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ABSTRACT

This dissertation contains three chapters that study education decisions in Colombia.

Below are the individual abstracts for each chapter.

Chapter 1: Information Policies and Higher Education Choices: Experimental Evidence

from Colombia

This paper studies whether providing information on funding opportunities and col-

lege premiums by degree-college pairs affects higher education decisions in a developing

country. We conducted a randomized controlled trial in Bogotá, Colombia, on a repre-

sentative sample of 120 urban public high schools, 60 of which were assigned to receive

a 35-minute informational talk delivered by local college graduates. Using survey data

linked to administrative records, we analyze student beliefs and evaluate the intervention.

Findings show that most students overestimate true college premiums and are generally un-

aware of funding options. The talk does not affect earning beliefs but improves knowledge

of financing programs, especially among the poor. There is no evidence that information

disclosure affects post-secondary enrollment. However, students in treated schools who do

enroll choose more selective colleges. These positive effects are mostly driven by students

from better socioeconomic backgrounds. We conclude that information policies are ineffec-

tive to raise college enrollment in contexts with significant academic and financial barriers

to entry, but may potentially affect certain students’ choice of college.

Chapter 2: Do High School Peers Influence Post-Secondary Decisions? An Endogenous

Network Approach
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This paper studies the influence of high school peers on post-secondary decisions.

Peer effects are identified in a social network framework. To collect information on so-

cial relationships and post-secondary decisions, over 6,000 senior-year high school students

from Bogotá, Colombia, are surveyed and then followed up after graduation using admin-

istrative records. An endogenous network model is used to correct for social selection.

Results indicate that close peers have some small influence on aspirations and academic

performance, however, their effect is too small to translate into actual enrollment choices.

Chapter 3: Local Effects of Small-Scale Mining on School Education and Child Labor:

Evidence from the Colombia’s Gold Rush

Driven by a sharp rise in international prices, Colombia experienced a gold rush

that reached its peak in 2012. The boom was characterized by the prevalence of small-

scale artisan and illegal mining. This paper estimates the local effects of mining on schools

and children. Using detailed geographic information, I construct two measures of annual

change in local mining intensity capturing both legal and illegal mining: the area covered

by active mining titles, and the deforestation in areas with identified gold deposits. Mea-

surement error and potential endogeneity problems are addressed by instrumenting the

mining measures with the interaction between gold prices and deposits. The main results

indicate that mining significantly increases dropout rates in urban areas. For children aged

9 to 11 this is partially due to a higher probability of working. Results also indicate that

in this particular context even legal mining has been harmful to children. The impact is

larger when illegal mining is accounted for.
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Chapter 1

Information Policies and Higher

Education Choices: Experimental

Evidence from Colombia

1.1 Introduction

Many developing countries have taken steps to reduce inequality in attendance rates for

primary and secondary education. However, enrollment at post-secondary levels remains

relatively low among the poor, despite its significant returns (McMahon, 2009). While

credit constraints are often cited as the main barrier to attend higher education1, recent

research argues that information also plays a key role. In fact, college attendance decisions

are usually based on perceived rather than actual net benefits (Manski, 1993a). Therefore,

inaccurate beliefs may lead to sub-optimal schooling choices that have lasting consequences

for lifetime earnings and welfare.

The influence of incorrect beliefs on educational choices has attracted significant atten-

1 Previous studies suggests that liquidity constraints not only discourage potential applicants from
enrolling (Manski, 1992, Solis, 2013), but also from applying for and receiving student loans (Kane,
1994, Ellwood and Kane, 2000).
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tion because it has a simple and cost-effective solution: providing accurate information.

At basic educational levels, the main concern is low perceived benefits of schooling. Most

papers studying basic education find that students and families tend to underestimate the

returns to education (Nguyen, 2008, Attanasio and Kaufmann, 2009, Jensen, 2010, Kauf-

mann, 2014). “Pure” information policies have proven successful in updating these beliefs.

For instance, Jensen (2010) found that reading a short paragraph on the earning premiums

for completing secondary increased educational attainment in the Dominican Republic by

0.20-0.35 years. Nguyen (2008) finds larger effects in Madagascar when using role models

to deliver information. These treatments may achieve up to 0.24 additional years of ba-

sic schooling per US$100, which is more cost-effective than many interventions aimed at

increasing schooling.2

Higher education schooling decisions are more complex, and so is the associated in-

formation problem. On one hand, college represents a major financial investment, and

students usually have limited information regarding its costs and available funding options

(Booij et al., 2012, Loyalka et al., 2013, Dinkelman and Mart́ınez, 2014, McGuigan et al.,

2014, Hoxby and Turner, 2015, Hastings et al., 2015). On the other, higher education

premiums vary dramatically by college and degree, and information only recently made

available to the wider public (Oreopoulos and Petronijevic, 2013, Hastings et al., 2013).

While a number of countries have created websites for this purpose and encouraged stu-

2 Cost-effectiveness calculations are taken from the Abdul Latif Jameel Poverty Action Lab
website, http://www.povertyactionlab.org/policy-lessons/education/improving-student-
participation.
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dents to visit them3, evidence suggests that they remain largely uninformed. Interestingly,

many studies find that students tend to overestimate the returns to college (Pekkala-Kerr

et al., 2015, McGuigan et al., 2014, Hastings et al., 2015).

This paper conducts a randomized controlled trial (RCT) in which senior high school

students receive information about available funding programs and the premiums to higher

education. We evaluate how providing this information affects their test scores and enroll-

ment decisions. Our experiment takes place in public schools in Bogotá, Colombia. These

schools gather students from low and middle-income families who face severe financial con-

straints to attend college and a very small likelihood of admission to affordable public

universities. In addition, since college loans are not backed by the state, funding insti-

tutions require a co-debtor to approve any request for financial assistance. Most of the

students in our sample are unable to fulfill this binding condition.

We randomly selected a citywide representative sample of 120 public schools to partici-

pate in the study. Half of these schools were assigned to receive a 35-minute informational

talk delivered by local college graduates. Students were first provided with an overview

of the average premiums associated to attending college compared to finishing high school

(and not finishing). We then introduced the Government website where they could search

for the average starting salaries of college graduates by degree-college pairs, as well as the

probability of finding formal employment by degree. After this, students were briefed on

3 Some examples are the Observatorio Laboral in Colombia: http://www.graduadoscolombia.edu.co,
Mi Futuro in Chile: http://www.mifuturo.cl, and the Observatorio Laboral in Mexico:
http://www.observatoriolaboral.gob.mx.
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the admission process and availability of funding programs to cover costs. Almost six thou-

sand students responded our baseline and follow-up surveys – the latter timed just before

students sat down for the high school exit exam. Survey respondents were later matched

with government administrative records that contain standardized exit exam scores and

college enrollment data (degree and institution of attendance).

Our results indicate the intervention did not affect college enrollment rates. However,

students in treated schools that go to college enrolled in more selective institutions. We

find that these individuals increase the likelihood of enrolling in a top-10 college by almost

50% of the mean. This effect is economically significant and potentially has fairly large im-

plications for future earnings (assuming these students graduate, of course). For instance,

graduates from top-10 institutions in Colombia have a higher starting salary compared to

other college graduates, about 50% on average.

The limited impact of information in increasing the demand for college may be explained

by its inability to remove financial and academic barriers to entry. Most of our sample

comes from low-income households, whose monthly income is unable to cover the costs

of college education, has below average grades, and cannot fulfill loan requirements. In

fact, students report that the most important obstacles to attend higher education are

that it is unaffordable (64.5%) or difficult to gain admission (32%). Two of our results

further support this interpretation. On the one hand, the information treatment increased

the knowledge of funding programs but did not update earning beliefs. This is consistent

with the fact that students in our sample see costs as the main barrier to attend college.
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On the other hand, we find larger effects of the intervention on individuals from better

socioeconomic status, for whom the likelihood of attending college is higher because these

barriers are less binding.

Overall findings are consistent with existing evidence on the effectiveness of “pure”

information policies for higher education. These studies provide information on costs and

funding programs, college premiums, or both. Interventions focusing exclusively on costs

and funding yield mixed results. For instance, Dinkelman and Mart́ınez (2014) increase

high school attendance but have no effect on academic performance in Chile. Loyalka et al.

(2013) increase college enrollment despite not affecting specific college choices in China.

Booij et al. (2012) find no detectable effects on loan take-up in Netherlands. Papers that

only provide information about earning premiums, more in the spirit of Jensen (2010),

tend to be less effective. This is the case of Pekkala-Kerr et al. (2015), who find Finnish

students update their college aspirations but do not change their enrollment choices.

There are three studies similar to ours, where students receive information on premiums

as well as cost and funding options. Oreopoulos and Dunn (2013) find that Canadian

students raise their college earning expectations. In Avitabile and De Hoyos Navarro

(2015), Mexican students improve their exit exam scores but not their dropout behavior.

However, the main limitation of these two papers is that they do not assess effects on actual

enrollment choices. Hastings et al. (2015) focus on a sample of students who are applying

for financial aid in Chile, finding that information on costs and earnings has no effect

on overall enrollment, but does encourage low-income students to choose higher-earning
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degrees. It is important to note that our work is different from Hastings et al. (2015)

because we provide information to all students, not only those who apply for financial aid.

This may be a more relevant intervention to Governments considering mass advertising of

different tools to aid students in acquiring more information on college.

This study contributes to two strands of literature. First, it relates to research on

unequal access to higher education. Studying how low-income students make decisions at

the end of high school will shed further light on why so few apply to and ultimately enroll

in college. Second, we add to the burgeoning literature that evaluates information policies

at the post-secondary level, focusing on low-income students from developing countries.

The findings may help understand whether an extensive low-cost information campaign

is useful to attract students to college and if not, why. While our intervention is one of

many possible designs, its implementation and results can potentially inform researchers

and policymakers on what, how, and when information should be provided.

The remainder of this chapter is organized as follows. Section 1.2 provides background

on Colombia’s higher education system. Section 1.3 describes the experimental framework

and intervention. Section 1.4 characterizes our data and sample. Section 1.5 presents the

effects of the information treatment on higher education decisions. Section 1.6 analyzes

what drives our findings by testing several mechanisms suggested by the literature, in-

cluding credit constraints, gender differences, non-cognitive factors, and aspirations. We

conclude in Section 1.7 by discussing our findings and outlining directions for future re-

search.
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1.2 Higher Education in Colombia

There are 327 colleges in Colombia, with 132 located in the Bogotá region.4 Of these 132

colleges, 40 are Universities, 23 are public, and 6 are ranked top-10 in the country.5 Degrees

are classified in two levels, vocational (2-year) and academic (4-year), that encompass 55

fields. Universities supply most of the academic programs, while vocational degrees are

offered at Technical/Technological Institutes. Servicio Nacional de Aprendizaje -SENA- is

the biggest such institute in Colombia, which is public and completely free. Universities

are not free, but students attending public universities pay tuition under a progressive

system based on family income. While low income households pay between 0.1 and 1.8

minimum wages per semester at top-ranked public universities, the average tuition fee for

private universities in the top-10 is 13.2 minimum wages.6 High-quality public universities

are highly demanded and the probabilities of acceptance are small. Scholarships for low-

income students are scarce and only those who achieve the highest scores on the national

exit exam have access to such opportunities.

There are two main funding programs available for the students in our sample. At

the national level, there is the Colombian Public Student Loans Institution (ICETEX), an

4 The Bogotá region includes the city and the following municipalities: Cajicá, Ch́ıa, Facatativá,
Madrid, Mosquera, and Soacha.

5 According to the 2012 Higher education exit exams (SABER PRO), the top-10 colleges in Colombia are
(in order): Universidad de los Andes, Universidad Nacional (Bogotá), Universidad del Rosario, Uni-
versidad Externado, Universidad Icesi (Cali), Universidad Eafit (Medelĺın), Universidad de la Sabana,
Universidad Javeriana, Universidad Nacional (Medelĺın), and Universidad del Norte (Barranquilla).
Universidad Nacional (Bogotá and Medelĺın) are the only public Universities ranked top-10.

6 Hereafter, all monetary variables will be expressed in monthly minimum wages, a commonly used
measure in Colombia. The 2013 monthly minimum wage was 535,600 Colombian Pesos (roughly 288
US Dollars). The average excludes medicine, which is usually more expensive than other degrees in
private universities.
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agency that handles student loans for vocational, academic, and postgraduate education

in Colombia and abroad. This is the largest student loan program, with 22% of enrolled

students during 2013 funded by this source, and is also the most widely known. Recent

reforms, that introduced zero-interest loans for low-income students, have had large impacts

on enrollment and retention (Melguizo et al., 2016). The Secretary of Education of Bogotá

offers a less-known funding option for low-income students from the city’s public schools

through the Fund for Higher Education of Bogotá (FESBO). The fund has two financing

options. The first targets high achieving students and offers loans for any college or degree

choice. The second only provides loans for vocational education. In both cases a fraction

of the debt can be condoned if students complete the degree.

In order to obtain a loan from either funding program, students must fulfill standard

application requirements. However, all credits must be backed by an approved co-debtor,

a restriction that is particularly binding for low-income families. Proposed co-debtors

must pass a credit check and have financial capacity to repay the full debt. In this sense,

Colombia is different from Chile, which provides state-backing for college loans.7

There are significant differences in starting salaries for college graduates between insti-

tutions and degrees. Using official records from the Ministry of Education’s Labor Observa-

tory, which links individual-level social security records to higher education graduates, we

calculate average earnings by college, degree, and field.8 Figure 1.1 shows the distribution

7 A more detailed description and comparison of the higher education systems of Chile and Colombia
can be found in González-Velosa et al. (2015).

8 We use the 2011 monthly salary for college graduates from 2008-2011 that report non-negative earn-
ings.
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of earnings for different categories. Notice that the choice of college matters. In fact, we

observe median premiums for private and top-ranked colleges of 0.33 and 1.05 minimum

wages, respectively. Degrees are at least as important. While median earnings for recent

graduates with an academic degree are 2.9 minimum wages, individuals with vocational

degrees make a median 1.9 minimum wages. Salaries for academic degree graduates are

also much more disperse, reflecting large heterogeneity both within and between fields.

This is partially confirmed by the 0.83 minimum wages premium for Science, Technology,

Engineering, and Mathematics (STEM) degrees.9

In order to characterize the demand for higher education it is worth noting that Colom-

bia has a large share of private high schools, particularly in urban areas. Private schools

account for 28% of the class of 2013, and 51.4% in Bogotá, where higher income households

opt for private education. As shown in the top-left panel of Table 1.1, 72.6% of private

school students come from middle or high income families (>2 minimum wages), and 58%

have at least one parent who completed higher education. In public schools, which are

completely free, the share of students satisfying these two characteristics drops to 29.7%

and 15.6%, respectively. One of the reasons why this happens is that private schools tend

to perform better on high school exit exams and have higher college enrollment rates,

particularly in selective institutions and degrees.

Test scores reflect significant differences between public and private schools. The na-

9 Academic degrees from the following fields are classified as STEM: Agronomy, animal sciences, vet-
erinary medicine, medicine, bacteriology, biology, physics, mathematics, chemistry, geology, business,
accounting, economics, and all engineering.
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tional exit exam, SABER 11, administered by the Colombian Institute for the Promotion

of Higher Education -ICFES- is taken by almost every 11th-grader in public and private

schools, and is required for college admission. Although the application process is com-

pletely decentralized (each institution has its own admission criteria), SABER 11 scores are

heavily weighted by most universities and funding programs. Students are allowed to take

the SABER 11 exam more than once, and it is relatively affordable so it is quite common

to retake if necessary.10 Over the last few years, Bogotá’s private schools have consistently

scored 0.76 SD above the city’s public schools as Table 1.1 shows.

Less than half the students who graduate from high school enroll in college, and the odds

are significantly smaller for public school students. The Ministry of Education matches the

National Information System for Higher Education -SNIES- matched to the ICFES exit

exam records, which allows following up students who enroll in higher education. Our

estimates based on ICFES-SNIES indicate that only 46.9% of the students who graduated

in Bogotá in 2013 enrolled in higher education during 2014. Moreover, private schools

perform much better, since their students have consistently higher probabilities of enrolling

(57.1%) and doing so in an private (42.4%) or a top-10 (16%) college. They are also much

more likely to choose academic (37%) and STEM (40.8%) degrees as Table 1.2 denotes.

In summary, Bogotá has a very heterogeneous higher education system that translates

into large wage premiums for selective colleges and degrees. However, there are significant

financial and academic barriers to entry for low-income and low-achieving students. On the

10 The exam fee is roughly equivalent to US$17 for students taking the SABER 11 for the first time and
$21 otherwise.

10



demand side, Bogotá’s higher income families opt for private schools that have significantly

higher exit exam scores and better placement in selective colleges and degrees. This paper

studies public schools in order to focus on the group that is most disadvantaged in terms

of access to higher education.

1.3 Experimental Setting

1.3.1 Randomization

In order to study the effects of information on higher education decisions, we conducted

a randomized control trial in Bogotá, Colombia.11 Our population of interest were public

high school students enrolled in their senior year. We focused on public schools since they

have significantly lower college enrollment rates, particularly when it comes to selective

institutions and degrees. A representative sample of 120 public school-shifts were ran-

domly selected out of the 570 that offer an academic track.12 These institutions are all

mixed-sex, urban, high schools with at least 20 senior high school students enrolled in the

2012 academic year. Half of the 120 high schools were randomly assigned to receive an in-

formational talk detailing college premiums by degree-college pairs and discussing funding

opportunities, while the remaining institutions served as our comparison group.

While conducting our surveys at schools, we only interviewed students from two class-

rooms. These were selected at random if there were more than two classrooms at the senior

11 This project was reviewed and approved in advance by the Institutional Review Board for the pro-
tection of human subjects of the University of Illinois at Urbana-Champaign (IRB #13570).

12 Most public high schools in Bogotá have two shifts: morning and afternoon. Each shift has different
students and most importantly, different teachers and staff. Hence, each school-shift may be considered
as an independent educational institution. In what follows, we refer to school-shifts as schools.
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level. Otherwise, we surveyed all students in attendance that day. In Colombia, the public

school year often begins in February and ends in December. The timing of our intervention

is summarized in Figure 1.2. Fieldwork for the baseline survey and the intervention took

place during March 2013. The follow-up survey was conducted in August 2013, just before

students took the SABER 11 exam. Our sample of schools covers a large extent of the

city and most urban neighborhoods in Bogotá, with treatment and control schools being

relatively spread out as Figure 1.3 shows.

1.3.2 The Intervention

During our baseline visits in March we first collected self-administered surveys. After all

surveys were collected, students in treatment schools were given a 35-minute presentation

delivered by young local Colombian college graduates.13 The talk described the relationship

between higher education and earnings, presented the most relevant funding programs to

finance post-secondary studies, and emphasized the importance of exit exam scores for

admission committees.

The talk began by describing statistics on the average monthly earnings of individu-

als with incomplete and complete secondary, then comparing these values to the expected

salaries of individuals who completed a higher education degree (differentiating by voca-

tional and academic).14 We then introduced students to two websites where they could find

13 We opted for local college graduates based on findings in Nguyen (2008), where information provided
by local role models yielded higher effects.

14 Reference earnings for incomplete and complete secondary are 0.85 and 1.07 minimum wages, respec-
tively and were estimated using 2011 household surveys.
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very detailed information on the labor market outcomes of recent higher education grad-

uates, including average earnings by degree-college pairs and the probability of obtaining

formal employment by career.15 Additionally, we showed how the different search tools on

the websites worked using some examples.

The second part of the talk focused on two funding programs: ICETEX and FESBO. For

each program, we provided basic information regarding benefits, application requirements,

and deadlines. Students were encouraged to visit the websites of each program for more

information. We emphasized the fact that college education can be affordable, even if they

choose a relatively expensive university.

The last portion of the talk focused on the importance of the high school exit exam

(SABER 11). We insisted on the fact that this test is a determinant factor for admission

decisions in most colleges, and that higher scores also increase the possibility of receiving

funding. Students were allowed some time for questions and we gave out a one-page

handout summarizing the main points of the talk and containing all the relevant links to

the websites described during the talk.16

15 The websites are: http://www.graduadoscolombia.edu.co/ and http://

www.finanzaspersonales.com.co/calculadoras/articulo/salarios-profesion-para-
graduados/45541. They present Labor Observatory information of individuals who graduated
from higher education in a user-friendly way.

16 The original and translated copy of this handout may be found in the Appendix.
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1.4 Data and Estimation Strategy

1.4.1 Data

The baseline survey collected information on 6,636 students in 116 schools.17 The ques-

tionnaire inquired about individual demographic characteristics, family background, so-

cioeconomic status, educational background, aspirations, current employment, future work

perspectives, and attitudes towards risk. The follow-up survey was completed by 6,141

students in the same 116 schools.18 The questionnaire followed up on some baseline ques-

tions, mainly educational and employment aspirations. It also added modules on students’

household environment. In what follows, we refer to the survey data as the Bogotá Higher

Education and Labor Perspectives Survey (BHELPS).

The survey data are further augmented by matching students in our sample to admin-

istrative sources providing information on exit exams and higher education enrollment. We

match the students in BHELPS to the ICFES records, which contain scores for the high

school exit exam (for the 8 different subjects and the overall score), as well as information

on date of birth, gender, parents’ education, and family income. We use the administrative

records for these variables when they are missing in the BHELPS survey. We follow up on

higher education enrollment in 2014 using the ICFES-SNIES administrative records. The

matching rates for ICFES and ICFES-SNIES to the baseline sample are quite high: 95.3%

17 Despite numerous attempts, we were unable to visit four schools. These corresponded to 3 treatment
schools and 1 control school. However, the inability to interview these students does not seem to
generate issues that affect randomization nor representativity as our descriptive statistics and balance
tests presented below reveal.

18 Attrition between baseline and follow-up waves was 7.5%, mainly due to absences on survey days.

14



and 95%. There are no significant differences between matched and unmatched students

and the rates are similar across treatment and control groups.19 We present results for

three samples: i) all students observed in the follow-up BHELPS, ii) students observed in

the baseline BHELPS successfully matched to the administrative data, and iii) individuals

observed in the baseline and follow-up rounds of the BHELPS that are matched to the

administrative data.

1.4.2 Sample Representativity and Characteristics

Our sample, which includes approximately 20% of the city’s public high schools, is rep-

resentative of the target population though slightly over-sampled morning-shift schools.

Table 1.1 summarizes individual and school-level characteristics for all private and public

schools, as well as surveyed students in the BHELPS. In Table 1.3, we present baseline

characteristics for students in control and treatment groups, as well as the p-value for the

differences (clustering standard errors at the school level). Both groups look very similar

on their observable characteristics, suggesting that our randomization was successful.

On average, students are almost 18 years old when they graduate (measured in Decem-

ber 31, 2013) and most were born in Bogotá (84.7%). Almost a quarter of students have

repeated at least one grade. Around 17% of students in the treatment group have at least

one parent that completed college, around 2 points lower than the control group, though

not statistically different. Students in treatment and control groups look almost identical

in terms of family income, where 36% report income over 2 minimum wages. Since most

19 See Table A.1 in the Appendix for attrition diagnostics.
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high-income families opt for private education, we will classify students in public schools

with a family income higher than 2 minimum wages as middle-income. Approximately 71%

of students in the control group have internet at home, while internet access is almost 4

points lower for treatment students and the difference is barely statistically significant at

the 10% level.

We asked students in the follow-up survey what they believed to be the most significant

barriers to enroll in college. The majority responded that college was unaffordable (64.5%),

followed by 32% who claimed that obtaining admission was the largest obstacle. This is

consistent with the fact that private education is expensive and affordable public univer-

sities are very selective. While only 36% of our sample reports monthly family income

above 2 minimum wages, college tuition for a semester may rise to 13.2 minimum wages

at private top-10 institutions, which is equivalent to 2.2 minimum wages per month. As

for progressively-priced public universities (that may cost as little as 0.1 minimum wages)

admission rates are fairly low. While 40% of the students in our sample wanted to enroll

in the National University in the baseline survey, less than 1% made it. These students

might also face barriers from funding institutions. As mentioned before, most available

programs require a co-debtor to back college loans.

Given that risk aversion has been found to play an important role for human capital

accumulation decisions, students were asked to play two different games in the baseline.20

20 Students face the following hypothetical scenario: They were just hired for a new short-term job
and can choose between a fixed salary or a lottery in which earnings are determined by a coin flip.
By varying the optimistic scenario payment, we classify students in a scale from 1 to 4 where 1 is
extremely risk averse and 4 is risk loving. We consider a student risk averse if they are classified 1 or
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The resulting classification indicated that 85% of our sample was risk averse. To measure

academic self-concept, we ask students to rank themselves relative to the rest of the class

on a Likert-scale from 1-10 where the latter is the highest value. As a measure of self-

efficacy, students rated how often they achieved their proposed goals (from 1 to 10, where

1 is never and 10 is always). Individuals above the median response are classified as high

academic self-concept and self-efficacy, while those below constitute the low group. We

also asked their perceived probability of enrollment in college the following year. Almost

85% reported in the baseline survey that they were likely to enroll.

Treatment and control groups look very similar in school characteristics. Using ad-

ministrative data from 2010-2012, we find on average that over 90 students per school sit

for the SABER 11 exam each year. Additionally, previous cohorts performed similarly

across groups. More than half the schools are morning shift and over 95% of them have

a computer lab. A joint-test for balance rejects that individual and school-level attributes

explain the likelihood of attending a treatment school, with a p-value of 0.680.

1.4.3 Estimation Strategy

Given the random assignment of the treatment, we quantify the effect of providing infor-

mation on our main outcomes (e.g. college enrollment, SABER 11 exam scores, etc.) by

estimating a cross-sectional regression, where outcomes in period t = 1 are explained by

baseline treatment status and attributes:

2.
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yis,t=1 = α + βTs + θXis,t=0 + uis,t=1 (1.1)

where yis,t=1 is the studied outcome for student i attending school s at the follow-up, t = 1.

We include an intercept, α, and control for baseline student-level attributes (male, age,

age squared, family income, and parental education) and school characteristics (average

score on exit exam in previous years, has computer lab, shift indicators, and school size)

with Xis,t=0. Our coefficient of interest is β, which captures the average effect of the

informational treatment. uis,t+1 is a mean-zero error term assumed to be uncorrelated

with the treatment indicator since it was randomly assigned. Equation (3.1) is estimated

by Ordinary Least Squares (OLS)21, clustering standard errors at the school-level. Given

that the actual take up of the information depends on the level of attention placed by

students, β would capture the intent-to-treat rather than the average treatment effect of

acquiring new information on degree-college premiums and funding options.

When studying the potential mechanisms driving our main results, we take advantage

that some outcomes are available for both the baseline and follow-up BHELPS surveys. In

these cases, we employ two additional specifications. First, we estimate Equation (3.1), but

include the outcome at the baseline as an additional explanatory variable. This approach

could potentially provide additional power. Second, we estimate a difference-in-differences

specification; defining a binary variable, Post, that equals one after information exposure

21 We also estimate Probit regressions but the main results are largely unchanged. We therefore choose
to report only OLS estimates.
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and zero otherwise:

yist = αPost+ β(Ts × Post) + µi + uist (1.2)

where α estimates the change in the outcome over time and µi is a student-specific effect

that controls for all time-invariant characteristics (observed and unobserved) in our sample.

Again, β is our coefficient of interest, which measures the average effect of the information

treatment on the studied outcome. Standard errors are also clustered at the school-level.

Note that the modified Equation (3.1) and Equation (3.2) can only be estimated for out-

comes obtained in the BHELPS surveys and not from administrative data (i.e. test scores

and enrollment outcomes).

1.5 Results

This section studies the effect of information disclosure on higher education outcomes.

Since information should first affect beliefs, then decisions in high school, and ultimately

college enrollment, the findings are presented in that order.

1.5.1 Beliefs

Our measures of student perceptions include knowledge about funding programs and beliefs

about labor market premiums. Knowledge is measured using binary variables that denote

awareness of funding institutions (ICETEX and FESBO).22 Earning beliefs are measured

22 While desirable, we were unable to collect a measure that captures the degree of knowledge about
funding programs.
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by the error between perceived and actual premiums for vocational and academic degrees

relative to completing high school.23

Baseline statistics for knowledge and beliefs are presented in Table 1.4. Almost 70%

of students express familiarity with ICETEX and 18% know FESBO, with both treatment

and control groups reflecting similar baseline knowledge. These patterns illustrate that

students remain largely unaware of the existence of certain funding programs. On average,

public high school students in Bogotá overestimate college premiums. Approximately 87.6%

overestimate the premiums to vocational degrees and 89.1% for academic degrees. Reported

errors for vocational and academic degrees are 69.6% and 118% larger on average. These

results are consistent with findings for the same population in Colombia (Gamboa and

Rodŕıguez, 2014) and other countries (Pekkala-Kerr et al., 2015, McGuigan et al., 2014,

Hastings et al., 2015).

In addition to overestimating the average premiums to college education, students show

sizable variation in their beliefs. Figure 1.4 plots the distribution of errors for vocational

and academic premiums. Individuals overestimate the associated benefits of vocational

degrees, but most of them are not far from the correct belief. 76.3% are within one standard

deviation of the true premiums. Earning beliefs for academic degrees are more disperse:

60.1% of surveyed students have errors of one standard deviation, 29.2% between one

and three standard deviations, and 10.7% more than three standard deviations. Students

23 Similar to Hastings et al. (2015), we calculate errors by estimating the difference between perceived
and actual premiums and then dividing by the actual premium. That is, if πj denotes the wage
premium and j = {actual, perceived}, then our measures are (πperceived − πactual)/πactual. Results
are similar when using different measures.
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are therefore more misinformed about the average premiums for academic degrees than

vocational careers.24

Are students who overestimate different than those who underestimate? Table 1.5

presents student and school characteristics based on the direction of their baseline beliefs:

below the true premium or above it. There are no differences across students in treatment

and control schools, as expected. Younger students seem to overestimate college premiums

for both vocational and academic degrees. Interestingly, low income students tend to

underestimate the monetary benefits to college education while higher income individuals

overestimate. There is also evidence that repeaters, risk averse, and more confident students

are more likely to overestimate college premiums relative to their counterparts.

The effects of the information treatment on knowledge and beliefs are presented in Table

1.6. Panels A and B report cross-section estimates on two samples: all students observed in

the follow-up BHELPS and students observed in both BHELPS rounds. Panel C presents

the ANOVA regressions, that estimate the effect on the follow-up round controlling for

the corresponding baseline beliefs. Panel D presents difference-in-differences results with

individual fixed-effects. We find that the treatment increases knowledge of the largest

funding program, ICETEX. Students in treated schools increase their average awareness

of this institution by 3.9 percentage points, or 5.6% of the mean. The impact is larger for

students observed in both rounds, with cross-section, ANOVA and difference-in-difference

24 Jensen (2010) suggests that noisier beliefs for higher education may be due to college being a rare
outcome. In our sample, less than 18% of the students have parents who completed higher education.
These students have slightly more accurate beliefs for vocational degrees, but not for academic degrees
compared to those whose parents have not completed higher education.

21



effects oscillating between 4.6 and 4.8 percentage points. Note that the sample in Panel

A includes all students in the follow-up. This includes students in treatment schools who

missed the presentation due to absence that day. Notice that in Panel B, when we restrict

the sample to those present in the baseline (i.e. treatment students were exposed to the

talk) the magnitude of the treatment effect increases. This pattern repeats itself throughout

our results indicating the effect of being directly exposed to the information. Regarding the

smaller funding program, FESBO, the point estimates are close to zero and not statistically

significant.

We find that students are acquiring more information over time, independently from

our intervention. The coefficient for the follow-up period (Post) in Panel C is positive and

significant for both funding programs. Likewise, all individuals significantly reduce the

degree to which they were overestimating college premiums. This reflects that students in

our sample gain further knowledge about higher education during their senior year.

One potential reason we do not find that students in treated schools corrected their

beliefs at a faster rate than control students could be due to opposing effects: students

who were initially overestimating before the intervention update downwards and those that

were underestimating update upwards. We test for this possibility by estimating separate

regressions for each group defined at baseline in Table 1.7. Similar to the average effects,

individuals do correct their beliefs in the appropriate direction, but not because of the

information treatment. Once again, students acquire information over time on their own,

pushing them closer to the actual earning premiums.
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As an additional robustness test, we change the reference values for earning beliefs.

In all previous estimates, we compared students’ perceptions to the average vocational

and academic premiums with respect to high school. Perhaps students used their own

expectations as a reference instead of those for an average individual. In the baseline

BHELPS, we asked students to tell us the degree, college, and field they aspired. Using the

records from the Labor Observatory on starting salaries for college graduates, we calculated

two measures of expected earnings for each student: i) by degree and field, and ii) by degree

and college. The same analysis from Tables 1.6 and 1.7 confirms that the treatment did

not affect premium beliefs (results are shown in Table A.2 in the Appendix).

1.5.2 Test scores

As previously mentioned, academic performance plays a central role in college admissions in

Colombia. The informational talk could have affected effort in high school by increasing the

desirability or attainability of a post-secondary degree. We measure student performance

using test scores from the national high school exit exams (SABER 11) that was taken

approximately five months after our intervention. In particular, we focus on the overall

score and the two most important subjects: mathematics and language.25 All scores are

standardized with mean zero and standard deviation of one with respect to the control

group for ease of comparison.

Table 1.8 presents the average effects of information on test scores for all students

25 The overall score is computed using the official weights: mathematics (3), language (3), social sciences
(2), biology (1), physics (1), chemistry (1) and philosophy (1).
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matched to administrative records (Panel A), and two more restricted samples of students:

those observed in the baseline BHELPS that were successfully matched and individuals

observed in both baseline and follow-up who were matched (Panels B and C). While the

estimated coefficients are consistently positive for mathematics, we do not find statistically

significant effects of the treatment on test scores for any sample, on average. We also test

for differential effects along the score distribution using quantile regressions finding similar

results (see Figure A.1 in the Appendix).

1.5.3 College Enrollment

We are able to track students who enrolled in higher education after graduation, and

may further characterize their college and degree of choice. The enrollment rate for a

post-secondary degree (academic or vocational) in our sample is 44%, with around 34.6%

enrolled in a vocational program. Less than 10% of the students enroll in academic degrees,

very few in top-ranked colleges (1%), and STEM degrees (4.9%).

Table 1.9 presents treatment effect estimates on higher education enrollment for the

same three samples used in Table 1.8. We find that the effect of information on the

probability of enrolling in any post-secondary program is positive, though not statistically

distinguishable from zero. We do find a positive and statistically significant effect on the

probability of enrolling in a top-10 college. These effects range from 0.4 to 0.6 percentage

points depending on the sample. This impact, though small in magnitude, is also economi-

cally significant. In fact, it represents an increase of approximately 50% with respect to the
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control group’s average. Estimated effects on the other three intensive margin outcomes

are also positive but not statistically significant.

Our results are consistent with previous literature. Among “pure” information treat-

ments, most studies find no effect of disclosing information on higher education enrollment

(Booij et al., 2012, Fryer, 2013, Oreopoulos and Dunn, 2013, Pekkala-Kerr et al., 2015,

McGuigan et al., 2014, Dinkelman and Mart́ınez, 2014, Wiswall and Zafar, 2015). Our

intensive margin effects are similar to those of interventions focusing on students who are

already applying to college and have a high probability of enrollment (Hoxby and Turner,

2013, Hastings et al., 2015). In the long run, opting for a top-10 college may have impor-

tant implications on future earnings (conditional on graduating). Recall from Figure 1.1

that students who graduate from a top-10 college in Colombia earn approximately 50%

more than non-top college students (1 minimum wage more on average). Therefore, while

providing information may not lead more individuals to attend college, it does seem to

affect what colleges are chosen by those who do enroll.

1.6 Mechanisms

The effects of providing “pure” information appear to have been modest overall. On the

one hand, students update their knowledge on funding programs but not their earning

beliefs. On the other hand, we observe no improvement on college enrollment but a higher

likelihood of attending top-10 colleges. In this section we explore potential mechanisms

that help interpret these results.
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Our analysis highlights the role of credit constraints and gender differences. We have

already discussed that the main barrier to college attendance for low income students in

Colombia are its high costs. Additionally, there remain considerable gender differences

in higher education choices and labor market outcomes (Goldin et al., 2006). In part,

this may reflect gender-specific traits or preferences that affect boys and girls differen-

tially.26 Complementary to this mechanism, we explore the role of non-cognitive factors

and post-secondary aspirations.27 In the following section we estimate heterogeneous ef-

fects to examine the degree to which the information treatment could have affected groups

in different ways. For example, the presentation could have discouraged poorer students

while encouraging wealthier students to attend college, and the resulting average effect

could be zero in such an event.

1.6.1 Credit Constraints

To evaluate the extent to which credit constraints could explain our results, we explore

the heterogeneity of treatment effects by estimating fully interacted versions of Equation

(3.1) by income groups. Table 1.10 presents the treatment effects for each group (low and

middle income) for our main outcomes. It also includes the p-value for a Wald test that

26 For instance, there is evidence that when given the option, women shy away from competition (Niederle
and Vesterlund, 2007), perform less well in competitive environments (Gneezy et al., 2003), and self-
select into less competitive or lower earning careers (Buser et al., 2014).

27 We focus on three non-cognitive dimensions that have been identified as critical determinants of
human capital accumulation and academic success: risk aversion (Belzil and Hansen, 2004, Belzil and
Leonardi, 2007, Heckman, 2007), self-concept and self-efficacy (Bénabou and Tirole, 2002, Heckman
et al., 2006). Aspirations may keep students from pursuing more ambitious goals or induce frustration
because of the difficulties in achieving their them (Appadurai, 2004, Ray, 2006, Heifetz and Minelli,
2014, Genicot and Ray, 2014, Dalton et al., 2016).
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these coefficients are equal. For parsimony, we focus on the sample of students observed

in the baseline that are matched to the later rounds of survey data and administrative

records.28

In column (1) we find that only students from low-income families learn about ICETEX

– the main funding institute. While the estimated effect on middle-income students is

not statistically significant, low-income students increased their knowledge of ICETEX by

about 6.1 percentage points. This effect is statistically different and more than twice than

the effect on middle-income students. This likely reflects a catching-up: students from

higher income families report significantly higher knowledge of funding programs in the

baseline survey. We do not find any statistically relevant effects or differences between

income levels for all other knowledge or belief outcomes. Overall, students appear to

have valued information on financing more than that of earnings, suggesting that credit

constraints are indeed a primary concern for most of the students in our sample.

Columns (2) to (4) present heterogeneous effects of the intervention by income level on

test scores. We find that students from middle-income families increase their test scores

significantly more than those from low-income families. The estimated coefficients on

math for middle income students oscillate between 7.6% (p-value=.100) and 9.3% standard

deviations and are statistically significant for individuals observed in both rounds of the

BHELPS survey (Table A.3).

28 Appendix Table A.3 presents results using individuals observed in both rounds of the BHELPS and
matched to each source of administrative data. Those findings are unchanged from those discussed
here.
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Heterogeneous effects by family income on enrollment outcomes are presented in columns

(5) to (9). As with the average estimates, we find that all coefficients are positive though

generally not statistically significant. However, students’ intensive margin decisions re-

spond differently to information depending on their income category. First, the effects

previously found on entry to top-10 colleges is driven by middle-income students. The

estimated effect is 1.7 percentage points and statistically different from that of low-income

students. Second, poorer students increase their probability of enrolling in a private college,

with an estimated coefficient of 2.1 percentage points (though the difference with respect

to middle-income students is not statistically significant).

In general, we find that most of the positive effects of the intervention were on the

students from middle-income families in our sample. This further supports the idea that

providing information may have limited effects on higher education demand when such

interventions do not eliminate the main barriers to entry. In the Colombian case these are

twofold: sizable credit constraints and low probabilities of admission to affordable insti-

tutions. Since most of the higher-income students are already aware of available funding

options, it seems plausible that information provides them with additional motivation to

perform better on the exit exam and therefore attend more selective colleges.29

29 In the Appendix, we also consider heterogeneous effects by the direction of errors in baseline earning
expectations. Our results showed that poorer students underestimate college premiums while richer
children overestimate. Findings are shown in Table A.4 and are similar to those using income groups.
While information has slightly larger positive effects on those who underestimate, these differences
are not statistically significant.
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1.6.2 Gender differences and Other Factors

In Panel B of Table 1.10, we present heterogeneous effects by gender. At baseline, boys

had significantly lower knowledge of ICETEX than girls. The treatment appears to have

bridged this gap as suggested by a positive effect on males of 6.9 percentage points, which

is statistically distinguishable from females. At the same time, though estimated effects

on test scores are positive throughout for boys and mostly negative for girls, these effects

are not statistically different to zero.

Evaluating the heterogeneous effects on enrollment outcomes in columns (5) to (9),

we find suggestive evidence that the information treatment increased private, and top-10

college enrollment for boys, but no statistically significant effects for girls. Nevertheless,

we cannot reject the null hypothesis that the effects between males and females are the

same. Overall, it seems that other than catching up on knowledge of the main funding

programs, the treatment did not significantly affect boys and girls differently. If anything,

it may have encouraged boys slightly more than girls to pursue a degree in a more selective

institution.

Other than gender, non-cognitive factors may also play an important role in determining

human capital accumulation and academic success. In Table A.5 in the appendix, we assess

potential heterogeneity by three non-cognitive dimensions: risk aversion, self-concept and

self-efficacy. We also estimate differencial effects by perceived likelihood of enrollment,

which reflects not only students’ self-concept and self-efficacy, but also accounts for the

financial constraints they foresee. We find that treatment effects on test scores and college
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and degree choice are concentrate on students with high-efficacy, low risk-aversion and

high perceived likelihood of enrollment. Finally, we examine whether information affects

student aspirations.30 As can be seen in Table A.7 of the Appendix, there are positive

and significant effects on academic and STEM degrees in the cross-section and ANOVA

estimates, but they are not statistically significant in the difference in difference estimation.

This suggests that intensive margin effects on enrollment are not driven by changes in

student aspirations.

1.7 Conclusion

This paper analyzes whether providing information on funding opportunities and college

premiums by degree-college pairs affects higher education decisions in Bogotá, Colombia.

We conduct a randomized controlled trial on a representative sample of 120 urban public

high schools, half of which received an informational talk. Using survey data linked to

administrative records, we analyze student beliefs and evaluate the intervention. We find

that most students overestimate true college premiums and are generally unaware of fund-

ing options. The talk does not affect earning beliefs but improves knowledge of financing

programs, especially among the poor. There is no evidence that our treatment affects

post-secondary enrollment. However, students in treated schools who do enroll choose

more selective colleges. These positive effects are mostly driven by students from better

30 We exploit a question in both BHELPS waves that asks students what college and degree they
would like to attend. Descriptive and balance statistics for the aspiration outcomes may be found in
Appendix Table A.6.
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socioeconomic backgrounds.

Our findings confirm that misinformation is a problem among potential college entrants

since they tend to overestimate its benefits and are mostly unaware of its costs. However,

this is not the main deterrent for attending college. The existence of significant academic

and financial barriers to college entry in Colombia might limit the influence of better

information because low-income students believe the system limits upward mobility. In

fact, we find larger effects of the intervention on middle-income individuals, for whom

the likelihood of attending college is higher since constraints are less binding. Moreover,

our treatment increased the knowledge of funding programs but did not update earning

beliefs. This is consistent with most students in our sample believing that costs are the

main barriers to higher education. We conclude that providing information cannot single-

handedly increase higher education enrollment among low-income students in this context.

It takes more comprehensive measures, such as zero-interest rates loans (Melguizo et al.,

2016), to achieve substantial improvements in this respect.

Despite the inability to attract more low-income students into college, providing infor-

mation has some positive effects on college choices for those who enrolled. These results

are particularly interesting since we targeted a wider population than other papers, such

as Hastings et al. (2015) and Hoxby and Turner (2013), and yet found similar results in

the intensive margin. Given the low-cost of “pure” information interventions, policymakers

may therefore consider less targeted policies to orient students in their college choices, even

if only a fraction of them is expected to benefit from the additional information.
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How and when to provide information is an interesting direction for future research. Our

intervention is one of many possible designs in this respect. For instance, while we provided

average college premiums, future studies could present the entire distribution of earnings in

a simple and intuitive manner. Likewise, disclosing more detailed cost data may be useful.

The timing of information policies, especially for higher education choices, is also highly

relevant. Additionally, whether these interventions should target students, parents, or both

is an open-ended question. Our results indicate that providing information to students in

the final year of high school is mostly ineffective since it does not eliminate existing barriers

to entry. However, earlier interventions of the benefits and costs of education to students

and their parents may affect household behavior so that by the time children apply to

college, both academic and financial barriers are less binding.
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Table 1.1: Descriptive Statistics: Private, Public, and BHELPS schools

Bogotá BHELPS

Private schools Public schools
Mean (SD) Mean (SD) Mean (SD)

Panel A: Students
Males 0.492 (0.500) 0.458 (0.498) 0.481 (0.500)
Age 17.648 (0.907) 17.641 (0.873) 17.655 (0.950)
Parent completed secondary 0.288 (0.453) 0.395 (0.489) 0.401 (0.490)
Parent completed higher education 0.580 (0.494) 0.156 (0.363) 0.183 (0.387)
Family income (<1 MW) 0.028 (0.165) 0.144 (0.351) 0.172 (0.377)
Family income (1-2 MWs) 0.246 (0.431) 0.559 (0.497) 0.467 (0.499)
Family income (>2 MWs) 0.726 (0.446) 0.297 (0.457) 0.361 (0.480)
Born in Bogotá 0.847 (0.360)
Internet at home 0.691 (0.462)
Victim of violence 0.035 (0.183)
Student works 0.170 (0.375)
Has repeated at least one grade 0.251 (0.434)
Risk averse 0.851 (0.357)
Perceived high academic ranking 0.410 (0.492)
Perceived High self-efficacy 0.352 (0.478)
Perceived high likelihood of enrollment 0.843 (0.364)

Panel B: Schools
Number of students (2010-2012) 111.15 (168.48) 99.66 (48.08) 93.65 (40.66)
SABER 11 score (2010-2012) 0.874 (0.809) 0.117 (0.254) 0.139 (0.248)
Morning shift 0.191 (0.393) 0.547 (0.498) 0.633 (0.482)
Afternoon shift 0.019 (0.137) 0.390 (0.488) 0.348 (0.476)
Single shift 0.790 (0.407) 0.063 (0.243) 0.019 (0.138)
School has computer lab 0.964 (0.187)

Total number of students 37,068 37,787 6,636
Total number of schools 790 570 116

Source: Authors’ calculations from ICFES and BHELPS survey.
Notes: Statistics for Bogotá are based on ICFES, which includes the universe of schools offering an
academic track. Using date of birth, we compute each student’s age on December 31, 2013. The number
of students is the average number of individuals who sat for the SABER 11 exam in each year from 2010-
2012. SABER 11 scores are standardized with respect to each year’s national average. The difference
between private and public schools is statistically significant at the 1% level for all attributes except
age and number of students.
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Table 1.2: Descriptive Statistics for the 2013 Cohort Test Scores and En-
rollment Choices

Bogotá BHELPS

Private schools Public schools
Mean (SD) Mean (SD) Mean (SD)

Panel A: Exit Exam
Overall Score 0.864 (1.192) 0.138 (0.841) 0.127 (0.823)
Math 0.708 (1.231) 0.046 (0.884) 0.024 (0.868)
Language 0.702 (1.060) 0.156 (0.870) 0.171 (0.864)

Panel B: College Enrollment
Enrolled 0.571 (0.495) 0.426 (0.495) 0.438 (0.496)
Public College 0.147 (0.354) 0.278 (0.448) 0.287 (0.452)
Private College 0.424 (0.494) 0.148 (0.355) 0.151 (0.358)
Top-10 College 0.160 (0.366) 0.011 (0.106) 0.011 (0.102)
Academic degree (4-year) 0.370 (0.483) 0.098 (0.298) 0.092 (0.290)
Vocational degree (2-year) 0.201 (0.400) 0.328 (0.469) 0.346 (0.476)
STEM degree 0.211 (0.408) 0.054 (0.227) 0.049 (0.215)

Source: Authors’ calculations from ICFES, SNIES, and BHELPS survey.
Notes: Statistics for Bogotá are based on 2013 ICFES and 2014 SNIES data, which includes the
universe of schools offering an academic track. SABER 11 scores are standardized with respect
to the 2013 national average. The difference between private and public schools is statistically
significant at the 1% level for all attributes.
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Table 1.3: Balance in Baseline Student and School Characteristics by Treat-
ment

Control Treatment Difference

Mean (SD) Mean (SD) P-value

Panel A: Students
Males 0.485 (0.500) 0.477 (0.500) 0.647
Age 17.641 (0.938) 17.668 (0.962) 0.469
Born in Bogotá 0.851 (0.357) 0.843 (0.364) 0.539
Parent completed secondary 0.405 (0.491) 0.396 (0.489) 0.567
Parent completed higher education 0.194 (0.396) 0.172 (0.377) 0.263
Family income (<1 MW) 0.167 (0.373) 0.176 (0.381) 0.585
Family income (1-2 MWs) 0.467 (0.499) 0.468 (0.499) 0.976
Family income (>2 MWs) 0.366 (0.482) 0.357 (0.479) 0.720
Internet at home 0.711 (0.453) 0.672 (0.470) 0.090
Victim of violence 0.034 (0.181) 0.035 (0.184) 0.816
Student works 0.163 (0.370) 0.176 (0.381) 0.329
Has repeated at least one grade 0.247 (0.431) 0.255 (0.436) 0.648
Risk averse 0.856 (0.351) 0.845 (0.362) 0.400
Perceived high academic ranking 0.425 (0.494) 0.395 (0.489) 0.111
Perceived high self-efficacy 0.349 (0.477) 0.355 (0.479) 0.714
Perceived high likelihood of enrollment 0.841 (0.365) 0.844 (0.363) 0.862

Panel B: Schools
Number of students (2010-2012) 95.007 (48.106) 92.349 (31.826) 0.740
SABER 11 score (2010-2012) 0.160 (0.215) 0.118 (0.275) 0.379
Morning shift 0.641 (0.480) 0.625 (0.484) 0.867
Afternoon shift 0.337 (0.473) 0.359 (0.480) 0.807
Single shift 0.023 (0.149) 0.016 (0.125) 0.808
School has computer lab 0.970 (0.172) 0.958 (0.201) 0.741

Total number of students 3,259 3,377
Total number of schools 59 57

Source: Authors’ calculations from ICFES and baseline BHELPS survey.
Notes: Using date of birth, we compute each student’s age on December 31, 2013. The number of
students is the average number of individuals who sat for the SABER 11 exam in each year from
2010-2012. SABER 11 scores are standardized with respect to each year’s national average. The
last column presents the p-value of the difference in the attribute between treatment and control
groups calculated by regression with clustered standard errors at the school-level. A joint-test for
balance rejects that individual and school-level characteristics explain the likelihood of attending
a treatment school, with a p-value of 0.680.

Table 1.4: Balance in Baseline Student Knowledge and Beliefs by Treat-
ment

Control Treatment Difference

Mean (SD) Mean (SD) P-value

Knows ICETEX 0.700 (0.458) 0.688 (0.463) 0.612
Knows FESBO 0.180 (0.384) 0.168 (0.374) 0.295
Premium Error: Vocational 0.696 (1.539) 0.615 (1.475) 0.105
Premium Error: Academic 1.184 (1.259) 1.100 (1.234) 0.091

Source: Authors’ calculations from baseline BHELPS survey.
Notes: The last column presents the p-value of the difference in the attribute between treat-
ment and control groups calculated by regression with clustered standard errors at the school-
level.
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Table 1.5: Baseline Characteristics by Direction of Belief Error

Premium Error: Vocational Premium Error: Academic

Difference Difference
Under Over P-value Under Over P-value

Panel A: Students
Treatment group 0.529 0.505 0.332 0.542 0.504 0.132
Males 0.471 0.484 0.590 0.475 0.484 0.691
Age 17.765 17.624 0.001 17.800 17.621 0.000
Born in Bogotá 0.829 0.852 0.130 0.838 0.850 0.446
Parent completed secondary 0.389 0.402 0.485 0.390 0.402 0.539
Parent completed higher education 0.183 0.186 0.811 0.173 0.188 0.313
Family income (<1 MW) 0.229 0.160 0.000 0.211 0.164 0.006
Family income (1-2 MWs) 0.458 0.467 0.601 0.498 0.463 0.103
Family income (>2 MWs) 0.314 0.373 0.002 0.291 0.373 0.000
Internet at home 0.665 0.699 0.076 0.670 0.697 0.143
Victim of violence 0.040 0.034 0.445 0.033 0.034 0.837
Student works 0.194 0.168 0.092 0.186 0.169 0.298
Has repeated at least one grade 0.280 0.243 0.065 0.288 0.244 0.036
Risk averse 0.826 0.858 0.043 0.821 0.858 0.024
Perceived high academic ranking 0.357 0.421 0.003 0.321 0.422 0.000
Perceived high self-efficacy 0.370 0.347 0.242 0.337 0.350 0.533
Perceived high likelihood of enrollment 0.788 0.852 0.000 0.770 0.854 0.000

Panel B: Schools
Number of students (2010-2012) 91.602 94.118 0.123 91.216 94.145 0.101
SABER 11 score (2010-2012) 0.133 0.143 0.408 0.119 0.145 0.038
Morning shift 0.620 0.637 0.417 0.634 0.635 0.971
Afternoon shift 0.359 0.343 0.441 0.355 0.344 0.615
Single shift 0.021 0.020 0.723 0.010 0.021 0.000
School has computer lab 0.971 0.964 0.260 0.961 0.965 0.374

Source: Authors’ calculations from ICFES and baseline BHELPS survey.
Notes: The difference column presents the p-value of the difference in the attribute between students who
over and under estimate earning premiums and are calculated by regression with clustered standard errors
at the school-level.
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Table 1.6: Treatment Effects on Knowledge and Beliefs

Premium Premium
Knows Knows Error: Error:

ICETEX FESBO Vocational Academic
(1) (2) (3) (4)

Panel A: After, All students in follow-up

Treat 0.039*** -0.001 0.02 -0.023
(0.014) (0.011) (0.044) (0.040)

Observations 6,003 5,799 5,920 5,913

Panel B: After, Matched with baseline
Treat 0.048*** -0.001 0.015 -0.017

(0.015) (0.012) (0.043) (0.040)

Observations 5,427 5,242 5,361 5,355

Panel C: ANOVA
Treat 0.047*** 0.001 0.012 -0.005

(0.013) (0.011) (0.044) (0.039)

Observations 5,347 5,096 5,053 5,046

Panel D: Difference-in-differences
Treat × Post 0.046** 0.007 0.077 0.043

(0.018) (0.014) (0.062) (0.054)
Post

0.125*** 0.025** -0.097** -0.110***
(0.011) (0.010) (0.049) (0.042)

Observations 10,861 10,591 10,538 10,532
Mean(y) at baseline 0.694 0.174 0.655 1.141

Source: Authors’ calculations from BHELPS survey.
Notes: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each column and panel
correspond to a separate OLS regression. Panels A and B control for student and household
attributes (male, age, age squared, family income, and parental education) and school charac-
teristics (average SABER 11 score in previous years, has computer lab, shift indicators, and
school size). Panel C presents coefficients for difference-in-difference regression that control for
individual fixed-effects. Standard errors are clustered at school-level.

37



Table 1.7: Treatment Effects on Beliefs by Direction of Belief Error

Premium error: Vocational Premium error: Academic

Under Over Under Over
(1) (2) (3) (4)

Panel A: After, Matched with baseline
Treat 0.097 -0.009 0.008 -0.023

(0.122) (0.045) (0.116) (0.043)

Observations 601 4,452 515 4,531

Panel B: Difference-in-differences
Treat × Post 0.107 0.052 -0.056 0.047

(0.189) (0.058) (0.131) (0.050)
Post 1.732*** -0.334*** 1.498*** -0.289***

(0.145) (0.044) (0.100) (0.040)

Observations 1,236 8,993 1,060 9,162
Mean(y) at baseline -1.604 0.974 -0.837 1.382

Source: Authors’ calculations from BHELPS survey.
Notes: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each column and panel
correspond to a separate OLS regression. Panels A controls for student and household attributes (male,
age, age squared, family income, and parental education) and school characteristics (average SABER
11 score in previous years, has computer lab, shift indicators, and school size). Panel B presents
coefficients for difference-in-difference regressions that control for individual fixed-effects. Standard
errors are clustered at school-level.

Table 1.8: Treatment Effects on Test Scores

Overall Math Language
(1) (2) (3)

Panel A: All matched administrative
Treat -0.015 0.026 -0.013

(0.029) (0.034) (0.028)

Observations 6,896 6,896 6,896

Panel B: Matched with baseline
Treat -0.012 0.032 -0.010

(0.030) (0.034) (0.029)

Observations 6,309 6,309 6,309

Panel C: Matched with baseline and follow-up
Treat 0.001 0.045 -0.003

(0.033) (0.038) (0.032)

Observations 5,414 5,414 5,414

Source: Authors’ calculations from ICFES and BHELPS survey.
Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each column and panel cor-
responds to a separate OLS regression that controls for student and household attributes (male, age,
age squared, family income, and parental education) and school characteristics (average SABER
11 score in previous years, has computer lab, shift indicators, and school size). Standard errors are
clustered at school-level.
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Table 1.9: Treatment Effects on Enrollment Choices

Enrolled Private Top-10 Academic STEM
College College College Degree Degree

(1) (2) (3) (4) (5)

Panel A: All matched administrative
Treat 0.013 0.011 0.004 0.008 0.006

(0.019) (0.010) (0.002) (0.008) (0.006)

Observations 6,868 6,868 6,868 6,868 6,868

Panel B: Matched with baseline
Treat 0.012 0.015 0.005* 0.009 0.008

(0.019) (0.010) (0.002) (0.009) (0.006)

Observations 6,289 6,289 6,289 6,289 6,289

Panel C: Matched with baseline and follow-up
Treat 0.005 0.012 0.006** 0.011 0.009

(0.020) (0.011) (0.003) (0.009) (0.006)

Observations 5,401 5,401 5,401 5,401 5,401
Mean(y) control group 0.444 0.153 0.011 0.095 0.05

Source: Authors’ calculations from ICFES, SNIES, and BHELPS survey.
Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each column and panel corresponds
to a separate OLS regression that controls for student and household attributes (male, age, age squared,
family income, and parental education) and school characteristics (average SABER 11 score in previous
years, has computer lab, shift indicators, and school size). Standard errors are clustered at school-level.
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Table 1.10: Treatment Effects by Family Income and Gender (baseline matched to administrative
data)

Knows Overall College Private Top-10 Academic STEM
ICETEX score Math Language Enrollment College College Degree Degree

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Treatment effects by family income
Low income 0.061*** -0.045 0.008 -0.058 0.002 0.021** 0.001 0.007 0.008

(0.018) (0.036) (0.036) (0.035) (0.021) (0.009) (0.002) (0.008) (0.006)
Middle income 0.028* 0.043 0.076 0.066 0.032 0.008 0.012** 0.014 0.009

(0.015) (0.044) (0.046) (0.042) (0.025) (0.019) (0.005) (0.017) (0.013)

P-value (Low=Middle) 0.080 0.090 0.144 0.013 0.243 0.522 0.050 0.717 0.906
Observations 5427 6,309 6,309 6,309 6,289 6,289 6,289 6,289 6,289

Panel B: Treatment effects by Gender
Female 0.029 -0.049 0.008 -0.054 -0.008 0.005 0.003 0.004 0.003

(0.018) (0.038) (0.040) (0.040) (0.024) (0.014) (0.003) (0.011) (0.007)
Male 0.069*** 0.026 0.057 0.035 0.033 0.024* 0.007* 0.014 0.014

(0.019) (0.039) (0.042) (0.035) (0.022) (0.013) (0.004) (0.012) (0.010)

P-value (Female=Male) 0.069 0.109 0.289 0.063 0.122 0.265 0.421 0.491 0.336
Observations 5,427 6,309 6,309 6,309 6,289 6,289 6,289 6,289 6,289

Source: Authors’ calculations from ICFES, SNIES, and BHELPS survey.
Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each column and panel corresponds to a separate OLS
regression that controls for student and household attributes (male, age, age squared, family income, and parental education) and
school characteristics (average SABER 11 score in previous years, has computer lab, shift indicators, and school size). Standard
errors are clustered at school-level.
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Figure 1.1: Average Earnings of Recent Graduates
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Source: Authors’ elaboration from Labor Observatory data.
Notes: The figure shows the distribution of initial earnings for different categories of college and degree. Monthly earnings
are expressed in minimum wages, and correspond to the average pay of recent graduates by college, level, and field as
defined in Section 1.2. The grey box represents the 25th and 75th percentiles, the white line denotes the median.
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Figure 1.2: Timing of Intervention and Data Recollection
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Figure 1.3: Geographic distribution of treatment and control schools

Source: Authors’ elaboration from Secretary of Education’s School Census and BHELPS.
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Figure 1.4: Distribution of Earning Premium Beliefs at Baseline
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Source: Authors’ elaboration from BHELPS baseline sample.
Notes: We calculate the error percentage as the difference between perceived and actual premiums divided by the actual
premium. Let πj denote the wage premium, with j = {actual,perceived}. Errors are calculated as
(πperceived − πactual)/πactual.
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Chapter 2

Do High School Peers Influence

Post-Secondary Decisions? An

Endogenous Network Approach

2.1 Introduction

While most of the peer effects literature in education has focused on academic perfor-

mance and juvenile behavior, little is known about social influence on post-secondary de-

cisions. This question is relevant for at least two reasons. First, conditional on student

characteristics, college and major choices are key determinants of earnings (e.g. Dale and

Krueger, 2002, 2011, Hoekstra, 2009, Hastings et al., 2013, Reyes et al., 2016). Second,

post-secondary choices are determined by a number of factors beyond academic perfor-

mance. For instance, Hoxby and Turner (2013) show that low-income high-achieving stu-

dents apply to less selective colleges than their high-earning counterparts. Papay et al.

(2015) show that performance labels influence college choice even though they provide no

additional information. Zafar (2013) and Wiswall and Zafar (2015) find that heterogeneous
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preferences and tastes are the main determinants of major choice in college. Although it

seems reasonable to believe that peers play a key role in post-secondary decisions, there is

not enough evidence to support or reject this claim.

One of the main difficulties in addressing this question lies in the presence of three

confounding sources of social influence: endogenous, exogenous and correlated effects. En-

dogenous effects correspond to the influence of peers’ behavior on the individual behavior.

They are the most relevant ones to researchers and policy makers because they reflect so-

cial spillovers, which have serious implications for school integration policies, and impact

evaluation. Exogenous effects are the influence of the peers’ characteristics on the individ-

ual behavior, and Correlated effects happen when individuals in the same group behave

similarly because they share group characteristics. Most of the literature on peer effects

and post-secondary choices is based on group interaction assumptions and is unable to

separate endogenous from exogenous effects (Sacerdote, 2001, Fletcher, 2015, Luppino and

Sander, 2015). A second body of literature exploits non-overlapping groups (De Giorgi

et al., 2010), or social networks (Mora and Oreopoulos, 2011, Burgess et al., 2011) to iden-

tify endogenous peer effects. In those papers, the key assumption is that networks are

formed exogenously, which is less realistic when it comes to social relationships.

This paper measures the influence of high school peers on post-secondary decisions.

Endogenous peer effects are identified in a network framework. The data on social rela-

tionships and post-secondary aspirations was collected in 2013, with a survey conducted in

116 high schools from Bogotá, Colombia. The sample includes over 6,000 senior-year high-
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school students that are about to take the national exit exam. A year after graduation,

the survey was matched to official administrative records to follow-up on exit exam scores

and enrollment choices. In the benchmark social influence model, individuals choose based

on their peers’ choices and characteristics, and class fixed effects account for observed and

unobserved class correlated factors. The exogenous network assumption is then relaxed

using a selection-correction model.

The main results indicate small significant endogenous peer effects on some of the

aspirations and exit exam outcomes, but not on the enrollment choices. Restricting the

network to study mates or reciprocal nominations yields similar results. This evidence

suggests that peers’ influence on aspirations and academic performance fails to translate

into actual enrollment choices. This can be explained by other factors that determine

college enrollment, such as financial constraints, and by the fact that the peer effects on

aspirations and test scores are relatively small. I also find that models that omit class

correlated effects and social selection find positive and significant endogenous effects for all

outcomes. This confirms the importance of controlling for these sources of bias, otherwise

there is a big chance of overestimating the role of peers.

The paper contributes to the literature in a at least three ways. First, it estimates

endogenous peer effects on post-secondary decisions while controlling for unobserved cor-

related effects and social selection. This is an improvement with respect to papers that are

based on group interactions, which are unable to identify endogenous effects. Furthermore,

results confirm that assuming exogenous relationships, as in Mora and Oreopoulos (2011)
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or Burgess et al. (2011), could lead to biased estimates. Second, this paper studies the

effects of high school peers on post-secondary intensive and extensive margin decisions.

Fletcher (2015) focus on college enrollment, but does not assess the social effects on the

intensive margin. Sacerdote (2001) and De Giorgi et al. (2010) successfully exploit random

assignment rules to deal with selection problems, however they are restricted to college

peers and their effects on major choices. Moreover, having data on aspirations and actual

enrollment allows studying the role of school peers at two different stages of the decision

process. As will be seen, peers have more influence on aspirations than on actual enroll-

ment choices. Third, it considers different types of social relationships, finding that results

are robust to how network are defined.

The remainder of this chapter is organized as follows. The next section provides a brief

summary of the literature, focusing on the identification of endogenous peer effects, and the

existing evidence of peer effects on post-secondary decisions. Sections 3 and 4 describe the

data and the empirical strategy. Section 5 presents the main results, and the last section

concludes.

2.2 Previous literature

2.2.1 Identification of Endogenous Peer Effects

The major empirical challenge in the peer effect literature is to identify among three sources

of social influence: endogenous, exogenous and correlated effects. Endogenous effects cor-

respond to the influence of peers’ behavior on the individual behavior. Exogenous effects
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capture the influence of the peers’ characteristics on the individual behavior. Social effects

are usually defined as the sum of these two effects. Correlated effects, on the other hand,

happen when individuals in the same group behave similarly because they share group

characteristics. There are at least two identification problems to consider. On the one

hand, group selection and unobserved correlated effects (e.g. teachers quality) are poten-

tial sources of bias. On the other hand, identifying endogenous from exogenous effect in

the linear-in-mean model requires prior information on the composition of the reference

group. Manski (1993b) refers to this as the reflection problem.

The endogenous peer effects are the most interesting ones because they reflect social

spillovers. Identifying them is highly relevant for researchers and policy makers for at

least two reasons. First, in the presence of spillovers, school and class composition have

direct effects on education outcomes. This has been a central argument to promote more

integrated and socially mixed learning environments, and has motivated a whole literature

that studies the effects of integration policies (e.g. Hoxby, 2000, Hanushek et al., 2002,

Angrist and Lang, 2004). Second, social spillovers may partially account for the benefits

of a program. Moreover, in scenarios where treatment and control groups are in contact,

spillovers may seriously bias the estimated impacts (e.g. Kremer et al., 2009, Bobonis and

Finan, 2009, Angelucci and De Giorgi, 2009).

Most of the literature on peer effects assumes group interactions, i.e. all members

of a dorm, classroom or school are considered peers. The most relevant papers in this

category address the selection problem and estimate social effects. Some of them exploit
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a random assignment rule (e.g. Sacerdote, 2001, Zimmerman, 2003, Duflo et al., 2011,

Imberman et al., 2012, Deming et al., 2014, Griffith and Rask, 2014). Other papers use the

idiosyncratic variations in composition within schools (e.g. Hoxby, 2000, Hanushek et al.,

2003, Ding and Lehrer, 2007). The main limitation of both of these approaches is that

they are unable to separate endogenous from exogenous effects.1 Besides, it is possible

that unobserved correlated factors bias the estimated social effects, especially when peer

groups are defined at the class or school level. The only paper based on group interactions

that identify endogenous effects is Lee (2007), with a methodology that takes advantage

of the variations in group size.

When more detailed information on the social relationships is available, it is possible to

relax the groups interaction assumption. In this case, individuals are no longer influenced

by all the students in the group but only by those in each person’s reference group. This

can be done when students are affiliated to multiple overlapping groups (e.g. Laschever,

2009, De Giorgi et al., 2010) or when there is detailed information on social networks (e.g.

Bramoullé et al., 2009, Calvó-Armengol et al., 2009, Lin, 2010, Fryer and Torelli, 2010).

The main advantage of this approach is that it exploits the non-transitivity to identify

endogenous from exogenous peer effects. Moreover, it is possible to capture unobserved

correlated effects and rule out selection bias using group fixed-effects.

The main limitation of this approach is that it assumes that networks are formed ex-

ogenously. This assumption is unrealistic when it comes to social relationships. In fact,

1 Sacerdote (2001) proposes a structural model to achieve this, but concludes that identification of
endogenous effects is only possible under very restrictive assumptions.
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it is violated if links are formed based on factors that are also related to post-secondary

decisions. This may happen when students tend to associate with similar others (ho-

mophily), and common characteristics also determine post-secondary choices. It might

also result from network dependency. For instance, if popularity is correlated with school

performance or post-secondary decisions (e.g. Calvó-Armengol et al., 2009, Conti et al.,

2013). Two recent papers have addressed this problem with selection-correction models in

the spirit of Heckman (1979). Goldsmith-Pinkham and Imbens (2013) propose a network

formation model where individuals are more likely to be linked when they have similar

observed characteristics and belong to the same unobserved type. Hsieh and Lee (2014)

follow a similar strategy, but generalize the selection step in at least two ways. First, their

model considers any type of social relationships, including directed and undirected links.

Second, it allows for n continuous unobserved characteristics that determine link formation.

2.2.2 Social Influence on Post-Secondary Decisions

Among the papers based on group interaction that studies the social influence on post-

secondary choices, only three address in some way the selection bias problem. The best case

for exogenous selection is Sacerdote (2001), who exploits the random assignment of dorms at

Dartmouth College. Results show that roommates do influence academic performance and

affiliation to social groups, but have no significant effect on major choice. Fletcher (2015)

attenuates the bias by controlling for school fixed effects and instrumenting classmates

behavior with their parents’ expectations. The authors find that school classmates affect
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the probability of enrolling in college. Luppino and Sander (2015) also reduce the bias by

controlling for campus and application-admissions patterns fixed effects. The main results

indicate that attending a college campus with stronger peers in science negatively affects the

probability of completing a Science, Technology, Engineering, and Mathematics (STEM)

degree. A key limitation of these papers is that they are unable to separate endogenous

from exogenous effects.

Three papers study social effects on post-secondary decisions following a network ap-

proach. De Giorgi et al. (2010) take advantage of randomly assigned overlapping classes at

Bocconi University to map an exogenous network of peers. The authors find that first-year

classmates do influence major choices (between economics and finance). Mora and Ore-

opoulos (2011) use data from Spain on self-reported friendship nominations to estimate the

influence of high school peers on the intentions to drop out. Results indicate that friends

have no significant effect. Similarly, Burgess et al. (2011) use high school friends networks

from Bristol but focus on the exogenous effects. The main findings suggest that peers

parents’ characteristics have positive effects on post-secondary aspirations. The empirical

strategy of these three papers relies on the exogeneity of the network. While this is a

natural condition in De Giorgi et al. (2010), given the random assignment, Mora and Ore-

opoulos (2011) and Burgess et al. (2011) assume that friendship relationships are formed

exogenously. As discussed in Section 2.2.1, this may be an unrealistic assumption.

This paper estimates the effect of high school peers on post-secondary decisions, relaxing

the exogenous network assumption. It does so by using the Hsieh and Lee (2014) selection-
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correction model. The next section presents the survey conducted and the matched ad-

ministrative records. The model and the identifying assumptions are described in section

3.3.3.

2.3 Data description

In order to study the influence of peers on post-secondary aspirations and enrollment

choices, this paper conducted a survey in 116 public high schools from Bogotá, Colombia

in August 2013, one week before taking the standardized national exit exam.2 I focus on

public schools because they have significantly lower enrollment rates than private schools.

At most two senior-year classes were randomly selected in each school, for a total of 203

classes and over 6,000 students. Individuals were asked to list the closest peers, and state

their post-secondary aspirations. I match the individual students to official records from

the Ministry of Education to follow-up on exit exam scores and college enrollment in 2014.

Both the survey questionnaires and the administrative records provide information on

demographics and socioeconomic status.

Panel A of Table 2.1 presents the descriptive statistics of the students’ characteristics.

The students’ average age is 17.64 and males are slightly underrepresented. Most of the

students come from a low socioeconomic background. In fact, only 55% have a parent who

completed secondary, 16.4% of which have a post-secondary degree. Moreover, less than

32% of the families have income higher than 2 minimum wages, and can be considered

2 This project was reviewed and approved in advance by the Institutional Review Board for the pro-
tection of human subjects of the University of Illinois at Urbana-Champaign (IRB #13570).
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non-poor.3 Consistently, 18% of the students report to be working before graduating from

high school.

This paper estimates the influence of peers on a broad set of post-secondary outcomes.

To measure aspirations, students are first asked whether they want to pursue higher ed-

ucation; 98.9% of them do. They are then asked to choose the college and degree they

are most interested in. As can be seen in Panel B of Table 2.1, 23.7% and 45.1% of the

students aspire to private colleges and top-10 colleges respectively.4 There are two degree

levels, vocational (2 years) and academic (4 years). Over 85% of the students in the sam-

ple aim for the an academic degree, and 40.8% are interested in STEM degrees.5 Notice

that in Colombia students apply to specific degrees with relatively few chances to change

afterward. Using administrative records on entry wages, an expected monetary value is

assigned to each college-degree choice.6 Students aspire to earn on average 2.56 minimum

wages. This measure captures better the heterogeneity of the higher education system. In

fact, there is a large variation in expected wages by college and degree and most of the

3 Wages are expressed in minimum monthly wages, which is a commonly used measure in Colombia.
The 2013 monthly minimum wage was 535,600 Colombian Pesos, equivalent to 288 US Dollars. The
official poverty line for a family of four in Bogotá is 1.7 minimum wages.

4 According to the 2012 Higher education exit exams (SABER PRO), the top-10 colleges in Colombia are
(in order): Universidad de los Andes, Universidad Nacional (Bogotá), Universidad del Rosario, Uni-
versidad Externado, Universidad Icesi (Cali), Universidad Eafit (Medelĺın), Universidad de la Sabana,
Universidad Javeriana, Universidad Nacional (Medelĺın), and Universidad del Norte (Barranquilla).
Universidad Nacional (Bogotá and Medelĺın) are the only public Universities ranked top-10.

5 I classify as STEM degrees all academic degrees from Agronomy, animal sciences, veterinary medicine,
medicine, bacteriology, biology, physics, mathematics, chemistry, geology, business, accounting, eco-
nomics, and all engineering fields.

6 Entry wages are defined as the 2011 average monthly wages of 2008-2011 graduates by field of study,
degree level and college. When there are no observations in a particular subcategory, average wages by
field and degree level are used instead. These estimates are based on data from the Labor Observatory
of the Ministry of Education, which previously linked higher-education graduates to social security
records. The expected wage for students who are not interested in post-secondary education, or fail
to report a field or a degree level, is set to one minimum wage.
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current literature does not take this into consideration. For instance, in Colombia, the

average entry wage premiums for top-10 colleges, academic degrees, and STEM degrees

are 1.05, 1 and 0.85 minimum wages, respectively.

Exit exam scores and college enrollment (in 2014) are obtained by matching the survey

to administrative records. 7 Descriptive statistics of enrollment choices and exit exam

scores are presented in Panel C and D of Table 2.1. Students enrollment outcomes are far

below their aspirations. Only 43.9% enroll, and 1.1% make it to a top-10 college. Moreover,

only 9.2% and 4.9% of the students opt for academic (4 years) and STEM degrees. As

a result of this, the expected wage of the enrollment choice falls to 1.47 minimum wages.

One of the main reasons why only a fraction of the students achieves their post-secondary

aspirations is that they face major financial constraints.8 As for the exit exam, the students

in the sample perform slightly better than the national average, particularly in language

and social sciences.

In order to map social networks, students are asked to nominate the three classmates

they spend most time with.9 Each classroom is considered as a separate network. A

7 The Colombian Institute for the Promotion of Higher Education -ICFES- records provide scores for
the high school exit exam, and allow following up the students in the National Information System for
Higher Education -SNIES. The matching rates for ICFES and ICFES-SNIES are 98.6% and 98.4%,
respectively, and there are no significant differences between matched and unmatched students. Exit
exam scores are normalized with respect to the national population. The national exit exam (SABER
11) is a requirement for college application. The overall score is a weighted average of the following
subjects: Mathematics (3), language (3), sciences (3), social sciences (2) and philosophy (1).

8 Vocational programs (2-year) are for the most part free, but academic careers (4-year) are not. In
public universities tuition fees are proportional to the family income, however acceptance rates are
very low. High-quality private universities are expensive, and there are very few scholarships for
low-income students. Funding programs are available, however they require a co-debtor, a restriction
that is binding to low-income students. Consistently, 64% of the students in the sample believe that
financial constraints are the main barrier to higher education.

9 There were no specific instructions regarding the ordering, therefore there are no reasons to believe
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network example is presented in Figure 2.1. Nodes represent students, and each directed

edges is a nomination. The color and diameter of the nodes correspond to the students’

aspired wages, and the number of received nominations (in-degree), respectively. As can be

seen, most of the students nominate three peers and there are many reciprocal nominations.

Moreover, in most cases social relationships are not transitive, i.e. students have peers that

are not connected to each other. As will be seen in the next section, this is a key condition

to identify endogenous peer effects. Furthermore, students with low aspirations nominate

peers with high aspirations and vice versa. Identifying the extent to which these students

are influencing each other is the main purpose of this paper.

Network statistics are presented in Panel E of Table 2.1. A total of 5,909 students

nominate at least one nominated peer in the sample, in 203 classrooms .The average size

of the classrooms is 29.11. The average student nominate 2.65 peers, for a total of 15,684

directed links. Students are also asked about the kind of activities they do with each one

of their nominees. It seems reasonable to believe that study mates are more influential

than regular peers when it comes to post-secondary decisions. To test this, the network

is restricted to peers who study together. In total, 5,590 students nominate at least one

study mate, with an average of 2.48 study mates. I also test whether endogenous effects

are larger when the network is restricted to reciprocal nominations. In this case, there

are 5,498 links, and 5,438 students, with an average of 2.02 reciprocal nominations. All

estimations presented in section 3.4 are based on sub-samples that iteratively remove miss-

that the first nomination is in some way more important than the others. While students had the
option to nominate less peers, most of them listed three.
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ing observations (on both covariates and outcomes) and isolated nodes, i.e. students who

have no nominations left in the sub-sample. Networks with less than 15 students are also

dropped to guarantee sufficiently large networks, with enough within-group variation. The

exact number of networks and students used in each set of regressions is presented in the

respective table.

2.4 Empirical Strategy

When network data is available, social influence is usually modeled with spatial economet-

ric methods. In this context, the weighting matrix W is defined by social interactions.

In directed networks, W is asymmetric and the element (i, j) is 1 if student i nominates

student j and 0 otherwise. When the network is undirected, W is symmetric. This section

briefly describes the Spatial Autoregressive Model (SAR) and the conditions under which

endogenous peer effects are identified. It then presents the Hsieh and Lee (2014) Selection-

correction SAR model (SCSAR), an endogenous network approach that accounts for social

selection bias.

2.4.1 Spatial Autoregressive Model (SAR)

In the benchmark Spatial Autoregressive Model model (SAR), presented in Equation 2.1,

the outcome Yg of individuals belonging to group g (of size ng) depends on the average

outcome of her peers (WgYg), her characteristics (Xg) and the average characteristics of
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her peers (WgXg). It is also possible to control for group fixed effects (αg).

Yg = λWgYg +Xgβ1 +WgXgβ2 + lgαg + εg, εg ∼ N(0, σ2
ε Ing), g = 1, ..., G (2.1)

Bramoullé et al. (2009) proves that endogenous and exogenous effects, represented by λ

and β2, are identified if and only if I, W and W 2 are linearly independent.10 This condition

is satisfied when: i. There are endogenous and/or exogenous effect and they don’t cancel

out; ii. social relationships are not transitive, i.e. students nominate peers who are not

necessarily connected to each other. Note that the non-transitivity condition is violated

when individuals interact in groups.11 Moreover, since none of the identification conditions

depend on the symmetry of the social interaction matrix, these results are valid for both

directed and undirected (reciprocal) networks.

The group fixed-effects (αg) account for observed and unobserved factors that are com-

mon to students, such as teacher quality, school environment and infrastructure. Fixed

effects also control for non-observed factors that determine school and class selection. In

the presence of group fixed effects, endogenous effects are identified as long as I, W , W 2 and

W 3 are linearly independent, a condition that is very unlikely to be violated in sufficiently

large networks (Bramoullé et al., 2009).

10 In this context, W 2 is a matrix that characterizes peers’ peers: the off-diagonal element (i, j) is
equivalent to 1 if student i peers’ nominate student j, and 0 otherwise.

11 A weaker version of this proposition states that, even when the network is transitive, effects are still
identified as long as students don’t interact in groups.

58



2.4.2 Selection-correction SAR model (SCSAR)

One of the main limitations of the SAR model is that it assumes that networks are formed

exogenously. As discussed in section 2.2, this can be an unrealistic assumption when it

comes to social relationships. Hsieh and Lee (2014) address this problem using a two-stage

procedure that explicitly models the network formation process and corrects for potential

selection bias.

In this framework, the probability that student i nominates student j (from the same

group g) is determined by the distance between them in observed (Cg) and unobserved (Zg)

characteristics. More specifically, the authors model directed dyads (nominations) using

the following logistic regressions:

P (wij,g|Cg, Zg) = Λ(δ0 +

q̄∑
q=1

δ1q|ciq,g − cjq,g|+
d̄∑
d=1

γd|zid,g − zjd,g|), i, j ∈ g, g = 1, ..., G

(2.2)

Where |ciq,g−cjq,g| is the distance in the qth observed characteristic in Cg, and |ciq,g−cjq,g|

is the distance in the dth unobserved characteristic in Zg. The unobserved characteristics

are represented by individual coordinates in a d̄-dimension latent space, which are esti-

mated along with the other parameters. This model accounts for homophily based on both

observed and unobserved characteristics. It also controls for transitivity -individual who

have friends in common are more likely to be connected- which captures a significant part

of the network dependency.

59



The second stage of the Selection-Correction SAR model (SCSAR) introduces a cor-

rection term that accounts for the conditional correlation between the unobservable factor

that determine social selection (Zg) and the SAR error term (εg) from equation 2.1. As-

suming that these terms follow a joint normal distribution (with correlation matrix σεZ),

the model can be written as follows:

Yg = λWgYg+Xgβ1+WgXgβ2+lgαg+ZgΣ
−1
Z σZε+ug, ug ∼ N(0, σ2

uIng), g = 1, ..., G (2.3)

Where the error term is such that σ2
u = (σ2

ε − σεZΣ−1
Z σZε). Note that when the all the

correlations of Zi,g and εi,g are zero, i.e. social selection is independent of the second stage,

the selection bias is irrelevant, and peer effects can be estimated using the benchmark

SAR model. Since the differences in observed (|ciq,g − cjq,g|) and unobserved (|ciq,g − cjq,g|)

characteristics are excluded from the second stage, the exclusion restriction is satisfied and

the model is identified.

Both SAR and SCSAR models are estimated with MCMC Bayesian methods, follow-

ing closely Hsieh and Lee (2014). In the case of the SCSAR model, the parameters of

interest are (λ, β, δ, γ, σ2
ε , σεZ , {αg}) and the individual latent space coordinates {Zg} from

Equations 2.2 and 2.3. For simplicity, the authors assume that the different dimensions

of Zg are linearly independent. They also normalize its correlation matrix (ΣZ = Id̄), and

force the correlations between ε and Z to be non-negative (σεZ ≥ 0). In presence of multi-

ple unobservables, the first dimensions are assumed to be more relevant to link formation
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(|δ1| ≥ ... ≥ |δd̄|). Based on Hsieh and Lee (2014), who find that two unobserved factors are

enough to capture most of the selection-bias, I restrict the latent space to a maximum of

two dimension. All the results presented in the next section are based on 20,000 iterations,

with 5,000 burn-in steps.

2.5 Results

Table 2.2 presents the peer effects estimations on college enrollment when all nominated

peers are considered. The table reports the posterior mean and the 95% confidence interval

of each estimated coefficient. The first column corresponds to the SAR model without fixed-

effects. The second column introduces class fixed-effects, which account for school/class

selectivity, and observed and unobserved correlated factors. The third and fourth columns

correspond to the SCSAR models with one and two unobserved characteristics, respectively.

The vector X includes all the students characteristics described in section 2.3. The network

formation model includes the difference between students in four observable characteristics:

gender, age, parents’ education and family income.12

The first thing to be noticed is that endogenous effects are smaller in models that

account for class correlated effects and social selection. In fact, the SAR models without

fixed effects (column 1) find significant endogenous effects of 5.1%, while the SAR model

with fixed effects (column 2) and the SCSAR models (columns 3 and 4) estimates oscillate

12 Students are considered the same age if their birthday is less than 6 months apart. They have the
same parents’ education or family income if they are classified in the same category (as defined in
section 2.3).
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between -0.6% and 0.4% and are statistically insignificant. It is worth noting that this is

not because the estimates are less precise, the confidence intervals size is similar across

models. As for the exogenous peer effects, results indicate that having peers who work

reduces the probability of enrolling by 3.5%. The exogenous effect of age is borderline

significant but economically small.

Student observed characteristics do affect enrollment and also determine the nomina-

tions. Students from more educated and wealthier parents, and who are not working, are

more likely to enroll. As for link formation, results indicate that students are more likely to

nominate same gender students, with similar parents’ education but different income group.

The differences in latent space coordinates are positive and significant in both models. So

are the correlations between ε and the elements of Zg. These results indicate that unob-

served factors determine nominations, which further justifies using of a selection-correction

model.

Table 2.3 reports the estimated endogenous peer effects on a broader set of post-

secondary enrollment outcomes, including the students aspirations. These measures, de-

scribed in section 2.3, allow studying social influence at two different stages of the decision

process, and also capture the heterogeneity of the higher education system. The table also

presents the estimated endogenous effects on exit exam scores. Although measuring peer

effects on academic performance is not the main purpose of the paper, these results are

interesting for two reasons. First, test scores are a key determinant of college enrollment,

and could be a mechanism through which peers affects these choices. Second, most of
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the specialized literature has focused on academic performance, and results are therefore

comparable.

There are two regularities that are worth mentioning. First, the SAR model without

fixed effects always finds positive and significant peer effects, oscillating between 2% and

6.2% for post-secondary aspirations or choices, and up to 7.7% for test scores (column 1).

Second, the estimated endogenous effects are much smaller when the models account for

class fixed effects and social selection. The average estimated endogenous effect drop from

4.5% in the SAR, to 1.5% in the SAR(FE), and zero in the SCSAR(FE,d̄ = 2). Once

again, this has nothing to do with the precision of the estimates; the confidence interval

sizes oscillate around 2% for most of the outcomes, and are similar across models. These

results confirm that unobserved correlated effects and social selection are seriously biasing

the benchmark SAR estimates.

The most restrictive model (SCSAR(FE,d̄ = 2)) show that peers’ influence is not ho-

mogeneous across outcomes. Endogenous effects are found to be positive and significant

for only one of the aspirations outcomes; top-10 colleges with an estimated effect of 2.9%.

However, there are no significant effects on actual enrollment choices. Peers also influence

academic performance, with positive and significant effects on language (1.9%), sciences

(1.7%), social sciences (1.8%) and overall score (2.9%). The estimated effects are similar

in magnitude to those in Hsieh and Lee (2014), who find endogenous effects on GPA that

oscillate between 1.9% and 2.9%, depending on the number of unobserved characteristics.

Other papers that estimate peer effects on academic performance using selection-correction
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models, like Goldsmith-Pinkham and Imbens (2013) and Del Bello et al. (2015), find slightly

larger effects. Note however that their models are not entirely comparable.13

Table 2.4 presents the estimated endogenous effects for networks that are restricted

to study mates. Larger endogenous effects would indicate that study mates are more

influential than regular peers when it comes to post-secondary choices. SAR and SAR(FE)

models tend to find slightly larger effects for study mates, but the differences are relatively

small. As for the most restrictive selection-correction models, some outcomes have positive

and significant effects, such as aspire to enroll in a private and top-10 college, and overall

score, sciences and social sciences, with estimated coefficients oscillating between 1.5% and

3.5%. Note that the effects are similar in magnitude to those in Table 2.3, which implies

that in this context study mates are not more influential than close peers. This is not a

surprising result given the study design. In fact, nominations are limited to the classrooms,

and 95% of students report to study with their nominated peers.

Results are fairly similar when the network is restricted to reciprocal nominations. As

can be seen in Table 2.5, the SAR models still find relatively large endogenous effects for

all outcomes, while the selection-correction estimates are much smaller and for the most

statistically insignificant. In this case, the SCSAR(FE,d̄ = 2) model finds that peers have

a positive and significant effect on three aspirations outcomes (top-10 college, academic

13 As seen before, Goldsmith-Pinkham and Imbens (2013) use a simpler selection step that considers only
undirected links and a binary uni-dimensional unobserved characteristic. The estimated effects range
between 9% and 15% depending on the models specification. Del Bello et al. (2015) use a selection
correction model with one unobserved characteristic, and study the differential effect of friends who
are also neighbors. The authors find that neighbors do not significantly influence each other, but
non-neighbors do, with an estimated effect of 7.1%.
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and STEM degree), two exit exam scores (overall and social sciences) and enrollment in

an academic degree. Note that this is the only specification where endogenous peer effects

on enrollment choices are statistically significant. Since in most cases the estimated effects

are similar in magnitude to those found with all nominations, I conclude that the main

results of the paper are robust to different specifications of the social networks.

2.6 Conclusions

This paper provides new evidence on the effect of high school peers on post-secondary deci-

sions. It addresses this question using social network methods that exploit social networks

to identify endogenous peer effects. A survey conducted on over 6,000 high school students

from Colombia and matched to administrative records, provide detailed information on

close peer nominations and post-secondary decisions and exit exam scores. The exogenous

network assumption is relaxed using a selection-correction approach that explicitly model

link formation.

The main results indicate that peers have a small influence on aspirations and academic

performance, but not on enrollment choices. In fact, the selection-correction models find

endogenous peer effects that are significant for the aspirations to enroll in a top-10 college,

and two exit exam scores (social sciences and overall score), but not for the actual en-

rollment choices. Estimates based on study mates or reciprocal nominations yield similar

results, confirming that these findings are robust to how networks are defined.

There are at least two reasons why peer effects on aspirations and test scores are
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not transmitted to post-secondary decisions. First, aspirations and academic performance

are not the only determinants of college and major choices. This is particularly true in

this context, where only a fraction of the students achieve their aspirations, and financial

constraints are the main barrier to higher education. Second, the estimated endogenous

effects on aspirations and exit exam scores are relatively small. The estimated coefficients

of the effects that are statistically significant oscillate between 1.9% and 2.9%.

The results of this paper also confirm that models that omit class correlated effects and

social selection are likely to overestimate the role of peers. In fact, the benchmark spatial

autoregressive model finds large and significant endogenous effects for all outcomes, while

the models that account for class fixed effects and social selection find much smaller effects.

It is worth noting that this is not due to precision losses; the size of the confidence intervals

is relatively similar across models.

Even in a context where financial barriers are less binding, it would probably take

larger peer effects on aspirations and academic performance to find evidence of spillovers

on post-secondary choices. Future research could address this questions by focusing on

more affluent students, or countries with better access to higher education. The results

might also change when a larger set of peers or role models is considered. While most of

the specialized literature has focused on peers within school, it seems reasonable to believe

that students are also influenced by non-school friends. It could also be the case that they

are influenced by students they respect and admire, but with whom they have no social

ties.
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Table 2.1: Descriptive Statistics

Obs. Mean Std. Dev.

A. Students Characteristics
Male 6,128 0.481 0.500
Age 6,131 17.660 0.939
At least one parent completed secondary 5,975 0.392 0.488
At least one parent completed higher edu. 5,975 0.164 0.370
High family income 6,014 0.313 0.464
Student is working 6,076 0.180 0.385

B. Post-secondary aspirations
Enrollment 6,131 0.989 0.105
Private College 6,131 0.237 0.425
Top-10 College 6,131 0.451 0.498
Academic (4 years) Degree 6,131 0.855 0.352
STEM Degree 6,131 0.408 0.491
Expected wage 6,131 2.565 1.100

C. Post-secondary enrollment
Enrolls 5,993 0.439 0.496
Private College 5,993 0.151 0.358
Top-10 College 5,993 0.011 0.102
Academic (4 years) Degree 5,993 0.092 0.290
STEM Degree 5,993 0.049 0.215
Expected wage 5,993 1.476 0.728

D. Exit exam
Average score 6,014 0.127 0.823
Mathematics 6,014 0.024 0.868
Language 6,014 0.171 0.864
Sciences 6,014 0.116 0.856
Social sciences 6,014 0.162 0.889

E. Social networks
Classroom (network) size 203 29.108 5.731
Nominations (per student) 5,909 2.654 0.595
Studymates (per student) 5,590 2.482 0.706
Reciprocal nominations (per student) 5,438 2.022 0.778

Note: This Table presents the descriptive statistics of the full sample of stu-
dents. Expected wages are expressed in minimum wages. Exit exam scores are
normalized with mean zero and standard deviation equal to one with respect to
the national population. Classroom (network) size and nominations statistics are
based on students who list at least one friend in the sample. Study mates restrict
the sample to students who list at least one study mate in the sample. Reciprocal
nominations per student consider only students who have at least one reciprocal
nominations in the sample.
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Table 2.2: Peer Effects on Enrollment (All nominations)

SCSAR SCSAR
SAR SAR (FE) (FE, d̄ = 1) (FE, d̄ = 2)
(1) (2) (3) (4)

Endogenous Effects (λ) 0.051 0.004 0.002 -0.006
[0.04, 0.06] [-0.01, 0.02] [-0.01, 0.02] [-0.02, 0.01]

Peers Characteristics (Exogenous Effects β2)
Male 0.003 0.007 0.008 0.010

[-0.01, 0.02] [-0.01, 0.02] [-0.01, 0.02] [-0.01, 0.03]
Age 0.002 0.003 0.002 0.002

[0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]
At least one parent completed secondary -0.002 -0.005 -0.007 -0.004

[-0.02, 0.02] [-0.02, 0.01] [-0.03, 0.01] [-0.02, 0.01]
At least one parent completed higher edu. 0.006 0.002 -0.003 0.001

[-0.02, 0.03] [-0.02, 0.03] [-0.03, 0.02] [-0.02, 0.03]
High family income 0.011 0.017 0.017 0.015

[-0.01, 0.03] [-0.00, 0.03] [-0.00, 0.03] [-0.00, 0.03]
Student is working -0.019 -0.038 -0.037 -0.035

[-0.04, -0.00] [-0.06, -0.02] [-0.06, -0.02] [-0.06, -0.01]

Own Characteristics (β1)
Male -0.008 -0.003 0.002 0.002

[-0.04, 0.03] [-0.04, 0.03] [-0.03, 0.03] [-0.03, 0.03]
Age 0.012 -0.012 -0.091 -0.090

[0.01, 0.01] [-0.02, -0.00] [-0.11, -0.08] [-0.10, -0.08]
At least one parent completed secondary 0.084 0.073 0.046 0.048

[0.06, 0.11] [0.04, 0.10] [0.02, 0.07] [0.02, 0.08]
At least one parent completed higher edu. 0.128 0.113 0.084 0.088

[0.09, 0.17] [0.07, 0.15] [0.05, 0.12] [0.05, 0.13]
High family income 0.071 0.074 0.065 0.063

[0.04, 0.1] [0.05, 0.10] [0.04, 0.09] [0.03, 0.09]
Student is working -0.065 -0.075 -0.059 -0.058

[-0.1, -0.03] [-0.11, -0.04] [-0.09, -0.03] [-0.09, -0.02]

Social Selection (δ,γ)
Intercept -0.132 5.196

[-0.36, -0.05] [5.09, 5.61]
Same gender 1.732 0.487

[1.59, 1.80] [0.38, 0.53]
Same age 0.394 -0.049

[-0.07, 1.22] [-0.08, 0.01]
Same parents’ education -0.142 0.160

[-0.99, 0.15] [0.03, 0.21]
Same family income 0.219 -1.375

[-0.04, 0.29] [-1.44, -1.26]
|Zi1 − Zj1| 7.064 4.744

[4.60, 7.98] [4.67, 5.17]
|Zi2 − Zj2| 5.672

[5.59, 5.91]

Error terms
σ2
ε 0.239 0.226 0.221 0.220

[0.23, 0.25] [0.22, 0.23] [0.21, 0.23] [0.21, 0.23]
σεZ1 0.009 0.057

[0.00, 0.02] [0.04, 0.07]
σεZ2

0.013
[0.00, 0.03]

Note: Results are based on a sub-sample of 201 networks and 5,655 students that include all students with at
least one nomination in the sample. Each column represents a separate Bayesian estimations based on 20,000
replications with 5,000 burn-in steps. Posterior means and 95% confidence intervals (in brackets) of the estimated
parameters are reported.
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Table 2.3: Endogenous Peer Effects on Post-secondary Decisions (All nominations)

SCSAR SCSAR
SAR SAR (FE) (FE, d̄ = 1) (FE, d̄ = 2)
(1) (2) (3) (4)

Post-secondary Aspirations
Enroll 0.032 0.009 0.004 -0.026

[0.01, 0.04] [-0.00, 0.01] [-0.01, 0.01] [-0.07, -0.01]
Private college 0.050 0.020 0.019 0.011

[0.04, 0.06] [0.01, 0.03] [0.01, 0.03] [-0.00, 0.03]
Top-10 college 0.062 0.032 0.031 0.029

[0.05, 0.07] [0.02, 0.04] [0.02, 0.04] [0.02, 0.04]
Academic (4 year) degree 0.048 0.020 0.018 0.010

[0.04, 0.06] [0.01, 0.03] [0.00, 0.03] [-0.00, 0.02]
STEM degree 0.037 0.018 0.016 0.006

[0.02, 0.05] [0.00, 0.03] [0.00, 0.03] [-0.01, 0.02]
Expected wage 0.036 0.013 0.006 0.003

[0.02, 0.05] [-0.00, 0.03] [-0.01, 0.02] [-0.01, 0.02]

Enrollment Choices
Enroll 0.051 0.004 0.002 -0.006

[0.04, 0.06] [-0.01, 0.02] [-0.01, 0.02] [-0.02, 0.01]
Private college 0.020 -0.007 -0.008 -0.011

[0.01, 0.03] [-0.02, 0.01] [-0.02, 0.01] [-0.02, 0.00]
Top-10 college 0.022 -0.001 -0.001 -0.004

[0.01, 0.03] [-0.01, 0.01] [-0.01, 0.01] [-0.02, 0.01]
Academic (4 year) degree 0.047 0.018 0.017 0.003

[0.04, 0.06] [0.01, 0.03] [0.01, 0.03] [-0.01, 0.02]
STEM degree 0.034 0.010 0.009 0.008

[0.02, 0.05] [-0.00, 0.02] [-0.00, 0.02] [-0.00, 0.02]
Expected wage 0.046 0.010 0.005 0.007

[0.03, 0.06] [-0.00, 0.02] [-0.01, 0.02] [-0.01, 0.02]

Exit Exam
Overall score 0.077 0.040 0.034 0.029

[0.07, 0.09] [0.03, 0.05] [0.02, 0.05] [0.02, 0.04]
Mathematics 0.046 0.007 0.000 0.002

[0.03, 0.06] [-0.01, 0.02] [-0.01, 0.01] [-0.01, 0.02]
Language 0.052 0.025 0.020 0.019

[0.04, 0.06] [0.01, 0.04] [0.01, 0.03] [0.01, 0.03]
Sciences 0.069 0.034 0.027 0.017

[0.06, 0.08] [0.02, 0.05] [0.02, 0.04] [0.00, 0.03]
Social sciences 0.062 0.025 0.020 0.018

[0.05, 0.07] [0.01, 0.04] [0.01, 0.03] [0.01, 0.03]

Note: Results are based on a sub-sample of 201 networks and 5,655 students that include all students with at least
one nomination in the sample. Each cell represents a separate Bayesian estimations based on 20,000 replications
with 5,000 burn-in steps. Posterior means and 95% confidence intervals (in brackets) of the endogenous peer
effects are reported. Expected wages are expressed in minimum wages and exit exam scores are normalized with
mean zero and standard deviation equal to one.

69



Table 2.4: Endogenous Peer Effects on Post-secondary Decisions (studymates)

SCSAR SCSAR
SAR SAR (FE) (FE, d̄ = 1) (FE, d̄ = 2)
(1) (2) (3) (4)

Post-secondary Aspirations
Enrollment 0.033 0.015 0.001 -0.006

[0.03, 0.05] [0.00, 0.02] [-0.01, 0.01] [-0.02, 0.01]
Private college 0.054 0.024 0.024 0.015

[0.04, 0.07] [0.01, 0.04] [0.01, 0.04] [0.00, 0.03]
Top-10 college 0.066 0.034 0.032 0.029

[0.05, 0.08] [0.02, 0.05] [0.02, 0.04] [0.02, 0.04]
Academic (4 year) degree 0.050 0.020 0.017 0.011

[0.04, 0.06] [0.01, 0.03] [0.00, 0.03] [-0.01, 0.03]
STEM degree 0.043 0.022 0.021 -0.014

[0.03, 0.06] [0.01, 0.04] [0.01, 0.03] [-0.03, 0.00]
Expected wage 0.035 0.011 0.002 -0.002

[0.02, 0.05] [-0.00, 0.03] [-0.01, 0.02] [-0.02, 0.01]

Enrollment Choices
Enrollment 0.053 0.006 0.003 -0.011

[0.04, 0.07] [-0.01, 0.02] [-0.01, 0.02] [-0.03, 0.00]
Private college 0.022 -0.004 -0.005 -0.025

[0.01, 0.03] [-0.02, 0.01] [-0.02, 0.01] [-0.05, -0.00]
Top-10 college 0.024 -0.001 -0.001 -0.008

[0.01, 0.04] [-0.01, 0.01] [-0.02, 0.01] [-0.02, -0.00]
Academic (4 year) degree 0.051 0.020 0.020 -0.004

[0.04, 0.06] [0.01, 0.03] [0.01, 0.03] [-0.03, 0.01]
STEM degree 0.039 0.013 0.012 0.006

[0.03, 0.05] [0.00, 0.03] [-0.00, 0.03] [-0.01, 0.02]
Expected wage 0.054 0.015 0.013 0.001

[0.04, 0.07] [0.00, 0.03] [-0.00, 0.03] [-0.01, 0.02]

Exit Exam
Overall score 0.083 0.045 0.036 0.035

[0.07, 0.09] [0.03, 0.06] [0.02, 0.05] [0.02, 0.05]
Mathematics 0.051 0.010 0.004 0.000

[0.04, 0.06] [-0.00, 0.02] [-0.01, 0.02] [-0.02, 0.01]
Language 0.059 0.030 0.021 0.014

[0.05, 0.07] [0.02, 0.04] [0.01, 0.03] [-0.00, 0.03]
Sciences 0.072 0.036 0.026 0.020

[0.06, 0.08] [0.02, 0.05] [0.01, 0.04] [0.01, 0.03]
Social sciences 0.067 0.028 0.019 0.019

[0.05, 0.08] [0.02, 0.04] [0.01, 0.03] [0.00, 0.03]

Note: Results are based on a sub-sample of 194 networks and 5,172 students that include all students with at least
one study mate in the sample. Each cell represents a separate Bayesian estimations based on 20,000 replications
with 5,000 burn-in steps. Posterior means and 95% confidence intervals (in brackets) of the endogenous peer
effects are reported. Expected wages are expressed in minimum wages and exit exam scores are normalized with
mean zero and standard deviation equal to one.
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Table 2.5: Endogenous Peer Effects on Post-secondary Decisions (Reciprocal nomina-
tions)

SCSAR SCSAR
SAR SAR (FE) (FE, d̄ = 1) (FE, d̄ = 2)
(1) (2) (3) (4)

Post-secondary Aspirations
Enrollment 0.037 0.010 0.006 0.006

[0.03, 0.05] [0.00, 0.02] [-0.01, 0.02] [-0.01, 0.02]
Private college 0.051 0.022 0.022 -0.002

[0.04, 0.06] [0.01, 0.04] [0.01, 0.04] [-0.02, 0.01]
Top-10 college 0.067 0.037 0.036 0.025

[0.05, 0.08] [0.02, 0.05] [0.02, 0.05] [0.01, 0.04]
Academic (4 year) degree 0.052 0.026 0.023 0.020

[0.04, 0.07] [0.01, 0.04] [0.01, 0.04] [0.01, 0.03]
STEM degree 0.040 0.022 0.020 0.023

[0.03, 0.05] [0.01, 0.04] [0.01, 0.03] [0.01, 0.04]
Expected wage 0.036 0.014 0.010 -0.005

[0.02, 0.05] [0.00, 0.03] [-0.00, 0.02] [-0.02, 0.01]

Enrollment Choices
Enrollment 0.045 0.003 -0.005 -0.011

[0.03, 0.06] [-0.01, 0.02] [-0.02, 0.01] [-0.03, 0.00]
Private college 0.021 -0.004 -0.019 -0.002

[0.01, 0.03] [-0.02, 0.01] [-0.03, -0.01] [-0.02, 0.01]
Top-10 college 0.025 0.006 0.003 -0.008

[0.01, 0.04] [-0.01, 0.02] [-0.01, 0.02] [-0.03, 0.01]
Academic (4 year) degree 0.048 0.021 0.011 0.019

[0.04, 0.06] [0.01, 0.03] [-0.00, 0.02] [0.01, 0.03]
STEM degree 0.038 0.015 0.009 -0.006

[0.02, 0.05] [0.00, 0.03] [-0.01, 0.02] [-0.02, 0.01]
Expected wage 0.049 0.017 -0.001 0.012

[0.04, 0.06] [0.00, 0.03] [-0.02, 0.01] [-0.00, 0.03]

Exit Exam
Overall score 0.077 0.042 0.037 0.027

[0.06, 0.09] [0.03, 0.06] [0.02, 0.05] [0.01, 0.04]
Mathematics 0.042 0.006 0.003 -0.033

[0.03, 0.05] [-0.01, 0.02] [-0.01, 0.02] [-0.05, -0.02]
Language 0.053 0.027 0.021 0.005

[0.04, 0.07] [0.01, 0.04] [0.01, 0.03] [-0.01, 0.02]
Sciences 0.068 0.036 0.031 0.000

[0.06, 0.08] [0.02, 0.05] [0.02, 0.04] [-0.02, 0.01]
Social sciences 0.060 0.025 0.020 0.015

[0.05, 0.07] [0.01, 0.04] [0.01, 0.03] [0.00, 0.03]

Note: Results are based on a sub-sample of 194 networks and 5,109 students that include all students with at
least one reciprocal nomination in the sample. Each cell represents a separate Bayesian estimations based on
20,000 replications with 5,000 burn-in steps. Posterior means and 95% confidence intervals (in brackets) of the
endogenous peer effects are reported. Expected wages are expressed in minimum wages and exit exam scores
are normalized with mean zero and standard deviation equal to one.
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Figure 2.1: A Classroom Network Example

Notes: Network with 31 students (nodes) and 83 nominations (directed edges). The color of nodes represents aspired wages
(warmer colors for higher wages, and grey for missing data) and the diameter corresponds to in-degree, i.e. number of
nominations a student receives. Network visualization is done with Gephi (Bastian et al., 2009).
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Chapter 3

Local Effects of Small-Scale Mining

on School Education and Child

Labor: Evidence from the Colombia’s

Gold Rush

3.1 Introduction

According to official statistics, Colombia’s gold production tripled between 2001 and 2012.

The area covered by mining titles grew at even faster rates. This boom was mostly driven

by a sharp rise in international prices, set off by the 2007-2009 financial crisis. However,

unlike other large producers, most of this gold in Colombia was produced by small-scale

artisan and illegal miners. In fact, over 87% of the gold mines reported having no title

in the 2010-2011 Mining Census. What should have been a windfall has proven to be in

many cases harmful to local development. For instance, deforestation and health hazards

related to mercury contamination of water sources have dramatically increased in mining

areas (e.g. IDEAM, 2015, Cordy et al., 2011, Romero and Saavedra, 2015). Illegal mining
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has also become a major source of financing for illegal armed groups, which has intensified

the internal conflict (e.g. Massé and Camargo, 2012, Dube and Vargas, 2013, Idrobo et al.,

2013, Rettberg and Ortiz-Riomalo, 2014).

Abundant qualitative evidence indicates that dropout rates and child labor have also

increased in gold mining areas (e.g. Defensoŕıa del Pueblo, 2010, Gonzalez et al., 2013, Goñi

et al., 2014, El Tiempo, 2013, El Espectador, 2013b). This is consistent with the education

channel of the “natural resource curse” hypothesis: mining can raise the opportunity cost

of studying, and affect long-run economic development by reducing the accumulation of

human capital. This may happen if children work on mining. In Colombia, case studies

show that both boys and girls participate in gold mining and related activities, and that

the probabilities of joining the labor force are higher after age 10. While most of the

children combine school and work, those who work are more likely to drop out (e.g. ILO

et al., 2001b, ICBF, 2001). Consistently, the International Labor Organization (ILO) has

classified small-scale mining as one of the worst forms of child labor in Colombia, and

estimates that it employed over 200,000 children in 2000 ILO et al. (2001a).1 It could also

be the case that parents in mining areas are working more, and therefore, children are

doing additional household labor.

1 According to the Colombian Law, school attendance is compulsory up to age 15 or grade 9, and
children are allowed to work after 15 with parents’ consent. Although there has been some progress
over the last decades, the enforcement of the law is still limited, especially in the poorest regions.
The 2005 Population Census indicates that 19% of the children aged 5-17 do not go to school, with
particularly low attendance rates for the groups 5-6 (71%) and 16-17 (61%). The 2011 Child Labor
Survey indicates that 1,465,031 children are working, representing 15.4% of the population aged 5 to
17. The share of workers is much higher for males (16.6%), rural areas (19.1%) and the age group
15-17 (27.7%).
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This paper provides new empirical evidence of the impacts of mining on school education

and child labor, in a context where small-scale artisan and illegal mining are predominant.

I propose two measures of annual change in mining intensity in the proximity of each school

and household. The first one is the area covered by active mining titles, and captures the

expansion of legal mining. The second one is the deforestation in areas with identified

gold deposits, which is a proxy for all mining activities, whether they are legal or not.

To correct for measurement error and potential endogeneity problems, I instrument the

mining intensity measures with the interaction between gold deposits in the area and

international prices. Education and child labor outcomes are observed from both the school

and household perspective by combining three different sources of information: School

administrative records, national exit exams, and Demographic and Health Surveys (DHS).

The analysis is based on municipalities under 200.000 inhabitants located in Antioquia and

the Coffee Region departments (Caldas, Quind́ıo and Risaralda). This region accounts for

over 55% of the reported gold production and satisfies two conditions that are critical for

the empirical strategy: 1. The schools are geocoded; 2. Gold deposits are well identified,

and there is enough variation in local mining intensity.

The main results indicate that mining significantly increases dropout rates in urban

areas, with larger effects for females in primary. An additional standard deviation in

mining increases dropouts rates up to 10.1 percentage points. There are also some positive

impacts on repetition rates for males. For younger children, this is partially driven by

higher labor participation. In fact, the DHS surveys reveal that mining reduces school
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attendance, and increases the probability of working of children aged 9 to 11, with estimates

effects as large as 9.4 percentage points. The effect on working is also positive for older

age groups, although not statistically significant. Effects on exit exams performance are

limited. Interestingly, the active titles measure yields smaller, yet significant, estimates for

most outcomes. This has two implications. First, in this context even legal mining had

perverse effects on children. This cast doubts on the capacity of local authorities to alleviate

the negative externalities of mining. In particular, it raises concern on the effectiveness of

the royalties system, which allocates additional resources to mining municipalities to be

invested primarily on education and health. Second, the effects are larger when artisan and

illegal mining are accounted for. Efforts towards formalizing artisan miners, and controlling

illegal mining are therefore expected reduce dropouts and child labor.

The paper contributes to the literature in at least two ways. First, the growing research

on the local economic effects of mining has mostly focused on large-scale projects (e.g.

Aragón and Rud, 2013, Wilson, 2012, Kotsadam and Tolonen, 2015, Chuhan-Pole et al.,

2015). This is on of the few papers that study the local effects of mining in a context

where small-scale artisan and illegal miners are predominant. Recall that small-scale gold

mining employs over 20 million workers in the world, and accounts for approximately 15%

of the total production (UNEP, 2015). The proposed measures of local mining intensity

are adapted to the nature of small-scale mining and can be replicated in other countries.

Second, while most of the empirical evidence on the effect of aggregate economic shocks

on human capital accumulation is based on country-level analysis (e.g. Sachs and Warner,
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1995, Gylfason, 2001, Stijns, 2006), there are relatively few papers studying this problem

at a sub-national level. The most closely related paper is Santos (2014), who finds that

gold mining reduced school attendance and increased child labor in Colombia between 1993

and 2005. The author uses the IPUMS samples from the 1985, 1993 and 2005 population

censuses, and measures mining at the municipal level with the interaction between gold

capability and international prices. This paper finds similar results for a more recent

period, 2004-2012, during which the country witnessed the biggest gold rush in its recent

history. Besides, the paper proposes new measures of local mining intensity, that are more

precise and allow studying the differential effects of legal and illegal mining.

The remainder of this chapter is organized as follows. The next section briefly introduces

the Colombian gold mining sector, emphasizing the prevalence of small-scale artisan and

illegal mining. Section 4 describes the data and empirical strategy. Section 5 presents the

main results, and the last section concludes.

3.2 Prevalence of Small-Scale Mining in Colombia

Colombia experienced a gold rush over the past ten years. According to official statistics,

gold production grew from 21 tons in 2001, to over 65 tons in 2012 (Panel (a) of Figure 3.1).

In 2012, the country was the 11th largest producer of gold in the world, surpassing Brazil

and Indonesia (USGS, 2013). The boom, that was not exclusive to Colombia, was driven by

a sharp rise in international prices, mostly caused by the financial crisis; For the first time

since the eighties, the priced of gold passed 600 USD per troy ounce, reaching a maximum
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of 1,900 USD in September 2011. As it has been extensively documented, during this

period gold acted as a safe haven for financial assets, which dramatically increased demand

and prices (e.g. Baur and McDermott, 2010, Reboredo, 2013). Colombia also witnessed an

accelerated growth of mining titles.2 The area covered by approved gold titles climbed from

3,583 km2 in 2001, to 27,290 km2 in 2012 (Panel (b) of Figure 3.1). Although this boom

was mostly motivated by high prices, there were also generous tax incentives and legislative

reforms designed to attract foreign investors, who now own most of the titles.3 The title

expedition process, however, was far from transparent. Corruption scandals and lack of

administrative capacity forced the government to stop the application process between

2011 and 2013, and restructure the title expedition process and the Mining Cadastre.4

In spite of the rapid growth of mining titles, Colombia’s gold sector is still dominated by

small-scale mining, and in most of the activity fails to fulfill legal requirements. The most

recent Mining Census, that took place in 2010-2011, reveals that 87% of the gold mines

operate without a title, and only 3% have mandatory environmental permits. The reality

2 Colombian subsoil resources are property of the state and mining firms are granted titles to exploit
them. Since 2001 (Mining Code, Law 685 of 2001), Concession Agreements are the only legal form
of contracting. These titles, granted for up to 30 years, contemplate three phases: exploration,
construction and exploitation. The exploration phase period is 3 years, and can be extended up
to 11 years. Environmental permits are required to begin the construction and exploitation phases.
During the initial phases, firms pay a yearly fee that is determined by the surface area. Once the
exploitation phase begins, mining companies pay royalties over the reported production (4% for gold
and silver, and 6% for alluvial gold). Royalties are collected by the central government, and mining
departments and municipalities receive a fraction of them to be invested primarily on education and
health projects.

3 Between 2002 and 2005, the Congress approved sector-specific income tax breaks, tax deductions for
investments, and legal stability contracts. Also, the new Mining Code simplified the institutional
framework for doing business.

4 The corruption scandals included several cases of bribery, expedition of titles in restricted areas, and
speculation with mining titles. By 2011, there were 19,000 accumulated requests, most of which were
eventually rejected by the new National Mining Agency (The Economist, 2013).
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is probably worse; compliance to the Census was not mandatory, and officers failed to visit

mines in high-conflict regions. An unknown share of the untitled production is sold to

local traders and exporting companies, which pay the corresponding royalties and export

it. Goñi et al. (2014) estimate that 23% of the gold is sold in a different municipality.

In this process, all possibility of tracking the origin of the gold is lost. These statistics

reflect two failures of the Colombian mining policy. One the one hand, the various plans

to formalize labor-intensive artisan mines have systematically failed (Echavarria, 2014,

Gonzalez et al., 2013, Defensoŕıa del Pueblo, 2010). On the other hand, illegal alluvial

mining, which is highly mechanized, has rapidly expanded throughout the map. While

artisan miners have existed for centuries and have never been a priority of the government,

illegal mining has become a major concern. Over the last few year, the government has

significantly increased the number of raids, and introduced legislative reforms designed to

facilitate the enforcement of the law.5

The recent mining boom has had devastating effects on the environment. Alvarez-

Berŕıos and Aide (2015) estimate that the impact of mining on deforestation in South

America significantly increased over the past years, reaching 116,000 Ha of lost forest in

gold mining areas between 2007 and 2013. The authors identify a high-deforestation cluster

in the mining area located in the northeast of Antioquia. Consistently, official statistics

indicate that mining is nowadays the primary cause of deforestation in Antioquia and Chocó

5 For instance, the Law 1453 of 2011 increases the penalty for illegal mining and environmental damage.
Likewise, the Decision 774 of 2012, by the Andean Community (CAN) (and the regulatory decrees)
restrict the machinery commerce, create a unified mining register and allow the authorities to seize
or destroy machinery in absence of mining titles.
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(IDEAM, 2015). Abundant evidence has also shown that mercury contamination of water

sources has increased, and so have the number of reported cases of mercury poisoning (e.g.

IDEAM, 2015, Cordy et al., 2011, Güiza and Aristizabal, 2013). Romero and Saavedra

(2015) show that mercury has also affected the health of newborns.

Gold mining has also become a security threat. Mining is a growing source of financing

for illegal armed groups, which has intensified the conflict in mining regions (e.g. Massé and

Camargo, 2012, Dube and Vargas, 2013, Idrobo et al., 2013, Rettberg and Ortiz-Riomalo,

2014).6 Official reports also indicate that forced displacement and human rights violations

have increased in municipalities with large-scale mining projects (e.g. Garay et al., 2013).

Besides, illegal mining is a constant source of tax fraud. In fact, miners and traders sys-

tematically evade royalties and income taxes, which seriously affects the revenue of local

authorities (e.g. Garay et al., 2013, Portafolio, 2011, El Colombiano, 2012). There is also

evidence of royalties fraud schemes, where mafias falsely report gold as produced in munic-

ipalities where they have control on local authorities and public spending(El Espectador,

2013a). Moreover, ongoing investigations indicate that gold has been used as part of a

massive money laundering schemes (The Telegraph, 2016, Bloomberg, 2015).

Antioquia is the epicenter of gold mining in Colombia. The department accounts for

52% of the reported 2001-2012 production, and 33% of the titled area. Including the Coffee

Region departments, the share of production and titled area is 55% and 37%. There are

6 Anecdotal evidence and police reports indicate that most miners and traders pay extortions in conflict
areas, and that illegal armed groups are in many cases involved in mining activities. The strong
geographical correlation between illegal mining and coca plantations documented by UNODC (2015)
partially confirms this.
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four mining clusters in this region (See the requested and approved mining titles in Figure

3.2). The first and most important one is in the northeast of Antioquia, and south of

Boĺıvar. The second one is located in the southwest of Antioquia, and Caldas, Risaralda

and Chocó. The third and fourth are in the West of Antioquia, and the East of Quind́ıo

and Tolima. It is worth noting that there has been gold mining in these four areas since the

colonial period, and there is evidence indicating that this has negatively affected long term

economic development and human capital accumulation Acemoglu et al. (2012). However,

mining activity in the West of Antioquia and Tolima (clusters 3 and 4) declined throughout

the twentieth century, leaving only some artisan and small-scale operation behind. The

numerous titles in these two areas correspond to ongoing large-scale projects that have not

reached the production stage.7 The region combines underground mining in the mountains

and alluvial mining in the river beds. While underground mining requires large investments

and has grown at a relatively slow pace, alluvial mining rapidly expanded during the period

of study.

3.3 Data and Methods

This paper estimates the effect of gold mining on a set of education and child labor out-

comes. I focus on Antioquia and the Coffee Region departments -Caldas, Quind́ıo and

Risaralda, because they satisfy two conditions that are critical to the empirical strategy.

7 In particular, there are two open-pit projects, Mandó Norte and La Colosa, that are in exploratory and
feasibility phase. These projects have been largely criticized for human rights violations, irregularities
in the prior consultation process, and environmental impacts. Multiple legal actions, including local
referendums, have been taken against the projects (e.g. Campaign, 2013, Cárdenas, 2014).
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First, the available information allows geocoding most of the schools. second, gold deposits

are well identified and there is enough variability in the intensity of mining. Given that

mining represents only a small share of the economy of large cities, I further restrict the

sample to municipalities smaller than 200,000 that are not part of a metropolitan area.

This section first presents the data, emphasizing each of the conditions above, and then

describes the proposed mining intensity measures and the empirical strategy.

3.3.1 Education and Child Labor

Education and child labor are measured using three different sources of information that

provide complementary evidence of the effects of gold mining. School administrative records

follow enrollment, grade promotion, repetition, and dropout rates at different education

levels. Exit exam databases have individual information on test scores and working situa-

tion of senior high school students. DHS surveys, focus on households and allow estimating

the effect of mining on school attendance and child labor.

School administrative records are collected annually by the National Statistic Depart-

ment (DANE). School principals are required to complete the C600 form, which includes

questions on previous year enrollment, grade promotion and repetition, dropouts, and

transfers since 2005. Using the 2005-2013 datasets, I measure the initial enrollment and

progress throughout the year by level of education for the period 2004-2012. Each school

may have multiple shifts, in which case they are treated separately. Excluding large cities

and metropolitan areas, there are 56,116 schools, of which 36,713 have information for
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at least eight years. These schools are for the most public (94.6%) and rural (78.8%).

Primary schools are not always separate from middle schools and high schools. 95% of

the schools in the sample offer primary education (grades 1-6), of which 20% also have

middle school (7-9) and high school (10-11). Descriptive statistics of initial enrollment and

progress throughout the year are presented in Panel A of Table 3.1. Primary schools enroll

on average 73 students at the beginning of each school year, of which 82.7% get promoted,

6.7% repeat, 6.9% dropout, and the remaining 3.7% transfer to other schools. There are

much less middle and high schools, but each one of them enrolls more students. Dropout

rates are higher in middle school (7.4%), than in high school (4.7%), which reflects that

students who enroll in high school are a relatively self-selected group. Recall that schooling

is mandatory until age 15 or grade 9.

National exit exams -SABER 11 - are administered by the Colombian Institute for the

Promotion of Higher Education (ICFES). They are required for college application and in

some cases for graduation as well. Most senior students take them. Anonymized individual

test scores are available since 2000 but I restrict the sample to the 2004-2012 period to

have comparable results. While registering for the exam, students complete a survey that

provides basic information such as date of birth and gender.8 Since 2008, students are also

asked about their labor situation. Excluding metropolitan areas, there are 6,245 schools,

of which 2,703 have at students taking the exam in at least eight years. The share of public

and rural schools is smaller at this level, with 83.8% and 40%, respectively. As can be seen

8 Other characteristics, such as parents’ education and family income are not included in some of the
years of analysis, and therefore cannot be used as controls.
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in Table 3.1, schools have on average 52.2 students taking the exam every year. The test

scores are slightly bellow the national mean 0.013 standard deviations) and 11% of the

students report working.

The Ministry of Education, in coordination with the Secretaries of Education of each

department, has geocoded over 24,000 schools in the country. There are nine depart-

ments in which more than 85% of the schools (excluding metropolitan municipalities) are

geocoded: four in the central region -Antioquia, Caldas, Quind́ıo and Risaralda- and five

in the Orinoco-Amazon region -Meta, Putumayo, Guańıa, Guaviare and vaupés. I focus

on the four departments from the central region for two main reasons. First, they are

historically connected and have comparable living standards. Caldas, Quind́ıo and Risar-

alda were in fact colonized by Antioquian settlers during the nineteenth century, and they

all benefited from the Coffee booms throughout the twentieths century. According to the

2005 Census, the poverty rates of the four departments oscillate between 16.2 and 22.9%,

which is considerably bellow the Orinoco-Amazon region (39.9%) and the national average

(27,7%). Second, the region has some of the biggest mining clusters in the country, but also

enough municipalities without this activity. This is not the case of the Orinoco-Amazon

region where there are relatively few mines. This point is further developed in the next

subsection.

Antioquia and the Coffee Region account for 17% of the schools and 19% of the students

taking the exit exam. The region has higher repetition and transfer rates than the national

sample. Senior students also have slightly lower test scores, and higher probabilities of
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working (13%). (See Table 3.1). Approximately half of the schools without coordinates

are classified as urban in the C600 records. In these cases, I impute the coordinates of the

corresponding municipal towns. With this correction, over 97% of the schools in the region

of study are geocoded. While most of the schools are located in the the central region of

Antioquia, and the Coffee Region, there are relatively few schools in the Northeast and

West of Antioquia, which reflects the low population density of these areas (Panel (a) of

Figure 3.3).

The 2005 and 2010 waves of the DHS provide information on school attendance and

labor situation of a sample of children aged 6 to 17. While the 2010 wave has GPS

information, in 2005 it is only possible to accurately geocode the clusters classified as

urban. I do so by imputing the coordinates of the corresponding municipal towns. Given

the data limitations, the main estimates consider only households living in the urban area

of municipalities under 200.000. There are 4,261 children aged 6 to 17 in non-metropolitan

municipalities of Antioquia and the Coffee Region, representing 11% of the total sample.

On average, 84% of the children go to school. There is some late entrance, only 66% of

children under 8 attend school, and dropouts increase after 15. The percentage of children

working increases with age; less than 3% work under 11, 8% in the group 12-14, and 19%

over 15. The location of all the geocoded DHS clusters are presented in Panel (a) of Figure

3.3. Although there are less clusters, their spatial distribution is similar to that of the

schools (Panel (a) of Figure 3.3).
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3.3.2 Measuring Mining Intensity

One of the practical consequences of the prevalence of small-scale artisan and illegal mining

is that the existing measures of gold production are limited and unreliable. For instance,

official production statistics, based on royalties, not only fail to account for an unknown

fraction of the illegal mining, but are also distorted by royalties frauds and money laun-

dering schemes (see Section 3.2). Besides, production is aggregated at the municipal level,

and there is no way to track it to a particular mine. The Mining Cadastre, which reg-

isters all approved and requested titles, also has several limitations. Notably, there is no

information about the production of each mine. Moreover, approval dates are not always

good predictors of gold production. In fact, there are some areas where artisan and illegal

miners have operated long before the license was requested. There are also mines with

approved concession contracts that have not reached the production phase.

This paper proposes two new measures that capture annual changes in mining intensity

in the proximity of each school and household. The first one is the area covered by active

titles. A title is considered active if it was approved during the year (or before) and has not

expired. This measure is intended to capture the expansion of legal mining, independently

of the stage of the project. The second measure is the annual deforestation in areas with

identified gold deposits. This is a proxy for all mining activities, whether they are legal or

not. These measures are calculated using detailed geographic information on mining titles

and deforestation.

The mining title information is obtained from three different sources. First, the Min-
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ing Information System of Colombia (SIMCO) which has administrative information of

all mining titles.9 Second, the Colombian Geographic Information System for Planning

(SIGOT) which provides geographic information of all titles approved until 2012.10 Third,

TierraMinada, an NGO that collected administrative and geographic information on both

approved and requested mining titles up to November 2014. 11 When titles cover more

than one municipality, they are divided and treated separately. There are in total 3,229

approved titles for gold, and 839 pending requests. 54% of the approved titles, and 41% of

the requests are in Antioquia or the Coffee Region (See Figure 3.2).

Deforestation statistics are calculated using the Hansen et al. (2013) high-resolution

forests cover maps. The authors estimate the annual forest loss at spatial resolution of

30 meters for the period 2001-2012.12 Between 2001 and 2012, the country lost nearly 3

million Ha of forest. The expansion of the Amazon agricultural frontiers accounts for more

than half of it. The second largest deforestation hotspot is located in the Northeast and

East of Antioquia (See Figure B.1 of the Appendix). As mentioned in section 3.2, mining

has become the primary source of deforestation in this area (IDEAM, 2015).

The areas with gold deposits are delimited using all the approved and requested mining

titles up to 2014. There are three arguments to justify this choice. First, the title expedition

9 The data can be downloaded from http://www.simco.gov.co/Inicio/CatastroMineroColombiano/
tabid/107/Default.aspx.

10 The shapefiles can be downloaded from http://sigotn.igac.gov.co/.
11 The shapefiles and datasets can be downloaded from https://sites.google.com/site/

tierraminada/.
12 Imagery for 2013 onward is also available, however forest loss measures are not com-

parable due to methodological changes. The maps can be downloaded from https://

earthenginepartners.appspot.com/science-2013-global-forest.
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process is expensive, and there are no incentives for investing in areas with no mining

potential. Consistently, during the period of study, titles were often requested in areas

traditionally exploited by artisan miners (Goñi et al., 2014, Gonzalez et al., 2013). Second,

anecdotal evidence suggests that there is abundant illegal mining in areas that have pending

title requests. This is particularly true in region of study, where the UNODC (2015)

remote sensing evidence of alluvial mining consistently overlap with mining titles. Third,

compared to the Pacific and Orinoco-Amazon regions, there are relatively few protected

areas in Antioquia and the Coffee Region, that may prevent or delay the title expedition

(See Figure B.1 in the Appendix).13

I calculate the distance between each mining title and all the schools and DHS clusters

in the sample. The main set of regressions assume that a mine is in the neighborhood of

a school (or household) if the distance is inferior to 20 km. In this context, miners are not

expected to commute longer distances on a daily basis. I also test the sensibility of the

results to alternative distance buffers ranging from 10 to 50 km. The active titles measure

is the total area covered by titles in the neighborhood of a school (or household) s that

are active in year t. Figure 3.4 shows the distribution of this measure. While 20-25 % of

the sample has no active licenses nearby, the schools and households are surrounded on

average by 7.9 and 9.1 km2 of active titles, respectively.

13 Mining activity is strictly forbidden in National Parks. Although some titles were requested and
approved in these areas over the last few years, these remain exceptional cases. In Indigenous Reserves
and Afro-descendant Territories, mining projects are subject to Prior Consultation. In practice, the
enjoyment of this right remains limited: there is evidence of systematic violence against ethnic groups
in mining areas, and multiple projects have been implemented without fulfilling this requirement
(DPLF, 2015).
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The area covered by approved and requested mining titles in the neighborhood of each

school (or household), deps, is a time-invariant measure that captures the presence of gold

deposits. Using the deforestation and mining titles maps, I calculate the annual forest

loss in each titled area. Antioquia and the Coffee Region departments account for 58% of

the total deforestation in mining areas between 2001 and 2012, with a particularly high

concentration in the Northeast (See Panel (b) of Figure 3.3). The second local measure of

mining intensity, hereafter referred as mining deforestation, is the deforestation in mining

areas in the neighborhood of the school (or household) s in yeat t. The average annual

mining deforestation in the 20 km of schools and households is 9 and 8.2 Ha, respectively.

Compared to active titles, there are more schools and households with positive mining

deforestation (See Figure 3.5). In both cases, there is enough variability in the mining

intensity measures in the region of study.

3.3.3 Emprical Strategy

The aim of this paper is to measure the local effect of gold mining on education and child

labor. I use a difference-in-differences approach that exploits the spatial and temporal

variation of the mining intensity measures. For simplicity of interpretation, the mining

intensity measures are normalized with mean zero and standard deviation one in each

sample. The estimated coefficients should therefore be interpreted as the effect of one

standard deviation increase in mining intensity. The specification of the model depends

on the unit of analysis: school outcomes (e.g. enrollment, dropout rates, and number of
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students taking the exit exam) are estimated with panel fixed-effects models, and individual

outcomes (e.g. test scores, school attendance, and child labor) use repeated cross-section

methods.

The panel fixed-effects model, presented in Equation 3.1, regresses the outcomes ysmt of

school s, municipality m and year t, on the gold mining measure of choice Goldst. School

fixed effect (µs) capture observed and unobserved school and location characteristics that

may affect the outcome, including the gold deposits in the area. Year fixed effects (τt) and

linear municipal-specific time trends (η ∗ t) control for common shocks, including trends

in the municipal fiscal revenue, public spending and conflict. Errors are clustered at the

school level.

ysmt = β0 + γGoldst + µs + τt + ηs ∗ t+ εsmt (3.1)

The specification used for exit exam individual outcomes is relatively similar. The

regressions control for school and year fixed effects and municipal-specific time trends. I

also control for the students’ age and gender. Errors are clustered at the school level

(Equation 3.2).

yismt = β0 + β1Xismt + γGoldst + µs + τt + ηs ∗ t+ εismt (3.2)
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The last set of regressions are based on the 2005 and 2010 DHS waves. I match for

each individual i in cluster s the mining intensity measures of the corresponding year. The

regressions control for municipal and year fixed effects, and a set of individual characteris-

tics including age, gender, household size and parents’ education.14 They also control for

gold deposits in the neighborhood of each cluster, deps, to capture the time-invariant effect

of living in areas with high potential for gold mining. I use the DHS sample weights, and

errors are clustered at the DHS cluster level (Equation 3.3).

yismt = β0 + β1Xismt + γGoldst + λdeps + µm + τt + εismt (3.3)

There are two potential sources of bias that need to be considered. First, mining

intensity is measured with error. In fact, active mines only account for legal mining and do

not differentiate between the different stages of the mining projects. Likewise, deforestation

in areas with known deposits can be caused by other activities, and it is not possible

to perfectly delimit gold deposits. Second, there could be some unobserved factors that

determine mining activities and also affect educational and child labor outcomes. For

instance, variation in the intensity of the armed conflict not captured by the fixed effects

and the municipal-specific time trends. Both of these problems are addressed using an

instrumental variable approach.

14 Parents’ education is the higher education level completed by the parents, or the household head if
both parents are absent. The education level is categorized in three groups: primary, secondary and
higher education.
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I instrument the gold mining measures with the interaction between gold deposits in the

neighborhood and international prices of gold (deps×Pt). Notice that the separate effects

of gold deposits and prices are absorbed by the school and year fixed effects (or the variable

deps in the DHS regressions). The exclusion restriction is satisfied by the exogeneity of

gold deposits and international prices. Gold deposits are determined by geological and

geochemical properties of the land. As discussed previously, there are good reasons to

believe that they are well delimited by mining titles (requested or approved) in the region of

study. Prices are determined in international markets. Even though Colombia significantly

increased its production during the period of study, the country is still considered a price

taker. Besides, most of the variation in international prices during the period of study was

driven by the financial crisis. The results presented in the next section confirm that this

instrument is strongly correlated with both mining intensity measures.

3.4 Results

The main results of the paper are presented in three parts. First I study the impacts of

mining from the school perspective using school administrative records and exit exams.

The second part is based on DHS surveys and focuses on the children and their families,

whether they are studying or not. Although presented separately, the evidence from these

sources should be interpreted as complementary. The third part tests the robustness of the

results to different distance buffers, and also to controlling for two potential confounding

factors: homicides and royalties.
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3.4.1 School Administrative Records and Exit Exams

The effects of mining on school enrollment and progress throughout the year are presented

in Table 3.2. The regressions are estimated separately for primary, middle school and

high school, and the mining intensity measures are based on 20 km neighborhoods. The

first thing to be noticed is that while most of the OLS coefficients are not significant, the

IV regressions yield estimates that are larger in magnitude and significance. Besides, the

instrument is highly correlated with both of the mining intensity measures; the first-stage

F-statistics oscillate between 37.9 and 600.8 and are statistically significant. The first-

stage estimates, presented in Table B.1 of the Appendix, show that the instrument has

positive and significant effects on both of the mining intensity measures (0.52 to 0.59 for

active titles, and 0.25 to 0.31 for mining deforestation). This confirms the importance of

correcting for measurement error and potential endogeneity.

The main IV estimates indicate that gold mining does not affect the enrollment at

the beginning of each year, however, it reduces the number of students promoted, and

increases the dropout and repetition rates in primary and high school. These effects are

quite large; an additional standard deviation in active titles reduces the primary and high

school promotion rates by 2.3 and 4.7 percentage point, respectively. The effects are even

larger for mining deforestation, with estimated effects of 5.4 and 7.8 percentage points.

Consistently, mining increases primary dropout rates by 1.3 to 2.9 percentage points, and

high school dropout and repetition rates by 2.9 to 5.3 percentage points.

Interestingly, the increase in dropouts is not followed by lower enrollment. I estimate
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the effect on the enrollment of the following year, finding no significant effects (Table B.2 of

the Appendix). This implies that there are enough students entering the system each year

to compensate the loss. Migrations might partially explain this. In fact, most of the local

authorities report increasing migrations into the mining regions (e.g. Goñi et al., 2014). It

could also be the case that students who drop out, go back to school after a year or two.

Unfortunately, it is not possible to test these hypotheses with the available information.

Most of the negative consequences of mining are concentrated in urban schools. As

can be seen in Table 3.3, the effects of mining are much larger for urban schools, and

the differences with respect to rural schools are statistically significant. In urban schools,

the primary dropout rate increase by 2.9 percentage points for active titles, and 10.2

percentage points for deforestation mining. The effects on middle school promotion and

dropout rates are now significant. These results indicate that children living in rural ares

are less vulnerable to mining shocks. There are also some differences by gender. As can be

seen in Table 3.4, the increase in repetition rate is concentrated on males, with estimated

effects oscillating between 3.7 and 7.6 percentage points. As for dropouts, the effects are

relatively similar, except for primary where females are more affected.

The effects on exit exam scores are limited. As with school administrative records,

the instrument are strongly correlated with the mining intensity measures, with first-stage

F-statistics between 37.5 and 308.4 (first-stage estimates are presented in Table B.3 of

the Appendix). The number of students increase with mining. The IV estimates indicate

that an additional standard deviation of active titles and mining deforestation increases
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the number of students by 8 and 13.8, respectively (Table 3.5). The additional students

are concentrated in rural schools, where the effects can be as large as 17.4 percentage

points, equivalent to a 34% change (Table 3.6). This is consistent with the fact that rural

high schools don’t see dropouts increase, and have positive, although insignificant, effects

on enrollment. The positive effect on the number of students is also concentrated on

females 3.7). As for the test scores, most of the estimated effects are small and statistically

insignificant; the largest coefficient is under 2% of a standard deviation for female students.

Similarly, there are no detectable effects on the probability of working. Overall, these results

indicate that students finishing high school are less affected by mining, which reflects that

this is a relatively self-selected group.

3.4.2 DHS Surveys

The effects of mining on school attendance and child labor are estimated using urban DHS

surveys. I estimate the effect on the whole sample and also by age groups. The main results

are presented in Table 3.8. Even with two periods, and considerably less observations, the

instrument is still strongly correlated with the mining intensity measures. The smallest

first-stage F-statistics in the main specification is 51.7, and is statistically different from

zero (see Table B.4 of the Appendix for the first-stage estimates). While there are no

significant effects on the entire population, children age 9 to 11 are particularly affected.

In fact, the IV estimates indicate that an additional standard deviation of active titles and

mining deforestation reduced the probability of studying by 4.2 and 7.9 percentage points,
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respectively. Moreover, mining increases the probability of working in this age group, with

estimated effects of 5 and 9.4 percentage points. Considering that only 2.9% of the children

are working at this age, these are very large effects.

These finding indicate that the sharp increase of repetition and dropout rates in urban

primary schools are partially driven by an earlier entrance to the labor market. For older

students, the effect on working is positive but not statistically significant. In order to

learn more about the children who are entering the labor market earlier, I estimate the

heterogeneous effects of mining by parents’ education. I choose this variable because,

unlike family income or wealth measures based on physical assets, it is expected to be

uncorrelated to a mining shock. The instruments are weak for mining deforestation but

not for active titles. The effect of active titles on both school attendance and child labor are

only significant for children with educated parents (Table 3.9). One possible interpretation

of this result is that a larger fraction of children with uneducated parents are already

working, therefore this group is less sensitive to new incentives. I also test for heterogeneous

effects by gender in Table 3.10. While the effects on school attendance and child labor are

concentrated on males, the difference between genders is not statistically significant.

I test whether these results hold when rural households are also considered. To do this,

I geocode the 2005 rural clusters in the corresponding municipal towns. Since the location

of the rural households is measured with error in 2005, results need to be interpreted with

caution. In estimate the effect of mining with both urban and rural households in Table

B.5 of the Appendix. As can be seen, there are two major differences with respect to the
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urban only results. On the one hand, the effects on studying are no longer significant. This

is consistent with the fact that there were no significant changes in dropout rates in rural

primary schools. On the other hand, the effects on child labor of the 9-11 group are larger

in magnitude, and the overall effect on the probability of working is now significant.

3.4.3 Robutness

I replicate the main IV estimates for neighborhoods defined by distances ranging from 10

to 50 km. Tables 3.11 and 3.12 present the estimated effects on enrollment, promotion,

repetition and dropouts rates. The first thing to be noticed is that there are no significant

effects for 50 km, and the sensitivity to distance varies depending on the school level.

For instance, the effects on promotion and repetition rates for primary school are larger

at shorter distances (10-20 km), as opposed to high school, where they reach their peak

between 30 and 40 km. This is consistent with the fact that there are less high schools and

they are more spatially concentrated. It may also reflect that teenagers are more mobile.

As for dropouts, the largest significant effects are reported for 20 km.

The effect on the number of students taking the exit exam is only significant for the

20 km neighborhood at the 10% significance level, which cast doubts on the robustness of

the results (Table 3.13). There are also some positive and significant effects on the test

score at distances 30 to 40 km. The coefficients oscillate between 0.013 and 0.038 standard

deviations, which is a rather small effect. As for working, the estimated effects are close to

zero and statistically insignificant in all specifications.
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Table 3.14 presents the DHS estimated coefficients for different distance buffers. The

effects on studying and working for the 9-11 group are significant for all neighborhood

definitions. There are also some negative and significant effects on the overall probability

of studying for distances 30 to 40 km. This seems to be driven by the age groups 12-14 and

15-17 who have the largest estimated coefficients, even though they are not statistically

significant. Overall, the DHS results are robust to different distance buffers.

Finally, I control for two potential confounding factors. The first one is homicide

rate, which reflects changes in the intensity of conflict at the municipal level. The second

one is the municipal annual revenue from royalties. Given the additional fiscal revenue,

municipalities with abundant legal mining are expected to perform better in terms of

education. As can be seen in Tables B.6 to B.8, results are fairly similar when these

variables are included. Although these results do not fully rule out that conflict or public

expenditure are mediating the effects of mining on schooling and child labor, they suggest

that these are not the key mechanisms driving the estimated effects. Besides, the results

also indicate that the empirical strategy is controlling for these factors relatively well.

3.5 Conclusions

This paper estimates the local effect of gold mining on schools and child labor in Colombia.

I focus on the 2004-2012 period, during which the country witnessed the biggest mining

boom in its recent history. One particular aspect of the Colombian gold mining sector is

that it is characterized by the prevalence of small-scale artisan and illegal miners. I use

98



detailed geographic information to construct two measures that capture the annual changes

in local mining intensity: the area covered by active titles, which captures the evolution of

legal mining, and the deforestation in areas with identified deposits, which is a proxy for

all mining activities.

The main results indicate that mining increases dropout rates in urban areas at all

levels, with larger effects for females in primary. There are also significant effects on

repetition rates for males. The effects are not negligible. For instance, an additional

standard deviation of active titles and mining deforestation increases the urban primary

dropout rate in 2.8, and 10.2 percentage points, respectively. For the younger children,

this effect is partially driven by higher probabilities of working. In fact, the DHS surveys

reveal a significant increase in the probability of working in the age group 9-11; with

estimated effects between 5 to 9.4 percentage points. The children in this age group also

reduce the school attendance by 4.2 to 7.9 percentage points. The effect on working is also

positive for children aged-12-17, however the coefficients are not statistically significant.

In comparison, the effects on the exit exams are limited. The number of students taking

the exam increases, but the effect is not robust to different distance buffers. There are

also some small improvements in test scores and no detectable effects on the probability of

working.

The effects are expected to be different when mining is done legally. This is partially

true here, the active titles measure yields smaller estimates than mining deforestation in

all cases. In this sense, any efforts towards formalizing the artisan miners and controlling

99



illegal mining should reduce dropouts and child labor. Moreover, the estimated effects of

the legal mining measure are significant in most specifications, which implies that in this

particular context, even legal mining has been harmful to children. This provides evidence

that local authorities have not been able to alleviate the negative externalities of mining

on children. In particular, it cast doubts on the effectiveness of the royalties system, which

provide additional funds for education and health in mining municipalities. Such findings

are consistent with previous literature showing that royalties have, in most cases, failed to

improve living standards in mining areas (e.g. Perry and Olivera, 2009, Echeverry et al.,

2011, Aguilera et al., 2014, Martınez, 2016).

A number of questions remain unanswered. First, mining dropout rates increase in

middle school and high school, even though the effect on working is not statistically signifi-

cantly for these age groups. The factors behind the dropout decisions in this group are yet

to be identified. Second, little is still known about migrations in mining areas. While the

qualitative evidence and the enrollment rates suggest that migrants are attracted to mining

areas, the magnitude of the flow, and its effects on the composition of local populations

are not clear. Third this paper exploits the fact that mining titles allow identifying gold

deposits in the region of study. However this is not always the case. For instance, there

is evidence of abundant illegal mining in the Pacific region where there less titles have

been requested and approved. In order to use this type of measures in such regions, it is

necessary to find alternative strategies to precisely delimit areas with gold deposits.
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Table 3.1: Descriptive Statistics of the Main Outcomes

Antioquia and
Colombia Coffee Region

Obs. Mean (SD) Obs. Mean (SD)

Panel A. School administrative records (2004-2012)
Enrolled students Prim. 292,143 73.45 105.42 49,243 75.22 120.12

Mid. 59,141 204.15 193.79 11,118 187.22 190.13
High 37,985 97.26 85.46 6,625 96.22 91.77

Promotion rate Pri. 292,143 82.678 15.355 49,243 78.280 16.485
Mid. 59,141 83.473 12.664 11,118 81.174 14.749
High 37,985 88.873 10.064 6,625 87.591 11.160

Repetition rate Pri. 292,143 6.688 9.769 49,243 9.343 11.988
Mid. 59,141 6.063 7.297 11,118 6.503 9.272
High 37,985 4.313 5.758 6,625 4.410 6.794

Dropout rate Pri. 292,143 6.891 9.626 49,243 6.461 9.119
Mid. 59,141 7.435 8.769 11,118 7.767 10.169
High 37,985 4.753 6.651 6,625 4.771 7.575

Transfer rate Pri. 292,143 3.743 7.544 49,243 5.916 9.076
Mid. 59,141 3.029 5.873 11,118 4.555 6.992
High 37,985 2.062 4.272 6,625 3.228 4.710

Panel B. Exit Exam (2004-2012)
Students per school 23,265 52.042 41.159 5,180 50.830 44.683
Exam score 1,604,203 -0.138 0.902 318,897 -0.197 0.864
Student works* 994,049 0.108 0.310 197,253 0.130 0.336

Panel C. DHS urban households (2005-2010)
Studies All 32,748 0.842 0.365 3,627 0.838 0.369

6-8 7,929 0.664 0.472 846 0.647 0.478
9-11 8,149 0.965 0.183 868 0.977 0.150
12-14 8,502 0.949 0.220 963 0.938 0.242
15-17 8,168 0.780 0.414 950 0.779 0.415

Works All 32,784 0.075 0.263 3,628 0.080 0.271
6-8 7,935 0.008 0.089 846 0.008 0.091
9-11 8,154 0.023 0.151 868 0.029 0.167
12-14 8,513 0.070 0.255 963 0.082 0.275
15-17 8,182 0.196 0.397 951 0.187 0.390

Source: Own calculations based on Ministry of Education, DANE, ICFES and DHS.
Note: Cities over 200,000 and metropolitan areas are excluded. Enrollment (Panel A) refers to the number of
students registered at the beginning of each school year. The working status of students taking the exit exam
are only available only after 2008.
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Table 3.2: Effect of Gold Mining on School Enrollment and
Progress Throughout the Year (20 km Neighborhood)

Active titles Mining deforestation

Primary Middle High Primary Middle High
(1) (2) (3) (4) (5) (6)

Panel A. Enrollment (beginning of the year)
OLS -0.228 4.725 5.569** 0.329 -0.071 1.385

(0.981) (3.400) (2.721) (0.468) (1.458) (1.027)
IV -0.274 4.725 5.841 -0.637 8.876 9.604

(2.234) (9.676) (6.809) (5.199) (18.323) (11.089)
mean(y) 75.911 190.859 98.887 75.911 190.859 98.887

Panel B. Grade promotion rate
OLS -0.780* 0.278 0.305 0.306 0.525 0.151

(0.412) (0.755) (0.836) (0.232) (0.449) (0.437)
IV -2.322** -1.472 -4.795* -5.402** -2.766 -7.884*

(0.939) (2.286) (2.626) (2.201) (4.196) (4.258)
mean(y) 78.249 81.009 87.39 78.249 81.009 87.39

Panel C. Grade repetition rate
OLS -0.049 -0.611 -0.234 -0.207 -0.27 0.104

(0.287) (0.463) (0.426) (0.176) (0.285) (0.296)
IV 0.283 0.844 2.913* 0.659 1.585 4.790*

(0.633) (1.401) (1.594) (1.474) (2.589) (2.635)
mean(y) 9.373 6.54 4.499 9.373 6.54 4.499

Panel D. Dropout rate
OLS 0.264 0.577 -0.02 0.035 -0.276 0.188

(0.218) (0.457) (0.539) (0.134) (0.289) (0.267)
IV 1.244** 1.465 3.207** 2.895** 2.753 5.273**

(0.509) (1.550) (1.612) (1.192) (2.872) (2.564)
mean(y) 6.484 7.886 4.878 6.484 7.886 4.878

First-stage F 600.8 55.5 37.9 666.0 90.6 56.4
Observations 47,785 10,662 6,287 47,740 10,509 6,214

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate
panel regression that controls for school and year fixed effects, and municipal-specific time trends. Standard errors
are clustered at school level. IV regressions instrument the mining intensity measures with the interaction between
gold deposits in the neighborhood and international prices. The sample includes all geocoded schools in non-
metropolitan areas from Antioquia and the Coffee Region. The period of study is 2004-2012. A mine is considered
in the neighborhood of a school if the distance is smaller or equal to 20 km. Active titles and mining deforestation,
as defined in Section 3.3.2, are normalized with mean zero and standard deviation equal to one.
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Table 3.3: Effect of Gold Mining on School Enrollment and
Progress Throughout the Year: By Urban/Rural (IV only, 20 km Neighborhood)

Active titles Mining deforestation

Primary Middle High Primary Middle High
(1) (2) (3) (4) (5) (6)

Panel A. Enrollment (beginning of the year)
Rural 0.566 9.838 7.184 1.946 24.975 13.951

(1.894) (8.720) (6.848) (4.319) (17.194) (11.713)
Urban -5.1 -4.586 3.247 -23.461 -30.578 0.009

(5.881) (10.978) (7.262) (23.914) (26.575) (13.492)
P-value (rural=urban) 0.273 0.024 0.213 0.272 0.018 0.192
Mean(y) 75.911 190.859 98.887 75.911 190.859 98.887

Panel B. Grade promotion rate
Rural -1.635* -0.557 -4.337 -3.267 0.028 -6.607

(0.948) (2.335) (2.726) (2.216) (4.520) (4.554)
Urban -6.271*** -3.139 -5.680** -24.263*** -9.612** -10.703**

(1.057) (2.354) (2.813) (3.552) (4.572) (4.622)
P-value (rural=urban) 0.000 0.002 0.156 0.000 0.003 0.198
Mean(y) 78.249 81.009 87.39 78.249 81.009 87.39

Panel C. Grade repetition rate
Rural -0.065 0.613 3.085* -0.416 0.898 5.413*

(0.635) (1.424) (1.612) (1.476) (2.736) (2.796)
Urban 2.287*** 1.264 2.58 10.152*** 3.267 3.414

(0.669) (1.438) (1.626) (2.032) (2.782) (2.740)
P-value (rural=urban) 0.000 0.163 0.267 0.000 0.189 0.219
Mean(y) 9.373 6.54 4.499 9.373 6.54 4.499

Panel C. Dropout rate
Rural 0.980* 0.739 2.467 2.071* 0.548 3.069

(0.514) (1.588) (1.751) (1.199) (3.071) (2.858)
Urban 2.761*** 2.787* 4.638*** 10.172*** 8.156*** 10.137***

(0.592) (1.582) (1.791) (1.966) (2.981) (2.933)
P-value (rural=urban) 0.000 0.000 0.001 0.000 0.000 0.002
Mean(y) 6.484 7.886 4.878 6.484 7.886 4.878

First-stage F 298.2 27.6 18.5 331.8 42.8 28.5
Observations 47,740 10,509 6,214 47,740 10,509 6,214

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate
panel regression that controls for school and year fixed effects, and municipal time trends. The heterogeneous
effects and the difference between groups are estimated using fully interacted models. IV regressions instrument
the mining intensity measures (and their interaction with the urban/rural group) with the interaction between
gold deposits in the neighborhood and international prices (and its interaction with the urban/rural group). The
first-stage F corresponds to the Kleibergen-Paap Wald statistic. Standard errors are clustered at school level. The
sample includes all geocoded schools in non-metropolitan areas from Antioquia and the Coffee Region. The period
of study is 2004-2012. A mine is considered in the neighborhood of a school if the distance is smaller or equal
to 20 km. Active titles and mining deforestation, as defined in Section 3.3.2, are normalized with mean zero and
standard deviation equal to one.
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Table 3.4: Effect of Gold Mining on School Enrollment and
Progress Throughout the Year: By Gender (IV only, 20 km Neighborhood)

Active titles Mining deforestation

Primary Middle High Primary Middle High
(1) (2) (3) (4) (5) (6)

Panel A. Enrollment (beginning of the year)
Female -0.573 0.058 3.689 -2.239 -4.798 7.592

(1.096) (4.683) (3.455) (2.582) (9.162) (5.728)
Male 0.3 4.666 2.152 1.602 13.673 2.012

(1.114) (4.595) (3.429) (2.661) (8.872) (5.648)
P-value (female=male) 0.001 0.000 0.022 0.001 0.000 0.021
Mean(y) 37.956 95.429 49.443 37.956 95.429 49.443

Panel B. Grade promotion rate
Female -2.473** -1.954 -4.393* -5.939** -2.693 -5.403

(0.979) (2.441) (2.671) (2.331) (4.485) (4.326)
Male -2.286** -2.907 -6.057** -5.116** -6.518 -11.465***

(0.975) (2.441) (2.676) (2.319) (4.471) (4.299)
P-value (female=male) 0.389 0.004 0.000 0.389 0.004 0.000
Mean(y) 78.335 80.891 87.176 78.335 80.891 87.176

Panel C. Grade repetition rate
Female 0.114 0.472 2.251 -0.211 -0.488 2.113

(0.653) (1.400) (1.686) (1.539) (2.611) (2.762)
Male 0.573 1.801 3.757** 1.809 4.831* 7.589***

(0.659) (1.409) (1.719) (1.567) (2.631) (2.863)
P-value (female=male) 0.003 0.000 0.000 0.003 0.000 0.000
Mean(y) 9.309 6.562 4.605 9.309 6.562 4.605

Panel C. Dropout rate
Female 1.573*** 2.204 3.641** 4.311*** 4.392 5.646**

(0.532) (1.760) (1.617) (1.266) (3.300) (2.587)
Male 0.937* 1.974 3.859** 1.514 3.482 6.454**

(0.534) (1.737) (1.595) (1.271) (3.218) (2.510)
P-value (female=male) 0.000 0.325 0.493 0.000 0.332 0.484
Mean(y) 6.457 7.95 4.955 6.457 7.95 4.955

First stage F 298.1 27.5 19.0 329.6 42.4 28.8
Observations 95,480 21,018 12,428 95,480 21,018 12,428

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate
panel regression that controls for school and year fixed effects, and municipal time trends. The heterogeneous
effects and the difference between groups are estimated using fully interacted models. IV regressions instrument
the mining intensity measures (and their interaction with the gender group) with the interaction between gold
deposits in the neighborhood and international prices (and its interaction with the gender group). The first-stage
F corresponds to the Kleibergen-Paap Wald statistic. Standard errors are clustered at school level. The sample
includes all geocoded schools in non-metropolitan areas from Antioquia and the Coffee Region. The period of study
is 2004-2012. A mine is considered in the neighborhood of a school if the distance is smaller or equal to 20 km.
Active titles and mining deforestation, as defined in Section 3.3.2, are normalized with mean zero and standard
deviation equal to one.

104



Table 3.5: Effect of Gold Mining on Students Taking the Exit Exam
(20 km Neighborhood)

Active titles Mining deforestation

Students Exam Student Students Exam Student
per school score works* per school Score works*

(1) (2) (3) (4) (5) (6)

OLS 2.198 0.012 0.003 0.349 0.016** 0
(1.766) (0.008) (0.004) (0.854) (0.006) (0.003)

IV 8.097* 0.013 0.001 13.832* 0.011 0.001
(4.433) (0.010) (0.003) (7.439) (0.007) (0.003)

Mean(y) 50.83 0 0.129 50.83 0 0.129

First-stage F 37.5 220.1 554.1 61.9 120.2 308.4
Observations 5180 318226 195879 5180 318226 195879

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a
separate regression that controls for school and year fixed effects, and municipal-specific time trends. Individual
regressions also control for the students’ age and gender. IV regressions instrument the mining intensity measures
with the interaction between gold deposits in the neighborhood and international prices. Standard errors are
clustered at school level. The sample includes all geocoded schools in non-metropolitan areas from Antioquia
and the Coffee Region. The period of study is 2004-2012, except for work situation that is restricted to 2008-
2012. A mine is considered in the neighborhood of a school if the distance is smaller or equal to 20 km. Active
titles and mining deforestation, as defined in Section 3.3.2, and test scores are normalized with mean zero and
standard deviation equal to one.

Table 3.6: Effect of Gold Mining on Students Taking the Exit Exam:
By Urban/Rural (IV only, 20 km Neighborhood)

Active titles Mining deforestation

Students Exam Student Students Exam Student
per school score works* per school Score works*

(1) (2) (3) (4) (5) (6)

Rural 8.449* 0.011 0.001 17.438** 0.008 0.001
(4.435) (0.010) (0.003) (7.420) (0.008) (0.003)

Urban 5.987 0.014 0.002 5.848 0.012* 0.002
(5.321) (0.009) (0.004) (10.140) (0.007) (0.004)

P-value (rural=urban) 0.184 0.298 0.331 0.098 0.394 0.330
Mean(y) 50.830 0.000 0.129 50.830 0.000 0.129

First-stage F 25.8 66.9 163.0 18.1 107.7 263.1
Observations 5,180 318,226 195,879 5,180 318,226 195,879

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a
separate regression that controls for school and year fixed effects, and municipal-specific time trends. Individual
regressions also control for the students’ age and gender. The heterogeneous effects and the difference between
groups are estimated using fully interacted models. IV regressions instrument the mining intensity measures (and
their interaction with the urban/rural group) with the interaction between gold deposits in the neighborhood
and international prices (and its interaction with the urban/rural group). The first-stage F corresponds to the
Kleibergen-Paap Wald statistic. Standard errors are clustered at school level. The sample includes all geocoded
schools in non-metropolitan areas from Antioquia and the Coffee Region. The period of study is 2004-2012,
except for work situation that is restricted to 2008-2012. A mine is considered in the neighborhood of a school
if the distance is smaller or equal to 20 km. Test scores, active titles and mining deforestation, as defined in
Section 3.3.2, and test scores are normalized normalized with mean zero and standard deviation equal to one.
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Table 3.7: Effect of Gold Mining on Students Taking the Exit Exam:
By Gender (IV only, 20 km Neighborhood)

Active titles Mining deforestation

Students Exam Student Students Exam Student
per school score works* per school Score works*

(1) (2) (3) (4) (5) (6)

Female 6.678** 0.019** -0.010 12.824*** 0.017** -0.011
(2.706) (0.009) (0.014) (4.047) (0.007) (0.015)

Male 4.494* 0.009 0.016 4.187 0.006 0.017
(2.606) (0.010) (0.014) (3.649) (0.009) (0.015)

P-value (female=male) 0.000 0.175 0.185 0.000 0.177 0.185
Mean(y) 24.696 0.000 0.129 24.696 0.000 0.129

First stage F 35.2 82.9 202.4 22.4 146.3 357.7
Observations 12,458 308,871 195,879 12,458 308,871 195,879

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a
separate regression that controls for school and year fixed effects, and municipal-specific time trends. Individual
regressions also control for the students’ age and gender. The heterogeneous effects and the difference between
groups are estimated using fully interacted models. IV regressions instrument the mining intensity measures
(and their interaction with the gender group) with the interaction between gold deposits in the neighborhood
and international prices (and its interaction with the gender group). The first-stage F corresponds to the
Kleibergen-Paap Wald statistic. Standard errors are clustered at school level. The sample includes all geocoded
schools in non-metropolitan areas from Antioquia and the Coffee Region. The period of study is 2004-2012,
except for work situation that is restricted to 2008-2012. A mine is considered in the neighborhood of a school
if the distance is smaller or equal to 20 km. Test scores, active titles and mining deforestation, as defined in
Section 3.3.2, and test scores are normalized normalized with mean zero and standard deviation equal to one.
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Table 3.8: Effect of Gold Mining on School Attendance
and Child Labor (20 km Neighborhood)

Active titles Mining deforestation

All 6-8 9-11 12-14 15-17 All 6-8 9-11 12-14 15-17
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. School attendance
OLS -0.021 -0.046 -0.036** -0.012 -0.052 0.027 -0.033 -0.003 0.052 0.044

(0.033) (0.059) (0.016) (0.056) (0.074) (0.044) (0.101) (0.025) (0.061) (0.091)
IV -0.035 -0.044 -0.042** -0.033 -0.083 -0.075 -0.105 -0.079** -0.078 -0.165

(0.035) (0.067) (0.018) (0.062) (0.077) (0.077) (0.157) (0.037) (0.146) (0.159)
Mean(y) 0.838 0.647 0.977 0.938 0.779 0.838 0.647 0.977 0.938 0.779

Panel B. Works
OLS 0.008 0.002 0.044** 0.017 -0.034 0.024 0.009 0.049 0.041 -0.002

(0.022) (0.001) (0.021) (0.033) (0.074) (0.033) (0.007) (0.040) (0.055) (0.104)
IV 0.025 0 0.050** -0.01 0.037 0.054 0.001 0.094** -0.023 0.074

(0.023) (0.001) (0.023) (0.033) (0.077) (0.049) (0.003) (0.048) (0.077) (0.152)
Mean(y) 0.08 0.008 0.029 0.082 0.187 0.08 0.008 0.029 0.082 0.187

First-stage F 76.9 59.2 101.5 54.3 51.7 274.0 117.3 268.6 180.2 284.2
Observations 3,628 846 868 963 951 3,628 846 868 963 951

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate regression that controls for
municipal and year fixed effects, and students characteristics (age, gender, household sized and parents’ education). IV regressions instrument
the mining intensity measures with the interaction between gold deposits in the neighborhood and international prices. Standard errors are
clustered at DHS cluster level. The sample includes all urban households in non-metropolitan areas from Antioquia and the Coffee Region.
The period of study is 2005-2010. A mine is considered in the neighborhood of a cluster if the distance is smaller or equal to 20 km. Active
titles and mining deforestation, as defined in Section 3.3.2, are normalized with mean zero and standard deviation equal to one.
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Table 3.9: Effect of Gold Mining on School Attendance
and Child Labor, by Parents’ Education (IV only, 20 km Neighborhood)

Active titles Mining deforestation

All 6-8 9-11 12-14 15-17 All 6-8 9-11 12-14 15-17
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. School attendance
Primary education 0.064 0.024 0.064 0.074 -0.075 0.152 0.032 0.146 0.216 -0.138

(0.053) (0.152) (0.058) (0.082) (0.092) (0.125) (0.270) (0.140) (0.236) (0.222)
Secondary or higher -0.077* -0.054 -0.038 -0.104 -0.113 -0.175* -0.146 -0.076 -0.329 -0.226

(0.041) (0.069) (0.029) (0.071) (0.097) (0.100) (0.183) (0.061) (0.227) (0.197)
P-value
(primary=higher)

0.015 0.593 0.130 0.014 0.589 0.030 0.528 0.171 0.054 0.592

Mean(y) 0.838 0.647 0.977 0.938 0.779 0.838 0.647 0.977 0.938 0.779

Panel B. Works
Primary education 0.018 -0.022 -0.009 -0.057 0.091 0.032 -0.036 -0.041 -0.152 0.206

(0.043) (0.014) (0.044) (0.062) (0.097) (0.092) (0.027) (0.101) (0.169) (0.230)
Secondary or higher 0.029 0.004 0.061** 0.018 0.036 0.066 0.012 0.122* 0.07 0.069

(0.024) (0.004) (0.029) (0.037) (0.096) (0.053) (0.012) (0.065) (0.115) (0.193)
P-value
(primary=higher)

0.895 0.098 0.134 0.343 0.667 0.839 0.144 0.156 0.384 0.667

Mean(y) 0.08 0.008 0.029 0.082 0.187 0.08 0.008 0.029 0.082 0.187

First-stage F 38.1 12.0 16.6 43.0 56.3 7.6 3.4 4.7 5.0 8.8
Observations 3,627 846 868 963 950 3,627 846 868 963 950

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate regression that controls for
municipal and year fixed effects, and students characteristics (age, gender, household sized and parents’ education). The heterogeneous effects
and the difference between groups are estimated using fully interacted models. IV regressions instrument the mining intensity measures (and
their interaction with the parents’ education group) with the interaction between gold deposits in the neighborhood and international prices
(and its interaction with the parents’ education group). The first-stage F corresponds to the Kleibergen-Paap Wald statistic. Standard errors
are clustered at DHS cluster level. The sample includes all urban households in non-metropolitan areas from Antioquia and the Coffee Region.
The period of study is 2005-2010. A mine is considered in the neighborhood of a cluster if the distance is smaller or equal to 20 km. Active
titles and mining deforestation, as defined in Section 3.3.2, are normalized with mean zero and standard deviation equal to one.
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Table 3.10: Effect of Gold Mining on School Attendance
and Child Labor, by Gender (IV only, 20 km Neighborhood)

Active titles Mining deforestation

All 6-8 9-11 12-14 15-17 All 6-8 9-11 12-14 15-17
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. School attendance
Female -0.07 -0.063 -0.027 -0.099 -0.119 -0.191 -0.158 -0.04 -0.399 -0.252

(0.045) (0.073) (0.046) (0.084) (0.081) (0.121) (0.180) (0.139) (0.341) (0.177)
Male -0.009 0.056 -0.050** -0.003 -0.038 0.003 0.174 -0.094** 0.021 -0.02

(0.037) (0.106) (0.021) (0.061) (0.080) (0.090) (0.336) (0.040) (0.157) (0.214)
P-value
(female=male)

0.160 0.290 0.551 0.085 0.302 0.184 0.373 0.679 0.183 0.354

Mean(y) 0.838 0.647 0.977 0.938 0.779 0.838 0.647 0.977 0.938 0.779

Panel B. Works
Female 0.019 0.002 -0.031 0.014 0.034 0.039 0.005 -0.165 0.075 0.072

(0.036) (0.003) (0.070) (0.064) (0.086) (0.099) (0.008) (0.290) (0.265) (0.178)
Male 0.021 -0.006 0.085** -0.012 0.013 0.047 -0.019 0.162* -0.034 0.011

(0.030) (0.006) (0.038) (0.037) (0.095) (0.076) (0.020) (0.084) (0.097) (0.261)
P-value
(female=male)

0.957 0.316 0.135 0.727 0.831 0.957 0.348 0.315 0.726 0.847

Mean(y) 0.08 0.008 0.029 0.082 0.187 0.08 0.008 0.029 0.082 0.187

First-stage F 22.2 16.5 16.5 19.9 27.7 4.1 2.8 3.0 2.0 4.7
Observations 3,627 846 868 963 950 3,627 846 868 963 950

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate regression that controls
for municipal and year fixed effects, and students characteristics (age, gender, household sized and parents’ education). The heterogeneous
effects and the difference between groups are estimated using fully interacted models. IV regressions instrument the mining intensity measures
(and their interaction with the gender group) with the interaction between gold deposits in the neighborhood and international prices (and
its interaction with the gender group). The first-stage F corresponds to the Kleibergen-Paap Wald statistic. Standard errors are clustered at
DHS cluster level. The sample includes all urban households in non-metropolitan areas from Antioquia and the Coffee Region. The period
of study is 2005-2010. A mine is considered in the neighborhood of a cluster if the distance is smaller or equal to 20 km. Active titles and
mining deforestation, as defined in Section 3.3.2, are normalized with mean zero and standard deviation equal to one.
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Table 3.11: Effect of Active Titles on School Enrollment and
Progress Throughout the Year, by Distance (IV only)

10 km 20 km 30 km 40 km 50 km
(1) (2) (3) (4) (5)

Panel A. Enrollment (beginning of the year)
Primary 2.05 -0.274 -0.954 -3.69 -2.423

(3.010) (2.193) (2.770) (2.257) (3.080)
Middle 4.708 4.725 -0.961 10.324 -7.311

(4.419) (9.218) (10.400) (10.607) (11.967)
High 1.909 5.841 -0.418 11.341 5.183

(4.550) (6.852) (9.190) (8.440) (11.436)

Panel B. Grade promotion rate
Primary -1.397*** -2.322** -2.839* -0.25 -0.537

(0.540) (0.941) (1.537) (1.258) (1.360)
Middle 0.089 -1.472 -1.343 0.23 3.152

(1.169) (2.303) (2.556) (2.826) (3.330)
High -0.703 -4.795* -10.484*** -6.973* -3.025

(1.766) (2.651) (3.719) (3.669) (4.775)

Panel C. Grade repetition rate
Primary 0.788** 0.283 0.336 -0.36 0.116

(0.389) (0.634) (1.021) (0.902) (1.036)
Middle -0.795 0.844 0.747 2.245 -0.235

(0.758) (1.416) (1.887) (1.993) (2.330)
High -0.082 2.913* 6.166*** 5.842** 0.884

(0.912) (1.611) (2.371) (2.281) (3.493)

Panel D. Dropout rate
Primary 0.529* 1.244** 1.305 0.362 0.124

(0.277) (0.511) (0.836) (0.668) (0.753)
Middle 0.865 1.465 0.337 -2.129 -2.462

(0.809) (1.563) (1.702) (1.774) (1.975)
High 1.845* 3.207** 3.003 1.044 1.136

(1.093) (1.634) (2.054) (2.097) (2.512)

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds
to a separate instrumental variable panel regression that controls for school and year fixed effects, and
municipal time trends. IV regressions instrument the mining intensity measures with the interaction
between gold deposits in the neighborhood and international prices. Standard errors are clustered
at school level. The sample includes all geocoded schools in non-metropolitan areas from Antioquia
and the Coffee Region. The period of study is 2004-2012. Each column corresponds to an alternative
definition of neighborhood based on distances between mines and schools ranging from 10 to 50 km.
Active titles, as defined in Section 3.3.2, are normalized with mean zero and standard deviation equal
to one.
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Table 3.12: Effect of Mining Deforestation on School Enrollment and
Progress Throughout the Year, by Distance (IV only)

10 km 20 km 30 km 40 km 50 km
(1) (2) (3) (4) (5)

Panel A. Enrollment (beginning of the year)
Primary 8.635 -0.637 -1.604 -6.403 -4.057

(12.726) (5.103) (4.657) (3.922) (5.158)
Middle 25.467 8.876 -1.485 12.681 -8.179

(25.447) (17.497) (16.072) (12.984) (13.386)
High 9.034 9.604 -0.514 12.031 4.697

(21.766) (11.116) (11.308) (8.946) (10.345)

Panel B. Grade promotion rate
Primary -5.884** -5.402** -4.773* -0.434 -0.899

(2.311) (2.205) (2.606) (2.184) (2.278)
Middle 0.48 -2.766 -2.074 0.283 3.526

(6.330) (4.226) (3.931) (3.471) (3.704)
High -3.328 -7.884* -12.896*** -7.398* -2.741

(8.609) (4.292) (4.645) (3.896) (4.345)

Panel C. Grade repetition rate
Primary 3.318** 0.659 0.564 -0.624 0.194

(1.648) (1.476) (1.720) (1.563) (1.735)
Middle -4.297 1.585 1.154 2.758 -0.263

(4.386) (2.618) (2.905) (2.444) (2.605)
High -0.39 4.790* 7.585** 6.198** 0.801

(4.327) (2.665) (3.077) (2.443) (3.167)

Panel D. Dropout rate
Primary 2.230* 2.895** 2.194 0.628 0.207

(1.182) (1.195) (1.402) (1.160) (1.261)
Middle 4.68 2.753 0.52 -2.615 -2.754

(4.698) (2.893) (2.630) (2.159) (2.186)
High 8.729 5.273** 3.694 1.108 1.029

(6.995) (2.593) (2.530) (2.223) (2.279)

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds
to a separate instrumental variable panel regression that controls for school and year fixed effects, and
municipal time trends. IV regressions instrument the mining intensity measures with the interaction
between gold deposits in the neighborhood and international prices. Standard errors are clustered
at school level. The sample includes all geocoded schools in non-metropolitan areas from Antioquia
and the Coffee Region. The period of study is 2004-2012. Each column corresponds to an alternative
definition of neighborhood based on distances between mines and schools ranging from 10 to 50
km. Mining deforestation, as defined in Section 3.3.2, is normalized with mean zero and standard
deviation equal to one.
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Table 3.13: Effect of Gold Mining on Students Taking the Exit Exam,
By Distance (IV only)

10 km 20 km 30 km 40 km 50 km
(1) (2) (3) (4) (5)

Panel A. Active titles
Students per school 12.064 13.832* -0.104 -4.11 -0.141

(11.124) (7.744) (7.072) (6.041) (6.906)
Exam score 0.009 0.011 0.016* 0.019** 0.014

(0.007) (0.007) (0.009) (0.009) (0.010)
Student works -0.001 0.001 0.005 0.006 0.009

(0.003) (0.003) (0.005) (0.007) (0.008)

Panel A. Mining deforestation
Students per school 3.466 8.097* -0.109 -4.135 -0.126

(3.105) (4.558) (7.380) (6.035) (6.157)
Exam score 0.01 0.013 0.027* 0.038** 0.03

(0.008) (0.010) (0.014) (0.018) (0.022)
Student works -0.001 0.001 0.005 0.006 0.009

(0.003) (0.003) (0.005) (0.007) (0.008)

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient cor-
responds to a separate regression that controls for school and year fixed effects, and municipal-
specific time trends. Individual regressions also control for the students’ age and gender. IV
regressions instrument the mining intensity measures with the interaction between gold deposits
in the neighborhood and international prices. Standard errors are clustered at school level. The
sample includes all geocoded schools in non-metropolitan areas from Antioquia and the Coffee
Region. The period of study is 2004-2012, except for work situation that is restricted to 2008-
2012. Each column corresponds to an alternative definition of neighborhood based on distances
between mines and schools ranging from 10 to 50 km. Test scores, active titles and mining defor-
estation, as defined in Section 3.3.2, and test scores are normalized with mean zero and standard
deviation equal to one.
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Table 3.14: Effect of Active Titles on School Attendance and Child
Labor,

by Distance (IV only)

10 km 20 km 30 km 40 km 50 km
(1) (2) (3) (4) (5)

Panel A. School attendance
All -0.012 -0.035 -0.051** -0.051* -0.045

(0.021) (0.035) (0.024) (0.029) (0.029)
6-8 -0.033 -0.044 -0.007 -0.005 -0.023

(0.035) (0.067) (0.044) (0.050) (0.049)
9-11 -0.021** -0.042** -0.035* -0.044* -0.053**

(0.009) (0.018) (0.019) (0.025) (0.023)
12-14 -0.009 -0.033 -0.057 -0.072 -0.068

(0.031) (0.062) (0.054) (0.064) (0.062)
15-17 -0.011 -0.083 -0.098 -0.091 -0.057

(0.045) (0.077) (0.065) (0.082) (0.084)

Panel B. Works
All 0.002 0.025 0.023 0.022 0.018

(0.014) (0.023) (0.017) (0.021) (0.022)
6-8 0.000 0.000 -0.001 0.000 0.001

(0.001) (0.001) (0.001) (0.001) (0.001)
9-11 0.023* 0.050** 0.047** 0.061*** 0.062***

(0.012) (0.023) (0.019) (0.020) (0.020)
12-14 0.009 -0.01 -0.011 -0.006 0.000

(0.018) (0.033) (0.027) (0.033) (0.032)
15-17 -0.027 0.037 0.046 0.022 -0.007

(0.041) (0.077) (0.064) (0.081) (0.083)

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corre-
sponds to a separate regression that controls for municipal and year fixed effects, and students
characteristics (age, gender, household sized and parents’ education). IV regressions instrument
the mining intensity measures with the interaction between gold deposits in the neighborhood
and international prices. Standard errors are clustered at DHS cluster level. The sample includes
all urban households in non-metropolitan areas from Antioquia and the Coffee Region. The pe-
riod of study is 2005-2010. Each column corresponds to an alternative definition of neighborhood
based on distances between mines and clusters ranging from 10 to 50 km. Active titles, as defined
in Section 3.3.2, is normalized with mean zero and standard deviation equal to one.
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Table 3.15: Effect of Mining Deforestation on School Attendance and
Child Labor,

by Distance (IV only)

10 km 20 km 30 km 40 km 50 km
(1) (2) (3) (4) (5)

Panel A. School attendance
All -0.057 -0.075 -0.174** -0.132* -0.105

(0.102) (0.077) (0.085) (0.077) (0.070)
6-8 -0.22 -0.105 -0.022 -0.012 -0.061

(0.293) (0.157) (0.141) (0.131) (0.129)
9-11 -0.077** -0.079** -0.100* -0.106* -0.110**

(0.035) (0.037) (0.057) (0.063) (0.053)
12-14 -0.038 -0.078 -0.213 -0.186 -0.163

(0.136) (0.146) (0.199) (0.165) (0.149)
15-17 -0.052 -0.165 -0.317 -0.227 -0.118

(0.210) (0.159) (0.217) (0.209) (0.176)

Panel B. Works
All 0.01 0.054 0.08 0.058 0.041

(0.065) (0.049) (0.055) (0.055) (0.052)
6-8 0.000 0.001 -0.002 -0.001 0.002

(0.006) (0.003) (0.004) (0.002) (0.002)
9-11 0.082* 0.094** 0.134*** 0.146*** 0.130***

(0.043) (0.048) (0.051) (0.050) (0.048)
12-14 0.04 -0.023 -0.04 -0.017 0.000

(0.082) (0.077) (0.104) (0.086) (0.077)
15-17 -0.126 0.074 0.148 0.054 -0.015

(0.203) (0.152) (0.206) (0.201) (0.171)

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corre-
sponds to a separate regression that controls for municipal and year fixed effects, and students
characteristics (age, gender, household sized and parents’ education). IV regressions instrument
the mining intensity measures with the interaction between gold deposits in the neighborhood
and international prices. Standard errors are clustered at DHS cluster level. The sample includes
all urban households in non-metropolitan areas from Antioquia and the Coffee Region. The pe-
riod of study is 2005-2010. Each column corresponds to an alternative definition of neighborhood
based on distances between mines and clusters ranging from 10 to 50 km. Mining deforestation,
as defined in Section 3.3.2, is normalized with mean zero and standard deviation equal to one.
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Figure 3.1: The Colombian Gold Rush
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Source: Own calculations based on (a) SIMCO; (b) SIMCO, SIGOT and Tierraminada.
Notes: Gold production is expressed in kg and titled area in km2. International prices are expressed in Colombian pesos
per Troy Once.
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Figure 3.2: Gold Mining Titles

(a) Colombia (b) Antioquia and the Coffee Region

Source: Own calculations based on SIMCO, SIGOT and Tierraminada;
Notes: Approved titles include all exploration and exploitation titles that were active at some point between 2000 and 2014.
Requested titles include all pending requests in November 2014.
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Figure 3.3: Schools, DHS clusters and Mining Deforestation

(a) Schools and DHS Clusters (b) Mining Deforestation (2001-2012)

Source: Own calculations based on (a) Ministry of Education and DHS; (b) SIMCO, SIGOT, Tierraminada and Hansen
et al. (2013).
Notes: (a) 2005 DHS clusters, and missing urban schools are located using the coordinates of the corresponding municipal
town. (b) The color scale represents the total mining deforestation between 2001 and 2012, expressed in Ha.
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Figure 3.4: Active Mines in the Neighborhood (20 km)
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(b) DHS Urban Clusters

Source: Own calculations based on Ministry of Education, DHS, SIMCO, SIGOT and Tierraminada.
Notes: The sample includes all geocoded schools in non-metropolitan areas from Antioquia and the Coffee Region. A mine
is considered in the neighborhood of a school if the distance is smaller or equal to 20 km. Active titles are defined in Section
3.3.2.

Figure 3.5: Mining Deforestation in the Neighborhood (20 km)
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Source: Own calculations based on Ministry of Education, DHS, SIMCO, SIGOT, Tierraminada and Hansen et al. (2013).
Notes: The sample includes all geocoded schools in non-metropolitan areas from Antioquia and the Coffee Region. A mine
is considered in the neighborhood of a school if the distance is smaller or equal to 20 km. Mining deforestation is defined in
Section 3.3.2.
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del periodo 2001-2011. Technical report, Departamento Nacional de Planeación. 100
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Calvó-Armengol, A., Patacchini, E., and Zenou, Y. (2009). Peer effects and social networks
in education. The Review of Economic Studies, 76(4):1239–1267. 50, 51

Campaign, C. S. (2013). La colosa: a death foretold alternative report about the anglogold
ashanti gold mining project in cajamarca, tolima, colombia. 81

Cárdenas, J. C. (2014). Two tales of mining and human choice. ReVista (Cambridge),
13(2):2. 81

Chuhan-Pole, P., Dabalen, A., Kotsadam, A., Sanoh, A., and Tolonen, A. K. (2015). The
local socioeconomic effects of gold mining: evidence from ghana. World Bank Policy
Research Working Paper, (7250). 76

Conti, G., Galeotti, A., Mueller, G., and Pudney, S. (2013). Popularity. Journal of Human
Resources, 48(4):1072–1094. 51

120

http://www.bloomberg.com/news/articles/2015-01-16/colombian-gold-traders-arrested-in-970m-laundering-case
http://www.bloomberg.com/news/articles/2015-01-16/colombian-gold-traders-arrested-in-970m-laundering-case


Cordy, P., Veiga, M. M., Salih, I., Al-Saadi, S., Console, S., Garcia, O., Mesa, L. A.,
Velásquez-López, P. C., and Roeser, M. (2011). Mercury contamination from artisanal
gold mining in antioquia, colombia: The world’s highest per capita mercury pollution.
Science of the Total Environment, 410:154–160. 73, 80

Dale, S. and Krueger, A. B. (2011). Estimating the return to college selectivity over
the career using administrative earnings data. Technical report, National Bureau of
Economic Research. 45

Dale, S. B. and Krueger, A. B. (2002). Estimating the payoff to attending a more selective
college: An application of selection on observables and unobservables. Quarterly Journal
of Economics, 117(4). 45

Dalton, P. S., Ghosal, S., and Mani, A. (2016). Poverty and aspirations failure. The
Economic Journal, 126(590):165–188. 26

De Giorgi, G., Pellizzari, M., and Redaelli, S. (2010). Identification of social interactions
through partially overlapping peer groups. American Economic Journal: Applied Eco-
nomics, pages 241–275. 46, 48, 50, 52
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88
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Reyes, L., Rodŕıguez, J., and Urzúa, S. S. (2016). Heterogeneous economic returns to
postsecondary degrees: Evidence from chile. Journal of Human Resources, 51(2):416–
460. 45

Romero, M. and Saavedra, S. (2015). The effect of gold mining on the health of newborns.
Mimeo. 73, 80

Sacerdote, B. (2001). Peer effects with random assignment: Results for dartmouth room-
mates. The Quarterly Journal of Economics, 116(2):681–704. 46, 48, 50, 51

Sachs, J. D. and Warner, A. M. (1995). Natural resource abundance and economic growth.
Technical report, National Bureau of Economic Research. 76

Santos, R. J. (2014). Not all that glitters is gold: Gold boom, child labor and schooling in
colombia. Documento CEDE, (2014-31). 77

Solis, A. (2013). Credit Access and College Enrollment. Working Paper Series 2013:12,
Uppsala University, Department of Economics. 1

Stijns, J.-P. (2006). Natural resource abundance and human capital accumulation. World
Development, 34(6):1060–1083. 77

The Economist (2013). Digging itself out of a hole. http://www.economist.com/news/
business/21599011-government-struggles-contain-public-backlash-against-

miners-digging-itself-out. Accessed: 2016-01-12. 78

The Telegraph (2016). Colombia investigates gold trades for suspected cocaine
money-laundering. http://www.telegraph.co.uk/finance/financial-crime/
10857780/Colombia-investigates-gold-trades-for-suspected-cocaine-money-

laundering.html. Accessed: 2015-12-11. 80

UNEP, U. (2015). Mineral yearbook. 76

UNODC, U. (2015). Colombia survey 2014. 80, 88

127

http://www.portafolio.co/economia/denuncian-evasion-millonaria-pago-regalias-del-oro
http://www.portafolio.co/economia/denuncian-evasion-millonaria-pago-regalias-del-oro
http://www.economist.com/news/business/21599011-government-struggles-contain-public-backlash-against-miners-digging-itself-out
http://www.economist.com/news/business/21599011-government-struggles-contain-public-backlash-against-miners-digging-itself-out
http://www.economist.com/news/business/21599011-government-struggles-contain-public-backlash-against-miners-digging-itself-out
http://www.telegraph.co.uk/finance/financial-crime/10857780/Colombia-investigates-gold-trades-for-suspected-cocaine-money-laundering.html
http://www.telegraph.co.uk/finance/financial-crime/10857780/Colombia-investigates-gold-trades-for-suspected-cocaine-money-laundering.html
http://www.telegraph.co.uk/finance/financial-crime/10857780/Colombia-investigates-gold-trades-for-suspected-cocaine-money-laundering.html


USGS, U. (2013). Mineral yearbook. http://minerals.usgs.gov/minerals/pubs/
commodity/gold/. Accessed: 2015-06-10. 77

Wilson, N. (2012). Economic booms and risky sexual behavior: evidence from zambian
copper mining cities. Journal of Health Economics, 31(6):797–812. 76

Wiswall, M. and Zafar, B. (2015). Determinants of college major choice: Identification
using an information experiment. The Review of Economic Studies, 82(2):791–824. 25,
45

Zafar, B. (2013). College major choice and the gender gap. Journal of Human Resources,
48(3):545–595. 45

Zimmerman, D. J. (2003). Peer effects in academic outcomes: Evidence from a natural
experiment. Review of Economics and Statistics, 85(1):9–23. 50

128

http://minerals.usgs.gov/minerals/pubs/commodity/gold/
http://minerals.usgs.gov/minerals/pubs/commodity/gold/


Appendix A

Additional Tables and Figures of

Chapter 1

Table A.1: Attrition diagnostics

BHELPS:
Baseline to
Follow-Up

BHELPS
(baseline) to

ICFES

BHELPS
(baseline) to

ICFES-SNIES

(1) (2) (3)

Panel A: Attrition Rates
Baseline N 6,636 6,636 6,636
Final N 6,141 6,323 6,303

Attrition Rate 0.075 0.047 0.050

Panel B: Random attrition tests (OLS)
Treatment -0.009 -0.021 -0.021

(0.039) (0.016) (0.016)
R2 0.000 0.002 0.002

Source: Authors’ calculations from ICFES, SNIES, and BHELPS survey.
Notes: * Significant at 10%; ** significant at 5%; *** significant at 1%. Standard errors are
clustered at school-level.
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Table A.2: Treatment Effects on Beliefs: Robustness

Robust Premium Error Robust Premium Error
Degree and Field Degree, College, and Field

All Under Over All Under Over
(1) (2) (3) (1) (2) (3)

Panel A: After, Matched with baseline
Treat -0.035 0.194 -0.066 0.027 -0.048 0.045

(0.091) (0.200) (0.091) (0.219) (0.511) (0.233)

Observations 4,011 802 3,209 2,811 596 2,215

Panel B: Difference-in-differences
Treat × Post 0.146 0.106 0.122 -0.003 -0.005 -0.022

(0.099) (0.265) (0.098) (0.100) (0.316) (0.099)
Post -0.091 1.243*** -0.337*** -0.116 0.977*** -0.347***

(0.064) (0.160) (0.068) (0.072) (0.170) (0.071)

Observations 8,020 1,468 6,552 5,618 1,114 4,504

Source: Authors’ calculations from BHELPS survey.
Notes: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each column and panel correspond
to a separate OLS regression. Panels A controls for student and household attributes (male, age, age squared,
family income, and parental education) and school characteristics (average SABER 11 score in previous years,
has computer lab, shift indicators, and school size). Panel B presents coefficients for difference-in-difference
regressions that control for individual fixed-effects. Standard errors are clustered at school-level.
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Table A.3: Treatment Effects by Family Income and Gender (balanced sample)

Knows Overall College Private Top-10 Academic STEM
ICETEX score Math Language Enrollment College College Degree Degree

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Treatment effects by family income
Low income (<=2 MW) 0.061*** -0.028 0.017 -0.050 -0.009 0.021** 0.000 0.007 0.007

(0.018) (0.038) (0.040) (0.038) (0.023) (0.011) (0.002) (0.009) (0.006)
Middle income (>2 MWs) 0.028* 0.048 0.093* 0.073 0.031 0.002 0.017*** 0.019 0.013

(0.015) (0.049) (0.049) (0.047) (0.027) (0.021) (0.005) (0.017) (0.013)

P-value (Low=Middle) 0.080 0.165 0.108 0.025 0.137 0.382 0.005 0.507 0.706
Observations 5,427 5,414 5,414 5,414 5,401 5,401 5,401 5,401 5,401

Panel B: Treatment effects by Gender
Female 0.029 -0.027 0.025 -0.040 -0.021 0.004 0.004 0.006 0.002

(0.018) (0.039) (0.042) (0.043) (0.026) (0.015) (0.003) (0.011) (0.007)
Male 0.069*** 0.030 0.065 0.036 0.033 0.021 0.008* 0.016 0.016

(0.019) (0.044) (0.048) (0.039) (0.022) (0.014) (0.005) (0.013) (0.010)

P-value (Female=Male) 0.069 0.236 0.411 0.149 0.051 0.348 0.513 0.584 0.290
Observations 5,427 5,414 5,414 5,414 5,401 5,401 5,401 5,401 5,401

Source: Authors’ calculations from ICFES, SNIES, and BHELPS survey.
Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each column and panel corresponds to a separate OLS
regression that controls for student and household attributes (male, age, age squared, family income, and parental education) and school
characteristics (average SABER 11 score in previous years, has computer lab, shift indicators, and school size). Standard errors are
clustered at school-level.
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Table A.4: Treatment Effects by Direction of Belief Error (baseline matched to administrative data)

Knows Overall College Private Top-10 Academic STEM
ICETEX score Math Language Enrollment College College Degree Degree

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Average effects
Treat 0.039*** -0.012 0.032 -0.010 0.012 0.015 0.005* 0.009 0.008

(0.014) (0.030) (0.034) (0.029) (0.019) (0.010) (0.002) (0.009) (0.006)

Panel B: Treatment effects by direction of belief error
Underestimates 0.053 -0.003 0.102 0.002 0.038 0.002 0.000 0.022 0.023*

(0.034) (0.076) (0.075) (0.077) (0.031) (0.023) (0.005) (0.020) (0.013)
Overestimates 0.050*** -0.019 0.019 -0.014 0.006 0.018 0.005* 0.006 0.007

(0.016) (0.031) (0.034) (0.032) (0.019) (0.011) (0.003) (0.009) (0.007)

P-value (low=middle) 0.933 0.845 0.266 0.845 0.318 0.505 0.450 0.423 0.285
Observations 6,003 6,309 6,309 6,309 6,289 6,289 6,289 6,289 6,289

Source: Authors’ calculations from ICFES, SNIES, and BHELPS survey.
Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each column and panel corresponds to a separate OLS
regression that controls for student and household attributes (male, age, age squared, family income, and parental education) and
school characteristics (average SABER11 score in previous years, has computer lab, shift indicators, and school size). Standard
errors are clustered at school-level.
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Table A.5: Treatment Effects by Non-Cognitive Factors (baseline matched to administrative data)

Knows Overall College Private Top-10 Academic STEM
ICETEX score Math Language Enrollment College College Degree Degree

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Treatment effects by risk aversion
Risk loving 0.038 0.042 0.093 0.049 0.036 0.022 0.014 0.029 0.035***

(0.030) (0.079) (0.083) (0.071) (0.038) (0.025) (0.009) (0.018) (0.013)
Risk averse 0.052*** -0.024 0.020 -0.023 0.006 0.013 0.003 0.006 0.005

(0.016) (0.033) (0.035) (0.032) (0.019) (0.012) (0.002) (0.009) (0.007)

P-value (loving=averse) 0.653 0.440 0.381 0.360 0.414 0.742 0.227 0.214 0.024
Observations 5,225 6,076 6,076 6,076 6,057 6,057 6,057 6,057 6,057

Panel B: Treatment effects by self-concept
Low 0.064*** -0.000 0.047 -0.020 0.013 0.018 0.004 0.007 0.006

(0.017) (0.036) (0.042) (0.037) (0.022) (0.012) (0.002) (0.009) (0.005)
High 0.027 0.011 0.044 0.037 0.018 0.013 0.007 0.015 0.013

(0.019) (0.043) (0.045) (0.040) (0.025) (0.017) (0.005) (0.014) (0.011)

P-value (Low=High) 0.092 0.812 0.941 0.260 0.848 0.769 0.560 0.560 0.531
Observations 5,382 6,259 6,259 6,259 6,239 6,239 6,239 6,239 6,239

Panel C: Treatment effects by self-efficacy
Low 0.043** -0.046 0.016 -0.058 0.007 0.012 0.003 0.001 0.002

(0.017) (0.037) (0.042) (0.035) (0.020) (0.011) (0.003) (0.011) (0.007)
High 0.052*** 0.069 0.081* 0.091* 0.019 0.020 0.007* 0.024* 0.019**

(0.019) (0.045) (0.047) (0.046) (0.024) (0.015) (0.004) (0.012) (0.009)

P-value (Low=High) 0.650 0.028 0.260 0.007 0.629 0.608 0.424 0.150 0.119
Observations 5,378 6,248 6,248 6,248 6,228 6,228 6,228 6,228 6,228

Panel D: Treatment effects by perceived likelihood of enrollment
Low 0.101*** -0.031 -0.004 -0.032 0.013 -0.004 -0.002 0.003 -0.001

(0.034) (0.050) (0.053) (0.056) (0.032) (0.015) (0.002) (0.012) (0.008)
High 0.038*** -0.004 0.042 -0.006 0.011 0.017 0.006** 0.013 0.012

(0.014) (0.034) (0.037) (0.033) (0.019) (0.012) (0.003) (0.010) (0.007)

P-value (Low=High) 0.041 0.649 0.470 0.699 0.937 0.243 0.017 0.512 0.206
Observations 5,169 6,014 6,014 6,014 5,995 5,995 5,995 5,995 5,995

Source: Authors’ calculations from ICFES, SNIES, and BHELPS survey.
Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each column and panel corresponds to a separate OLS regression
that controls for student and household attributes (male, age, age squared, family income, and parental education) and school characteristics
(average SABER 11 score in previous years, has computer lab, shift indicators, and school size). Standard errors are clustered at school-level.
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Table A.6: Baseline Balance in Student Aspirations

Control Treatment Difference

Mean (SD) Mean (SD) P-value

Enroll 0.988 (0.108) 0.988 (0.108) 1.000
Public College 0.628 (0.484) 0.629 (0.483) 0.944
Private College 0.220 (0.415) 0.234 (0.423) 0.403
Top-10 College 0.451 (0.498) 0.470 (0.499) 0.442
Academic degree (4-year) 0.886 (0.317) 0.897 (0.304) 0.359
Vocational degree (2-year) 0.087 (0.281) 0.081 (0.273) 0.554
STEM degree 0.403 (0.491) 0.430 (0.495) 0.089

Source: Authors’ calculations from BHELPS survey on balanced sample.
Notes: The last two columns present the difference in means and p-values between
treatment and control groups calculated by regression with clustered standard errors
at the school-level.

Table A.7: Treatment Effects on College Aspirations

Enroll Private Top-10 Academic STEM
College College College Degree Degree

(1) (2) (3) (4) (5)

Panel A: After, All students in follow-up
Treat 0.001 0.016 0.020 0.021* 0.033**

(0.003) (0.015) (0.018) (0.012) (0.013)

Observations 6,072 6,072 6,072 6,072 6,072

Panel B: After, Matched with baseline
Treat 0.002 0.019 0.020 0.021* 0.036**

(0.003) (0.015) (0.019) (0.013) (0.014)

Observations 5,485 5,485 5,485 5,485 5,485

Panel C: ANOVA
Treat 0.001 0.014 0.012 0.017 0.020*

(0.003) (0.014) (0.017) (0.012) (0.012)

Observations 5,485 5,485 5,485 5,485 5,485

Panel D: Difference-in-differences
Treat × Post -0.001 0.003 -0.004 0.004 0.007

(0.004) (0.016) (0.023) (0.013) (0.014)
Post 0.004 0.009 0.000 -0.027*** -0.006

(0.003) (0.012) (0.018) (0.009) (0.010)

Observations 11,006 11,006 11,006 11,006 11,006
Mean(y) at baseline 0.983 0.228 0.449 0.877 0.410

Source: Authors’ calculations from BHELPS survey.
Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each column and panel
correspond to a separate OLS regression. Panels A and B control for student and household attributes
(male, age, age squared, family income, and parental education) and school characteristics (average
SABER 11 score in previous years, has computer lab, shift indicators, and school size). Panel C
presents coefficients for difference-in-difference regression that control for individual fixed-effects.
Standard errors are clustered at school-level.
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Figure A.1: Quantile Treatment Effects for SABER 11 Test Scores
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Source: Authors’ elaboration from ICFES and BHELPS survey.
Notes: Estimates based on baseline matched to administrative data (N=6,309). 90% Confidence intervals in black
dashed/red dotted lines. OLS estimate in red dashed line. Standard errors clustered at the school-level.
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Figure A.2: Student Handout: Original Version

La relación entre estudios e ingresos

La educación superior es un factor determinante de la 
situación económica y por tanto la calidad de vida de las 
familias. En el siguiente gráfico se presentan los salarios 
promedio por nivel educativo en Bogotá. 

Como se puede observar, mayor educación se traduce 
en salarios más altos. Sólo con terminar el Bachillerato 
se pasa de ganar 457.000 a 574.000 por mes. El salto 
es más evidente para aquellos con un título de nivel 
superior, ya que el salario promedio mensual crece a 
1.482.000. Estas estadísticas presentan un mensaje 
claro: vale la pena estudiar.

¿Cómo puedo averiguar cuanto ganaría en la carrera 
que a mí me interesa?

Es probable que usted ya tenga una idea sobre las 
carreras que le interesarían y la institución donde 
quisiera realizar estos estudios. Si es así, ¿hay algu-
na manera de saber cuánto puede esperar ganar en 
su situación específica?

Existen dos lugares donde pueden consultar el salario 
promedio de los graduados por institución y carreras. 
Estas son:

1. Calculadora de salarios promedios para graduados: 
www.finanzaspersonales.com.co  

Esta página cuenta con una herramienta que le permite 
consultar el salario promedio por región, institución edu-
cativa, programa de estudio y género de las personas 
que obtuvieron su título entre 2001-2011.

¿Cómo funciona?

•	 Acceda al enlace y busque la Calculadora de Salario 
por profesión para Graduados
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•	 Escoja la región donde quiere realizar la búsqueda 
(por ejemplo, Bogotá)

•	 Seleccione la institución donde quiere realizar sus es-
tudios y el programa que planea cursar

2. Observatorio laboral del Ministerio de Educación: 
www.graduadoscolombia.edu.co

Está página también provee información sobre los sala-
rios promedios de personas con título de educación su-
perior para toda Colombia. Además, le permite conocer 
las perspectivas laborales del programa de estudio de 
su interés.

¿Cómo funciona?

•	 Acceda al enlace y busque el botón rojo que dice Sis-
tema de información del Observatorio Laboral.

•	 Si quiere conocer el número de graduados por car-
rera, acceda a la pestaña que dice “Perfil nacional”. 
Después, escoja el departamento donde planea es-
tudiar y obtendrá los datos de graduados por área de 
estudio.

Si desea saber cuántos individuos en su área de interés 
tienen un empleo formal (cotizando a la seguridad so-
cial) y cuanto ganan en promedio vaya a ¨Vinculación 
laboral recién graduados¨. Aquí tiene la opción de bus-
car por institución o por carrera.

Recuerde que estas páginas le permiten conocer el 
salario promedio de los profesionales graduados en su 
área de interés.

¿Qué necesito para entrar a la Universidad y la car-
rera que me interesa?

1. Buenos resultados académicos: Uno de los crite-
rios más importantes a la hora de buscar admisión a 
una institución de educación superior es el rendimiento 
académico. Muchas instituciones utilizan el puntaje del 
ICFES (SABER 11), y otras instituciones como la Uni-
versidad Nacional que tienen su propio examen de ad-
misión. En cualquier caso, estudiar aumenta las posibi-
lidades de ser admitido y también las posibilidades de 
acceder a becas o financiación. 

2. Financiación: Existen varias maneras de financiar la 
educación superior en Colombia. En general, tendrán 
preferencia los alumnos de escasos recursos y buen 
desempeño académico. Las siguientes son algunas op-
ciones a tener en cuenta:

• 	 Becas proveídas por cada institución por mérito aca-
démico y/o escasos recursos. Consulte las políticas 
de beca ya que estas son diferentes para cada in-
stitución.

•	 ICETEX: http://www.icetex.gov.co
• 	 Secretaría de Educación de Bogotá (Banco de cupos, 

Fondo de Financiamiento de Educación Superior de 
Bogotá): http://www.sedbogota.edu.co/index.php/ed-
ucacion-superior.html

Fuente: Encuesta de Hogares 2011, DANE

¡La educación superior paga!
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Figure A.3: Student Handout: English Translation
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   is	
  a	
  determining	
  factor	
  of	
  wages	
  and	
  the	
  
quality	
   of	
   life	
   of	
   families.	
   The	
   following	
   figure	
   presents	
  
average	
  wages	
  by	
  level	
  of	
  completed	
  education	
  in	
  Bogotá:	
  
	
  

	
  
Clearly,	
   more	
   education	
   is	
   related	
   with	
   higher	
   wages.	
   By	
  
only	
   finishing	
   high	
   school,	
   wages	
   move	
   from	
   457,000	
   to	
  
574,000	
   pesos	
   each	
   month.	
   The	
   difference	
   is	
   even	
   more	
  
marked	
  for	
  those	
  with	
  a	
  college	
  degree,	
  since	
  their	
  average	
  
monthly	
   wage	
   increases	
   to	
   1,492,000.	
   These	
   statistics	
  
present	
  a	
  clear	
  pattern:	
  studying	
  is	
  worth	
  it.	
  
	
  
How	
   can	
   I	
   learn	
   about	
   how	
   much	
   people	
   earn	
   who	
  
finished	
  the	
  degree	
  I’m	
  interested	
  in?	
  
	
  
It	
  is	
  very	
  likely	
  that	
  you	
  already	
  have	
  a	
  good	
  idea	
  about	
  the	
  
degrees	
   and	
   institutions	
   where	
   you	
   would	
   like	
   to	
   pursue	
  
your	
   studies.	
   If	
   this	
   is	
   true,	
   is	
   there	
   a	
   way	
   to	
   know	
   how	
  
much	
  I	
  could	
  expect	
  to	
  earn?	
  
	
  
There	
  are	
  two	
  places	
  where	
  you	
  can	
  obtain	
  information	
  on	
  
average	
   wages	
   for	
   graduates	
   by	
   institution	
   and	
   degree.	
  
These	
  are:	
  
1.   Average	
   wage	
   calculator	
   for	
   graduates:	
  

www.finanzaspersonales.com.co	
  
This	
   website	
   counts	
   with	
   a	
   tool	
   that	
   allows	
   to	
   calculate	
  
average	
  wages	
  by	
  region,	
  institution,	
  degree	
  and	
  gender	
  of	
  
people	
  who	
  graduated	
  between	
  2001	
  and	
  2011.	
  
	
  
How	
  does	
  it	
  work?	
  
-­‐   Visit	
   the	
   website	
   and	
   search	
   for	
  Wage	
   calculator	
   by	
  

degree	
  for	
  Graduates.	
  
	
  

-­‐   Select	
  the	
  region	
  where	
  you	
  are	
  interested	
  in	
  searching	
  (e.g.	
  
Bogotá)	
  

-­‐   Select	
   the	
   institution	
   and	
   the	
   degree	
   you	
   are	
   interested	
   in	
  
evaluating	
  

2.   Labor	
   Observatory	
   of	
   the	
   Ministry	
   of	
   Education:	
  
www.graduadoscolombia.edu.co	
  

This	
  website	
  also	
  provides	
   information	
  about	
  average	
  wages	
   for	
  
the	
   whole	
   country.	
   Additionally,	
   you	
   can	
   learn	
   about	
   the	
   labor	
  
prospects	
  for	
  your	
  degree	
  of	
  interest	
  
	
  
How	
  does	
  it	
  work?	
  
-­‐   Visit	
   the	
   website	
   and	
   click	
   on	
   the	
   red	
   button	
   reading	
  

Information	
  System	
  of	
  the	
  Labor	
  Observatory	
  
-­‐   If	
   you	
   would	
   like	
   to	
   know	
   the	
   number	
   of	
   graduates	
   by	
  

degree,	
   click	
   on	
   the	
   “National	
   Profile”	
   tab.	
   Next,	
   select	
   the	
  
department	
  where	
  you	
  plan	
   to	
   study	
  and	
  you	
  will	
   find	
  data	
  
on	
  graduates	
  by	
  degree.	
  

	
  
If	
   you	
   are	
   interested	
   in	
   the	
   number	
   of	
   individuals	
  who	
   pursued	
  
your	
   degree	
   of	
   interest	
   who	
   have	
   a	
   formal	
   job	
   (paying	
   social	
  
security)	
  and	
  how	
  much	
  they	
  earn	
  on	
  average,	
  select	
  “labor	
   link	
  
of	
   recent	
   graduates”.	
   Here	
   you	
   have	
   the	
   option	
   to	
   search	
   by	
  
institution	
  and	
  degree.	
  
	
  
Remember	
  that	
  these	
  websites	
  allow	
  to	
  learn	
  about	
  the	
  average	
  
wages	
  of	
  recent	
  graduates	
  for	
  your	
  degree	
  of	
  interest.	
  
	
  
What	
  will	
   I	
   need	
   to	
  enroll	
   in	
   a	
  University	
   and	
   in	
  my	
  degree	
  of	
  
interest?	
  

	
  
1.   Good	
   academic	
   results:	
   One	
   of	
   the	
   main	
   criteria	
   for	
  

admissions	
   in	
   University	
   if	
   academic	
   performance.	
   Many	
  
institutions	
   use	
   the	
   ICFES	
   (SABER	
   11)	
   score,	
   and	
   other	
  
institutions	
   like	
   the	
  National	
  University	
   also	
   have	
   their	
   own	
  
admissions	
   test.	
   Nevertheless,	
   studying	
   will	
   increase	
   the	
  
probability	
  of	
  being	
  admitted	
  and	
  also	
  of	
  obtaining	
   financial	
  
aid	
  or	
  financing.	
  

2.   Financing:	
  There	
  are	
  many	
  ways	
  to	
  finance	
  higher	
  education	
  
in	
   Colombia.	
   In	
   general,	
   financing	
   institutions	
   have	
  
preferences	
   for	
   students	
  of	
   low	
   income	
  and	
  good	
  academic	
  
performance.	
   The	
   following	
  are	
   some	
  organizations	
   to	
   keep	
  
in	
  mind:	
  

-­‐   Scholarships	
   provided	
   by	
   each	
   institution	
   according	
   to	
  
academic	
   merit	
   of	
   financial	
   need.	
   Consult	
   the	
   scholarship	
  
policies	
  for	
  each	
  institution	
  given	
  that	
  they	
  may	
  differ.	
  

-­‐   ICETEX:	
  http://www.icetex.gov.co	
  
-­‐   Secretary	
   of	
   Education	
   in	
   Bogotá	
   (FDFESBO):	
  

http://www.sedbogota.edu.co/index.php/ed-­‐	
   ucacion-­‐
superior.html	
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Appendix B

Additional Tables and Figures of

Chapter 3

Table B.1: Effect of Gold Mining on School
Enrollment and

Progress Throughout the Year (20 km Neighborhood):
First-stage Estimates

Primary Middle High
(1) (2) (3)

Active titles 0.587*** 0.546*** 0.519***
(0.024) (0.073) (0.084)

First-stage F 600.8 55.5 37.9

Mining deforestation 0.252*** 0.291*** 0.315***
(0.010) (0.031) (0.042)

First-stage F 666.0 90.6 56.4

Observations 47,740 10,509 6,214

Note: * Significant at 10%; ** significant at 5%; *** significant at
1%. Each coefficient corresponds to a separate instrumental variable
first-stage regression that controls for school and year fixed effects, and
municipal-specific time trends. Mining intensity measures are instru-
mented with the interaction between gold deposits in the neighborhood
and international prices. Standard errors are clustered at school level.
The sample includes all geocoded schools in non-metropolitan areas from
Antioquia and the Coffee Region. The period of study is 2004-2012. A
mine is considered in the neighborhood of a school if the distance is
smaller or equal to 20 km. Active titles and mining deforestation, as
defined in Section 3.3.2, and the instrument are normalized with mean
zero and standard deviation equal to one.
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Table B.2: Effect of Gold Mining on School Enrollment
in the Following Year (20 km Neighborhood)

Active titles Mining deforestation

Primary Middle High Primary Middle High
(1) (2) (3) (4) (5) (6)

OLS 0.707 1.056 2.556 -0.414 0.315 -0.117
(0.458) (1.327) (0.972) (0.487) (1.567) (0.987)

IV -1.155 -0.472 8.426 -2.386 -0.698 11.385
(5.103) (17.497) (11.116) (4.305) (13.278) (9.033)

mean(y) 75.554 191.036 98.68 75.554 191.036 98.68

First-stage F 589.6 54.3 36.7 709.5 153.2 88.5
Observations 42,646 9,738 5,775 42,602 9,588 5,703

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate
panel regression that controls for school and year fixed effects, and municipal-specific time trends. IV regressions
instrument the mining intensity measures with the interaction between gold deposits in the neighborhood and
international prices. Standard errors are clustered at school level. The sample includes all geocoded schools in
non-metropolitan areas from Antioquia and the Coffee Region. The period of study is 2004-2012. A mine is
considered in the neighborhood of a school if the distance is smaller or equal to 20 km. Active titles and mining
deforestation, as defined in Section 3.3.2, are normalized with mean zero and standard deviation equal to one.

Table B.3: Effect of Gold Mining on Students
Taking the Exit Exam

(20 km Neighborhood): First-stage Estimates

Students Exam Student
per school score works*

(1) (2) (3)

Active titles 0.452*** 1.074*** 1.144***
(0.074) (0.064) (0.043)

First-stage F 37.5 220.1 554.1

Mining deforestation 0.265*** 1.302*** 1.093***
(0.034) (0.101) (0.055)

First-stage F 61.9 120.2 308.4

Observations 5,180 318,226 195,879

Note: * Significant at 10%; ** significant at 5%; *** significant at
1%. Each coefficient corresponds to a separate instrumental variable
first-stage regression that controls for school and year fixed effects, and
municipal-specific time trends. Mining intensity measures are instru-
mented with the interaction between gold deposits in the neighborhood
and international prices. Individual regressions also control for the stu-
dents’ age and gender. Standard errors are clustered at school level.
The sample includes all geocoded schools in non-metropolitan areas
from Antioquia and the Coffee Region. The period of study is 2004-
2012, except for work situation that is restricted to 2008-2012. A mine
is considered in the neighborhood of a school if the distance is smaller
or equal to 20 km. Active titles and mining deforestation,as defined
in Section 3.3.2, the instrument, and test scores are normalized with
mean zero and standard deviation equal to one.
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Table B.4: Effect of Gold Mining on School Attendance
and Child Labor (20 km Neighborhood): First-stage Estimates

All 6-8 9-11 12-14 15-17
(1) (2) (3) (4) (5)

Active titles 0.802*** 0.860*** 0.730*** 0.870*** 0.753***
(0.091) (0.112) (0.072) (0.118) (0.105)

First-stage F 76.9 59.2 101.5 54.3 51.7

Mining deforestation 0.370*** 0.361*** 0.384*** 0.369*** 0.379***
(0.022) (0.033) (0.023) (0.027) (0.022)

First-stage F 274.0 117.3 268.6 180.2 284.2

Observations 3,627 846 868 963 950

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corre-
sponds to a separate instrumental variable first-stage regression that controls for municipal and
year fixed effects, and students characteristics (age, gender, household sized and parents’ educa-
tion). Mining intensity measures are instrumented with the interaction between gold deposits in
the neighborhood and international prices. Standard errors are clustered at DHS cluster level.
The sample includes all urban households in non-metropolitan areas from Antioquia and the
Coffee Region. The period of study is 2005-2010. A mine is considered in the neighborhood of
a cluster if the distance is smaller or equal to 20 km. Active titles and mining deforestation,
as defined in Section 3.3.2, and the instrument are normalized with mean zero and standard
deviation equal to one.
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Table B.5: Effect of Gold Mining on School Attendance
and Child Labor: Urban and Rural Households (20 km Neighborhood)

Active titles Mining deforestation

All 6-8 9-11 12-14 15-17 All 6-8 9-11 12-14 15-17
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. School attendance
OLS -0.007 0.012 -0.026 0.044 -0.008 0.063** -0.039 0.057 0.098** 0.033

(0.027) (0.041) (0.023) (0.037) (0.058) (0.032) (0.062) (0.037) (0.044) (0.058)
IV 0.003 0.004 -0.006 0.055 -0.028 0.005 0.008 -0.012 0.107 -0.053

(0.036) (0.047) (0.026) (0.056) (0.079) (0.069) (0.093) (0.050) (0.109) (0.151)
Mean(y) 0.795 0.613 0.955 0.906 0.694 0.795 0.613 0.955 0.906 0.694

Panel B. Works
OLS 0.018 -0.010* 0.054** 0.015 -0.027 -0.008 -0.001 0.045* -0.103*** 0.067

(0.015) (0.006) (0.023) (0.026) (0.053) (0.019) (0.008) (0.026) (0.040) (0.055)
IV 0.054** 0.001 0.082** 0.033 0.073 0.105** 0.002 0.154** 0.064 0.138

(0.025) (0.007) (0.034) (0.035) (0.067) (0.050) (0.015) (0.068) (0.069) (0.127)
Mean(y) 0.106 0.011 0.045 0.114 0.248 0.106 0.011 0.045 0.114 0.248

First-stage F 508.9 568.3 461.3 219.1 500.5 293.2 226.0 320.7 214.9 237.9
Observations 7,058 1,677 1,781 1,815 1,785 7,058 1,677 1,781 1,815 1,785

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate regression that controls for
municipal and year fixed effects, and students characteristics (age, gender, household sized and parents’ education). IV regressions instrument the
mining intensity measures with the interaction between gold deposits in the neighborhood and international prices. Standard errors are clustered at
DHS cluster level. The sample includes all urban and rural households in non-metropolitan areas from Antioquia and the Coffee Region. The period
of study is 2005-2010. A mine is considered in the neighborhood of a cluster if the distance is smaller or equal to 20 km. Active titles and mining
deforestation, as defined in Section 3.3.2, are normalized with mean zero and standard deviation equal to one.

141



Table B.6: Effect of Gold Mining on School Enrollment and Progress Throughout the
Year

(IV only, 20 km Neighborhood): Controlling for Homicide and Royalties

Active titles Mining deforestation

Primary Middle High Primary Middle High
(1) (2) (3) (4) (5) (6)

Panel A. Enrollment (beginning of the year)
Mining -2.359** -1.582 -4.844* -5.461** -2.94 -7.933*

(0.940) (2.290) (2.632) (2.193) (4.152) (4.252)
Homicide rate -0.003 0.002 -0.010* -0.001 0.003 -0.007

(0.003) (0.005) (0.005) (0.003) (0.005) (0.006)
Royalties 0.142 -5.704* 4.739 1.238 -5.067 5.720*

(1.905) (3.450) (3.497) (1.950) (3.571) (3.354)
Mean(y) 78.249 81.009 87.39 78.249 81.009 87.39

Panel B. Grade promotion rate
Mining -2.359** -1.582 -4.844* -5.461** -2.94 -7.933*

(0.940) (2.290) (2.632) (2.193) (4.152) (4.252)
Homicide rate -0.003 0.002 -0.010* -0.001 0.003 -0.007

(0.003) (0.005) (0.005) (0.003) (0.005) (0.006)
Royalties 0.142 -5.704* 4.739 1.238 -5.067 5.720*

(1.905) (3.450) (3.497) (1.950) (3.571) (3.354)
Mean(y) 78.249 81.009 87.39 78.249 81.009 87.39

Panel C. Grade repetition rate
Mining 0.314 0.837 2.948* 0.727 1.556 4.828*

(0.634) (1.403) (1.596) (1.468) (2.564) (2.627)
Homicide rate 0.004** -0.004 0.000 0.004* -0.005 -0.002

(0.002) (0.003) (0.003) (0.002) (0.003) (0.003)
Royalties -0.532 0.486 0.338 -0.678 0.149 -0.259

(1.333) (1.618) (1.296) (1.356) (1.714) (1.465)
Mean(y) 9.373 6.540 4.499 9.373 6.540 4.499

Panel C. Dropout rate
Mining 1.263** 1.586 3.227** 2.924** 2.948 5.284**

(0.509) (1.555) (1.612) (1.187) (2.846) (2.555)
Homicide rate 0.001 0.003 0.005 0.000 0.001 0.003

(0.002) (0.003) (0.003) (0.002) (0.004) (0.004)
Royalties 0.554 3.408 -4.429 -0.033 2.769 -5.082*

(1.079) (2.252) (3.075) (1.109) (2.329) (2.891)
Mean(y) 6.484 7.886 4.878 6.484 7.886 4.878

First-stage F 599.703 55.255 37.89 669.495 92.325 57.3
Observations 47,688 10,497 6,206 47,688 10,497 6,206

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate
panel regression that controls for municipal annual homicide rate and per capita royalties, school and year fixed
effects, and municipal-specific time trends. Standard errors are clustered at school level. IV regressions instrument
the mining intensity measures with the interaction between gold deposits in the neighborhood and international
prices. The sample includes all geocoded schools in non-metropolitan areas from Antioquia and the Coffee Region.
The period of study is 2004-2012. A mine is considered in the neighborhood of a school if the distance is smaller or
equal to 20 km. Active titles and mining deforestation, as defined in Section 3.3.2, are normalized with mean zero
and standard deviation equal to one. Homicide rates are expressed in terms of homicides per 100,000 residents,
and royalties in millions of Colombian pesos per capita.
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Table B.7: Effect of Gold Mining on Students Taking the Exit Exam
(IV only, 20 km Neighborhood): Controlling for Homicide and Royalties

Active titles Mining deforestation

Students Exam Student Students Exam Student
per school score works* per school Score works*

(1) (2) (3) (4) (5) (6)

Mining 7.879* 0.013 0.001 13.494* 0.011 0.001
(4.427) (0.009) (0.003) (7.448) (0.007) (0.003)

Homicide rate 0.019* 0.000 0.000 0.011 0.000 0.000
(0.011) (0.000) (0.000) (0.011) (0.000) (0.000)

Royalties -1.066 0.013 0.039* -3.416 0.008 0.039*
(6.378) (0.036) (0.020) (5.883) (0.036) (0.020)

Mean(y) 50.83 0.000 0.129 62.163 0.000 0.129
First-stage F 37.338 282.539 728.542 50.83 164.226 396.825
Observations 5,174 318,028 195,729 5,174 318,028 195,729

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a
separate regression that controls for municipal annual homicide rate and per capita royalties, school and year
fixed effects, and municipal-specific time trends. Individual regressions also control for the students’ age and
gender. IV regressions instrument the mining intensity measures with the interaction between gold deposits in
the neighborhood and international prices. Standard errors are clustered at school level. The sample includes
all geocoded schools in non-metropolitan areas from Antioquia and the Coffee Region. The period of study is
2004-2012, except for work situation that is restricted to 2008-2012. A mine is considered in the neighborhood
of a school if the distance is smaller or equal to 20 km. Active titles and mining deforestation, as defined in
Section 3.3.2, and test scores are normalized with mean zero and standard deviation equal to one. Homicide
rates are expressed in terms of homicides per 100,000 residents, and royalties in millions of Colombian pesos
per capita.
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Table B.8: Effect of Gold Mining on School Attendance and Child Labor
(IV only, 20 km Neighborhood): Controlling for Homicide and Royalties

Active titles Mining deforestation

All 6-8 9-11 12-14 15-17 All 6-8 9-11 12-14 15-17
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. School attendance
Mining -0.02 -0.01 -0.050*** -0.029 -0.08 -0.043 -0.023 -0.098** -0.063 -0.164

(0.038) (0.080) (0.017) (0.041) (0.077) (0.082) (0.190) (0.039) (0.093) (0.165)
Homicide rate 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

(0.001) (0.001) 0.000 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Royalties 2.798 -1.217 -0.08 -4.629** 0.758 4.252 0.277 -0.663 -5.419** -0.146

(4.371) (4.486) (2.181) (2.019) (4.187) (4.486) (4.612) (2.336) (2.591) (4.161)
Mean(y) 0.838 0.647 0.977 0.938 0.779 0.838 0.647 0.977 0.938 0.779

Panel B. Works
Mining 0.047* 0.002 0.073*** -0.007 0.107 0.101* 0.004 0.144** -0.016 0.218

(0.033) (0.072) (0.025) (0.014) (0.045) (0.069) (0.106) (0.054) (0.039) (0.096)
Homicide rate 0.000 0.002 0.001 0.000 0.001 0.000 0.002 0.001* 0.001* 0.001

(0.001) (0.001) 0.000 0.000 (0.001) (0.001) (0.002) 0.000 0.000 (0.001)
Royalties 0.605 1.231 0.321 0.222 0.997 1.340 2.279 1.710 1.618 2.222

(2.440) (6.075) (1.921) (0.871) (3.327) (2.768) (6.336) (2.008) (1.008) (3.449)
Mean(y) 0.080 0.008 0.029 0.082 0.187 0.080 0.008 0.029 0.082 0.187

First-stage F 382.1 54.5 240.0 46.6 154.4 928.0 134.8 229.2 211.9 289.8
Observations 3,628 846 868 963 951 3,628 846 868 963 951

Note: * Significant at 10%; ** significant at 5%; *** significant at 1%. Each coefficient corresponds to a separate regression that controls for
municipal annual homicide rate and per capita royalties, municipal and year fixed effects, and students characteristics (age, gender, household sized
and parents’ education). IV regressions instrument the mining intensity measures with the interaction between gold deposits in the neighborhood
and international prices. Standard errors are clustered at DHS cluster level. The sample includes all urban households in non-metropolitan areas
from Antioquia and the Coffee Region. The period of study is 2005-2010. A mine is considered in the neighborhood of a cluster if the distance is
smaller or equal to 20 km. Active titles and mining deforestation, as defined in Section 3.3.2, are normalized with mean zero and standard deviation
equal to one. Homicide rates are expressed in terms of homicides per 100,000 residents, and royalties in millions of Colombian pesos per capita.
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Figure B.1: Protected Areas and Overall Deforestation

(a) Protected Areas (b) Forest Loss (2001-2012)

Source: (a) SIGOT (b) Hansen et al. (2013).
Notes: (b) Each pixel corresponds to 30 m2 of forest loss in the period 2001-2012.
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