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Abstract

Large-scale complex data have drawn great attention in recent years, which play an important

role in information technology and biomedical research. In this thesis, we address three

challenging issues: sufficient dimension reduction for longitudinal data, nonignorable missing

data with refreshment samples, and large-scale recommender systems.

In the first part of this thesis, we incorporate correlation structure in sufficient dimension

reduction for longitudinal data. Existing sufficient dimension reduction approaches assuming

independence may lead to substantial loss of efficiency. We apply the quadratic inference

function to incorporate the correlation information and apply the transformation method to

recover the central subspace. The proposed estimators are shown to be consistent and more

efficient than the ones assuming independence. In addition, the estimated central subspace

is also efficient when the correlation information is taken into account. We compare the

proposed method with other dimension reduction approaches through simulation studies,

and apply this new approach to an environmental health study.

In the second part of this thesis, we address nonignorable missing data which occur fre-

quently in longitudinal studies and can cause biased estimations. Refreshment samples which

recruit new subjects in subsequent waves from the original population could mitigate the

bias. In this thesis, we introduce a mixed-effects estimating equation approach which enables

one to incorporate refreshment samples and recover missing information. We show that the

proposed method achieves consistency and asymptotic normality for fixed-effect estimation

under shared-parameter models, and we extend it to a more general nonignorable-missing

framework. Our finite sample simulation studies show the effectiveness and robustness of the

proposed method under different missing mechanisms. In addition, we apply our method to

election poll longitudinal survey data with refreshment samples from the 2007-2008 Associ-

ated Press–Yahoo! News.
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In the third part of this thesis, we develop a novel recommender system which track

users’ preferences and recommend items of interest effectively. In this thesis, we propose a

group-specific method to utilize dependency information from users and items which share

similar characteristics under the singular value decomposition framework. The new approach

is effective for the “cold-start” problem, where new users and new items’ information is not

available from the existing data collection. One advantage of the proposed model is that we

are able to incorporate information from the missing mechanism and group-specific features

through clustering based on variables associated with missing patterns. In addition, we

propose a new algorithm that embeds a back-fitting algorithm into alternating least squares,

which avoids large matrices operation and big memory storage, and therefore makes it feasible

to achieve scalable computing. Our simulation studies and MovieLens data analysis both

indicate that the proposed group-specific method improves prediction accuracy significantly

compared to existing competitive recommender system approaches.
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Chapter 1

Introduction

There has been a growing demand to develop effective and efficient methods to address large-

scale complex data, which are prevalent in both information technology and biomedical

sciences. Large-scale complex data contain high heterogeneous variation, multi-modality

distribution and complicated data structure with high dimensional variables. In this thesis,

we propose methods for complex data. Our contributions are mainly from three perspectives:

dimension reduction, missing data and recommender systems.

1.1 Dimension Reduction

Dimension reduction, also known as dimensionality reduction or feature extraction in com-

puter science, is a major technique to reduce the dimension of variables while maintain the

crucial information. For example, in image recognition, one may be interested in developing

the artificial intelligence to recognize a certain feature in a photo or targets in a video. This

brings an issue that the resolution of the photos/videos might be high, and could cost large

memory and computational resources. Dimension reduction is one of the possible solutions

for this type of problems. The ideal dimension reduction methods are able to capture the

pattern of the original data while reducing the number of variables. In addition to pattern

recognition, dimension reduction is also an important data-preprocessing technique espe-

cially in machine learning. That is, dimension reduction can be conducted as an initial step

of data analysis, then we perform desired methods on the reduced data for efficient computa-

tion, which can provide similar or even more accurate predictions. For instance, in genomic

studies, researchers might have to search from millions of genes for their association with a
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certain disease. Dimension reduction can accelerate the process through pre-selecting a few

combinations of genes while maintain sound predicability.

Sufficient dimension reduction is one of the most important dimension reduction strategy,

which utilizes information from the response variable. However, sufficient dimension reduc-

tion is mainly developed for independent data, and remains challenging if data are correlated.

In Chapter 2, we propose a new sufficient dimension reduction method which incorporates

correlation. Specifically, the proposed method applies the quadratic inference function (Qu

et al., 2000) and utilizes a transformation method to approximate the central subspace. In

contrast to existing methods where dependence information among repeated measures are

ignored, the proposed method take intra-cluster correlation into account and hence improve

estimation efficiency. In theory, we show that basis vectors found by the proposed method

are in the central subspace, and the efficiency of parameter estimation leads to the efficiency

of the central subspace estimation.

1.2 Missing Data

In addition to high-dimensional covariates that are frequently associated with large-scale

complex data, another challenging issue is the existence of missing data. When the missing

rate is not high, an easy way is to remove subjects with missing values and use complete cases

only, which is called a complete-case analysis. However, when the missing rate is high, it is

well-known that using complete cases may result in estimation bias because the missing data

might not be missing randomly. For example, in a college class, it is usually students with

low midterm scores that tend to drop; and in socioeconomic surveys, low-income participants

tend not to report their salaries.

Rubin (1976) defines three missing mechanisms: missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR), where MNAR is also called

nonignorable missingness in terms of estimation. The MCAR defines that the missingness
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does not rely on any other variables, MAR states that missingness relies on observed values,

and MNAR defines that missingness depends on additional unobserved values. There are

extensive existing literature regarding statistical analysis under the MCAR and MAR. In

contrast, the MNAR case is still challenging to handle, especially in the context of longitu-

dinal studies where subjects are repeatedly measured.

In longitudinal studies, it is quite common that the drop-out rate gets higher as the

study lasts longer. To offset the great data attrition, experiment designers usually consider

refreshment samples. Here refreshment samples are subjects that are recruited at subsequent

waves and are believed to be from the same population as the original samples. However,

this strategy introduces a new type of missing pattern, that is, the refreshment samples

miss the first few waves and hence their baseline information is not collected. This brings a

new challenge as for most existing methods, such as inverse-weighting strategies or multiple

imputation, baseline values are usually needed. In Chapter 3, we propose a mixed-effects

estimating equation approach which incorporates unobserved latent variables through ran-

dom effects to address nonignorable missing data. One advantage of the proposed method is

that it does not require baseline values. We show that under an existing shared-parameter

framework or a less restrictive new framework, the proposed method provides consistent and

asymptotically normal estimation.

1.3 Recommender System

Recommender systems are another important technique in handling large-scale complex data.

Nowadays, personalized products become increasingly popular, and recommender systems as

one of its most important tools have drawn great attention. The recommender systems have a

broad range of applications from shopping, dining, movie watching to personalized medicine.

For example, one who purchased a product online may be automatically recommended rela-

tive accessories. In addition to item recommendations, many recommender-system methods
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could have broader applications in other fields. For instance, the matrix completion method

can be used for gene-expression prediction and image/video inpainting.

However, recommender system data also bring new and challenging issues in dealing

with large-scale complex data. First, the data are of dynamic nature: new users and new

items are recruited all the time and even after data collection. This leads to a problem that

historical data might not be representative of future activities, which is called the “cold-start

problem.” Similar phenomenon has also been noticed in natural language processing where

new words and internet slang cannot be found in traditional dictionaries. For example, in

MovieLens data, 96% of the latest movie ratings are given by newly registered viewers or on

recently released movies, whose information is not collected in the training data set. This

leads to a critical issue that new users could only get “average” recommendations that are

not personalized. Another critical issue is that, similar to the one described in Chapter 3,

data may missing nonignorably. For example, popular items may attract more users, while

users tend not to rate items they dislike. However, the major concern of missing data in

recommender systems is that it affects prediction accuracy. For instance, a user gives five

stars to the movies he/she watched does not necessarily indicate that he/she will give five

stars to all other movies.

In Chapter 4, we propose a group-specific recommender system which targets at the two

difficult issues mentioned above. The proposed method incorporates dependency among

users and among items through group effects, which solves the “cold-start” problem ef-

fectively. In addition, we utilize missingness information through clustering and enhance

prediction accuracy. In theory, we show that the proposed method has a fast convergence

rate and has a smaller loss function than the methods without specifying group effects. In

practice, we propose a scalable two-step algorithm which avoids large-matrix operations. We

apply the proposed method to the MovieLens data which contain up to 10 million ratings.

The proposed method improves prediction accuracy significantly comparing with existing

competitive methods.
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Chapter 2

Sufficient Dimension Reduction for Lon-

gitudinal Data

2.1 Introduction

Sufficient dimension reduction plays an important role in reducing the dimension of predictors

and providing better modeling for response variables. The essential idea is to construct low-

dimensional variables which can predict the response without loss of information. In contrast

to the variable selection strategy, sufficient dimension reduction does not select or eliminate

variables in a certain way. Instead, it extracts important information through optimally

combining all predictors. Another advantage of sufficient dimension reduction is that it can

be an effective way to visualize data (Li, 1991) through plotting the responses against the

first several optimal combinations of covariates, which is especially important for handling

high-dimensional data. Moreover, sufficient dimension reduction provides essential tools in

analysis and curation for high-dimensional data, as it is able to reduce the original high-

dimension of data to a moderate size without losing important information.

Existing methods of sufficient dimension reduction include, but are not limited to, ordi-

nary least square (OLS; Li and Duan, 1989), slice inverse regression (SIR; Li, 1991), sliced

average variance estimation (SAVE; Cook and Weisberg, 1991), principal Hessian direction

(PHD; Li, 1992), discriminant analysis (Cook and Yin, 2001; Pardoe et al., 2007), minimum

average variance estimation (MAVE; Xia et al., 2002), coutour regression (CR; Li et al.,

2005), inverse regression estimation (IRE; Cook and Ni, 2005), directional regression (DR;
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Li and Wang, 2007), sliced regression (SR; Wang and Xia, 2008), contour projection (CP;

Luo et al., 2009), dimension reduction for non-elliptically distributed predictors (Li and

Dong, 2009; Dong and Li, 2010), and dimension reduction based on canonical correlation

(Fung et al., 2002; Zhou and He, 2008; Zhou, 2009). The study of sufficient dimension re-

duction for longitudinal data is still quite limited. With the prevalence of longitudinal study

in biomedical, social, political, psychological, and environmental sciences, and with the in-

creasing demand for handling high-dimensional data, it is of great importance to address

sufficient dimension reduction problems under the longitudinal data framework.

For the longitudinal data setting, following Li et al. (2003)’s partial OLS, Li and Yin

(2009) propose an analog partial OLS by conducting OLS at each time point and extracting

a small subset of eigenvectors to achieve longitudinal data dimension reduction. However,

their method does not incorporate intracluster correlation structure, and therefore leads

to a significant loss of correlation information. In addition, their method is not able to

exhaust the central subspace (Cook and Weisberg, 1994; Cook, 1996, 1998) if the cluster

size is less than the structural dimension. Pfeiffer et al. (2012) propose a longitudinal first-

moment-based sufficient dimension reduction method to solve these problems. They utilize

a Kronecker-product space of clusters and predictors, and successfully accommodate the

correlation structure of longitudinal covariates. However, their method is mainly applicable

for handling longitudinal covariates, and not for longitudinal responses.

In this chapter, we apply the quadratic inference function (QIF; Qu et al., 2000) to

longitudinal data sufficient dimension reduction, which can accommodate both longitudinal

responses and correlation information. The QIF improves the generalized estimating equa-

tion (GEE; Liang and Zeger, 1986) without estimating nuisance parameters, and is shown

to be efficient in regression parameter estimation for longitudinal data. In our approach,

we first identify a group of transformation functions for the responses, then minimize the

quadratic inference function which incorporates correlation information for transformed re-

sponses to obtain regression parameter estimators, and then apply eigen-decomposition to
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extract information from a set of regression parameter estimators for the transformed re-

sponses.

The proposed method allows one to gain extra efficiency in parameter estimation for

both continuous and discrete responses through incorporating correlation structure, while

not requiring that the true correlation structure be known. Most importantly, we obtain

parameter estimation from the entire cluster instead of performing regression separately at

each time point, as in Li and Yin (2009). This leads to several advantages, such that the

proposed method can still be efficient even for a small sample size, since we utilize information

from repeated measurements within the same subject, and therefore the sample points used

in our estimation are larger than the ones in Li and Yin (2009). In addition, the proposed

method is computationally more efficient than existing methods, as the operation cost is

lower for the same reason. In our approach the recovery of the central subspace does not

depend on the cluster size, is in contrast to existing approaches which require the cluster

size to be greater than the structural dimension.

In theory, we show that estimation through minimizing the QIF for the transformed data

is still in the central subspace, and asymptotic efficiency can be improved by incorporating

correlation structures. Another finding is that the efficiency of parameter estimation leads

to the efficiency of the central subspace estimation. This is confirmed by our simulation

studies, which show that the proposed method can improve accuracy and efficiency for

sufficient dimension reduction in finite samples.

The remainder of this chapter is organized as follows. Section 2.2 provides background

for the quadratic inference function. Section 2.3 introduces the proposed method for lon-

gitudinal dimension reduction using the QIF, and provides its theoretical foundation and

properties. Section 2.4 illustrates how to recover the structural dimension and provides the

implementation of the proposed method. Section 2.5 compares the proposed approach with

existing work through simulation studies for normal and binary responses. Section 2.6 ap-

plies the proposed method to a longitudinal asthma study. Section 2.7 concludes our findings

7



and provides a brief discussion. Technical derivations are provided in Section 2.8.

2.2 Quadratic Inference Function

For longitudinal data, suppose yit is the response of subject i at time t, and xit is a p-

dimensional covariate, where i = 1, . . . , n and t = 1, . . . , Ti. To simplify notation, we set

Ti = T for all i; the unbalanced data case will be discussed in more details in Section

2.4. Let µ(·) be an inverse link function satisfying E(yit|xit) = µ(β′xit), where β is a p-

dimensional parameter. Define yi = (yi1, . . . , yiT )′, xi = (xi1, . . . ,xiT ), and µi = E(yi|xi) for

each i. If independence structure is assumed among subjects, the quasi-likelihood equation

(Wedderburn, 1974; McCullagh, 1983) for solving β is

n∑
i=1

µ̇′iV
−1
i (yi − µi) = 0,

where µ̇i =
∂µi

∂β
is a T × p matrix, and Vi is the covariance matrix of yi. In practice Vi is

usually unknown. One common approach is to substitute the empirical estimator V̂i for Vi.

However, this involves many nuisance parameter estimations and thus V̂i can be unstable

when T is large. Liang and Zeger (1986) introduced the working correlation matrix which

reduces the number of correlation parameters significantly. They assume Ṽi = A
1
2
i R(α)A

1
2
i ,

where Ai is a diagnal matrix of marginal variance of yi, R(α) is the working correlation

matrix, and α contains a small number of correlation parameters.

The QIF approach (Qu et al., 2000) further avoids the estimation of α by formulating

R−1 as a linear combination of M0,M1, . . . ,Mm−1, where M0 is a T -dimensional identity

matrix. For example, if R(α) is exchangeable, then m = 2 and M1 has 0 on the diago-

nal and 1 elsewhere. The idea of the QIF is to ensure the additional moment conditions∑n
i=1 µ̇

′
iA
− 1

2
i MrA

− 1
2

i (yi − µi) are as close to 0 as possible for r = 1, . . . ,m − 1. Since the

number of equations is greater than the number of parameters, the QIF utilizes the general-

ized method of moments (GMM; Hansen, 1982), where the specified moment conditions of

8



b ∈ Rp for estimating β are

gi(b) =


(µ̇i)

′
A
− 1

2
i M0A

− 1
2

i (yi − µi)
...

(µ̇i)
′
A
− 1

2
i Mm−1A

− 1
2

i (yi − µi)

 , i = 1 . . . , n. (2.1)

The quadratic inference function is defined as

Q̂(b) = nḡ′(b)Ŵ−1(b)ḡ(b), (2.2)

where ḡ(b) = 1
n

∑n
i=1 gi(b), and Ŵ(b) = 1

n

∑n
i=1 gi(b)g′i(b). The corresponding QIF esti-

mator is obtained as b̂ = argminb Q̂(b). Qu et al. (2000) showed that b̂ is a
√
n-consistent

estimator and is efficient if a linear combination of basis matrices M0,M1, . . . ,Mm−1 con-

tains the true correlation structure.

A critical issue regarding the QIF is the selection of the number m of basis matrices, which

has been addressed by model selection for correlation structure in Zhou and Qu (2012). The

basic idea is to approximate the inverse of the empirical correlation matrix by a group of

basis matrices, which contain only 0 and 1 as entries. Then a Euclidean-norm measuring

the difference between two estimating functions, one based on the empirical correlation

information and the other on the model-based approximation, is minimized. Through a

groupwise penalty on the basis matrices, an appropriate number m of basis matrices can

be selected such that sufficient correlation information is captured. In theory, the selected

correlation structure is consistent if the candidate basis matrices are from a sufficiently rich

class to represent the true structure.

In general, the moment condition gi(b) = g(b′xi,yi) is required to satisfy E(gi) =

0, i = 1, . . . , n, to identify the true parameter β. The population version of the QIF is

Q(b) = (Eg)′W−1(Eg), where W = Var(g). Therefore, Q(b) ≥ 0, and the equality holds if

and only if b = β.
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2.3 Sufficient Dimension Reduction for Longitudinal

Data

In this section, we propose the QIF approach for sufficient dimension reduction in the lon-

gitudinal data setting.

Let X be a p×T -dimensional covariate matrix and Y = (Y1, . . . ,YT )′ be a T -dimensional

response. Both X and Y can be random. The main purpose of sufficient dimension reduction

(SDR; Li, 1991; Cook, 1998) is to seek a minimal dimension-reduction subspace with a

p × d basis matrix B, where B = (β1, . . . ,βd), d ≤ p, such that Y ⊥⊥ X|B′X. Here

⊥⊥ indicates independence. Under some regularity conditions (Cook, 1998), the minimal

subspace exists and is unique, that is, the central subspace of the regression of Y on X,

denoted by SY |X. Suppose rank(B)= d, then d = dim(SY |X) is also called the structural

dimension of regression. The central subspace is the smallest subspace of Rp that captures

all of the regression information of Y given X, and therefore reduces the dimension of the

predictors from X to B′X.

We propose to identify the central subspace by recovering its basis through minimizing

the QIF. If the dimension of the central subspace is d = 1, then the problem of identifying the

central subspace is equivalent to a parameter estimation problem, and thus the QIF estimator

alone can capture the central subspace completely, since the fact that SY |X = Span(β1).

When d ≥ 2, β1, . . . ,βd may not be identifiable (Li, 1991).

Alternatively, to recover the central subspace, we propose to minimize the QIF for trans-

formed responses. This approach does not have the identifiability constraint for β1, . . . ,βd.

Suppose we have a group of transformations hj’s for responses, hj : R→ R, j = 1, . . . , s. Let

hj = (hj, . . . , hj)
′ be a T -dimensional transformation function vector on the response vector

Y. Take

Qj(b) = {Eg(b′X,hj(Y))}′W−1 {Eg(b′X,hj(Y))} , (2.3)
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with minimizer γj = argminbQj(b), j = 1, . . . , s. In Section 2.3.1, we show that γj is in the

central subspace under certain conditions, and Span(γ1, . . . ,γs) approximates SY |X. Since

d is typically unknown, we need a sufficiently large s to ensure that s ≥ d. The selection of

s is discussed in Section 2.4.2 in detail.

There are several strategies to choose the transformation function hj. One common

practice is to use the power transformation (Cook and Li, 2002; Yin and Cook, 2002; Zhu

and Zhu, 2009; Yin and Li, 2011), hj(Yt) = Y j
t , j = 1, . . . , s. Other transformation methods

include the slice indicator function proposed by Li (1991), which defines hj(Yt) = 1 if Yt is in

the jth slice and 0 otherwise, the covariance inverse regression method (Cook and Ni, 2006)

defining hj(Yt) = Yt if Yt is in the jth slice and 0 otherwise, and the normalized B-spline basis

functions for Yt (Fung et al., 2002). (Cook, 1998, p.114) shows that Sh(Y )|X ⊆ SY |X holds

for any transformation function h, and Sh(Y )|X = SY |X holds if h is a one-to-one function.

The purpose of applying the transformation method is that, although minimizing the QIF

from the original responses can only recover one basis vector for the central subspace, the

transformation method can provide a group of transformed responses, and therefore recover

a group of basis vectors that allow one to explore the central subspace to its largest extent.

2.3.1 Theoretical Properties

We assume the well-known linearity condition (Li and Duan, 1989) that states that E(X|B′X)

is linear in β′1X, . . . ,β
′
dX. This entails that the distribution of X be elliptically symmetric.

Li and Dong (2009); Dong and Li (2010); Ma and Zhu (2012, 2013a,c) provide alternative

strategies on how to relax this condition. On the other hand, the constant conditional vari-

ance assumption (Cook and Weisberg, 1991), where Var(X|B′X) is a constant matrix, is not

required.

Suppose Y ⊥⊥ X|B′X, and let L(b′X,Y) = g′(b′X,Y)W−1g(b′X,Y) be a loss function.
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Then the following theorem shows that the QIF minimizer,

γ = argmin
b

Q(b),γ ∈ Rp, (2.4)

is in the central subspace. In addition, the sample estimator

γ̂ = argmin
b

Q̂(b) (2.5)

is a strongly consistent estimator of γ, where Q̂(b) is defined in (2.2).

Theorem 1. Assume L(·, ·) is convex in its first argument, the linearity condition holds,

and Var(X) is positive definite. If γ in (2.4) exists and is unique, then γ ∈ SY |X, and γ̂ in

(2.5) converges to γ almost surely.

The convexity condition of L(·, ·) in its first argument is easily satisfied in our approach

since L̈ = ġ′W−1ġ + op(1) is a non-negative definite matrix, asymptotically. The strict

convexity of L is a sufficient condition to ensure the uniqueness of γ in Theorem 1 (Li and

Duan, 1989).

When d = 1 and gi is defined in equation (2.1), Theorem 1 implies that the minimizer

γ in (2.4) is the true parameter, and the sample minimizer γ̂ in (2.5) converges to the true

parameter γ almost surely.

Theorem 1 does not require g to satisfy E(g) = 0, the strong consistency property is

robust to the misspecification of the link functions. This is even more desirable when the

conditional distribution of Y|X is difficult to find. As for the efficiency argument in Section

2.3.2, however, a correctly specified link function is required to achieve an efficiency gain

through incorporating correlation information.

Theorem 1 lays the foundation for formulating basis vectors for the central subspace.

Suppose Q̂j(b) is the sample version of Qj(b), and γ̂j = argminb Q̂j(b) is the sample esti-

mator of γj.
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Corollary 1. Assume L(·, ·) is convex in its first argument, the linearity condition holds,

and Var(X) is positive definite. If γj exists and is unique, then γj ∈ SY |X, and γ̂j converges

to γj almost surely, j = 1, . . . , s.

Corollary 1 implies that each γj is a linear combination of β1, . . . ,βd, and that Span(γ1,

. . . ,γs) ⊆ SY |X. This provides an effective way to build a central subspace basis. If η̂1, . . . , η̂d

are the eigenvectors corresponding to the largest d eigenvalues of (γ̂1, . . . , γ̂s) (γ̂1, . . . , γ̂s)
′,

then the basis for the central subspace can be taken as B̂ = (η̂1, . . . , η̂d).

Recently, Yin and Li (2011) formulated the conditions to achieve exhaustiveness of the

central subspace, which can accommodate power transformations as a special case. In their

Theorem 2.1 and Example 2.1, they proved that given a sufficiently large s, the subspace

spanned by SE(Y j |X) (j = 1, . . . , s) approaches the central subspace under mild conditions,

where SE(Y |X) denotes the central mean subspace of Y on X (Cook and Li, 2002). For

each transformation Yj, the quadratic inference function (QIF) can recover one basis vec-

tor from SE(Y j |X). Therefore, a sufficient condition to achieve exhaustiveness, as mentioned

in Yin and Cook (2002), is to assume that there exists a group of powers k1, . . . , kd, such

that dim(SE(Y kj |X)) = 1 for j = 1, . . . , d. Under such an assumption, the QIF approach

with the transformed response Yj, j = 1, 2, . . . , kd, can exhaust the central subspace. When

other types of tranformations are applied, a similar assumption should be satisfied accord-

ingly. Exhaustiveness can then be achieved if the new tranformations follow the conditions

of Theorem 2.1 in Yin and Li (2011). Alternatively, Ma and Zhu (2012, 2013b) propose

a semiparametric estimating equation approach that avoids the aforementioned condition,

but still achieves exhaustiveness by identifying and estimating the central subspace basis

(β1, · · · ,βd) using one estimating equation.

2.3.2 Efficiency

As long as the responses from the same subject are not independent, incorporating correlation

information always leads to efficiency gain. In addition, the efficiency gain of parameter
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estimation from the data with each transformation of the response variable provides an

overall efficiency gain of the central subspace estimation.

For illustration, suppose there are two sets of moment conditions: Gl =
∑n

i=1(µ̇i)
′
A
− 1

2
i

MlA
− 1

2
i (yi − µi), l = 1, 2, where M1 and M2 are symmetric matrices, µ̇i = ∂µi/∂β, and

β is the true parameter. Let G = (G′1,G
′
2)′, Ġ = ∂G/∂β, Ġ1 = ∂G1/∂β, C = Var(G),

and C11 = Var(G1). The empirical information matrices corresponding to G and G1 are

Ġ′C−1Ġ and Ġ′1C
−1
11 Ġ1, respectively. We show that incorporating a correlation structure

leads to an increase of the empirical information matrix in the sense of the Loewner order-

ing (Beckenback and Bellman, 1965), which is equivalent to an improvement in parameter

estimation efficiency.

Lemma 1. If R−1 = a1M1 + a2M2 is the true correlation matrix and E(G) = 0, then

Ġ′C−1Ġ ≥ Ġ′1C
−1
11 Ġ1, in terms of the Loewner ordering for matrices. Equality holds if

a2 = 0.

Lemma 1 indicates that we gain efficiency by incorporating additional correlation in-

formation; if M1 is an identity matrix, then the proposed dimension reduction method

incorporating correlation structure is more efficient than those assuming independence. In

simulation studies provided in Section 2.5, we illustrate that the performance of sufficient

dimension reduction based on the QIF assuming independence is similar to other approaches

such as the OLS or SIR, while the QIF incorporating correlation information can significantly

improve the efficiency for sufficient dimension reduction.

The condition E(G) = 0 assumes that each moment condition has zero expectation.

That is, use the conditional mean E(hj(Y)|X) as a link function for the transformed response

hj(Y) (Yin and Cook, 2002; Ma and Zhu, 2012, 2013a). In practice, however, the conditional

mean E(hj(Y)|X) is usually unknown. As pointed out by Ma and Zhu (2013b), unless one

uses a nonparametric approach, it might be difficult to find the correct link function. For

the proposed method, this is even more challenging than in Ma and Zhu (2013b) case, since

for each transformation the QIF can only generate one basis vector for the central subspace.
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Unless we assume E(hj(Y)|X) is known and β1, . . . ,βd are identifiable, the link function of

the QIF is typically misspecified.

A possible way to have a correctly specified link function might be to apply a nonpara-

metric procedure, but this could complicate our method significantly. To avoid this, Ma

and Zhu (2013b) also suggested imposing additional assumptions; for example, the linearity

condition on Y, or applying a common link function. In one simulation study, we apply a

common (identity) link function. There are two practical justifications for this application.

First, the response Y is continuous and could range from negative infinity to infinity. Second,

using the identity link is a linear approximation of the true link function. Thus, even though

the link function may not be exact, it will still achieve good efficiency in practice. In fact, we

find that the proposed method with the identity link function indeed has an efficiency gain

through incorporating correlation information. Other common link functions can be applied

when the response is not continuous. Refer to Ma and Zhu (2013b, 2014) for more detail.

The consistency of the estimator for a central subspace vector is guaranteed by Corollary

1, and the efficiency gained by incorporating correlation information can be followed by

Lemma 1.

Theorem 2. Suppose γ̂j is an efficient estimator of γj corresponding to the j-th trans-

formation function, where γj ∈ SY |X, j = 1, . . . , s. Then (γ̂1, . . . , γ̂s) is an efficient esti-

mator of (γ1, . . . ,γs), provided the information matrix corresponding to the true parameter

(β′1, . . . ,β
′
d)
′ is bounded.

2.4 Implementation

2.4.1 Estimation of Structural Dimension

For selection of structural dimension d, several approaches have been proposed. Li (1991)

provided an asymptotic chi-squared test, assuming that the covariates are normally dis-

tributed, and Cook and Yin (2001) built the foundation of the permutation test for the
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structural dimension. In addition, Li and Wang (2007) introduced a sequential test, and

Ye and Weiss (2003) proposed a bootstrap procedure. Luo et al. (2009) further suggested a

quick and effective selection procedure called the maximal eigenvalue ratio criterion, which

chooses

d̂ = argmax
1≤q≤dmax

λ̂q/λ̂q+1. (2.6)

In practice, dmax = 5 usually suffices. The intuition behind (2.6) can be explained. Suppose

B̂ is a consistent estimator of B, and therefore that each λ̂q converges to λq consistently.

Since dim(B) = d, λq’s are nonzero if q ≤ d. As limn→∞ λ̂d/λ̂d+1 = +∞, choosing d̂ to

satisfy (2.6) is a sensible approach.

2.4.2 Algorithm

We provide an algorithm for sufficient dimension reduction for longitudinal data.

(i) Choose a transformation function hj, and transform the response yi into hj(yi), for

j = 1, . . . , s and i = 1, . . . , n.

(ii) For the transformed responses hj(y1), . . . ,hj(yn), obtain γ̂j by minimizing Q̂j(b).

(iii) Conduct a spectral decomposition for (γ̂1, . . . , γ̂s)(γ̂1, . . . , γ̂s)
′, and obtain the struc-

tural dimension d based on (2.6).

(iv) Select eigenvectors η̂1, . . . , η̂d corresponding to the first to d-th largest eigenvalues, and

formulate the basis of the central subspace SY |X.

The selection of s in (i) is similar to, but less critical than, the selection of the number

of slices in SIR, still an open question (Wang and Xia, 2008). If lims→∞ Span(γ1, . . . , γs) =

SY |X , the transformed QIF with a sufficiently large s could approximate the central subspace

(compared to SIR where the number of slices may be restricted if the support of Y is finite).
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On the other hand, a finite and fixed s may not be enough to exhaust the central subspace

even if we are given lims→∞ Span(γ1, . . . , γs) = SY |X (Yin and Li, 2011), as difficult as the

SIR in choosing the total number of slices.

In practice, the selection of s may not be very critical, similar to the selection of the total

number of slices for many inverse regression methods, e.g., SIR, SAVE and SR. Our numerical

studies indicate that the proposed method is rather robust against s: the simulation results

did not change much once s ≥ d. Currently if d can be detected by other methods, as in our

data analysis for the asthma study in Section 2.6, then s can be selected accordingly.

2.4.3 Implementation with Unbalanced Data

In practice, unbalanced data are quite common. If the measurements from unbalanced data

are regarded as cluster data without considering the order of lag time, then each µi is a

Ti-dimensional vector, and Mr is a Ti × Ti matrix for i = 1, . . . , n and r = 0, 1, . . . ,m− 1.

If the lag time between measurements is considered important, we can define T =

max(T1, . . . , Tn), and impose a T × Ti dimensional transformation matrix Ui for the i-th

subject. Let y∗i = Uiyi, µ
∗
i = Uiµi, µ̇

∗
i = Uiµ̇i and A∗i = UiAiU

′
i. Thus, we transform the

unbalanced data to artificial balanced data where each component of Ui is an indicator of

whether the data is observed or missing. Then we formulate moment conditions as in (2.1)

for the newly created balanced data. The QIF estimator from minimizing (2.2) still has the

right properties if the data are missing completely at random. See Zhou and Qu (2012) for

more details.

2.5 Simulation

We report on simulation studies to illustrate the performance of the proposed method and

existing approaches for longitudinal data sufficient dimension reduction. They show that

incorporating a suitable correlation structure can improve the accuracy and efficiency of
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estimation for both the parameters and the central subspace.

2.5.1 Study 1: Binary Responses with One Set of Parameters

We generated the covariate xi as standard normal for subject i = 1, . . . , n. For each xi, we

assumed T repeated measurements xi = (xi1, . . . ,xiT ), and that each xit is a p-dimensional

vector, t = 1, . . . , T . We assumed independence among different subjects and different

covariates, but an exchangeable correlation structure among T time points for each covariate,

with ρx = 0.2 .

In Study 1, we let p = 50, T = 20, with sample size n as 51, 100, or 200. The true

parameter β was a p-dimensional vector with 1 in its first 10 components and 0 otherwise.

We generated vi based on the linear model vi = 0.4β′xi+εi and εi
iid∼ N(0,Σε), i = 1, . . . , n,

where Σε is a T -dimensional exchangeable correlation matrix with ρε = 0.2, 0.5, or 0.8.

We then generated yi by utilizing an indicator function yit = 1Ait , where event Ait =

{evit/(1+evit) > 0.5} and vit is the t-th component of vi, t = 1, . . . , T . Since yi|xi = yi|β′xi,

the structural dimension is d = 1, and the central subspace is SY |X = Span(β). It is

straightforward that E(yit) = 0.5 and E(yit|xit) = 1−Φ(0.4β′xit), where Φ(·) is the standard

normal distribution function. The correlation structure of yi is close to, but not exactly, that

of the exchangeable structure, as the correlation is mainly contributed by the error term εi.

We measured the distance between central subspace basis matrix B and the estimated

central subspace B̂ by ||B̂(B̂′B̂)−1B̂′ −B(B′B)−1B′||F , where || · ||F is the Frobenius norm.

We compared our method with the partial ordinary least square (partial OLS) by Li and

Yin (2009), where the linear regression is conducted at each time point to recover parameter

vectors for the central subspace, and d eigenvectors corresponding to the largest d eigenvalues

are extracted through an eigen decomposition. We also compared with the “partial SIR,”

similar to Li and Yin’s partial OLS except that at each time point linear regression is replaced

by sliced inverse regression. Our simulation study shows that the partial SIR provides results

similar to those of the partial OLS approach.
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We generated simulation samples N = 1000. Table 2.1 provides the average distance, and

the standard deviation (inside the parenthesis). The proposed dimension reduction method

based on the QIF is significantly better than those from the partial OLS and partial SIR in

the sense of accuracy and efficiency. For one, when n = 51 and p = 50, the partial OLS and

the partial SIR provide estimators that are nearly orthogonal to the true parameter vector,

while the proposed QIF is still robust, with much smaller distances between the true and

estimated vectors. The linear regression at each time point has a sample size of 51, with

a 50-dimensional parameter, so estimation is unstable. The proposed method utilizes data

from all time points simultaneously, so the number of sample points is 51× 20 = 1020, and

this leads to a more precise estimation.

When the sample size is n = 100 or 200, the QIF assuming exchangeable correlation is

still the best, though all methods converge to the true parameter space as the sample size

increases. In an unreported simulation study, we found that the QIF converges faster than

the other methods as the cluster size increases. The existing methods regress at each time

point and have computing time dependent on the cluster size, while the QIF incorporates

data from all time points simultaneously. As the cluster sizes increase, computational times

of the proposed method and the existing approaches grow further apart.

Information on correlation has a strong influence on the estimations, and incorporating

a correct correlation structure achieves higher accuracy and efficiency. The partial OLS and

SIR approaches do not take correlation into account, and their results are relatively close

to, but still worse than those estimated by the QIF dimension reduction approach assuming

independence of data.

2.5.2 Study 2: Continuous Responses with Multiple Sets of Pa-

rameters

We investigated the performance of the new method when the dimension of central subspace

d is greater than 1. Here we had two p-dimensional coefficient vectors β1 and β2, such
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that Y ⊥⊥ X | (β′1X,β
′
2X), so d = 2. We set p = 8 or 15. When p = 8, we let β1 =

(1, 1, 1, 1, 1, 1, 1, 1)′/
√

8, and β2 = (1,−1, 1,−1, 1,−1, 1,−1)′/
√

8; when p = 15, we set the

rest of the 7 components of β1 and β2 to be 0. The continuous response variable yit was

generated using

Model I: yit = exp(β′1xit) + 2(1 + β′2xit)
2 + 0.5(β′1xit)τit;

Model II: yit = (0.45β′1xit)/{0.5 + (1.5 + β′2xit)
2}+ 0.5εit;

Model III: yit = sin(β′1xit/4) + exp(2β′2xit/3) + 0.5εit.

In Model I, we took ρx, the correlation of xi, as 0.2, 0.5, or 0.8, and took the error τ i =

(τi1, . . . , τiT )′
iid∼ N(0, IT ), i = 1, . . . , n. Because of heteroscedasticity, the responses in

Model I are highly correlated, even though τit’s are independent. In Models II and III,

we generated each xi the same way as in Study 1, except that the correlation parameter

was replaced by ρx = 0.5. The error εi was generated as in Study 1, with exchangeable

correlation ρε = 0.2, 0.5, or 0.8.

For the partial OLS and the partial SIR approaches, we applied the same procedure as

in Study 1. For the proposed method, we used a power transformation to recover basis

vectors for the central subspace: let hj(yit) = yjit, j = 1, . . . , s. Here we set s = 2. In an

unreported simulation study, we found that increasing s does not make much difference for

central subspace estimation. Alternative transformation methods provided in Section 2.3.1

can also be applied here.

Tables 2.2, 2.3, and 2.4 list the distance under the configurations (n, p) = (100, 8) and

(n, p) = (300, 15) for Models I, II, and III. Evidently, the proposed QIF methods are better

than the partial OLS and the partial SIR, and the QIF assuming exchangeable correlation

is the best. When the correlation of responses increases, either through the correlations of

covariate xi in Model I or through the error εi in Models II and III, the proposed method with

exchangeable correlation structure is most accurate, while methods assuming independence
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structure perform poorly. Meanwhile, the QIF assuming AR-1 structure provides very similar

estimation as the one assuming exchangeable correlation, because, although we generate both

xi and εi using the exchangeable correlation structure the combined correlation structure of

yi is neither exchangeable nor AR-1, due to the nonlinear relationship of the response and

covariates.

In general, the proposed QIF dimension reduction method is still applicable if T < d,

but the partial OLS is not feasible.

2.6 Asthma Data

We applied the proposed method to an asthma study conducted in Windsor, Ontario, Canada

in 1992. This study intends to measure the impact of air pollution on asthmatic patients.

The data were originally provided by Professor Paul Corey of the University of Toronto and

the Ontario Ministry of Health, and were investigated for model selection in the GEE (Fu,

2003) and partial OLS dimension reduction by Li and Yin (2009). This data set consists of

39 asthmatic patients who were observed on 21 consecutive days. Patients’ asthmatic status

on difficulty of breathing is recorded as 1 (presence) or 0 (absence) daily, where difficulty

of breathing is determined by patients’ daily forced expiratory volume. The predictors are

daily mean humidity (HUMD), daily mean temperature (TEMP), and seven air pollutants:

nitrogen oxide (NO), nitrogen dioxide (NO2), mixture of NO and NO2 (NOX), carbon

monoxide (CO), ozone level (OZ), total reduced sulphur (TRS) and coefficient of haze (COH).

The data thus contains n = 39 patients with cluster size T = 21, and dimension of covariates

p = 9.

We applied the partial OLS by Li and Yin (2009). The scree plot of the eigenvalues

of (η1, . . . ,ηT )(η1, . . . ,ηT )′ is shown in Figure 2.1, where each ηt is the OLS estimator at

each time point t = 1, . . . , 21. To select the structural dimension d, we applied the maximal

eigenvalue ratio criterion (Luo et al., 2009) discussed in Section 2.4.1, and d̂ = 1 was selected.

21



The choice of d can also be observed directly by examing the scree plot in Figure 2.1, where

a sharp drop occurs right after the largest eigenvalue. The corresponding eigenvector asso-

ciated with the maximum eigenvalue is β̂OLS = (−0.0012, 0.4303,−0.8608, 0.2503,−0.0596,

−0.0015,−0.0804, 0.0264,−0.0220)′, and therefore Span(β̂OLS) is an estimated central sub-

space. We also observe that the mean sample correlation of the intracluster correlation

matrix for the responses is 0.6992, and pair correlations among the 21 measurements are

quite similar, suggesting a non-negligible exchangeable correlation structure.

For the proposed method, we took β̂OLS as an initial value and d̂ = 1, then calculated the

basis for the central subspace using the proposed QIF dimension reduction approach. We em-

ployed the QIF assuming the exchangeable, AR-1, and independence correlation structures.

The estimated results were:

β̂Indep = (−0.0665,−0.0058,−0.0046,−0.0331,−0.0254,−0.0243, 0.0725,−0.0071, 0.0513)′;

β̂Ar1 = (0.0247,−0.0020,−0.0478,−0.0160, 0.0187,−0.0149, 0.0552,−0.0635, 0.0019)′;

β̂Exch = (−0.0954,−0.0047, 0.0341,−0.0199,−0.0111, 0.0031, 0.0765,−0.0041,−0.0273)′.

These differ from the partial OLS estimate. For instance, the angle between β̂OLS and β̂Exch

is 71.82◦, indicating a weak correlation between these two estimators.

We conducted logistic regressions of yit given β̂
′
xit to investigate which method provides

the best prediction, where β̂ is the estimator based on the partial OLS, or the QIF assuming

exchangeable, AR-1, or independent correlation, respectively. Table 2.5 provides the esti-

mators, standard errors, and p-values for the slope of each regression. The QIF dimension

reduction with independent and exchangeable correlation structures fits the data better than

the other approaches.

The QIF assuming the exchangeable structure is the most accurate, with the smallest

MSE compared to other three methods. At each level of the continuous explanatory variable

xit, there is only one observation of the response, so the log-odds of receiving yit = 1 at each
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level of xit is usually infinity or negative infinity. To pool information of adjacent β̂
′
xit, we

divided the range of β̂
′
xit into K intervals of equal length based on the distribution of β̂

′
xit,

where K = 25, 26, 30, or 25 was applied to each method, respectively. We then calculated

β̂
′
x̄k, the average of β̂

′
xit for the k-th interval, and logit(ȳk), the log-odds of ȳk, where ȳk

is the average of yit corresponding to β̂
′
xit in the k-th interval, k = 1, . . . , K. Table 2.6

lists the correlation between (logit(ȳ1), . . . , logit(ȳK)) and (β̂
′
x̄1, . . . , β̂

′
x̄K) and the MSE of

(α0 +α1β̂
′
x̄1, . . . , α0 +α1β̂

′
x̄K), where α0 and α1 are the logistic regression coefficients. The

QIF method assuming exchangeable correlation structure achieves the highest magnitude of

regression correlation with a smaller MSE, compared with the QIF assuming independence

structure.

Scatterplots of (logit(ȳ1), . . . , logit(ȳK)) against (β̂
′
x̄1, . . . , β̂

′
x̄K) for each method are

provided in Figure 2.2. The slope of the partial OLS method (upper-left panel) are very

sensitive to the two influential points on the top left, leading to a potentially unstable

estimator; while the QIF assuming the exchangeable correlation structure provides a better

fitted regression line overall.

2.7 Discussion

We have addressed the sufficient dimension reduction problem for longitudinal data, with

the goal of showing that incorporating intracluster correlation information can achieve more

efficiency than assuming independence in both parameter and central subspace estimations.

We used the quadratic inference function to incorporate correlation structures and a trans-

formation method to formulate basis vectors for the central subspace. These basis vectors

were shown to be consistent and more efficient than estimators assuming independence. The

proposed method achieves an overall efficiency for central subspace estimation through com-

bining each efficient estimator of an individual basis vector. Our simulation studies show

that the proposed method is quite effective for both binary and continuous data for small
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and large sample sizes, compared with existing approaches that do not take intracluster

correlation into consideration.

Simulation show that even if the correlation structure is misspecified, the efficiency of

the proposed estimator is higher than the one assuming independence; our method is quite

robust under a small sample size, due to utilizing the entire cluster information for dimension

reduction. The proposed method is able to recover the central subspace even when the cluster

size is small, it can handle unbalanced data, and is computationally efficient when the cluster

size is large.

Further investigation is needed regarding a tuning procedure to select the number of

transformations s by minimizing the distance between γs and Span(γ1, . . . , γs−1), along with

a penalty function. Another possible research direction is sufficient dimension reduction

for binary data (or data with finite support) when the structural dimension is greater than

1. Binary sufficient dimension reduction is quite challenging, since the binary response is

invariant for most types of transformation methods. Pooling similar covariate information

together so that the log-odds of Y = 1 have sufficient variability for estimation is a possible

approach.

2.8 Proofs of Theoretical Results

2.8.1 Proof of Theorem 1

Suppose Sζ is an arbitrary dimension-reduction subspace. Define Bζ as the basis matrix of

Sζ , and PBζ = Bζ(B
′
ζBζ)

−1B′ζ is the projection matrix. Note that the population version of

QIF is Q(b) = (Eg)′W−1(Eg), where g is a (mp)-dimensional estimating function.

We first show that Q(b) ≥ Q(PBζb) for any p-dimensional parameter b ∈ Rp. This

implies that the minimizer of Q(b), denoted as γ, must lie in Sζ , and thus lie in the central

subspace SY |X = ∩ζSζ . This is similar to the argument of Theorem 2.1 in Li and Duan

(1989), and Proposition 8.1 in (Cook, 1998, p.144).
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Since Q(b) = {E(W− 1
2 g)}′{E(W− 1

2 g)}, we define g∗ = W− 1
2 g. Then,

Var(g∗) = Imp = E(g∗g∗′)− (Eg∗)(Eg∗)′.

Therefore,

Q(b) = (Eg∗)′(Eg∗) = tr{(Eg∗)′(Eg∗)}

= tr{(Eg∗)(Eg∗)′} = tr{E(g∗g∗′)− Imp}

= E{tr(g∗g∗′)−mp} = E(g∗′g∗)−mp

= E[E{g∗′(b′X,Y)g∗(b′X,Y)}|Y,B′ζX]−mp.

Note that L(b′X,Y) = g∗′(b′X,Y)g∗(b′X,Y) is convex with respect to its first argument.

Therefore,

Q(b) = E[E{L(b′X,Y)}|Y,B′ζX]−mp

≥ E{L(E(b′X|Y,B′ζX),Y)} −mp

= E{g∗′(E(b′X|Y,B′ζX),Y)g∗(E(b′X|Y,B′ζX),Y)} −mp.

Because Bζ is the basis matrix of Sζ , we have X|(Y,B′ζX)
d
= X|B′ζX; and the linearity

condition implies that E(X|B′ζX) = PBζX. Hence,

Q(b) ≥ E{g∗′(E(b′X|B′ζX),Y)g∗(E(b′X|B′ζX),Y)} −mp

= E{g∗′((PBζb)′X,Y)g∗((PBζb)′X,Y)} −mp

= Q(PBζb).

Next, we show that γ̂ is a strongly consistent estimator of γ. This follows Theorem 5.1

of Li and Duan (1989), which states that the minimizer of the sample loss function converges

to the minimizer of the risk function almost surely, if the objective loss function is convex
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with respect to its first arument.

2.8.2 Proof of Corollary 1(transformation)

Following (Cook, 1998, p.115), if h is a function of Y, then Sh(Y )|X ⊆ SY |X; and if h is

one-to-one, then Sh(Y )|X = SY |X. Then Corollary 1 follows immediately from Theorem 1.

2.8.3 Proof of Lemma 1

The first part of this proof shows that we gain more information and achieve higher efficiency

by incorporating additional correlation information formulated by the moment condition G2.

We first orthogonalize G2 from G1 as

G∗2 = G2 −C21C
−1
11 G1,

where C21 = Cov(G2,G1) and C11 = Var(G1). After orthogonalization, Cov(G∗2,G1) = 0.

Let G∗ = (G′1,G
∗
2
′)′, C∗ = Var(G∗), and C∗22 = Var(G∗2), then C∗22 = C22 − C21C

−1
11 C12,

where C22 = Var(G2) and C12 = Cov(G1,G2). Since Ġ∗2 = Ġ2−C21C
−1
11 Ġ1, the information

matrix of the estimator by minimizing G′C−1G is proportional to

Ġ′C−1Ġ = (Ġ∗)′(C∗)−1(Ġ∗)

= Ġ′1C
−1
11 Ġ1 + (Ġ∗2)′(C∗22)−1(Ġ∗2).

Note that C∗22 is non-negative definite, so in the sense of Loewner ordering for matrices,

Ġ′C−1Ġ ≥ Ġ′1C
−1
11 Ġ1.

The following argument shows that if G1 contains all information about the parameter,

adding additional moment conditions will not improve efficiency. That is, if M1 is propor-

tional to R−1, then Ġ′C−1Ġ = Ġ′1C
−1
11 Ġ1.
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The detailed proof is provided as follows. Recall that Gl =
∑n

i=1 µ̇
′
iA
− 1

2
i MlA

− 1
2

i (yi−µi),

l = 1, 2. Assume R−1 = a1M1, then

Ġ1 = − 1

a1

n∑
i=1

µ̇′iA
− 1

2
i R−1A

− 1
2

i µ̇i + op(1), and Ġ2 = −
n∑
i=1

µ̇′iA
− 1

2
i M2A

− 1
2

i µ̇i + op(1).

In addition,

C11 =
1

a2
1

n∑
i=1

µ̇′iA
− 1

2
i R−1A

− 1
2

i µ̇i, and C21 =
1

a1

n∑
i=1

µ̇′iA
− 1

2
i M2A

− 1
2

i µ̇i.

Thus, C11 = − 1
a1

Ġ1 + op(1) and C21 = − 1
a1

Ġ2 + op(1), and this results in Ġ∗2 = op(1).

Therefore,

Ġ′C−1Ġ = Ġ′1C
−1
11 Ġ1 + op(1).

2.8.4 Proof of Theorem 2

Theorem 18.11 of (Kosorok, 2008, p.341) shows that the marginal efficiency of two estimators

leads to their joint efficiency on product spaces, given the condition that the two estimated

parameters are differentiable with respect to their tangent space. The main goal of this proof

is to verify this condition under the sufficient dimension reduction framework for longitudinal

data, and thus the estimators by the proposed method have joint efficiency, leading to the

efficiency of the central subspace. The definition of tangent space and differentiability with

respect to the tangent space are provided in the following two paragraphs respectively.

Without loss of generosity, we assume γ1, . . . ,γd are linearly independent. Then γj ∈

SY |X implies Span(γ1, . . . ,γd) = SY |X, j = 1, . . . , d. Set s = d and B∗ = (γ1, . . . ,γd).

Suppose u = (u1, . . . ,ud) is a p× d constant matrix in Rp×d, and let vec(u) = (u′1, . . . ,u
′
d)
′

denote the vectorization of u. Suppose the transformed response hj(yit) is imposed for score
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function Sj such that the solution γ̂j of Sj = 0 is an efficient estimator of γj, j = 1, . . . , d.

Let S = (S′1, . . . ,S
′
d)
′. Define the tangent function to be H = S′vec(u). Then a tangent set is

T = {H = S′vec(u) : u ∈ Rp×d}. Since this tangent set is closed under linear combination,

it is also a tangent space.

For an arbitrarily small δ ≥ 0 and fixed vec(B) = (β′1, . . . ,β
′
d)
′, suppose the model has a

true parameter vec(B)+δvec(u). A parameter γ is differentiable with respect to the tangent

space T , if dγ/dδ|δ=0 = ψ̇(H), where ψ̇(·) is a bounded linear operator.

Since B = (β1, . . . ,βd) and span(B) = SY |X, there exists a d × d matrix D, such that

B∗ = BD. Since the pd× pd information matrix of vec(B) = (β′1, . . . ,β
′
d)
′ is bounded, the

information matrix Ṡ′C̃−1Ṡ of (γ ′1, . . . ,γ
′
d)
′ is also bounded, where C̃ = Var(S).

For any direction u ∈ Rp×d and an arbitrarily small δ ≥ 0,

dγj
dδ

=
dγj

dvec(B + δu)
vec(u)

=
dγj

dvec(BD + δuD)

dvec(BD + δuD)

dvec(B + δu)
vec(u)

=
dγj

dvec(BD + δuD)
(D′ ⊗ Ip)vec(u)

=
dγj

dvec(B∗ + δu∗)
(D′ ⊗ Ip)vec(u),

where u∗ = uD, j = 1, . . . , d and ⊗ denotes the Kronecker product.

Similar to Lemma 1, we can show that C̃ = −Ṡ+op(1). And E(S) = 0 implies−Ṡ′C̃−1Ṡ =

E(SS′) + op(1). Therefore,

dγj
dδ

=
dγj

dvec(B∗ + δu∗)
(D′ ⊗ Ip)(−Ṡ′C̃−1Ṡ)−1{E(SS′)}vec(u) + op(1)

=
dγj

dvec(B∗ + δu∗)
(D′ ⊗ Ip)(−Ṡ′C̃−1Ṡ)−1{E(SH)}+ op(1).

Define ψ̇j(H) = dγj/dδ|δ=0 for any tangent function H ∈ T . Since γj is the j-th column

of B∗, dγj/dvec(B∗+δu∗)|δ=0 is bounded. Because D is a bounded linear transformation and
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(−Ṡ′C̃−1Ṡ) is also bounded, it follows that ψ̇j(·) is a bounded linear operator. Therefore,

γj is differentiable with respect to the tangent space T , j = 1, . . . , d.

Following Theorem 18.11 of (Kosorok, 2008, p.341), we conclude that (γ̂1, . . . , γ̂d) is an

asymptotic efficient estimator of (γ1, . . . ,γd).

29



2.9 Tables and Figures

Table 2.1: Mean and standard deviation of ||B̂(B̂′B̂)−1B̂′ −B(B′B)−1B′||F for longitudinal
binary data with p = 50 from 1000 simulations.

ρε = 0.2 ρε = 0.5 ρε = 0.8
n = 51

partial OLS Independent 1.5507(0.1798) 1.5412(0.1632) 1.5603(0.1775)
partial SIR Independent 1.5235(0.1955) 1.5209(0.1969) 1.5299(0.2007)
QIF Independent 0.4142(0.0422) 0.4627(0.0497) 0.5070(0.0552)

AR-1 0.4092(0.0416) 0.4260(0.0446) 0.4311(0.0436)
Exchangeable 0.3981(0.0406) 0.3950(0.0416) 0.3871(0.0408)

n = 100
partial OLS Independent 0.4208(0.0427) 0.4592(0.0468) 0.4963(0.0522)
partial SIR Independent 0.4138(0.0423) 0.4521(0.0463) 0.4901(0.0517)
QIF Independent 0.3008(0.0313) 0.3440(0.0371) 0.3833(0.0415)

AR-1 0.2929(0.0300) 0.3073(0.0315) 0.3101(0.0305)
Exchangeable 0.2830(0.0289) 0.2821(0.0287) 0.2752(0.0278)

n = 200
partial OLS Independent 0.2427(0.0243) 0.2741(0.0270) 0.3029(0.0294)
partial SIR Independent 0.2416(0.0243) 0.2731(0.0269) 0.3020(0.0292)
QIF Independent 0.2153(0.0220) 0.2490(0.0251) 0.2792(0.0275)

AR-1 0.2086(0.0212) 0.2193(0.0222) 0.2205(0.0216)
Exchangeable 0.2005(0.0204) 0.1993(0.0203) 0.1931(0.0197)

Table 2.2: Mean and standard deviation of ||B̂(B̂′B̂)−1B̂′ −B(B′B)−1B′||F for longitudinal
continuous data with d = 2 for model I from 1000 simulations.

Model I ρx = 0.2 ρx = 0.5 ρx = 0.8
n = 100, 2p = 16

partial OLS Independent 1.1180(0.0730) 0.9337(0.1075) 0.8814(0.2544)
partial SIR Independent 1.0652(0.1216) 1.2080(0.1394) 1.1708(0.1884)
QIF Independent 0.4836(0.0265) 0.9060(0.0184) 1.1154(0.0105)

AR-1 0.8142(0.0439) 0.6762(0.0454) 0.5903(0.0674)
Exchangeable 0.8231(0.0322) 0.6409(0.0309) 0.5501(0.0365)

n = 300, 2p = 30
partial OLS Independent 1.0846(0.0378) 1.0163(0.0405) 1.1000(0.0830)
partial SIR Independent 1.2093(0.0696) 1.2090(0.0996) 1.3272(0.0938)
QIF Independent 0.9548(0.0304) 0.9450(0.0204) 1.0431(0.0133)

AR-1 0.6930(0.0428) 0.7508(0.0447) 0.8741(0.0527)
Exchangeable 0.5825(0.0358) 0.5883(0.0311) 0.6203(0.0368)
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Table 2.3: Mean and standard deviation of ||B̂(B̂′B̂)−1B̂′ −B(B′B)−1B′||F for longitudinal
continuous data with d = 2 for model II from 1000 simulations.

Model II ρε = 0.2 ρε = 0.5 ρε = 0.8
n = 100, 2p = 16

partial OLS Independent 1.3222(0.1456) 1.3406(0.1400) 1.3517(0.1393)
partial SIR Independent 1.2555(0.2078) 1.2829(0.2045) 1.3060(0.1949)
QIF Independent 0.8430(0.1255) 0.8975(0.1477) 0.9602(0.1687)

AR-1 0.8015(0.1548) 0.7789(0.1600) 0.7233(0.1602)
Exchangeable 0.7917(0.1555) 0.7787(0.1649) 0.7367(0.1665)

n = 300, 2p = 30
partial OLS Independent 1.3657(0.0906) 1.3772(0.0907) 1.3874(0.0926)
partial SIR Independent 1.1809(0.2060) 1.1967(0.2022) 1.2212(0.1990)
QIF Independent 0.5789(0.0720) 0.6430(0.0815) 0.7152(0.0919)

AR-1 0.5757(0.0832) 0.5706(0.0830) 0.5357(0.0778)
Exchangeable 0.5446(0.0755) 0.5414(0.0750) 0.5096(0.0716)

Table 2.4: Mean and standard deviation of ||B̂(B̂′B̂)−1B̂′ −B(B′B)−1B′||F for longitudinal
continuous data with d = 2 for model III from 1000 simulations.

Model III ρε = 0.2 ρε = 0.5 ρε = 0.8
n = 100, 2p = 16

partial OLS Independent 1.1462(0.2257) 1.1358(0.2271) 1.1130(0.2359)
partial SIR Independent 1.2368(0.1883) 1.2293(0.1921) 1.2363(0.1911)
QIF Independent 0.9571(0.0821) 0.9638(0.0959) 0.9713(0.1089)

AR-1 0.8141(0.1584) 0.8038(0.1503) 0.7941(0.1385)
Exchangeable 0.7713(0.1303) 0.7735(0.1247) 0.7755(0.1167)

n = 300, 2p = 30
partial OLS Independent 1.3290(0.0929) 1.3258(0.0947) 1.3205(0.0994)
partial SIR Independent 1.3363(0.0922) 1.3307(0.0972) 1.3319(0.0978)
QIF Independent 0.8916(0.0750) 0.9093(0.0893) 0.9272(0.0998)

AR-1 0.9644(0.1244) 0.9466(0.1222) 0.9269(0.1162)
Exchangeable 0.6716(0.1004) 0.6592(0.0918) 0.6437(0.0837)

Table 2.5: Logistic regression slope estimates, standard errors and p-values for each β̂ for
the asthma data.

partial OLS QIF independent QIF AR-1 QIF exchangeable
Estimate -1.6884 0.6879 -0.2307 0.6111
Std. Error 0.9654 0.2002 0.6774 0.1991
p-value 0.0839 0.0006 0.7330 0.0021
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Table 2.6: MSEs and correlations of four models between the log-odds and the predicted
log-odds for the asthma data.

partial OLS QIF independent QIF AR-1 QIF Exchangeable
absolute value of correlation 0.4474 0.3051 0.1039 0.5918
MSE 0.2013 0.5603 0.2361 0.2105

Figure 2.1: Scree plot of eigenvalues from the partial OLS method for the asthma data by
Li and Yin (2009).
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Figure 2.2: Scatterplots and regression lines after grouping, given by four different methods
for the asthma data.
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Chapter 3

A Mixed-Effects Estimating Equation

Approach to Nonignorable Missing Lon-

gitudinal Data with Refreshment Sam-

ples

3.1 Introduction

Missing data are often encountered in longitudinal studies. Among all the missing mecha-

nisms, missing not at random (MNAR; Rubin, 1976) is the most challenging one to handle.

For example, in a public survey, participants with lower socioeconomic status may have a

lower probability to release their annual income (Kim and Yu, 2012); and in AIDS clinical

trials, subjects with a lower CD4 level may drop out prematurely due to death or pessimism

about treatment. Estimation and inference procedures ignoring non-random missing mech-

anisms may lead to misleading and biased conclusions.

Existing literature on analyzing the MNAR mechanism for longitudinal data includes,

but is not limited to, Diggle and Kenward (1994), Little (1994), Little (1995), Hogan and

Laird (1997), Molenberghs et al. (1997), Ibrahim et al. (2001), Roy (2003), Stubbendick

and Ibrahim (2003), Stubbendick and Ibrahim (2006), Lin et al. (2004), Vansteelandt et al.

(2007), Zhou et al. (2010), Spagnoli et al. (2011), and Shao and Zhang (2015). Most of these

methods are built under certain MNAR assumptions. However, the MNAR assumption is
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typically difficult to verify in practice, since the information required for such a test is also

missing (Van Buuren, 2012). Consequently it is challenging to assess model effectiveness and

robustness under a general MNAR setting, and a sensitivity analysis (Rotnitzky et al., 1998;

Robins et al., 2000) might be required.

An alternative strategy for handling nonignorable missing data is to introduce refresh-

ment samples as part of the experimental design (Ridder, 1992), which recruits new subjects

randomly from the same population in subsequent waves over time. Hirano et al. (2001)

demonstrate that implementing refreshment samples can mitigate the effect of data attri-

tion, and Deng et al. (2013) further show that refreshment samples are useful to adjust for

bias. However, studies of statistical properties are still limited in application to refreshment

samples, partially because baseline values from refreshment samples are typically missing. In

addition, the existing methods are restricted to few waves with a small longitudinal cluster

size, as it could be computationally intensive to handle refreshment samples with a large

number of repeated measurements. Furthermore, the MNAR could still exist even after

recruitment of refreshment samples.

In this chapter, we propose a mixed-effects estimating equation approach (MEEE) which

preserves the advantages of estimating equations in addressing refreshment samples. The key

idea is to reduce the estimation bias through utilizing unspecified random effects for MNAR

data. In addition, our theoretical properties also confirm that the fixed-effects estimators

solved through the MEEE are consistent and asymptotically normal under two different

MNAR mechanisms. The proposed method has practical advantages as it is able to utilize a

large number of repeated measurements from the same subject to achieve higher estimation

accuracy for the random effects. This is in contrast to traditional methods which could be

problematic if the cluster size of longitudinal data is large (Lipsitz et al., 2009).

The idea of unspecified random effects has also been considered in the existing literature

under the likelihood framework (for example, Tsonaka et al., 2009, 2010; Li et al., 2012;

Maruotti, 2015). However, the proposed method has several advantages compared to the
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existing approaches. First, the proposed method does not require random effects to follow

a discrete distribution with finite support points. In fact, our random effects are solved

by estimating equations and their values are not restricted to a certain set. For existing

approaches, the selection of the number of support points for the unspecified random-effects

distribution remains an open question (Tsonaka et al., 2009). Second, the proposed method

is not restricted to shared-parameter models (SPM) (e.g., Wu and Carroll, 1988; Wu and

Bailey, 1989; Follmann and Wu, 1995) where the response variable and the missing pro-

cess are linked through random effects. We demonstrate that the proposed method can be

applied under both SPMs and an extended SPM where the missing process is related to

observed responses in addition to random effects. Third, the proposed method does not

require baseline observations. This is especially useful for longitudinal survey studies with

refreshment samples. In such a case, existing methods requiring baseline observations are

difficult to implement, while the proposed method is still applicable.

The rest of this chapter is organized as follows. Section 3.2 introduces notation and the

shared-parameter model assumption. Section 3.3 illustrates how to construct unbiased esti-

mating equations under MNAR mechanisms and provides theoretical properties. Section 3.4

demonstrates the performance of the proposed method through simulation studies. Section

3.5 applies the proposed method to election poll survey data provided by the 2007-2008 As-

sociated Press–Yahoo! News. Section 3.6 presents concluding remarks and a brief discussion.

All technical proofs are shown in Section 3.7.

3.2 Notation and Basic Assumptions

In this section, we introduce notation and basic assumptions for longitudinal missing data.

Let yit denote the tth observation from the ith subject, xit and zit are p-dimensional fixed-

effects and q-dimensional random-effects covariates, respectively, i = 1, . . . , n, t = 1, . . . , T .

We assume that the responses and covariates are linked through a known inverse link function
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µ:

E(yit|xit, zit,bi) = µ(xitβ + zitbi),

where β is a p-dimensional fixed-effects vector and bi is a q-dimensional random-effects

vector, i = 1, . . . , n. Suppose b1, . . . ,bn are true realizations of an unknown stochastic

process, and denote b = (b′1, . . . ,b
′
n)′. Notice that we do not impose any distribution

assumption on b.

Let δit be yit’s missing indicator with δit = 1 if yit is observed and δit = 0 otherwise.

Denote yi = (yi1, . . . , yiT )′, δi = (δi1, . . . , δiT )′, and µi = (µi1, . . . , µiT )′, where µit = µ(xitβ+

zitbi). Let ni =
∑T

t=1 δit be the number of measurements observed from the ith subject. We

define a missing indicator matrix ∆i as an ni × T -dimensional matrix, corresponding to the

rows of identity matrix IT for which yi is observed.

The idea of creating ∆i is to transform the hypothetical complete response yi into

an observed vector ∆iyi (e.g., Paik, 1997). For example, if δi = (1, 0, 1, 0, 1)′ and yi =

(yoi1, y
m
i2 , y

o
i3, y

m
i4 , y

o
i5)′ where the superscript “o” and “m” indicate “observed” and “missing”

respectively, then ∆iyi = (yoi1, y
o
i3, y

o
i5)′. Each δi determines a unique ∆i, and thus ∆i is a

function of δi. We represent yoi = ∆iyi and µoi = ∆iµi.

The shared-parameter model assumption (e.g., Follmann and Wu, 1995) is:

yi ⊥⊥ δi|bi, (3.1)

which assumes that the missing process δi and the measurement process yi share the same

random effect bi. Note that the missing mechanism satisfying (3.1) must be MNAR. We

further discuss this assumption and provide an extension in Section 3.3.1.
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3.3 The General Method

In this section, we propose an unbiased estimating equation approach to estimate the fixed

effect β and the random effect b. Throughout this chapter, we use unbiasedness to denote

the conditional unbiasedness of an estimating equation given latent random effects.

A standard GEE can be formulated as follows:

n∑
i=1

µ̇′iA
− 1

2
i R−1A

− 1
2

i (yi − µi) = 0, (3.2)

where µ̇i =
∂µi

∂β
, Ai is a diagonal matrix of marginal variance of yi, and R is a working

correlation matrix that contains fewer nuisance parameters than an unspecified correlation

matrix.

Notice that the unbiasedness of estimating equation (3.2) leads to the consistency and

asymptotic normality of the fixed-effect estimator β̂ (Liang and Zeger, 1986; Robins et al.,

1994; Rotnitzky et al., 1998). Therefore, our goal is to build unbiased estimating equations

in the presence of nonignorable missing data.

3.3.1 Construction of Unbiased Estimating Equations

In this subsection, we demonstrate the unbiasedness of the proposed MEEE by incorporating

unspecified random effects. Specifically, if either the SPM assumption or a relaxed version

of the SPM assumption is satisfied, we have conditionally unbiased estimating equations,

which do not rely on a specification of the missing process.

Let Aoi = ∆iAi∆
′
i, R

o
i = ∆iR∆′i and

Ḡn =
1

n

n∑
i=1

Gi =
1

n

n∑
i=1

(µ̇oi )
′(Aoi )

− 1
2 (Ro)−1(Aoi )

− 1
2 (yoi − µoi )

=
1

n

n∑
i=1

(µ̇i)
′∆′i(∆iAi∆

′
i)
−1/2(∆iR∆′i)

−1(∆iAi∆
′
i)
−1/2∆i (yi − µi) .
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We define a T × T weighting matrix conditional on the random effect bi:

Ki = Ki(δi|bi) = ∆′i(∆iAi∆
′
i)
−1/2(∆iR∆′i)

−1(∆iAi∆
′
i)
−1/2∆i, i = 1, . . . , n.

Then Gi = (µ̇i)
′Ki(yi − µi).

Suppose assumption (3.1) holds, then E{(yi − µi)|bi} = 0 implies that

E(Gi|bi) = E{µ̇′iKi(yi − µi)|bi} = µ̇′iE{Ki|bi}E{(yi − µi)|bi} = 0. (3.3)

Note that the above decomposition has no restriction on the weighting matrix Ki(δi|bi),

which contains the information of the MNAR mechanism. This brings up one advantage

of the proposed method compared to existing SPM approaches, in that the distribution

formulation of the missing process δi is not needed in our approach.

The formulation of (3.3) still requires the SPM assumption (3.1). This assumption does

not hold if the missingness is a function of past or current responses directly. Several methods

have been developed to weaken the SPM assumption. Among them, Henderson et al. (2000);

Rizopoulos et al. (2008) introduce different but correlated random effects for the measure-

ment process and the missing process, where the two processes no longer “share” the same

random effects. Little (2008); Yuan and Little (2009) propose a mixed-effects hybrid model

which models the dropout process directly. Nevertheless, these works still require parametric

assumptions on the random effects, and some are only applicable for the drop-out missing

mechanism.

In this chapter, we propose to relax assumption (3.1) through strengthening the associ-

ation between yi and δi if the random effect itself can not completely capture the missing

information. Our relaxation does not require any parametric distribution on the random

effects nor have restrictions on missing patterns. In particular, the relaxed assumption is ap-

plicable to the estimating equation framework where only the first two moments are known.

We define a new missing mechanism called conditionally missing at random (CMAR) as
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follows.

Definition 1. A missing mechanism is conditionally missing at random if missingness does

not depend on unobserved data, given the observed data and the random effects.

Mathematically, assumption (3.1) states that δi|bi,yi
d
= δi|bi, where

d
= denotes “equiv-

alent in distribution.” Then Definition 1 generalizes assumption (3.1) to

δi|bi,yi
d
= δi|bi,yoi . (3.4)

It can be shown that the CMAR mechanism is still a MNAR mechanism. This generalization

is analogous to the generalization from MCAR to MAR. That is, we allow the observed

response yo to carry out information of the missing mechanism as well. The new assumption

offers more flexibility compared to assumption (3.1), since it no longer requires the random

effect b to capture all information associating the missing process with the measurement

process. This weakens the conditional independence assumption between yi and δi in (3.1).

In the following we show that the estimating equation (3.2) is still unbiased under the new

assumption.

Let Wi = A
1
2
i RA

1
2
i , then for each subject i:

0 = E{µ̇′iW−1
i (yi − µi)|bi}

= E{µ̇′iW−1
i E(yi − µi|bi,yoi , δi)|bi}.

Suppose yi = (yoi ,y
m
i )′ and µi = (µoi ,µ

m
i )′, then based on the CMAR assumption in (3.4),

E(ymi − µmi |bi,yoi , δi) = E(ymi − µmi |bi,yoi ) is no longer a function of δi, and thus can be

modeled by available information through random effects. This follows similarly as the MAR

definition.

There are several methods to impute missing values based on observed values. For

example, Paik (1997) apply mean imputation for longitudinal data. Seaman and Copas
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(2009) combine mean imputation with a weighting strategy to construct a doubly robust

estimator. Qu et al. (2010) propose to impute missing values through utilizing the linear

conditional mean method (LCM). Here we adopt the LCM under the context of the mixed-

effects model for simplicity:

E(ymi − µmi |bi,yoi ) = W 21
i (W 11

i )−1(yoi − µoi ), (3.5)

where W 21
i = Cov(ymi ,y

o
i |bi) and W 11

i = Var(yoi |bi).

Given (3.5) and the fact that

W−1
i

(
I

W 21
i (W 11

i )−1

)
=

(
(W 11

i )−1

0

)
,

we have:

0 = E{µ̇′iW−1
i (yi − µi)|bi} = E{(µ̇oi )′(W 11

i )−1(yoi − µoi )|bi}

= E{µ̇′iKi(yi − µi)|bi}.

The above equation indicates that once the LCM method is valid, the estimating equation

in (3.2) is unbiased without requiring the shared-parameter model assumption (3.1). Under

either the SPM or the CMAR assumption, one can check the conditional unbiasedness of

the estimating equation E{µ̇′iKi(yi − µi)|bi} = 0 through a chi-square test (Hansen, 1982;

Qu et al., 2000) to test the null hypothesis for the mean zero assumption of the estimating

functions.

The LCM imputation method (3.5) is based on the idea of first-order linear approxima-

tion. The imputed values are valid if the conditional distribution yi|bi is multivariate normal,

or bivariate binary (Qu et al., 2010). In addition, for a multivariate binary distribution, the

LCM is also valid if it belongs to the conditional linear family (Qaqish, 2003) which assumes

zero for the second and higher-order terms in Bahadur’s representation (Bahadur, 1961).
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For other circumstances such as multivariate count data, the LCM provides an approximate

estimation with accuracy similar to linear regression. Nevertheless, more complicated impu-

tation methods might be considered if one believes high-order approximations are necessary

for the observed data.

3.3.2 Estimation of Mixed Effects

In this subsection we discuss how to solve the proposed MEEE and estimate both fixed effects

and unspecified random effects. When the sample size is small or the missing rate is high,

the empirical correlation matrix might be unstable or could be non-positive definite. In this

case, we apply the following technique to avoid the estimation of such a matrix. Specifically,

we formulate estimating functions based on the observed data as

ḡfn =
1

n

n∑
i=1

gfi (β|bi) =
1

n


∑n

i=1(µ̇oi )
′(Aoi )

−1/2Mi1(Aoi )
−1/2 (yoi − µoi )

...∑n
i=1(µ̇oi )

′(Aoi )
−1/2Mim(Aoi )

−1/2 (yoi − µoi )

 ,

where Mij = ∆iMj∆
′
i and {Mj}mj=1 is a matrix representation of R−1, satisfying R−1 =

m∑
j=1

ajMj. Here Mj is a basis matrix containing only 0 and 1. See more details on selection

of Mj’s in Qu et al. (2000), and the number of basis matrices m in Zhou and Qu (2012).

The equality Mij = ∆iMj∆
′
i entails the assumption (∆iR∆′i)

−1 = ∆iR
−1∆′i, which sim-

plifies the matrix representation for R−1 of each subject. This representation does not affect

the consistency of estimation when misspecified, and provides better efficiency compared to

the one using the independence structure.

We further define

Kij = Kij(δi|bi) = ∆′i(∆iAi∆
′
i)
−1/2Mij(∆iAi∆

′
i)
−1/2∆i, i = 1, . . . , n; j = 1 . . . ,m.

42



Then solving ḡfn = 0 is equivalent to solving:

ḡfn(β|b) =


1
n

∑n
i=1(µ̇i)

′Ki1 (yi − µi)
...

1
n

∑n
i=1(µ̇i)

′Kim (yi − µi)

 = 0.

Notice that the relation between Ki and Kij is Ki =
m∑
j=1

ajKij.

For the fixed-effects estimation, since there are more estimating functions than number of

parameters, we estimate β by applying the generalized method of moments (Hansen, 1982)

conditional on b:

β̂ = arg min(ḡfn)′(C̄f
n)−1(ḡfn), (3.6)

where C̄f
n =

1

n

n∑
i=1

(gfi )(gfi )′.

For the random-effects estimation, we solve the following equations:

ḡrn =



(
∂µ1

∂b1
)′K1(y1 − µ1)

...

(
∂µn

∂bn
)′Kn(yn − µn)

λPAb


= 0,

where PA is the projection matrix on the null space of (I − PX)Z and PX is the projection

matrix on X, respectively, and λ is a tuning parameter. The term λPAb is to ensure the

identifiability of b̂. The random-effect estimator b̂ is obtained by:

b̂ = arg min{(ḡrn)′(ḡrn) + λ2
1b
′b}, (3.7)

where λ2
1b
′b is an L2-penalty term to control the magnitude of Var(b) in order to ensure the

convergence in optimization. We estimate β and b by solving (3.6) and (3.7) iteratively. In
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Section 3.3.4 we discuss in detail how the tuning parameters λ and λ1 are selected.

We propose the following chi-square test to test the validity of the LCM imputation

method. We construct two sets of estimating equations: one contains subjects with no

missing response, and the other has missing responses imputed using the LCM method. Since

the first set of estimating equations is always unbiased, a chi-square test can be conducted

to test whether the second set of estimating equations is unbiased or not. Let

C =

{
i ∈ {1, . . . , n} :

T∑
t=1

δit = T

}

be the set of complete subjects. Denote Φ1 =
1

|C|
∑
i∈C

(µ̇i)
′V −1(yi − µi), where | · | denotes

the cardinality of a set, and V is the covariance matrix calculated based on subjects with

completed responses; and

Φ2 =


1

n−|C|
∑

i/∈C(µ̇i)
′Ki1 (yi − µi)

...

1
n−|C|

∑
i/∈C(µ̇i)

′Kim (yi − µi)


be the estimating functions using subjects with missing values. Let Φ = (Φ′1,Φ

′
2)′. We apply

Theorem 1 of Qu et al. (2011), then under the null hypothesis H0 : E(Φ) = 0,

Φ′Var−1(Φ)Φ ∼ χ2
mp.

3.3.3 Asymptotic Properties

In this subsection, we investigate fixed-effects estimation consistency and asymptotic normal-

ity. Lemma 2 provides the asymptotic property when b is known or is consistently estimated,

and Theorem 3 shows that the desirable properties still hold under certain conditions even
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if b is unspecified. In the rest of this chaper, we use β0 and b0 = (b′01, . . . ,b
′
0n)′ to denote

the true fixed effect and the true random effect, respectively.

Lemma 2. Given that assumption (3.1) is satisfied, conditional on b0, β̂ solved by (3.6)

has the following asymptotic properties:

β̂ − β0 = Op(
1√
n

),

and
√
n(β̂ − β0)→ N(0,Σ0),

where Σ0 is derived in the proof of Lemma 2 provided in the Appendix.

The conclusions in Lemma 2 still hold if b0 is replaced by a consistent estimator b̂.

However, the consistency of b̂ requires that the cluster size T goes to infinity, which might

be too restrictive in practice. Therefore, we provide the following weaker condition, and show

that the properties stated in Lemma 2 are still valid. That is, we assume that b̂ satisfies

1

n

n∑
i=1

gfi (β0|b̂)→ 0 as n→∞. (3.8)

This condition implies that conditional on b̂, the sample mean of estimating equations for

the fixed effect converges to 0 when the sample size n goes to infinity while the cluster size

T is fixed.

In fact, condition (3.8) is weaker than the consistency of b̂. This is because, if b̂ is consis-

tent, then condition (3.8) holds true for a large T . However, we can show a counterexample

where condition (3.8) does not imply the consistency of b̂. Suppose

yit = β0 + bi + εit,

where β0 = 0, E(bi) = 0, E(εit) = 0, and Corr(εit, εit′) = 1, for i = 1, . . . , n and t, t′ =
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1, . . . , T . Then yit = yit′ with a probability of 1 and the corresponding quasi-likelihood

equation is:

gfi (β0|b̂) = µ̇′i(yi − µi) =
T∑
t=1

(yit − b̂i).

If condition (3.8) is satisfied, then b̂i =
1

T

T∑
t=1

yit = yi1. However, b̂i = yi1 is not a consistent

estimator of bi as T →∞.

Theorem 3. Suppose that (3.1) and (3.8) hold, then conditional on b̂, β̂ solved by (3.6)

has the following properties:

β̂ − β0 = Op(
1√
n

);

and further,
√
n(β̂ − β0)→ N(0,Σ),

where Σ is derived in the proof of Theorem 3 provided in the Appendix.

If b̂ is a consistent estimator of b0, then we have Σ = Σ0 (Wang et al., 2012). Next, we

relax the regular shared-parameter model assumption, and show that the fixed-effects esti-

mator is still consistent and asymptotically normal under the CMAR mechanism described

in Definition 1.

Corollary 2. Suppose that (3.4) and (3.8) hold and the LCM imputation method (3.5) is

valid, then conditional on b̂, β̂ solved by (3.6) satisfies

β̂ − β0 = Op(
1√
n

),

and
√
n(β̂ − β0)→ N(0,Σ).

Corollary 2 can be shown similarly as the derivation of Theorem 3 and is therefore

omitted.
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Remark: Given β0 or its consistent estimator β̂, the penalized random-effects estimator

b̂ is consistent as the cluster size T goes to infinity, as discussed in Cho et al. (2016), given

that regularity conditions are satisfied. Under the nonignorable missing data framework, the

consistency property holds as long as either the SPM or the CMAR assumption is satisfied.

The proof is quite similar to Cho et al. (2016), and is therefore omitted here. One notable

condition is the L2-mixingale condition (McLeish et al., 1975) which controls the serial

correlation Cor(yi|bi) to achieve the consistency property. That is, Cor(yit, yi,t+s) should be

sufficiently small with an increase of s.

3.3.4 Tuning Parameter Selection

In this subsection, we discuss the selection of tuning parameters λ and λ1 in (3.7). A large

value of λ guarantees that the random-effects estimation is identifiable. However, a very

large value of λ does not enhance identifiability significantly, and might result in slower

convergence or non-convergence of the algorithm. In our numerical studies, we notice that

λ = log(n) is sufficiently large to balance the needs of estimation identifiability and algorithm

convergence.

On the other hand, the estimation is more sensitive towards the choice of λ1, since a

larger value of λ1 leads to a smaller variance of b̂ that could affect the estimation of β. The

term λ1b
′b is essentially an L2-penalty, which controls the bias-variance trade-off of b. As

a special case, when µ is an identity mean function, b̂ is equivalent to a ridge regression

estimator. We use a cross-validation method to select λ1. Note that each subject has a

unique random effect, and hence a classical K-fold cross-validation is not applicable. We

propose a longitudinal K-fold cross-validation with K = T . That is, each time we remove

measurements observed at time t from all subjects (t = 1, . . . , T ), and minimize the following

objective function:

L(λ1) =
1∑n
i=1 ni

n∑
i=1

(yoi − ŷoi )
′(W o

i )−1(yoi − ŷoi ),
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where ŷoi = ∆i(ŷ
(−1)
i1 , . . . , ŷ

(−T )
iT )′ and ŷ

(−t)
it is the predicted value of yit without using infor-

mation from time t.

To calculate ŷ
(−t)
it , (Hastie et al., 2009, Chapter 7.2) suggest ŷit = arg maxy fit,λ1(y),

where fit,λ1 is the probability density function or the probability mass function of yit with

parameter λ1. For example, if yit is normally distributed, then ŷ
(−t)
it = xitβ̂

(−t)
; and if yit

follows a Poisson distribution, then ŷ
(−t)
it = [µ̂

(−t)
it ], where [µ̂

(−t)
it ] denotes the largest integer

not greater than µ̂
(−t)
it .

3.4 Simulation Studies

We conduct simulation studies to examine the performance of the proposed method. To make

a fair comparison to existing approaches using the SPM, we compare the proposed MEEE

with generalized linear mixed-effects models (GLMMs), where the estimating equations are

also unbiased under the SPM assumption (3.1). The difference is that the GLMM assumes

normality of the random effects and independence of repeated measurements, given that

random effects are taken into account. The GLMM can be implemented through the penal-

ized quasi-likelihood (PQL; Breslow and Clayton, 1993) or the adaptive Gaussian-Hermite

quadrature approach (GHQ; Anderson and Aitkin, 1985). In addition, we also compare the

proposed method with two marginal estimating equation approaches, namely, the weighted

generalized estimating equations (WGEE; Robins et al., 1995), and the multiple imputa-

tion method for longitudinal data (MI; Fitzmaurice et al., 2012). Although the WGEE

and multiple imputation have the marginal interpretation, and are valid under only MAR.

These two approaches are benchmark methods under the estimating equation framework for

longitudinal missing data, and therefore we also include them for comparisons.

The PQL and the GHQ are carried out using the R functions “glmmPQL” and “glmer”,

respectively, while the WGEE is obtained by assigning weights to the R function “geem.”

For the MI approach, we impute missing data following (Fitzmaurice et al., 2012, Chapter

48



18.2) when the missing pattern is monotone, or apply the R package “MICE” to impute

intermittent missing data utilizing the chained equation (Van Buuren, 2007). For WGEE,

we tailor the responses to a monotone pattern of missingness in order to apply the weighting

strategy.

In addition, we also conduct a chi-square test (Qu et al., 2000) to test the unbiasedness

of the fixed-effects estimating equations E(ḡfn) = 0, and the validity of the LCM imputation

method indicated in Section 3.3.2.

3.4.1 Study 1: Count Responses under the SPM Assumption

We choose the sample size n = 150 and the cluster size T = 3. The fixed-effects covariates

xit = (1, trt, time, trt × time)′, where “trt” (treatment) is assigned to 1 if i ≤ n/2 and 0

otherwise, “time” is the standardized time effect, and “trt× time” is the interaction effect of

treatment and time. The fixed-effects parameter β = (β1, β2, β3, β4)′ = (−0.5, 0.5, 0.2, 0.2)′.

The random-effects covariates zit = (xit1, xit3)′, and the random effects bij
iid∼ Unif(−0.2, 0.2)

for j = 1, 2. Each yi = (yi1, . . . , yiT )′ is sampled from a multivariate Poisson distribution

with mean λi satisfying:

log(λit) = x′itβ + z′itbi, t = 1, . . . , T ;

and the correlation structure for the repeated measurements is exchangeable with correlation

parameter ρ = 0, 0.4 or 0.7. The correlated Poisson data are generated by the R package

“corcounts.”

For the missing process, let pδit = P(δit = 1) and the logistic model of pδit be

logit(pδit) = 0.1bi1 − 0.3t/T + 0.1, t = 2, . . . , T,

where the assumption (3.1) is satisfied. The term −t/T ensures that the missing rate is

higher towards the end of the study, which resembles the real data case. We assume a
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monotone pattern of missingness, and δit = · · · = δiT = 0 if δi,t−1 = 0. The overall missing

rate is about 45%.

Table 3.1 provides simulation results based on 200 simulation runs. For the unbiasedness

test, we reject the null hypothesis 8, 5 and 10 times out of 200 replications at a significance

level of 0.05 when the serial correlation ρ = 0, ρ = 0.4 and ρ = 0.7, respectively. This indi-

cates that the estimating equations are unbiased, and fixed-effects estimates are consistent.

For the test of the validity of the LCM, we reject the null hypothesis 101, 63 and 19 times

out of 200 replications at a level of 0.05 for ρ = 0, 0.4 and 0.7, respectively. This agrees with

the theory in that the LCM imputation is only an approximation when the response variable

is count data. Nevertheless, the proposed method satisfies the SPM assumption (3.1), and

performs the best even when the LCM condition is violated.

Overall the proposed estimators are less biased and have smaller standard errors com-

pared to the WGEE and the MI approaches. In addition, the improvement of the proposed

method is more significant when the correlation parameter ρ increases in general. The PQL

does not converge due to a small cluster size T , and the GHQ is not applicable here since

the dimension of parameters is greater than the number of data points.

3.4.2 Study 2: Binary Responses under the CMAR Assumption

In the second simulation study, we evaluate the performance of the proposed estimator when

the assumption (3.1) is violated but the assumption (3.4) is satisfied.

We generate data with sample size n = 80 and cluster size T = 6. The fixed-effect

covariates and the random-effect covariates are the same as in the simulation study 1. The

fixed-effect is β = (β1, β2, β3, β4)′ = (−0.5, 1, 0.8, 0.8)′. The random-effect covariate is zit =

(xit1, xit3)′, and the random effects bij
iid∼ Unif(−0.2, 0.2) for j = 1, 2. The response yi =

(yi1, . . . , yiT )′ follows a multivariate Bernoulli distribution with mean function µit satisfying

logit(µit) = x′itβ + z′itbi, t = 1, . . . , T,
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and an AR-1 correlation structure with correlation parameter ρ = 0.2 or 0.6, generated

by the R package “MultiOrd.” Note that the correlation structure of ρ > 0.6 cannot be

generated due to infeasibility of the above mean function (Chaganty and Joe, 2006).

We generate the missing process through a logistic model:

logit(pδit) = 0.1yi1 + 0.2bi1 − 0.5t/T + 0.5, t = 2, . . . , T.

In this setting, the assumption (3.4) is satisfied. The missing pattern is intermittent, and

the overall missing rate is about 40%.

Table 3.2 provides the simulation results from 200 replications when ρ = 0.2 or 0.6.

For the unbiasedness test, we reject the null 72 and 80 times out of 200 simulations at

a significance level of 0.05 when the serial correlation ρ = 0.2 and ρ = 0.6, respectively.

That is, the unbiasedness of the estimating equations is mildly violated. In addition, since

assumption (3.1) is violated, we conduct the chi-square test proposed in Section 3.3.2 to test

the validity of the LCM, which leads us to reject the null hypothesis 14 and 37 times out of

200 replications for ρ = 0.2 and 0.6, respectively. That is, the LCM is mildly violated in this

setting. However, the MEEE still outperforms other approaches and achieves the smallest

absolute bias and standard error with its coverage probability around 95%. The improvement

of the proposed method is more evident when the correlation parameter ρ = 0.6, where the

PQL and GHQ deteriorate drastically with higher bias, standard errors, and much lower

coverage probability of the confidence interval.

3.5 Application

In this section, we analyze data collected from the 2007-2008 Associated Press-Yahoo! News

Poll. This survey intends to evaluate changes in nationwide attitude and opinion towards

the presidential election in 2008. It is an eleven-wave survey with the first 9 waves conducted

during the year prior to the 2008 general election.
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Respondents were invited to participate in all follow-up waves, regardless of their re-

sponses to the previous waves, so the missing pattern is non-monotone. However, this

survey suffers greatly from data attrition, where only 63% of the first wave respondents still

participate in wave 9. To offset the high percentage of the missing rate, this survey recruits

new participants as refreshment samples in waves 3, 5, 6 and 9.

We choose one of the survey questions as a response variable: “How much interest do

you have in following news about the campaign for president?” Following the Pew Research

Center (2010) and Deng et al. (2013) strategy, we dichotomize the 5-level response into

a binary variable: 1 for answers “a great deal” or “quite a bit” and 0 otherwise. We

analyze all available data collected in the 9 waves before the election, and the total sample

size is 4719. The response measurements from the same subject are correlated, with an

approximately exchangeable correlation structure and an average correlation around 0.6.

The overall missing rate of the response variable is 49.7%. The predictors are all observed,

including time, age, education, gender, household income, marital status, whether living in

a metropolitan statistical area (MSA Status), and race/ethnicity.

Here the missingness of the response variable is likely to be nonignorable. This is reflected

by the left panel of Figure 3.1 showing that respondents are more interested in the presidential

election if they stay in the survey longer. That is, the missing probability depends highly on

the measurement process. In addition, the missing mechanisms occurring in the refreshment

samples are also likely to be MNAR. A two-sample t-test shows that in the last wave before

the election, new respondents collected in the last wave have significantly higher interest in

the presidential campaign than the respondents recruited in earlier waves, indicating that

the earlier measurements from refreshment samples are missing nonignorably. This is also

indicated by the left panel of Figure 3.1, in that the responses from subjects with only one

observation have a higher average interest in the presidential election, as these subjects are

mainly recruited in the last wave.

We assume a random intercept model for the MEEE, the PQL and the GHQ, and compare
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them with three marginal approaches: GEE, WGEE, and MI, for which estimations, standard

errors and p-values are provided in Table 3.3. We conduct the unbiasedness test of the

estimating equations and the validity test of the LCM for the proposed method. Both tests

reject the null, indicating that these assumptions are violated. However, the MEEE approach

agrees with most of the other methods that as the election time gets closer, older people with

higher education level and higher household income are more interested in the presidential

election. In addition, except for the MI with monotonized data, the other six methods show

that “Black and Non-Hispanic” people are more interested in the presidential election than

“White and Non-Hispanic.” The most interesting finding here is that methods incorporating

refreshment samples such as MEEE, PQL, GHQ, GEE and MI with all available data are

able to detect a significant difference in interest between males and females, which coincides

with the finding of the Pew Research Center (2010). This implies that refreshment samples

may contain important information which should not be ignored. In addition, the MEEE has

smaller standard errors for estimators regarding “MSA status” and “Other Non-Hispanic”

with more significant p-values.

The right panel of Figure 3.1 plots the average estimated random effects versus the

number of observations, which agrees with the left panel in that a large value of random

effect implies high interest in the election. Figure 3.2 is a histogram of the estimated random

effects given by the MEEE, which shows a bimodal pattern. A Shapiro-Wilk test indicates

that the normality assumption for random effects is severely violated (p-value < 10−15).

Existing approaches that impose the normality assumption may result in estimation bias

and misleading inference.

3.6 Discussion

In this chapter, we propose a mixed-effects model to correct estimation bias for nonignorable

missing data. Mainly, we construct unbiased estimating equations with unspecified random
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effects under a shared-parameter model, and extend it to a more general nonignorable-missing

framework. We show that consistency of the fixed-effects parameter estimation can still be

achieved under the more general framework. To our knowledge, most existing methods in

the shared-parameter model framework require either a parametric distribution assumption

or finite support points for the random effects. In contrast, the proposed method allows

unspecified random effects which do not have such restrictions. In addition, the proposed

method imposes no restriction on the missing pattern, and hence it can be effectively applied

to refreshment samples where baseline observations are subject to missing.

For future research, it would be worthwhile to develop a method for handling missing

covariates and responses simultaneously (e.g., Lee and Tang, 2006; Chen et al., 2012a). In

our framework, since neither the SPM assumption in (3.1) nor the relaxed assumption in

(3.4) imposes constraints on covariates, we can treat the covariate with missing values as a

new response variable and apply the MEEE.

3.7 Proofs of Theoretical Results

3.7.1 Notation and Regularity Conditions

Define the quadratic inference function:

Qn(β|b) = (ḡfn)′(C̄f
n)−1(ḡfn),

its first partial derivative:

Q̇n(β|b) =
∂

∂β
Qn(β|b) = 2( ˙̄gfn)′(C̄f

n)−1(ḡfn) + o(1),
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and its second partial derivative:

Q̈n(β|b) =
∂2

∂β2
Qn(β|b) = 2( ˙̄gfn)′(C̄f

n)−1( ˙̄gfn) + o(1).

Define ġ0 = E(ġfi |b0), and C0 = Var(gi|b0).

We here provide the regularity conditions to prove Lemma 2 and Theorem 3.

(i) The response variables y1, . . . ,yn are i.i.d.

(ii) The fixed effect β is identifiable; that is, there exists a unique β0, such that E{gfi (β0|b0)} =

0.

(iii) The estimating function gi(β|b) is differentiable with respect to both β and b, i =

1, . . . , n.

(iv) Var(gi|b) <∞ in probability, for i = 1, . . . , n.

(v) ˙̄gfn(β|b) is uniformly bounded in probability with respect to both β and b in an open

bounded space containing β0 and b0, and conditional on b0, ˙̄gfn
a.s.→ ġ0 as n→∞.

(vi) C̄f
n(β|b) is uniformly bounded in probability with respect to both β and b in an open

bounded space containing β0 and b0, and conditional on b0, C̄f
n
a.s.→ C0 as n→∞.

(vii) There exists an open bounded parameter space S ⊆ Rp, such that β0 ∈ S and Qn(β|b0)

is uniformly convergent in probability in S. Define:

Q(β|b0) = lim
n→∞

Qn(β|b0),

and thus:

Q̇(β|b0) = lim
n→∞

Q̇n(β|b0).
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3.7.2 Proofs of Lemma 2 and Theorem 3

Proof of Lemma 2. Solving β̂ = arg min(ḡfn)′(C̄f
n)−1(ḡfn) is equivalent to solving

Q̇n(β̂|b0) = 0.

By Taylor expansion, we have:

0 = Q̇n(β̂|b0) = Q̇n(β0|b0) + Q̈n(β0|b0)(β̂ − β0) + o(
1√
n

),

By regularity conditions (ii), (v) and (vi), we have E{Q̇n(β0|b0)} = 0. Then by regularity

condition (iv) and the central limit theorem, we conclude that:

Q̇n(β0|b0) ∼ O(
1√
n

) and
√
n(Q̇n(β0|b0))→ N(0,Ω0),

where

Ω0 = lim
n→∞

nVar(Q̇n(β0|b0))

= 4 lim
n→∞

( ˙̄gfn)′(C̄f
n)−1{ 1

n

n∑
i=1

Var(gi|b0)}(C̄f
n)−1( ˙̄gfn)

= 4(ġ0)′(C0)−1(ġ0).

Since
√
n(β̂ − β) = −Q̈−1

n (β0|b0) ·
√
nQ̇n(β0|b0) + o(1), we conclude that:

√
n(β̂ − β)→ N(0,Σ0),

where Σ0 = lim
n→∞
{Q̈−1

n (β0|b0)}Ω0{Q̈−1
n (β0|b0)}′ = {(ġ0)′(C0)−1(ġ0)}−1.

Proof of Theorem 3. Solving β̂ = arg min(ḡfn)′(C̄f
n)−1(ḡfn) is equivalent to finding β̂ such

that Q̇n(β̂|b̂) = 0.

Based on regularity conditions (ii), (v), (vi) and (vii), we have Q(β0|b0) = 0 and

56



Q̇(β0|b0) = 0. And based on regularity conditions (v) and (vi) and the condition that

1
n

n∑
i=1

gi(β0|b̂)→ 0 as n→∞, we have:

lim
n→∞

Q̇n(β0|b̂) = 0 = Q̇(β0|b0). (3.9)

Define the boundary of a ball in S with center β0 and radius 1√
n

as ∂Bn(β0) = {β :

‖β − β0‖ = 1√
n
}. Then for any β ∈ ∂Bn(β0), we have:

0 = Q(β0|b0) = Q(β|b0) + Q̇(β|b0)(β0 − β) + o(
1√
n

).

Since Q(β|b0) > 0 when β 6= β0, we can find an ε > 0, such that:

(β − β0)Q̇(β|b0) = Q(β|b0) + o(
1√
n

) > ε > 0.

Then based on (3.9), for such ε, there exists a large N , such that when n > N ,

‖Q̇n(β|b̂)− Q̇(β|b0)‖

≤ ‖Q̇n(β|b̂)− Q̇n(β0|b̂)‖+ ‖Q̇n(β0|b̂)− Q̇(β0|b0)‖+ ‖Q̇(β0|b0)− Q̇(β|b0)‖

< ε

for β ∈ ∂Bn(β0). This is because ˙̄gfn(β|b) and C̄f
n(β|b) are uniformly bounded and ḡfn is

continuous with respect to β, so

‖Q̇n(β|b̂)− Q̇n(β0|b̂)‖ < 1

3
ε, and ‖Q̇(β0|b0)− Q̇(β|b0)‖ < 1

3
ε

for a large N . And because of (3.9),

‖Q̇n(β0|b̂)− Q̇(β0|b0)‖ < 1

3
ε.
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By the Cauchy-Schwarz Inequality:

|(β − β0)[Q̇n(β|b̂)− Q̇(β|b0)]| ≤ ‖β − β0‖ · ‖Q̇n(β|b̂)− Q̇(β|b0)‖

<
1√
n
ε.

Therefore,

(β − β0)Q̇n(β|b̂) > (β − β0)Q̇(β|b0)− 1√
n
ε

> (β − β0)Q̇(β|b0)− ε > 0.

Then based on Theorem 6.3.4 of Ortega and Rheinboldt (1970) (p.163), there exists a

β̂n ∈ Bn(β0), such that

Q̇n(β̂n|b̂) = 0.

This is a direct application of the p-dimensional intermediate value theorem. Since β̂n ∈

Bn(β0), we have β̂n = O( 1√
n
) and β̂n → β0 as n→∞.

The following part shows the asymptotic normality of β̂n.

From Lemma 2, we have:

√
n(β̂0 − β0) = −Q̈−1

n (β0|b0) ·
√
nQ̇n(β0|b0) +O(

1√
n

), (3.10)

where β̂0 is the solution of β̂ = arg min(ḡfn)′(C̄f
n)−1(ḡfn) conditional on b0.

Since β̂n ∈ Bn(β0), for any ε > 0, we have ‖Q̇n(β̂n|b̂) − Q̇(β̂n|b0)‖ < ε, and hence

‖Q̇n(β̂n|b̂)− Q̇n(β̂n|b0)‖ < ε for a large N and n > N . In addition,

Q̇n(β̂n|b0) = Q̇n(β̂n|b0)− Q̇n(β̂0|b0)

= Q̈n(β̂0|b0)(β̂n − β̂0) +O(
1

n
).
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Thus, conditional on b̂,

√
n(β̂n − β̂0) = Q̈−1

n (β̂0|b0) ·
√
nQ̇n(β̂n|b0) + o(1). (3.11)

From (3.10) and (3.11), and because lim
n→∞

Q̈n(β̂0|b0) = lim
n→∞

Q̈n(β0|b0), we have:

√
n(β̂n − β0) =

√
n(β̂n − β̂0) +

√
n(β̂0 − β0)

= Q̈−1
n (β0|b0){

√
nQ̇n(β̂n|b0)−

√
nQ̇n(β0|b0)}+ o(1).

From the central limit theorem and the consistency of β̂n, we know that
√
nQ̇n(β̂n|b0)

and
√
nQ̇n(β0|b0) are asymptotically normal. Therefore

√
n(β̂n − β0)→ N(0,Σ),

where Σ = {Q̈−1
n (β0|b0)}Ω{Q̈−1

n (β0|b0)}′ and Ω = lim
n→∞

Var{
√
nQ̇n(β̂n|b0)−

√
nQ̇n(β0|b0)}.
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3.8 Tables and Figures

Table 3.1: The absolute bias, standard error and coverage probability of the fixed-effect
estimation from 200 replications for the count responses with an exchangeable correlation
structure of parameter ρ.

MEEE WGEE MI
ρ = 0 β1 Abs. Bias 0.106 0.112 0.123

Std. Error 0.130 0.135 0.148
CP 0.975 0.930 0.945

β2 Abs. Bias 0.139 0.143 0.157
Std. Error 0.168 0.176 0.191

CP 0.965 0.930 0.920
β3 Abs. Bias 0.122 0.143 0.156

Std. Error 0.155 0.179 0.198
CP 0.985 0.950 0.955

β4 Abs. Bias 0.158 0.176 0.198
Std. Error 0.201 0.230 0.249

CP 0.960 0.935 0.915
ρ = 0.4 β1 Abs. Bias 0.118 0.125 0.137

Std. Error 0.152 0.166 0.179
CP 0.980 0.935 0.955

β2 Abs. Bias 0.150 0.157 0.179
Std. Error 0.192 0.203 0.233

CP 0.965 0.930 0.950
β3 Abs. Bias 0.107 0.128 0.156

Std. Error 0.139 0.163 0.196
CP 0.955 0.920 0.945

β4 Abs. Bias 0.134 0.157 0.205
Std. Error 0.171 0.202 0.260

CP 0.955 0.930 0.945
ρ = 0.7 β1 Abs. Bias 0.126 0.128 0.178

Std. Error 0.157 0.162 0.222
CP 0.980 0.920 0.975

β2 Abs. Bias 0.155 0.167 0.260
Std. Error 0.205 0.218 0.326

CP 0.950 0.900 0.935
β3 Abs. Bias 0.092 0.101 0.272

Std. Error 0.117 0.130 0.562
CP 0.945 0.915 0.990

β4 Abs. Bias 0.110 0.141 0.645
Std. Error 0.138 0.177 1.131

CP 0.960 0.910 0.985

MEEE: mixed-effects estimating equation; PQL: penalized quasi-likelihood; GHQ: adaptive Gaussian-

Hermite quadrature; WGEE: weighted generalized estimating equation; MI: multiple imputation; Abs. Bias:

absolute bias; Std. Error: standard error; CP: coverage probability. The PQL does not converge due to a

small cluster size T , and the GHQ is not applicable since the dimension of parameters is greater than the

number of data points.
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Table 3.2: The absolute bias, standard error and coverage probability of the fixed-effect
estimation from 200 replications for the binary responses with an AR-1 correlation structure
of parameter ρ, where monotonized responses are used for the WGEE.

MEEE PQL GHQ WGEE MI
ρ = 0.2 β1 Abs. Bias 0.150 0.214 0.204 0.435 0.172

Std. Error 0.194 0.272 0.253 0.621 0.173
CP 0.970 0.933 0.952 0.896 0.935

β2 Abs. Bias 0.246 0.401 0.345 0.806 0.413
Std. Error 0.301 0.483 0.390 1.127 0.225

CP 0.985 0.867 0.959 0.891 0.715
β3 Abs. Bias 0.171 0.311 0.304 0.527 0.148

Std. Error 0.211 0.341 0.316 0.696 0.181
CP 0.955 0.860 0.932 0.891 0.980

β4 Abs. Bias 0.269 0.379 0.356 0.828 0.405
Std. Error 0.333 0.471 0.419 1.164 0.230

CP 0.975 0.927 0.959 0.896 0.790
ρ = 0.6 β1 Abs. Bias 0.217 1.100 5.361 0.515 0.192

Std. Error 0.280 1.148 7.913 0.658 0.243
CP 0.935 0.805 0.727 0.873 0.948

β2 Abs. Bias 0.333 2.452 8.488 0.750 0.362
Std. Error 0.424 2.186 11.953 1.050 0.328

CP 0.960 0.605 0.695 0.923 0.907
β3 Abs. Bias 0.177 2.532 7.689 0.577 0.153

Std. Error 0.234 2.024 10.605 0.737 0.191
CP 0.910 0.305 0.609 0.845 0.979

β4 Abs. Bias 0.306 2.429 4.998 0.862 0.365
Std. Error 0.402 2.044 6.361 1.246 0.280

CP 0.975 0.558 0.781 0.901 0.845

MEEE: mixed-effects estimating equation; PQL: penalized quasi-likelihood; GHQ: adaptive Gaussian-

Hermite quadrature; WGEE: weighted generalized estimating equation; MI: multiple imputation; Abs. Bias:

absolute bias; Std. Error: standard error; CP: coverage probability.
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Table 3.3: The estimates, standard errors and p-values of fixed effects on respondents’ interest
in following news about the presidential campaign

Predictor Statistics MEEE PQL GHQ GEE MI MI* WGEE*
Intercept Estimate -4.352 -5.370 -7.368 -3.181 -2.395 -1.966 -3.187

Std. Error 0.210 0.236 0.336 0.152 0.149 0.569 0.211
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Time Estimate 0.112 0.228 0.250 0.111 0.111 0.012 0.110
Std. Error 0.006 0.007 0.010 0.005 0.005 0.196 0.007
p-value 0.000 0.000 0.000 0.000 0.000 0.951 0.000

Age Estimate 0.043 0.047 0.068 0.029 0.021 0.019 0.031
Std. Error 0.002 0.003 0.004 0.002 0.002 0.003 0.002
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Education Estimate 0.546 0.616 0.869 0.379 0.292 0.283 0.366
Std. Error 0.036 0.047 0.064 0.029 0.028 0.036 0.041
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gender Estimate 0.190 0.220 0.313 0.147 0.113 0.063 0.032
Std. Error 0.063 0.086 0.114 0.053 0.055 0.065 0.075
p-value 0.003 0.011 0.006 0.006 0.038 0.333 0.668

Household Income Estimate 0.047 0.058 0.087 0.036 0.025 0.021 0.031
Std. Error 0.009 0.012 0.015 0.007 0.008 0.008 0.010
p-value 0.000 0.000 0.000 0.000 0.001 0.007 0.002

Marital Status Estimate -0.011 -0.028 -0.001 -0.018 -0.011 -0.034 -0.019
Std. Error 0.067 0.093 0.123 0.057 0.056 0.062 0.081
p-value 0.872 0.760 0.997 0.759 0.846 0.577 0.813

MSA Status Estimate 0.150 0.133 0.199 0.076 0.051 0.030 0.072
Std. Error 0.083 0.117 0.156 0.071 0.072 0.082 0.097
p-value 0.069 0.256 0.200 0.284 0.478 0.713 0.457

Black, Non-Hispanic Estimate 0.598 0.702 1.000 0.438 0.331 0.117 0.428
Std. Error 0.137 0.167 0.218 0.101 0.106 0.156 0.134
p-value 0.000 0.000 0.000 0.000 0.002 0.453 0.001

Other, Non-Hispanic Estimate -0.226 -0.261 -0.339 -0.130 -0.105 -0.093 -0.428
Std. Error 0.124 0.176 0.234 0.112 0.102 0.129 0.160
p-value 0.068 0.138 0.148 0.244 0.300 0.471 0.007

Hispanic Estimate 0.053 0.078 0.014 0.053 0.016 -0.028 -0.124
Std. Error 0.120 0.169 0.222 0.104 0.096 0.112 0.142
p-value 0.657 0.645 0.950 0.613 0.867 0.802 0.383

*Monotonized responses are used, where all follow-ups are deleted once the first missing datum occurs.

MEEE: mixed-effects estimating equation; PQL: penalized quasi-likelihood; GHQ: adaptive Gaussian-

Hermite quadrature; GEE: generalized estimating equation; MI: multiple imputation; WGEE: weighted

generalized estimating equation; Std: Error, standard error.
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Figure 3.1: A comparison of the respondents’ average interest in the presidential campaign
and the average of the estimated random effects by MEEE, both plotted against respondents’
number of observed occasions; the right panel is plotted using the same model but without
time as a predictor.

Figure 3.2: Histogram of the estimated random effects by MEEE.
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Chapter 4

A Group-Specific Recommender Sys-

tem

4.1 Introduction

Recommender systems have drawn great attention since they can be applied to many areas,

such as movies reviews, restaurant and hotel selection, financial services, and even identifying

gene therapies. Therefore there is a great demand to develop efficient recommender systems

which track users’ preferences and recommend potential items of interest to users.

However, developing competitive recommender systems brings new challenges, as infor-

mation from both users and items could grow exponentially, and the corresponding utility

matrix representing users’ preferences over items are sparse and high-dimensional. The

standard methods and algorithms which are not scalable in practice may suffer from rapid

deterioration on recommendation accuracy as the volume of data increases.

In addition, it is important to incorporate dynamic features of data instead of one-time

usage only, as data could stream in over time and grow exponentially. For example, in the

MovieLens 10M data, 96% of the most recent ratings are either from new users or on new

items which did not exist before. This implies that the information collected at an early time

may not be representative for future users and items. This phenomenon is also called the

“cold-start” problem, where, in the testing set, majority responses are obtained from new

users or for new items, and their preference information is not available from the training

set. Another important feature of this type of data is that the missing mechanism is likely
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nonignorable missing, where the missing mechanism is associated with unobserved responses.

For instance, items with fewer and lower rating scores are less likely to attract other users.

Existing recommender systems typically assume missing completely at random, which may

lead to estimation bias.

Content-based filtering and collaborative filtering are two of the most prevalent ap-

proaches for recommender systems. Content-based filtering methods (e.g., Lang, 1995;

Mooney and Roy, 2000; Blanco-Fernandez et al., 2008) recommend items by comparing

the content of the items with a user’s profile, which has the advantage that new items can

be recommended upon release. However, domain knowledge is often required to establish

a transparent profile for each user (Lops et al., 2011), which entails pre-processing tasks to

formulate information vectors for items (Pazzani and Billsus, 2007). In addition, content-

based filtering suffers from the “cold-start” problem as well when a new user is recruited

(Adomavicius and Tuzhilin, 2005). is mainly compared with collaborative filtering methods.

For collaborative filtering, the key idea is to borrow information from similar users to

predict their future actions. One significant advantage is that the domain knowledge for items

is not required. Popular collaborative filtering approaches include, but are not limited to,

singular value decomposition (SVD; Funk, 2006; Mazumder et al., 2010), restricted Boltzman

machines (RBM; Salakhutdinov et al., 2007), and the nearest neighbor methods (kNN; Bell

and Koren, 2007). It is well-known that an ensemble of these methods could further enhance

prediction accuracy. (See Cacheda et al. (2011) and Feuerverger et al. (2012) for extensive

reviews.)

However, most existing collaborative filtering approaches do not effectively solve the

“cold-start” problem, although various attempts have been made. For example, Park et al.

(2006) suggest adding artificial users or items with pre-defined characteristics, while Goldberg

et al. (2001), Melville et al. (2002), and Nguyen et al. (2007) consider imputing “pseudo”

ratings. Most recently, a hybrid system incorporating content-based auxiliary information

has been proposed (e.g., Agarwal and Chen, 2009; Nguyen and Zhu, 2013; Zhu et al., 2016).
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Nevertheless, the “cold-start” problem imposes great challenges, and has not been effectively

solved.

In this chapter, we propose a group-specific singular value decomposition method that

generalizes the SVD model by incorporating between-subject dependency and utilizes infor-

mation of missingness. Specifically, we cluster users or items based on their missingness-

related characteristics. We assume that individuals within the same cluster are correlated,

while individuals from different clusters are independent. The cluster correlation is incor-

porated through mixed-effects modeling assuming that users or items from the same cluster

share the same group effects, along with latent factors modeling using singular value decom-

position.

The proposed method has two significant contributions. First, it solves the “cold-start”

problem effectively through incorporating group effects. Most collaborative filtering methods

rely on subject-specific parameters to predict users’ and items’ future ratings. However, for a

new user or item, the training samples provide no information to estimate such parameters.

In contrast, we are able to incorporate additional group information for new users and items

to achieve higher prediction accuracy. Second, our clustering strategy takes nonignorable

missingness into consideration. In the MovieLens data, we notice that individuals’ rating

behaviors are highly associated with their missing patterns: movies with higher average

rating scores attract more viewers, while frequent viewers tend to be more critical and give

low ratings. We cluster individuals into groups based on their non-random missingness, and

this allows us to capture individuals’ latent characteristics which are not utilized in other

approaches.

To implement the proposed method, we propose a new algorithm that embeds a back-

fitting algorithm into alternating least squares, which avoids large matrices operation and

big memory storage, and makes it feasible to achieve scalable computing in practice. Our

numerical studies indicate that the proposed method is effective in terms of prediction ac-

curacy. For example, for the MovieLens 1M and 10M data, the proposed method improves

66



prediction accuracy significantly compared to existing competitive recommender system ap-

proaches (e.g., Agarwal and Chen, 2009; Koren et al., 2009; Mazumder et al., 2010; Zhu

et al., 2016).

This chapter is organized as follows. Section 4.2 provides the background of the singular

value decomposition model and introduces the proposed method. Section 4.3 presents the

proposed method, a new algorithm and its implementation. Section 4.4 establishes the

theoretical foundation of the proposed method. In Section 4.5 we illustrate the performance

and robustness of the proposed method through simulation studies. MovieLens 1M and 10M

data are analyzed in Section 4.6. Section 4.7 provides concluding remarks and discussion.

All technical details are provided in Section 4.8.

4.2 Background and Model Framework

4.2.1 Background

We provide the background of the singular value decomposition method (Funk, 2006) as

follows. Let R = (rui)n×m be the utility matrix, where n is the number of users, m is the

number of items, and each rui is an explicit rating from user u for item i (u = 1, . . . , n,

i = 1, . . . ,m). The SVD method decomposes the utility matrix R as:

R = PQ′,

where R is assumed to be low-rank, P = (p1, . . . ,pn)′ is an n ×K user preference matrix,

Q = (q1, . . . ,qm)′ is an m × K item preference matrix, and K is the pre-specified upper

bound of the number of latent factors, which corresponds to the rank of R. Here qi and

pu are K-dimensional latent factors associated with item i and user u, respectively, which

explain variability in R.

The predicted value of rui given by the SVD method is: r̂ui = p̂′uq̂i, where q̂i and p̂u are
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estimated iteratively by:

q̂i = argmin
qi

∑
u∈Ui

(rui − p′uqi)
2 + λ‖qi‖2

2,

and:

p̂u = argmin
pu

∑
i∈Iu

(rui − p′uqi)
2 + λ‖pu‖2

2.

Here Ui denotes the set of all users who rate item i, and Iu is the set of all items rated by user

u. Different penalty functions can be applied. For example, Zhu et al. (2016) suggest L0 and

L1 penalties to achieve sparsity of P and Q. In addition, some SVD methods (e.g., Koren,

2010; Mazumder et al., 2010; Nguyen and Zhu, 2013) are implemented on residuals after a

baseline fit, such as linear regression or ANOVA, rather than the raw ratings rui directly.

The SVD method can be carried out through several algorithms, for example, the alter-

nating least square (ALS; Carroll and Chang, 1970; Harshman, 1970; Koren et al., 2009),

gradient descent approaches (Wu, 2007), and one-feature-at-a-time ALS (Funk, 2006).

4.2.2 Model Framework

The general framework of the proposed method is constructed as follows. Suppose xui is

a covariate vector corresponding to the user u and item i. In the rest of this chapter, we

consider rui− x′uiβ̂ as the new response, where β̂ is the linear regression coefficient of xui to

fit rui. To simplify our notation, we still use rui to denote the residual here. In case covariate

information is not available, we apply the ANOVA-type model where the grand mean, the

user main effects and the item main effects are subtracted and replace rui by its residual.

Let θui = E(rui). We generalize the SVD model and formulate each θui as

θui = (pu + svu)′(qi + tji), (4.1)

where svu and tji are K-dimensional group effects that are identical across members from
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the same cluster. We denote users from the v-th cluster as Vv = {u : vu = v} (v = 1, . . . , N),

and items from the j-th cluster as Jj = {i : ji = j} (j = 1, . . . ,M), where
∑N

v=1 |Vv| = n

and
∑M

j=1 |Jj| = m, | · | is the cardinality of a set, and N and M are the total number of

clusters for users and items, respectively. Details about selecting N and M are provided in

Section 4.3.3.

In matrix form, we use S = (s1, . . . , sN)′ and T = (t1, . . . , tM)′ to denote the user and item

group-effect matrices, respectively. However, the dimensions of matrix S and T are N ×K

and M ×K, which are not compatible with the dimensions of P and Q, respectively. There-

fore, alternatively we define Sc = (s11
′
|V1|, . . . , sN1′|VN |)

′ and Tc = (t11
′
|J1|, . . . , tM1′|JM |)

′,

corresponding to group-effects from users and items, where 1k is a k-dimensional vector

of 1’s, and the subscript “c” in Sc and Tc denotes the “complete” forms of matrices. Let

Θ = (θui)n×m, then we have

Θ = (P + Sc)(Q + Tc)
′,

and if there are no group effects, Θ degenerates to Θ = PQ′, which is the same as the SVD

model.

Here the users or items can be formed as clusters based on their similar characteristics.

For example, we can use missingness-related information such as the number of ratings from

each user and each item. Users or items within the same cluster are correlated with each

other through the group effects svu or tji , while observations from different clusters are

assumed to be independent. In Section 4.3, Section 4.4 and Section 4.5.1, we assume N and

M are known, and that members in each cluster are correctly labeled.

Remark 1. For easy operation, one could use users’ and items’ covariate information for

clustering. In fact, (4.1) is still a generalization of the SVD method even if N = M =

1, because s′vutji , p′utji , s′vuqi correspond to the grand mean, the user main effects and

the item main effects, analogous to the ANOVA-type of SVD model. Note that covariate
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information might not be collected from new users and new items. However, missingness-

related information is typically available for clustering, and therefore svu and tji can be

utilized for new users and new items. This is crucial to solve the “cold-start” problem.

4.3 The General Method

4.3.1 Parameter Estimation

In this subsection, we illustrate how to obtain estimations of model parameters through

training data. In addition, we develop a new algorithm that embeds back-fitting (Breiman

and Friedman, 1985) into alternating least squares. This enables us to circumvent large-scale

matrix operations through a two-step iteration, and hence significantly improve computa-

tional speed and scalability.

Let γ be a vectorization of (P,Q,S,T), Ω be a set of user-item pairs associated with

observed ratings, and Ro = {rui : (u, i) ∈ Ω} be a set of observed ratings. We define the loss

function as

L(γ|Ro) =
∑

(u,i)∈Ω

(rui − θui)2 + λ(
n∑
u=1

‖pu‖2
2 +

N∑
v=1

‖sv‖2
2 +

m∑
i=1

‖qi‖2
2 +

M∑
j=1

‖tj‖2
2), (4.2)

where θui is given by (4.1) and λ is a tuning parameter. We can estimate γ via

γ̂ = argmin
γ
L(γ|Ro).

Then the predicted value of θui can be obtained by θ̂ui = (p̂u + ŝvu)′(q̂i + t̂ji).

The estimation procedure consists of updating (p̂u + ŝvu) and (q̂i + t̂ji) iteratively. Fol-

lowing the strategy of the alternating least squares, the latent factors and the group effects
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associated with item cluster j are estimated by:

({q̂i}i∈Jj , t̂j) = arg min
{qi}i∈Jj ,tj

∑
i∈Jj

∑
u∈Ui

(rui − θui)2 + λ(
∑
i∈Jj

‖qi‖2
2 + ‖tj‖2

2). (4.3)

Similarly, we estimate latent factors and group effects associated with user cluster v:

({p̂u}u∈Vv , ŝv) = arg min
{pu}u∈Vv ,sv

∑
u∈Vv

∑
i∈Iu

(rui − θui)2 + λ(
∑
u∈Vv

‖pu‖2
2 + ‖sv‖2

2). (4.4)

However, directly solving (4.3) and (4.4) by the alternating least square encounters large

matrices. In the MovieLens 10M data, it could involve matrices with more than 100,000

rows. We develop a new algorithm which embeds back-fitting into alternating least squares,

and minimize each of (4.3) and (4.4) iteratively. Specifically, for each item cluster Jj (j =

1, . . . ,M), we fix P and S, and minimize (4.3) through estimating q̂i and t̂j iteratively:

q̂i = argmin
qi

∑
u∈Ui

(rui − θui)2 + λ‖qi‖2
2, i ∈ Jj, (4.5)

t̂j = argmin
tj

∑
i∈Jj

∑
u∈Ui

(rui − θui)2 + λ‖tj‖2
2. (4.6)

For each user cluster Vv (v = 1, . . . , N), we fix Q and T and minimize (4.4) through esti-

mating p̂u and ŝv iteratively:

p̂u = argmin
pu

∑
i∈Iu

(rui − θui)2 + λ‖pu‖2
2, u ∈ Vv, (4.7)

ŝv = argmin
sv

∑
u∈Vv

∑
i∈Iu

(rui − θui)2 + λ‖sv‖2
2. (4.8)

The above backfitting is an iterative algorithm for additive models. In contrast, the al-

ternating least squares is an iterative algorithm for multiplicative models. Although they are

both blockwise coordinate descent methods under our framework, their convergence proper-

ties are different. Ansley and Kohn (1994) show that for penalized least square problems,
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the backfitting algorithm converges to the unique optimum solution from any initial values,

while the alternating least squares algorithm for two blocks only converges to a stationary

point (Chen et al., 2012b).

In addition, the proposed algorithm is also different from the block-wise coordinate de-

scent algorithm which estimates each of (P,Q,S,T) sequentially and iteratively while keep-

ing the other terms as constants. The convergence property of the proposed algorithm is

illustrated in Section 4.3.2. Note that the block-wise coordinate descent algorithm does not

have such a property.

4.3.2 Algorithm

In this section, we provide the detailed algorithm as follows.

Algorithm 1: Parallel Computing for the Proposed Method

1. (Initialization) Set l = 1. Set initial values for (P(0),Q(0),S(0),T(0)) and the tuning

parameter λ.

2. (Item Effects) Estimate Q(l) and T(l) iteratively.

(i) Set Q(l) ← Q(l−1), and set T(l) ← T(l−1).

(ii) For each item i = 1, . . . ,m, calculate q
(l)new
i using (4.5).

(iii) For each item cluster Jj, j = 1, . . . ,M , calculate t
(l)new
j based on (4.6) .

(iv) Stop iteration if 1
mK
‖Q(l)new − Q(l)‖2

F + 1
MK
‖T(l)new − T(l)‖2

F < 10−5, otherwise

assign Q(l) ← Q(l)new and T(l) ← T(l)new , and go to step 2(ii).

3. (User Effects) Estimate P(l) and S(l) iteratively.

(i) Set P(l) ← P(l−1), and set S(l) ← S(l−1).

(ii) For each user u = 1, . . . , n, calculate p
(l)new
u using (4.7).

(iii) For each user cluster Vv, v = 1, . . . , N , calculate s
(l)new
v based on (4.8).

(iv) Stop iteration if 1
nK
‖P(l)new−P(l)‖2

F + 1
NK
‖S(l)new−S(l)‖2

F < 10−5, otherwise assign

P(l) ← P(l)new and S(l) ← S(l)new , and go to step 3(ii).

4. (Stopping criterion) Stop if 1
nK
‖P(l) +S

(l)
c −P(l−1)−S

(l−1)
c ‖2

F + 1
mK
‖Q(l) +T

(l)
c −Q(l−1)−

T
(l−1)
c ‖2

F < 10−3, otherwise set l← l + 1 and go to step 2.
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Note that the alternating least square is performed by conducting steps 2 and 3 itera-

tively, while the back-fitting algorithm is carried out within step 2 and step 3. The parallel

computing can be implemented in steps 2(ii), (iii) and 3(ii), (iii).

Algorithm 1 does not require large computational and storage cost. We denote IB1,

IB2 and IALS as the numbers of iterations for back-fitting in steps 2 and 3, and the ALS,

respectively, and CRidge as the computational complexity of solving the ridge regression with

K variables and max{|V1|, . . . , |VN |, |J1|, . . . , |JM |} observations. Then the computational

complexity of Algorithm 1 is no greater than {(m+M)IB1 + (n+N)IB2}CRidgeIALS. Since

both ridge regression and Lasso have the same computational complexity as ordinary least

squares (Efron et al., 2004), the computational cost of the proposed method is indeed no

greater than that of Zhu et al. (2016). For the storage cost, Algorithm 1 requires storages of

only item-specific or user-specific information to solve (4.5) or (4.7), and the sizes of items

and users information not exceeding max{|J1|, . . . , |JM |} and max{|V1|, . . . , |VN |} to solve

(4.6) or (4.8), respectively.

We also establish the convergence property of Algorithm 1 as follows. Let γ∗ = vec(P∗,Q∗,

S∗,T∗) be a stationary point of L(γ|Ro) corresponding to two blocks. That is,

vec(P∗,S∗) = argmin
P,S
L (vec(P,Q∗,S,T∗)|Ro) ,

and

vec(Q∗,T∗) = argmin
Q,T
L (vec(P∗,Q,S∗,T)|Ro) .

The following lemma shows the convergence of Algorithm 1 to a stationary point, which is

a local minimum along each block direction. One way to achieve the global minimum is

to adopt the branch-and-bound technique, and search all possible local minima (Liu et al.,

2005). However, this technique could be computationally intensive.

Lemma 3. The estimate γ̂ = vec(P̂, Q̂, Ŝ, T̂) from Algorithm 1 is a stationary point of the

loss function L(γ|Ro) in (4.2).
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4.3.3 Implementation

In this subsection we address some implementation issues for the proposed method. Our

algorithm is implemented in the R environment, which requires packages “foreach” and

“doParallel” for parallel computing and “bigmemory” and “bigalgebra” for big matrix stor-

age and operation. All the reported numerical studies are implemented using the Linux

system on cluster computers. We can further enhance computation speed through C++

programming with OpenMP.

To select tuning parameter λ, we search from grid points which minimizes the root mean

square error (RMSE) on the validation set. The RMSE on a given set Ω0 is defined as{
1
|Ω0|
∑

(u,i)∈Ω0
(rui − θ̂ui)2

}1/2

. In selection of the number of latent factors K, we choose

K such that it is sufficiently large and leads to stable estimations. In general, K needs

to be larger than the rank of the utility matrix R, but not so large as to intensify the

computation. Regarding the selection of the number of clusters N and M , Corollary 4 of

Section 4.4 provides the lower bound in the order of O(N) and O(M). Note that too small

N and M may not have the power to distinguish between the proposed method and the SVD

method. In practice, if clustering is based on categorical variables, then we can apply the

existing categories, and N and M are known. However, if clustering is based on a continuous

variable, we can apply the quantiles of the continuous variable to determine N and M and

categorize users and items evenly. We then select the number of clusters through a grid

search, similar to the selection of λ and K. See Wang (2010) for a consistent selection of the

number of clusters in more general settings.

In particular, for our numerical studies, we split our dataset into 60% training, 15%

validation and 25% testing sets based on the time of ratings (timestamps; Zhu et al., 2016).

That is, we use historical data to predict future data. If time information is not available,

we use a random split to determine training, validation and testing sets instead.

74



4.4 Theory

In this section, we provide the theoretical foundation of the proposed method in a general

setting. That is, we allow rui to follow a general class of distributions. In particular, we derive

an upper bound for the prediction error in probability, and show that existing approaches

without utilizing group effects lead to a larger value of the loss function, and therefore are

less efficient compared to the proposed method. Furthermore, we establish a lower bound of

the number of clusters which guarantees that the group effects can be detected effectively.

Suppose the expected value of each rating is formulated via a known mean function µ.

That is,

E(rui) = µ(θui),

and θui is defined as in (4.1). For example, if rui is a continuous variable, then µ(θui) = θui;

and if rui’s are binary, then µ(θui) = exp(θui)
1+exp(θui)

.

We let fui = f(rui|θui) be the probability density function of rui. Since each rui is

associated with γ only through θui, we denote fui(r,γ) = f(rui|θui). We define the likelihood-

based loss function as:

L(γ|Ro) = −
∑

(u,i)∈Ω

log fui + λ|Ω|D(γ),

where λ|Ω| is the penalization coefficient, |Ω| is the total number of observed ratings, and

D(·) is a non-negative penalty function of γ. For example, we have D(γ) = ‖γ‖2
2 for the

L2-penalty.

Since, in practice, the ratings are typically non-negative finite values, it is sensible to

assume ‖γ‖∞ ≤ L, where L is a positive constant. We define the parameter vector space as

S(k) = {γ : ‖γ‖∞ ≤ L,D(γ) ≤ k2}.
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Notice that the dimension of γ is dim(γ) = (n + m + N + M)K which goes to infinity as

either n or m increases. Therefore, we assume k ∼ O(
√

(n+m+N +M)K). Similarly, we

define the parameter space for each θui: SΘ(k) = {θ : ‖γ‖∞ ≤ L,D(γ) ≤ k2}.

Assumption 1. For some constant Ḡ ≥ 0, and θui, θ̃ui ∈ SΘ(k),

∣∣∣f 1/2(rui|θui)− f 1/2(rui|θ̃ui)
∣∣∣ ≤ G(rui)‖θui − θ̃ui‖2,

where EG2(rui) ≤ Ḡ2 for u = 1, . . . , n, i = 1, . . . ,m.

The Hellinger metric hΘ(·, ·) on SΘ(k) is defined as:

hΘ(θui, θ̃ui) =

[∫
{f 1/2(rui|θui)− f 1/2(rui|θ̃ui)}2dν(rui)

]1/2

,

where ν(·) is a probability measure. Based on Assumption 1, hΘ(θui, θ̃ui) is bounded by

‖θui − θ̃ui‖2.

We now define the Hellinger metric hS(·, ·) on S(k). For γ, γ̃ ∈ S(k), let

hS(γ, γ̃) =

{
1

nm

m∑
i=1

n∑
u=1

h2
Θ(θui, θ̃ui)

}1/2

.

It is straightforward to show that hS is still a metric. In the rest of this chapter, we suppress

the subscript and use h(·, ·) to denote the Hellinger metric on S(k). In the following, we

show that h(γ, γ̃) can be bounded by ‖γ − γ̃‖2.

Lemma 4. Under Assumption 1, there exists a constant d0 ≥ 0, such that for γ, γ̃ ∈ S(k),

h(γ, γ̃) ≤ d0

√
n+m

nm
‖γ − γ̃‖2.

Suppose γ̂ = arg min
γ∈S(k)

L(γ|Ro) is a penalized maximum likelihood estimator of γ. The-

orem 4 indicates that γ̂ converges to γ exponentially in probability, with a convergence rate

of ε|Ω|.
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Theorem 4. Under Assumption 1 and suppose λ|Ω| <
1
2k
ε2|Ω|, the best possible convergence

rate of γ̂ is

ε|Ω| ∼
√

(n+m)K

|Ω|1/2

{
log

(
|Ω|√
nmK

)}1/2

,

and there exists a constant c > 0, such that

P
(
h(γ̂,γ) ≥ ε|Ω|

)
≤ 7 exp(−c|Ω|ε2|Ω|).

Remark 2. Theorem 4 can be generalized to achieve the convergence property measured

by the L2 distance as a special case of Corollary 2 in Shen (1998). However, the convergence

under the L2 distance is more restrictive than the convergence under the Hellinger distance.

We adopt the Hellinger distance because of the following advantages. First, the convergence

rate of γ̂ depends only on the size of the parameter space S(k) and the penalization coefficient

λ|Ω| (Shen, 1998). In contrast, the convergence rate based on the L2 distance depends on

additional local and global behavior of Var{L(γ̂|Ro) − L(γ|Ro)}. Second, the exponential

bound under the Hellinger distance does not rely on the existence of the moment generating

function of G(·), which is needed for the exponential bound under the L2 distance.

Remark 3. Theorem 4 is quite general in terms of the rates of n and m. If we assume

O(n) = O(m) = O(n+m) such as in the MovieLens data, then ε|Ω| converges faster than εSAJ|Ω| ,

where εSAJ|Ω| ∼
√

(n+m)K

|Ω|1/2

{
log
(

|Ω|
(n+m)k

)}1/2 {
log
(
m
k

)}1/2
is the convergence rate provided by

the collaborative prediction method with binary ratings (Srebro et al., 2005). The exact rate

comparison is not available here.

Remark 4. The definition of S(k) is for the purpose of achieving the best possible conver-

gence rate. Specifically, let S ∈ R(n+m+N+M)K be the true underlying parameter space. Since

S is in an infinite dimensional space when n or m goes to infinity, γ̂ obtained by optimizing

over S may not achieve the best possible convergence rate (Shen and Wong, 1994). Instead,

we adopt the idea of sieve MLE (Grenander, 1981), and approximate S by S(k) which grows

as the sample size increases. This ensures that the penalized MLE γ̂ on S(k) is capable of
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achieving the best possible convergence rate (Shen, 1998).

Remark 5. If we impose ‖γ̂−γ‖2 ≤ dn,m with radius dn,m =
√

2nm
d20(n+m)

ε|Ω|, then the entropy

of S(k) under Assumption 1 also satisfies the condition of local entropy (Wong and Shen,

1995). That is,

S(k) = S(k) ∩

{
1

nm

m∑
i=1

n∑
u=1

‖f 1/2(rui,γ)− f 1/2(rui, γ̂)‖2
2 ≤ 2s2

}
, for all s ≥ ε|Ω|.

Consequently, the convergence rate of ε|Ω| is log(|Ω|) times faster than the convergence rate

calculated by using global entropy.

We now assume that the density function fui is a member of the exponential family in

its canonical form. That is,

f(rui|θui) = H(rui) exp{θuiT (rui)− A(θui)}.

In fact, the following results still hold if f is in the over-dispersed exponential family.

Suppose γ ∈ S(k) and θui ∈ SΘ(k) are the true parameters. Then Theorem 5 indicates

that if misspecified θ̃ui’s are not close to θui’s, then the loss function of the corresponding γ̃

cannot be closer to the loss function of γ than a given threshold in probability.

Theorem 5. Under Assumption 1 and λ|Ω| <
1
2k
ε2|Ω|, there exist ci > 0, i = 1, 2, such that

for ε|Ω| > 0, there exists δ|Ω| > 0, and min
1≤u≤n,1≤i≤m

|θ̃ui − θui| > δ|Ω| implies that

P ∗
(

1

|Ω|
{L(γ̃|Ro)− L(γ|Ro)} > c1ε

2
|Ω|

)
≥ 1− 7 exp(−c2|Ω|ε2|Ω|),

where P ∗ denotes the outer measure (Pollard, 2012).

Remark 6. Theorem 4 and Theorem 5 still hold if the loss function L(·|·) is not likelihood-

based, but is a general criterion function. For such L(·|·), we can replace h(·, ·) by ρ(·, ·) =

K1/2(·, ·) as the new measure of convergence, where K(γ, γ̃) = E{L(γ|R)−L(γ̃|R)}. Note
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that K(·, ·) is the Kullback-Leiber information if L(·|·) is a log-likelihood, which dominates

the Hellinger distance h(·, ·), and hence the convergence is stronger under K(·, ·). See Shen

(1998) for more details about regularity conditions for a more general criterion function.

Suppose γ0 ∈ S(k) is a vectorization of (P,Q,0,0), which corresponds to models with

no group effects. The following Corollary 3 shows that if the true group effects are not close

to 0, then existing methods ignoring group effects such as the SVD model (θ0
ui = p′uqi) lead

to a larger loss in probability than the proposed method.

Corollary 3. Under Assumption 1 and λ|Ω| <
1
2k
ε2|Ω|, there exists ci > 0, i = 1, 2, and a

constant φ ∈ (0, 1], such that for 1√
φ
ε|Ω| > 0, there exists δ|Ω| > 0. Assume that at least

(φnm) pairs of (u, i) satisfy |θ0
ui − θui| > δ|Ω|. Then

P ∗
(

1

|Ω|
{L(γ0|Ro)− L(γ|Ro)} > c1ε

2
|Ω|

)
≥ 1− 7 exp(−c2|Ω|ε2|Ω|).

The following corollary provides the minimal rate of N and M , in terms of n, m, K and

|Ω|. This implies that the number of clusters should be sufficiently large so that the group

effects can be detected.

Corollary 4. Under assumptions in Theorem 4, the rate of N and M satisfies

O(N +M) � nm

|Ω|
log

(
|Ω|√
nmK

)
.

If we further assume that the number of ratings is proportional to the size of the utility

matrix, that is, O(|Ω|) = O(nm), then O(N + M) � log( |Ω|
1/2

K1/2 ). The lower bound of

O(N + M) is useful in determining the minimal number of clusters. For example, for the

MovieLens 10M data where |Ω| = 10, 000, 000, we have the lower bound log( |Ω|
1/2

K1/2 ) ≈ 7 if

K ≤ 10.

79



4.5 Simulation Studies

In this section, we provide simulation studies to investigate the numerical performance of

the proposed method in finite samples. Specifically, we compare the proposed method with

four matrix factorization methods in Section 4.5.1 under a dynamic setting where new users

and new items appear at later times. In Section 4.5.2, we test the robustness of the proposed

model under various degrees of cluster misspecification.

4.5.1 Comparison under the “Cold-Start” Problem

In this simulation studies, we simulate the “cold-start” problem where new users’ and new

items’ information is not available in the training set. In addition, we simulate that users’

behavior is affected by other users’ behavior, and therefore the missingness is not missing

completely at random. Here users and items from the same group are generated to be

dependent from each other.

We set n = 650 and m = 660 and generate pu,qi
iid∼ N(0, IK) for u = 1, . . . , n, i =

1, . . . ,m, where IK is a K-dimensional identity matrix with K = 3 or 6. To simulate group

effects, we let sv = (−3.5 + 0.5v)1K , v = 1, . . . , N , and tj = (−3.6 + 0.6j)1K , j = 1, . . . ,M ,

where N = 13, M = 11. We set cluster size |V1| = · · · = |VN | = 50, and |J1| = · · · = |JM | =

60. Without loss of generality, we assume that covariate information is not available for this

simulation.

In contrast to other simulation studies, we do not generate the entire utility matrix R.

Instead, we mimic the real data case where only a small percentage of ratings is collected.

We choose the total number of ratings to be |Ω| = (1− π̄)nm, where π̄ = 0.7, 0.8, 0.9 or 0.95

is the missing rate. The following procedure is used to generate these ratings.

We first select the l-th user-item pair (ul, il), where l = 1, . . . , |Ω| indicates the sequence

of ratings from the earliest to the latest. If item il’s current average rating is greater than 0.5,

then for user ul, we assign a rating rulil with probability 0.85; otherwise we assign rulil with
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probability 0.2. The rating rulil is generated by (pul+svul )
′(qil+tjil )/3+ε, where ε

iid∼ N(0, 1).

That is, we simulate a setting where users tend to rate highly-rated items. Here ul and il

are sampled from 1, . . . , n and 1, . . . ,m independently, but with weights proportional to

the density of normal distributions N(nl/|Ω|, (0.2n)2) and N(ml/|Ω|, (0.2m)2), respectively.

That is, ratings appearing at a later time are more likely corresponding to newer users or to

newer items. If we fail to assign rulil a value, we re-draw (ul, il) and restart this procedure.

The selection of rulil is based on observed information, so the missing mechanism is missing

at random (Rubin, 1976).

We compare the performance of the proposed method with four competitive matrix fac-

torization models, namely, the regularized singular value decomposition method solved by

the alternating least square algorithm (RSVD; Funk, 2006; Koren et al., 2009), a regression-

based latent factor model (Agarwal and Chen, 2009), a nuclear-norm matrix completion

method (Soft-Impute; Mazumder et al., 2010), and a latent factor model with sparsity

pursuit (Zhu et al., 2016). For the last three methods, we apply the codes in https:

//github.com/beechung/latent-factor-models, the R package “softImpute”, and that

of Zhu et al. (2016), respectively.

For the proposed method, we apply the loss function (4.2). The tuning parameter λ

for the proposed method and the RSVD is selected from grid points ranging from 1 to 29

to minimize the RMSEs on the validation set. For Agarwal and Chen (2009), we use the

default of 10 iterations, while for Mazumder et al. (2010), the default λ = 0 is chosen to

achieve convergence for the local minimum; and for Zhu et al. (2016), the tuning parameter

selection is integrated in their programming coding. We generate simulation settings when

the number of latent factors K = 3 and 6, and the missing rate π̄ = 0.7, 0.8, 0.9, 0.95. The

means and standard errors of RMSEs on the testing set are reported in Table 4.1. The

simulation results are based on 500 replications.

Table 4.1 indicates that the proposed method performs the best across all settings. Over-

all, the proposed method is relatively robust against different missing rates or different num-
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bers of latent factors, and has the smallest standard error in most settings. In the most

extreme case with K = 6 and π̄ = 0.95, the proposed method is still more than 100% better

than the best of the four existing methods in terms of the RMSEs. The RSVD method

performs well when both π̄ and K are small, but performs poorly when either π̄ or K in-

creases. By contrast, Agarwal and Chen (2009), Mazumder et al. (2010) and Zhu et al.

(2016) are able to provide small standard errors when K = 6 and π̄ = 0.95, but have large

RMSEs across all settings. Mazumder et al. (2010) occasionally provides outlying results

due to a convergence problem when π̄ is 0.9 or 0.95. We remove these extreme results in our

simulations.

4.5.2 Robustness against Cluster Misspecification

In this simulation study, we test the robustness of the proposed method when the clusters

are misspecified.

We follow the same data-generating process as in the previous study, but allow the cluster

assignment to be misspecified. Specifically, we misassign users and items to adjacent clusters

with 10%, 30% and 50% chance. Here adjacent clusters are defined as the clusters with the

closest group effects. This definition of adjacent clusters reflects the real data situation. For

example, a horror movie might be misclassified as a thriller movie, but less likely a romantic

movie.

The simulation results based on 500 replications are summarized in Table 4.2. In general,

the proposed method is robust against the misspecification of clusters. In comparison with

the previous results from Table 4.1, the proposed method performs better than the other

four methods in all settings even when 50% of the cluster members are misclassified. On

the other hand, the misspecification rate affects the performance of the proposed method to

different degrees for various settings of π̄ and K. For example, the proposed method below

the 50% misspecification rate is 2.7% worse than the proposed method when there is no

misspecification, in terms of the RMSE under K = 3 and π̄ = 0.7; and becomes 18.8% worse
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than the one with no misspecification under K = 6 and π̄ = 0.95.

4.6 MovieLens Data

We apply the proposed method to MovieLens 1M and 10M data. The two datasets are

collected by GroupLens Research and are available at http://grouplens.org/datasets/

movielens. The MovieLens 1M data contains 1,000,209 ratings of 3,883 movies by 6,040

users, and rating scores range from 1 to 5. In addition, the 1M dataset provides demographic

information for the users (age, gender, occupation, zipcode), and genres and release dates of

the movies. In the MovieLens 10M data, we have 10,000,054 ratings collected from 71,567

users over 10,681 items, and 99% of the movie ratings are actually missing. Rating scores

range from 0.5, 1, . . . , 5, but no user information is available.

Figure 4.1 illustrates the missing pattern of MovieLens 1M data. Both graphs indicate

that the missing mechanism is possibly missing not at random. In the left figure, the right-

skewed distribution from users indicates that only a few users rated a large number of movies.

While the median number of ratings is 96, the maximum can reach up to 2,314. The right

figure shows that popular movies attract more viewers. That is, the number of ratings for

each movie is positively associated with its average rating score, indicating nonignorable

missingness.

For the proposed method, we take advantage of missingness information from each user

and item for clustering. We observe that users who give a large number of ratings tend to

assign low rating scores; therefore we classify users based on the quantiles of the number of

their ratings. For items, we notice that old movies being rated are usually classical and have

high average rating scores. Therefore, the items are clustered based on their release dates.

We use N = 12 and M = 10 as the number of clusters for users and items in both data

sets. The means of ratings from different clusters are significantly different based on their

pairwise two-sample t-tests. In addition, we also try a large range of N ’s and M ’s, but they
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do not affect the results very much.

The proposed method is compared with the four matrix factorization methods described

in Section 4.5.1. Tuning parameters for each method are selected from grid points to minimize

the RMSEs on the validation set. For the proposed method, we apply the loss function (4.2)

and select K = 2 and λ = 12 for the 1M data, and K = 6 and λ = 16 for the 10M data.

For Agarwal and Chen (2009), we select K = 1 for both the 1M and 10M data, which

requires 25 and 10 iterations of the EM algorithm to guarantee convergence, respectively.

For Mazumder et al. (2010), K = 4 and K = 9 are selected for the 1M and 10M data, and

while using different λ’s does not influence the RMSE very much, we apply λ = 0 to estimate

the theoretical local minimum. For Zhu et al. (2016), the tuning and the selection of K are

provided in their coding automatically, and the L0-penalty function is applied. For the

RSVD, K = 4 and λ = 7.5 are selected for the 1M data, and K = 4 and λ = 6 are selected

for the 10M data. In addition, we also compare the proposed method with the “grand mean

imputation” approach, which predicts each rating by the mean of the training set and the

validation set, and the “linear regression” approach using ratings from the training and the

validation sets against all available covariates from users and items.

Table 4.3 provides the prediction results on the testing set, which indicates that the

proposed method outperforms the other methods quite significantly. For example, for the

1M data, the RMSE of the proposed method is 8.7% less than the RSVD, 19.5% less than

Agarwal and Chen (2009), 10.3% less than Mazumder et al. (2010), 9.4% less than Zhu

et al. (2016), and 13.2% and 11.6% less than grand mean imputation and linear regression,

respectively. For the 10M data, the proposed method improves on grand mean imputation,

linear regression, the RSVD, Agarwal and Chen (2009), Mazumder et al. (2010) and Zhu et al.

(2016) by 8.7%, 7.1%, 6.7%, 4.5%, 8.7% and 8.0% in terms of the RMSE, respectively. In

addition, while some of the matrix factorization methods are worse than the linear regression

method, the proposed method always beats the linear regression method.

The numerical studies are run on Dell C8220 computing sleds each with two 10-core Intel
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Xeon E5-2670V2 processors and 64GB RAM. The proposed method uses 27 minutes for 1M

data (K = 2 and λ = 12), and 10.9 hours for 10M data (K = 6 and λ = 16). The RSVD

uses 6.4 minutes for 1M data (K = 4 and λ = 7.5), and 7.1 hours for 10M data (K = 4 and

λ = 6). The Agarwal and Chen (2009) method requires 18.1 minutes for 1M data (K = 1

with 25 iterations), and 1.1 hours for 10M data (K = 1 with 10 iterations), while Mazumder

et al. (2010) method uses 20.8 seconds for 1M data (K = 4), and 11.6 minutes for 10M data

(K = 9), and Zhu et al. (2016) uses 1.1 minutes for 1M data, and 18.5 minutes for 10M data.

The proposed method requires 5-10 more iterations to converge than its counterpart which

does not incorporate group effects. As we discussed in Section 4.3.2, the proposed method

has the same computational complexity as the Zhu et al. (2016) method, and is expected to

be significantly faster if it is programmed in C and implemented through OpenMP.

We also investigate the “cold-start” problem in the MovieLens 10M data, where 96%

of the ratings in the testing set are either from new users or on new items which are not

available in the training set. We name these ratings “new ratings”, in contrast to the “old

ratings” given by existing users to existing items. In Table 4.4, we compare the proposed

method with the four competitive methods on the “old ratings”, the “new ratings”, and

the entire testing set. On the one hand, the RSVD, Mazumder et al. (2010), Zhu et al.

(2016) and the proposed method have similar RMSE for the “old ratings” set, indicating

similar performances on prediction accuracy for existing users and items. On the other hand,

the proposed method has the smallest RMSE compared to the other methods for the “new

ratings” and the entire testing sets, indicating the superior performance of the proposed

method for the “cold-start” problem.

4.7 Discussion

We propose a new recommender system which improves prediction accuracy through incor-

porating dependency among users and items, in addition to utilizing information from the
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non-random missingness.

In most collaborative filtering methods, training data may not have sufficient information

to estimate subject-specific parameters for new users and items. Therefore, only baseline

models such as ANOVA or linear regression are applied. For example, for a new user u,

p̂u = 0, and a method without specifying the group effects has θ̂ui = x′uiβ̂. In contrast, the

proposed method provides a prediction through θ̂ui = x′uiβ̂ + ŝ′vu(q̂i + t̂ji). The interaction

term ŝ′vuq̂i provides the average rating of the vu-th cluster on the i-th item, which guarantees

that θ̂ui is item-specific. The same property also holds for new items. The group effects svu

and tji allow us to borrow information from existing users and items, and provide more

accurate recommendations to new subjects.

The proposed model also takes advantage of missingness information as users or items

may have missing patterns associated with their rating behaviors. Therefore, we propose

clustering users and items based on the numbers of their ratings or other variables associated

with the missingness. Thus the group effects (svu , tji) could provide unique latent information

which are not available in xui, pu or qi. Note that if the group effects (svu , tji) are the only

factors that are associated with the missing process, then the proposed method captures

the entire missing-not-at-random mechanism. In other words, correctly estimating (svu , tji)

enables us to achieve consistent and efficient estimation of θui, regardless of the missing

mechanism.

4.8 Proofs of Theoretical Results

4.8.1 Proof of Lemma 3

By Theorem 2.1 of Ansley and Kohn (1994), each of (4.3) and (4.4) has a unique solution,

and the back-fitting algorithms for (4.5) and (4.6) can be applied in (4.3), and (4.7) and

(4.8) can be applied in (4.4). This guarantees convergence to the unique solution given any

initial value. Therefore, Algorithm 1 is equivalent to minimizing (4.3) and (4.4) iteratively.
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Note that minimizing (4.3) and (4.4) iteratively is a special case of Algorithm MBI (Chen

et al., 2012b) with two blocks. Therefore, following Theorem 3.1 of Chen et al. (2012b),

Algorithm 1 converges to a stationary point. This completes the proof.

4.8.2 Proof of Lemma 4

Since θui = (pu + svu)′(qi + tji) is a quadratic function of (p′u,q
′
i, s
′
vu , t

′
ji

)′, and given that

‖(p′u,q′i, s′vu , t
′
ji

)′‖∞ and ‖(p̃′u, q̃′i, s̃′vu , t̃
′
ji

)′‖∞ are bounded by L, there exists a constant C1 ≥

0, such that

‖θui − θ̃ui‖2 ≤ C1‖(p′u,q′i, s′vu , t
′
ji

)′ − (p̃′u, q̃
′
i, s̃
′
vu , t̃

′
ji

)′‖2.

Recall that fui(r,γ) = f(rui|θui), then based on Assumption 1:

h2(γ, γ̃) =
1

nm

n∑
u=1

m∑
i=1

∫
|f 1/2
ui (r,γ)− f 1/2

ui (r, γ̃)|2dν(r)

≤ 1

nm

n∑
u=1

m∑
i=1

Ḡ2C2
1‖(p′u,q′i, s′vu , t

′
ji

)′ − (p̃′u, q̃
′
i, s̃
′
vu , t̃

′
ji

)′‖2
2

≤ 1

nm
Ḡ2C2

1(‖P− P̃‖2
F + ‖Q− Q̃‖2

F + ‖Sc − S̃c‖2
F + ‖Tc − T̃c‖2

F )

≤ 1

nm
Ḡ2C2

1{‖P− P̃‖2
F + ‖Q− Q̃‖2

F + (n+m)(‖S− S̃‖2
F + ‖T− T̃‖2

F )}

≤ n+m

nm
Ḡ2C2

1‖γ − γ̃‖2
2.

The second-to-last inequality results from the fact that

‖Sc − S̃c‖2
F =

N∑
v=1

|Vv| · ‖sv − s̃v‖2
2

≤ max
v=1,...,N

{|Vv|}‖S− S̃‖2
F

≤ (n+m)‖S− S̃‖2
F ,

and similarly ‖Tc− T̃c‖2
F ≤ (n+m)‖T− T̃‖2

F . The last inequality results from the fact that

‖γ − γ̃‖2
2 = ‖P− P̃‖2

F + ‖Q− Q̃‖2
F + ‖S− S̃‖2

F + ‖T− T̃‖2
F .
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Define d0 = ḠC1, and the result then follows. This completes the proof.

4.8.3 Proof of Theorem 4

We first verify the condition of Lemma 2.1 of Ossiander (1987). Based on Lemma 4,

{
1

nm

n∑
u=1

m∑
i=1

E(supγ̂∈Bd(γ)|f
1/2
ui (r, γ̂)− f 1/2

ui (r,γ)|2)

}1/2

=

{
1

nm

n∑
u=1

m∑
i=1

∫
supγ̂∈Bd(γ)|f

1/2
ui (r, γ̂)− f 1/2

ui (r,γ)|2dν(r)

}1/2

≤
{
n+m

nm
Ḡ2C2

1supγ̂∈Bd(γ)‖γ̂ − γ‖2
2

}1/2

≤
√
n+m

nm
d0d

:= g(d)

Hence for u > 0,

HB(u,S(k), ρ) ≤ H(g−1(u/2),S(k), ρ),

where HB is the metric entropy of S(k) with bracketing of f 1/2, H is the ordinary metric

entropy of S(k), and ρ is the L2-norm.

Next we provide an upper bound for H(g−1(u/2),S(k), ρ). Since g−1(u/2) =
√
nm

2d0
√
n+m

u,
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N ≤ n, M ≤ m, and ‖γ‖∞ ≤ L, we have

0 ≤ HB(u,S(k), ρ)

≤ H(g−1(u/2),S(k), ρ)

≤ log

max


(
L
√

(n+m+N +M)K
√
nm

2d0
√
n+m

u

)(n+m+N+M)K

, 1




≤ max

{
(n+m+N +M)K log

(
2
√

2Kd0L(n+m)√
nmu

)
, 0

}

= max

{
(n+m+N +M)K log

(√
KC(n+m)√

nmu

)
, 0

}

for u ≥ ε2|Ω| and C = 2
√

2d0L.

We now find the convergence rate ε|Ω|, which is the smallest ε that satisfies the conditions

of Theorem 1 of Shen (1998). That is,

supk≥k0ψ1(ε, k) ≤ c2|Ω|1/2

for a constant k0, where ψ1(ε, k) =
∫ x1/2
x

{
HB(u,F(k))

}1/2
du/x with x = (c1ε

2+λ|Ω|(k−k0)),

and F(k) = {f 1/2(r,γ) : γ ∈ S(k)}.

Note that ψ1 ≤ 0 ≤ c2|Ω|1/2 when x ≥ 1, so we only consider the case when 0 < x <

1. Notice that K ≥ 1 and n + m ≥
√
nm. Then with a sufficiently large L, we have

max
{

log
(√

KC(n+m)√
nmu

)
, 0
}

= log
(√

KC(n+m)√
nmu

)
for u ∈ [x, x1/2]. Then:

ψ1(ε, k) =

∫ x1/2

x

{
HB(u,F(k))

}1/2
du/x

≤
(
(n+m+N +M)K

)1/2
∫ x1/2

x

{
log

(√
KC(n+m)√

nm

)
− log u

}1/2

du/x

≤
(
(n+m+N +M)K

)1/2
(x−1/2 − 1)

{
log

(√
KC(n+m)√

nm

)
+ log(x−1)

}1/2

.
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Since λ|Ω| <
1
2k
ε2|Ω| and k ∼ O

(√
(n+m+N +M)K

)
, we have λ|Ω| = o(ε2|Ω|). Therefore, we

solve

supk≥k0ψ1(ε, k) = ψ1(ε, k0)

∼
√

(n+m+N +M)K
1

ε|Ω|

{
log

(√
K(n+m)

ε2|Ω|
√
nm

)}1/2

= c2|Ω|1/2.

Then the smallest rate ε|Ω| is determined by

1

ε|Ω|

{
log

(√
K(n+m)

ε2|Ω|
√
nm

)}1/2

∼ |Ω|1/2√
(n+m+N +M)K

.

Note that N ≤ n and M ≤ m, then we have

ε|Ω| ∼
√

(n+m)K

|Ω|1/2

{
log

(
|Ω|√
nmK

)}1/2

.

For ε|Ω| and λ|Ω|, the conditions of Corollary 1 of Shen (1998) are now satisfied. The result

then follows.

This completes the proof.

4.8.4 Proof of Theorem 5

Based on Theorem 4 and Theorem 1 of Shen (1998), there exists ci > 0, i = 1, 2, such that:

P ∗

(
sup

{γ̃∈S(k),h(γ,γ̃)≥ε}
{L(γ|Ro)− L(γ̃|Ro)} ≥ −c1|Ω|ε2

)
≤ 7 exp(−c2|Ω|ε2).

Therefore, if there exists γ̃ ∈ S(k) such that h(γ, γ̃) ≥ ε, then

P ∗
(
{L(γ|Ro)− L(γ̃|Ro)} ≥ −c1|Ω|ε2

)
≤ 7 exp(−c2|Ω|ε2).
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We suppress the subscript, write hΘ(θui, θ̃ui) as hΘ(θ, θ̃), and write f(rui|θui) as f(r|θ).

We now lower-bound h(γ, γ̃) by a function of |θui − θ̃ui|:

h2
Θ(θ, θ̃) = E

{
f 1/2(r|θ)− f 1/2(r|θ̃)

}2

=

(∫
{f(r|θ)>f(r|θ̃)}

+

∫
{f(r|θ̃)≥f(r|θ)}

){
f 1/2(r|θ)− f 1/2(r|θ̃)

}2

dν(r)

:= I1 + I2,

where I1 =
∫
{f(r|θ)>f(r|θ̃)} f(r|θ)

(
1− exp

[
1
2

{
(θ̃ − θ)T (r)− (A(θ̃)− A(θ))

}])2

dν(r), and

I2 =
∫
{f(r|θ̃)≥f(r|θ)} f(r|θ̃)

(
1− exp

[
1
2

{
(θ − θ̃)T (r)− (A(θ)− A(θ̃))

}])2

dν(r).

For I1, since f(r|θ) > f(r|θ̃), we have Z := (θ̃ − θ)T (r) − (A(θ̃) − A(θ)) ≤ 0. Since

‖γ‖∞ ≤ L, we have θ bounded in a closed set, and hence A′(θ) = Eθ[T (r)] is bounded. Let

LA = supθ |EθT (r)|, then

|A(θ̃)− A(θ)| ≤ LA|θ̃ − θ|.

Then −Z = |Z| ≥ (|T (r)| − LA)|θ̃ − θ|. That is,

1− exp{−1

2
|Z|} ≥ max

{
1− exp

[
1

2
(LA − |T (r)|)|θ̃ − θ|

]
, 0

}
,

and

I1 =

∫
{f(r|θ)>f(r|θ̃)}

f(r|θ)
(

1− exp{−1

2
|Z|}

)2

dν(r)

≥
∫
{f(r|θ)>f(r|θ̃)}

f(r|θ) max

{
1− exp

[
1

2
(LA − |T (r)|)|θ̃ − θ|

]
, 0

}2

dν(r).

In a similar way,

I2 ≥
∫
{f(r|θ̃)≥f(r|θ)}

f(r|θ̃) max

{
1− exp

[
1

2
(LA − |T (r)|)|θ̃ − θ|

]
, 0

}2

dν(r)

≥
∫
{f(r|θ̃)≥f(r|θ)}

f(r|θ) max

{
1− exp

[
1

2
(LA − |T (r)|)|θ̃ − θ|

]
, 0

}2

dν(r).
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Notice that 1− exp
{

1
2
(LA − |T (r)|)|θ̃ − θ|

}
≥ 0 if and only if |T (r)| ≥ LA. Hence,

h2
Θ(θ, θ̃) = I1 + I2

≥
∫
{|T (r)|≥LA}

f(r|θ)
[
1− exp

{
1

2
(LA − |T (r)|)|θ̃ − θ|

}]2

dν(r),

which is a non-decreasing function of |θ̃ − θ|.

Therefore, for each θui, and given the ε|Ω| in Theorem 4, there exists a δ|Ω|(θui), such that

|θ̃ui − θui| > δ|Ω|(θui) implies hΘ(θui, θ̃ui) ≥ ε|Ω|.

Let δ|Ω| = max
1≤u≤n,1≤i≤m

sup
θui

δ|Ω|(θui), then |θ̃ui− θui| > δ|Ω| for each (u, i) implies h(γ, γ̃) ≥

ε|Ω|, and the result follows. This completes the proof.

4.8.5 Proof of Corollary 3

Define Φ = {(u, i) : |θ0
ui − θui| > δ|Ω|}. Then the cardinality of Φ satisfies |Φ| ≥ φnm. From

Theorem 5, for (u, i) ∈ Φ, we have hΘ(θ0
ui, θui) ≥ 1√

φ
ε|Ω|. Hence by the definition of γ0, we

have:

h(γ,γ0) =

{
1

nm

m∑
i=1

n∑
u=1

h2
Θ(θ0

ui, θui)

}1/2

≥
{

1

nm
(φnm)

1

φ
ε2|Ω|

}1/2

= ε|Ω|.

This completes the proof.

4.8.6 Proof of Corollary 4

In the proof of Corollary 3, we verify that h(γ,γ0) ≥ ε|Ω|. Then by Lemma 4, we have:

ε2|Ω| ≤ h2(γ,γ0) ≤ d2
0(n+m)

nm
‖γ − γ0‖2

2.

Then ‖S‖2
F + ‖T‖2

F = ‖γ − γ0‖2 ≥ nm
d20(n+m)

ε2|Ω|.

Meanwhile, we have each entry of S and T bounded by L, and hence ‖S‖2
F + ‖T‖2

F ≤
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(N +M)KL2.

Therefore, N +M ≥ nm
d20L

2K(n+m)
ε2|Ω|. By the rate of ε|Ω| provided in Theorem 4, we have:

O(N +M) � nm

|Ω|
log

(
|Ω|√
nmK

)
.

This completes the proof.
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4.9 Tables and Figures

Table 4.1: RMSE (standard error) of the proposed method compared with four existing
methods, with the missing rate π̄ = 70%, 80%, 90% and 95%, and the number of latent
factors K = 3 or 6, where RSVD, AC, MHT and ZSY stand for regularized singular value
decomposition, the regression-based latent factor model (Agarwal and Chen, 2009), Soft-
Impute (Mazumder et al., 2010), and the latent factor model with sparsity pursuit (Zhu
et al., 2016), respectively.

No. of latent factors Missing Rate The Proposed Method RSVD AC MHT ZSY
K = 3 70% 1.232 (0.029) 1.823 (0.324) 4.218 (0.089) 3.591 (0.178) 2.384 (0.077)

80% 1.329 (0.042) 2.574 (0.506) 4.190 (0.091) 4.064 (0.140) 2.574 (0.085)
90% 1.521 (0.070) 4.002 (0.689) 4.109 (0.095) 4.581 (0.116) 2.982 (0.095)
95% 1.800 (0.103) 4.526 (0.172) 4.087 (0.096) 4.774 (0.123) 3.288 (0.100)

K = 6 70% 1.461 (0.035) 3.728 (0.188) 7.164 (0.132) 7.126 (0.294) 5.844 (0.656)
80% 1.634 (0.058) 4.926 (0.274) 6.962 (0.134) 8.038 (0.267) 5.885 (0.145)
90% 2.032 (0.136) 7.048 (0.270) 6.805 (0.136) 8.931 (0.172) 6.019 (0.420)
95% 2.839 (0.388) 8.316 (0.270) 6.846 (0.149) 9.142 (0.176) 6.207 (0.151)

Table 4.2: RMSE (standard error) of the proposed method when the missing rate is 70%,
80%, 90% or 95%, and the number of latent factors K = 3 or 6, under 0%, 10%, 30% and
50% cluster misspecification rate.

Misspecification Rate
No. of latent factors Missing Rate 0% 10% 30% 50%

K = 3 70% 1.232 (0.029) 1.237 (0.029) 1.250 (0.032) 1.265 (0.038)
80% 1.329 (0.042) 1.340 (0.052) 1.359 (0.051) 1.380 (0.049)
90% 1.521 (0.070) 1.544 (0.180) 1.591 (0.162) 1.626 (0.255)
95% 1.800 (0.103) 1.810 (0.116) 1.869 (0.102) 1.920 (0.093)

K = 6 70% 1.461 (0.035) 1.502 (0.049) 1.560 (0.048) 1.623 (0.059)
80% 1.634 (0.058) 1.698 (0.070) 1.815 (0.074) 1.911 (0.092)
90% 2.032 (0.136) 2.229 (0.198) 2.428 (0.146) 2.648 (0.150)
95% 2.839 (0.388) 3.041 (0.302) 3.245 (0.238) 3.373 (0.178)

Table 4.3: RMSE of the proposed method compared with six existing methods for Movie-
Lens 1M and 10M data, where RSVD, AC, MHT and ZSY stand for regularized singular
value decomposition, the regression-based latent factor model (Agarwal and Chen, 2009),
Soft-Impute (Mazumder et al., 2010), and the latent factor model with sparsity pursuit (Zhu
et al., 2016), respectively.

MovieLens 1M MovieLens 10M
Grand Mean Imputation 1.1112 1.0185

Linear Regression 1.0905 1.0007
The Proposed Method 0.9635 0.9295

RSVD 1.0552 0.9966
AC 1.1974 0.9737

MHT 1.0737 1.0177
ZSY 1.0635 1.0108
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Table 4.4: RMSE of the proposed method compared with four existing methods on the
MovieLens 10M data to study the “cold-start” problem: “old ratings” and “new ratings”
stand for ratings in the testing sets given by existing users to existing items, and by new
users or to new items. Here RSVD, AC, MHT and ZSY stand for regularized singular value
decomposition, the regression-based latent factor model (Agarwal and Chen, 2009), Soft-
Impute (Mazumder et al., 2010), and the latent factor model with sparsity pursuit (Zhu
et al., 2016), respectively.

The proposed method RSVD AC MHT ZSY
“old ratings” 0.7971 0.8062 1.3324 0.8160 0.8018
“new ratings” 0.9348 1.0039 0.9553 1.0252 1.0189

the entire testing set 0.9295 0.9966 0.9737 1.0177 1.0108

Figure 4.1: Missing pattern analysis for the MovieLens 1M data. Left: Most users rated a small
number of movies, while few users rated a large number of movies. Right: Movies with a high
average rating attract more users.
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