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Abstract 
 

This thesis explores two applications of computer vision in psychology-related studies: 

enhanced patient portal messages using 3D avatar and gaze estimation using a single 

RGB camera. The first application aims to help patients, especially those with poor 

health and low medical literacy, to understand messages delivered by patient portal 

systems by enhancing the messages with a 3D avatar. The avatar is built from real 

human face images and can deliver both semantic and emotive information, the latter 

of which is expected to help the patients to get a better, gist-level understanding of the 

portal messages. The second application aims to estimate eye gaze direction with an 

RGB camera. Preliminary results show the potential of the proposed method, although 

rigorous quantitative evaluation still needs to be done. While the proposed method 

cannot achieve the resolution and accuracy of commercial eye trackers, it is able to 

greatly reduce the cost since only one RGB camera is required.  
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Chapter 1: Introduction 

Computer vision can be dated back to the Summer Vision Project in the 1960s. At 

that time, the task of computer vision was oversimplified to building a visual system 

that could segment different parts of objects in an image. This task is very simple for 

human beings since we can always give accurate and clear boundaries of different 

objects. However, it turns out to be much harder for computers. Most people at that 

time thought computer vision was about processing the lights and colors in an image 

and using that information to perform different tasks. However, the truth is much more 

complicated, involving the basic definition of the concept “object”. Suppose we want 

to segment a table from the background in an image. This seemingly simple problem is 

complicated by the fact that tables might differ from each other in color, size and style. 

Even the same table may have different shapes in two images. In order to successfully 

find the boundary, a computer needs a set of rules that can take into account all those 

variations. In this example, a table is simple yet very hard to define due to the large 

variation between different kinds of tables and the way they appear in an image. All 

those factors need to be taken into account, which complicates the problem.  

One way to solve this problem is to define a set of rules that take as many 

discriminative factors as possible into account. This kind of approach is called rule 

based, or heuristic, since the rules are inspired by existing concepts. Sometimes this 

approach can be very effective, especially when the concept we are considering is very 

simple. Unfortunately, most concepts have too many variations and it is very hard to 

come up with a set of rules to cover all those varieties.  

Another approach is to let the computer learn the concept by itself: this is known 

as machine learning. For example, we want a computer to detect a car. First we need to 

train the computer by providing many labeled images of different cars. Sometimes the 

representation of a car is extracted from an image, sometimes the whole image (every 

pixel) is used as a representation. Once training is done, the computer has established 

some rules and features to detect a car and therefore is able to perform the task. 

Despite the complicated nature of computer vision, many fields have successfully 
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applied this technology in practical use. In industry, computer vision technologies are 

widely used for automation and inspection of products. For example, the auto 

manufacturer Rover used CV to inspect the outlines of its vehicles and match them with 

the CAD model, which can achieve 0.1 mm accuracy. Hewlett-Packard integrates CV 

into its digital printers for defect detection, color calibration and alignment. In medicine, 

computer vision technologies are used to detect and localize tumors in medical images. 

Computer vision can also be found in everyday life. Some vehicles are equipped with 

active safety devices, which utilize CV to help drivers stay in the middle of the lane or 

activate the emergency brake to avoid collisions. Many smart cameras have face 

detection, and some can even label each face with the corresponding name. As we can 

see, computer vision is now widely used and it helps to make our lives much easier. 

In this thesis, two applications of computer vision in psychology-related studies 

are discussed. The first one is emotive facial expression synthesis during speech with 

application in personal health record systems (PHRs), which are defined as follows: 

 “An electronic application through which individuals can access, manage and share 

their health information, and that of others for whom they are authorized, in a private, 

secure, and confidential environment.” [1] 

PHRs have been listed as a top priority by the U.S. Secretary of Health and Human 

Services, the National Coordinator for Health Information Technology and the 

Administrator of the Centers for Medicare and Medicaid Services. Traditional PHRs 

feature patient portals where patients can manage their medical records and access 

medical information. Over 70 percent of consumers wish to use portal systems to 

remotely access medical test results, according to an article from the Institute of 

Medicine (IOM) (as cited by Peter Kuhn [2]). In addition, physicians can provide 

feedback and recommendations to their patients through portals in a timely fashion. 

Tang et al. [1] have shown that many consumers have high satisfaction levels with 

earlier versions of PHRs. One important reason is that this medium enables patients to 

do self-care based on the information provided by the system, and it serves as a bridge 

between patients and their healthcare providers. 

Despite the fact that many patients have a positive attitude toward such systems, 
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most PHRs are underutilized. The most important reason is that many patients lack the 

technical knowledge to understand the messages and results delivered by the portal 

system. According to the IOM [3], nearly half of American adults have difficulty 

understanding and using written health information. This greatly reduces the usability 

of PHRs and puts a heavy load on hospitals since patients tend to return to their hospital 

to seek advice. 

The proposed 3D avatar portal is one promising solution to this dilemma as such 

an approach is expected to increase the usability of the portal system. The 3D avatar is 

basically a facial expression and speech synthesizer, which takes plain text and emotion 

markers as input. The output of the system is a “talking head” with facial expressions 

and lip movements matching the text and specified emotions. Along with an emotive 

speech synthesizer, this system simulates a real human talking, which is able to deliver 

both semantic and emotive information. This system can be applied to PHRs to enhance 

portal messages, which simulates physician-patient face-to-face communication and 

brings the gist-level information to the patients to help them get a better understanding 

of their medical results. 

The second application is eye gaze direction estimation. The estimation of eye gaze 

direction has always been an interesting problem in computer vision and it plays an 

important role in psychological studies. Although there are many commercially 

available eye trackers, most of them are very expensive due to the exclusive hardware 

being used to guarantee performance. Despite the high accuracy and resolution of those 

commercial eye trackers, many researches in psychology cannot fully utilize their 

advantage. For example, some psychology experiments only need to know which of the 

nine pictures shown on a screen a test subject is looking at. In such cases, the 

commercial eye tracker will be overkill because only a rough gaze direction estimation 

will be sufficient to decide which picture the test subject is looking at. The goal of this 

application is to use current existing hardware commonly found in a typical office, 

namely an RGB webcam and a computer, to achieve rough gaze estimation. This will 

enable psychology researchers to use simple setups to conduct experiments and 

therefore greatly reduces costs. 
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The remainder of this thesis is organized as follows. In Chapter 2, related works in 

applications of avatars in medical fields and gaze estimation are reviewed. In Chapters 

3 and 4, the technical details of the 3D avatar system and the gaze estimation system 

are discussed, respectively. In Chapter 5, experimental results of those two applications 

are discussed. Chapter 6 summarizes the work done in this thesis and provides 

suggestions for future work. Chapter 7 gives the conclusion. 
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Chapter 2: Related Works 

Many researches have been done in both applications discussed in this article. For 

the application of avatars in medical systems, Huckvale et al. [4] used an emotive avatar 

to help patients with schizophrenia during therapy. The therapy was basically a 

conversation between the patient and an avatar, where the voice of the avatar was that 

of a therapist in another room. At the beginning of the conversation, the attitude of the 

avatar was set to be abusive. As the therapy went on, the patients were encouraged to 

stand against their avatars. At the same time, the avatar’s attitude became less abusive 

and more helpful and supportive. The result shows that the patients felt better at the end 

of the communication.  

Lisetti et al. [5] used a 3D emotive avatar to help patients become aware of their 

unhealthy lifestyle and provide suggestions along with guidance. The authors used an 

emotive 3D avatar and speech synthesizer to deliver messages to the patients. During 

the interaction with the avatar, the system monitored the emotion of the patient, and 

appropriate adjustments of the avatar’s emotion were made by analyzing images of the 

patient’s face with a face recognition engine. The evaluation result shows that 75% of 

the human testers felt interacting with the avatar was as comfortable as or more 

comfortable than interacting with a human. 

Another application was studied by Bickmore et al. [6]. In their work, a 2D avatar 

was built, the main purpose of which was to teach patients about their post-discharge 

and to provide self-care instructions. The motivation was that around 20% of patients 

discharged from hospitals in U.S. end up returning to their hospitals, mainly due to 

insufficient medical literacy to understand self-care instructions. Despite the simple 

appearance of the 2D avatar, the result was promising. The most important reason 

pointed out by the patients was that unlike human beings, the 2D avatar could repeat 

the medical information as many times as the patients required. Furthermore, the 

patients were able to get more detailed information from the avatar if necessary. Those 

two advantages made the 2D avatar system a very effective tool for both instructing 

patients with low medical literacy and freeing the physicians from the burden of that 
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instruction.  

For the gaze direction estimation, various methods have been proposed and studied. 

Generally speaking there are two kinds of approaches: feature-based and appearance-

based. 

For the feature-based approach, Li et al. [7] estimated gaze directions by the shape 

of the pupil limbus. The algorithm started by finding the pupil limbus which 

corresponds to the points with the strongest intensity gradient along radial directions 

going outwards from the assumed pupil center, where the assumed pupil center is 

chosen as the pupil center from the previous frame. After finding several candidate 

points on the pupil limbus, the RANSAC algorithm followed by ellipse fitting was 

employed to find the ellipse parameters, which were finally used to estimate the gaze 

direction. This method is very effective when using an IR head-mounted camera, which 

is able to provide high resolution images with great contrast. 

Another approach was studied by Wang et al. [8]. In their approach, an eye model 

parameterized by iris radius was built first. Meanwhile, the upper and lower eyelids 

were modeled and fitted onto two parabolas. Then the iris boundary between those two 

eyelids was extracted by applying a set of morphological filters followed by edge 

detection. In the end, an ellipse was fitted onto the iris boundary and the final gaze 

direction was computed from the ellipse parameters.  

In most commercial eye trackers, however, a method known as cornea reflection 

is most widely used. The idea is to illuminate the eye region with an IR illuminator. 

Then due to the reflective property of the cornea, a bright dot can be observed and easily 

localized in the eye region. After that, this white dot is selected as a reference point and 

the relative position between the iris center and this point can be used to estimate the 

gaze direction. This method requires more dedicated hardware to work, which makes it 

more expensive. But the estimation accuracy and resolution are very high, usually less 

than 0.5 degrees. 

Unlike the feature-based approach, the appearance-based approach does not 

explicitly extract detailed features from the eye image. Instead, the whole eye image is 

used “as a whole part” to estimate the gaze direction. For example, Cadavid et al. [9] 
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used an appearance-based method to classify baby gaze direction as looking at the 

camera or looking away from the camera. In their approach, the face region was tracked 

using the Active Appearance Model (AAM). Then this face region was normalized and 

the eye region was extracted from it. Due to the large pixel number of the eye region, 

dimensionality reduction using Laplacian eigenmap was performed on the eye region 

to generate a reduced feature vector. Finally, this feature vector was used to train a SVM 

classifier. Their approach was tested on eight subjects and the reported average 

accuracy was 91%. 
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Chapter 3: Audio-Visual Emotive 3D Avatar 

3.1 Platform Description 

A 3D avatar is a graphical representation of a person. The avatar can change facial 

expressions and make lip movements during speech, which makes it look like a real 

person talking. The content of speech, along with the emotion expressed by the avatar, 

will be specified by the user. For example, if the physician wants the avatar to deliver 

a good test result, he needs to provide the test result as plain text and specify the emotion 

to be expressed by the avatar, which is happy in this case. After that, the avatar will 

read out the test result with a happy facial expression in a happy voice. 

The construction of the avatar is divided into two steps: Generating 3D avatar from 

2D image and animating the 3D avatar. 

The first step was completed by Tang et al. [10]. Given a 2D frontal image of a 

person’s face, the algorithm first localizes several keypoints on the face image. Then a 

generic 3D model is deformed to match the keypoints of the 2D image, where the points 

in between those keypoints are interpolated. Finally, texture mapping is performed on 

the 3D model, which gives us a realistic 3D avatar. This process is demonstrated in 

Figure 1. 

 

 

Figure 1: Avatar construction from 2D face image. 
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After the 3D avatar has been constructed, the next step is to animate it. A program 

which takes the avatar from the previous section and animates it using plain text with 

emotion markers has also been implemented previously by Tang et al. [10]. Specifically, 

the avatar will speak the text in different emotions specified by the emotion markers. 

The lip movement and expression of the avatar will also match the given text and 

emotion markers so that the avatar will actually look like a real person talking. 

For the text-driven portion, a text-to-speech synthesizer is utilized to convert the 

plain text into phonemes that will be used to drive the avatar’s lip movement. These 

phonemes will also be used to drive a speech synthesizer to produce the audio. The 

emotional markers will be used to change the avatar’s expression during the speech. 

Finally, the synthesized audio and video are synchronized by aligning keyframes 

and interpolation. Specifically, each keyframe corresponds to one phoneme (or viseme 

in video synthesis) and the gap between two adjacent keyframes is determined by the 

duration of that phoneme. For video synthesis, time interpolation on facial landmarks 

between two keyframes is used to generate the animation. For audio synthesis, a unit 

selection approach is used, which simply concatenates different phoneme segments to 

generate the audio sequence. Figure 2 demonstrates the synchronization mechanism. 

 

 
Figure 2: The synchronization of video and audio sequence in the avatar system. 
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3.2 Visual Performance Improvement 

One big challenge for a 3D avatar is the co-articulation problem: how to combine 

the lip movements, which are controlled by both speech and the expression, so that the 

final result looks natural. The current avatar program performs well at neutral 

expression. However, when other expressions are combined with speech, the overall 

appearance looks unnatural. The reason is that the current method combines the lip 

movement and expression linearly, whereas the rules for realistic lip movement under 

expression are often much more complicated.  

In the original program developed by Tang et al. [10], there are six templates 

corresponding to six basic emotions (angry, afraid, disgusted, happy, sad, and surprised). 

The appearance of the avatar is changed according to those templates. Meanwhile, 

another set of templates corresponding to different visemes is used to change the 

avatar’s lip shape. The best method for combining these two templates in order to 

achieve natural-looking facial movements and speech characteristics remains unclear, 

however. The current program, which simply combines the templates linearly, does not 

perform well, especially for emotions which have a greater influence on the lip shape. 

Therefore a new template-based method is proposed here to generate lip movement 

in combination with different expressions. Specifically, instead of defining templates 

for lip movement and for expression separately, we propose to store a template for each 

viseme under each expression. By doing this, we no longer need to worry about how to 

combine the lip movements resulting from expression and speech. Instead, we simply 

use the corresponding template based on the current viseme and expression. Figure 3 

illustrates the difference between these two approaches. 
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Original method 

 
 

 

 

Proposed method 

 

 

Figure 3: The proposed method bypasses the difficulty of combining lip movement due 

to speech and expression, which is typically represented by a complex model. Instead, 

we select the template which describes the lip shape for each viseme under each 

expression to construct keyframes and then interpolate in the time domain to generate 

the final talking avatar video.  
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Chapter 4: Eye Gaze Direction Estimation 

4.1 Eye Model and Template 

The proposed method is based on a simple eye model, which assumes a sphere 

shaped eyeball and circle shaped iris. This eye model has three parameters: iris radius, 

eyeball radius and the distance between iris plane and eyeball center. Figure 4 

demonstrates the side view of this model. 

   
Figure 4: Side view of a human eye. Point O is the eyeball center and P is the iris center. 

The light blue area represents the iris plane. The green line represents the radius of the 

iris. The red line represents the radius of the eyeball, which is set to 2.1 times the radius 

of the iris. The length of the blue line equals the distance between eyeball center O and 

the iris plane.  

 

The iris radius is measured from the image taken by the webcam. Specifically, an 

eye detector is applied first to get an eye image at the first frame. Then a circle detector 

is used to find the circles in the eye image. This requires the user to look into the camera 

at the first frame. Multiple circles may be detected and the one with the largest radius 

is assumed as the iris boundary. This assumption works since other false alarm circles 

are mostly small, which are from the image noise. So picking the largest one will give 

the iris boundary. After the iris radius has been decided, the eye model can be 

constructed. Specifically, the eyeball radius is set to be the iris radius multiplied by an 

empirically determined constant, which is 2.1, since most human eyes share similar size 

and structure. The iris-plane to eyeball center distance is computed from the geometric 

relation. 

O 
P 
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Once we get the eyeball model, the appearance template can be constructed. This 

step is completed by rotating the eyeball model by a certain angle in 3D and finding the 

corresponding appearance of the template after rotation. First, a center template which 

represents the eye looking at the center is defined. It is simply a pattern which can be 

locked on to the iris boundary in the eye image. Two kinds of templates are tested here: 

 The first template looks like a 2D ring-shaped Laplacian of Gaussian (LoG). In fact, 

the template is constructed by computing a 1D LoG and then expanding it to a 

symmetric ring in 2D, such that the profile of a radial slice in 2D equals the 1D 

LoG. When convolved with an edge map of an eye image, the resulting value of 

convolution will be large when the white ring in this template is aligned to the 

edges of the iris. The edge map of the eye image can be computed using oriented 

filters or simply compute the 2D gradient of the eye image. 

The center template and some rotated templates are shown in Figure 5. 

      

       

Figure 5: The center template (top left) and rotated templates. Note that the top and 

bottom part of the rotated templates are removed to avoid the eyelids. 
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 The second template is a symmetric ring-shaped derivative of Gaussian with the 

inner part having negative value and the outer part positive value. Since the iris 

region is very often darker than the sclera, this template will be able to lock onto 

the iris boundary using the original eye image. 

The center template and some rotated templates are shown in Figure 6. 

     

     

Figure 6: The center template (top left) and rotated templates. Note that the top and 

bottom part of the rotated templates are removed to avoid the eyelids. 

 

4.2 Tracking the Eye Region 

The proposed method does not extract the iris boundary. Instead, it tries to find the 

template that best matches the raw eye region image. Since the templates are created 

with the eyeball located at the center of each template, they can only be applied to eye 

images with the eyeball at the image center. As a result, each eye region image must be 

aligned and stabilized.  

 
14 



The alignment is achieved by tracking a facial landmark and using it as a reference 

point to get the eye region image, assuming the relative position between the eye and 

the landmark remains constant. The facial landmark used here is the nose. Assuming 

the user keeps his head steady, the shape of the nose will not change and its position 

relative to the eye region will be fixed. The tracking method is similar to Lucas-Kanade 

tracking, except that only one feature point (centered at the nose image) with a relatively 

large neighbor window (20-by-20 pixels) is used. The original Lucas-Kanade tracking 

with multiple feature points failed to achieve adequate stabilization, which leads to a 

jumpy eye region image and a noisy estimation result. To overcome the drifting 

problem, a correlation between the current nose image and the original nose image is 

computed at each frame. If the correlation falls below 97%, a local search will be 

performed to reset the tracking.  

Once the nose can be precisely localized in each frame, the eye region image can 

be precisely localized as well because the relative positions of the nose and eyes are 

fixed. The user will be asked to specify the nose position in the first frame, where the 

relation between the nose center and the iris center (given by the circle detector) can be 

computed and used later. 

The overall result is a stabilized eye region image, which can be used for template 

matching. 

4.3 Gaze Estimation 

For comparison, two methods for gaze estimation are implemented here. The first 

one is the proposed template matching method, where the corresponding template 

should be able to lock onto the iris boundary. The second method is to extract the iris 

boundary points and fit an ellipse onto them. The center of the ellipse, which 

corresponds to the iris center, can be used for gaze estimation. 

 4.3.1 Template Matching 

The final step for the proposed method is template matching. Each pre-
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computed template will be pixelwise multiplied with the eye image and the score 

will be the summation. The template giving the highest score will be selected and 

its parameters used as the estimated gaze direction, which are angles for horizontal 

and vertical rotation of the eyeball. 

To improve the speed, only the templates with angles around the previous 

estimated angles are used in the current estimation step, if the two consecutive eye 

images do not change too much. For example, suppose the previous estimated 

angles are 10 degrees horizontal and 6 degrees vertical, then the current estimation 

will only consider 5 to 15 degrees horizontal and 1 to 11 degrees vertical. This local 

search obviates multiplication on all templates and thus speeds up the program. In 

the case of fast eyeball movement, the difference between the previous eye image 

and the current eye image is calculated, and should this difference be larger than a 

threshold, all templates will be searched to determine the best estimated parameters. 

 

 4.3.2 Ellipse Fitting 

To perform ellipse fitting, at least five points are required since an arbitrary 

ellipse has five degrees of freedom. To get iris boundary points, we first convolve 

the center template with the eye image and find the point with strongest response. 

This point gives us an approximate location of the iris center. The reason is that 

even when the eyeball is rotated, the iris still looks like a circle, whose center can 

be located by the center template with some error. Then starting from this point and 

going outwards, we sample the eye image pixels along the radial direction in 

different angles. To find the iris boundary, simply find the pixel with the largest 

gradient value along this line. The sampled pixels and the resulting iris boundary 

points are shown in Figure 7. 
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Figure 7: The left image shows the sampled pixels along one radial direction 

(green line). The right image shows the detected iris boundary points (red dots). 

 

After the iris boundary has been located, an ellipse can be fitted onto it. The 

general formula for an ellipse used here is  

Ax2 + 2Bxy + Cy2 + 2Dx + 2Fy + G = 0 

 and the ellipse center can be computed as 

xcenter =
𝐶𝐶𝐶𝐶 − 𝐵𝐵𝐵𝐵
𝐵𝐵2 − 𝐴𝐴𝐴𝐴

 

 

ycenter =
𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵
𝐵𝐵2 − 𝐴𝐴𝐴𝐴

 

To find the parameters A,B,C,D,F,G, direct least square fitting with RANSAC is 

used. The final estimated ellipse center is a weighted average of the ellipse center 

s in each iteration in RANSAC, where iteration with fewer outlier has higher 

weight. The estimated iris centers are shown as a red circle in Figure 8. 

 

 

Figure 8: The red circle represents the estimated iris center. 

 

One noticeable advantage of using ellipse fitting is that it does not require eye 

images to be aligned in each frame and a translation is allowed. As a result, the 

drift problem caused by the tracking error can actually be eliminated. The idea is 

as follows: 
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Define the following notations: 

(x0 𝑦𝑦0) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

(xt 𝑦𝑦𝑡𝑡) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑒𝑒 𝑡𝑡𝑡𝑡 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

(xd 𝑦𝑦𝑑𝑑) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

(nose position with respect to global coordinate in the current frame) 

 

(u0 𝑣𝑣0) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

(ut 𝑣𝑣𝑡𝑡) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

(ud 𝑣𝑣𝑑𝑑) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

�ug 𝑣𝑣𝑔𝑔� = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

(iris center position with respect to eye region image, as described in section 4) 

 

The observed nose position at the current frame is (x0 + xt + xd, y0 + yt + yd) and 

the observed iris center position is (u0 + ut + ug + ud, v0 + vt + vg + vd). Notice that 

if the nose position drifts to the right by 5 pixels, for example, then the iris center 

position will drift to the left by 5 pixels because we are assuming the relative 

position between the nose and the eye is fixed (namely no head movement). This 

implies (ud 𝑣𝑣𝑑𝑑) = −(xd 𝑦𝑦𝑑𝑑) and we can cancel out this drift effect by adding up the 

observed nose and iris center positions as 

(x0 + u0) + (xt + ut) + ug 

(y0 + v0) + (yt + vt) + vg 

where the terms in the first parenthesis are the initial positions of the nose and the 

eye in first frame; the second parenthesis terms are from the head movement, which 

is assumed to be 0 in this project; the third parenthesis terms are from gaze change, 

which can be computed as current observed position minus initial position. 
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Chapter 5: Experiment Result 

5.1 3D Avatar 

The original avatar program combines the lip movement due to speech and 

expression linearly without taking into account the correlation between them, which 

results in a bad visual performance. The proposed method defines the lip shape for each 

phoneme under each expression separately, where those lip shapes are currently 

manually tuned. The outcome is visually more natural. The images in Figure 9 show 

the comparison. 

 

    

Figure 9: The left picture is the original result. We can see that the lip shape, 

especially the lip corner, looks unnatural. The right picture shows the improved 

result, where the lip shape looks more natural. Both pictures show the person 

speaking phoneme ‘e’ in a happy emotion. 

 

Currently three emotions are included in the improved model: neutral, happy and 

sad. Other emotions, like angry, surprised and afraid, are not included since they are 

hardly used during patient-physician communication.  

To further improve the naturalness, the shoulder and hair have been added to the 

avatar. When the head rotates during speech, the shoulder will rotate accordingly to 
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increase naturalness. Figure 10 shows some final avatars from the current system with 

background added. 

    

 

Figure 10: Three different avatars constructed from different face images. The avatar 

on top is built from a real face image. The other avatars are built from cartoon face 

images with hair added. 
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5.2 Eye Gaze Direction Estimation 

Since no calibration process is included in this project, it will be hard to evaluate 

how well the proposed method estimates which point on the screen the user is looking 

at. Instead, the evaluation will mainly focus on the consistency of the estimated gaze 

direction within each trial and the ability of the algorithm to follow the eye movement. 

Two sets of images are used during testing. The first set of images are captured 

using Logitech C920 webcam with a resolution of 1920-by-1080. The test subject was 

about 40cm in front of the camera. The size of the eye region is around 85-by-120 pixels. 

The second set of images are captured using a low resolution camera with eye region 

of 29-by-43. During the test, the test subject was asked to try not to rotate or move his 

head. 

 Low resolution image 

During the test of the low resolution image, the images are enlarged by a 

factor of 3; otherwise, the iris will be too small and the estimation turns out to be 

dominated by quantization error. Some templates overlaid on the corresponding 

eye images are show in Figure 11. Notice that the templates are not very sensitive 

to occlusion caused by eyelid or eyelash. 

 

Template set 1 

 
Template set 2 

 
Figure 11: Templates overlaid on eye images. The top row shows the first 

template set. The bottom row shows the second template set. 

 
21 



In terms of consistency within this trial, Figure 12 shows the horizontal angle 

(red dots) and vertical angle (green dots) along the time axis (going from bottom 

to top). The horizontal axis has been enlarged by multiplying by a constant for 

demonstration purpose. 

During the test, the test subject first varied the horizontal gaze angle while 

keeping the vertical angle constant and then varied the vertical angle while keeping 

the horizontal angle constant. Finally, the test subject looked diagonally to the 

upper left corner. As we can see, the program was able to follow the test subject’s 

gaze direction. The horizontal angle appears to be much more stable than the 

vertical angle, largely due to the fact that there are many more vertical iris 

boundaries, which contribute to horizontal angle estimation, than horizontal edges 

(mostly occluded by eyelid). In addition, it turns out that template set 1 gave better 

results in terms of vertical angle since it was less noisy than template set 2. 

The ellipse fitting result is less accurate for large eye rotation. The reason is 

that when the eyeball rotates away from the center, part of the iris boundary will 

become blurred. As a result, the iris center estimate will become inaccurate for 

large rotations. The ellipse fitting approach result is also included in Figure 12 for 

comparison. 
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Template set 1                          Template set 2                

           

Ellipse fitting 

 
Figure 12: Horizontal (red dot) and vertical (green dot) movements of the iris. 
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 High resolution image 

The high resolution images are captured by a much better webcam, which has 

brightness correction. So the overall result is much better than the lower resolution 

image case. Figure 13 shows some examples of overlaid images. 

 

 Template set 1 

        
Template set 2 

      
Figure 13: Templates overlaid on eye images. The top row shows the first template 

set. The bottom row shows the second template set. 

 

In the first trial, the test subject fixed the gaze direction at one specific point 

at a time, so the horizontal and vertical angles should be constants during this 

period. The results are shown in Figure 14. 
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Template set 1                     Template set 2 

  
Figure 14: Horizontal angle (red dots). Vertical angle (green dots). 

 

In Figure 14, each line segment represents one fixation, which means the gaze 

is fixed at a specific direction. As a result, most line segments are approximately 

straight lines. Ideally they should be vertically straight. However, without 

considering the drift error, those straight lines are tilted to the right, which means 

the drifting error direction of the tracking process is to the left. 

The result of ellipse fitting method on the same dataset is shown in Figure 15. 

We can see that the lines are almost straight in the vertical direction compared to 

the template matching result, thanks to the drift cancelation mechanism.  
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Ellipse fitting result 

 

Figure 15: Compared to the result without drift cancelation, this time the drift 

effect has been greatly suppressed, evinced in the greater verticality of the lines. 

Note that this drift cancelation mechanism can only deal with drifting error, 

whereas head drifting caused by user movement cannot be canceled. 
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Chapter 6: Discussion 

6.1 3D Avatar 

In our system, an audio-visual emotive 3D avatar is proposed to deliver medical 

messages to patients to help them understand their medical results. The use of an avatar 

enhanced the portal messages by delivering additional emotive information through the 

avatar’s face expression and prosody of speech. Along with the semantic information, 

the enhanced portal messages should be more easily understandable by the patients, 

especially those with low medical and numeric literacy.  

To summarize, the avatar enhanced PHR system has the following features: 

 Additional information can be delivered by the avatar portal, such as expression 

and prosody of speech, whereas traditional patient portals only have text or graph 

information. This extra information has great potential to help patients better 

understand the medical information. 

 The system is highly flexible. Almost any frontal image of a person’s face with 

neutral expression can be converted into a 3D avatar in only a second, which means 

we can customize the system for each patient and let them build their own avatar. 

This feature gives the user a great deal of variety as well as offering the patients 

more choices and making it easier for them to accept the interface. 

 The construction of the avatar is fully automatic, which means the user only needs 

to give a 2D frontal image of a person. There is no need to specify where the head 

is or the location of some important feature points like eye center or nose tip. As a 

result, this approach is very convenient, especially for users without any knowledge 

of avatar construction. 

 

Despite the many advantages discussed above, there are many aspects that need to 

be improved. Currently the avatar’s facial expressions are rule based, which means the 

expressions and lip movements during speech are controlled by pre-defined templates. 

However, different people might have different facial expressions and lip movements 
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so that the templates built for one person may not suit another. One solution is to 

develop a method to learn a set of templates for each new person’s avatar by tracking 

the facial feature points when the person is talking. Then, construct a set of templates 

for this person. If successful, the resulting avatar should be more realistic. 

Another possible direction for improvement is patient-avatar interaction. Currently, 

the avatar is only a narrator without any kind of interaction. However, patients might 

have questions when listening to their medical results. One approach to improve this 

system is to add in speech and emotion recognition which monitors the patient reaction, 

as Lisetti et al. did in [5]. For example, if the patient looks confused or asks a question, 

the system will pause and give more detailed background information or instructions. 

This will make the system much more user friendly and as a result, greatly increase the 

effectiveness of the PHR systems. 
   

6.2 Gaze Estimation 

We have proposed an appearance template-matching based eye gaze estimation 

method, which can be realized using a single RGB web camera. The experiment results 

show that this method is able to track the user’s eye movement even for low-resolution 

images with poor lighting.  

However, this method has a major drawback. The algorithm depends heavily on 

the alignment of each eye image. The current evaluation was done for a fixed head 

without rotation or translation, and the eye images are stabilized by tracking the nose. 

But in practice the user may want to move his head and the tracking can be inaccurate 

due to lighting change and facial landmark shape change, which will negatively impact 

the gaze estimation result. 

 This drawback can be solved if a consistent eyeball center can be estimated. One 

possible solution is to use the Active Appearance Model to get a consistent eyeball 

center when the head translates or rotates, as studied by Chen and Qiang [11]. Following 

their approach, a better estimation result should be expected. 

For the ellipse fitting method, the most important factor affecting the accuracy is 
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iris boundary extraction. It turns out that the ellipse fitting is much more accurate when 

the eye is looking at the center and less accurate when the eye is rotated away, which 

blurs the iris boundary. Possible ways to solve this problem include using a more robust 

ellipse fitting algorithm which deals with noise better, or using a better camera to get a 

sharper iris boundary. 

The evaluations performed in this thesis are qualitative, showing that the algorithm 

is able to track the eye movement of the user. To truly evaluate the usefulness of this 

method, a quantitative test still needs to be done. Specifically, the user can look at 

several fixed points on the screen during the calibration phase and the resulting output 

from the proposed algorithm can be recorded. During the testing, the target gaze point 

can be estimated by comparing the current output to the recorded output from 

calibration and just picking the most likely point. 
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Chapter 7: Conclusion 

Computer vision has been an active research area for many years. From the 1960s 

when the concept of computer vision was born until today, great advancement has been 

achieved. Recently, the advancement of powerful hardware systems has enabled the 

technologies in CV to be successfully applied to many practical uses. Despite the 

limitation of CV technologies, where in most cases the environment is required to meet 

certain requirements, CV has many advantages that human beings do not possess, such 

as high reliability, high consistency and high speed. Those advantages make CV an 

ideal tool for automation and labor intensive applications, which could free us from a 

large amount of tedious work. 

In this thesis, two applications of computer vision are studied. The first application, 

which is to enhance PHRs with 3D avatars, demonstrates a promising approach to 

increase the usability of PHRs and promote self-care. With the help of a 3D avatar, the 

patients are expected to have a better understanding of their test results and the portal 

messages, by means of interpreting the emotive information delivered by the avatar. 

This improvement greatly enhances the remote communication between the patients 

and their physicians, which could reduce the frequency of patients returning to the 

hospital. As a result, the physicians are able to focus on more important and urgent 

cases without being overwhelmed by answering questions, which greatly increases the 

efficiency of the medical system. 

The second application, eye gaze direction estimation, is a new template matching 

based method of gaze estimation with low image resolution and contrast. Although this 

method cannot achieve high accuracy, it greatly reduces cost by requiring only a single 

RGB camera. The proposed method is suitable for situations where only a rough gaze 

direction is sufficient to make decisions. For example, the experimenters only need to 

find which one of the nine pictures on the screen the tester is looking at, or maybe the 

experimenters only need to know whether the tester is looking at the center, left or right. 

Another possible application is driver fatigue detection, where only a rough gaze 

direction is sufficient to decide whether the driver is looking forward or looking down.  
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The work done in this thesis is only preliminary. There are many possible 

directions for further study. For the 3D avatar, the appearance can be further improved 

to increase authenticity. Or the avatar system can be made interactive, which means the 

avatar is able to interpret what the patient is asking and monitor the patient’s emotion 

and take appropriate actions. This improvement should be able to boost the flexibility 

and usability of the avatar-enhanced PHR systems. For the gaze estimation, the next 

step should be to carry out quantitative evaluation while enabling the system to take 

head translation and rotation into account, making the system more reliable and robust. 
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