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ABSTRACT 

 A dysfunctional cerebrovascular system can result in severe adverse effects on brain health and 

cognitive aging. Recently, Fabiani et al., (2014) introduced a novel non-invasive approach of quantifying 

cerebrovascular health using diffuse optical imaging in a sample of older adults. This method is based on 

the estimation of the arterial pulse across the whole scalp.  From these estimates, three indices 

reflecting arterial health can be extracted: pulse amplitude, arterial compliance and pulse transit time.  

In their initial paper, Fabiani et al. (2014) showed that, in older adults, these indices are correlated with 

important variables, including volumetric changes in the brain and in psychometric measures.  In this 

thesis, Chapter 1 discusses the importance of cerebrovascular health in brain and cognitive aging 

followed by a brief introduction to diffusive optical methods and its advantages in quantifying 

cerebrovascular health.  

 Chapter 2 contains a series of two experiments examining how changes in pulse amplitude 

reflect changes in cerebrovascular tone (i.e. vasodilation and vasoconstriction) of cerebral blood vessels. 

We used both a physiological voluntary breath holding task to track generalized changes and a cognitive 

Sternberg task to track localized changes in cerebrovascular tone. Further, we found that an index of 

cerebrovascular reactivity derived from the breath holding task was associated with age and cognitive 

functioning. These results indicate that cerebral pulse amplitude works well as a proxy measure of blood 

pressure in the brain.  

Chapter 3 contains a replication and extension of the work presented in Fabiani et al., (2014) to 

investigate changes in pulse amplitude and arterial compliance in a group of younger and older adults. 

The study also contains methodological improvements whereby we employed a denser optical recording 

array and increased data collection time substantially in order improve signal to noise ratio. The results 

indicate strong reliability for both pulse amplitude and arterial compliance measures. We replicated the 

initial findings, demonstrating that associations with age, cardiorespiratory fitness, brain anatomy and 
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cognition can also be found across the adult lifespan. Further, we found new evidence supporting the 

value of regional arterial compliance in predicting working memory performance on the operation word 

span (OSPAN) task. 

 Chapter 4 contains a study investigating the relationships of arterial compliance with measures 

of cerebral white matter lesion (manifested as white matter signal abnormalities (WMSA) on T1 

weighted images) and white matter microstructure integrity (measured using DTI indices of fractional 

anisotropy and mean diffusivity). Using hierarchical regression, we found that arterial compliance 

predicts variance in WMSA over and above age and systemic pulse pressure (difference between systolic 

blood pressure and diastolic blood pressure), indicating that brain measures of arterial compliance have 

added predictive utility of WMSA volume over systemic measures of vascular health. Mediation analyses 

revealed that the relationship between greater age and poorer fluid intelligence (IQ) was mediated 

sequentially by a reduction in arterial compliance and greater WMSA volume. Additional mediation 

analyses involving switching the temporal sequence of arterial compliance and WMSA was not 

statistically significant. Further, substituting WMSA for DTI measures of FA and MD in the mediation 

analysis also did not reach statistical significance. These results suggest that the cerebrovascular 

pathway involved in age-related cognitive decline in fluid IQ are mediated primarily through arterial 

compliance and WMSA, but not changes in white matter microstructure measured by DTI. Tentative 

findings suggest that vascular damage manifested as poorer arterial compliance and WMSA volume, 

may converge with degradation to white matter microstructure in the fornix. 
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CHAPTER 1 

GENERAL INTRODUCTION 
 

"A man is as old as his arteries." 
Thomas Sydenham, MD, English Physician, 1624-1689 

  
 The importance of a healthy cardiovascular system in healthy aging has been known for a long 

time. However, even though great strides have been made over the past centuries to reduce 

cardiovascular-related mortality rates, 611,105 deaths in 2013 can still be attributed to heart disease. 

Trailing not far behind are the 128,978 and 84,767 people who died of cerebrovascular and Alzheimer’s 

disease (AD), respectively (Xu, Murphy, Kochanek & Bastian, 2016). The links between a poor 

cardiovascular system, decline in cerebrovascular health, and cognitive decline seen in AD has received 

more attention recently, with Torre (2013) suggesting that the accumulation of vascular risk factors are 

in effect, “ticking time bombs” predicting the onset of cognitive decline and dementia.  

 Studies conducted to examine these relationships have mostly focused on systemic measures of 

the cardiovascular system to predict cognitive decline in aging. Large-scale longitudinal studies have 

found that vascular risk factors such as elevated blood pressure and left ventricular hypertrophy are 

predictive of clinically significant cognitive decline (Unverzagt et al., 2011). A longitudinal study 

consisting of 7 waves of testing over 19 years also found directional evidence that lower pulmonary 

function causes declines in fluid cognition. Even though studies like these suggest that the remodelling 

of arteries due to accumulation of cardiovascular risk factors such as hypertension may result in end-

organ damage in the brain (Jennings & Zanstra, 2009), they are merely using systemic measures of 

cardiovascular health as proxy measures for cerebrovascular health.  

 Efforts to circumvent these indirect measures of cerebrovascular health have mostly relied on 

using transcranial Doppler (TCD) ultrasound (e.g. Kassab et al., 2007) and arterial spin labelling (ASL; e.g. 

Zimmerman et al., 2014) techniques. In general, findings from TCD studies suggest that blood flow 
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velocity and pulsatility indices are predictive of cognitive decline associated with AD (see Tomek, 

Urbanoca & Hort, 2014 for a review) and findings from ASL studies suggest that cerebral hypoperfusion 

is a potential biomarker for neurodegenerative conditions (see Wolk & Detre, 2012 for a review). 

However, TCD methods only allow for the sonography of a few large arteries such as the middle cerebral 

artery (MCA) and ASL methods suffer from inherent limitations in signal-to-noise ratio. Although very 

useful for deriving global and generalized indices of cerebrovascular health, these methods are not 

particularly suited for investigation of regional cerebrovascular health. Given findings that brain atrophy 

as a function of aging does not occur at the same rate for all regions (e.g. Fletcher et al., 2016; Raz et al., 

2005; Tan et al., 2016) and that the brain possesses some degree of functional specificity for different 

cognitive processes (e.g., Kanwisher, 2010), it is evident that we should look beyond generalized 

cerebrovascular health.  In fact, both within- and between-subject variations in regional cerebrovascular 

health can allow us to better investigate the influence of cerebrovascular function on brain and 

cognitive aging. 

 To this end, this dissertation describes the novel use of diffuse optical imaging to extract indices 

of both generalized and regional cerebrovascular health. In brief, diffuse optical methods involve the 

transmission of near-infrared light through the surface of the head and into cortical structures (see, 

Gratton & Fabiani, 2010 for a review). The pulsation of cerebral arteries as a function of the cardiac 

cycle allows us to extract pulsatility indices due to changes in absorption and scattering properties (see 

Fabiani et al., 2014). In particular, the current thesis relies on two diffusive optical indices of 

cerebrovascular health, namely pulse amplitude and arterial compliance. 

 Pulse amplitude is quantified by the reduction in alternating current (AC) light intensity due to 

the temporary distension of the arteries in the brain during the systolic phase of the cardiac cycle (see 

Figure 1.1). The pulse waveform is time-locked to the electrocardiogram (EKG) and the measure is 
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extracted from 384–534 ms, the time window in which the peak systolic phase occurs for all regions of 

the brain.   

                                        

Figure 1.1. Pulse amplitude is quantified by averaging the reduction in light intensity from 384–534 ms   
(blue bar), a time period in which the peak systolic phase occurs for all regions of the brain. 

 
 Arterial compliance was defined as the area under the pulse between the peak systole and the 

peak diastole normalized by both time and amplitude and subtracted by a constant value of 0.5 (Fabiani 

et al., 2014). The constant value was subtracted to compare the area of the pulse response measured to 

an area of a hypothetical pulse presenting a linear decay of its amplitude after the systolic period. (see 

Figure 1.2.).  

 
Figure 1.2. Arterial compliance is quantified by the region in blue. This value is normalized by both peak-

to-peak time and amplitude for each individual subject. 
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The subsequent chapters focus on further explicating the relationship between both global and 

regional cerebrovascular health (as indexed by pulse amplitude and arterial compliance) and a variety of 

indices associated with aging, including blood pressure, brain volume, cardiorespiratory fitness, white 

matter health, and domain-general and domain-specific cognitive function. The data described in the 

dissertation come from 2 independent subject populations. Specifically, the data from Chapter 2 were 

collected from a sample of older adults ranging in age from 55 – 87 years and the data from Chapter 3 

and 4 were collected from a sample of younger and older adults ranging in age from 18 – 75 years. 
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CHAPTER 2 
 

OPTICAL MEASURES OF CHANGES IN CEREBRAL VASCULAR TONE  
DURING VOLUNTARY BREATH HOLDING AND A STERNBERG MEMORY TASK 

 
 The human cerebrovasculature is very adept at regulating blood flow in response to changes in 

blood pressure and/or oxygen demands induced by increased neuronal activity or other physiological 

challenges. The vascular system reacts to these departures from homeostasis via cerebral 

autoregulation (Cipolla, 2009; Iadecola, 2004; Van Beek, Claasen, Rikkert & Jensen, 2008). The efficacy 

of the vascular system in responding to these deviations is critical for normal physiological and cognitive 

function. Blood flow to the brain is regulated primarily by the vasodilation and vasoconstriction of 

cerebral arterioles.  Changes in cerebrovascular tone (vasoconstriction and vasodilation) also mediate 

the changes in blood flow measured by the BOLD fMRI signal, whereby increased neuronal activity 

results in overall increases in tissue oxygenation, which are in turn reflected by a greater BOLD signal 

(Logothetis, 2002; Ogawa, Lee, Kay & Tank, 1990).  The ability of the brain to react to challenges is also 

known to be affected by aging, due to a number of factors, including a reduced sensitivity of CO2 

receptors in small brain arteries (Brandes, Fleming & Busse, 2005). These issues may also be 

compounded by arterial stiffening and atherosclerosis, and overall decreases in brain blood flow with 

aging (e.g., Brown et al., 2010; Cantin et al., 2011; Choi et al., 2004; Fabiani et al., 2014a; 2014b; Riecker 

et al., 2003; Zimmerman et al., 2014). 

 Recently we have shown that it is possible to measure several indices of cerebrovascular 

function using parameters of the cerebral arterial pulse (amplitude, compliance and transit time) 

obtained by means of diffuse optical imaging methods (Fabiani et al., 2014b). Diffuse optical methods 

are based on measuring changes in the basic optical properties (absorption and scattering) of near-

infrared light as it diffuses in brain (or other biological) tissue. A critical aspect of diffuse optical methods 

is the separation of sources and detectors (typically by a few centimetres) and the reliance on the highly 

scattering properties of most biological tissues, to allow for the measurement of relatively deep 
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structures from surface recordings.  These methods (also referred to as diffuse optical tomography, or 

DOT, when reconstructed in 3D; e.g., Chiarelli et al., 2016) include functional near-infrared spectroscopy 

(fNIRS, Hoshi & Tamura, 1993; Villringer & Chance, 1997), and the event related optical signal (Gratton & 

Fabiani, 2010).  The spectroscopic approach used by fNIRS involves estimating the relative absorption 

changes of oxy- and deoxy-haemoglobin during brain activity. However, fluctuations in these optical 

signals occur not only with variations in tissue oxygenation, but also with arterial pulsatility (Fabiani et 

al., 2014b).  When the focus is on the (relatively small) activity-related changes, these (relatively large) 

pulsatility measures are treated as nuisance signals and corrected for (Gratton & Corballis, 1995).  Here, 

instead, we focus on cerebral arterial pulsation parameters as our signals of interest. 

Fabiani et al. (2014b) showed that these optical indices of cerebrovascular function are 

correlated with vascular tone at rest, as well as with age and cardiorespiratory fitness (CRF).  Specifically, 

younger and/or highly fit adults have smaller peak pulse amplitudes, higher arterial compliance and 

slower pulse velocity in the brain. Here we expand on our initial findings by demonstrating that diffuse 

optical imaging measures of cerebrovascular pulse amplitude can also be used to track changes in 

vasodilation and vasoconstriction occurring in response to experimental manipulations, both globally 

and regionally in the brain.  

When measured with diffuse optical methods, pulse amplitude refers to the amount of 

reduction in alternating current (AC) light intensity that happens during the systole due to the transient 

distension of the cerebral arteries. This distension is caused by the transit of the pulse pressure wave 

carrying a bolus of oxygenated blood, which results in greater absorption of near-infrared (NIR) light 

photons, and in a corresponding reduction in the light received by the detectors.  

Vasodilation and vasoconstriction of intracranial (i.e., cerebral) and extracranial (i.e., scalp) 

arteries affect pulse amplitude in a consistent and opposing manner. During arterial vasodilation, 

cerebral pulse amplitude is reduced. Vasodilation of the arterioles causes a reduction in peripheral 
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resistance and allows blood to flow more easily into the tissue.  This results in a reduction of cerebral 

blood pressure in (upstream) larger arteries. Given that the optical pulse signal originates predominately 

from the larger upstream intracranial arteries (Fabiani et al., 2014b), this reduction in blood pressure 

causes a reduction in the drop in light intensity occurring during systole.  Conversely, vasoconstriction in 

the cerebral arterioles creates greater resistance for the blood flowing out of the larger upstream 

arteries, resulting in an increase in pressure. In other words, higher pulse pressure increases the light 

intensity drop during systole and is reflected by a corresponding increase in pulse amplitude (refer to 

Figure 2 for an example).  

  Here we present results from two studies, in which we measured changes in pulse amplitude by 

manipulating vascular tone in the brain. The first study involved a voluntary breath-holding task (BHT), 

which is expected to generate widespread effects on cerebral pulse amplitude. The second study used a 

Sternberg memory task, in which we expect to see regional vascular tone effects in task-relevant brain 

areas but not in other areas that are irrelevant for the task. 

 The BHT is commonly used to induce hypercapnic conditions in the brain (e.g. Bright & Murphy, 

2013; Leoni et al., 2012; Markus & Culliane, 2001). During a BHT, increases in arterial carbon dioxide 

(CO2) concentration cause a reduction in perivascular pH. This increase in acidity alters the cerebral 

vascular tone leading to the vasodilation of cerebral blood vessels, ultimately resulting in increased 

cerebral blood flow (CBF; Ainslie & Duffin, 2009; Cohen, Ugurbil & Kim, 2002) and reduced blood 

pressure. Upon resumption of breathing, the reverse happens: CO2 concentration decreases, and blood 

vessels constrict. However, typically, for a brief period after breath holding, vasoconstriction exceeds 

the baseline value (“overshoot”) and blood pressure is even greater than during the baseline period.  

Finally all the values return to normal.   As a consequence, we hypothesized that, compared to resting 

conditions, changes in pulse amplitude should follow a quadratic trend whereby pulse amplitude 

decreases during the breath hold due to vasodilation, and then increases during the subsequent post-
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hold period due to vasoconstriction. We expect changes in pulse amplitude to be globally distributed, in 

line with existing fMRI studies showing a generalized effect across most gray matter areas (Kastrup, 

Kruger, Neumann-Haefelin & Moseley, 2001; Kastrup, Tie, Atsuchi, Glover & Moseley, 1998; Thomason, 

Burrows, Gabrieli & Glover, 2005), although there may be some differences in sensitivity among regions 

(Kastrup, Kruger, Glover, Neumann-Haefelin & Moseley, 1999). 

The breath-holding index (BHI), a measure of cerebrovascular reactivity (CVR) can also be 

derived from these changes in optical pulse amplitude. The cerebrovascular BHI is typically estimated 

using transcranial Doppler ultrasonography, which is based on measures of blood flow velocity. The BHI 

is derived by calculating the percent increase in blood flow velocity (typically in the middle cerebral 

artery) induced by breath holding compared to rest, and then dividing it by the duration of the breath 

hold (Markus & Harrison, 1992; Kassab et al., 2007; Silvestrini et al., 2000).  Here we replace the 

measures of blood flow velocity with diffuse optical imaging measures of pulse amplitude.  Note that 

pulse wave velocity is expected to increase with blood pressure, as the arterial walls become more rigid, 

thus transmitting the pulse wave faster, during vasoconstriction.  Therefore, an increase in pulse wave 

velocity should be associated with an increase in blood pressure, and with an increase in pulse 

amplitude (and vice versa for a reduction in pulse wave velocity resulting from vasodilation). 

 Impairments of cerebral hemodynamics with increasing age are manifested by low 

cerebrovascular reactivity (Peisker, Bartos, Skoda, Ibrahim & Kalvach; 2010).  For instance, decreasing 

BHI values as a function of age were found in a sample of 120 healthy adults aged 25 to 76 (Zavereo & 

Demarin 2010). Low CVR has also been shown to be associated with poorer performance on the Mini-

Mental State Examination (MMSE) in older adults affected by Alzheimer’s disease (AD), mixed dementia 

and also amnestic mild cognitive impairment (Richiardi et al., 2015; Stefani et al., 2009).  In a 12-month 

longitudinal study, Silvestrini et al. (2006) also found that lower CVR predicts a greater drop in MMSE 

scores in an AD population. In the present study, participants ranged in age between 55 and 87 years 
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and performed the modified Mini-Mental Status Examination (mMMSE) as part of our screening process 

(see Methods).  Specifically, we expected that, if optically-measured cerebral pulse amplitude is an index 

of CVR during the breath-holding task, it should be associated with both age and mMMSE.   

 An advantage of optical cerebral pulse measures is that, in addition to enabling the examination 

of generalized changes in pulse amplitude induced by breath holding, they also allow for the 

investigation of regional vasodilation effects produced by cerebral functional hyperaemia during a 

cognitive task. The Sternberg (1966) memory search task is especially suited for this purpose as it allows 

for the comparison of cognitive loads across different set sizes and has been extensively studied using 

fMRI (e.g., Altamura et al., 2007; D’Esposito, Postle, & Rypma, 2000; Schneider-Garces et al., 2010; 

Veltman, Rombouts, & Dolan, 2003; Zarahn et al., 2007). These studies typically find greater vasodilation 

- manifested by greater BOLD activation, in the medial and lateral prefrontal, parietal and also visual 

cortices as a function of increasing set sizes. As such, we should also expect that these task relevant 

regions – but not others that are irrelevant for the task (e.g., somatosensory and auditory cortex), would 

show a decrease in pulse amplitude from low to high set sizes.  

 The BHT and Sternberg task are commonly used to investigate physiological (BHT) and cognitive 

(Sternberg) changes as a function of experimental manipulations. These two particular tasks were 

chosen to provide effect that were either global (BHT) or engaging a reasonably large subset of brain 

areas (the Sternberg task), but would also differ in the mechanisms by which they induce vasodilation.  

Given the novel use of diffuse optical imaging methods to quantify changes in cerebrovascular tone, the 

main aim of the two studies presented here is to provide evidence demonstrating that the results 

derived with this approach align with those found in studies using other methodologies, such as Doppler 

ultrasound and fMRI. This will pave the way towards using optical methods to assess physiological and 

cognitive function in conjunction with these more traditional methods. In addition, because these new 
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optical methods potentially allow for regional specificity, they may also provide a window into the 

measurement of local cerebrovascular tone, and potentially enable new avenues for intervention. 

Experiment 1: Breath Holding Task 

 We used a voluntary BHT to investigate global changes in pulse amplitude. We hypothesized 

that: a) the cerebral CVR function measured optically should show a quadratic trend, whereby we would 

observe a reduction in pulse amplitude during breath holding and an increase after breath holding; and 

b) the optical CVR measurements of pulse amplitudes during the BHT should correlate with age and 

general cognitive functioning as measured by the mMMSE. 

 Experiment 1: Methods 

Participants. Fifty-five older adults were recruited through advertisements in local newspapers, 

campus-wide e-mailings, and postings at area gyms, retirement homes and community centers. Four 

participants were excluded from subsequent analysis due to one participant dropping out of the 

experiment before the collection of optical data, and inability to reliably measure the pulse in three 

participants (because of errors in data collection and/or excessive movements by the subjects). The final 

sample comprised 51 older adults (age range = 55-87 years, mean age = 70.2 years, mean education 

level = 16.9 years, 26 males). The demographic characteristics of the participants are summarized in 

Table 2.1. 

Table 2.1. Demographic characteristics of the participants  
 

Variable Experiment 1 (N=51) 
Mean (SD) 

Experiment 2 (N=52) 
Mean (SD) 

Age (years) 70.2 (8.4) 69.8 (8.4) 
Education (years) 16.9 (2.8) 16.8 (2.9) 
Modified Mini-Mental Status Examination  55.3 (1.4) 55.3 (1.4) 
Shipley’s Vocabulary Test 35.9 (2.6) 36 (2.6) 
Beck’s Depression Index 2.8 (3.4) 2.9 (3.4) 

Screening procedures. Participants were screened based on a number of health and cognitive 

criteria. Subjects with serious or chronic medical conditions or a history of major neurological or 

psychiatric disease or drug abuse were excluded from this study. Seventeen subjects who reported 
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taking blood pressure medications were not excluded because these conditions are pervasive in our age 

range, and we were interested in vascular risk factors. Additionally, to be included in the study subjects 

had to score at least 51 on the mMMSE (Mayeux, Stern, Rosen & Leventhal, 1981) and no more than 14 

on Beck’s Depression Inventory (Beck, Steer & Brown, 1996). Subjects who smoked more than half a 

pack of cigarettes and/or consumed more than two alcoholic drinks per day were also excluded. All 

participants were right-handed (as assessed by the Edinburgh Handedness Inventory; Oldfield, 1971), 

had normal or corrected-to-normal vision, and were native speakers of English.  

Breath-holding paradigm. Participants underwent six breath-holding trials, grouped in two 

blocks of three trials each, with a break between blocks. Given that the BHT is a voluntary task, visual 

cues and feedback mechanisms were used to reduce inter-subject adherence variability (see Thomason 

& Glover, 2008). All on-screen prompts (timing the subject’s task) were presented using E-Prime 2.0 

(Schneider, Eschman, & Zuccolotto, 2002) on a grey screen with black letters. First participants were 

presented with on-screen instruction prompts, designed to guide them to perform the breath-hold task 

in a time-consistent manner: (a) a prompt to breathe normally (29 s); (b) a get ready prompt (2 

seconds), (c) instructions to breathe in (2 s), (d) instructions to breathe out (4 s)  and finally (e) 

instructions to hold their breath (14 s). During the hold interval participants were shown a concentric 

circle at fixation, which became smaller in six visual steps to indicate how much longer they needed to 

hold their breath.  

 Participants were given a practice trial to familiarize themselves with the task before moving on 

to the 6 actual trials, and to decrease any anxiety that could be associated with the breath hold1. In 

addition, a breathing belt that measured chest expansion was used to monitor task compliance, and 

                                                            
1 Hypercapnia can potentially induce anxiety (Eifert, Zvolensky, Sorrell, Hopko, & Lejuez, 1999).  However a few things should 

be considered here: (1) none of our participants reported anxiety or had to interrupt the task due to anxiety; (2) subjects 
practiced the task 3 times before the optical recordings on which this paper is based (in addition to the practice trial reported 
here there was another session involving breath-holding within a mock scanner and within an MR scanner, Zimmerman et al., 
2014).  This should help habituate any eventual anxiety response; (3) the voluntary nature of the breath-holding should 
diminish anxiety, compared to hypercapnia generated by breathing CO2 enriched air, as the participants maintain control on 
their breathing at all times.   
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experimental blocks in which deviance from the protocol was detected were excluded from subsequent 

analysis. It is important to note that breath holds as short as 3 s have been found to elicit a measurable 

BOLD signal change, although longer breath holds can result in more robust effects (Abbott, Opdam, 

Briellmann, & Jackson, 2005). Comparing between breath holds of 9, 15 and 20 s after inspiration, 

Magon and colleagues (2009) concluded that breath holds of 15 s are sufficient to capture differences in 

the cerebrovascular response to hypercapnia due to good stability and reproducibility across trials. 

Further, given our sample of older adults, we did not want to require a longer breath-holding period, 

due to concerns that harder challenges may not be tolerable for our oldest or less fit participants (see 

also Bright & Murphy, 2013, Chang et al., 2009).  

Data Acquisition 

Electrocardiogram. Lead I of an electrocardiogram (EKG, left wrist referenced to right wrist) was 

recorded using a Grass Model 12 amplifier with a sampling rate of 200 Hz and a band-pass filter of 0.1 to 

100 Hz.  The R-wave of the EKG was used to determine the beginning of each cardiac systole. 

Optical recording. The optical data were recorded with six integrated frequency domain 

oximeters (Imagent; ISS, Inc., Champaign, IL). Data were collected from 24 detectors and 16 time-

multiplexed sources (384 channels). Laser diodes generated light at wavelengths of 830 and 690 nm 

(max amplitude: 10 mW, mean amplitude after multiplexing: 1 mW), modulated at 110 MHz.  The light 

from the diodes was transmitted to the surface of the head using optic fibers (one per emitter; diameter 

= 400 μm). Light was collected from the surface of the head using detectors (fiber optic bundles, 

diameter = 3 mm) connected to photomultiplier tubes (PMTs). Sources and detectors were held flush to 

the participants’ scalp using a modified motorcycle helmet. We used an extended optical montage 

consisting of 128 source and 24 detectors that covered the whole outer cortical surface (see figure 1). A 

fast Fourier transform of the output data from the PMTs was used to calculate direct current (DC; 

average) intensity, AC (amplitude), and relative phase delay (in picoseconds). Since the focus of the 
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current study is on the cardiac pulse, we report AC intensity values only, where the pulse is most easily 

detected (see Fabiani et al., 2014b, supplementary materials, for the same measures taken with the 

phase parameter). Optical parameters were sampled at 39.0625 Hz (25.6ms per sampling point).  The 

arterial pulse is the largest phenomenon that can be measured using AC intensity, being typically easily 

visible on single trials. 

 Structural MRI acquisition and co-registration with optical data.  Although in this study we are 

investigating widespread hypercapnia effects, which do not necessitate co-registration with brain 

anatomy, this step is necessary for experiment 2 in which we are evaluating regional changes. As data 

for the two experiments were recorded in the same session and participants, we implemented the co-

registration procedures for both to ensure consistency and precision.  Each subject’s optical pulse data 

was coregistered with the person’s structural MRI to allow for alignment of functional and anatomical 

images.  First, using nasion and pre-auricular points as references, the locations of individual optical 

sources and detectors were digitized using a Polhemus “3Space” FASTRAK 3D digitizer (Polhemus, 

Colchester, VT). T1 weighted structural magnetic resonance images were obtained for each subject 

using a Siemens TRIO 3-T full body scanner using a 3D MPRAGE protocol. The MPRAGE parameters 

were: flip angle = 9◦, TR = 1900 ms, TE = 2.32 ms 186 and inversion time = 900 ms. Slices were acquired 

in the sagittal plane (192 slices, .9 mm slice thickness, 187 voxel size .9 x .9 x .9 mm) with matrix 

dimensions of 192 x 256 x 256 (in-plane interpolated at 188 acquisition to 192 x 512 x 512) and field of 

view of 172.8 x 230 x 230 mm. These MPRAGE images were ac-pc (anterior commissure, posterior 

commissure) aligned using AFNI (Cox, 1996). The Polhemus digitization points were then co-registered 

with the transformed MR images first using the three fiducial markers and then surface-fitting the entire 

set of digitized points to the estimated scalp surface based on a Levenberg-Marquardt algorithm (least-

squares fit), which has been shown to have errors of less than 4 mm (Whalen, Maclin, Fabiani, & 

Gratton, 2008; see also Chiarelli et al., 2015). Figure 2.1 depicts the recording montage (together with 
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the additional digitized points defining the head’s surface) superimposed on the structural MRI of one 

representative participant.  

 

Figure 2.1. Example of co-registration of the full-head optical montage with the structural magnetic 
resonance image of an individual subject. Red squares on the scalp indicate light sources, 
yellow squares indicate light detectors and teal squares indicate additional digitized points 
used for co-registration with the MRI. Nasion and preauricular fiducial points are also in red. 
From top left going clockwise, front view, side view, back view and top view. 

 
Data Analysis.  

Optical Processing. The optical data were first normalized and band-pass filtered between 0.5 

and 5.0 Hz. The data were then divided into 2048 ms epochs starting with the peak of each R-wave, 

obtained from the simultaneously recorded EKG.  Each breath-hold period was divided into 3 separate 

phases: Rest (4 seconds before the subjects were asked to breathe out and hold), breath-hold (last 10 

seconds) and post-hold (4 seconds). The choice of these intervals was motivated by previous studies:  

Abbott et al. (2005) showed measureable BOLD signal changes after 3 seconds of breath holding, and 



 
 

17 
 

also suggested that the 4-seconds measurement interval used in the current study after breath holding 

begins, and the 4 seconds after breath holding ends are sufficient to generate significant effects. The 

selection of a 4-seconds measurement period after breath hold was also motivated by Doppler studies 

investigating the BHI, by comparing mean flow velocity between rest and the average of a 4s-period 

immediately following the breath hold (Markus & Harrisson, 1992; Silvestrini et al., 2000; Vernieri et al., 

2001).  

Pulse epochs occurring during each phase of the BHT were then averaged together and 

baselined to the first peak diastole period occurring between 128 ms and 256 ms after the R-wave of the 

EKG.  Note that the cerebral pulse is delayed with respect to the EKG R-wave, by approximately 200 to 

400 ms (see Fabiani et al., 2014b).  Therefore the peak diastole of the previous cerebral pulse cycle 

typically occurs well after (i.e., more than 100 ms) the EKG R-wave of the following cycle. The duration 

of the breath hold measurement period was chosen to maximize the effects of breath holding given that 

the relationship between PaCO2 and blood flow is known to be sigmoidal (Harper & Glass, 1965; 

Madden, 1993). 

In-house software “Opt-3d” (Gratton, Sarno, Maclin, Corballis & Fabiani, 2000) was utilized to 

merge channels whose mean diffusion paths (modeled as a curved ellipsoid) intersected for a given 

brain volume (Wolf et al., 2000). Only source-detector distances between 35 and 55 mm were used in 

the analysis in order to bias signal extraction from deeper brain regions as opposed to superficial skin 

effects, visible with shorter source-detector distances (channels with source-detector distances 

exceeding 55 mm produced unreliable data due to low light).  An 8-mm spatial filter was applied to the 

spatially-reconstructed data and the optical data were projected onto the axial (top) surface of a sample 

brain in Talairach space.   

Pulse Amplitude.  To index cerebral vascular tone, pulse amplitude was defined as the mean AC 

amplitude in an interval between 384 and 538 ms after R wave onset for each phase of the BHT (Fabiani 
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et al., 2014b), an interval during which the peak of the systolic activity occurred in all subjects and for all 

regions of the brain. Given that the optical data were baselined to the period during which the diastolic 

peak occurred, pulse amplitude is essentially a measurement of the change in the light moving from 

sources to the detectors from the diastole to the systole. In order to quantify global changes, voxels on 

most of the axial surface (Talairach coordinates; X-axis: -45 to 45, Y-axis: -80 to 50) were averaged 

together prior to measuring pulse amplitude in each phase of the BHT.  

 Breath-holding index. The BHI was derived by calculating the percent change in pulse amplitude 

from rest to the end of breath-holding, weighted by the length of breath-hold, paralleling the 

measurements done with transcranial Doppler (Markus & Harrison, 1992; Kassab et al., 2007; Silvestrini 

et al., 2000, Vernieri, Pasqualetti, Passarelli, Rossini & Silvestrini, 1999). The BHI was used to investigate 

the relationship between CVR, age, and general cognitive function (as indexed by the mMMSE). 

 Heart and pulse rate. Heart and pulse rate were computed separately for each of the three 

phases of the BHT. We extended the duration of the rest and post-hold phases to 10 seconds in this 

analysis to accrue a sufficient number of beats to accurately calculate beats per minute. The heart rate 

was derived from the EKG by computing the inter-beat interval (IBI) from R-wave to R-wave and then 

converting it into beats per minute (bpm). Similarly, the optical pulse rate was derived by calculating the 

IBI from a peak systole to the next peak systole, and then converting it into pulses per minute.  

Experiment 1: Results 

Heart and Pulse Rate Changes.  Grand average optical pulse waveforms across the whole head 

are presented in Figure 2.2, separately for each breath-holding period.  These waveforms show the 

expected relationship between pulse amplitude and phase of the BHT. Figure 2.3 shows the average 

heart rate measures obtained with the EKG and optical pulse methods, separately for the three breath-

holding periods. 
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  Figure 2.2. During breath holding arterioles vasodilate resulting in a reduction in blood pressure in large 
upstream arteries and in a corresponding decrease in pulse amplitude (blue line) compared 
to the resting baseline period (red line). During the post-hold period (green line) the 
opposite phenomena occur. The shaded blue area indicates the time range (384–538 ms) 
used to compute mean pulse amplitude. 

 

  

Figure 2.3. Changes in heart rate measured using optical and EKG methods. Both methods show a 
significant drop in beats per minute during the breath-hold and a subsequent increase post 
breath-hold. 

There was a significant correlation between the heart rate measured by the EKG and the 

cerebral pulse rate measured optically for each of the 3 periods of the BHT; rest (r(49) = .92, p < .001), 

hold (r(49) = .93, p < .001) and post-hold (r(49) = .88, p < .001).  This indicates a high correspondence 

between the two methods (one based on the average EKG IBI, and the other on the IBI of the average 
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optical waveforms). As can be seen in Figure 3, a repeated measures ANOVA determined that both heart 

and pulse rate differed significantly across the 3 BHT phases, F(2, 100) = 11.2, p < .001 and F(2, 100) = 

5.8, p < .001, respectively. Planned comparisons showed that heart rate measured using EKG decreased 

significantly from rest (M = 68.9, SD = 9.8) to breath holding (M = 67.7, SD = 9.4), t(50) = 3.59, p < .001. 

Heart rate also increased from the hold phase to the post-hold phase (M = 69.1, SD = 9.0), t(50) = -4.72, 

p <.001. The optical pulse rate showed similar results, with the breath holding pulse rate (M = 67.4, SD = 

9.3) lower than both the rest pulse rate (M = 69.2, SD = 8.9), t(50) = 3.44, p < .001 and the pulse rate 

during the post-hold phase (M = 69.6, SD = 8.2), t(50) = -2.98, p = .004. There was also a significant 

quadratic trend across the 3 phases for both EKG and optical measures, F(1, 50) = 23.4 and 15.3, 

respectively, p’s < .001). These changes in heart rate were expected, as breath holding is considered a 

vagal activation task, and demonstrate that the participants were complying with the task.  

Pulse Amplitude Changes.  Two subjects were removed from this analysis due to being outliers 

(Z score >|2.5|) on pulse amplitude values collapsed across all 3 phases. Figure 2.4 shows pulse 

amplitude for the three phases of the BHT. Trend analysis revealed a significant quadratic trend across 

the three phases, F(1,48) = 5.1, p = .029, indicating that across the BHT, pulse amplitude decreased 

during hold (vasodilation) and increased post-hold (vasoconstriction).  

 

Figure 2.4. Changes in pulse amplitude across the 3 periods of the breath-holding task. The quadratic 
trend was statistically significant, indicating that pulse amplitude decreased (vasodilation) 
and increased (vasoconstriction) during the breath-hold and post-hold respectively 
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BHI correlations with age and cognitive function. Three additional subjects were excluded from 

this analysis due to being outliers on BHI values (Z score >|2.5|). As shown in Figure 2.5, there was a 

significant negative correlation between BHI and age, r(44) = -.32, p =.029. Older participants had a 

lower BHI, indicating lower CVR with age. A lower BHI score was also associated with poorer 

performance on the mMMSE, r(44) = .42, p = .004. This correlation persisted even after partialing out 

the effects of age and education, r(42) = .37, p = .014.  

 

Figure 2.5. Correlations between cerebrovascular reactivity, as indexed by the BHI, age (left plot) and 
mMMSE (right plot).  

 
Experiment 1: Discussion 

  Experiment 1 provides a validation of the use of an optically-recorded cerebral pulse amplitude 

to measure cerebral vascular tone by demonstrating that we can track cerebral vasodilation and 

vasoconstriction in response to changes in PaCO2 during different periods of a BHT. Significant decreases 

in pulse beats per minute during the hold phase, and increases during the post-hold phase as measured 

by both EKG and optical methods indicate that subjects were performing the task correctly, providing a 

manipulation check. 

The amplitude of the pulse was found to change systematically across the task, following a 

quadratic pattern decreasing with breath hold and increasing subsequent to the hold. As hypothesized, 

our measurement of CVR based on optically recorded pulse amplitudes correlated negatively with age 
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and positively with the mMMSE, a measure of general cognitive function. In sum, Experiment 1 provided 

evidence that the optical pulse amplitude measures can track global changes in vasodilation and 

vasoconstriction induced by a BHT. The validity of these measures is further supported by our finding 

that CVR calculated using pulse amplitudes also showed relevant correlations with age and cognitive 

performance. 

EXPERIMENT 2: Sternberg Task 

In this study we used a Sternberg memory task to investigate local changes in pulse amplitude in 

response to increases in memory load.  Specifically, the primary aim of Experiment 2 was to 

demonstrate a reduction in pulse amplitude in task-relevant brain areas as a function of increased 

memory set sizes and but not in non-task relevant areas.  Based on a large number of BOLD fMRI papers 

(Rypma, Berger, & DʼEsposito, 2002; Rypma, Berger, Genova, Rebbechi, & DʼEsposito, 2005; Schneider-

Garces et al., 2010; Veltman, Rombouts, & Dolan, 2003).), we expect some regions of the brain but not 

others to show vasodilation effects (responsible for the increased blood flow in these regions evidenced 

by BOLD fMRI task-related activations), which would then be reflected by local changes in the pulse 

amplitude of the arteries feeding these regions.  This would indicate that the optical pulse measures 

provide direct information about local cerebral vascular phenomena in addition to global phenomena.  

Experiment 2: Methods 

Participants. The 54 participants who completed experiment 1 also completed experiment 2. 

Two subjects were removed from the analysis due to near chance accuracy (approximately 50%) on the 

Sternberg task. The final sample comprised 52 older adults (age range = 55-87 years, mean age = 69.8 

years, mean education level = 16.8 years, 25 males). The demographic characteristics of the participants 

for experiment 2 are also summarized in Table 1.  

Sternberg Task. We implemented a modified version of Sternberg’s memory search task 

(Sternberg, 1966), with memory set sizes two, four, six, and eight. All stimuli to be encoded by the 
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participants were uppercase letters, chosen from the set B, D, F, G, H, J, L, M, R, and T. Corresponding 

lowercase letters were used as probes in order to prevent a direct visual match (see Bunge et al., 2001; 

Schneider-Garces et al., 2010).  The letters were selected due to their different shapes when presented 

in upper and lower case. Each letter subtended approximately 1.4° of visual angle in the diagonal on a 

computer monitor during the optical session. 

Each trial was initiated by the presentation of a memory set of 2, 4, 6, or 8 letters distributed 

equally and equidistant above and below a central fixation cross.  The memory set letters were 

presented simultaneously for 3 sec, followed by the fixation cross for 1 sec. Subsequently, a single probe 

letter was presented centrally (replacing the fixation cross) for 700 msec.  The fixation cross reappeared 

for the 1.3 sec inter-trial interval. Once the probe letter was presented on screen, participants were 

asked to indicate whether or not the probe was part of the preceding memory set by pressing a button 

with the right or left hand. The response-hand assignments were counterbalanced across subjects. Each 

memory set was composed of letters chosen randomly from the set of letters listed above, with the 

constraint that no identical letters were allowed within the same memory set. The probe was part of the 

memory set on 50% of the trials.  

A total of four runs were collected: each run consisted of four blocks of eight trials each, with a 

20-sec fixation period preceding and following each block. A block of each set size was presented once 

in each run, with set size counterbalanced across runs and subjects using a modified balanced Latin 

Square design. This yielded a total of four task blocks (8 trials each) and four rest blocks per run, with a 

total of 32 trials per set size after all four runs.  

All participants attended a training session 1 to 7 days prior to the experimental sessions.  

During the training session, participants received instructions, followed by at least 32 trials of set size 1 

to familiarize them with the task. The first 12 trials were presented at a slower pace. Participants were 

then presented with 20 normal-paced set-size 1 trials until they reached a 90% accuracy. They then 
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practiced the task for an additional 32 trials (8 trials per set size for set sizes 2, 4, 6, and 8) in sequential 

blocks with feedback. Following that, they were given a final set of 32 trials without feedback. In total, 

each participant was trained for at least 96 trials.  

Data acquisition and Preprocessing 

 Electrocardiogram, Optical and Co-registration Procedures. These acquisition parameters were 

identical to Experiment 1.  

Optical Data Analysis.  The optical data were preprocessed and the pulse waveforms extracted 

(time-locked to the R-wave) in the same manner as in Experiment 1. Pulse waveforms occurring during 

each task block were averaged separately for each set size, excluding the first trial of each task block (6 

seconds), in order to account for the typical latency of the vasodilation (hemodynamic) response. For 

the purpose of comparing vasodilation under low and high cognitive load conditions, we only present 

results involving the comparison between set size 2 and set size 6 conditions. We did not use the set size 

8 as the high load condition because previous findings in the lab using Cowan’s K measures (Cowan, 

2001; Cowan et al., 2005) suggested that, on average, older adult have difficulty maintaining more than 

four-to-six items in working memory (Schneider-Garces et al., 2010). Maximum Cowan’s K data in the 

current sample were consistent with this finding (M = 4.4, SD = 1.1).  

Source-detector distances included in the analysis were expanded to 2-6 cm, as cognitive tasks 

are less likely to induce localized superficial skin effects. We computed pulse amplitudes in five 

Brodmann’s areas (BA7, BA8, BA9, BA10, BA17+18), where we expected to see differences between the 

2 set sizes (Rypma, Berger, & DʼEsposito, 2002; Rypma, Berger, Genova, Rebbechi, & DʼEsposito, 2005; 

Schneider-Garces et al., 2010; Veltman, Rombouts, & Dolan, 2003). We also computed pulse amplitude 

effects in primary somatosensory cortex (BA1+2+3) and in auditory cortex (BA 41+42), where we did not 

expect to see differences as they are regions not relevant to the visual Sternberg memory task. 
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Experiment 2: Results 

Behavioral results.  As expected, participants had greater accuracy and faster reaction times 

(RT) in the set size 2 condition compared to the set size 6 condition (t(51) = 8.4 and -18.3, respectively, 

p’s < .001). 

Pulse Amplitude.  Figure 2.6 depicts the difference in average pulse amplitude in each ROI 

between set sizes 2 and 6.  Two-tailed paired t-tests were performed on each ROI (with positive values 

indicating greater pulse amplitude for set size 2 than set size 6, the predicted direction).  Cerebral pulse 

amplitude decreased significantly between set size 2 and 6 in BA 7 (t(51) = 2.56, p = .014), BA 8 (t(51) = 

2.33, p = .024), BA 9 (t(51) = 2.28, p = .027) and BA 10 (t(51) = 2.10, p = .044).  BA17+18, however did not 

reach statistical significance (t(51) = 1.35, p = .18). As expected pulse amplitude did not differ 

significantly in BA1+2+3 (t(51) = 1.75, p =.086) and in BA41+42 (t(51) = 0.38, p = .71). As these were 

planned comparisons, no correction for multiple comparisons was made. In addition, two-tailed paired 

t-tests conducted on the averaged pulse amplitude across all task relevant regions revealed significant 

differences between set sizes (t(51) = 2.96, p = .005) but not across all non-task relevant regions, (t(51) = 

.79, p = .43). However, a repeated measures ANOVA did not reveal a significant interaction effect, 

F(51,1) < 1, p =.45.    
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Figure 2.6. a) Differences in pulse amplitude between set-size 2 and set-size 6 for Brodmann areas (BA 7, 
8, 9,10 and 17+18) involved in the Sternberg Task. Non-task-relevant legions (BA1+2+3, 
primary somatosensory cortex and BA41+BA42, auditory cortex) showed no differences in 
pulse amplitude. b) Averaged pulse amplitude in task-relevant regions was significantly 
different between set sizes 2 and 6 but not between non-task-relevant regions. 

 

Experiment 2: Discussion 

 Pulse amplitude showed a significant decrease in frontal and parietal regions (BA7, BA8, BA9 

and BA10) with increasing cognitive load (i.e. from set size 2 to 6), indicating that vasodilation has 

occurred in these areas. The effects in the visual cortex BA 17/18 did not reach statistical significance.  

This could be due to a combination of insufficient coverage in the posterior region of the optical 

montage and a general weaker effect in the optical measure’s ability to detect vasodilation due to 

changes in the visual display. The absence of a set size effect in the primary somatosensory cortex 

(BA1+2+3) and both sides of the auditory cortex (BA 41+42) provides additional support to the claim 

that the pulse amplitude effects are regional, and isolated to brain regions involved in cognitive 

processing during the Sternberg memory task. 

The results of Experiment 2 indicate that pulse amplitude measures using diffusive optical 

imaging demonstrate the occurrence of drops in pulse amplitude (and presumably pulse pressure) in 
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cortical regions exhibiting increased blood flow (presumably associated with vasodilation) based on 

typical fMRI results (Rypma, Berger, & DʼEsposito, 2002; Rypma, Berger, Genova, Rebbechi, & 

DʼEsposito, 2005; Schneider-Garces et al., 2010; Veltman, Rombouts, & Dolan, 2003). 

 

General Discussion 

 Cerebral arterial pulse measures derived with diffuse optical imaging provide a new tool (and 

therefore a new perspective) for investigating the complex chain of cerebrovascular phenomena that 

are associated with various conditions, such as hypercapnia or neuronal activation.  These include 

systemic changes (i.e., non-cerebral phenomena, such as changes in heart rate and peripheral blood 

pressure), large and medium-size cerebral artery phenomena (e.g., changes in local arterial blood 

pressure and pulse velocity), vasoconstriction and vasodilation at the level of the arterioles, and 

hyperhaemia/hypohaemia and changes in oxygenation at the level of the capillaries in the parenchyma.  

A critical role in this complex chain of events is played by the arterioles, whose constriction or dilation 

(enabled by the presence of smooth muscle fibers in their wall, paired with the relative thinness of the 

wall itself) leads to opposite effects at levels of the system occurring before and after them: 

vasoconstriction of the arterioles generates higher pressure in the large arteries and reduced blood flow 

reaching the capillaries.  The opposite effects, of course, are obtained during arterioles’ vasodilation.   

Both hypercapnia and neuronal activity induce vasodilation (generalized in the first case, and localized in 

the second). Diffuse optical measures of arterial pulse provide a tool for mapping large and medium-size 

cerebral arteries across extended areas of the cortex (in contrast with transcranial Doppler ultrasound 

measures, which are limited to a few points of specific cerebral arteries).  In particular, the amplitude of 

the optical pulse in any particular region is determined by the blood pressure within the arteries of that 

region (assuming that the resistance of the arterial wall is relatively similar within the time course of the 

measurements).  Therefore, the amplitude of the arterial pulse in a particular region will vary as a 
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function of the vasodilation or vasoconstriction occurring in the set of arterioles that are fed by the 

arteries that are studied.  When considering vasodilation or vasoconstriction this way, however, it is 

important to also consider that spatial resolution will be limited by the fact that the same large and 

medium-size arteries will feed different arterioles. 

 The results of the two studies presented here are easily understood within this framework.  In 

the two experiments we found evidence that pulse amplitude measures derived from diffuse optical 

methods can quantify changes in cerebrovascular tone both globally, using a physiological hypercapnia 

challenge, and locally in task-relevant areas during a cognitive Sternberg task. In experiment 1, we also 

demonstrated that the BHI derived from pulse amplitude measures and indexing CVR was associated 

with scores on the mMMSE in an older adults sample even after partialling out effects of age and 

education. 

The framework presented above also provides a way of relating these novel diffuse optical pulse 

measures with other techniques for studying brain hemodynamic phenomena.  The closest is 

transcranial Doppler ultrasound, which measures blood flow velocity. Although transcranial Doppler 

measurements are useful when investigating generalized effects induced by hypercapnia, their use is 

restricted to only a few major arteries such as the middle cerebral artery (MCA). This limitation and 

consequent lack of spatial information makes transcranial Doppler less suited for investigating regional 

effects as a function of cognitive manipulations than diffuse optical imaging methods. Whether 

generalized effects seen using whole-cortex measures from diffuse optical methods are comparable to 

MCA measurements using transcranial Doppler remains to be investigated. For practical applications, if 

the aim is to examine only generalized effects, transcranial Doppler is simpler in its implementation. 

Both arterial spin labeling (ASL; e.g., Zimmerman et al., 2014) MRI and 15O-PET can be used to 

quantify the flow of blood through cerebral arteries and arterioles into capillaries and parenchyma.  

Their advantage is the ability to provide absolute measures of flow with good spatial resolution.  
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However, (a) they provide a measure that summarizes the status of all the levels within the system 

rather than separating effects across different compartments (although see Yan et al., 2016, for an 

attempt to derive pulse measures from ASL-MRI); and (b) they are not easily adapted to follow rapid 

changes in hemodynamic phenomena, as their temporal resolution is of the order of several seconds 

(for ALS-MRI) or several minutes (for 15O-PET). 

The BOLD fMRI signal, as well as oxygenation signals obtained with functional near-infrared 

spectroscopy (fNIRS; Hoshi & Tamura, 1993; Murkin & Arango, 2009; Villringer & Chance, 1997), 

originate primarily from the capillaries/parenchyma, which are perfused by penetrating arterioles with a 

single layer of smooth muscle (Iadecola, 2004; see also Safonova et al., 2002).  In this sense they provide 

complementary information to that obtained with measures of the optical pulse. Future experiments 

using simultaneous fMRI and optical imaging over the entire cortex, or in smaller regions such as the 

primary motor or visual cortex (e.g., Boas, Dale & Franceschini, 2004; Zhang et al., 2005), may further 

elucidate the similarities and differences between these two measures. Importantly, optical pulse 

measures are always available when fNIRS measures are recorded, at least when sampling rate is >5 Hz.  

 There are also both general limitations of diffuse optical methods for pulse analysis, and specific 

limitations concerning the paradigms used in the current study.  The most important general limitation 

of diffuse optical imaging (independently of the specific physiological phenomenon studied) is the 

limited penetration of these methods.  However, recent advancements in 3D reconstruction suggest 

that penetration can be pushed to 30-35 mm from the surface of the head, which may greatly expand 

the scope of the measures (Chiarelli et al., 2016).   

Specific limitations of the current work include the use of a voluntary fixed-duration breath-

holding task instead of a more controlled manipulation of PaCO2 based on 5% CO2 inhalation.   Previous 

studies, however, have shown that fMRI-based measurements of CVR using voluntary BHT or CO2 

inhalation challenge provide comparable results (Kastrup, Krüger, Neumann-Haefelin & Moseley, 2001). 



 
 

30 
 

Measurements using more traditional transcranial Doppler methods also found that CVR measured 

using breath holding had good short-term reproducibility and was comparable to that obtained through 

CO2 inhalation (Totaro, Marini, Baldassarre & Carolei, 1999). It should be noted, however, that these 

changes are but one of the many systemic hemodynamic phenomena associated with hypercapnia. In 

fact, hypercapnia generates changes in systemic blood pressure, cardiac stroke volume, and systolic 

time interval among others (Crystal, 2015; Kiely, Cargill, & Lipworth, 1996). Future studies can further 

compare the relative importance of cerebral and systemic autoregulatory mechanisms on cerebral blood 

pressure and CVR in order to gain a better understanding of the complex hemodynamic cascade induced 

by hypercapnia. 

 The effects seen in both studies reported here are relatively small and the quadratic trend seen 

in the BHT appears to be principally driven by vasoconstriction effects post-hold rather than by effects 

obtained during the hypercapnia period per se.  This may reflect the complexity of the phenomena 

occurring during that period as discussed above. Although we see clear effects of cerebrovascular tone 

changes as a function of both the physiological and cognitive manipulations, these results could be 

bolstered by improved methodologies in the future. In particular, the use of a tomographic approach for 

localizing the effects, of stronger manipulations (such as increasing the length of the breath hold) and 

the implementation of other cognitive tasks that produce more localized brain effects may provide 

additional support for the use of optical imaging methods to quantify cerebral vascular tone.   

 In conclusion, the two experiments presented here demonstrate that changes in optical pulse 

amplitude generated by physiological and cognitive manipulations allow for making inferences about 

the current state of the cerebral arteries. This novel methodology provides another window into 

cerebrovascular phenomena, by not only looking at how arteries respond in a global manner during 

physiological stress but also how they differ regionally as a function of local variations in neuronal 

activity induced by cognitive load. Future work should further establish the reliability and validity of the 
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measure using a variety of physiological challenges and cognitive tasks to elucidate its relationship with 

information derived from other neuroimaging methods.  
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CHAPTER 3 

MAPPING CEREBRAL PULSE PRESSURE AND ARTERIAL COMPLIANCE  
OVER THE ADULT LIFESPAN WITH OPTICAL IMAGING 

 
Many studies have demonstrated that vascular health plays an important role in both normal 

(pre-clinical) aging and in conditions that become more prevalent in aging, such as mild cognitive 

impairment (MCI) and Alzheimer’s disease (AD). Systemic arterial stiffening contributes to negative 

neurological outcomes, including poorer cognitive function [1-6], greater brain atrophy in multiple 

regions [7], increased risk of degenerative disease states such as AD [8-11] as well as increased 

cardiovascular mortality rates [12-13].  

In comparison, vascular health in younger adults has received more limited attention [14], 

despite evidence showing that arterial aging begins early in life [15-16] and that the negative 

consequences of arterial stiffness in relatively young populations are associated with poorer white 

matter health and reduced gray matter volume [17]. These adverse outcomes are also compounded by 

other known cardiovascular risk factors, such as low cardiorespiratory fitness (CRF) and poor dietary 

intake [18-20], emphasizing the need for control and intervention strategies at younger ages [21-22] for 

the prevention of age-related cognitive decline. 

Fabiani and colleagues [23] recently introduced a novel, non-invasive method to derive indices 

of cerebrovascular health using diffuse optical imaging. This work was based on a body of research in 

humans and animals demonstrating that optical measures are sensitive to vascular phenomena due to 

changes in near-infrared (NIR) light absorption during arterial blood pulsation, as a function of the 

cardiac cycle. In the periphery, information about heart rate and oxygen saturation can be extracted 

from photoplethysmographic waveforms recorded by pulse oximeters [24]. For example, recording from 

neonatal pig brains, Themelis and colleagues [25] found that near-infrared spectroscopic (NIRS) methods 

for quantifying cerebral blood flow hemodynamics were highly correlated with well-established laser-

Doppler flowmetry methods [26]. In clinical application, Ebihara and colleagues [27] analyzed the pulse 
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power spectrum using NIRS in patients with cerebral ischemia and found that pulse transmission in the 

ischemic cerebral hemisphere was smaller compared to the contralateral side, reflecting the reduced 

cerebral blood flow associated with ischemia. 

Fabiani and colleagues [23] relied on diffuse optical methods and an extended recording 

montage to extract cerebral pulsatile waveforms from the adult human brain in a sample of middle age 

and older adults. From these waveforms, they quantified three indices reflective of different aspects of 

cerebrovascular health, namely, pulse amplitude, arterial compliance and pulse transit time. Pulse 

amplitude was conceptualized as a proxy measure of pulse pressure (systolic blood pressure minus 

diastolic blood pressure) in cerebral arteries, and this claim was supported by data showing that the two 

were highly correlated. Pulse amplitude measures were also positively correlated with age (as arterial 

stiffening induces an increase in the difference between systolic and diastolic pressure), but were not 

associated with eCRF, blood flow measured with arterial spin labeling (ASL; [28]), brain anatomy or 

cognitive function (as measured by neuropsychological tests). 

Additional recent evidence from our laboratory supports the idea that optical pulse amplitude 

measures the temporary distension of the cerebral arteries caused by the movement of the pulse 

pressure wave across the vascular system. Tan and et al. [29] found that pulse amplitude measures can 

track both generalized and localized changes in cerebrovascular tone (vasodilation and vasoconstriction) 

as a function of voluntary breath-holding and a Sternberg memory task in a group of middle age and 

older adults. Further, estimates of cerebrovascular reactivity (CVR) derived from the pulse amplitude 

measures during the breath-holding task were also found to be negatively associated with age, and 

positively associated with performance on the modified mini-mental status examination (mMMSE; [30]). 

These data 

suggest that the utility of cerebral pulse amplitude goes beyond simply indexing pulse pressure in the 

brain, but also provides information about the cerebrovascular system that is related to aging and CVR. 
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Fabiani and colleagues [23] also found that arterial compliance, measured with diffuse optical 

methods, was negatively associated with age and positively associated with eCRF, brain volumes (i.e., 

overall preservation of white and gray matter volumes) and cognitive flexibility. In addition, regional 

pulse transit time, also measured with diffuse optical methods, was associated with performance on 

distinct cognitive tasks. Specifically, they found evidence for a double dissociation, whereby slower pulse 

transit time (indicating higher arterial elasticity) in the left middle cerebral artery (IMCA, feeding Broca’s 

area) was associated with higher performance on a verbal fluency task but not with performance in the 

operation span task (OSPAN, a test that provides an estimate of working memory capacity; [31]). The 

opposite relationship was found with pulse transit time in the superior portion of the precentral artery 

bilaterally (sPCA, feeding dorsolateral prefrontal cortex). The authors argued that this double 

dissociation reflects the functional specialization of the cortical areas fed by these two arteries. They 

concluded that these indices of cerebrovascular health provide complementary information about the 

arterial system to that obtained with other approaches such as magnetic resonance imaging (MRI) and 

Doppler ultrasound. 

Fabiani and colleagues [23] also highlighted some limitations and areas of possible future 

improvements. Specifically, they suggested that the relatively low spatial resolution of the method could 

be improved by using a denser array of optodes. In addition, the utility of extracting regional estimates 

of arterial compliance on cognition remained largely unknown, even though the finding that arterial 

compliance was associated with pulse transit time is suggestive of a possible link to cognition. 

The purpose of the current study is therefore two-fold; first, we seek to replicate and extend the 

initial findings (which were obtained in a sample of older adults aged 55 - 87 years) to an evenly 

distributed sample spanning a much broader age range (18 – 75 years). This will allow us to investigate 

how global measures of cerebrovascular health relate to eCRF, global brain volumetric indices and 

cognitive function, not only in older adults but also over the adult life span starting in the late teens. 
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Second, we increased the density of the optical recording montage from 384 to 1536 channels and 

increased recording time from 72 to 360 seconds, in order to increase the spatial resolution and 

reliability of the data. This allows us to not only replicate the previous findings but also to better explore 

relationships between regional measures of arterial compliance, age, and cognitive function. 

Functional MRI studies have shown that both prefrontal and parietal regions are associated with 

performance on working memory tasks [32-37]. Other studies have shown that frontal and parietal 

regions are more prone to age-related volumetric losses than other regions such as the occipital cortex 

[38-39], that reductions in frontal and parietal lobe perfusion are associated with poorer cognitive 

performance [40-41] and that higher levels of CRF are associated with greater oxygenation in prefrontal 

regions [42] and more preserved prefrontal and parietal gray matter volumes [43-45]. Motivated by this 

fMRI- and sMRI-based evidence and by our initial findings that arterial compliance is associated with 

pulse transit time [23], here we investigated whether regional measures of arterial compliance in the 

frontoparietal cortex (Brodmann areas 9 and 7) would be more associated with performance on the 

OSPAN working memory task [31] compared to a global estimate of cerebral arterial compliance. 

Further, we also expected to find strong age-related reductions in arterial compliance in these regions 

but not in other regions such as visual cortex. Finally, we expected the association between eCRF and 

arterial 

compliance to be more evident for frontoparietal regions than for visual cortex. 

Taken together, the results presented in this paper should provide support for the utility of 

these newly developed optical cerebrovascular indices of arterial health during the adult lifespan, show 

their reliability, and validate their predictive value with respect to indices of volumetric and cognitive 

health. Finally, they should also show the utility of deriving regional measures of cerebrovascular health 

in addition to global cerebral and systemic measures. 
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Methods 

Participants 

Forty-eight adults (age range = 18-75 years, mean age = 47.8, 25 females) were recruited 

through advertisements in local newspapers, campus-wide emails and postings at area gyms, retirement 

homes and community centers in the Urbana-Champaign community. In order to ensure an even spread 

across ages, the age range was divided into six decades (18-27, 28-37, 38-47, 48-57, 58-67, and 68-77), 

and 8 subjects were recruited for each decade.  

However, for the majority of analyses presented in this paper, age (in years) was used as a 

continuous variable. One subject (from an intermediate age group) had to be removed from all analyses 

involving pulse measures because we were unable to extract a suitable pulse trace from the optical 

data, possibly due to excessive movement, leaving a final sample count of 47 subjects. The demographic 

characteristics of the participants are summarized in Table 3.1. In this table, information is provided 

about the overall sample, as well as about three broad age groups (younger, middle-aged and older 

adults, each comprising two of the original decades used to generate the overall sample). This 

classification is provided to show that important variables such as years of education and IQ were 

consistent across the entire sample. 

Table 3.1. Demographic characteristics of the participants 

Variable All (N=47) 
Mean (SD) 

Young (N=16) 
Mean (SD) 

Middle (N=15) 
Mean (SD) 

Old (N=16) 
Mean (SD) 

Age (years) 47.6 (17.5) 27.2 (6.1) 48.8 (6.2) 66.9 (5.0) 
Education (years) 17.3 (2.2) 16.4 (2.3) 16.9 (1.8) 18.5 (2.2) 
mMMSE  55.8 (1.2) 55.4 (1.2) 56.1 (1.1) 55.8 (1.3) 
Shipley’s Vocabulary Test 34.7 (3.7) 33.4 (2.7) 33.5 (4.1) 37.1 (3.0) 
Beck’s Depression Index 2.2 (2.5) 2.6 (2.2) 3.0 (3.0) 1.2 (2.1) 
K-BIT2 (IQ) 116.4 (10.2) 116.3 (7.8) 113.1 (12.0) 119.6 (10.2) 
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Screening procedures 

Participants were screened based on a number of health and cognitive criteria. Subjects with 

serious or chronic medical conditions or a history of major neurological or psychiatric disease or drug 

abuse were excluded from this study. Additionally, to be included in the study subjects had to score at 

least 51 on the mMMSE [30] and no more than 14 on the Beck’s Depression Inventory [46]. Subjects 

who smoked more than half a pack of cigarettes and/or consumed more than two alcoholic drinks per 

day were also excluded. Three participants reported taking blood pressure medications (diuretics) and 2 

others reported taking statins due to high cholesterol, which may indirectly affect blood pressure. All 

participants were right-handed (as assessed by the Edinburgh Handedness Inventory [47]), had normal 

or corrected-to normal vision, and were native speakers of English. All procedures described in this 

report were approved by the University of Illinois Institutional Review Board. Prior to participation, all 

participants signed informed consent documents. 

Assessment of cognitive function 

A battery of neuropsychological tests was administered to all participants, which included the 

Kaufmann Brief Intelligence Test Second Edition (K-BIT2 [48]) and the Raven’s progressive matrices [49] 

to estimate crystallized and fluid IQ, the vocabulary sub-test of the Shipley-Institute of Living Scale [50] 

to measure vocabulary, the Wisconsin Card Sorting Test (WCST [51-52]), the Controlled Oral Word 

Association sub-test of the Multilingual Aphasia Examination (a measure of verbal fluency using the 

letters CFL [53]), the OSPAN task [32], the Trail Making Tests A and B [54], to measure working memory 

and executive function, and the Logical Memory I and II tasks from the Wechsler Memory Scale – Fourth 

Edition (WMS–IV [55]) to measure episodic memory. In addition, scores for forward and backward digit 

span were derived from the mMMSE. 
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Assessment of cardiorespiratory fitness 

We estimated CRF with an equation that utilizes easily acquired parameters that are highly 

predictive of VO2max (r ≈ .7 [56-57]). This measure is obtained from a linear combination of weighted 

variables, including gender, age, body mass index (BMI), resting heart rate, and a physical activity score, 

plus a numerical constant. This eCRF index, expressed in metabolic equivalents, was first developed in a 

large sample of men and women (N > 40,000) aged 20 to 70 years, which corresponds well to the age 

range of our participants. The validity of these CRF estimates has also been validated in samples of older 

adults [58-59]. In this study gender was partialed out from analyses involving eCRF to control for 

systematic differences in CRF between males and females, which are known to be present even when 

using VO2max to assess fitness [56], and would not be expected to reflect real variations in fitness or 

vascular health. 

Experimental Procedures and Types of Measures 

The data presented here were collected as a part of a much larger, multi-session project 

intended to investigate brain function using diffuse optical and magnetic resonance imaging (MRI) 

methods. Session 1 included neuropsychological assessments and familiarization to MRI scanning within 

a mock magnet. Session 2 included the collection of structural MRI data (used for anatomical co-

registration and brain volume estimations). Session 3 included collection of optical imaging data from 

the visual cortex only, which are not included in this study. In session 4, we collected the optical imaging 

data and an electrophysiological measurement of the heartbeat for time-locking the arterial pulse. 

These are the data presented here. Participants’ blood pressure was taken during sessions 2-4 and 

averaged to provide more stable estimates of their systolic and diastolic blood pressure. 

Electrocardiogram Recording and Analysis 

Lead I of the electrocardiogram (EKG, left wrist referenced to right wrist, impedance below 20 

kOhm) was recorded with a Brain-Vision™ recorder and a Brain-Vision professional BrainAmp™ 
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integrated amplifier system (Brain Products GmbH, Germany) with a sampling rate of 1000 Hz. The EKG 

data were extracted using EEGLab [60] and the optical pulse data were time-locked to the R-wave of the 

EKG. Each R-wave peak was found using an algorithm running on MATLAB R2014b (MathWorks, Natick, 

MA) that searches for peaks exceeding a certain voltage threshold (scaled for each subject) and 

discarding any points that fall outside the normal range of interbeat intervals. Manual visual inspection 

was also performed to ensure that any misidentifications of R-wave peak were discarded. 

MRI acquisition and processing 

Structural magnetic resonance images (sMRI) were collected for each participant using a 3T 

Siemens Trio full body scanner. A high resolution, 3D MPRAGE protocol was used, with flip angle = 9◦, TE 

= 2.32 ms, TR = 1900 ms, and inversion time = 900 ms. MR slices were obtained in the sagittal plane (192 

slices, .9 mm slice thickness, voxel size .9 x .9 x .9 mm) having matrix dimensions of 192 x 256 x 256 (in-

plane interpolated at acquisition to 192 x 512 x 512) and field of view of 172.8 x 230 x 230 mm. All 

images were visually examined by multiple researchers and no significant defects or distortions were 

discovered. Cortical reconstruction and volumetric segmentation were performed with the FreeSurfer© 

5.3 image analysis suite  (http://surfer.nmr.mgh.harvard.edu/; e.g., [61-65]. FreeSurfer morphometric 

procedures have been demonstrated to show good test-retest reliability across scanner manufacturers 

and across field strengths [65]. 

Optical Recording and Analysis 

Recording. Optical data were recorded with six integrated frequency domain oxymeters 

(Imagent; ISS Inc., Champaign, IL). Data were collected from 24 detectors, each measuring light emitted 

by 16 time-multiplexed sources (384 channels), arranged in 4 different optical montages designed to 

cover the majority of the head. Sources and detectors were held flush to the participants’ scalp using a 

custom-built, soft foam, adjustable cap (Figure 3.1a), giving rise to a total of 1536 channels (i.e., source-

detector pairings; Figure 3.1b). This represents a fourfold increase in channels compared to what was 
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used by Fabiani et al. [23]. Laser diodes generated light at 830 and 690 nm (max amplitude: 10 mW, 

mean amplitude after multiplexing: 1 mW), modulated at 110 MHz. The light from the diodes was 

transmitted to the surface of the head by optic fibers (diameter = 400 μm; one fiber per emitter, with 

separate fibers carrying light at each of the two wavelengths, coupled at each location). Light was 

collected from the head using detector fiber bundles (diameter = 3 mm) connected to photomultiplier 

tubes (PMTs) fed with a current modulated at 110.003125 MHz, generating a 3.125 kHz cross-

correlation frequency. A Fast Fourier Transform of the PMT output data was used to calculate DC 

(average) intensity, AC (amplitude), and relative phase, or photon, delay (in picoseconds). The analyses 

reported here are based on the AC intensity values. The arterial pulse is the largest phenomenon that 

can be measured using AC intensity, being easily visible on single trials [23]. Optical parameters were 

sampled at 39.0625 Hz (25.6 ms per sampling point). 

 

Figure 3.1. (a) Photograph of the soft foam, adjustable optical recording cap used in the study. Detectors 
were fitted into the larger tubes while sources were fitted into the smaller tubes. The cap 
was further secured to the subject’s head by tightening an elastic band around its 
circumference of the cap and through the usage of a custom-built chin strap. (b) Locations of 
sources (black) and detectors (red) digitized in one representative participant, and plotted 
over the corresponding surface-rendered structural MRI (left, top and back views). 

 
Co-registration with structural MRI. Using the nasion and preauricular points as references, the 

locations of individual optical sources and detectors were digitized using a Polhemus “3Space” FASTRAK 
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3D digitizer (Polhemus, Colchester, VT). T1-weighted structural magnetic resonance images were 

obtained for each subject. The Polhemus digitization points were then co-registered with the MR images 

first using the three fiducial markers and then surface fitting the entire set of digitized points to the 

estimated scalp surface based on a Levenberg-Marquardt algorithm (least-squares fit) using in-house 

software (Optical Coregistration Package, OCP [66]). Co-registration using this procedure has been 

shown to result in errors of less than 4 mm [66-67]. Figure 1b shows the digitized recording montage of 

one representative participant superimposed on the corresponding structural MRI. Measurement of 

pulse parameters.  

Measurements were taken at rest for 8 blocks with each block lasting 6 minutes. Each of the 4 

montages was recorded for a total of 2 blocks (12 minutes total recording time for each montage), with 

the sequence of 4 montages counterbalanced across subjects within each age sextile. The optical data 

were then normalized and a band-pass filter between 0.5-5Hz was applied. Pulse waveforms were then 

extracted from each channel by averaging AC light intensity, time-locked to the peak of the EKG R wave. 

Pulse epochs occurring during all blocks were then averaged together and baselined to the first peak 

diastole period occurring between 128-256 ms. In-house software, “Opt-3d” [68], was used to combine 

channels whose mean diffusion paths (modeled as a curved ellipsoid) intersected for a given brain 

volume [69]. Only source-detector distances between 2 and 6 cm were used in the analysis. Similar to 

Fabiani et al. [23], pulse amplitude was defined as the mean AC amplitude in an interval between 384 

and 538 ms after R wave onset, an interval during which the peak systolic phase occurred in all subjects 

and for all brain regions. The arterial compliance measure was computed by calculating the area under 

the pulse waveform between the peak systole and the peak diastole, normalized by both time and 

amplitude and subtracted by a constant value of 0.5 (see [23]). Both pulse amplitude and arterial 

compliance data were extracted from an ROI comprising voxels covering most of the axial cortical 

surface (Talairach coordinates; X-axis: -45 to 45, Y-axis: -80 to 50). The denser optical array available in 
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this study provides a better signal-to-noise ratio with a two-point spatial resolution of <24 mm up to a 

depth of 30 mm [70]. It is now possible to compute arterial compliance on pulse waveforms in individual 

voxels and then average them, as opposed to computing it on a single waveform averaged over the axial 

surface (as it was done by [23]). 

The global measurements of pulse amplitude and arterial compliance obtained in this manner 

were used for all analyses except when investigating regional effects of arterial compliance on OSPAN, 

where we extracted arterial compliance measurements from ROIs based on Brodmann area boundaries 

(as defined by [71-72]). For the reliability analyses, pulse amplitude and arterial compliance measures 

were extracted and compared between the block 1 and block 2 data that were collected for each of the 

4 montages. For all other analyses, blocks were collapsed together. 

General Analytic Approach 

The analyses presented in this paper are designed to examine changes in cerebral pulse 

amplitude and arterial compliance as a function of age, first at the global level and then in some 

selected regions (regional analysis). Age was treated as a continuous variable for all statistical analyses. 

However, to create figures facilitating comparisons across age groups (Figure 3.1b), and for mapping 

age-related differences in pulse parameters on the brain (Figure 3.4b), subjects were divided into three 

age groups (as described in Table 1). Given that the goals of this paper were to replicate and extend the 

findings reported by Fabiani et al. [23] and to investigate known brain regions involved in the OSPAN 

task, one-tailed tests were used based on our a-priori directional hypotheses. 

Results 

Effects of Age and eCRF 

Here we summarize data indicating that our sample exhibits the typical relationships between 

age, eCRF, cognitive function and neuroanatomy. As expected, age was negatively correlated with eCRF 

after partialing out gender, r(44) = -.74, p < .001. Controlling for estimated total intracranial volume 
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(eTIV), age also showed significant negative correlations with global brain volumetric measures, cortical 

white matter (r(44) = -.43, p = .002), cortical gray matter (r(44) = -.82, p < .001) and subcortical gray 

matter (r(44) = -.76, p < .001). Correlations with eCRF were similar, with higher eCRF being associated 

with greater cortical white matter (r(43) = .29, p = .026), cortical gray matter (r(43) = .63, p < .001) and 

subcortical gray matter (r(43) = .56, p < .001), controlling for both gender and eTIV. These results are in 

line (with respect to both magnitude and direction) with those reported by Fabiani et al. [23] and others 

(see [73] for a review). These results are also in agreement with findings showing that higher eCRF is 

associated with reduced atrophy in brain volumetric measures (e.g., [44-45], [74]; see [75] for a 

discussion of the overlap between the effects of age and fitness on regional brain anatomy). 

Reliability of Pulse Parameters 

We first set out to assess the reliability of pulse amplitude and arterial compliance measures by 

comparing the measures obtained in blocks 1 and 2, extracted from all 4 montages. Pulse amplitude 

measurements were highly reliable from block 1 to block 2, r(45) = .99, p < .001 (Figure 3.2a). Data from 

one additional subject were removed from the arterial compliance reliability analyses because they 

were statistical outliers, Z score > |2.5|. Arterial compliance was also highly reliable across blocks, r(44) 

= .69, p < .001 (see Figure 3.2b). This replicates our initial findings [23] that both measures show good 

reliability, with pulse amplitude being more stable than arterial compliance. The reliability of arterial 

compliance was higher in the current study, r(44) = .69 compared to our previous report, r(51) = .56, 

which may be due to a number of factors, including (a) the use of a denser optical array; (b) the increase 

in recording time from 72 to 360 s; and (3) the computation of arterial compliance on waveforms at the 

voxel level before averaging. For all other analyses, data from all blocks were combined.  
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Figure 3.2. (a) Correlation between block 1 and 2 for pulse amplitude (expressed in percent change in 
light intensity). (b) Correlation between block 1 and 2 for arterial compliance (compliance is a 
dimensionless measure indicating the change of the shape of the diastolic section of the 
pulse from a straight line, with 0 indicating a straight, oblique line, and 0.5 indicating a flat 
line lasting the whole duration of the diastole followed by a vertical ascent). 

 

Relationship between cerebral pulse amplitude and other variables 

Of the 47 subjects, two were removed from the pulse amplitude analysis as they were outliers 

on the pulse amplitude measure (Z score > |2.5|) after combining data from all blocks together. 

Cerebral pulse amplitude was found to be positively correlated with pulse pressure measured at the arm 

(r(43) = .36, p = .008). As seen in Figure 3.3a, pulse amplitude was also significantly correlated with age, 

r(43) = .31, p = .019). This figure suggests the presence of increased pulse amplitude variability with age. 

In order to test whether this was indeed the case, we computed squared standardized residuals after 

regressing pulse amplitude on age. A correlation of these residuals with age confirmed that older age 

was associated with greater variance in pulse amplitude (r(43) = .42, p = .002). We further investigated 

whether this increase in variation with age was mediated by eCRF. After regressing age and gender from 

eCRF for the analysis, a 5000 bootstrap samples mediation analysis did not reveal a significant mediation 

effect of eCRF, 95% CI [-.0579, .0180]. Gold standard quantification of cardiorespiratory fitness using 
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VO2max measures may allow us to better explain the greater variation in pulse amplitude for older 

subjects in the future. Increase variation of pulse amplitude with age may also reflect the use of blood 

pressure medication in 3 older subjects. This may also reduce the correlations between pulse amplitude 

measures and other variables in the experiment. Figure 3.3b shows the cerebral pulse waveforms after 

dividing subjects into three age groups (see Table 3.1). The waveforms show a graded increase in pulse 

amplitude with age. 

 

Figure 3.3 (a) Scatter plot showing that older age is associated with larger pulse amplitude (expressed as 
percent change in light intensity). (b) Average pulse waveforms split into age tertiles. The 
transparent gray bar indicates the time interval in which pulse amplitude values were 
extracted and averaged. 

 

After controlling for gender, higher eCRF was not associated with lower pulse amplitude (r(42) = 

-.24, p = .056). Although this relationship was also not found by Fabiani et al. [23], the effect size in the 

current study was stronger in the predicted direction (r(42) = -.24 compared to r(50) = .083), which 

suggests that this association may be small but could become significant with greater sample size. 

Similar to Fabiani et al. [23], higher pulse amplitude was not associated with lower cortical white matter 

volume (r(42) = -.21, p = .091). However, we did find that higher pulse amplitude was associated with 

lower cortical gray matter volume (r(42) = -.33, p = .015) and subcortical gray matter volume (r(42) = -
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.28, p = .035), controlling for eTIV. Similar to what was reported by Fabiani et al. [23], smaller pulse 

amplitude was not correlated with better performance on any neuropsychological tests. 

Relationship between cerebral arterial compliance and other variables 

Out of the sample of 47 subjects, one was removed from the arterial compliance analysis due to 

being a statistical outlier, Z score > |2.5|. Figure 3.4a shows that cerebral arterial compliance declines 

with age (r(44) = -.43, p < .001), replicating and extending previous findings. In addition, regional 

variations in arterial compliance are shown in Figure 3.4b for each of the three age groups. Unlike the 

pulse amplitude parameter, the variability in arterial compliance did not increase with age (r(44) = -.11, 

p = .24). This may reflect the fact that blood pressure medications (which may alter pulse amplitude 

estimates) may have little direct influence on arterial stiffness and arterial compliance (although they 

might produce a long term preventative effect). Greater eCRF was associated with higher arterial 

compliance (r(43) = .32, p = .017), controlling for gender. 

 

Figure 3.4 (a) Older age is associated with lower arterial compliance (i.e., greater arterial stiffness). b) 
Arterial compliance maps derived from age tertiles. Compared to younger subjects, older 
subjects appear to show poorer arterial compliance (red regions), especially in prefrontal 
areas. 
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Figure 3.5 shows 2 younger and 2 older representative subjects varying in fitness levels. In 

general, subjects who are younger and relatively fitter within their age group have higher arterial 

compliance. Better arterial compliance was also positively correlated with cortical white matter volume 

(r(43) = .29, p = .028), cortical gray matter (r(43) = .35, p = .010) and subcortical gray matter (r(43) = .37, 

p = .007), controlling for eTIV. Similar to data presented in Fabiani et al. [23], arterial compliance was 

also not correlated with pulse amplitude, (r(42) = -.047, p = .76), suggesting again that these are 

separate indices of brain arterial function. 

 

Figure 3.5. Maps of the arterial compliance estimate in four representative subjects varying in age and 
eCRF. In general, subjects who are younger and relatively fitter show greater arterial 
compliance (blue regions). 

 
Two subjects did not complete the WCST. Higher global arterial compliance was associated with 

many components of the WCST, including total number of trials (r(42) = .27, p = .037), number of errors 

(r(42) = −.33, p = .014), number of perseverative responses (r(42) = −.28, p = .032), number of 

perseverative errors (r(42) = −.31, p = .021) and number of non-perseverative errors (r(42) = −.32, p = 
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.016), replicating previous findings that indicate that lower arterial compliance is associated with poorer 

cognitive flexibility. 

Relationship between regional arterial compliance and other variables 

One of the main advantages of these new optical methods is their potential to investigate not 

only the global effects of changes in cerebrovascular health, but also regional, localized effects that are 

not easily investigated with other means. Here we focused on specific regions that are known to support 

working memory function (for a review see [76]) and hypothesized that greater arterial compliance in 

these regions would be predictive of better performance in the OSPAN task. We extracted arterial 

compliance measures from frontoparietal regions (BA 9 and BA 7) and averaged them, and found the 

predicted association (r(44) = .25, p = .045, see Figure 3.6a). This relationship was not found when 

correlating OSPAN performance with global arterial compliance (r(44) = .18, p = .11). These data 

therefore provide evidence suggesting that there is added value in extracting regional measures of 

arterial compliance, permitting to examine relationships that might be washed out when global 

measures of arterial compliance are used. Further, as hypothesized, we found that arterial compliance in 

frontoparietal regions (BA 9 and BA 7) decreased with age (r(44) = -.45, p < .001) and increased with 

eCRF (r(43) = .38, p = .004) while arterial compliance in the visual cortex (BA 17 and BA 18) was not 

associated with age (r(44) = -.17, p = .12) or eCRF (r(43) = .13, p = .19), controlling for gender (Figs 3.6b 

and 3.6c). Taken together these results suggest that, similar to regional variations in age-related brain 

atrophy [38-39], hypoperfusion [40-41] and the neuroprotective benefits of fitness (see [44] for a 

review), reductions in arterial compliance in the brain also do not occur at similar rates in all regions, 

and that regional reductions in arterial compliance may have differential impact on cognition depending 

on where it occurs. 
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Figure 3.6. (a) Greater regional arterial compliance in frontoparietal regions (BA7 and BA9) was 
associated with performance on the OSPAN task. (b) Lower regional arterial compliance in 
frontoparietal regions (BA7 and BA9) was also associated with older age. c) Arterial 
compliance in the visual cortex (BA17 and BA18) was not associated with age. 

 
Discussion 

The results presented in the current paper represent evidence supporting the novel use of 

diffuse optical imaging methods to study cerebrovascular health and its functional consequences on 

cognitive decline over the course of life span development and aging. The importance of these findings 
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is underscored by growing evidence showing that disruptions in the microcirculatory processes in the 

brain’s vasculature are closely linked to neurodegeneration in cognitive and brain aging [77-78]. In 

addition, a large scale study involving over 6000 autopsy reports found that patients with Alzheimer’s 

disease had a significantly higher association with cerebrovascular disease and vascular pathology than 

other neurodegenerative diseases, suggesting that targeting cerebrovascular pathology for early 

intervention may help prevent or slow down the clinical manifestations of Alzheimer’s disease [79]. 

Within this larger context, the results from the current study support the critical role of cerebrovascular 

health in brain and cognitive decline in the normal aging process. We have largely replicated the initial 

findings reported by Fabiani et al. [23] in a sample including only older adults, and extended them to a 

wider age range including much of the adult lifespan (18- 75). 

For pulse amplitude, we replicated the positive correlations with age and pulse pressure 

reported by and colleagues [23]. We did not find any pulse amplitude associations with cortical white 

matter volume, eCRF and cognitive function. However, we found that larger pulse was associated with 

reduced cortical and subcortical gray matter volumes. This new evidence of associations between pulse 

amplitude and gray matter volume may be in part driven by the increase in signal-to-noise ratio (SNR) 

and the wider age-range available in the current study. These results are consistent with our original 

interpretation that, similarly to systemic pulse pressure measurements, pulse amplitude measures 

reflect both the long-term properties of the cerebrovascular system and also other factors such as the 

current state of the cerebrovascular tone (see also [29]). 

For arterial compliance, we replicated our initial findings that greater arterial compliance is 

associated with younger age and higher eCRF, is predictive of global white and gray matter volume, as 

well as cognitive flexibility (as measured by the WCST). Many of the correlations between pulse 

amplitude and arterial compliance with age, eCRF, anatomy and cognitive function were very similar 

across both studies. These results suggest that we can reliably measure pulse amplitude and arterial 
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compliance both within and across studies. Maps of arterial compliance in the three age groups also 

showed clear differences, with older adults showing less compliance, especially in prefrontal regions. 

We empirically tested the functional consequences of the differences shown by the arterial compliance 

maps and found that arterial compliance in frontoparietal regions was associated with working memory 

performance indexed by the OSPAN task. Although global measures of arterial compliance can provide a 

quick overview of the general state of cerebral arterial health, our results suggest that regional arterial 

compliance may be more useful for investigating age and fitness-related declines in specific cognitive 

domains. 

Other studies have used methodologies such as transcranial Doppler (TCD) ultrasound (see [79] 

for a review) and ASL [81-82] to investigate the relationship between cerebrovascular health and 

cognition. However, these measures lack the level of sensitivity to regional specificity afforded by diffuse 

optical imaging. TCD ultrasound relies on measuring blood flow velocity as an index of cerebral arterial 

compliance but is limited to the insonation of a few large arteries such as the middle cerebral artery 

(MCA). Likewise, although absolute measurements of cerebral blood flow using ASL can be derived, they 

are still limited by their intrinsically low SNR [83], which restricts ASL utility for examining regional 

relationships with domain-specific cognitive function associated with the OPSAN task and others.  

The regional associations of arterial compliance and working memory performance index by the 

OSPAN task may provide an explanation for ceiling effects seen in blood-oxygen level dependent (BOLD) 

functional MRI studies on working memory. Schneider-Garces et al. [34] suggested that ceiling effects 

seen in both regional BOLD activity and performance at high memory loads may be due to either a 

limitation in working memory capacity (“cognitive” explanation) or a limitation in vascular supply 

(“energetic explanation”). Variation in regional compliance may provide some support for the “energetic 

explanation”. In other words, changes in regional neuronal activity as a function of cognitive load and its 

subsequent hemodynamic consequences may be both mediated by the physiological compliance of the 
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corresponding regional arterial supply. Future studies using concurrent fMRI and diffusive optical 

imaging may be able to further test this hypothesis. 

In the current study we did not find an association between pulse amplitude and arterial 

compliance. This is consistent with data showing that systemic arterial compliance quantified using PWV 

measures is an independent predictor of vascular pathology and provides prognostic value over pulse 

pressure alone [84]. Cruickshank et al. [85] suggests that poor aortic arterial compliance reflects an 

integrated index of vascular damage over time, resulting in generalized “wear and tear” from repeated 

distension and recoil of blood vessels, and that multiple extraneous factors also contribute, such as 

smoking, lipidic dysfunction and glucose metabolism. 

These results align with studies showing not only that arterial aging occurs early in life [15], but 

also that low physical activity in adolescents and young adults is independently associated with poorer 

arterial compliance [86]. In combination with studies showing that even modest increases in moderate-

to-vigorous physical activity can improve systemic arterial stiffness measured using brachial-ankle pulse 

wave velocity (baPWV) in young adults [87], these studies provide converging evidence that although 

vascular risk factors accumulate from a young age, they are also amenable to change with adequate 

increase in physical activity. Although our results are consistent with these interpretations, whether 

increases in physical activity level can affect not only systemic arterial stiffness but also regional cerebral 

vascular stiffness, and whether it results in any improvement in cognitive function remain to be seen. 

Future studies should focus on using longitudinal intervention designs to elucidate these relationships. 

Limitations of the current study include (a) the limited penetration of diffuse optical imaging, 

which precludes the examination of deep arteries and (b) the relatively low spatial resolution of the 

method. We have addressed the issue of low spatial resolution by using a much denser optical array in 

the current study, but this comes at the cost of an extended optical recording session which may limit its 

use in clinical settings. However, given that the associations between the pulse parameters and other 
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important variables are very similar in both the initial study and the current study, it may be the case 

that a relatively sparse recording array is sufficient to see these effects. 

In summary, the results of the current study replicated and extended our initial findings that 

noninvasive measures derived from diffuse optical imaging can index cerebrovascular health. This is also 

the first study demonstrating the utility of regional arterial compliance measures in predicting working 

memory performance measured by the OSPAN task. This cumulative evidence supports the utility of 

optical imaging as a complementary method for assessing the status of the brain’s arterial system and 

its consequences on cognition function and brain anatomy, in conjunction with other traditional 

methods such as MRI and Doppler ultrasound. 
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CHAPTER 4 

ASSOCIATIONS OF OPTICAL ARTERIAL COMPLIANCE WITH  

T1 WHITE MATTER LESION VOLUME AND WHITE MATTER MICROSTRUCTURE IN COGNITIVE AGING 

 The process of normal aging is associated with decreases in cognitive functions (Park & Reuter-

Lorenz, 2009; Salthouse, 2010). These age-related declines in cognitive function have been found to be 

associated with degradation in white matter structure in the form of greater white matter lesion burden 

manifested as white matter signal abnormalities (WMSAs) appearing as hypointense on T1-weighted 

images or hyperintense on T2-weighted images (Brickman et al, 2011; Debette & Markus, 2010; Leritz et 

al., 2014; Wardlaw, 2015), and also changes in white matter microstructural properties, manifested as a 

reduction in measures from diffusion tensor imaging (DTI) such as fractional anisotropy (FA) or an 

increase in mean diffusivity (MD; Bennett & Madden, 2014; Burzynska et al., 2010). 

Although the etiology underlying both greater WMSA lesion volume and alterations to normal 

appearing white matter (NAWM) microstructure is thought to be similar, there is also growing evidence 

that overt WMSA volume alone do not completely explain the association between older age and 

decreases in white matter microstructure tissue integrity (Leritz et al., 2014; Salat et al., 2014). These 

studies suggest that although the mechanism by which WMSAs and DTI measures are associated with 

cognitive decline in aging overlap to some extent, they are not equivalent. Greater WMSAs is due mostly 

to chronic ischemia associated with cerebral small vessel disease, as evidenced from both clinical and 

pathophysiological studies (Pantoni & Simons, 2013; Prins & Scheltens, 2015). On the other hand, FA 

and MD measures reflect mostly changes in multiple tissue properties such as axonal density and 

ordering, degree of myelination, membrane permeability and loss of oligodendrocytes, among others 

(Jones, Knösche & Turner, 2013; Stebbin & Murhy, 2009).  

These findings are consistent with the theory that there are two separable vascular and 

neurodegenerative pathways in clinical diseases associated with cognitive decline such as dementia 
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(Kalaria & Ihara, 2013). Although both WMSAs and changes in white matter microstructure are 

associated with demyelination, studies comparing demyelination in vascular dementia (VaD) and 

Alzhiemer’s disease (AD) suggest again that the mechanisms involved are partially different, with white 

matter tissue damage originating from hypoxic-ischemic conditions in VaD but secondary to axonal 

degeneration in AD (Ihara et al., 2010).  

Studies supporting this relationship between cerebrovascular health and WMSA volume have 

found cross-sectional evidence that higher systemic blood pressure is associated with greater WMSA 

volume in older adults (Kennedy and Raz, 2009; Leritz et al., 2010; Salat et al., 2012). However, although 

accumulated evidence does indicate that poor cerebrovascular health results in greater WMSAs, the 

exact mechanism by which vascular pathology contributes to the changes that we see in cerebral white 

matter remains unknown. In addition, systemic measures of blood pressure only serve as an indirect 

proxy measure for cerebral vascular risk, as opposed to a direct measure of cerebral vascular health 

(Salat, 2014). Studies attempting to address this shortcoming have relied on extracting measurements of 

cerebral blood flow (CBF) using arterial spin labelling techniques (ASL) as a marker of cerebral vascular 

health. In general, they find that participants with greater WMSAs have lower CBF (Alosco et al., 2013; 

Fazekas et al., 1988; Hatazawa, Shimosegawa, Satoh, Toyoshima, & Okudera; 1997). These reductions in 

CBF and cerebrovascular reactivity have been also found to be localized within the WMSAs (Brickman at 

al., 2009; Marstrand et al., 2002). More recent attempts to extract pulsatile components using dynamic 

ASL as an index of vascular compliance (VC) have been developed but it is unknown if this marker of 

cerebrovascular health is associated with WMSA volume or dementia (Yan et al., 2016). 

 Fabiani et al. (2014) recently developed a novel way of directly estimating cerebral vascular 

health non-invasively with diffusive optical imaging in a group of older adults. The measurement of 

cerebral arterial compliance is of particular relevance to the current study. Fabiani et al (2014) found 

that greater arterial compliance was negatively associated with age, positively with CRF, global anatomy 
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measures (e.g. white and gray matter volume, hippocampal volume), and cognitive flexibility measured 

with the Wisconsin card sorting task (WCST). These results were replicated in a group of younger and 

older adults (Tan et al., under review, Chapter 2). The current study therefore aims to investigate and 

clarify the cerebrovascular mechanism by which greater age is associated with poorer cognitive 

function. Specifically, we hypothesized that given that cerebral arterial compliance is a measure of 

cerebrovascular health, it should predict WMSA volume over and above age and systemic pulse 

pressure. We also tested a mediation model to investigate whether the association between age and 

cognitive decline is mediated by arterial compliance and WMSA volume sequentially. The mediation 

model is motivated from accumulated evidence suggesting that WMSAs are a result of poor 

cerebrovascular health (Prins & Scheltens, 2015). Mediation analysis is particularly useful in this context 

as they allow us to test proposed mechanisms by which one factor influences another (Hayes, 2013). 

 In addition, we would expect that the associations between better arterial compliance and 

measurements of NAWM microstructure such as greater FA and lower MD to be smaller in comparison 

with WMSA volume. Also, we do not expect a sequential mediation effect of arterial compliance 

followed by FA or MD on the association between age and cognition, given that these alterations are 

likely due more to neurodegenerative, and not vascular mechanisms. However, there are also evidence 

suggesting that not all NAWM degenerates at the same rate as a function of aging. In particular, the 

fornix has gathered increasing interest with studies suggesting that damage to the fornix may precede 

brain atrophy in gray matter such as the hippocampus (Nowrangi & Rosenberg; 2015), and is predictive 

of conversion from mild cognitive impairment (MCI) to AD (Douaud et al., 2013; van Bruggen et al. 

2012). These studies suggest a possible convergence of both vascular and neurodegenerative pathways 

in the fornix, whereby we would expect to see strong associations between arterial compliance, WMSA 

and regional FA and MD.  
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Methods 

Participants 

Forty-eight adults (age range = 18-75 years, mean age = 47.8, 25 females) were recruited 

through advertisements in local newspapers, campus-wide emails and postings at area gyms, retirement 

homes and community centers in the Urbana-Champaign community. In order to ensure an even spread 

across the age range, the age range was divided into sextiles, the age range was divided into six decades 

(18-27, 28-37, 38-47, 48-57, 58-67, and 68-77), and 8 subjects were recruited for each decade.  For each 

sextile, at least 8 subjects were recruited. However, for the majority of analyses presented in this paper, 

age (in years) was used as a continuous variable. One subject had to be removed from all analyses 

involving the arterial compliance measure because we were unable to extract a suitable pulse trace 

from the optical data, possibly due to excessive movement, leaving a final sample of 47 participants. The 

demographic characteristics of the participants are summarized in Table 4.1. In this table, information is 

provided about the overall sample, as well as about 2 age groups (younger and older adults), derived by 

using a median split. This classification is provided to show that important variables such as years of 

education and IQ were consistent across the entire sample. 

Table 4.1. Demographic characteristics of the participants (N = 47) 

Variable All (N=47) 
Mean (SD) 

Young (N=24) 
Mean (SD) 

Old (N=23) 
Mean (SD) 

Age (years) 47.6 (17.5) 32.7 (9.6) 63.1 (7.3) 
Education (years) 17.3 (2.2) 16.5 (1.9) 18.1 (2.3) 
mMMSE  55.8 (1.2) 55.7 (1.3) 55.9 (1.1) 
Shipley’s Vocabulary Test 34.7 (3.7) 33.2 (3.5) 36.3 (3.2) 
Beck’s Depression Index 2.2 (2.5) 3.0 (2.7) 1.4 (2.1) 
K-BIT2 (IQ) 116.4 (10.2) 114.5 (8.7) 118.3 (11.4) 
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Screening procedures 

Participants were screened based on a number of health and cognitive criteria. Subjects 

with serious or chronic medical conditions or a history of major neurological or psychiatric 

disease or drug abuse were excluded from this study. Additionally, to be included in the study 

subjects had to score at least 51 on the mMMSE (Mayeux, Stern, Rosen & Leventhal, 1981) and no more 

than 14 on Beck’s Depression Inventory (Beck, Steer & Brown, 1996). Subjects who smoked more than 

half a pack of cigarettes and/or consumed more than two alcoholic drinks per day were also excluded. 

All participants were right-handed (as assessed by the Edinburgh Handedness Inventory; Oldfield, 1971), 

had normal or corrected-to-normal vision, and were native speakers of English. All procedures described 

in this report were approved by the University of Illinois Institutional Review Board.  Prior to 

participation, all participants signed informed consent documents.   

Assessment of cognitive function 

A battery of neuropsychological tests was administered, which included the Kaufmann Brief 

Intelligence Test Second Edition (K-BIT2; Kaufman & Kaufman, 2004) and Ravens progressive matrices 

(Raven, Raven & Court, 2003) to measure IQ, the vocabulary sub-test of the Shipley-Institute of Living 

Scale (Shipley, 1940) to measure vocabulary, the Wisconsin Card Sorting Test (WCST, Heaton, 1981; Tien 

et al., 1996), the Controlled Oral Word Association sub-test of the Multilingual Aphasia Examination (a 

measure of verbal fluency using the letters CFL; Benton & Hamsher, 1989), the operation-span task 

(OSPAN; Unsworth, Heitz, Schrock, & Engle, 2005), the Trail Making Tests A and B (Corrigan & Hinkeldey, 

1987), to measure working memory and executive function, the Logical Memory I and II tasks from the 

Wechsler Memory Scale – Fourth Edition (WMS – IV, Wechsler, 2009) to measure episodic memory. In 

addition, scores for forward and backward digit span were derived from the mMMSE.  
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Experimental Procedures and Types of Measures  

The data presented here were collected as a part of a much larger, multi-session project 

intended to investigate brain function using diffuse optical and magnetic resonance imaging 

(MRI) methods. Session 1 included neuropsychological assessments and familiarization to MRI 

scanning within a mock magnet. Session 2 included the collection of structural MRI data (used 

for anatomical co-registration and brain volume estimations). Session 3 included collection of 

optical imaging data from the visual cortex only, which are not included in this study. In session 

4, we collected the optical imaging data and an electrophysiological measurement of the 

heartbeat for time-locking the arterial pulse. These are the data presented here.  

Electrocardiogram Recording and Analysis 

Lead I of the electrocardiogram (EKG, left wrist referenced to right wrist, impedance 

below 20 kOhm) was recorded with a Brain-Vision™ recorder and a Brain-Vision professional 

BrainAmp™ integrated amplifier system (Brain Products GmbH, Germany) with a sampling rate 

of 1000 Hz. The EKG data were extracted using EEGLab (Delorme & Makeig, 2004) and the 

optical pulse data were time-locked to the R-wave of the EKG. Each R-wave peak was found 

using an algorithm running on MATLAB R2014b (MathWorks, Natick, MA) that searches for 

peaks exceeding a certain voltage threshold (scaled for each subject) and discarding any points 

that fall outside the normal range of interbeat intervals. Manual visual inspection was also 

performed to ensure that any misidentifications of R-wave peak were discarded.  

MRI Acquisition and Processing 

Structural magnetic resonance images (sMRI) were collected for each participant using a 3T 

Siemens Trio full body scanner. A high resolution, 3D MPRAGE protocol was used, with a flip angle = 9◦, 



 
 

82 
 

TE = 2.32 ms, TR = 1900 ms, and inversion time = 900 ms.  Slices were obtained in the sagittal plane (192 

slices, .9 mm slice thickness, voxel size .9 x .9 x .9 mm) having matrix dimensions of 192 x 256 x 256 (in-

plane interpolated at acquisition to 192x512x512) and field of view of 172.8 x 230 x 230 mm.  All images 

were visually examined by multiple researcher personnel and no significant defects or distortions were 

discovered. Cortical reconstruction and volumetric segmentation were performed with the FreeSurfer© 

5.3 image analysis suite (http://surfer.nmr.mgh.harvard.edu/; e.g., Dale, Fischl & Sereno, 1999; Fischl & 

Dale, 2000; Fischl, Liu, & Dale, 2001; Fischl et al., 2002; Han et al., 2006). FreeSurfer morphometric 

procedures have been demonstrated to show good test-retest reliability across scanner manufacturers 

and across field strengths (Han et al., 2006). 

WMSA volume. WMSAs (appearing as hypointense on T1-weighted images) were labeled based 

on a probabilistic procedure (Fischi et al., 2002) and the automatic segmentation performed by 

FreeSurfer was extensively examined for errors. Any errors found were corrected according to the 

instructions found at http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData. WMSA 

volume computed from T1 hypointensities has previously been found to be highly correlated (r =0.8) 

with hyperintensities obtained using T2/FLAIR methods (Simon at al., 2000). Intraclass correlation 

between T1 WMSAs and manually segmented WMH has also been found to be as high as 0.91 (Smith et 

al., 2011). Other studies have also suggested that T1-weighting methods of quantifying WMSA volume 

may be more associated with clinical pathology (Bagnato, et al. 2010; Miller, et al. 1998; Sailer, et al. 

2001). T1-weighted WMSA volume has also been used in studies investigating its role in cognitive aging 

(Leritz et al., 2014; Marquez et al., 2015; Salat et al., 2010).  

Diffusion Tensor Imaging. DTI images were acquired using a spin echo single shot Echo Planar 

Imaging sequence consisting of a set of 30 non-collinear diffusion-weighted acquisitions with b-value 

=1000 s/mm2 and one T2-weighted b-value = 0 s/mm2 acquisition (TR/TE =10000/98 ms, 128x128 

matrix, 1.9x1.9x2.0 mm voxel size, FA = 90, GRAPPA acceleration factor 2, and bandwidth of 1698 Hz/Px, 

http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData
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comprising 72 2-mm-thick slices). DTI provides information about WM microstructure in-vivo by 

measuring both the magnitude and direction of water diffusion present in brain tissue (Beaulieu, 2002). 

Visual inspection of the entire raw data did not reveal any artifact that warrants exclusion from analysis. 

DTI data were processed using the FSL Diffusion Toolbox v.3.0 (FDT: http://www.fmrib.ox.ac.uk/fsl) in a 

standard multistep procedure, including: (a) motion and eddy current correction of the images and 

corresponding b vectors, (b) removal of the skull and non-brain tissue using the Brain Extraction Tool 

(Smith, 2002), and (c) voxel-by-voxel calculation of the diffusion tensors. Using the diffusion tensor 

information, FA maps were computed using DTIFit within the FDT. The outputs from every step were 

visually inspected for errors.  

We used TBSS (Smith et al., 2006), a toolbox within FSL v5.0.1, to create a representation of 

main white matter tracts common to all subjects (white matter “skeleton”). This included: (a) nonlinear 

alignment of each participant’s FA volume to the 1 x 1 x 1 mm3 standard Montreal Neurological Institute 

(MNI152) space via the FMRIB58_FA template using the FMRIB’s Nonlinear Registration Tool (FNIRT, 

(Rueckert, 1999); http://www.doc.ic.ac.uk/~dr/software), (b) calculation of the mean of all aligned FA 

images, (c) creation of the white matter “skeleton” by perpendicular non-maximum-suppression of the 

mean FA image and setting the FA threshold to 0.25, and (d) perpendicular projection of the highest FA 

value (local center of the tract) onto the skeleton, separately for each subject. The TBSS analysis used 

here emphasizes normal appearing white matter due to the last step of using the highest FA value that is 

being projected on the white matter skeleton (Burzynska et al., 2013).  Mean FA and MD values 

extracted from fornix ROIs used in Burzynska et al., (2013) and were identified based on the DTI white-

matter atlas (Mori et al., 2005). 

Optical Recording and Analysis 

Recording. Optical data were recorded with six integrated frequency-domain oxymeters 

(Imagent; ISS, Inc., Champaign, IL). Data were collected from 24 detectors each measuring light emitted 
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by 16 time-multiplexed sources (384 channels) in 4 different optical montages designed to cover the 

majority of the head, giving rise to a total of 1536 channels. Laser diodes generated light at 830 and 690 

nm (max amplitude: 10 mW, mean amplitude after multiplexing: 1 mW), modulated at 110 MHz. The 

light from the diodes was transmitted to the surface of the head using optical fibers (one per emitter, 

with separate fibers carrying light at each of the two wavelengths coupled at each location). Each optical 

fiber carrying the light to the surface of the head was 400 μm in diameter. Light was collected from the 

head using detector fiber bundles (diameter = 3mm) and connected to photomultiplier tubes (PMTs) fed 

with a current modulated at 110.003125 MHz, generating a 3.125 kHz cross-correlation frequency. 

Optical parameters were sampled at 39.0625 Hz (25.6 ms per sampling point). Sources and detectors 

were held flush with the participants’ scalp using a lab-built helmet made of foam and plastic tubes held 

together by rubberized cords that can tightened or loosened to fit each individual’s head as required 

(See Tan et al, under review, Chapter 3).  

Coregistration with structural MRI. Using nasion and preauricular points as references, the 

locations of individual optical sources and detectors were digitized using a Polhemus “3Space” FASTRAK 

3D digitizer (Polhemus, Colchester, VT). T1-weighted structural magnetic resonance images were 

obtained for each subject. The Polhemus digitization points were then co-registered with the MR images 

first using the three fiducial markers and then surface fitting the entire set of digitized points to the 

estimated scalp surface based on a Levenberg-Marquardt algorithm (least-squares fit) using in-house 

software Optical Coregistration Package (OCP; Chiarelli, Maclin, Low, Fabiani & Gratton, 2015). 

Coregistration using this procedure has been shown to result in errors of less than 4 mm (Chiarelli et al., 

2015; Whalen, Maclin, Fabiani, & Gratton, 2008).  

Analysis of optical data. Measurements were taken at rest for 8 blocks with each block lasting 6 

minutes. Each of the 4 montages was recorded for a total of 2 blocks (12 minutes total recording time 

for each montage), with the sequence of 4 montages counterbalanced across subjects within each age 
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sextile. The optical data were normalized (by dividing them by their mean value), movement corrected 

(Chiarelli et al., 2015), and band-pass filtered between 0.5–5 Hz (Butterworth digital filter). DC light 

intensity data at 830nm of wavelength were used for pulse shape estimation. The longer 830nm 

wavelength has, in fact, higher sensitivity to pulse-related absorption changes due to its higher 

sensitivity to oxygenated hemoglobin, which are present in greater volume in the cerebral arteries 

compared to the shorter 690nm wavelength (Fabiani et al., 2014). 

Pulse waveform for each channel was obtained by averaging the DC light intensity time-locked 

to the peak of the R wave of the EKG (signaling the depolarization of the ventricular myocardium, and 

ensuring that we were measuring the same pulse cycle at different locations) (Fabiani et al., 2014). Only 

channels above 25 mm of interoptode distance were used to increase sensitivity to deeper phenomena. 

Only channels within 70 mm of maximum interoptode distance were used to increase the overall signal 

to noise ratio of the measurements. 

In order to estimate the pulse waveform in the head structures (relative changes in absorption 

related to the heart pulsation) a model of the light propagation in the head (forward model) and an 

inverse procedure were required (inverse model). The algorithms used were identical to the ones 

developed and applied in functional near-infrared spectroscopy (fNIRS) where the relative changes in 

absorption are caused by functional fluctuation of oxygenation in activated brain areas. Pulse 

propagation causes local changes in absorption up to few percentage points, which are very similar to 

the changes measured in the fNIRS studies. For image reconstruction purposes, the two procedures are 

treated similarly here. 

Finite Element Method (FEM) applied to the diffusion equation (Ishimaru, 1989; Paulsen and 

Jiang, 1995) was used to estimate the forward model. The FEM software NIRFAST (Dehghani et al., 2009, 

Eggebrecht et al., 2014) was used to model the light propagation through the heterogeneous heads and 

to compute Jacobian matrices (sensitivity matrices) of DC light intensity to absorption changes. The 
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average Jacobian is displayed up to an attenuation of 60dB to its maximum value. “Fine” meshes 

(maximum tetrahedral volume = 2 mm3) were generated for FEM using MATLAB R2014b (MathWorks, 

Natick, MA) function iso2mesh (Fang & Boas, 2009). The heterogeneous head geometries were 

evaluated from segmented T1-weighted 3D anatomical images. Segmentation of participants’ heads into 

skull and scalp, cerebrospinal fluid (CSF), white matter and grey matter was performed using SPM 

functions applied to T1 anatomical images (Penny et al., 2011). Baseline optical properties (absorption 

μa, reduced scattering coefficient μs’ and refraction index η of the tissues at the relevant wavelength 

were taken from Tian & Liu (2014) and Chiarelli et al., (2016). The optical values at the wavelength of 

interest (830 nm) were set to: scalp and skull: μa = 0.014 mm-1, μs’= 0.84 mm-1; CSF: μa = 0.004 mm-1, μs’ 

= 0.3 mm-1; grey matter: μa = 0.019 mm-1, μs’ = 0.673 mm-1; white matter: μa = 0.021 mm-1, μs’ = 1.01 

mm-1. The refraction index was set to η=1.4 for all the simulations and mediums. 

In order to reconstruct the absorption changes based on channels’ signal recordings, an inverse 

procedure introduced by Chiarelli et al. (2016) was used. This inverse procedure allows for an unbiased 

localization of absorption fluctuations up to a depth of 30 mm from the scalp. Reconstructed optical 

pulse waves tomographic data (diffuse optical images of the pulse) were obtained in the same space of 

the structural MRI. Arterial compliance was estimated for each voxel within 30 mm from the scalp and 

with a maximum relative absorption change above 10-4 (that allowed us to disregard voxels close to the 

scalp but not covered by the optode montage). Arterial compliance was defined as the area under the 

pulse between the peak systole and the peak diastole normalized by both time and amplitude and 

subtracted by a constant value of 0.5 (Fabiani et al., 2014). The constant value was subtracted to 

compare the area of the pulse response measured to an area of a hypothetical pulse presenting a linear 

decay of its amplitude after the systolic period. As Freesurfer regions were identified on the original MR 

images whereas optical data were reconstructed based on resampled (1 mm isovoxel) images, the 

identified FreeSurfer ROI’s were mapped into the isovoxel images using a co-registration procedure 
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implemented in the software SPM (Friston et al., 1994). Average arterial compliance for each participant 

and each FreeSurfer segmented regions was extracted considering only voxel where compliance was 

computed (10% trimmed mean). By visual inspection 20 out of the 70 FreeSurfer regions were 

considered too deep for compliance estimation and not included in the analysis (Chiarelli et al., in 

preparation). The remaining 50 regions in each subject were averaged to compute the measure of 

generalized arterial compliance. 

Results 

Neuropsychology assessment and associations with age. 

Based on the factor loadings of the various cognitive tasks, a total of 4 orthogonal factors with 

Eigen values >1 were derived by using factor analysis. They were putatively classified as episodic 

memory, working memory, fluid intelligence (IQ) and crystallized intelligence (IQ). Factors with >|0.5| 

loadings are bolded (see Table 4.2). Older subjects scored lower in fluid IQ, r(45) = -.51, p <.001 and 

higher in crystallized IQ, r(45) = .38, p = .009. Associations of age with episodic memory, r(45) = -.21, p 

=.16 and working memory,  r(45) = .21, p =.16, did not reach statistical significance.  

Table 4.2. Loadings of the 4 cognitive factors that were derived from factor analysis. 

 Episodic 
Memory 

Working 
Memory 

Fluid 
Intelligence 

Crystalized 
Intelligence 

Modified Mini-Mental Status Exam 0.093 0.202 0.156 0.535 

Forward Digit Span -0.016 0.772 0.030 0.227 

Backward Digit Span -0.055 0.769 -0.234 0.227 

Logical memory immediate A 0.810 0.028 0.158 0.202 

Logical memory immediate B 0.893 0.105 0.147 0.034 

Logical memory Delay A 0.792 -0.219 0.028 0.229 

Logical memory Delay B 0.908 0.117 0.076 0.095 

Raven’s Progressive Matrices 0.206 -0.030 0.828 0.064 

Verbal Fluency Test (CFL) 0.041 0.683 0.059 0.041 

Trail making B-A -0.009 0.066 -0.716 -0.040 

Shipley 0.110 0.214 -0.118 0.853 

OSPAN (letters) 0.356 0.524 0.568 0.094 

KBIT2 IQ Composite 0.249 0.061 0.111 0.854 
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Relationship between arterial compliance and WMSA 

 Four subjects were excluded from the analysis: 3 were statistical outliers on the WMSAs 

measure and 1 on the arterial compliance measure, (Z score >|2.5|). WMSA volumes were log- 

transformed to adjust for skewing of the data, similar to procedures done in other studies (e.g. Atwood 

et al., 2004; Jefferson et al., 2007). Shapiro-Wilk’s test was not significant (W = .97, p = .45), indicating 

that the log-transformed data were now normally distributed. As hypothesized, greater arterial 

compliance across the cortex was associated with lower WMSAs, r(41) = -.42, p = .002 (See Figure 1). 

 

Figure 4.1. Greater arterial compliance was associated with lower WMSA volume (log-transformed). 

We conducted a four-step hierarchical multiple regression with WMSAs as the dependent 

variable to investigate whether cerebral arterial compliance predicts the presence of WMSAs over and 

above the known predictors of age and systemic pulse pressure (difference between systolic and 

diastolic blood pressure). Estimated total intracranial volume (eTIV) was entered at stage one of the 

regression as a control variable. Age was entered at stage two, pulse pressure at stage three and arterial 

compliance at stage four. The hierarchical multiple regression revealed that at step one, eTIV did not 

contribute significantly to the regression model, F (1, 41) = .85, p = .18) and only accounted for 2.0% of 
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the variation in WMSAs. This is not surprising as eTIV was meant to serve simply as a control factor. 

Introducing age into the model explained an additional 17.0% of the variance and this change in R2 was 

significant, F (1, 40) = 8.39, p = .003. This is consistent with the vast amount of literature showing that 

age is highly associated with white matter lesions in the brain (see Xiong & Mok, 2011 for a review). 

Adding systemic pulse pressure in step 3 explained an additional 5.6% of the variance but this change in 

R2 was not significant, F (1, 39) = 2.92, p = .048). The final addition of arterial compliance into the model 

predicted an additional 7.9% of the variance in WMSAs and the change in R2 was significant, F (1, 38) = 

4.46, p = .021). These results are summarized in Table 4.3. Taken together, results from the hierarchical 

multiple regression suggest that cerebral arterial compliance is an independent predictor of WMSAs, 

explaining variance in WMSA volume over and above age and pulse pressure. 

Table 4.3 Hierarchical regression models with different predictors. 

 Beta R2 ∆ R2 

Model 1  .02 .02 

Intracranial Volume (eTIV) .14   

Model 2  .19   .17** 

Intracranial Volume (eTIV) .24   

Age     .42**   

Model 3  .25 .056 

Intracranial Volume (eTIV) .14   

Age     .40**   

Pulse Pressure .26   

Model 4  .33 .079* 

Intracranial Volume (eTIV) .16   

Age .24   

Pulse Pressure   .25   

Arterial Compliance  -.32*   

Note. N = 43. ∆ R2 was significant in step 2 and 4, *p < .05, **p <.01. Dependent variable: WMSA volume 

Serial multiple mediation analysis with arterial compliance and WMSAs 

 We employed PROCESS model 6 macro in SPSS (IBM, 2013) to examine serial mediation (Hayes, 

2013) based on a series of ordinary least square (OLS) regression models method. Here we use age as 
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the predictor, arterial compliance as the first mediator, WMSA volume as the second sequential 

mediator and fluid IQ as the dependent variable. We focused on only fluid IQ due to its known 

relationship with WMSA (Raz et al., 2007). It should also be noted that WMSA has also been found to be 

associated with other cognitive domains such as executive functions (Cook et al., 2004; Kramer et al., 

2007), that we did not assess in the current study. We employed serial multiple mediator analysis with 

the theoretical assumption that arterial compliance occurs before WMSAs appear. Specifically, we are 

testing for this indirect effect: age → arterial compliance → WMSAs → fluid IQ. eTIV was included in the 

model as a covariate. All variables were standardized prior to analysis.  

 We tested the indirect effect by using a bias-corrected bootstrapping procedure based on 5000 

samples. The bias-corrected bootstrap procedure was chosen as it is considered the most trustworthy 

and provides more power given our relatively small sample size (Hayes & Scharkow, 2013). The 

relationship between age and fluid IQ was found to be mediated by arterial compliance and WMSA 

volume (Figure 4.2). The 95% confidence interval for the indirect effect did not include zero (-.2166, -

.0026). Further, the finding that the relationship between age and fluid IQ remains significant after 

accounting for arterial compliance and WMSA volume is not surprising given the extant literature 

showing that the mechanism by which aging is associated with cognitive decline involves multiple 

mediators (Hedden et al., 2014). 
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Figure 4.2. Schematic representation of the mediation analysis performed with age as the predictor, 
arterial compliance and WMSA as sequential mediators, and fluid IQ as the dependent 
variable. Values reported are standardized coefficients. Estimated total intracranial volume 
was included as covariate. 

 It is also possible that the relationship between arterial compliance and WMSA is bidirectional, 

whereby although initial reductions in arterial compliance and perfusion associated with aging may 

result in greater WMSA volumes, these focal lesions may then contribute to further degradation in 

arterial compliance. Given the correlational and cross-sectional nature of the study, we cannot explicit 

test this possibility. However, further analysis involving the switching of the temporal sequence of 

arterial compliance and WMSA did not revealed a significant indirect effect, 95% CI (-.0287, .0662). 

These results therefore suggest that the mediating effects of both arterial compliance and WMSAs on 

the relationship between greater age and lower fluid IQ is predominantly, through a sequential process 

of reduction in global arterial compliance and subsequent increase in WMSA volume. 

Relationships between regional arterial compliance and WMSAs 

 Regional analyses revealed that greater arterial compliance measured in 35 brain regions was 

significantly associated with lower WMSA volume in the entire brain, all ps < .05 (see Figure 4.3a), 

controlling for eTIV. These associations were particularly strong in the frontal regions, consistent with 

literature demonstrating that frontal regions are more susceptible to age-related declines, using indices 
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such as regional volumes and cerebral blood flow (e.g. Alosco et al., 2013; Raz et al., 2997; Resnik et al., 

2003). A median split based on the subjects’ age revealed that these associations were mainly driven by 

the older subjects (see Figure 4.3b). In younger subjects none of the 50 regions showed a significant 

negative association with WMSAs. However, these data must be interpreted with caution as arterial 

compliance was computed from cortical structures and therefore does not share a direct overlap with 

the WMSAs found in white matter.    

 

Figure 4.3. a) Arterial compliance in 35 regions of the brain was found to be negatively associated with 
global WMSA volume. Regions in grey did not reach statistical significance. b) These regional 
associations were stronger in older subjects.  

Arterial compliance and DTI indices 

 We expect that unlike WMSAs, the association between arterial compliance and FA and MD 

measures should be weaker or absent due to underlying differences pathological pathways. Out of the 

original 47 subjects, 3 were excluded for this analysis. Besides the 1 subject that was a statistical outlier 
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on the arterial compliance measure, we did not have DTI data for 2 subjects because they did not 

complete the scan. Consistent with established findings, greater age was associated with lower FA, r(41) 

= -.42, p =.002) and greater MD, r(41) = .31, p =.021), controlling for eTIV to avoid partial volume effects 

(Vos, Jones, Viergever & Leemans, 2011). As hypothesized, arterial compliance was not significantly 

associated with either global FA, r(41) = .069, p = .33 or global MD, r(41) = -.045, p = .39. Consistent with 

findings that age-related degeneration of white matter microstructure is associated with measures of 

fluid IQ (Ritchie et al., 2015), higher FA and lower MD were associated with higher fluid IQ (r(41) = .30, p 

=.026 and r(41) = .-33, p =.015 respectively). The relationship with fluid IQ was also stronger when 

investigating FA and MD in the fornix, (r(41) = .51, p <.001 and r(41) = .-53, p =.001, respectively). These 

data are consistent with research showing that microstructural degeneration in the fornix plays a role in 

the conversion from mild cognitive impairment (MCI) to AD (Douaud et al., 2013; van Bruggen et al. 

2012). 

 We ran a similar mediation analysis to investigate if the relationship between age and fluid IQ 

was mediated in a sequential manner, first by arterial compliance, then FA or MD. We did not find a 

significant indirect effect using 5000 bias-corrected bootstrap sample when substituting WMSAs for FA 

(95% CI: -.0154, .1165) and MD (95% CI: -.0543, .0697). Taken together, the absence of a significant 

indirect effect and the lack of associations between arterial compliance with both FA and MD supports 

our hypothesis that degradation in NAWM microstructure is not primarily due to degradation of 

cerebrovascular health measured using diffusive optical imaging.  

Association between arterial compliance, WMSA and regional FA and MD  

 As hypothesized, better arterial compliance was found to be associated with higher FA, r(36) = 

.40, p =.005, and lower MD, r(36) = -.38, p =.008 , controlling for eTIV (See Figure 4.4). We also found 

that greater WMSA volume was associated with lower FA, r(36) = -.49, p <.001, and greater MD, r(36) = 
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.50, p <.001, controlling for eTIV. These results suggest that although globally, FA and MD measures are 

not associated with arterial compliance, accumulative damage from multiple risk factors of both 

vascular and neurodegenerative pathways may manifest themselves in alterations of white matter 

microstructure tissue in the fornix.  

 

Figure. 4.4 a) Greater arterial compliance was positively associated with fractional anisotropy (FA) in the 
fornix. b) Greater arterial compliance was negatively associated with mean diffusivity (MD) in 
the fornix. Values plotted are standardized residuals after controlling for estimated total 
intracranial volume (eTIV). 

 

Discussion 

 The results presented in the current paper support the role of diminished arterial compliance 

and subsequent cerebrovascular disease as mediators in age-related declines in fluid IQ. These data are 

consistent with a longitudinal clinical study showing that although the cerebrovascular diseases and 

neurodegeneration seen in Alzheimer’s disease often occur in concert, the underlying metabolic 

dysfunctional pathways are likely to be independent (Haight et al., 2013). Specifically, they found that in 

converters from MCI to AD, greater white matter hyperintensities (vascular pathway) were associated 

with lower frontal but not temporo-parietal metabolism. The opposite was found for measurements of 

cerebrospinal fluid β-amyloid (neurodegeneration pathway), which were associated with lower 
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temporoparietal but not frontal metabolism. Within this dual-pathway framework (vascular and 

neurodegenerative) of progression towards AD (Kalaria & Ihara, 2013), the findings reported here 

provide indicate that cerebrovascular health measured using diffuse optical imaging plays a critical role 

in understanding the vascular pathway to age-related cognitive decline. 

Specifically, we found that diffusive optical measure of cerebral arterial compliance predicted 

variance in WMSAs over and above age and pulse pressure. These results suggest that although central 

systemic indices of blood pressure have been found to be associated with WMSA volume (Kennedy and 

Raz, 2009; Leritz et al., 2010; Salat et al., 2012), they do not entirely predict WMSA volume, which is 

more strongly associated with down-stream damage in the peripheral cerebrovasculature. Diffusive 

optical methods of quantifying arterial compliance thus provide a more direct comparison of the state of 

cerebrovascular health than systemic measures. Our results showing that age-related declines in fluid IQ 

is mediated by both arterial compliance and WMSAs in a sequential manner is consistent with the 

general consensus that the emergence of WMSA lesions stems from cerebral vascular pathology that 

are exacerbated in the aging process (Salat, 2014). This mediation effect was no longer significant when 

the temporal sequence of arterial compliance and WMSA was swapped, indicating that the mediation is 

mostly due to effects of arterial compliance on down-stream WMSA volume as opposed to the other 

way around. These results thus suggest that poor cerebrovascular health in the aging process may result 

in adverse functional consequences on fluid IQ.  

In contrast, the same mediation analysis substituting WMSA volume for indices of white matter 

microstructure (FA and MD) did not reach significance. These results add to the literature that although 

WMSAs and white matter microstructure may share some overlapping etiology, insofar as optical 

measures of arterial compliance tap on to the vascular pathway in cognitive aging, cerebrovascular 

health is the main driving factor of greater WMSA volume but not decreases in NAWM microstructure 

integrity. Our findings that arterial compliance was not associated with global FA and MD provides 
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further evidence that these alterations are not primarily due to underlying cerebrovascular dysfunction. 

However, these conclusions should also be considered in the context of evidence showing that cortical 

blood supply (measured using ASL) was associated with both FA and MD (Chen, Rosas & Salat; 2013). 

Fabiani et al., (2014) did not find an association between arterial compliance and ASL quantification of 

cerebral blood flow and they may reflect different cerebrovascular phenomena. However, the finding 

that FA and MD in the fornix are strongly associated with both arterial compliance and total WMSA 

volume suggests that cerebrovascular and neurodegenerative pathology may converge in deep 

subcortical regions of the brain that are most vulnerable to the effects of aging.   

It must also be noted that in the sequential mediation analysis, after accounting for the effects 

of arterial compliance and WMSA volume, the relationship between older age and poorer fluid IQ 

remains significant. This is not surprising given findings that there are additional biomarkers such as 

glucose metabolism measured using positron emission tomography (PET) and brain volumetrics such as 

striatum volume that can serve as mediators of age-related declines in multiple domains of cognition 

such as processing speed and executive function (Hedden et al., 2014). Beyond these physiological 

factors, it is also possible that psychological factors such as increased stress may contribute to 

atherosclerotic burden by increasing intima thickness (Roepke at al., 2012), and work in conjunction 

with other biomarkers to amplify the adverse effects on cognition during the aging process. Given that 

in the current study, our primary goal was to demonstrate the role of optical measure of arterial 

compliance in the cerebrovascular pathway of cognitive decline, we did not further explore the relative 

contribution of different mediators. This was also partially constrained by our relatively small sample 

size which limits the statistical power available to explore more complex models with confidence.  

Our regional analysis of arterial compliance with total WMSA volume also revealed that the 

strongest negative correlations were found in frontal regions, and were especially prominent in older 

adults. These findings parallel known regional variations in brain and cognitive degeneration (e.g. Raz et 
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al., 2003; Tan et al., under review, Chapter 3). Further, differences in the rate of cerebral atrophy in 

different neurodegenerative pathologies have been found and may reflect differences in underlying 

dysfunctions in cerebral protein biochemistry (Whitwell et al., 2007). In a similar vein, regional variations 

in associations between arterial compliance and WMSAs may also offer important information for 

distinguishing between different pathologies such as vascular dementia compared to frontotemporal 

dementia.  

However, the interpretation of these findings must be couched in the inherent limitation of 

relatively short penetration distance of diffusive optical imaging, and hence, the regions where these 

measurements are taken do not map directly onto each other. Despite this shortcoming, the 

measurements used in the current study leverages on recent advancements in 3D reconstructions that 

has pushed the penetration distance to 30-35mm (Chiarelli et al., 2016) which provides the best 

estimation of arterial compliance possible given the current state of the technology. Regardless, our 

measurement of global arterial compliance should only be regarded an indicator of cerebrovascular 

health and does not provide us with sufficient penetration or spatial resolution to distinguish with 

specificity the cerebral arterial supply that feeds into specific focal or diffused WMSA seen on T1-

images. Similar caveats must be considered when interpreting the arterial compliance and WMSA 

volume associations with white matter microstructural properties in the fornix. Although newer dynamic 

ASL methods of quantifying vascular compliance based on changes in cerebral blood volume and arterial 

pressure can be extracted from deep structures (Yan et al., 2016), they also suffer from lack of spatial 

resolution. Further, diffusive optical methods of quantifying arterial compliance and its association with 

a host of factors such as age, fitness, brain volume have been replicated (Fabiani et al., 2014, Tan et al; 

under review, chapter 3) and found to be robust. Whether dynamic ASL methods can serve as a 

mediator of age-related declines in cognition remains to be tested.  
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Other methodological considerations include findings that most WMSA tend to emerge only in 

older adults (Debette & Markus, 2010). Our current sample consisted of subjects over a large lifespan 

range of age 18-75 and WMSA volume observed in younger subjects are most likely inherited due to 

genetic deficiencies as opposed to acquired (Schiffmann & van der Knaap, 2009). Greater amount of 

periventricular white matter (PVWM) hyperintensities have also been found to be associated with 

shorter gestational age at birth (Panigraphy, 2001). Although the relative contribution of inherited 

compared to acquired WMSA on the effects we see here are unknown due to the cross-sectional nature 

of the current study, the mediation analysis remains significant (95% CI, -.6286, -.0022) even after 

selecting only subjects above the age of 40, paralleling the lower age limit used in the population 

described in Leritz et al., (2014). Taken together, our results suggest that arterial compliance and T1-

weighted measures of WMSAs sequentially mediates the relationship between age and fluid IQ. 

Although the usage of T1-weighted WMSA as an index of white matter lesion has already been used in a 

number of studies to investigate its association with aging (Leritz et al., 2014; Marquez et al., 2015; Salat 

et al., 2010), whether these effects will be seen when using more commonly used T2-weight images 

should be further explored.  

The current study also opens up the possibility of using arterial compliance as a target for 

intervention. Although vascular risk factors accumulate from a young age, they are amenable to changes 

by increasing physical activity (Hawkins et al., 2014). A recent review of studies investigating the 

association between white matter lesions and physical activity concluded that greater physical activity 

was associated with lower amount of lesions, but only in individuals without advanced disease (Torres et 

al., 2015). Given that the sequential multiple mediation analysis described in the current study suggest 

that WMSAs are secondary to reductions in arterial compliance, the early targeting of improving arterial 

compliance may slow or prevent progressive cerebral small vessel disease (SVD) from manifesting as 

WMSAs. This preventive approach is especially important given the general consensus that lesions in the 
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white matter are non-reversible, although revascularization surgery may help (Komatsu et al., 2016). 

Therefore, compared to using WMSAs as an indirect marker of cerebral SVD severity (Sachdev, Wen, 

Chen & Brodaty, 2007), arterial compliance may be a better alternative due to its precedence in the 

vascular pathway to AD. Further, of particular interest is the role of vascular endothelial derived growth 

factor (VEGF) involved in many of the neural benefits that comes with higher cardiorespiratory fitness 

(Cotman, Berchtold, & Christie, 2007; Voss, Vivar, Kramer, & van Praag, 2013). Intervention studies in 

the future can further clarify the role of increasing cardiorespiratory fitness and its associated cascade of 

neurotropic factor modulation in the cerebrovascular pathway in cognitive aging. In addition, the 

beneficial effects of increasing physical activity may be in part moderated by genetic factors (Bouchard, 

Rankinen & Timmons; 2011) and the extent by which genetic factors affects the modifiability of cerebral 

compliance remains to be investigated. 

 The results shown here is the first study demonstrating that cerebral arterial compliance 

measured using diffusive optical methods is predictive of total WMSA volume and that it mediates age-

related declines in fluid IQ. It adds onto the growing literature that measures of cerebrovascular health 

using optical methods are associated with multiple measures of brain and cognitive aging. It is clear that 

the cerebrovascular pathway involved in age-related cognitive decline shown in the current study is but 

one of the many mediators and future large scale studies involving multiple measures of brain health 

such as measurements of CBF using ASL, glucose metabolism using PET, genetic assays and fitness 

intervention studies are required to distinguish the different contributors and pathways by which 

cognitive decline occur in the aging process. 
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CHAPTER 5 

GENERAL CONCLUSIONS 

"A brain is as old as its arteries." 
Chin Hong Tan, Ph.D. 

 

  The series of studies described in this thesis highlights the potential of using recently developed 

diffuse optical imaging methods to quantify indices associated with cerebrovascular health in the 

context of cognitive and brain aging. Although the cerebral pulse obtained from diffuse optical imaging 

was once regarded as an artifact that must be eliminated when measuring hemodynamic measures of 

brain function (Gratton & Corballis, 1995), it is now clear that these pulsatile parameters contain 

valuable information about the state of the cerebrovasculature. These findings were first reported by 

Fabiani et al. (2014). The results reported in this thesis represent incremental evidence demonstrating 

the robustness of the initial findings, and also provide a glimpse into the wide array of studies that can 

be investigated using these parameters. 

  Specifically, in Chapter 2, we employed two well-studied paradigms to investigate changes in 

cerebral pulse pressure in a physiological and cognitive task. We demonstrated that cerebrovascular 

tone changes in the hypothesized direction as a function of vagal response during breath holding and 

also as a function of cognitive load during a Sternberg task. In addition, we showed that greater 

cerebrovascular reactivity derived from pulse amplitude measures was associated with younger age and 

better cognitive function as measured by the mMMSE. Given the novelty of these cerebrovascular 

measures, in Chapter 3 we replicated our initial findings, originally obtained in middle-aged and older 

adults (Fabiani et al., 2014) to a new sample including people spanning much of the adult lifespan (from 

18-75 years). Further, we also demonstrated that both the pulse amplitude and arterial compliance 

measures are highly reliable, by comparing these measures across experimental blocks. We also showed 

that associations with age, CRF, brain volumes and cognitive function are generally robust across these 
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two studies. New regional analyses of arterial compliance also suggest that, similar to many other 

indices of brain aging, arterial compliance in frontal regions appears to be especially vulnerable to the 

effects of aging and cognitive decline while that in visual cortex is relatively spared.  

Much of the initial work described in Chapters 2 and 3 has focused on demonstrating the validity 

and reliability of these measures of cerebrovascular health using well-established paradigms (e.g. 

breath-holding task, Sternberg memory task). Moving forward, the aim would be to go beyond looking 

at simple associations of these cerebrovascular measures with other indices of brain health, and to 

further elucidate their role as mediators or moderators in the complex cascade of events that result in 

age-related cognitive decline. 

  Given this aim, In Chapter 4, we found evidence that arterial compliance predicts variance in 

WMSAs over and above age and systemic pulse pressure. Further, arterial compliance serves as a 

mediator in age-related cognitive decline associated with cerebrovascular small vessel disease in the 

white matter. Importantly, this mediation analysis was not significant when substituting WMSAs for 

global measures of FA and MD. This is in accordance to prevailing theories that that are two 

independent pathways (vascular and neurodegenerative) leading to age-related cognitive decline in AD 

(Kalaria et al., 2013). Preliminary findings suggesting that these two pathways may converge first in the 

fornix deserves further investigation in the future. It is also clear that given that DTI measures tap mostly 

on NAWM, they may not be as indicative or predictive of future degradation in cognitive function during 

the aging process. Information from other imaging modalities such as amyloid and tau positron emission 

imaging (PET) can provide a better picture of the mediators involves in the neurodegenerative pathway 

seen in clinical manifestations of AD. 

  From a preventive perspective towards mitigating the adverse effects seen in age-related 

cognitive decline, it is of paramount importance to identify and target early markers of future neural and 
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vascular degeneration before the progression of disease reaches a state of no return. de la Torre (2000) 

proposed the critically attained threshold of cerebral hypoperfusion (CATCH) theory, suggesting that 

once cerebrovascular degeneration advances in severity past a certain threshold, it will result in a 

cascade of events that eventually cumulates in the expression of neurodegeneration symptoms seen in 

AD. Insofar as the theory is correct, measures of cerebrovascular health derived using diffusive optical 

imaging may provide early warning signals and act as a call for intervention before the threshold of 

cerebral hypoperfusion is reached.  

  However, as mentioned throughout the series of studies presented in this thesis, the use of 

diffuse optical imaging to quantify cerebrovascular health is not without its shortcomings. Notably, the 

relative short penetration into the brain limits the interrogation of cerebral arterial health to cortical 

areas. It is clear that although the technique provides valuable information with regards to signals 

arising from cortical cerebral arteries, it would be best used in conjunction with other imaging 

modalities such as ASL, TCD in order to derive a more complete picture of the underlying 

cerebrovascular system. That is to say, the data presented here do not imply that diffuse optical imaging 

of cerebrovascular health aims to supplant other imaging modalities, but to provide converging 

evidence on the importance of cerebrovascular health in ameliorating age-related cognitive decline. 

Another caveat that must be noted is that these studies were conducted in normal aging populations. 

Although the cerebrovascular antecedents to cognitive decline may be similar and deferring only in 

severity in normal aging populations compared to clinical populations, only longitudinal studies 

investigating the onset of MCI and subsequent conversion to AD can provide a definitive answer to 

whether they may differ in the early stages of subclinical cognitive decline.  

  In summary, the cumulative evidence presented in the thesis points to the immense utility in 

extracting indices of cerebrovascular health with diffusive optical imaging to understand the 
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cerebrovascular pathway age-related cognitive decline. In conjunction with a plurality of imaging 

modalities, we may be able to truly understand the interactions between different pathways to AD. 
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