefits of clock gating paired with

DRV are greater than the benefits of power gating alone. This result sug-

gests that k-hot pipelining may be a beneficial low-cost choice for designers

who would like to expand the set of power-performance points available in

systems that already implement clock gating and DRV. The result also sug-

gests that a clock gating-based implementation of k-hot pipelining may be

a promising alternative to a power gating-based implementation for proces-

sors where power gating latency may be a concern (e.g., large processors or

processors operating at high frequency). It may be particularly effective for

processors operating at high clock frequencies since the dynamic power may

be a bigger fraction of overall power.

Figure 7.9: Benefits of k-hot pipelining with clock gating and DRV are
similar to the benefits of power gating.
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Figure 7.10: k-hot pipelining can continue to provide lower
power-performance operating points after DVFS stops scaling due to
reliability reasons.

7.4.4 Comparison against DVFS

Consider the DVFS relationship shown in Figure 7.10 where the minimum

safe voltage for the processor is 500 mV [49]. We apply k-hot pipelining to

the minimum voltage DVFS operating point. We are able to run at even

lower power-performance points that are not supported by DVFS. Since the

leakage power consumed by DVFS at the minimum voltage point is a lower

bound on power consumed by DVFS for any frequency, k-hot can achieve up

to 47% power savings over DVFS. Also, if frequency continues to scale after

voltage stops scaling, energy consumption by DVFS increases. Figure 7.10

shows that by running k-hot at the first voltage minimum point (500 mV),

k-hot saves up to 47% of energy compared to DVFS running at the same

effective frequency. The results show that k-hot pipelining can be used both

in conjunction with DVFS to provide higher dynamic range and resolution

in terms of power and performance as well as a replacement for DVFS when

voltage stops scaling.
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CHAPTER 8

TOWARD IMPLEMENTING K-HOT
PIPELINING FOR COMPLEX

PROCESSORS

Previous chapters discussed k-hot for simple processors. In superscalar pro-

cessors, multiple instructions can be in a pipeline stage simultaneously. Since

instructions can spend a variable number of cycles in a pipeline stage due to

hazards or variable stage latency, the control vector based implementation

presented in Chapter 4 is not directly applicable. In order to support super-

scalar and other more complex processors, we would like a control scheme

that is not as closely tied to the microarchitecture as control vector-based

implementations.

Control schemes using instruction fetch throttling [50] make up one such

class. By throttling the rate at which instructions are fetched in a processor

with multi-cycle instruction latencies, we limit the utilization of the proces-

sor. Note that even the control vector scheme throttles instruction fetch, but

also restricts the utilization of other components of the processor. By only

limiting instruction fetch, we do not introduce additional requirements on

the microarchitecture.

8.1 Fetch Throttling and Power Gating for k-hot

Pipelining on Complex Processors

This section discusses two fetch throttling algorithms that control when to

insert instructions into the accompanying power gating algorithm. We will

denote w as the width of the superscalar processor, k as the desired hotness

and n as the current number of instructions residing in non-fetch stages. We

define a stage to be hot if it has made progress on at least one instruction

during an arbitrary cycle.
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8.1.1 Up-To-K-Hot

We call the first implementation Up-To-K hot(up2k). In a w-wide n-stage

pipeline, one way to make sure there are always no more than k stages hot

at any time is to limit the number of instructions in the pipeline to be up

to k. This is achieved by constantly monitoring the in-flight instructions in

non-fetch stages and using this number to make decisions on the number

of instructions to be fetched of any cycle. The pseudo code of the up2k

algorithm we have implemented is shown in Listing 8.1.

Listing 8.1: Algorithm of up2k

#Execution Algorithm - Up to K hot

# n - number of stages , w - width of stage

# m - current instructions in flight

if stage is not fetch:

if stage is on:

if stage has instruction ready to execute:

execute instructions

else:

do nothing

if stage is fetch:

if stage is on:

if m < k:

fetch min(w, k-m) instructions

else

do nothing

This approach is a conservative one as the actual number of hot stages at

any given time would be no more than k. Given a specific processor, the

peak power of the processor running in k-hot mode should never exceed the

sum of the peak power of its k most power consuming stages. As a result,

this approach helps when there is a need to have maximum power bound on

the system.

8.1.2 Average-K-Hot

We call the second implementation Average-K hot(avgk). As opposed to the

up2k approach, which sets an upper bound of the number of stages being

hot, the avgk algorithm put a soft upper bound not only on the number of

in-flight instructions but also on the number of stages that are currently hot.
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In avgk, instructions are only fetched when both of the following conditions

are met:

• The current number of instructions in non-fetch stages is less than w∗k,

where w is the width of the superscalar.

• The current number of hot stages is less than k.

Note that the number of hot stages at any time could exceed k (due to

same stage dependence) or be less than k (due to squashing or instruction

committing), but the average number of hot stages across a long execution

should be approximately k. We have observed that for the vast majority of

the time, the hotness of the pipeline is indeed k. The pseudocode of the

algorithm of avgk is shown in Listing 8.2.

Listing 8.2: Algorithm of avgk

#Execution Algorithm - Average K hot

# n - number of stages , w - width of stage

# m - current instructions in flight

# u - number of stage currently hot(executing instructions)

if stage is not fetch:

if stage is on:

if stage has instruction ready to execute:

execute instructions

else:

do nothing

if stage is fetch:

if stage is on:

if m < wk and u < k:

fetch min(w, wk - m) instructions

else

do nothing

This approach is more aggressive than the up2k approach and it achieves

much better performance with moderate extra power consumption. However,

avgk does not guarantee a power bound.

8.1.3 Power Gating Algorithm

Since we no longer have a fixed control vector to control the power gating

of each stage, a more complex power gating algorithm is required. In both
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up2k and avgk, instructions that are already fetched into the pipeline are

allowed to freely progress without any impediment. To ensure correctness, it

is required that any pipeline stage about to execute an instruction should be

powered on already and is left on throughout the duration of the instruction.

Thus we have come up with a conservative power gating algorithm that

satisfies the safety requirement. It can be summarized as follows, given t is

the powering on or off latency.

• If there is a chance that an instruction will arrive at the stage at an

arbitrary cycle c, its powering on process needs to start at cycle c− t.

• When a stage finishes an instruction, do not power off if it can possibly

be needed in less than 2 ∗ t cycles.

• Power on fetch if number of in-flight instruction is less than desired due

to pipeline squashes.

Since the number of cycles an instruction will stay at each stage is determined

during run-time, the algorithm is conservative. We pay the price of extra

power and energy when instructions take longer than one cycle at any stage,

but we guarantee execution functionality and correctness. Listing 8.3 shows

the pseudocode of our power gating algorithm.

34



Listing 8.3: Power Gating Algorithm

# Turn On/Off algorithm

# t - turn on/off latency

# m - current instructions in flight

# u - number of stage currently hot(executing instructions)

# +/- wraps around

if stage i is off:

# To make sure a stage is on when needed

turn on if any stage between stage i and i - t is hot

if stage i is fetch:

# when squash happens

# also try to turn on if the fetch condition met

# from the execution algorithm

turn on if : (m < k) for up2k or ((m < wk) and u < k)

for avgk

if stage i is on:

#only turn off if there is enough time

turn off if none of the stages between stage i and i - 2t

is hot

8.2 Results

This section demonstrates the power saving and performance degradation

of both up2k and avgk for a five-stage two-wide in-order processor. Figure

8.1a and Figure 8.1c show the power saving for up2k and avgk across different

benchmarks, respectively. Figure 8.1b and Figure 8.1d show the performance

degradation for up2k and avgk across different benchmarks, respectively.
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(a) Power savings for up2k across different benchmarks

(b) Performance Degradation for up2k across different benchmarks

(c) Power savings for avgk across different benchmarks

(d) Performance Degradation for avgk across different benchmarks

Figure 8.1: Implementation results.

Table 8.1 shows the power and performance data averaged across all bench-

marks. As expected, compared to up2k, avgk has better performance but

worse power savings, since it usually has more instructions in-flight and more

stages hot for the same number of k.
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Table 8.1: Comparison between avgk and up2k

Average Power Savings (%) Average Performance Degradation

1-hot 2-hot 3-hot 4-hot 1-hot 2-hot 3-hot 4-hot

up2k 49.9 35.3 23.2 16.9 4.527 2.445 1.777 1.460

avgk 39.7 17.4 6.3 0.7 2.659 1.511 1.180 1.049

As mentioned in Section 7.4.4, due to reliability reasons, DVFS can only

reduce voltage to a certain point. This constraint limits the power saving

achievable by DVFS, and using k-hot pipelining on top of this operation point

allows us to further trade performance for power. Figure 8.2a and Figure 8.2b

show that by running k-hot at the first voltage minimum point (500 mV),

up2k and avgk save up to 40% and 31% of total power, respectively. These

results, combined with what was shown earlier in Section 7.4.4, show that

k-hot pipelining could be attractive to applications that demand to trade

performance for power beyond what is permitted by DVFS alone.
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(a) Power savings for up2k at 500mV point

(b) Power savings for avgk at 500mV point

Figure 8.2: Power results of implementing up2k and avgk alongside DVFS.
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CHAPTER 9

CONCLUSION

We presented k-hot pipelining, a novel technique for performing power-

performance trade-offs in processors. The technique involves providing power

and clock to only k stages of an m-stage pipeline and changing the k stages to

be powered on as instructions flow through the pipeline. Since the remaining

m− k stages do not consume power, the technique results in power savings

at the expense of performance. Our implementation of one-hot pipelining for

a five-stage, two-wide in-order processor showed up to a 49.9% power reduc-

tion over the baseline design. Power reduction is up to 47% over the lowest

power point supported by DVFS. Power benefits depend on the value of k

and increase with technology scaling. As many of the current techniques to

trade power and performance diminish in their effectiveness, k-hot pipelining

may be used to supplement or replace these techniques.
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