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ABSTRACT

Stochastic particle-resolved methods are a recent development in atmospheric

aerosol modeling. These methods resolve individual aerosol particles to track

the information of their composition during a numerical simulation. This

enables the detailed analysis of aerosol and gas phase chemistry, and allows

for a more accurate estimate of the aerosol impact on human health and

Earth’s climate. Transport of all particles in a finite-volume framework can

be represented as a stochastic model with each particle having a probability to

commute between neighboring grid-cells. This work develops and illustrates

the stochastic particle-resolved transport method, which can be used for

aerosol transport in atmosphere. The development of the stochastic model

was inspired by the passive scalar transport in a predefined velocity field. The

model was developed by splitting the transport process into advection and

diffusion, and combining them with superposition. Single time-step explicit

advection schemes and a Range-kutta numerical scheme were compared to

the deterministic advection equation solutions and analytical solutions. The

analysis also includes the stochastic modeling of the diffusion process and

its results compared to analytical solution. For all cases, a quantification of

total error and a numerical convergence analysis is presented.
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CHAPTER 1

INTRODUCTION

Suspended particles in a fluid are the focus of many fields in science and engi-

neering. Among various phenomena such as reaction, growth and deposition,

occurring to the particles, transport due to fluid movement is an important

aspect in various practical applications such as biological particle movements

[Resat et al., 2009], computer graphics [Müller et al., 2003] and atmospheric

pollutant movements [Riemer et al., 2009, Zaveri et al., 2008, 2010]. The

numerical method discussed in the thesis is particularly applicable to the

transport of atmospheric pollutants, such as aerosols in the atmosphere.

1.1 Atmospheric Aerosol particles: Life-cycle and

Impacts

An aerosol is a colloidal solution of liquid droplets or solid particles in a

gas phase. For atmospheric aerosols the gas phase is air. Atmospheric

aerosol particles are emitted by natural or anthropogenic sources. The type

of aerosols emitted vary spatially around the world. For example, mineral

dust aerosols are abundantly found near desert regions such as Sahara, while

sea salt aerosols are primarily found over the oceans. Based on the process

how they were brought into the atmosphere, aerosols are commonly classified

as primary and secondary aerosols. More on this classification is described

in the following section.

Atmospheric aerosol particles are composed of sulphates, nitrates, am-

monium, black carbon, complex salts and other compounds [Huebert and

Lazrus, 1980]. Figure 1.1 shows a sample of aerosol particles with differ-

ent compositions. Since the shape of aerosols is often irregular, the size

of aerosols can quantified by mean diameter of a volume equivalent sphere.

The mean diameter of aerosol particles ranges from 1 nm to 10 mm [Jacobson

1



Figure 1.1: Composition of different aerosol particles[Jacobson Chapter 5,
2012].

Chapter 5, 2012]. The aerosols are classified into different modes based on

their size. Figure 1.2 shows three primary modes (1) Aitken mode (PM2.5),

(2) Accumulation mode (PM2.5) and (3) Coarse particle mode, based on the

size distribution of aerosols. Atmospheric aerosol particles with the diameter

larger than 100µm are very rare.

Aerosols also vary widely in shapes. Incomplete combustion from vehicles

leads to the complicated shaped aerosols like fractals, while some aerosols,

such as hygroscopic aerosols, are spherical in shape. Previous works have

shown that the non-spherical nature of aerosols introduces relevant differ-

ences in optical properties of aerosols [Pilinis and Li, 1998] and shape can

be a relevant variable in numerical models for accurately estimating the im-

pacts of aersosol particles [Adachi et al., 2010]. Since the focus of the particle-

resolved models is on resolving particle composition rather than their shapes,

and the numerical model included in this work focuses on particle transport

assuming the shape of all aerosol particles to be spherical.
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1.1.1 Life-cycle of Aerosols

The life-cycle of aerosol particles starts with the generation (or emission)

from various sources. Primary aerosol particles are directly emitted in the

form of liquids or solids from sources like incomplete combustion of fossil

fuels, deserts and plant fragments. Secondary aerosol material is formed from

gaseous precursors from various sources. The secondary aerosol particles can

be formed either by the volatile materials such as SO4 reacting in the air

to form low-volatility gas species (sulfuric acid, H2SO4), which can convert

into a liquid particle state or by condensation of the gas species on already

existing primary or secondary aerosol particles. After formation or emission

of the aerosols, these particles undergo aging, which involves the physical

processes of coagulation, condensation of non-volatile materials on aerosols

(like sulfuric acid) and the chemical aging processes of photochemical aging.

Removal of aerosol particles from the atmosphere happens with the removal

processes, such as washout and dry-deposition [Jacobson Chapter 5, 2012].

A schematic for the life-cycle of aerosols is given in Figure 1.2, from Whitby

and Cantrell [1976]. Typical time scale for aerosol particles’ life-cycle in

atmosphere is of the order of two weeks [McCarthy, 2001].

1.1.2 Impacts of Aerosols

Aerosols have a significant impact on the environment and human health.

Impacts of aerosols are commonly classified as (1) health effects, (2) direct

effects on climate and (3) indirect effects on climate.

Small aerosol particles (PM2.5) are found to be lethal to human health.

Aerosols are responsible for lung cancer, chronic obstructive pulmonary dis-

ease (COPD) and transport of other airborne diseases [Pope III et al., 2009].

According to Pope III et al. [2009], 10 µg/m3 of PM2.5 aerosols for long

periods of time reduces the human life expectancy by 5 to 10 months.

Since aerosols can reflect, scatter and absorb light coming from the sun,

optical properties of aerosols are relevant in the direct effects of aerosols on

climate. The ability of absorbing and scattering light depends of the size and

composition of the aerosols. The size range of some aerosol particles is of the

order of the wavelength of visible light. This enables the aerosol particles to

scatter and absorb solar radiation and affect the radiation budget of Earth.
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Figure 1.2: Principal modes, sources, and particle formation and removal
mechanisms [Whitby and Cantrell, 1976]. Image is taken from Seinfeld and
Pandis [2012].
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The composition also affects the radiation effects of aerosols. Some aerosol

species, such as carbonaceous compounds, absorb visible light while other

species, such as sulfates and nitrates, do not. Optical absorption properties

of aerosols have been studied extensively in various regions around the world

[Bergstrom et al., 2007, Chung and Seinfeld, 2005, Yang et al., 2016]. These

absorbing and scattering effects are some of the direct effects of aerosols on

Earth’s radiation budget.

The composition of aerosol particles also determine their ability to nu-

cleate clouds, hence affecting the regional weather and climate indirectly.

Also, the composition of aerosols define the size of droplets formed in clouds

through nucleation [Breon et al., 2002]. This variation in size of droplets af-

fects the cloud reflectivity hence affect the climate by varying the reflection

of solar radiation [Twomey, 1991].

The cloud droplet size distribution also affects the life-time of the cloud

[Albrecht, 1981], and the life-time of the clouds not only impacts the regional

weather, but also the climate, because if clouds live longer or not so long,

this impacts the radiative budget as well. These are some of the indirect

effects of aerosols on climate.

Even though these small particles have a big impact on environment,

a fair share of the physical and chemical processes of aerosols is still not

fully understood. Numerical models are important tools to assess the aerosol

impact on climate [Ackermann et al., 1998, Gong et al., 2003, Pope and

Howard, 1997, Whitby and McMurry, 1997, Zaveri et al., 2008]. It is a

challenging task to represent aerosol processes in a global-scale model because

the global models use grid sizes of about 100 km and aerosol processes occur

at a micrometer length scales. This is why we need improved numerical

models to better model the aerosol physics and its effects.

1.2 Numerical modeling of Aerosols

As discussed in the previous section, aerosol numerical modeling is important

because the aerosols have significant impact on the Earth’s energy budget

and human health. There are three modeling approaches used in atmo-

spheric sciences community, (1) modal approach, (2) sectional approach and

(3) particle-resolved approach. As shown in Figure 1.3, each method quanti-
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Figure 1.3: Aerosol numerical models classification.

fies particle size distribution in different ways. All numerical models usually

assume that the aerosol particles are spherical in shape.

The Modal Aerosol Dynamics (MAD) approach represents the aerosol

population by superposition of a finite number of particle size distributions

called modes and all physical processes are modeled within these modes. As

described in Whitby and McMurry [1997], the Moment Dynamics Equations

are solved for zeroth, third and sixth moment of particle size to find the

particle size distribution evolution with time, in a well-mixed box. The zeroth

and the third moment signify the number concentration and the volume

concentration of aerosol particles, respectively, while the sixth moment is

proportional to the so called radar reflectivity. The total size distribution

is considered as a superposition of multiple modes (log-normal distribution

in Whitby and McMurry [1997]) which can interact with each other. This

method is computationally less expensive as compared to others, but it makes

some assumptions in keeping track of the composition of individual aerosol

particles. One such assumption is that all the particles within each mode with

this method are assumed to have a specific composition. This is a significant

assumption since the aerosol particles, even of the same mode, are known
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to vary drastically in composition. The MAD modeling approach is used in

various global models (e.g. Bauer et al. [2008] and Stier et al. [2012]).

Another approach for modeling aerosols is Sectional modeling. Sectional

models discretize the variable space into sections and store the number dis-

tribution or mass distribution in each section. A popular tool in the atmo-

spheric sciences community to model aerosols is the community model of

WRF-Chem (Weather Reasearch and Forecasting) [Grell et al., 2005, Peck-

ham et al., 2012], which is used by many researchers for modeling the spatial

and temporal evolution of gas and aerosol phase pollutants on a regional

scale. The aerosol module of WRF-Chem can be used with size-resolved

composition sectional model where all the particles of the same section are

assumed to have identical composition. A comparative study was presented

in Zhang et al. [1999] comparing modal approach with sectional approach

to model aerosol dynamics. The study concluded that discretized sectional

approach can produce major characteristics of particle size evolution. Sec-

tional size resolved model has been implemented in various studies for aerosol

dynamics [Meng et al., 1998, Wexler et al., 1994]. While assuming that each

section contains particles with same composition can be a good approxima-

tion to estimate average aerosol compositions in a region, this assumption

with aging processes can lead to particles which are different in size and

composition as compared to the actual physical scenario.

A suitable model framework to track the detailed composition of aerosol

population is particle-resolved models. For example, the particle-resolved

aerosol model Part MC [Riemer et al., 2009, 2010, Zaveri et al., 2010] tracks

the processes of coagulation, condensation, emission and dilution for a well-

mixed box. Particle resolved methods have also been implemented in other

works such as, Jaruga et al. [2013] and Shima et al. [2009]. Shima et al.

[2009] implemented the particle resolved approach for cloud precipitation.

Aerosol particles in Part MC are treated individually so that their in-

dividual composition can be tracked during a simulation. The processes of

transport and coagulation are modeled stochastically in Part-MC. Although

computationally expensive, this model includes fewer assumptions as com-

pared to aforementioned models and is more efficient in keeping track of com-

position of aerosols. While it started out as a box model, Part-MC has been

recently extended to include stochastic methods for particle transport. The

current numerical methods for particle transport in Part-MC, as described
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in Curtis et al. [2016a,b], are very simple and of lower order in time and

space. The goal of this thesis is the development of higher-order particle-

resolved transport model and its validity with respect to the conventional

finite volume scalar transport models.

1.3 Particle-resolved models: Part MC

Particle-resolved methods were introduced in Gillespie [1975], where the co-

agulation process in clouds was modeled stochastically. Later a more general

stochastic simulation algorithm was derived in Gillespie [1977]. In Shima

et al. [2009], particle/droplet positions were tracked with the particle re-

solved model of droplet condensation.

The particle-resolved model in Part MC uses a vector of dimension d to

describe an aerosol particle. As described in Riemer et al. [2009], the vector

consists of the mass of each of d species in a corresponding aerosol particle.

Each vector µ represents a point or a position in a d dimensional composition

space with the mass of each species as its components, µ1, µ2..., µd−1, µd.

These particle composition vectors are added or subtracted for coagulation

and condensation, gains and losses in a simulation. As mentioned in Riemer

et al. [2009], the governing equation for particle evolution is given by,

∂n(x, µ, t)

∂t
= ∇ · [D0 · ∇(n(x, µ, t))]︸ ︷︷ ︸

Turbulent diffusion

−∇ · [u(x, t)n(x, µ, t)]︸ ︷︷ ︸
Advection

+
1

2

∫ µ1

0

..

∫ µd

0

K(µ′, µ− µ′)n(x, µ′, t)n(x, µ− µ′, t)dµ1..dµd︸ ︷︷ ︸
coagulation gain

+

∫ µ1

0

..

∫ µd

0

K(µ, µ′)n(x, µ′, t)n(x, µ, t)dµ1..dµd︸ ︷︷ ︸
coagulation loss

+ ṅemission(x, µ, t)︸ ︷︷ ︸
emmisions

−
C∑
l=1

∂

∂µl
(clIln(x, µ, t))︸ ︷︷ ︸

gas−particle transfer

− ∂

∂µC+1

(cwIwn(x, µ, t))︸ ︷︷ ︸
water transfer

. (1.1)

where, n(x, µ, t) represents the particle size distribution at position x, at time

t. D0 is diffusion coefficient in air, K represents the coagulation kernel (i.e.

probability function for particles µ and µ′ to coagulate) and cl represents the
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mass of a gas specie. Transport (advection and diffusion) and coagulation

gains and losses are modeled stochastically in Part-MC. The gas phase chem-

istry is modeled in chemistry modules using MOSAIC [Zaveri et al., 2008].

This thesis only focuses on the numerical modeling of first two terms of the

RHS of equation (1.1), i.e. the transport terms.

1.4 Contribution of thesis: Stochastic particle-resolved

transport

Since each particle is represented by a distinct vector for a given time step,

it is to be treated distinctly, even for transport. Since keeping track of posi-

tions of individual particles is computationally very expensive, a grid-based

stochastic method may be a more practical trade-off between desired ac-

curacy and computational expense. In this work, a model is proposed for

the transport of particles using a stochastic multinomial sampling algorithm

based on the already existing finite volume methods for passive scalar trans-

port.

Among other studies for particle transport, a numerical study for a reactive-

diffusive system has been carried out on a finite volume grid in Lampoudi

et al. [2009]. Lampoudi et al. [2009] developed transport with Multinomial

Simulation Algorithm (MSA) which uses operator splitting for stochastic

diffusion and stochastic reaction simulations. This algorithm is particle re-

solved, but only addresses the part of the problem that pertains to vertical

diffusion. In this thesis work, horizontal advection has also been addressed

by defining a more general transport formulation.

A stochastic particle-resolved advection-diffusion model was described in

Jain [2011]. The Particle grid method (PGM), in Jain [2011] laid the basic

mathematical theory for transport and described its consistency and conver-

gence. This thesis, however, models the stochastic transport in a flux based

framework which can be included easily in WRF transport module. The

current work also illustrates the approach for applying the proposed method

for higher-order transport schemes, which will be discussed in Chapter 3.

In a horizontal plane for an atmospheric scenario, the transport is dom-

inated by advection and vertical transport is dominated by turbulent diffu-

sion. In this work, we address advection and diffusion of particles separately
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and discuss their theoretical and numerical convergence.

1.5 Thesis Structure

This research work is based on exploring higher order methods for stochastic

transport in a grid-based system. Although this work does not include chem-

ical and physical reactions (coagulation, condensation and source emissions)

among aerosols, each particle is distinctly resolved for the study. The aim of

this work is to formulate and implement stochastic advection and diffusion,

and quantify the corresponding errors. The formulation starts with introduc-

tion of passive scalar transport and will lead to flux-based particle transport

in Chapter 2. Chapter 3 will discuss explicit numerical schemes for advec-

tion and diffusion. Chapter 4 presents the error analysis and grid-convergence

study for all the numerical explicit schemes discussed in Chapter 3 and 2.

Numerical results of test cases with the description of boundary conditions

and initial conditions will be listed in Chapter 5. Conclusions from the results

and further work are discussed in Chapter 6 of this document.
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CHAPTER 2

PARTICLE TRANSPORT IN
1-DIMENSIONAL GRID

In this chapter, starting with an introduction to one-particle transport, finite-

volume method for transport of a passive scalar and a stochastic flux-based

particle transport method for multiple particles will be discussed. Also, the

consistency of stochastic method will be theoretically proved at the end of

this chapter.

2.1 Transport of a particle : Fokker-Planck Equation

Movement of a free particle due to the process of diffusion has been described

as Brownian motion. The mathematical description of Brownian motion of

suspended particles in a solvent was originally presented in Einstein [1905]

and was later described in different forms by several authors [Furth and

Cowper, 1956]. If a single particle is considered for transport in a 1D space

with a given velocity field, its motion can be formulated by Smoluchowski

equation

dx(t) = u(x, t)dt+ σ(x, t)dW (t). (2.1)

Here, position x(t) is a random variable, u is the velocity of particle, t is the

time, dW is the brownian motion term or Wiener’s process [Higham, 2001,

Titulaer, 1978] which scales as [
√
dt N(0, 1)] with time, and σ is defined as the

deviation of the linear movement of the particle in time dt. The relationship

between the random variable x(t) and the probability density function for

the particle p(x, t) is given by Fokker-Planck equation

∂p(x, t)

∂t
= −∂(u(x, t)p(x, t))

∂x
+
∂2(D(x, t)p(x, t))

∂x2
, (2.2)
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Figure 2.1: Probability for particle transport for time t = k4t. Particle pop-
ulation in a grid-cell depends on the particles in other grid-cells in previous
time-steps

where, D = σ2/2, is the diffusion coefficient. Since the initial location of the

particle is known, p(x, t = 0) is a Dirac-delta function centered at the given

location. Equation (2.2) can be solved as an initial value problem to find the

spatial probability distribution for the particle in future time.

Since the equation (2.2) is solved by numerical methods, the space can be

discretized into number of finite-volume grid-cells as shown in Figure 2.1. If

more than one number of particles is initially placed in a same grid-cell, the

probability distribution for each particle is given by the numerical solution of

equation (2.2). Since interactions between particles are ignored, each particle

movement simulated separately can be superimposed to produce results for

a system consisting of many particles. For particles present in the same grid-

cell at t = 0, a difference in their location/grid-cell, xi(t), in future times is

introduced by stochastic components of the simulation.

The probabilities pij are calculated by solving equation (2.2) in each cell

with initial conditions defined in all nx cells. For example, a grid with initial

conditions and probabilities of particles to commute from an initial distri-

bution are given in Figure 2.1. Considering an initial spatial distribution

of particle number as n(xi, t = 0) in a one-dimensional grid with grid-cell

number denoted by index i, the particle number distribution in future times
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can be found by sampling the initial distribution with probabilities,

pkij = Probability of particle in cell i to move to cell j at time-step k,

t = k4t,4t is the time-spacing,

n(xj, t) ∼
nx∑
i=1

multinomial(n(xi, 0), pkij). (2.3)

The above method could have been a good reduction in computational

power since it only requires initial conditions and probabilities to find a

distribution at any desired time-step. But because of the other phenomena

such as coagulation and condensation are to be implemented at each time-

step, the spatial distribution of particles is required at each time-step.

The number of events for multinomial sampling depends on the number

of grid cells. For a grid with nx grid cells, this method require sampling on

about n2
x probabilities. An increase in the grid resolution causes problem in

sampling as the probability associated with each grid keeps reducing with

grid-spacing and computational power required increases drastically. But if

we limit the movement of a particle to one grid-cell per time-step, the problem

can be shaped as flux-based finite volume form. In this work, instead of

defining nx exhaustive events for a one-dimensional grid, the method is flux

based, has two exhaustive events for a particle in a grid-cell and is compatible

with finite volume space discretization. More about this will be described in

Section 2.3.

2.2 Passive Scalar Transport (PST)

Aerosol particles have a very low mass [Jacobson Chapter 5, 2012] of the or-

der of 10 fg, and their momentum change does not change the velocity field

significantly. This makes aerosol particle bulk-transport similar to transport

of a passive-scalar in a velocity field. Scalar transport consists of (1) ad-

vection (2) and diffusion phenomena. The scalar transport is given by the

following partial differential equation,

∂q

∂t
= −∇ · (uq) + (∇ ·D0(∇q)) +R, (2.4)
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Figure 2.2: Fluxes for a two-dimensional finite volume grid. Net flux is the
difference in influx and outflux from a face(indicated by blue arrows).

where the terms, −∇ · (uq),(∇ ·D0(∇q)) and R are advection, diffusion and

reaction parts of the scalar transport equation respectively. The variable

q is the exact passive scalar for transport. This equation can be solved

by numerous numerical methods. Finite volume methods are one of the

most popular methods for computational fluid dynamics used in commercial

[ANSYS, CD-adapco, 2009] and open-source models [Jasak, 2009]. For a

finite volume grid, this equation can be written in forward single time-step

flux-based form as given as,

Qk+1
i = Qk

i +

(
S∑
s=1

(F k
s )i

)
. (2.5)

Here the term, S is number of faces in cell i and Q is the finite-volume

discretized value (i.e. it’s average value for a grid-cell) of passive scalar as

shown in Figure 2.2. Flux through sth face of grid cell i is represented by

(F k
s )i. More description to this is provided in Appendix A.

Equation (2.4) can be represented in a one-dimensional form for finite
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volume grid in Figure 2.3, and its corresponding PDE is given by

∂q

∂t
= −∂(uq)

∂x
+

∂

∂x

[
D0

∂(q)

∂x

]
. (2.6)

A structured 1D finite-volume grid has two faces for each grid-cell as shown

in Figure 2.3. The flux-based explicit formulation for equation (2.6) is given

by,

Qk+1
i = Qk

i −
(
F k
i+1/2 − F k

i−1/2

)
FV
. (2.7)

The subscript i + 1/2 and i − 1/2 represent the right and the left faces of

grid-cell i respectively, in a one-dimensional grid as shown in Figure 2.3. The

flux F takes different forms as a function of average cell values Qk
i , Q

k
i−1, Qk

i+1

etc. depending on the stencil used for space discretization. As an example,

for an expression for flux we can write,

(F k
i+1/2) = c0Q

k
i + c−1Q

k
i−1 + c+1Q

k
i+1. (2.8)

For this equation it is assumed that flux depends on average scalar values of

grid-cells i, i− 1 and i+ 1 with coefficients c0, c−1 and c+1 respectively. The

flux vector for nx +1 faces in one-dimensional formulation can be represented

as product of a coefficient matrix and a vector containing values of scalar Q

in the space.

Fk = CQk (2.9)

C = Cadv + Cdiff . (2.10)

The sparse coefficient matrix is given by,

C =



. . . Boundary Cond . . .
...

. . . . . .
... 0

0 . . . c−1 c0 c+1 . . . 0

. . . 0 c−1 c0 c+1 . . .

. . .
. . .

... 0

. . . Boundary Cond . . .


The coefficient matrix can be split into advection (Cadv) and diffusion
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(Cdiff) parts representing fluxes corresponding to respective phenomena. More

about different forms of coefficient matrix C will be described in chapter 3.

2.3 Flux-based particle transport (FBPT)

The flux-based particle transport (FBPT) method is similar to the passive

scalar transport (PST) as described in equations (2.5) and (2.7). It also in-

volves flux terms through grid-faces similar to equation (2.5) but we consider

fluxes of discrete particles rather than fluxes of scalar quantities. Since this

work is based on resolving individual particles, rather than using the net flux

through a grid-face which is common in PST, the flux movement in both

directions (in and out) of faces has to be considered as shown in Figure 2.3.

If all particles are considered identical, then a finite-volume formulation

in a flux-based form for number of particles, Nk
i , is given by equation,

Nk+1
i = Nk

i −
(
Gk
i+1/2 −Gk

i−1/2

)
. (2.11)

Here, Gk
i+1/2 and Gk

i−1/2 represent the total flux for number of particles

through the faces of grid-cell i. Since we resolve individual particles, these

fluxes have to be calculated stochastically considering the probability of each

particle to commute between neighboring grid-cells. For each aerosol par-

ticle, there is a probability for its movement to neighboring grid-cell or to

stay in the same cell, which depends on the flow velocity field, the grid size,

the spatial distribution of particle number and the time-step. Since the only

attribute considered in this model is the number of particles, the probability

described above is equal for all the particles present in a grid-cell.

The probability can be determined analogously to that of scalar advection

flux expressions, and then normalizing it with the total number of particles

present in the grid-cell gives the desired expression of probability. As dis-

cussed earlier, there will be an influx as well as outflux of distinct particles

from all the grid-faces of a grid cell as shown in Figure 2.3. If only one-

dimensional transport is considered each grid-cell will only contain East (E)

and West (W) grid-faces and there will be four flux terms for the two faces

of a cell as shown in Figure 2.3. For defining a probability model, there are

three exhaustive events to be considered, the particle movement through (1)
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Figure 2.3: One dimensional grid for flux-based particle transport (FBPT).
Subscripts L and G means loss and gain flux of particles from the grid-cell
(i, j) through the grid-faces, respectively. Notations W and E denote the
grid-faces i− 1/2 and i+ 1/2 respectively.

Figure 2.4: Advection and diffusion processes for a particle. Net transport
of a particle is given by the superposition of both processes.
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the right face (pR) and (2) the left face (pL), or (3) staying in same grid-

cell. Since these events are exhaustive, only two of them, are independent.

The probabilities pR and pL depend on the processes of advection and dif-

fusion. Also, for valid probabilities, Nk
i 6= 0. Since the algorithm performs

Bernoulli’s trials (described in next subsection), if Nk
i = 0 occurs, the algo-

rithm will automatically skip the grid cell while evaluating fluxes across the

faces. As discussed in the previous section, since linearity in the processes of

diffusion and advection are considered for this work, these processes can be

discussed separately and then superposition can be used to model transport

phenomena as shown in Figure 2.4. In the following sections, the advection

and diffusion processes are discussed individually.

2.3.1 Particle advection

The process of advection takes place under the influence of a velocity field.

This makes advection unidirectional, and the direction of its influence is the

same as the direction of velocity at that point in space. Hence, the probability

values for particles in ith grid-cell to move to a neighboring grid-cell can be

defined by (P k
adv)i. Probability values P k

adv can be determined as,

[(P k
adv)i]+x =


[(

1
Nk

i

)]
|{CadvN

k}i| ui+1/2 ≥ 0

0 ui+1/2 < 0,
(2.12)

[(P k
adv)i+1]−x =

0 ui+1/2 ≥ 0[(
1

Nk
i+1

)]
|{CadvN

k}i+1| ui+1/2 < 0.
(2.13)

The terms [(P k
adv)i]+x and [(P k

adv)i]−x are the probabilities of a particle in

grid-cell i to move in +x direction (right) and -x direction (left) respectively.

The number of particles in each grid cell and the applied boundary conditions

are represented by vector Nk. The values found in the equations (2.12) and

(2.13) represent the probability of particles in cells (i) and (i + 1), adjacent

to the face (i + 1/2), to move through the face in the direction determined

by the sign of the velocity value (i.e. direction) at the face. The flux vector

Gk is calculated by performing independent Bernoulli trials on the particles
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present in a grid-cell with probability P k
i . If only advection is considered

for transport (i.e. diffusion is absent), the flux in the form of a number of

discrete particles can be defined as,

{[(Gk
diff)i−1/2]L, [(G

k
diff)i+1/2]L} ∼ multinomial(Nk

i , [(Padv)i]−x, [(Padv)i]+x).

(2.14)

The order of grid-convergence and accuracy depends on the coefficient matrix

Cadv which defines the type of advection scheme used in the problem. More

about this will be discussed in Chapter 3. Results for 1D advection tests

with their convergence will be discussed in Chapter 5.

2.3.2 Particle diffusion

The process of diffusion, unlike advection, is not unidirectional. Only pa-

rameter associated with the diffusion is the diffusion coefficient, D0, which

defines the time-scale of the random diffusion process. Analogous to the

treatment in particle advection, the particle-resolved diffusion process treats

individual particles distinctly and hence, the net-flux theory which is used

in scalar FV transport (PST) cannot be used here. Instead, the particles

should have the possibility of commuting in any direction irrespective of the

net-flux direction. In this work, the flux based transport methods are de-

veloped which are derived and manipulated from scalar transport methods,

and use the same coefficient matrix as scalar transport methods (PST). As

established in Appendix A, the diffusion flux of a passive scalar depends on

the gradient of scalar in space.

Here we are dealing with movement of particles irrespective of gradient

direction, and hence the problem should be split into multiple parts. As an

example, if the finite-volume grid is split off a face shown in Figure 2.5, there

will be particles moving from side (1) to (2) and vice-versa, making the net

particle population flux being difference between the two. For defining two

fluxes separately, the coefficient matrix for diffusion, Cdiff , can be split into

two parts, (1) Cdiff+x and (2) Cdiff−x, where they represent the coefficient

matrices for sides (1) and (2), respectively. Hence, the diffusion flux for
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Figure 2.5: A schematic for diffusion process. The top figure shows a particle
population distribution at some time-step. The distribution when split into
two from a face, the two sides (1 & 2) look like as shown in bottom figures.
The particles can move from side 1 to 2 and vice-versa as indicated in the
figure.
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scalar transport can be written as

(F k
diff)i+1/2 = (d0Q

k
i + d−1Q

k
i−1)︸ ︷︷ ︸

side 1

+ d+1Q
k
i+1 + d+2Q

k
i+2︸ ︷︷ ︸

side 2

.

The terms d−1, d+1, d−2 and d+2 represent the coefficients for the grid-cell

average values for neighboring grid-cells of cell i. In matrix form, above

equation can be written as,

Fk
diff = CdiffQ

k, (2.15)

Cdiff = Cdiff+x + Cdiff−x. (2.16)

Now that we have addressed the particle transfer from both sides of a face,

the probability for movement of each particle in neighboring grid-cells will be

found next. Each particle will have probabilities, [(Pdiff)ki ]+x and [(Pdiff)ki ]+x,

to go to either direction of the grid-cell. Here, the probability of a particle

in a grid-cell i, moving to left or right due to the diffusion process has been

labeled as (Pdiff)i,

[(Pdiff)ki ]+x =

∣∣∣∣[( 1

Nk
i

)]
{Cdiff+xN

k}i
∣∣∣∣ , (2.17)

[(Pdiff)ki+1]−x =

∣∣∣∣[( 1

Nk
i+1

)]
{Cdiff−xN

k}i
∣∣∣∣ . (2.18)

As illustrated in Figure 2.3, there will be four flux terms for a 1D diffusion,

namely loss and gain terms from both faces. The loss flux for diffusion can

be described as,

{[(Gk
diff)i−1/2]L, [(G

k
diff)i+1/2]L} ∼ multinomial(Nk

i , [(Pdiff)ki ]−x, [(Pdiff)ki ]+x).

(2.19)

For a uniform grid, the loss flux term from grid-cell i + 1 becomes the gain

flux ( [GE]G) for grid-cell i, and the loss from grid-cell i− 1 also becomes the

gain flux for grid-cell i. Hence, equation (2.19) defines all the diffusion flux

terms for the problem.

The necessity of splitting the diffusion coefficient matrix can be observed

for a test case with no spatial gradient for particle concentration. For a finite-

volume PST, we would expect that the distribution does not change with
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(a) Without splitting coefficent matrix (b) With splitting coefficent matrix

Figure 2.6: Effect of splitting Cdiff . Particles can be transported and mixed
even in the absence of particle concentration gradient. This is necessary when
all the particles are distinct.

time. But when particles are present, random mixing should occur and the

domain should eventually reach a steady state. As seen in Figure 2.6, mixing

of particles, as time progresses, can be observed using the split diffusion

coefficient matrix. More details on this test will be discussed in Section 5.2.

Now that advection and diffusion processes have been discussed individu-

ally, in next sub-section, both processes will be combined using superposition

for modeling the transport of particles.

2.3.3 Particle advection and diffusion

As discussed previously and shown in Figure 2.3 and 2.4, each particle in a

grid-cell will have a probability to move to left or right grid-cell, or to stay

in the same grid-cell during the next time-step. Since the probabilities are

based on flux across the faces, they can be added when superimposed to

find the net probability of a particle to commute. Using superposition of

advection and diffusion processes, probabilities of a particle can be defined

as,

[(P )ki ]+x = [(Pdiff)ki ]+x + [(Padv)ki ]+x, (2.20)
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Figure 2.7: Periodic boundary conditions applied on a 1D grid. The cell in
red represent the ghost boundary cells whose cell average values are assigned
according to the type of boundary to be imposed.

[(P )ki ]−x = [(Pdiff)ki ]−x + [(Padv)ki ]−x. (2.21)

The terms [(P )ki ]+x and [(P )ki ]−x represent the probabilities of a particle in

grid-cell i to move in +x or -x direction grid-cell respectively.

Here, advection affects the particle transport only in the direction of flow

whereas diffusion effects are not unidirectional. Similar to the loss flux in

diffusion, the flux terms for advection-diffusion system can be described as,

{[(Gk)i−1/2]L, [(G
k)i+1/2]L} ∼ multinomial(Nk

i , [(P )ki ]−x, [(P )ki ]+x). (2.22)

Also, similar to previous sub-section, the loss terms in equation (2.22) com-

pletely represents the particle transport.

2.3.4 Boundary conditions

The boundary conditions for passive scalar transport, PST, are formulated

in the form of average scalar values in each grid-cell, and the flux values

calculated implicitly have the assigned boundary conditions in them. For

imposing the boundary conditions, fictitious grid-cells are put at the bound-

aries, and they are called ghost cells. Assigning values to these ghost cells is

sufficient for imposing a boundary for PST. For example, if periodic bound-

ary is to be assigned for PST, the ghost cells will have values from the cells

adjacent to the other boundary as shown in Figure 2.7. With this boundary
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in place, the flux boundary condition for PST,

Fnx+1/2 = F1−1/2,

is not necessary as the assumed ghost cell values will take care of this bound-

ary condition. However, for FBPT, the flux values calculated are stochastic

in nature which requires assigning some specific flux value at the boundaries

which will not depend on the stochastic nature of formulation. Continuing

the example given above, to conserve the number of particles in the domain,

flux boundary conditions of,

[Gnx+1/2]L = [G1−1/2]G,

[Gnx+1/2]G = [G1−1/2]L,

have to be imposed along with the assignment of particle population/number

values for the ghost cells for the calculations of probabilities. Similarly, for a

wall boundary condition, the flux values on boundary have to be explicitly

specified (equal to zero) in addition to satisfying zero gradient in particle

population/number values at the boundary.

In the next section, consistency of FBPT will be discussed with respect

to finite-volume solution of PST.

2.4 Consistency of FBPT

The discussion in the previous section deals with the individual particles

being transported in one dimension. Since the formulation of stochastic

method was derived from finite-volume passive scalar transport, FV-PST,

the numerical solution of FBPT should converge to the PST solution when

the number of particles is large enough to behave like a continuous scalar

field. We will be dealing with particle concentration for this section along

with the absolute number of particles in a grid-cell. We define a term sample

volume, V to represent the volume (m3) to define the particle concentration

of aerosols,

Qpart
k
i =

Nk
i

V
. (2.23)
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The sampling volume, V , in this work is defined as a constant so that the

initial particle concentration (Q0
part) is exactly the same as the initial passive

scalar concentration (Q0) with different total number of particles (N), so

that the FBPT results can be compared with the FV-PST results.

Theorem 1. If the initial particle population distribution is defined as,

N0
i = V Q0

i ,

and the flux through faces is defined as,

{[(Gk)i−1/2]L, [(G
k)i+1/2]L} ∼ multinomial(Nk

i , [(P )ki ]−x, [(P )ki ]+x),

Nk+1
i = Nk

i −
(
[(Gk)i+1/2]L + [(Gk)i+1/2]L

)
+
(
[(Gk)i−1/2]G − [(Gk)i+1/2]G

)
,

then the expected value of FBPT is given by,

E[Nk
i ] = (V Qk

i ). (2.24)

Proof. It is given that the theorem statement is true for k = 0. Now, let’s

assume that the theorem statement is true for all i’s at time step k,

E[Nk
i ] = V Qk

i . (2.25)

Given above conditions and assumptions, if the theorem statement is also

true for time step k + 1, then by the principle of Mathematical Induction,

Theorem 1 is true for all time steps.

Since the mean value of multinomial distribution multinomial{w, r1, r2, ..., rn}
is given by {wr1, wr2, ..., wrn}, the mean value of fluxes is,

E([(Gk)i−1/2]L|Nk) = Nk
i [(P )ki ]−x,

E([(Gk)i+1/2]L|Nk) = Nk
i [(P )ki ]+x,

E([(Gk)i−1/2]G|Nk) = Nk
i+1[(P )ki+1]−x,

E([(Gk)i+1/2]G|Nk) = Nk
i−1[(P )ki−1]+x. (2.26)
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Now, the particle population for the next time step is given by,

Nk+1
i = Nk

i −
(
[(Gk)i+1/2]L + [(Gk)i+1/2]L

)
+
(
[(Gk)i−1/2]G − [(Gk)i+1/2]G

)
.

Mean value of cell population is given by,

E[Nk+1
i |Nk] = E[Nk

i |Nk] +
[
E([(Gk)i+1/2]G|Nk)− E([(Gk)i+1/2]L|Nk)

]
+
[
E([(Gk)i−1/2]G|Nk)− E([(Gk)i−1/2]L|Nk)

]
Substituting the mean values of fluxes from equation (2.26),

E[Nk+1
i |Nk] = E[Nk

i |Nk] +
[
Nk
i+1[(P )ki+1]−x −Nk

i [(P )ki ]−x

]
+
[
Nk
i−1[(P )ki−1]+x −Nk

i [(P )ki ]+x

]
E[Nk+1

i |Nk] = Nk
i + [(CN)i+1 − (CN)i]

E(E[Nk+1
i |Nk]) = E(Nk

i ) +
[
E(CNk)i+1 − E(CNk)i

]
E[Nk+1

i ] = V Qk
i + V

[
(CQk)i+1 − (CQk)i

]
.

From the definition of finite volume flux in equation (2.9) of PST,

E[Nk+1
i ] = V

[
Qk
i +

(
F k
i−1/2 − F k

i+1/2

)]
E[Nk+1

i ] = V Qk+1
i .

By the principle of Mathematical Induction, this proves that Theorem 1 holds

true for all values of k with a constant value of V , sample volume.

Theorem 1 proves that if the FBPT is run for multiple times to collect

statistical data, the mean value of particle concentration will be equal to

PST, which was our initial hypothesis at the beginning of this section. This

also means that,

E[Qpart
k
i ] = Qk

i . (2.27)

Now that the expected value of particle concentration has been discussed,

the convergence of FBPT to PST in the limit of total number of particles

(i.e. V ) going to infinity will be discussed.
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Theorem 2. If particle concentration is defined as ,

Qpart
k
i =

Nk
i

V

N0
i = V Q0

i

{[(Gk)i−1/2]L, [(G
k)i+1/2]L} ∼ multinomial(Nk

i , [(P )ki ]−x, [(P )ki ]+x),

Nk+1
i = Nk

i −
(
[(Gk)i+1/2]L + [(Gk)i−1/2]L

)
+
(
[(Gk)i−1/2]G + [(Gk)i+1/2]G

)
,

then,

lim
V→∞

Qpart
k
i = Qk

i . (2.28)

Proof. It is assumed that the statement is true for initial time t = 0,

lim
V→∞

Qpart
0
i = Q0

i .

Lets assume the statement,

lim
V→∞

Qpart
k
i = Qk

i

is true for some k. From expressions for particle fluxes in equation (2.26),

E([(Gk)i−1/2]G)− E([(Gk)i−1/2]L) = V F k
i−1/2,

E([(Gk)i+1/2]L)− E([(Gk)i+1/2]G) = V F k
i+1/2.

Since neither V or F k are stochastic parameters,

lim
V→∞

1

V

[
E([(Gk)i−1/2]G)− E([(Gk)i−1/2]L)

]
= F k

i−1/2,

lim
V→∞

1

V

[
E([(Gk)i+1/2]L)− E([(Gk)i+1/2]G)

]
= F k

i+1/2. (2.29)

This proves that the mean value of stochastic flux converges to the PST

finite-volume flux in the limit V →∞.

The variance of a multinomial distribution, multinomial{w, r1, r2, ..., rn},
is given by is {wr1(1− r1), wr2(1− r2), ..., wrn(1− rn)}. The variance of the

stochastic flux ([(Gk)i−1/2]L) is given by,
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σ2

[
1

V
([(Gk)i−1/2]L)

]
=

1

V 2
Nk
i [(P )ki ]−x(1− [(P )ki ]−x),

lim
V→∞

[
σ2

[
1

V
([(Gk)i−1/2]L)

]]
= lim

V→∞

1

V
Qpart

k
i [(P )ki ]−x(1− [(P )ki ]−x),

lim
V→∞

[
σ2

[
1

V
([(Gk)i−1/2]L)

]]
= 0

Since the variance for a number is zero, the value of flux converges to the

expected value,

lim
V→∞

1

V

[
([(Gk)i−1/2]G)− ([(Gk)i−1/2]L)

]
= F k

i−1/2,

lim
V→∞

1

V

[
([(Gk)i+1/2]L)− ([(Gk)i+1/2]G)

]
= F k

i+1/2. (2.30)

Given, V being a positive non-zero number, multiply finite volume equation

for particle number by 1/V .

Qpart
k+1
i = Qpart

k
i −

1

V

(
[(Gk)i+1/2]L + [(Gk)i−1/2]L

)
+
(
[(Gk)i−1/2]G + [(Gk)i+1/2]G

)
,

lim
V→∞

Qpart
k+1
i = Qk

i − lim
V→∞

1

V

[(
[(Gk)i+1/2]L + [(Gk)i−1/2]L

)]
+ lim

V→∞

1

V

[(
[(Gk)i−1/2]G + [(Gk)i+1/2]G

)]
.

Rearranging and then using equation (2.30),

lim
V→∞

Qpart
k+1
i = Qk

i −
(
F k
i+1/2 − F k

i−1/2

)
lim

V→∞
Qpart

k+1
i = Qk+1

i .

From the principle of mathematical induction, since

lim
V→∞

Qpart
k+1
i = Qk+1

i ,

then the statement is true for all values of k (all time steps). This proves that

the stochastic solution theoretically converges to the finite volume solution

when V →∞ i.e. number of particles goes to infinity.

This verifies that the stochastic formulation (FBPT) when applied to
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a large number of particles converges to the finite-volume scalar solution

(PST).

In this chapter, the general formulation for transport was discussed, and

the link between PST and FBPT was established and theoretically verified.

The FBPT method is executed for a finite number of time-steps, and Algo-

rithm 1 is followed for updating the number of particles at the end of each

time-step. Algorithm 2 is followed for the multinomial sampling of particles

to calculate particle-flux values. In the following Chapter 3, explicit schemes

for advection and diffusion are described and their numerical results will

discussed in Chapter 5.

Algorithm 1 1D Particle Transport

1: Input : Nk,V {Particle Distribution in axial direction for timestep k and
Sample volume}

2: Output : Nk+1,Qk+1
part {Particle Distribution and Particle concentra-

tion/density distribution in axial direction for timestep k + 1 }
3: Define Cadv for selected explicit advection scheme (Chapter 3)
4: Define Cdiff+, Cdiff− for selected explicit diffusion scheme (Chapter 3)
5: for Cell Number i = 1 to nx do
6: calculate [P k

i ]+x and [P k
i ]−x from equation (2.20,2.21).

7: PR = [P k
i ]+x and PL = [P k

i ]−x
8: {(Gi+1/2)S, (Gi−1/2)S} ← {PR, PL} sampled using Algorithm 2.
9: end for{End of Iteration on all cells from 1 to nx}

10: for Cell Number i = 1 to nx do
11: Nk+1

i = Nk
i − (Gi+1/2)S + (Gi−1/2)S {Calculating particle distribution

for next time step}
12: end for{End of iteration for Updating new particle distribution}
13: Qk+1

part ← Nk+1

V
{Particle concentration calculated from particle distribu-

tion}
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Algorithm 2 Sampling of particles for 1D simulation

1: Input : Nk
i , {PR, PL} {Particle Distribution in axial direction for timestep

k, Probablities to move right or left}
2: Output : (Gi+1/2)S and (Gi−1/2)S {Particle flux in from both faces of cell
i}

3: for All Nk
i , number of particles in cell i do

4: r ← random number generator
5: if r ≤ PR then
6: (Gi+1/2)S = (Gi+1/2)S + 1 {Increments the flux for transferring that

particle to its right cell}
7: else {PR < r ≤ PR + PL}
8: (Gi−1/2)S = (Gi−1/2)S − 1{Increments the flux for transferring that

particle to its left cell}
9: end if

10: end for{End of iteration on set of particles in ith cell}
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CHAPTER 3

EXPLICIT METHODS FOR STOCHASTIC
PARTICLE-RESOLVED TRANSPORT

In the last chapter, a general formulation for the flux-based particle transport,

FBPT, was discussed with its consistency as compared with finite-volume

passive scalar transport, FV-PST. This chapter will begin with the basic

constraints of explicit numerical methods. Next, this chapter will revisit

some of the higher order advection and diffusion methods of FV-PST that

can be implemented in FBPT method. Finally, a possible extension of the

FBPT method for a two dimensional Cartesian grid will be proposed at the

end of this chapter.

3.1 Constraints of explicit numerical methods

Numerical methods, which are explicit in time, do not have unbounded sta-

bility regions. The numerical explicit methods for advection are bound by

local courant number (Cu)[Moin, 2001]. Courant number for advection is

defined as,

Cu = u
4t
4x

.

Cu ≤ 1 states that a scalar quantity or a particle in a grid-cell i does not move

more than a grid-cell in one time step. Hence, for keeping a valid probability

model (P ≤ 1), the time-step and the grid-spacing values are taken so that

Cu ≤ 1. The Courant number defines the bounds on time-step for a given

grid-spacing.

Similarly, for diffusion, the time-step bound varies as, 4t ∝ (4x)2 and

the proportionality constant is the diffusion coefficient in the medium. The

stability here is defined by local diffusion number (Cd) [Moin, 2001] which is
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Figure 3.1: Schematic of a finite volume system. The dashed lines are
the parametrization of the cell averaged data (in red). The default black
line (piecewise constant) is used for a first order Upwind scheme. The blue
line is used for a second order Piecewise linear scheme. The green line is a
higher-order spline reconstruction.

given by,

Cd = D0
4t
4x2 .

For a valid probability model for our method, we need to ensure that the

particles do not skip any grid-cell in a single time-step i.e. (Cu + Cd) ≤ 1.

For transport in a finite-volume grid, the only data available is the cell

average values of each grid cell. Different schemes use this data in different

ways [Durran, 2013, Shu, 1998] as shown in Figure 3.1. For example, the

Upwind advection scheme uses the piecewise-constant reconstruction which

only require a one point stencil, while the piecewise linear schemes uses a lin-

ear reconstruction which requires a two point stencil. Some of these schemes

for advection and diffusion will be discussed in the following sections.
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Figure 3.2: Analytical solution for advection equation (3.1) with periodic
boundary, at t = 0, t = T/4, t = T/2 and t = 3T/4. Here T is one time
period of the distribution. The distribution moves undistorted in x-direction.

3.2 Advection

Chapter 2 discussed the formulation of finite-volume methods for stochastic

particle transport. The transport phenomena was classified into advection

and diffusion processes. One dimensional advection equation for a scalar q

is defined as equation (3.1),

∂q

∂t
= −u∂q

∂x
. (3.1)

The analytical solution for the equation (3.1) is that the scalar q retains its

shape while moving with a constant velocity. For example, if we consider a

particle concentration distribution in one dimension as shown in Figure 3.2,

the distribution moves undistorted in the x-direction in the presence of a

finite velocity in x-direction provided the diffusion is absent. The scalar FV-

PST method defines the advection flux as,
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Table 3.1: Advection schemes with their order of accuracy(OA) for a constant
Courant number

Flux Scheme OA
Upwind Scheme 1

Piecewise Lin adv 2
Runge-Kutta 3 3

Fk
adv = CadvQ

k. (3.2)

The advection coefficient matrix Cadv defines the order of accuracy of the

numerical method. Different schemes for solving the advection equation have

been discussed extensively in previous literatures, e.g. Durran [2013]. Some

of the schemes such as the Upwind scheme and the Piecewise-linear scheme

have a fixed stencil for data reconstruction, whereas other schemes such as

ENO and WENO [Shu, 1998], have a variable stencil to inhibit the oscillations

caused in the numerical solution of the equation (3.1). In this thesis, we only

consider the methods with fixed stencils as shown in Table 3.1.

One of the lower order popular finite volume schemes used for advection

is the Upwind scheme. This scheme is first order accurate in both space and

time, and follows a piecewise constant reconstruction of the cell average data.

Although the scheme is consistent, it requires a very small time step and grid

spacing to give an accurate solution.

The advection flux vector for the Upwind scheme on a staggered finite

volume grid is given by,

(F k
adv)i+1/2 =

Qn
i u

k
i+1/2

4t
4x ui+1/2 ≥ 0

Qn
i+1u

k
i+1/2

4t
4x ui+1/2 < 0.

(3.3)

Corresponding probabilities, absent diffusion, for Upwind scheme as defined

in equation (2.12) and (2.13) are given by,

[(P k
adv)i]+x =

uki+1/2
4t
4x ui+1/2 ≥ 0

0 ui+1/2 < 0,
(3.4)
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[(P k
adv)i]−x =

0 ui−1/2 ≥ 0∣∣∣uki−1/2
4t
4x

∣∣∣ ui−1/2 < 0.
(3.5)

Another scheme is the non-monotonic Piecewise linear scheme. This

scheme is second order accurate in a uniform FV grid space, for pure ad-

vection with a constant courant number, and it uses piecewise-linear recon-

struction of cell average data. The flux values for the Piecewise linear scheme

are given by,

(F k
adv)i+1/2 =

ri−1/2

[
Qk
i−1 +

(1−ri−1/2)

4
(Qk

i −Qk
i−2)
]

ui+1/2 < 0

ri+1/2

[
Qk
i +

(1−ri+1/2)

4
(Qk

i+1 −Qk
i−1)
]

ui+1/2 ≥ 0,
(3.6)

ri−1/2 = ui−1/2
4t
4x

.

The corresponding advection probability vector for piecewise-linear scheme

is given by equation,

[(P k
adv)i]+x =


ri−1/2

Nk
i

[
Nk
i−1 +

(1−ri−1/2)

4
(Nk

i −Nk
i−2)
]

ui+1/2 ≥ 0

0 ui+1/2 < 0,
(3.7)

[(P k
adv)i+1]−x =

0 ui+1/2 ≥ 0∣∣∣ ri+1/2

Nk
i+1

[
Nk
i +

(1−ri+1/2)

4
(Nk

i+1 −Nk
i−1)
]∣∣∣ ui+1/2 < 0.

(3.8)

The higher-order advection methods in time can use multi-step time

schemes or time-split methods. In Wicker and Skamarock [2002], a third

order Runge-Kutta (RK3) scheme was implemented. This scheme is par-

ticularly relevant for this thesis because it has been implemented in WRF
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transport model. For scalar advection, RK3 works in three steps as following:

Q∗i = Qk
i −

4t
34x

(
F k
i+1/2 − F k

i−1/2

)
,

Q∗∗i = Qk
i −

4t
24x

(
F ∗i+1/2

k − F ∗i−1/2
k
)
, (3.9)

Qk+1
i = Qk

i −
4t
4x

(
F ∗∗i+1/2

k − F ∗∗i−1/2
k
)
.

The expression of flux, F was defined for different spatial orders of dis-

cretization. For our analysis, we are using a fourth-order expression for flux

in space,

Fi−1/2 =
ui−1/2

12
[7(Qi +Qi−1)− (Qi+1 +Qi−2)], or, (3.10)

Fk = CadvQ
k,

F∗k = CadvQ
∗k,

F∗∗k = CadvQ
∗∗k.

The terms F ∗i+1/2
k, F ∗i−1/2

k, F ∗∗i+1/2
k and F ∗∗i−1/2

k are the components of the flux

vectors F∗k and F∗∗k respectively. This method is third order accurate in

time. RK3 scheme for particle transport can be defined as,

N∗i = Nk
i −

4t
34x

(
Gk
i+1/2 −Gk

i−1/2

)
,

N∗∗i = Nk
i −

4t
24x

(
G∗i+1/2

k −G∗i−1/2
k
)
, (3.11)

Nk+1
i = Nk

i −
4t
4x

(
G∗∗i+1/2

k −G∗∗i−1/2
k
)
.

This method is a three time-step method. The value G∗k is calculated anal-

ogous to F∗k. Instead of sampling particles three times, the final step flux,

G∗∗k, is used for defining probabilities based on equation (2.12) and (2.13).

Advection probabilities for RK-3 are given by,

[(P k
adv)i]+x =


[(

1
N∗∗k

i

)]
{CadvN

∗∗k}i ui+1/2 ≥ 0

0 ui+1/2 < 0.
(3.12)
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[(P k
adv)i]−x =

0 ui−1/2 ≥ 0∣∣∣[( 1
N∗∗k

i

)]
{CadvN

∗∗k}i−1

∣∣∣ ui−1/2 < 0.
(3.13)

The particle flux is sampled according to the equation (2.14). For a finite

velocity in x-direction (West to East), Gk
i+1/2 > 0 and Gk

i−1/2 > 0. All

the simulations were performed for advection on the particle concentration

distribution defined in Wicker and Skamarock [2002] with periodic boundary

conditions. Numerical results for the test case 1D advection using all three

schemes, with periodic boundary conditions, will be discussed in Chapter 5.

3.3 Diffusion

Diffusion is a random movement of particles with a time scale defined by

diffusion coefficient in a medium. In absence of advection, pure diffusion

equation for a passive scalar is given by,

∂q

∂t
= ∇ · (D0∇q) (3.14)

The coefficient D0 defines the time-scale associated with that of the process.

For simplicity, we consider the diffusion coefficient, D0, to be a constant. In

one dimension,

∂q

∂t
= D0

∂2q

∂x2
(3.15)

represents a parabolic diffusion equation. A schematic for diffusion process

is described in Figure 3.3 where the distribution spreads out, due the process

of diffusion, with time. Although some of the implicit schemes have been

found to be unconditionally stable for diffusion problems, we are only going

to consider explicit schemes because implicit implementation can be difficult

for the formulation discussed in this work. When written in the same explicit

flux based form as equation (2.5), the flux for scalar diffusion can be written

as,

Fk
diff = CdiffQ

k, (3.16)
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Table 3.2: Diffusion schemes with their order of accuracy(OA) for a constant
time-step(4t)

Flux Scheme Spatial OA
2nd Order diffusion 2
4th Order diffusion 4

where Cdiff depends on the spatial discretization used for the diffusion equa-

tion.

Second and fourth order diffusion were considered in this work for the

demonstration of FBPT diffusion as shown in Table 3.2.

A second-order discretization of flux term is given by,

(F k
diff)i+1/2 = −D04t

Qk
i −Qk

i+1

4x
. (3.17)

As discussed in Chapter 2, for modeling the diffusion process of particles,

the coefficient matrix Cdiff is split into two parts. Hence, the probability for

particle diffusion corresponding to the second order discretization is defined

as,

[(Pdiff)ki ]+x =

∣∣∣∣[( 1

Nk
i

)]
D04t

Nk
i

4x

∣∣∣∣ , (3.18)

[(Pdiff)ki+1]−x =

∣∣∣∣[( 1

Nk
i+1

)]
D04t

Nk
i+1

4x

∣∣∣∣ . (3.19)

The results for this will be discussed in Section 5.2.

Another scheme that can be used for diffusion is a fourth order scheme

[Castillo et al., 2001] with the flux term given by ,

(F k
diff)i+1/2 = −D0

1.125Qk
i − 1.125Qk

i+1 + 0.041666Qk
i−1 − 0.041666Qk

i+2

4x
.

(3.20)

Probability values were found in the same way as in equation (2.17),

[(Pdiff)ki ]+x =

[(
1

Nk
i

)] ∣∣∣∣D0

1.125Nk
i + 0.041666Nk

i−1

4x

∣∣∣∣ , (3.21)

[(Pdiff)ki+1]−x =

[(
1

Nk
i+1

)] ∣∣∣∣D0

1.125Nk
i+1 + 0.041666Nk

i+2

4x

∣∣∣∣ . (3.22)
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Figure 3.3: Diffusion with second order diffusion scheme at t = 0, t = 0.025 s,
t = 0.05 s, t = 0.075 s and t = 0.1 s. This result is for D0 = 0.01 m2/s and
nx = 101.

As the diffusion process proceeds in time, the distribution ‘evens out’ as

shown in Figure 3.3.

For analysis purposes, a test case of particle distribution in the shape of a

piecewise-constant wave was simulated with a constant diffusion coefficient.

The analytical solution for a constant diffusion-coefficient piecewise-constant-

wave problem is known and was compared with the stochastic method (FBPT)

solution. The results for the test case will be discussed in Section 5.2.

3.4 Extension of stochastic transport for a

two-dimensional grid

Scalar transport for a 2D structured grid in finite volume was discussed in

Chapter 2. There are a number of ways to perform the task, among which

operator splitting method and direct flux methods are most popular [Takacs,

1985]. We are not going to present a full analysis of a 2D problem in this work
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but an extension is straightforward and can be applied using the formulation

for a 1D grid.

The passive scalar transport equation for a 2D grid of X-Y Cartesian

coordinate system is given by equation (2.4),

∂q

∂t
= −∇ · (uq) + (∇ ·D0(∇q)).

∂q

∂t
= −∂(uxq)

∂x
− ∂(uyq)

∂y
+

∂

∂x

[
D0

∂q

∂x

]
+

∂

∂y

[
D0

∂q

∂y

]
, (3.23)

and the finite volume form of the passive scalar transport equation is given

by equation (2.5). The stochastic particle transport formulation in a 2D grid

will have four independent events for a particle in a grid cell. Each event

corresponds to the particle going through one of the four faces as shown in

Figure 2.2. The 1D formulation discussed in Chapter 2 can be extended

to apply it for a 2D grid. Assuming the X and Y direction transport are

independent, probabilities [P k
i,j]+x,[P k

i,j]−x,[P k
i,j]+y and [P k

i,j]−y can be calcu-

lated by defining an algorithm to consider one-slab at a time as shown in

Figure 3.4. Indices (i, j) represent the grid-cell on the 2D grid.

The particle population at the next time step is defined as,

Nk+1
i,j = Nk

i,j +

(
k∑
s=1

(Gk
s)

)
, (3.24)

where k represents the total number of faces a particle from a grid-cell can

be transported. Similar to the previous hypothesis regarding sampling of

particles to calculate fluxes, 2D fluxes can be calculated as,

{Gk
s}i,j = multinomial(Nk

i,j, {P k
s }i,j), (3.25)

where {P k
s }i,j represents the set of probabilities of a particle in the direction

of corresponding faces. For the case of a structured grid, {P k
s }i,j comprises

[P k
i,j]+x,[P k

i,j]−x,[P k
i,j]+y and [P k

i,j]−y.

There are other different ways to design an algorithm to calculate the set

{Ps}i,j. Probabilities can also be calculated using operator splitting between

x and y directions for transport and a qualitative result has been shown in

Figure 6.1.
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Figure 3.4: Stochastic Transport in a 2D structured grid. The indices i and
j represent the vertical and horizontal slabs respectively.
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CHAPTER 4

ERROR ANALYSIS

In this chapter, segregation and convergence of error for FBPT will be dis-

cussed. Since the coefficient matrix used to define probabilities is same as the

finite-volume passive scalar transport (FV-PST) coefficient matrix, the sta-

bility conditions for stochastic methods are the same as for the corresponding

FV scheme.

Errors in finite-volume advection are classified as (1) Dissipation error

and (2) Dispersion error. The dissipation error occurs due to the leading

truncation term in the Taylor series expansion of scheme is of even order.

From Figure 4.1, the upwind scheme introduces a huge numerical diffusion

error which acts to reduce the amplitude of the scalar distribution. The

dispersion error occurs when leading truncation error term is of odd order.

This causes a phase-lag in the scalar distribution as shown in Figure 4.2.

The previous literatures on advection schemes [Crowley, 1968, Takacs, 1985]

discuss the quantification of these errors, but these errors will not be discussed

further in this work and will be labeled as finite-volume error eFV.

4.1 Segregation of error

Errors were computed in comparison to the analytical solution for the ad-

vection equation. By defining the particle concentration, the total error in a

grid-cell i at time-step k can be split into finite-volume error and stochastic
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Figure 4.1: Advection with Piecewise linear scheme at t = T , t = 6T and
t = 8T displaying dispersion error. This result is for nx = 30 and t = T is
the period of the distribution to move across the domain once.
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Figure 4.2: Advection with Upwind scheme at t = 0, t = T , t = 6T and
t = 8T displaying dissipation error. This result is for nx = 150 and t = T is
the period of the distribution to move across the domain once.
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error.

Qpart
k
i =

Nk
i

V
,

eki = Qpart
k
i −Qanalytical

k
i ,

eki = Qpart
k
i −Q

k
i︸ ︷︷ ︸

eS
k
i

+Qk
i −Qanalytical

k
i︸ ︷︷ ︸

eFV
k
i

,

eki = eS
k
i + eFV

k
i .

Here, V is the sample volume (constant for a simulation). The variables, Qpart

and Qanalytical, were compared for error estimation. Also, here eS
k
i refers to

the stochastic error and eFV
k
i refers to the finite volume error for the method.

From Theorem 1, we recall that

E[eki ] = E(eS
k
i ) + E(eFV

k
i ),

E[eki ] = eFV
k
i . (4.1)

However, to account for stochastic standard deviation along with finite vol-

ume error, root-mean-square (RMS) values of the total error for a time can

be computed. The RMS value of the total error at a time step k is given by,

ekRMS =

√∑nx

i=1[eki ]
2

nx

,

ekRMS =

√∑nx

i=1[eS
k
i + eFV

k
i ]

2

nx

,

[ekRMS]2 =

∑nx

i=1[eS
k
i + eFV

k
i ]

2

nx

,

E([ekRMS]2) =
1

nx

nx∑
i=1

[E([eS
k
i ]

2) + E([eFV
k
i ]

2) + 2E[(eS
k
i )(eFV

k
i )]],

E([ekRMS]2) =
1

nx

nx∑
i=1

[
(σ(eS

k
i ))

2 + (eFV
k
i )

2 + 2(eFV
k
i )E[(eS

k
i )]
]
,

E([ekRMS]2) =
1

nx

nx∑
i=1

[(eFV
k
i )

2 + (σ(eS
k
i ))

2]. (4.2)
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Since the RMS value of the total error gives the standard deviation term along

with the finite-volume error, it was used for error analysis and convergence

study.

4.2 Convergence of error

The convergence of total root-mean-square error depends on the number

of particles in the domain which depends on the parameter V , the sample

volume. The only stochastic element in equation (4.2) is the last term. Since

the probabilities in the equations for the fluxes depend on the number of

particles to be sampled, calculating the exact standard deviation expression

can be mathematically difficult. However, it can be remarked that the root-

mean-square error is proportional to 1/
√
V .

Theorem 3. If the initial particle population distribution is defined as,

N0
i = V Q0

i ,

Qpart
k
i =

Nk
i

V
,

and the flux through faces is defined as,

{[(Gk)i−1/2]L, [(G
k)i+1/2]L} ∼ multinomial(Nk

i , [(P )ki ]−x, [(P )ki ]+x),

then the expected value of variance of stochastic error depends on V as,

E
[
σ2[eS

k
i ]
]
∝ 1

V
. (4.3)

Proof. The unknown term in equation (4.2) is the second term on the RHS.

Since we are not looking for an exact expression of standard deviation, but

only its dependence on V , the non-stochastic variables, Qk
i , are eliminated

since they do not contribute to the standard deviation dependence on V .

Standard deviation for stochastic error, eS is given by,

σ2[eS
k
i ] = σ2[Qpart

i
k −Q

i
k],

σ2[eS
k
i ] ' σ2[Qpart

k
i ]. (4.4)
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Since the p.d.f. of flux G is given by multinomial sampling with given pop-

ulation distribution of previous time step Nk, the standard deviation for a

flux is given by,

σ2([(Gk)i−1/2]L|Nk) = Nk
i [(P )ki ]−x(1− [(P )ki ]−x),

A similar expression can be written for all other three fluxes. As proved in

Theorem 1, the expected value of particle population, E[Nk
i ] ∝ V . Also, since

expression of P has Nk
i in numerator and denominator, the probabilities have

a neutral dependence on V .

E
[
σ2([(Gk)i−1/2]L|Nk)

]
= E[Nk

i ][(P )ki ]−x(1− [(P )ki ]−x),

E
[
σ2[Gk|Nk]

]
∝ V,

for a generic flux G. This states that for a given time-step particle population

distribution Nk the mean value of σ2[Gk] ∝ V . Since the value of V is a

constant through all time steps, we can conclude that,

E
[
σ2[Gk]

]
∝ V.

Also, σ2[Qpart
k
i ] depends on σ2[Gk]/V 2 and hence,

E
[
σ2[eS

k
i ]
]
' E

[
σ2[Qpart

k
i ]
]
∝ 1

V
.

Remark. From Theorem 3 and equation 4.2, we can say that for e2
FV �

σ2[eS
k
i ],

E
[
(ekRMS)2

]
∝ 1

V
.

Hence the square of root-mean-square of total error is inversely proportional

to the sample volume (V ) i.e. total number of particles.

Hence it can be conjectured that on a logarithmic plot for eRMS vs V , the

linear region should have a slope of (−1/2). This result is consistent with

the Monte-Carlo methods which also have a convergence of (−1/2) w.r.t. the
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number of support points [Haghighat, 2014]. In the following chapter, the

numerical results for explicit methods with their error convergence will be

discussed.
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CHAPTER 5

NUMERICAL RESULTS

In this chapter, the numerical results for flux-based particle transport, FBPT,

and their comparison with finite-volume passive scalar transport, FV-PST,

will be discussed. The results for one dimensional advection and diffusion

will be shown for some test cases. The convergence analysis of these tests

will be discussed at the end of this chapter.

5.1 1D advection tests

Particle stochastic transport simulations were performed with various initial

conditions for particle concentration. The results presented in this section

are for modified initial conditions from Wicker and Skamarock [2002],

Qpart(x, 0) =

2 + (1 + exp[80(|x− 0.5| − 0.15)])−1 x ∈ (0, 1)

2 otherwise,
(5.1)

The initial conditions were modified by adding a constant value of 2 to keep

FV-PST values positive.

For an aerosol transport simulation, all the particles are distinct from

each other. Since the only aspect considered in our problem is the number

concentration of particles, all particles were treated identical to each other

for computing results and then the number concentration was compared with

the analytical solution. The initial particle population distribution was given

by,

N(x, 0) =

2V + V (1 + exp[80(|x− 0.5| − 0.15)])−1 x ∈ (0, 1)

2V otherwise,
(5.2)

where V , sample volume, was defined in Section 2.4. The 1D advection prob-
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lem was solved using a constant velocity u = 1 m/s with periodic boundary

conditions on both boundaries. Courant number, Cu = 0.4, was used for all

the advection results shown in the section. The period of a distribution is

defined as the time taken by a particle to return to its initial position when

domain has periodic boundary conditions. The period of the particle distri-

bution in this test case, T = 1 s. The Upwind, the Piecewise-Linear and the

RK3 explicit schemes [Durran, 2013] were implemented with the appropri-

ate coefficient matrix, Cadv, for the flux-based stochastic particle transport,

FBPT. These results from FBPT will be compared with FV-PST results in

the following sections.

Figure 5.1 shows FV-PST results for three advection schemes which we

will use as a reference for comparison with FBPT results. Each scheme

introduces a different type of error depending on which modes it suppresses

and which modes can sustain or grow [Durran, 2013].

Figure 5.2 shows results for the particle concentration distribution at

times t = 0, t = T/2, t = 3T/4 and t = T on a grid with nx = 100 for dif-

ferent values of V when the Upwind scheme is used. These results represent

the simulation run for one realization (i.e. it is not the average of multiple

runs to collect statistical data). This figure demonstrates that the particle

concentration (stochastic) converges towards scalar concentration (finite vol-

ume) as V increases. A similar trend is observed for the piecewise linear

scheme, shown in Figure 5.3, and the RK-3 scheme, shown in Figure 5.4.

These results are in agreement with Theorem 2.

For the error analysis of the test cases, one hundred realizations were

performed to calculate the mean (expected) value of particle concentration

and the corresponding standard deviation.

5.2 1D diffusion tests

To test our diffusion algorithm, we consider a population of particles in a

1D grid with wall (zero gradient) boundary conditions as shown in Figure

2.6. The diffusion process, when observed for a long time, leads the particle

population to an equilibrium state when the variance in particle distribution

reaches a constant value.
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Figure 5.1: Numerical advection of a passive scalar (PST) for different
schemes with analytical solution (dashed line) at t = T . Here nx = 50 and
Cu = 0.4.
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(a) V = 100

(b) V = 1000

(c) V = 10000

Figure 5.2: Advection results for Upwind scheme. Solid line represents
the PST results and bubbles represent the particle concentration (FBPT)
stochastic simulation result. Here, nx = 100 and Cu = 0.4.
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(a) V = 100

(b) V = 1000

(c) V = 10000

Figure 5.3: Advection results for Piecewise-Linear scheme. Solid line rep-
resents the PST results and bubbles represent the particle concentration
(FBPT) stochastic simulation result. Here, nx = 100 and Cu = 0.4.
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(a) V = 100

(b) V = 1000

(c) V = 10000

Figure 5.4: Advection results for RK3 scheme. Solid line represents the PST
results and bubbles represent the particle concentration (FBPT) stochastic
simulation result. Here, nx = 100 and Cu = 0.4.
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Conjecture 1. For t → ∞, a particle is equally likely to be in any of the

grid-cells. The particle population in a grid cell is given by,

lim
t→∞

Nk
i ∼ binomial

(
Ntot,

1

nx

)
,

lim
t→∞

σ(Nk
i ) =

√
Ntot

1

nx

(
1− 1

nx

)
. (5.3)

where, Ntot is the total number of particles in the domain.

This conjecture is supported by the numerical evidence shown in Figure

5.5, where the mean standard deviation (MSD) of a 1D grid converges to-

wards the conjectured value of 3.704 calculated from equation (5.3). Wall

boundary conditions were used for this test, and the particle population dis-

tribution for the case was mentioned in Figure 2.6. Since the error tolerance

required for the standard deviation was low, 3000 realizations were run for

this test.

We also investigated the transient behavior of particles due to diffu-

sion. Stochastic method for diffusion, absent advection, was performed on

a piecewise-constant wave function with wall boundary conditions and was

compared with the analytical solution [Csanady, 2012],

N(x, t) =
N0

2

[
erf

(
r0 + (x− 0.5)√

4D0t

)
+ erf

(
r0 − (x− 0.5)√

4D0t

)]
(5.4)

where N0 and r0 represent the amplitude of the piecewise-constant wave and

the half-width of the distribution respectively. The results for a second order

diffusion with N0 = 14 and r0 = 0.1 are shown in Figure 5.6. The results for

fourth order diffusion were very similar and almost indistinguishable to the

second order results for the given test case.

5.3 Convergence analysis

As observed in Sections 5.1 and 5.2, the total error reduces with increasing

number of particles per grid cell. The errors involved were quantified in

Chapter 4.
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Figure 5.5: (Mean standard deviation(MSD) - σTheoritical) of particle pop-
ulation in a grid (nx = 50) with time(sec). D0 = 0.08 m2/s was used for
the case. The theoretical value of σTheoritical = 3.704 was calculated from
equation (5.3).
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(a) V = 100

(b) V = 1000

(c) V = 10000

Figure 5.6: Diffusion results for second order scheme. Solid line repre-
sents PST results and bubbles represent the particle concentration (FBPT)
stochastic simulation result. Here, nx = 101, 4t = 0.0025s and D0 =
0.001 m2/s.
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The RMS values of total error (eki ) were calculated at t = T (Time-period)

for advection for the Upwind, the Piecewise Linear and the RK3, and then

plotted against V in Figure 5.7, 5.8 and 5.9 respectively. Similarly, the RMS

values of total error for diffusion were calculated for t = 3 sec with the same

constants (N0 and r0) as mentioned above. Second-order and fourth-order

diffusion RMS error is shown in Figure 5.10.

It is observed in all of the above mentioned figures that eRMS is propor-

tional to 1/
√
V for small values of V , which was remarked in Theorem 3 of

Chapter 4. The convergence plot reaches a saturation (flat region) for large

values of V because the second term (standard deviation) in equation (4.2)

decreases with V and the RMS error, eRMS, approaches a constant value of

(eFV)RMS i.e. the flat region. This observation is found in both advection

and diffusion results.

As described above, since the second term of equation (4.2) diminishes

with large values of V , eRMS values moves towards root-mean-square values

of finite volume scalar transport, (eFV)RMS. This is illustrated in Figure 5.11

where eRMS values (in circles) are co-plotted with (eFV)RMS values (in solid)

of various advection schemes for V = 104 or V = 105 (depending on when

they approached saturation) and these values are close to their corresponding

finite volume methods. It can also be observed that the values for high-

resolution grid show some deviation from FV values. The deviation of the

circles (FBPT) from the solid line (FV-PST) is because for the high grid

resolution (high nx), (eFV)RMS is lower and the plots shown in Figure 5.7,

5.8 and 5.9 have not reached a saturation for V = 104, 105. We can see

from Figure 5.11 that the Upwind scheme RMS values reached saturation

at V = 104 and coincides with FV-PST values, the Piecewise-linear scheme

RMS values are very close to FV-PST at V = 105 and some RMS values of

the RK-3 (nx = 100, 150, 250) scheme did not reach a saturation/flat region

at V = 105 and hence are away from the corresponding FV-PST values.

The grid-convergence plot shown in Figure 5.11 confirms that for advec-

tion process, the Upwind scheme, the the Piecewise-linear scheme and the

Runge-Kutta 3 scheme have a grid convergence of the order one, two and

three, respectively, for high grid-resolution.
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Figure 5.7: eRMS variation with V and nx for advection using Upwind scheme.
Dashed line represents a line with slope of (−1/2) in the figure on top and
slope (−1) in figure in the bottom.
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Figure 5.8: eRMS variation with V and nx for advection using Piecewise-
linear scheme. Dashed line represents a line with slope of (−1/2) in the
figure on top and slope (−2) in figure in the bottom.
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Figure 5.9: eRMS variation with V and nx for advection using RK-3 scheme.
Dashed line represents a line with slope of (−1/2) in the figure on top and
slope (−3) in figure in the bottom.
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Figure 5.10: eRMS variation with V for diffusion using second order(top)
and fourth order scheme(bottom). Dashed line represents a line with slope
of (−1/2) on a loglog scale.
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Figure 5.11: Convergence of eRMS with grid size (nx) for different advection
schemes. The solid lines represent the FV error and bubbles represent the
total RMS error for Upwind, Piecewise-lin and RK-3 schemes at V = 104,
V = 105 and V = 105 respectively. The error plotted is the absolute error
based on the same initial conditions for all schemes.
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CHAPTER 6

CONCLUSIONS

6.1 Summary

This work describes an approach to model particle-resolved transport stochas-

tically using higher-order methods. This work follows a sampling method for

solving the advection-diffusion process of particles in a predefined velocity

field and a given value of diffusion coefficient. In all the work, a uniform grid

has been considered with staggered velocity values. The formulation started

with passive scalar transport (PST) solution using finite-volume methods.

Then flux-based stochastic transport (FBPT) was introduced by defining

particle population movement in terms of particle flux and probabilities

(Chapter 2). The coefficient matrix for flux calculation was split into the

processes of advection (Cadv) and diffusion (Cdiff). To keep the diffusion pro-

cess random, even in a case of zero gradient, the diffusion coefficient matrix

(Cdiff) was further split into two parts. Since all the matrices are split from

the same coefficient matrix of PST, the total particle concentration was ex-

pected to be the same as for finite-volume PST method results which was

also theoretically proved in Theorem 1.

Since the formulation developed in the work is valid for any explicit

schemes, different schemes can be used by changing the coefficient matrix

C, which was discussed in Chapter 3. Numerical errors encountered were

split into finite volume error and stochastic error (Chapter 4), and it was

proved that the expected value of root-mean-square of the total error should

depend on 1/
√
V in Theorem 3. This was confirmed numerically for 1D ad-

vection and diffusion tests as shown in Figures 5.7, 5.8, 5.9 and 5.10. The

numerical results also verified the claim made in Theorem 2 that stochastic

error diminishes when number of particle in a sample volume, V , increases.

It is evident from the equation (4.2) that the total error becomes closer to
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finite volume error, which was observed numerically in the flattening of the

eRMS vs V curve for large values of V . From all the aforementioned numerical

results, it can be concluded that the transport results from FBPT model are

close to the analytical solutions for the test cases and since the model is based

on particle flux, it can be applied to WRF framework. In the case of a very

high-grid resolution, the Upwind advection scheme is recommended because

of its zero dispersion error. For cases where a high grid convergence is re-

quired, higher-order schemes, such as Piecewise linear or RK-3, can be used

keeping in mind that some dispersion error will be introduced in the model.

Although the second order diffusion was found sufficient for the modeling

of test cases discussed in the work, a general formulation for a higher-order

diffusion on a uniform grid was provided in the document.

6.2 Future Work

This work laid the foundation of stochastic methods for particle-resolved

transport. It can be expanded in various ways. In particular, the momentum-

coupling between fluid velocity and particle velocity was not considered in

this work because of the insignificant masses of individual aerosol particles.

The method can be modified to include more coupling equations to model

transport of heavier particles such as sand. This method is useful for parti-

cles with diverse composition, and the composition has to be traced in the

simulation.

Since only the transport is considered in the problem, and other chemical

and physical processes of aerosols such as coagulation, condensation, dilution

and deposition were to be modeled using operator splitting. As a precaution,

the time scales of each of these processes should to be significantly different

from each other to decouple the processes from each other.

The thesis work only discusses transport in 1-dimensional space. The ap-

proach can be applied to a 2D or a 3D Cartesian space with staggered uniform

grid. As an example, Figure 6.1 shows advection results for a 2D rotating

field [Takacs, 1985] applied to a cylindrical particle population distribution.

Since the method only works for uniform structured-grids, method will have

to be reformulated for non-uniform grids. The higher resolution results for

uniform grids can be obtained by applying grid nesting [Skamrock, 1989],
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Figure 6.1: Particle concentration for t = T/4, t = T/2, t = 3T/4 and t = T
on a 2D simulation for a rotating flow and zero gradient boundary conditions.
Here, T is the time taken for a particle to complete one revolution in the
domain. Operator split technique in x any y directions was used for this
simulation.

but it will require an additional sampling step for distributing particles in

the nest.

This approach is compatible with the already existing finite-volume frame-

work of WRF and it keeps track of individual particle composition during

transport. Further work may include the integration of these methods with

aerosol physical and chemical processes to acquire a fully functional aerosol

modeling tool.
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APPENDIX A

FINITE VOLUME METHODS

A.1 Flux based form for PST

A passive scalar transport equation with reaction part included is given by,

∂q

∂t
= −∇ · (uq) +∇ · [D0(∇q)] + SV (A.1)

−u(∇q),D0(∇2q) and SV are advection part, diffusion part and reaction/source

part of the scalar equation respectively. Integrating these equations for a con-

trol volume,∫
V

∂q

∂t
dV =

∫
V

[−∇ · (uq) +∇ · [D0(∇q)]]dV +

∫
V

SV dV∫
V

∂q

∂t
dV =

∫
V

∇ · [−uq +D0(∇q)]dV +

∫
V

SV dV

Using Gauss Divergence theorem,∫
V

∂q

∂t
dV =

∮
s

[−(uq) +D0(∇q)].n ds+

∫
V

SV dV

∂Q

∂t
dV = 4F +

∫
V

SdV (A.2)

Where, 4F represents the net flux exchange from the boundaries of con-

trol volume, Q represents the volume average of the scalar in the control

volume(CV). A sample CV in Cartesian coordinates is shown in Figure A.1.

4F =

∮
s

[−(uq)] · n dS︸ ︷︷ ︸
Advection

+

∮
s

[D0(∇q)] · n dS︸ ︷︷ ︸
Diffusion

(A.3)
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Figure A.1: A sample control volume in Cartesian coordinates.

The net flux for a scalar can be divided into advection and diffusion as shown

in equation (A.3). The flux through a face due to advection depends on the

velocity at the corresponding face, and the flux due to diffusion depends on

the diffusion coefficient and the spatial gradient of scalar at the face.
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