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Abstract

This work explores top down embodied movement analysis with reference to movement

literature like Laban/Bartenieff Movement Studies (LBMS) and movement sequencing as in

choreography. First, high-level movement behaviors are investigated for robot systems by

modeling them as sequentially evolving state machines, motivated by choreographed human

movements, where states define poses at particular instants. Here, tools from formal theory

help in producing high-level movement behaviors by conditioning transitions between these

states. Secondly, high-level movements are investigated by designing a bipedal robot closely

mapping key movements from human walking as identified in Bartenieff’s Basic Six. This

design is further simplified for mathematical modeling in a plane and a controller is designed

for generating a stable walking gait. This line of work is important because it gives an

embodied aspect of robot movement planning which can inspire more intuitive robot control

methods and robot designs.
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Chapter 1

Inspiration for Style / Human
Movement Strategy

This work primarily relies on how humans plan and perceive movements. We are relying on

human movement strategies for analyzing and planning robot movements because of highly

articular movement capabilities in human bodies. There are a number of disciplines studying

quality of these movements at different levels. Out of these, Laban/Bartenieff Movement

Studies and choreography have been chosen for making analogies with robot movement in

this work because they are more intuitive approaches to human movements and have proven

useful in the fields of dance and movement therapy.

1.1 Sequencing of Movements (Choreography)

For recording a dance piece, choreographers mark poses involved in that piece. Between

these poses, movements of different qualities are mentioned using some notation system.

Different notation systems used in choreography use this idea to record movements between

two poses. An example of choreographed movement given in Benesh Notation is presented

in Fig. 1.1 to convey the overall idea. It is clear that the dancer has a sequence of poses

lined up for a particular context. Using this recorded movement, a dancer can follow along

the poses and execute movements from a set of possible movements over time.

But there is more to this topic than just selecting the next movement and sequencing it in

the overall phrase. As discussed in [1], these can be further modified to introduce dynamic

qualities in them. By changing poses at the end of a movement or by changing quality

of these movements, overall piece can be modified. Hence, from a given set of possible

movements, an infinite range of pieces can be produced.
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This idea is interesting for defining high-level complex movement patterns in robots. In case

of robots, we know the basic movement capabilities for a particular platform and in general,

it is not a hard problem to make robots perform movements that are possible with their

morphology. However, in case of movement behaviors for a high-level objective, sometimes

it is hard to convey to robot the desired movement behavior and thus make it execute it.

With a mechanism of sequencing basic movements in multiple ways, as in choreography,

however, this may be easier [2]. As explained in Section 2, a strategy similar to human

movement sequencing is employed for a group of aerial robots to have complex movement

behaviors.

Figure 1.1. Benesh Notation is a way of recording a sequence of movements. In the top of
image, different poses of the dancer during the sequence are shown with corresponding
symbols at the bottom. Image courtesy: Royal Academy of Dance [3]

1.2 High-Level Movement Ideas in Humans

In this work, we are inspired by embodied human movement analysis techniques to analyze

robot movements. For this purpose, Laban/Bartenieff Movement Studies (LBMS) and its

subset Bartenieff’s Basic Six have been consulted. In following, a short overview of these is

given:

2



1.2.1 Laban/Bartenieff Movement Studies (LBMS)

Laban/Bartenieff Movement Studies is a system devised to name, classify and generate

different movements for human beings. Rudolph Laban developed this system as a result

of his observations in crystallography, movement training, and dance [4]. This branch of

studying movement has its applications in a number of areas, where practitioners help people

understand their movements better, improve their communication by consciously making

use of their body movements. In general, LBMS has the following components with their

representative defining role in movement [5]:

• Body : What is (are) the component(s) of a mover performing the movement?

• Space : Where is the movement happening?

• Effort : How a movement is happening?

• Shape : Environment’s role in the movement.

For the scope of this work, however, we are not delving into these components but a subset of

LBMS framework that was developed by a protégée of Rudolph Laban, Irmgard Bartenieff.

This subset is explained further in the following subsection.

1.2.2 The Basic Six

The Basic Six or The Basic Six exercises, is a set of movements that can be the basis of a

number of complex movements. The Basic Six lend an insight into key human movements

especially walking. These six exercises are enumerated as follows [6]:

• Thigh Lift

• Forward Pelvic Shift

• Lateral Pelvic Shift

• Body Half
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• Diagonal Knee Reach

• Arm Circles and Diagonal Sit-up

Out of these, we are going to bring to attention only the first three as they are the basis of

human walking and will be explored further in the upcoming section.

• Thigh Lift

To practice this motion in isolation from other movements which may be combined

with it and other activities or goals which may modify it, a person should lie on his/her

back with knees bent, feet on the floor and lift thigh. As he/she lifts, the mover should

concentrate on lengthening in and stabilizing with the upper body and its contact

with the floor. Further, the mover should relax his/her superficial muscles (like the

quadriceps) and exhale to initiate the movement, allowing deep muscles, like the psoas,

which connects the inner trochanter to the intersection of the T12 and L1 vertebra, to

take over execution of movement.

• Forward (or Sagittal) Pelvic Shift

This movement can be isolated from the same starting position as above. From this

position the mover should exhale and thrust the pelvic girdle forward and slightly up.

Done in the extreme, this causes the mover to slide his/her upper body down, toward

the feet. In this movement the ability of body to shift the pelvis itself (rather than

articulating a limb) is seen.

• Lateral Pelvic Shift

This movement, also beginning at rest on the floor on the back with knees bent and

feet on the ground, is accomplished by lifting the pelvis off the floor slightly (a tiny

forward pelvic shift) and shifting the girdle right and then left. In this action, with

the feet fixed on the ground, the mover may notice a slight simultaneous rotation of

each leg, one into the body and one out from the body.

4



Figure 1.2. Three exercises within Bartenieff’s Basic Six. Thigh Lift in the upper panel;
Forward Pelvic Shift in the middle; and an exaggerated Lateral Pelvic Shift, both sides
(right and left) are shown in the lower panel.
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1.2.3 Gait and Bartenieff Fundamentals

Human gait can also be analyzed from an embodied perspective where principles of movement

such as Bartenieff’s Basic Six [7] and Hackney’s Patterns of Body Connectivity [8] are

enumerated. Such movement theories have been important in developing many areas of

physical activity, but have been most closely related to various forms of dance where a

detailed movement vocabulary is essential to work with the verbosity of movement produced

within each genre. Through such an expert lens, as well as physiological analysis as in [9], gait

is seen more as an activity initiated actively by the human core muscles where the action of

the legs is secondary. Bartenieff Fundamentals, a subset of the Laban/Bartenieff Movement

Studies (LBMS) framework, provide a series of principles as well as basic movement exercises,

termed the Basic Six that were developed by Irmgard Bartenieff during her successful work

rehabilitating polio patients [7]. These movements lend insight to the strategy of movement

used by human movers and physiologically relevant movements that have had success in

re-patterning human movement.

Although these movements have been identified through embodied movement analysis

but these movements are also physiologically relevant. It is known across many movement

disciplines that strengthening core area, which involves two of the key walking movements,

is key to athletic performance. In dance, this area of the body is seen as key to initiating

many movements, including locomotion. In fact, the highly articulated forms of locomotion

in dance require extensive training to achieve the required mobility in the lower body, which

is inherently relatively immobile, offering, for example, fewer degrees of freedom at the joints

than in the upper body limbs. The legs can be seen, not as the primary source of movement,

but instead as supporting the action of pelvis. Thus, pelvis translates through space via

the core musculature and the legs simply catch it with each step, leap, or slide. The act

of walking uses a combination of these three movements. First, the mover does a Lateral

Pelvic Shift to assign weight to one foot or the other. Then, the mover does a Forward
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Pelvic Shift, initiating a slight fall. Finally, the mover performs a Thigh Lift in order to

catch the falling pelvis. These three movements occur superimposed, in near synchrony, to

produce a smooth, successful oblique pelvic shift. The cycle continues with an oblique pelvic

shift mirrored across the mid-line of the body. This time the Lateral Pelvic Shift is onto the

opposite, catching leg, freeing the other leg to catch the pelvis, once shifted forward, next.

The isolated action of the three important movements used in walking, first identified in [7]

and pictured in Fig. 1.2, explains three exercises which are given in the Section 1.2.2.

Evidence for this pattern has also been found in motion capture data for walking. This

can be seen in Fig. 1.3 where pelvic region movement during human walking from motion

capture data is presented. In this figure, the pelvic region is shown to indicate change of

orientation during walking which results in the two pelvic shifts in the forward and lateral

directions giving the locomotion. In this figure, the joint angle trajectories for pelvis are

shown with respect to the world coordinate frame. These trajectories show that the core is

displaced both in the forward and lateral direction during walking.

Figure 1.3. In this motion capture data, we see evidence of both forward and lateral
shifting as created, in part, by rotation of the pelvis around a neutral position. The z-axis
(blue colored axis) is the direction of travel. y-axis (green colored) and x-axis (red colored)
are indicated correspondingly in the picture at right. Motion captured data has been
obtained from mocap.cs.cmu.edu.
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This process is clear in the science and taxonomy of Bartenieff as well. It is instructive to

break each oblique pelvic shift into the two basic pelvic shifts; forward and lateral, because

variation in gait is also seen along these dimensions. Some gaits employ more or less of

each underlying action causing variation among individuals and in different contexts. For

example, older people tend to have a more prominent Lateral Pelvic as compared to young

people who have stronger component of Forward Pelvic Shift.

Moreover, pelvic girdle is very significant in the physical model of the human body: it is

the closest body part to one’s center of gravity. While any of the movements might be used

to parameterize walking, and indeed many descriptions in robotics tend to focus on actions

of the leg [10], we motivate the need for the two pelvic shift actions along with Thigh Lift

due to their selection by experts who study human movement and have formed a formalized

theory around key actions.

Summary In this chapter, main sources of motivation for this work have been discussed

at a stretch. First, human movement sequencing technique is discussed that is used in dance

and choreography to design complex movements. Secondly, for human walking, key high-

level movements have been identified which can give rise to different styles of walking. In

the next section, it will be shown that with an approach similar to choreography, robots

can be assumed to have sequential movements, and with that representation, more involved

movement patterns can be planned for a group of robots (Section 2). Similarly, in Section 3,

an inspired bipedal robot design from the set of identified high-level movements in human

walking is discussed. The robot design allows the flexibility of different degrees of Forward

and Lateral Pelvic Shift to give different walking styles as in humans. Thus, a top down

movement analysis is performed for these two examples of robot systems by taking inspiration

from embodied human movement analysis.
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Chapter 2

Robots as Sequential Moving
Machines

In our work, we are focused on how human movement strategies can be used to get an insight

into robot movement planning. In that context, choreography is one such idea that can help

us design more involved robotic movement patterns. In this chapter, first this idea will be

built upon for use in robots and then later on, an application in formation control of aerial

robots will be explained using this technique.

An increasing number of systems have both a discrete, logical component as well as a phys-

ical, continuous component. These systems can benefit from traditional analysis tools of

systems theory from control systems and supervisory control techniques branching from for-

mal methods in computer science. Such a system can be called, transition system. A robot

can be analyzed on the same lines where we look at it as a transition system with a set of

poses as different states and the transition between them as the movement. This angle of

analysis is interesting as it can help us look at the holistic view of the robot for its high-level

activity.

In a number of scenarios related to robots, a high-level objective overseas the lower level

operations. For example, in an advanced manufacturing scenario, a group of collaborative

robots are programmed to accomplish a manufacturing assignment but on a higher level,

they have to comply with safety objectives of assembly line as well and they shut down or

go into safety mode if a possible hazard is foreseen. Modeling a robot system by a transition

system is helpful in following aspects:

• It becomes easier to change the sequence in which different states are executed by

changing the set of rules.
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• An implementation of this scheme decreases the gap between changing specifications

and their implementations for a robot. [2]

• It becomes easier to study the effect of different continuous time effects like wear etc. on

carefully decided movement primitives (or generally speaking, sub system dynamics).

2.1 Prior Work in Sequential Robot Modeling

Transition systems have been studied extensively by the computer science community. Dif-

ferent formal logic tools have been developed over the decades for verification of algorithms

related to software systems. One such example is Linear Temporal Logic (LTL) [11].

With the notion of temporal logic, formal languages like LTL are important for verifica-

tion purposes in different systems for dynamic or unpredictable environments. In physical

systems, especially, this can form a higher level that ensures certain goals are achieved by

the process. This means that along with a hard-coded robot platform, a supervisory layer

checks that the system obeys conditions like Keep following the programmed trajectory until

an obstacle comes for an assembly line robot or Keep arrow formation until altitude drops

to x meters for a group of aerial robots. While this layer may not be needed when designing

a system for predictable settings, it becomes essential in dynamic environments. There are

other tools for temporal logic planning as well. For example, a representative work in Com-

putational Tree Logic (CTL) was written by [12] where motion planning and verification

were performed for multiple mobile robots.

As compared to automata in software systems, the transitions considered between states

of an automaton defined for a physical system may encounter a range of problems and

therefore a reasonable question can be asked about the correction of the discrete plan in

such a scenario. This has been investigated in [13] from simulation/bisimulation perspective

to prove that continuous execution can still preserve the correctness of discrete transitions.

Motivated by these results, controllers based on LTL and its extensions have been designed
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for navigation in autonomous mobile robots [14], [15] and for group of aerial robots [16].

It was discussed in detail in [17], how symbolic control and supervisory approach to

verifying the behavior of autonomous vehicles on roads would be important, in light of

experiences in DARPA Urban Challenge. A major problem in that case was explosion in

the number of states involved in the automaton created. One approach to address the

state explosion problem is [18] where receding horizon computation technique is used for

automaton synthesis. Another flavor is introduced by [19] in which this problem is solved

generating disjoint sets of specifications, generating their automata and then composing

them together to give the final automaton. In [20], the work presented determines optimal

trajectories for the system in an adversarial environment. In this case, the costs evaluated

are of two dimensions and final trajectory is determined by prioritizing one of the two.

Formal language has been identified as the bridging gap between the user end which is

mostly naive to the robot programming skills and the developer end in [21]. User is required

to give high-level goals for the robot and using LTL these are translated into provably correct

controller for the robot. Another similar work related to graphically conveying specifications

using LTL on the back end was done in [22].

An application of using formal language in the supervisory role of the physical systems

and robots was presented in [23] where non-traditional control knobs were presented for

generating robot movements that were aesthetic and feasible. In this application a range of

complex movements could be generated by changing supervisory specifications for the robot

transition systems.

2.2 High-Level Movement Behaviors for a Group of

Robots

In this section, an example algorithm is given for formation control of flying robots in plane.

High level descriptions are given for the desired behavior needed from the flying robots in a
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plane and then transition from one formation type to the next one is ensured by incorporating

language checking tools.

This work is a sequel of the one-dimensional flocking algorithm robots in a plane [24]. A low

level control strategy was presented that ensured a safe distance between the robots while

keeping the formation over time. In this work, more complex formations have been tackled

by combining more than one one-dimensional flocks. In this respect, LTL is used to make

high-level propositions about these formations.

Each one-dimensional group of robots is characterized by a spacing factor rf that is variable

between the minimal rs to two preset values rlo > rti > rs. One of the robots is considered to

be leader of the flock and angle of the flock, θ of the leader with respect to the horizontal axis

will vary between three presets as well, θ0 < θac < θob. These preset values for orientation

as well as spacing are depicted in Fig. 2.1

2.2.1 Representation as a Labeled Transition System

The behavior of ith one-dimensional flock may be formally modeled as a labeled transition

system (see Figure 2.2): Ti = (Qi, q0i,→i,Πi, hi), where Qi is a set of states with initial state

q0i, →i indicates the transitions, Πi is the set of atomic propositions, and hi labels each

state with the appropriate proposition as in [1]. The states of Ti correspond to primitive

parameters (rf , θ) and are labeled with propositions dealing with descriptions of the resulting

formations given in Equation 2.2.1.

The low-level flocking controllers (being leveraged from [24]) ensure the system is con-

stantly switching between distinct formations out of some set and dynamics of this process

are defined by structure of this transition system. In Figure 2.2, descriptive, high-level words

associated with each formation are used along with other words that might be natural to

frame a specification around. Key formations of interest are enumerated for illustrative pur-

poses, labeled F1, F2, F3, and pictured in Figure 2.3. To make more complex formations,

with multiple primitives, this primary transition system may be composed with others. For
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(a) Three preset orientation states are shown here based on the angle θ of
flock leader with respect to the horizontal axis. θob indicates the orthogonal,
θac represents acute and θ0 represents even orientation state, such that
θ0 < θac < θob.

(b) Three preset spacing states are shown here based on the spacing factor rf .
Maximum spacing factor is called, loose, represented by rlo. Minimum value
for spacing factor is called, minimal, represented by rs. An intermediate value
between these two extremes is called, tight, represented by rti.

Figure 2.1. Predefined states for orientation and spacing for the flock members.

example, the transition system governing the behavior of two flocking primitives would be

given by T1 ⊗ T2 with (Q1 × Q2, q01 × q02, →P , Π1 ∪ Π2, hP ). The new transition function

→P is defined if and only if a transition existed between both single states, i.e. (q, q0) ∈→P

if and only if q 6= q′, (q1, q
′
1)→1 and (q2, q

′
2) ∈→2, where q = (q1, q2) and q0 = (q01, q02). The

labeling function hP associates any proposition that was true for either, i.e. hP : Q1 × Q2

→ 2Π1∪Π2 .

2.2.2 Control of Flight Formation

Such two dimensional and more complex formations of two or more subgroups can be gen-

erated more naturally with a high-level specification language like LTL. High-level LTL

13
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Figure 2.2. The transition system governing the behavior of a single primary flock is given
in the figure above as the Cartesian product of two simpler transition systems T1, T2 (each
representing one dimensional flock). Each state in resulting transition system T is provided
with a set of atomic propositions over which a specification may act and their atomic
propositions (labels).

specifications determine the behavior of a group of agents. Each agent is a member in one

of several one-dimensional flocks (groups). This membership implies a set of rules that

utilize minimal information, avoid inter-agent collisions, and have exponential stability (for

example under consensus these networks will remain connected and converge to their cen-

troid. Exponential stability has been investigated in [24] and is not carried out as part of

this thesis). These flocks do not engage in especially interesting or complex patterns when

alone, although one-dimensional flocks are useful for modeling phenomena like platooning.

Therefore, more involved behaviors are defined at a higher level of abstraction using LTL as

in [1, 25], and leave low level behaviors like collision avoidance, etc. to a verified low-level

flocking algorithm such as [24].

To ensure flight formation, transition systems of different flocks are composed together to

give a bigger transition system as explained in the last section. Then, a high-level controller

using LTL is constructed for this transition system to ensure specific behaviors. LTL formulas

are in terms of atomic propositions of the transition system. The atomic propositions are

statements which are either true or false about every state of a transition system. The high-

level controller checks satisfaction properties of atomic propositions at every state of the

transition system. That is why, these propositions are also called observations sometimes.

LTL formulas are built from a set of atomic propositions collected in a set Π that are either

logical or temporal in nature. The logical, Boolean operators we will use are ¬ (negation), ∨

(disjunction), ∧ (conjunction), → (implication), and the temporal operators are X (next),
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U (until), F (eventually), G (always). The semantics of LTL formulas are given over infinite

words generated by transition systems, such as Ti, Tj, or TP . In particular, we will script an

LTL specification, φ, for the product transition system that describes the possible actions of

our system, and this specification will describe within it system-level truths that must occur

for correct sequencing.

A word satisfies an LTL formula φ if φ is true at the first position of the word; Xφ

states that at the next state, an LTL formula φ is true; Fφ means that φ eventually becomes

true in the word; Gφ means that φ is true at all positions of the word; φ1 Uφ2 means

φ2 eventually becomes true and φ1 is true until this happens. More expressivity can be

achieved by combining the above temporal and Boolean operators. The desirable boon of

this specification language is that it can be expressed as a Büchi automaton Bφ, which

represents the structure of the specification in automata-theoretic form. Thus, if a control

execution error occurs, either due to a run time fault, sensor failure, etc. (we are agnostic

to the source of this error for now), the resulting monitored behavior will be a sequence not

accepted by TP × Bφ.

Such a run can be found using techniques inspired by LTL model checking [26], which

checks whether all the words of a transition system satisfy an LTL formula φ over its set

of propositions. Central to the LTL model checking problem is the construction of a Büchi

automaton that accepts all and only words satisfying φ. An off-the-shelf software tool, such

as LTL2BA [27], can be used to generate such a Büchi automaton. The product automaton,

A, between the transition system and the Büchi automaton accepts all and only the runs of

the transition system whose words satisfy φ.

The transition system shown in Fig. 2.2 has been used, where the state q of system is

based on a spacing parameter and angle of orientation of the flock from the leader robot.

The set of atomic propositions is as follows:

Π = {minimal, tight, loose, even, offset , orthogonal}, (2.2.1)
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where minimal, tight, and loose, refer to the values of spacing factor rf and even, offset,

and orthogonal, refer to the values of angle of the leader agent. From these descriptive

parameters, we can name specific formations and generate specifications to see that these

formations are achieved in the desired way. A subscript of 1 or 2 will be appended to indicate

to which flocking primitive each proposition refers.

2.2.3 Safety Specifications for Flight Formation

First, universal specifications regarding the safe inter-operation of the individual flocks will

be enumerated. These two specifications will govern the system simultaneously with ad-

ditional specifications in all formations constructed. One specification is needed to ensure

that the two (or more) composed flocks are not oriented in the same way, which would be

equivalent to requesting the groups to operate in the same space. The second specification

ensures that each flock operates with the same spacing parameter. This consideration may

be necessary in certain environments or at certain speeds of the agents, where greater or

lesser spacing may be required. These two specifications are written in this framework as:

• Request that the system never uses the same orientation for composed flocks.

Never use the same orientation as subgroup 1:

φs1 = G[(even1 → ¬ (even2)) ∧ (acute1 → ¬ (acute2)) ∧ (obtuse1 → ¬ (obtuse2))]

• Request that the system always uses the same spacing for composed flocks.

Always use the spacing of subgroup 1:

φs2 = G[(minimal1 → minimal2) ∧ (tight1 → tight2) ∧ (loose1 → loose2)]

2.2.4 Behavior Specification for Flight Formation

In order to create formations of interest such as those shown in Figure 2.3, particular con-

figurations may be denoted or specified with their own LTL formula as shown in Figure 2.4.

Then, additional specifications may be phrased as follows.
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Figure 2.3. Key flock formations of interest; F1 has acute orientation and minimal spacing,
F2 has acute orientation and minimal spacing, described by an appropriate LTL formula.

• Request that the system always returns to Formation 2:

φf1 = G F φF2.

• Request that the system never enter Formation 3 after Formation 1:

φf2 = φF1 ∧ X ¬ (φF3).

• Request that the system forms a vee-formation:

φf3 = G[(acute1 ∧ obtuse2) ∨ (obtuse1 ∧ acute2)].

From these four formulae, three final specifications may be concatenated:

• Request that the system always returns to Formation 2 and adhere to safety consider-

ations:

φ1 = φf1 ∧ φs1 ∧ φs2

• Request that the system never enter Formation 3 after Formation 1 and adhere to

safety considerations:

φ2 = φf2 ∧ φs1 ∧ φs2

• Request that the system achieve vee-formation and adhere to safety considerations:

φ3 = φf3 ∧ φs1 ∧ φs2

From each of the final specifications a Büchi automaton, Bφ = (S;S0, , δ, F ), is constructed

as in [1]. These automata were constructed using LTL2BA [28] and are shown in Figure 2.4.
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Figure 2.4. Büchi automata given by the specifications φ1, φ2, and φ3. These automata act
as supervisors for T1 ⊗ T2. On composition with T = T1 ⊗ T2, the resulting automaton A
only allows transitions satisfied by the specifications.

Then, the automata are composed with the system transition model, T1 ⊗ T2. This final

system allows only sequences in line with the original system dynamics and the structure of

atomic propositions as governed by the specifications. Formally, it is given as A = (T1 ⊗

T2) × Bφi =(Q × S, q0 × S0, δA, FA)where (qj, sl) ∈ δA((qi, sk)) iff (qi, qj). In other words,

A encodes the system dynamics of T (where T = T1 ⊗ T2) and the specification contained

in φi. Another way of thinking of it is that the Büchi automaton generated by φi is a kind

of high-level controller for the system T . Acceptable runs of A are thought of as output

behavior.

2.2.5 Satisfying Example Runs

Under the final specification φ1, an accepted sample of system behavior is given as follows:

{(Minimal1, Obtuse1), (Minimal2, Acute2)}, {(Minimal1, Acute1), (Minimal2, Obtuse2)},

{(Minimal1, Even1), (Minimal2, Obtuse2)}, {(Tight1, Acute1), (Tight2, Obtuse2)},

{(Tight1, Acute1), (Tight2, Obtuse2)}, {(Tight1;Even1), (Tight2, Acute2)}, ...

(2.2.2)
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Under the final specification φ2, an acceptable sample of system behavior is given by:

{(Minimal1, Obtuse1), (Minimal2;Acute2)}, {(Tight1, Obtuse1), (Tight2, Even2)},

{(Loose1, Acute1), (Loose2, Even2)}, {(Tight1, Acute1), (Tight2, Even2)},

{(Loose1, Obtuse1), (Loose2, Acute2)}, ...

(2.2.3)

Under the final specification φ3, an accepted sample of system behavior is given by:

{(Minimal1, Obtuse1), (Minimal2;Acute2)}, {(Minimal1, Acute1), (Minimal2, Obtuse2)},

{(Tight1, Acute1), (Tight2, Obtuse2)}, {(Loose1, Acute1), (Loose2, Obtuse2)}, ...

(2.2.4)

More complex formations depend on further generalizations of the flocking primitives. For

example, one state may be where the agents form a more general kinematic chain structure,

or a circle and it may have the labels ‘circle,’ ‘concave,’ and ‘convex.’

Summary In this chapter, sequential moving machine representation for robots has been

investigated. For this purpose, inspiration has been derived from choreography and human

movement sequencing Section 1.1. Furthermore, a tool from formal theory, LTL, has been

used to achieve high-level movement objectives. As an example, high-level controller has been

designed for flying robots in plane to ensure safety properties and the formation patterns.
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Chapter 3

Embodied Movement Inspired
Bipedal Robot Design and Control

In Section 1.2.3, three key movements have been identified for human walking. These three

movements are: Thigh Lift, Forward Pelvic Shift, and Lateral Pelvic Shift. In this chapter,

another application of high-level movement analysis now inspired from human walking is

studied. A bipedal robot design is presented that closely maps these three basic movements.

First, an overview of state-of-the-art bipedal robots is given. Then, the proposed design

is discussed in detail with its simulated walking results. Furthermore, a simplified planar

version of the proposed design is analyzed by mathematically modeling it and generating a

stable walking gait using feedback linearized control input.

3.1 Prior Gait Strategies in Bipedal Robots

Bipedal robots have been a focus of scientific research for quite some time now because

of their role in easily traversing complex terrain and human-built environments. The first

dynamic bipedal robot built [29] was a simple, passive structure built for efficient walking.

Today, more complex control strategies are being used for actuated bipedal walking. In these

examples, the process becomes a sequencing problem with an effort on keeping the center of

mass inside a region where the structure does not tip over. However, greater energy gains

can be made if the center of mass leaves this region.

In this way, legged robots can be divided into two main categories: statically stable

robots and dynamically stable robots. Statically stable robots have stability dependent on

the posture and can be made stable by maintaining a particular posture. Examples of this

include a number of two legged robots (ASIMO [30], NAO [31]). They are designed to keep
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their so called zero moment point inside the polygon made by their feet. Dynamically stable

robots on the other hand have to be in constant motion to keep themselves from falling.

Examples include MABEL [32], AMBER [33], MARLO [34]. Such robots use their structure

and feedback control system to enter a stable walking cycle. In Fig. 3.1, related examples

are given.

In the design of dynamically stable robots, roboticists have been trying to mimic the

human beings. This effort has been made to avail the benefits of this specific design to achieve

efficiency and a number of other objectives. However, the focus has always been on the

articulation of legs in the resulting designs. The role of core (pelvis) in humans has not been

mimicked as frequently, particularly for the gait of bipedal robots. In [35], we have presented

design of a biped robot that uses core as a central role player in movement generation and

gives us a capability to design different set of gaits by changing a few parameters. This design

is motivated by basic movement actions enumerated in Laban/Bartenieff Movement Studies

(LBMS) and is reviewed briefly in this paper. The design shows promise for combining the

forward and lateral motion of the human core as well as the thigh lift in a very simple bipedal

walker. However, detailed dynamic modeling is needed to derive a robust controller.

A planar biped model was presented in [36]. The biped model had three joints, all of

them being revolute. The robot used feedback linearization to reduce the system to a simpler

zero dynamics manifold. A minimization problem was solved to find the right set of outputs

for actuated joints to achieve a stable gait. Later on, there was introduced 5 link planar

model [32] and then even further, 3D biped [34] was designed and controlled by the same

approach. There are similar models in plane as in [33] where a set of outputs is derived from

motion capture data. It is claimed that the resulting gait is most similar to human walking

as the reference signal is derived from the human motion itself.

Our contribution in this pool of work is also in deciding the right set of reference/output

signals. However, we are deriving these outputs from movement theory rather than external

measurements. In particular we use the Bartenieff Basic Six, which state that for human
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walking three motion primitives (Forward Pelvic Shift, Lateral Pelvic Shift and Thigh Lift)

are needed. We argue that an exterior understanding of human walking can not be relied fully

for executing an anthropomorphic movement, rather it has to be rooted in the understanding

of human movement from a point of view like that of Bartenieff.

For implementing the idea of locomotion in terms of basic movements, the bipedal robot is

being actuated by the core of a robot defining it as a function of the basic human movements.

In the robotics literature, it has also been noted that the major factors important for human

walking included Pelvic Tilt, Pelvic Rotation, Lateral Pelvic Displacement [37]. These are a

bolstering variation on those that have been identified in Bartenieff’s Basic Six movements.

This idea has been explored further in the bipedal robots in [38]. It has been observed

that actuation in torso is necessary for a stretched leg walking strategy [39]. Our idea is to

develop a platform that will produce analogs of these selected movements.

3.2 Bipedal Robot Design with Core-located

Actuation

In this section, we present design of an under-actuated walker robot satisfying based on the

ideas of previous section. For the proof of concept, it can execute the movements discussed

in the previous section mainly by a single point of actuation close to the center of mass, or

core. Although the legs are also actuated, core action is essential to generate the locomotion.

Our design, shown in Figs. 3.2 and 3.3, has a base containing our core actuator part with

the two legs connected to this base structure. The distinguishing feature of the design is that

it is parameterized by three basic movement primitives and allows for forward movement.

The prototype designed has three degrees of freedom. Two of them are in the sagittal

plane (xz-plane), parallel to the direction of travel (x-axis). The third one is constituted by

the rocking motion of the tray in the coronal plane (yz-plane), perpendicular to the direction

of travel. A horseshoe channel is attached to a single actuator which tips the channel up and
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(a) Examples of statically stable biped robots: ASIMO (left), CHIMP
(middle) and NAO (right). For these robots, stability can be achieved wile
keeping a particular posture.

(b) Examples of dynamically stable biped robots: AMBER (left), MABEL
(middle) and MARLO (right). For these robots, stability is possible only
when they are in motion.

Figure 3.1. Examples of static and dynamic biped robots

down, with respect to the ground; the channel is attached to a platform which is attached

to the two legs. These legs are actuated for rotation about the pitch axis (y-axis).

The physical morphology of the platform maps directly to the three different movements

enumerated in the previous subsection. As the length l of each channel increases, extending

the edges of the horseshoe shape, a more intense Thigh Lift is caused as the legs can traverse

longer angular distance. As the central actuator tips the platform up and down (expressed

by parameter θ), a more dramatic Forward Pelvic Shift occurs as the cosine of the force

exerted by the mass sliding through the platform increases. Finally, as the radius of the
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circle inscribing the curved portion of the horseshoe (that can be related to parameter w)

increases, a more dramatic Lateral Pelvic Shift will occur, shifting the weight farther over

each leg, side-to-side.

3.2.1 Design of Core-located Actuator

The actuator structure is made up of a curve shaped tray with a metallic bob on it that is

free to move. This structure can be moved about the pitch axis with the help of a servo

motor attached to its bottom. By the movement of the bob in one of the two paths of the

tray, weight is shifted to the respective side. Because of this motion, center of mass of the

whole robot shifts in that direction. This imitates the forward and lateral pelvic shift in a

single move. As shown in Fig. 3.2, the dimensions of this tray structure and the angle it

3.80
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w

3.80
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Figure 3.2. Perspective view of the tray used for containing the rolling mass. By changing
out the form of this tray (or varying the parameters l, w, and θ listed above), we can
change the style of the gait.

traverses map to the three movement primitives explained in the previous section. While

the lateral span of the tray, w, affects the Lateral Pelvic Shift, similar effect is had on the

Forward Pelvic Shift by the length l of the tray. Thigh Lift is achieved by the leg motors but

their rotation is dependent upon the lateral span and length of the tray. To create different

gaits, we change the design of the tray and fix it on top of the biped easily with the help of

rail design at the bottom of the tray.
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3.2.2 Design of Support Structure

The walker platform legs are connected to the platform beneath the tray and are actuated

by motors. Locomotion is achieved by moving the legs in an out of phase manner. In this

manner, as one of the legs moves forward, other follows it with the whole robot. In this way,

with a carefully selected initial condition for the metallic bob and the walker legs, a walking

sequence continues successfully. The rounded surfaces forming the bottom of walker legs

allow for slight yaw adjustments that accommodate the lateral pelvic shift without requiring

more complex design.

Figure 3.3. Postures of the biped robot at three instances of gait cycle. These show
behavior of the weighted mass in grey as facilitated by the tray, which is rendered in blue.
The three motor positions are drawn in orange.

3.2.3 High- and Low-level Control Strategies for Proposed

Design

By separating the control of the robot into two levels, room is made for the ability to map

movements executed on a radically different platform (the human body) to our simple walker

device. At high-level, a simultaneous sequence of three of Bartenieff’s Basic Six is desired:

Lateral Pelvic Shift towards right; Forward Pelvic Shift; Thigh Lift for left leg; Lateral Pelvic

Shift towards left; Forward Pelvic Shift; Thigh Lift for right leg; and back to Lateral Pelvic

Shift towards right. A lateral shift of the center of gravity from the centerline of the platform
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is generated from Lateral Pelvic Shift; a forward shift of the center of gravity in the sagittal

plane of the platform is resulted from Forward Pelvic Shift; and a movement to catch the

falling center of gravity is resulted from Thigh Lift.

In order to orient these motion primitives to our platform, movement planes are aligned with

the platform and a mechanism is identified for shifting the center of gravity. The movement

in parabolic path of the center of mass of the robot is the heart of the locomotion and control

strategy. This movement is controlled by the motor attached to the bottom of the tray. This

motor rotates the tray for moving the metal bob. The platform translations in this table

High-level Primitive Low-level Translation

Lateral Pelvic Shift, right ball rolls right across lateral channel of tray
Forward Pelvic Shift ball rolls down right channel of tray
Thigh Lift, left left leg is lifted as tray actuates up
Lateral Pelvic Shift, left ball rolls left across lateral channel of tray
Forward Pelvic Shift ball rolls down left channel of tray
Thigh Lift, right right leg is lifted as tray actuates up

Table 3.1. This table provides a mapping between the high-and low-level aspects of the
control strategy. Just like flocks of aerial robots in Section 2.2, abstract movement schemes
have been identified for a bipedal robot. A high-level perspective like this can be
interesting to generate more complicated movements as discussed in Section 2.2.

correspond to a particular set of oscillatory inputs for the three motors (two motors for the

legs and one motor for the tray) in use on the platform.

3.2.4 Simulation of Walking

The platform and its motion was simulated in Coppelia Robotics Virtual Robotics Experi-

mentation Platform (V-REP) 3.2 under the PRO EDU license. A complete list of objects,

their parameters, and key lines of the control logic running the simulation is included below.

• Tray

1. Bounding Box: 0.03 m x 0.17 m x 0.24 m

2. Mass: .348 kg

• Platform
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1. Bounding Box: 0.01 m x 0.18 m x 0.18 m

2. Mass: 1 kg

• Tray Motor

1. Angular Movement Range: 60 deg

• Legs

1. Bounding Box: 0.05 m x 0.20 m x 0.21 m

2. Mass: 0.250 kg

• Metal Ball

1. Diameter: 0.05 m

2. Mass: 0.454 kg

• Tray Motor Control

Rotate between angular position 7 deg and -7 deg

• Leg Motors Control

Right Leg: Rotate between angular position 2 deg and -2 deg

Left Leg: Keep a 180 deg phase shift from Right leg

Figure 3 shows snapshots of results of this simulation. The results of simulation show

repeatable forward progress of the robot (see Fig. 3.5) via a shifting center of mass (see

Fig. 3.4). These results can be further improved by introducing closed loop control motor

signals.

3.3 Dynamics and Control of Simplified Planar

Version of Proposed Design

In this section we discuss a simplified version of the biped design given in Section 3.2 and

implementation in light of the strategies chalked out in 3.2.3. This comprises of a math-

ematical model of the resulting structure and feedback control design for a stable walking
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Figure 3.4. This plot shows how the movement shown in Fig. 3.5 is produced by the
oscillatory behavior of the ball in the tray.It is found that the center of mass deviates
almost 26 % of its size in the lateral manner and 22 % of its size in the forward direction.
Oscillations of y-coordinate show that there is a Lateral Shift of Mass. Oscillations of
x-coordinate show that there is a Forward Shift of Mass.

Figure 3.5. As a result of the Forward and Lateral Pelvic Shift, robot starts moving. This
figure shows that the robot is making progress in the forward direction i.e. x-axis. Off axis
movement (corresponding to the lateral pelvic shift) is documented in the y direction.
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gait. To test the idea mathematically, and design feedback controllers for a stable walking,

a planar simplification of the model has been developed. The idea is to investigate the sta-

bility in the planar model first before taking it to three dimensions. This section describes

modeling of the planar walker, following closely to the methods presented in [40]. The mod-

eling will cover two main models for the walker; swing phase and strike phase. Swing phase

model governs the movement of free leg in taking the step until it strikes the ground surface.

Strike phase model takes over at that point and governs the instantaneous changes in joint

positions and velocities. Together, these two form a hybrid system as shown in Fig. 3.7.

3.3.1 Components of Planar Biped Model

The structure of the planar robot is as if the original robot is viewed in the sagittal plane.

In that way, the two legs and a mass on top of them is seen. The legs are considered to have

point masses at their centers of mass. The pelvis (or core) is a piston mechanism moving

forward and backward. For simplicity, it is assumed that the orientation of pelvis is fixed at

right angle with the vertical. Leg that is touching the ground during a step will be called

stance leg and the leg off-ground will be termed swing leg. Clearly, the planar case captures

only the Forward Pelvic Shift. Such a design definitely poses leg scuffing but it is assumed,

as in [41], that through some external actuation, the swing leg moves in the coronal plane

and comes back in the sagittal plane at the time of impact only.

3.3.2 Swing Phase Dynamics

Using the method presented in [40], the robot has been modeled for the swing phase and

strike phase separately. In the swing phase, the robot acts as a three link robot manipulator

fixed at the end of stance leg. The Euler-Lagrange model can be obtained by calculating

the Lagrangian Ls = Ks − Ps first and then using the following expression to get the
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Figure 3.6. Illustration of 3D robot design simplified to planar model. This model includes
a mapping of the Forward Pelvic Shift (dtcos(θ)), and Thigh Lift (φ) in the 3D model to
the planar model as dt and qsw, qst respectively. Mass of each supporting leg is assumed to
be centered at center of respective link. The mass of pelvis or core is a point mass sitting
on top of legs. In the simplified planar model, it is assumed that the mass can deflect in
the sagittal direction by the help of a piston joint. The leg joint angles are considered
positive in the clockwise direction.

mathematical model form:

d

dt

∂Ls
∂q̇s
− ∂Ls
∂qs

= Γs, (3.3.1)

As a result, we obtain the equations of motion in the following form:

Dsq̈s + Cs(qs, q̇s) +Gs = Γs (3.3.2)

where qs = (qsw, qst, dt) is the set of generalized coordinates, Ds is the inertial matrix, Cs

represents the Coriolis and Centrifugal terms, and Gs is for the gravity effect representation.

The modeling matrices of Equation 3.3.2 are as follows:

Ds =


Mtr

2 + (mr2)5/4 −(mr2/2)c12 Mtrc1

−(mr2/2)c12 (mr2)/4 0

Mtrc1 0 Mt

 , (3.3.3)
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where c1 = cos(qsw), c12 = cos(qsw − qst) and

Cs =


0 C12 0

C12 0 0

−Mt ˙qswrsin(qsw) 0 0

 , (3.3.4)

where C12 = − ˙qst(mr
2)sin(qsw − qst))/2 and

Gs =


−grsin(qsw)(Mt + 3m/2)

(gmrsin(qst))/2

0

 , (3.3.5)

Γs = Bu =


1 0 rcos(qsw)

0 1 0

0 0 1



τ1

τ2

F

 . (3.3.6)

The variable Γs represents the generalized forces acting on the robot:

Γs =


τ1 + Frcos(qsw)

τ2

F

 = Bu (3.3.7)

Here, τ1 and τ2 are the joint torques for the two legs, F is the force applied by the piston

mechanism in pelvis to push the mass. The above mathematical model can be written in

the state space form as follows:

ẋs :=

 q̇s

D−1
s (−Csq̇s −Gs +Bu)

 (3.3.8)
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3.3.3 Strike Phase Dynamics

The swing model works alright until the swing leg strikes the ground. Resultantly, an

instantaneous change in joint angle and joint velocities is observed. An impact model is thus

obtained for the robot in double support phase. Using Euler-Lagrange method, we can find

following mathematical model for the robot when both of the legs are touching ground:

De(qe)q̈e + Ce(qe, q̇e)q̇e +Ge(qe) = Γe (3.3.9)

where qe = (qsw, qst, dt, p
x
hip, p

y
hip) is the state variable, De, Ce and Ge are the matrices for

inertial, Coriolis and Centrifugal, and the gravity effect terms, respectively. These matrices

are given as follows:

De =

D11 D12

0 D22

 (3.3.10)

D11 =


(r2(4Mh + 4Mt + 5m))/4 −(mr2cos(qsw − qst))/2; Mtrcos(qsw)

−(mr2cos(qsw − qst))/2 (mr2)/4 0

Mtrcos(qsw) 0 Mt

 , (3.3.11)

D12 =


(rcos(qsw)(2Mh + 2Mt + 3m))/2 −(rsin(qsw)(2Mh + 2Mt + 3m))/2

−(mrcos(qst))/2 (mrsin(qst))/2

Mt 0

 , (3.3.12)
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D22 =

Mh +Mt + 2 ∗m 0

0 Mh +Mt + 2 ∗m

 , (3.3.13)

Ce =

C11 0

C21 0

 , (3.3.14)

C11 =


0 −( ˙qstmr

2sin(qsw − qst))/2 0

( ˙qswmr
2sin(qsw − qst))/2 0 0

−Mt ˙qswrsin(qsw) 0 0

 , (3.3.15)

C21 =

−( ˙qswrsin(qsw)(2Mh + 2Mt + 3m))/2 ( ˙qstmrsin(qst))/2 0

−( ˙qswrcos(qsw)(2Mh + 2Mt + 3m))/2 ( ˙qstmrcos(qst))/2 0

 , (3.3.16)

Ge =

G1

G2

 , (3.3.17)

G1 =


−Mhgrsin(qsw)−Mtgrsin(qsw)− (3gmrsin(qsw))/2;

(gmrsin(qst))/2

0

 , (3.3.18)
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G2 =

 0

Mhg +Mtg + 2gm

 , (3.3.19)

Note that for modeling impact dynamics, we need position of a point on the robot (hip

in this case represented by (pxhip, p
y
hip) to determine the reaction forces at the swing leg end.

The variable Γe represents the generalized forces acting on the robot.

Γe =


τ1

τ2

F

+
∂dt
∂qe

F
0

+ δFext = Beu+ δFext (3.3.20)

where,

Be =


1 0 rcos(qsw)

0 1 0

0 0 1

 (3.3.21)

Here, Fext represents an external force applied on the structure. For stable walking, we

need the last swing leg to stop moving and come to rest, keeping its impact position. The

joint displacements are updated as follows:

q+
st = q−sw (3.3.22)

q+
sw = q−st (3.3.23)

d+
t = d−t (3.3.24)

where plus sign on top of quantities represents updated values and the negative sign shows

the previous values. As evident, the two leg joint angles simply change their roles while the

displacement from the hip remains the same. For stable walking, the last stance leg has

to start moving and acquire a joint velocity given by the following expression (derived by
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Figure 3.7. The stable walking of this simplified walker model can be represented as a
hybrid system. The system stays in the swing phase dynamics of continuous model until
the swing leg strikes ground at which instant the system state variables are updated and
returned to the swing phase model. As a result of this update, the right and left legs swap
their roles. Here fs = D−1

s (−Csq̇s −Gs) and gs = D−1
s B and xs = [qsw qst dt ˙qsw ˙qst ḋt]

T .

solving constrained dynamics on Eq. 3.3.9):

De(qe) −JT

J 0


q̇+

FI

 =

De(qe)q̇e
+

0

 , (3.3.25)

where J is the Jacobian of the foothold position as it strikes the ground, and FI is the impact

force from the ground. As a result, the robot shifts from the swing phase dynamics model

to the strike phase dynamics model instantaneously. In that instant, the joint angles and

velocities are updated and fed back to the swing phase dynamics as the new initial states.

These dynamics form a hybrid system as shown in Fig. 3.7.

In the simulation environment, the detection of impact is done by setting the events

options in the differential equation solver of MATLAB.

3.4 Control Design for Stable Walking Gait

The control system for this robot has been designed using the concept of virtual constraints

detailed in [40]. The stable walking controller is generated through an input-output con-

troller. We have extended the basic planar walker to include an actuated core, which propels

the forward motion of the platform. In order to generate desired walking motion, we define

35



an output function:

ys = h(qs)− hd(θs), (3.4.1)

The output function given in Equation 3.4.1 is as follows:

ys =


dt − hdt (s, αt)

qst + qsw − hdst(qsw, αst)

qsw − qdsw

 , (3.4.2)

where θs is a strictly monotonically increasing function, at least for a gait cylce, of the joint

configuration variables (in our case, that is qsw, the joint angle of the swing leg).

hdst(qsw, αst) = (a1 + a2qsw + a3q
2
sw + a4q

3
sw)(qsw − qdsw)(qsw + qdsw)), (3.4.3)

with

αst = [a1 a2 a3 a4]T = [−2.27 3.26 3.11 1.89]T , (3.4.4)

and hdt (s, αt) is a Bézier polynomial of parameters [0.25 0.1 0 0.1 0.25]T with s representing

the normalized qsw so that its value stays within interval [0, 1]. A good reference for con-

structing output trajectory based on Bézier polynomials is [42]. A feedback linearization

technique is used that drives y asymptotically to zero, thus achieving h(qs) → hd(θs). For

this reason, such an output function is also called a virtual constraint.

There is a range of possible virtual constraints that can define a particular walking gait.

A virtual constraint can be comprised of more than one trajectories for different phases in

walking [43] or a single polynomial trajectory. In our case, the output function Eq. 3.4.2 is

inspired by Forward Pelvic Shift and Thigh Lift from Bartenieff’s Basic Six. As shown in

Fig. 3.8, a periodic forward shift of pelvis is introduced by designing output hdt for variable
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Figure 3.8. Desired trajectory of pelvis against the swing leg joint angle over 5 gait cycles.
Namely, this plot shows dt versus qsw. This additional virtual constraint extends the model
presented in [35] to include a point of actuation located near the center of mass. The two
other virtual constraints used are same as those for the planar model in [36].

dt i.e. the linear displacement of torso mass. The outputs for other two variables similarly

correspond to the Thigh Lift. The leg joint angles are implied to mirror each other and

thus follow a symmetric pattern. To meet the virtual constraints, following control signal is

generated:

u = (LgLfh)−1(v − L2
fh) (3.4.5)

This control signal ensures that the model remains on a surface defined by the virtual

constraints. The Lie derivatives LgLfh and L2
fh are for linearizing the model while the

signal v actually makes the variables approach their values in the virtual constraint.

Here, Lie derivatives are computed as follows to make the control signal:

Lfh(q, q̇) =

[
∂h
∂q

∂h
∂q̇

] q̇

D−1(−Cq̇ −G)

 =
∂h

∂q
f(x) (3.4.6)
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L2
fh(q, q̇) =

[
∂
∂q

(∂h
∂q
q̇) ∂h

∂q

] q̇

D−1(−Cq̇ −G)

 (3.4.7)

LgLfh(q) =

[
∂
∂q

(∂h
∂q
q̇) ∂h

∂q

] 0

D−1B

u =
∂h

∂q
D−1Bu (3.4.8)

One possible feedback signal for v is explained in [44] and called Bernstein-Bhat con-

troller, is as follows for our case:

v = Ψ(y, ẏ) :=
1

ε2


ψ1(y1, εẏ1)

ψ2(y2, εẏ2)

ψ3(y3, εẏ3)

 , (3.4.9)

where, for i = 1, 2, 3

ψi(yi, εẏi) := − sgn(εẏi)|εẏi|α − sgn(φi(yi, εẏi))|φi(yi, εẏi)|
α

2−α , (3.4.10)

0 < α < 1, and

φi(yi, εẏi) := yi + (
1

2− α) sgn(εẏi)|εẏi|2−α, (3.4.11)

where ε > 0 decides the settling time of the controller. The signal v in Eq. 3.4.9 in

closed loop with the system becomes continuous, which makes the origin of linearized system

globally finite-time stable. Furthermore, settling time depends continuously on the initial

conditions [36].
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3.4.1 MATLAB Simulation of Walking

The control implementation and analysis have been done by modifying the MATLAB codes

of Eric Westervelt 1. This code was designed for a three link planar biped mode with un-

actuated torso, analyzed in [36]. This model has been extended to include our actuated pelvis

by adding a third virtual constraint, updating the modeling matrices to reflect the analysis in

Equations 3.3.2 and 3.3.9, and selecting successful initial conditions. The model parameters

used are; length of leg = r =1 m; mass of leg = m = 5 kg; mass of torso = Mt =10 kg. Initial

values for joint displacements and joint velocities are; swing leg joint angle = qsw=-0.3927

rad; stance leg joint angle = qst=0.3927 rad; torso mass displacement = dt =0.3332 m; swing

leg joint angular velocity= q̇sw=0.5772 rad/s; stance leg joint angular velocity = q̇st=-0.7332

rad/s; torso mass linear velocity = ḋt =2.3272 rad/s; controller parameters in Eq. 3.4.11,

ε = 0.2, and α = 0.9

The initial conditions we picked, have not been designed using formal techniques, and can

be improved but periodic orbits of state variables indicates that the model is stable. Joint

angles and joint velocities are shown in Fig. 3.9 for stable walking. In these plots, a repeating

pattern can be seen for all the joint variables. Associated control signals, outputs and ground

reaction forces are given in Fig. 3.10. These quantities are computed in Eqs. 3.3.25, 3.4.1

and 3.4.5, respectively.

Summary In this chapter, another application of high-level movements analysis was stud-

ied where a robot design was presented which closely mapped the key movements identified

in human walking from Bartenieff’s Basic Six. Furthermore, mathematical model and con-

trol design for a simplified planar version of proposed robot design has been investigated

as well which captures Forward Pelvic Shift and Thigh Lift. A design based on high-level

movement behaviors can be used to generate complex movement behaviors. For example,

1http://web.eecs.umich.edu/~grizzle/biped_book_web//code/WGCCM_three_link_walker_

example.zip
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(a) Joint position trajectories for the three joints, qsw, qst, dt, over 5 gait cycles under the control
input in Equation 3.4.5, with initial conditions [−0.3927 0.3927 0.3332]T . These plots show
smooth and repetitive shape evolution of the planar walker. Note that the “right” and “left” legs
switch between each cycle.

(b) Joint velocities for the three joints, qsw, qst, dt, over 5 gait cycles under the control input in
Equation 3.4.5, with initial conditions [0.5772 − 0.7332 2.3272]T .

Figure 3.9. Joint positions and velocities for the planar model.

as explained in Section 1.2.2, different age groups in humans have different walking styles

because of different pelvic shifts they have. With our design, execution of different walking

styles can be made possible by changing degree of pelvic shifts by choosing a different virtual

constraint and/or the actuator tray with different parameters.
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(a) Output, ys ∈ R3, which captures our tracking of the virtual constraints. The controller in
Equation 3.4.5 is constantly working to drive these to zero.

(b) Control signals for the planar walker model. Again, the torques plotted here are not associated
to the right or left leg but to the swing leg and the stance leg, which alternates in each gait cycle.

(c) This figure shows the ground reaction forces. Since this is a planar model, we have only
tangential and normal components. Positive normal forces indicate that the impact map was
designed correctly.

Figure 3.10. Outputs, control signals and ground reaction forces.
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Chapter 4

Current and Future Work

This work discusses applications of high-level movement analysis for robots. For this, one

application presented is about control of a group of flying robots for complex behaviors. For

this purpose, the robots have been modeled as transition systems with states representing

their orientation and position in the group. In another application, a bipedal robot design

has been presented using three basic movements in human walking identified from Barteni-

eff’s Basic Six. Furthermore, a simplified planar version of this proposed design has been

simulated with supporting mathematical formulation for a stable walking gait. This whole

line of work has inspired some more ideas, some of which we are currently working on and

plan to work on the rest in future. In this section, an overview of current and future work

along these thoughts is presented.

4.1 Platform-Invariant Control of Robot Platforms

This work motivates the idea of a movement primitive defined by leveraging LBMS cat-

egories. As described in Section 1.2.1, LBMS is a comprehensive framework for human

movement analysis. In a current project, we are building a framework for controlling robots

using these movement primitives. Since, LBMS is based on embodied human movement

parameters, a movement primitive based on it will be independent of any particular robot

platform. Thus, this framework will be able to execute a single movement primitive on

different robot platforms.

In the framework, two types of users are accommodated. A normal user will be able to

42



Figure 4.1. Overall architecture overview shows two sets of user parameters: one for a
typical user giving input in terms of LBMS parameters; Body, Space, Effort, and Shape,
and other for a designer or super-user that can specify how the architecture interprets and
create pre-filled primitives.

provide movement primitive in terms of LBMS parameters, Body, Space, Effort and Shape.

A ”super-user” will be able to tweak what these movement primitive options will mean for

the robot platform at hand. In Fig. 4.1, an overall view of this project is given. A platform-

invariant robot control framework can have a lot of applications as discussed below;

• Control of Multi-Agent Robot Teams In a search and rescue scenario involving a num-

ber of diffeomorphic team of robots, operator commands sent using these movement

primitives can be helpful as they would be automatically interpreted by each robot

for its own form without requiring operator to individually address every robot. This

can decrease latency in communicating the intent of operator for actual task and thus

improve the overall efficiency of the team.

• Design of Complex Movements A movement primitive based on embodied human move-

ment parameters, can be used to make more intuitive user control interfaces for operat-

ing robots. Development of such interfaces can play a part in addressing acceptability
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of robots by the wider community. As a result such a framework can be helpful in a

number of operator assisted robot control scenarios where it is hard to control robots

to achieve complex movements, putting lives or assets at risk.

4.2 Provable Stylized Walking from the Proposed

Design

For the proposed bipedal robot design in this work, there is currently no formal proof for

stable walking. For that goal, following future extensions can be made:

• Improvement in Design of Proposed Bipedal Robot From the present state of design, a

number of extensions are possible. For example, leg scuffing in the legs can be avoided

by incorporating the lateral pelvic shift or a knee in the leg design. Another one can be

three dimensional simplification of the tray design by modeling tray actuator in terms

of prismatic and revolute joints. One approach to study the design can be through a

moving mass design analogy. For a lighter overall design, soft muscle actuators can

be used in place of tray to shift the mass in lateral and forward directions. With

soft actuators, it will be possible to change the style of walking without replacing any

component as is the case for the present design. It will be possible to change the degree

of later and forward shift by changing the forces applied in respective directions on

mass.

• Investigation of Effect on Stability and Energy Efficiency In this work, a bipedal robot

design was presented that could map closely to the key movements involved in human

walking as identified from LBMS. However, role of these movements on other physical

properties like stability, and energy efficiency, has not been investigated. This may

be an interesting direction to pursue and if results are encouraging, it can help make

a case for having core-located actuation in the future humanoid and bipedal robot
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designs. Furthermore, optimization techniques under the constraints of walking can

be used to minimize torque and force spikes to investigate overall energy efficiency

4.3 Publications

As a result of the work done towards this thesis, following conference publications were

produced:

• Bobadilla, L., T. T. Johnson, and A. LaViers,“Verified Planar Formation Control

Algorithms by Composition of Primitives,” AIAA Guidance, Navigation, and Control

(GNC) Conference, AIAA Science and Technology Forum (SciTech), 2015.

• U. Huzaifa et al., “Embodied movement strategies for core-located actuation gait and

development of a particular platform,” in Proceedings of the IEEE International Con-

ference on Biomedical Robotics and Biomechatronics, Singapore, 2016

• U. Huzaifa and A. LaViers, “Control design for planar model of a core-located actuation

walker,” in Proceedings of the IEEE International Conference on Biomedical Robotics

and Biomechatronics, Singapore, 2016
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Appendix A

Codes

A.1 Planar Bipedal Robot Modeling and Control

% A MATLAB script to simulate a three -link , planar biped walker. This file

is associated with the book Feedback Control of Dynamic Bipedal Robot

Locomotion by Eric R. Westervelt , Jessy W. Grizzle , Christine

Chevallereau , Jun -Ho Choi , and Benjamin Morris published by Taylor &

Francis/CRC Press in 2007.

% Copyright (c) 2007 by Eric R. Westervelt , Jessy W. Grizzle , Christine

Chevallereau , Jun -Ho Choi , and Benjamin Morris. This code may be

freely used for noncommercial ends. If use of this code in part or in

whole results in publication , proper citation must be included in that

publication. This code comes with no guarantees or support.

% Eric Westervelt

%

% Modified by: Umer Huzaifa

% - Changed the orientation of torso by 90 degrees

% - Actuated Torso (core) mass with a prismatic force

% - Defined a new virtual constraint for the Torso (core) trajectory

% - Variables used:: th1 = Joint angle of swing leg; th2 = Joint

angle of stance leg; dt = Position of torso (core) from hip

%% ------------------------------------------------------------------

function [x]= sigma_three_link(omega_1_minus ,a)

% SIGMA_THREE_LINK Maps velocity of stance leg just before

% impact to state of the system just before impact.
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% [X] = SIGMA_THREE_LINK(OMEGA_1_MINUS ,A)

% Eric Westervelt

[dt_d ,th1d ,alpha ,epsilon ]= control_params_three_link;

a01=a(1); a11=a(2); a21=a(3); a31=a(4);

a02=a(5); a12=a(6); a22=a(7); a32=a(8);

th1=th1d;

dth1=omega_1_minus;

dt = (366* th1)/2401 + (3630* th1 ^2) /2401 - (600* th1 ^3) /2401 -

(3000* th1 ^4) /2401 + 817/9604;

dth2 = dth1 *(( th1 - th1d)*(a02 + a12*th1 + a22*th1^2 + a32*th1 ^3)

+ (th1 + th1d)*(a02 + a12*th1 + a22*th1^2 + a32*th1^3) + (th1 +

th1d)*(th1 - th1d)*(a12 + 2*a22*th1 + 3*a32*th1 ^2) - 1);

ddt = (366* dth1)/2401 + (7260* dth1*th1)/2401 - (1800* dth1*th1^2)

/2401 - (12000* dth1*th1^3) /2401;

x = [th1 ,-th1 ,dt ,dth1 ,dth2 ,ddt];

%% -----------------------------------------------------------------------

function [f_tan ,f_norm ]= stance_force_three_link(x,dx,u)

% STANCE_FORCE_THREE_LINK Calculate the forces on the stance

% leg during impact.

% [F_TAN ,F_NORM] = STANCE_FORCE_THREE_LINK(X,DX,U) are the

forces on the

% stance leg at impact.

[r,m,Mh ,Mt ,L,g]= model_params_three_link;

[dt_d ,th1d ,alpha ,epsilon ]= control_params_three_link;

th1=x(1); th2=x(2); dt=x(3);

dth1=x(4); dth2=x(5); ddt=x(6);

% De11 matrix

De11=zeros (3,3);

De11 (1,1)=(r^2*(4* Mh + 4*Mt + 5*m))/4;

De11 (1,2)=-(m*r^2* cos(th1 - th2))/2;

De11 (1,3)=Mt*r*cos(th1);

De11 (2,1)=-(m*r^2* cos(th1 - th2))/2;
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De11 (2,2)=(m*r^2) /4;

De11 (3,1)=Mt*r*cos(th1);

De11 (3,3)=Mt;

% De12 matrix

De12=zeros (3,2);

De12 (1,1)=(r*cos(th1)*(2*Mh + 2*Mt + 3*m))/2;

De12 (1,2)=-(r*sin(th1)*(2*Mh + 2*Mt + 3*m))/2;

De12 (2,1)=-(m*r*cos(th2))/2;

De12 (2,2)=(m*r*sin(th2))/2;

De12 (3,1)=Mt;

% De22 matrix

De22=zeros (2,2);

De22 (1,1)=Mh + Mt + 2*m;

De22 (2,2)=Mh + Mt + 2*m;

% Ce11 matrix

Ce11=zeros (3,3);

Ce11 (1,2)=-(dth2*m*r^2* sin(th1 - th2))/2;

Ce11 (2,1)=(dth1*m*r^2* sin(th1 - th2))/2;

Ce11 (3,1)=-Mt*dth1*r*sin(th1);

% Ce21 matrix

Ce21=zeros (2,3);

Ce21 (1,1)=-(dth1*r*sin(th1)*(2*Mh + 2*Mt + 3*m))/2;

Ce21 (1,2)=(dth2*m*r*sin(th2))/2;

Ce21 (2,1)=-(dth1*r*cos(th1)*(2*Mh + 2*Mt + 3*m))/2;

Ce21 (2,2)=(dth2*m*r*cos(th2))/2;

% Ge1 matrix

Ge1=zeros (3,1);

Ge1(1,1)=- Mh*g*r*sin(th1) - Mt*g*r*sin(th1) - (3*g*m*r*sin(th1))

/2;

Ge1(2,1)=(g*m*r*sin(th2))/2;

% Ge2 matrix

Ge2=zeros (2,1);
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Ge2(2,1)=Mh*g + Mt*g + 2*g*m;

% B matrix

B=zeros (3,3);

B(1,1)=1;

B(1,3)=r*cos(th1);

B(2,2)=1;

B(3,3)=1;

DD=inv((De12*inv(De22)).’*De12*inv(De22))...

*(De12*inv(De22)).’;

F=DD*(-(De11 -De12*inv(De22)*De12.’)...

*dx (4:6)+(De12*inv(De22)*Ce21 -Ce11)...

*dx (1:3)+De12*inv(De22)*Ge2 -Ge1+B*u);

f_tan=F(1);

f_norm=F(2);

%% -----------------------------------------------------------------------

function dx = f(t,x,a)

%% This is the system dynamics function

global t_2 torque y force

a = [0.512 0.073 0.035 -0.819 -2.27 3.26 3.11 1.89];

[D,C,G,B,H,LfH ,dLfH ,LgLfH] = dynamics_three_link(x(1:6) ,a)

Fx = inv(D)*(-C*x(4:6)-G);

Gx = inv(D)*B;

% Bernstein -Bhat controller (uses feedback linearization)

v =0.5* control_three_link(H,LfH);

% Used for controller that use feedback linearization

u = inv(LgLfH)*(v-dLfH*[x(4:6);Fx]);

dx (1:3) = x(4:6);

dx (4:6) = Fx+Gx*u;

dx = dx ’;

torque = [torque ; u.’];

t_2 = [t_2 ; t];

y = [y ; H.’];
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[f_tan ,f_norm] = stance_force_three_link(x(1:6) ,dx(1:6) ,u)

force = [force ; f_tan f_norm ];

%%

--------------------------------------------------------------------------

function [D,C,G,B,H,LfH ,dLfH ,LgLfH ]= dynamics_three_link(x,a)

% DYNAMICS_THREE_LINK Model of three -link biped walker model.

% [D,C,G,B,K,dV ,dVl ,Al,Bl,H,LfH ,DLFH] = DYNAMICS_THREE_LINK(X,

% A) is the three -link

% biped walking model. (x is of dimension 6)

[r,m,Mh ,Mt ,L,g]= model_params_three_link;

[dt_d ,th1d ,alpha ,epsilon ]= control_params_three_link;

th1=x(1); th2=x(2); dt=x(3);

dth1=x(4); dth2=x(5); ddt=x(6);

% D matrix

D=zeros (3);

D(1,1)=Mh*r^2 + Mt*r^2 + (m*r^2)/4 + m*r^2*cos(th1)^2 + m*r^2*sin(

th1)^2;

D(1,2)=- (m*r^2*cos(th1)*cos(th2))/2 - (m*r^2*sin(th1)*sin(th2))

/2;

D(1,3)=Mt*r*cos(th1);

D(2,1)=- (m*r^2*cos(th1)*cos(th2))/2 - (m*r^2*sin(th1)*sin(th2))

/2;

D(2,2)=(m*r^2*cos(th2)^2)/4 + (m*r^2*sin(th2)^2)/4;

D(3,1)=Mt*r*cos(th1);

D(3,3)=Mt;

% C matrix

C=zeros (3);

C(1,2)=dth2 *((m*r^2*cos(th1)*sin(th2))/2 - (m*r^2*cos(th2)*sin(th1

))/2);

C(2,1)=-dth1 *((m*r^2*cos(th1)*sin(th2))/2 - (m*r^2*cos(th2)*sin(

th1))/2);
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C(3,1)=-Mt*dth1*r*sin(th1);

% G matrix

G=zeros (3,1);

G(1)=- Mh*g*r*sin(th1) - Mt*g*r*sin(th1) - (3*g*m*r*sin(th1))/2;

G(2)=(g*m*r*sin(th2))/2;

% B matrix

B=zeros (3,3);

B(1,1)=1;

B(1,3)=r*cos(th1);

B(2,2)=1;

B(3,3)=1;

a01=a(1); a11=a(2); a21=a(3); a31=a(4);

a02=a(5); a12=a(6); a22=a(7); a32=a(8);

% Ha matrix

H=zeros (3,1);

H(1,1)=dt + (2*((10* th1)/7 - 3/7) ^3*((10* th1)/7 + 4/7))/5 + ((10*

th1)/7 + 4/7) ^3*((4* th1)/7 - 6/35) - ((10* th1)/7 - 3/7) ^4/4 -

((10* th1)/7 + 4/7) ^4/4;

H(2,1)=th1 + th2 - (th1 + th1d)*(th1 - th1d)*(a02 + a12*th1 + a22*

th1^2 + a32*th1^3);

H(3,1)=th1 - th1d;

% LfH matrix

% Generated Automatically by using Symbolic variables

LfH=zeros (3,1);

LfH(1,1)=ddt + dth1 *((12*((10* th1)/7 - 3/7) ^2*((10* th1)/7 + 4/7))

/7 + (30*((10* th1)/7 + 4/7) ^2*((4* th1)/7 - 6/35))/7 - (6*((10*

th1)/7 - 3/7) ^3)/7 - (6*((10* th1)/7 + 4/7) ^3)/7);

LfH(2,1)=dth2 - dth1 *((th1 - th1d)*(a02 + a12*th1 + a22*th1^2 +

a32*th1^3) + (th1 + th1d)*(a02 + a12*th1 + a22*th1^2 + a32*th1

^3) + (th1 + th1d)*(th1 - th1d)*(a12 + 2*a22*th1 + 3*a32*th1^2)

- 1);

LfH(3,1)=dth1;
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% dLfH matrix

% Generated Automatically by using Symbolic variables

dLfH=zeros (3,6);

dLfH (1,1)=-dth1 *((60*((10* th1)/7 - 3/7) ^2) /49 + (60*((10* th1)/7 +

4/7) ^2) /49 - (12*((10* th1)/7 + 4/7) *((200* th1)/49 - 60/49))/7 -

(30*((4* th1)/7 - 6/35) *((200* th1)/49 + 80/49))/7);

dLfH (1,4) =(12*((10* th1)/7 - 3/7) ^2*((10* th1)/7 + 4/7))/7 +

(30*((10* th1)/7 + 4/7) ^2*((4* th1)/7 - 6/35))/7 - (6*((10* th1)/7

- 3/7) ^3)/7 - (6*((10* th1)/7 + 4/7) ^3) /7;

dLfH (1,6)=1;

dLfH (2,1)=-dth1 *(2* a02 + 2*( th1 + th1d)*(a12 + 2*a22*th1 + 3*a32*

th1^2) + 2*a12*th1 + 2*(th1 - th1d)*(a12 + 2*a22*th1 + 3*a32*

th1^2) + 2*a22*th1^2 + 2*a32*th1^3 + (th1 + th1d)*(2* a22 + 6*

a32*th1)*(th1 - th1d));

dLfH (2,4)=1 - (th1 + th1d)*(a02 + a12*th1 + a22*th1^2 + a32*th1 ^3)

- (th1 + th1d)*(th1 - th1d)*(a12 + 2*a22*th1 + 3*a32*th1 ^2) -

(th1 - th1d)*(a02 + a12*th1 + a22*th1^2 + a32*th1^3);

dLfH (2,5)=1;

dLfH (3,4)=1;

% LgLfH matrix

% Generated Automatically by using Symbolic variables

LgLfH=zeros (3,3);

LgLfH (1,1) = -(29040* th1 + 9604*r*cos(th1) - 7200* th1^2 - 48000* th1

^3 + 1464) /(2401*r^2*(4* Mh + 2*Mt + 3*m - 2*m*cos (2* th1 - 2*th2

) - 2*Mt*cos(2*th1)));

LgLfH (1,2) = -(2928* cos(th1 - th2) + 9604*r*cos(2*th1 - th2) -

14400* th1 ^2* cos(th1 - th2) - 96000* th1 ^3* cos(th1 - th2) + 9604*

r*cos(th2) + 58080* th1*cos(th1 - th2))/(2401*r^2*(4* Mh + 2*Mt +

3*m - 2*m*cos (2* th1 - 2*th2) - 2*Mt*cos (2* th1)));

LgLfH (1,3)=1/Mt;

LgLfH (2,1) =(8* cos(th1 - th2) - 8*a02*th1 - 12*a12*th1^2 - 16*a22*

th1^3 - 20*a32*th1^4 + 4*a12*th1d^2 + 8*a22*th1*th1d^2 + 12*a32
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*th1^2* th1d^2 + 4)/(r^2*(4* Mh + 2*Mt + 3*m - 2*m*cos(2*th1 - 2*

th2) - 2*Mt*cos(2*th1)));

LgLfH (2,2) =(16* Mh + 8*Mt + 20*m + 8*m*cos(th1 - th2) - 8*Mt*cos(2*

th1) - 24*a12*m*th1^2*cos(th1 - th2) - 32*a22*m*th1^3*cos(th1 -

th2) - 40*a32*m*th1^4*cos(th1 - th2) + 8*a12*m*th1d ^2*cos(th1

- th2) - 16* a02*m*th1*cos(th1 - th2) + 16* a22*m*th1*th1d ^2* cos(

th1 - th2) + 24*a32*m*th1^2* th1d ^2*cos(th1 - th2))/(m*r^2*(4* Mh

+ 2*Mt + 3*m - 2*m*cos(2*th1 - 2*th2) - 2*Mt*cos(2*th1)));

LgLfH (3,1) =4/(r^2*(4* Mh + 2*Mt + 3*m - 2*m*cos(2*th1 - 2*th2) - 2*

Mt*cos (2* th1)));

LgLfH (3,2) =(8* cos(th1 - th2))/(r^2*(4* Mh + 2*Mt + 3*m - 2*m*cos(2*

th1 - 2*th2) - 2*Mt*cos(2*th1)));

%%

--------------------------------------------------------------------------

function [v]= control_three_link(H,LfH)

% CONTROL_THREE_LINK Calculate the control signals.

% [V] = CONTROL_THREE_LINK(X,H,LFH) is the control for the

% feedback linearized biped walking model.

[dt_d ,th1d ,alpha ,epsilon ]= control_params_three_link;

% LfH scaling

LfH=epsilon*LfH;

% phi fcns

phi1=H(1) +1/(2- alpha)*sign(LfH (1))*abs(LfH (1))^(2- alpha);

phi2=H(2) +1/(2- alpha)*sign(LfH (2))*abs(LfH (2))^(2- alpha);

phi3=H(3) +1/(2- alpha)*sign(LfH (3))*abs(LfH (3))^(2- alpha);

% psi fcns

psi(1,1)=-sign(LfH(1))*abs(LfH(1))^alpha ...

-sign(phi1)*abs(phi1)^( alpha/(2- alpha));

psi(2,1)=-sign(LfH(2))*abs(LfH(2))^alpha ...

-sign(phi2)*abs(phi2)^( alpha/(2- alpha));

psi(3,1)=-sign(LfH(3))*abs(LfH(3))^alpha ...
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-sign(phi3)*abs(phi3)^( alpha/(2- alpha));

% calculate control

v=1/ epsilon ^2*psi;

%%

--------------------------------------------------------------------------

function [dt_d ,th1d ,alpha ,epsilon ]= control_params_three_link(t)

%control_params_three_link.m

%Control parameters for three -link legged biped.

dt_d = 0.25;

th1d=pi/8; % impact occurs with walking surface

alpha =0.9;

epsilon =0.2;

%%

--------------------------------------------------------------------------

function [value ,isterminal ,direction] = events(t,x)

%% Locate the time when critical angle of stance leg minus stance leg

angle

%% passes through zero in a decreasing direction and stop integration.

persistent control_call_cnt

if isempty(control_call_cnt) || (t == 0)

control_call_cnt = 0;

else

control_call_cnt = control_call_cnt + 1;

end

if 1

[dt_d ,th1d ,alpha ,epsilon] = control_params_three_link(t);

[r,m,Mh,Mt,L,g] = model_params_three_link;

value (1) = th1d -x(1);

% when stance leg attains angle of th1d

value (2) = r*cos(x(1)) -0.5*r;
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% hips get too close to ground --kill simulation

isterminal = [1 ,1]; % stop when this event

occurs

direction = [-1,-1]; % decreasing direction

detection

else % no events

value =1;

isterminal =1;

direction =1;

end
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