
© 2016 Ayush Jain

TOWARDS OPEN-ENDED CROWD-POWERED DATA
PROCESSING: A CASE STUDY OF CLUSTERING AND

COUNTING

BY

AYUSH JAIN

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Professor Aditya G. Parameswaran

Abstract

Due to the widespread use and importance of crowdsourcing in gathering training data
at scale, the data management community has devoted its efforts in understanding and
optimizing fundamental primitives like filters and joins. These primitive boolean oper-

ations, where the human responses come from a small, finite space of possible answers,
are inadequate for a number of data analysis tasks, especially those involving images,
videos and maps. There is, thus, a need for open-ended crowdsourcing in order to
get more fine-grained information from humans that can be used in developing sophis-
ticated AI systems. In this thesis, we study two popular open-ended crowdsourcing
problems. The first, clustering, is the problem of organizing a collection of objects
(images, videos) by allowing workers to form as many clusters as they would like and
organize items across them. The second, counting, is the problem of counting objects
in images. In this thesis, we develop models to reason about human behavior for both
problems, and use these models to design provably cost-efficient algorithms that pro-
vide high-quality results, as compared to currently available approaches.

ii

To my parents, who taught me to always do my best.

iii

Acknowledgments

In the first place, I’d like to express my gratitude to Aditya Parameswaran for being a
wonderful mentor and not just an advisor. Aditya is a clear thinker and has the ability
to simplify even the most convoluted ideas and problems — I invariably left every
meeting with simple insights (even from my half-baked ideas!) and clear directions to
explore. In addition, Aditya has always been available for advice, be it job hunting or
even exploring the Urbana-Champaign area. I have gained a lot from my interactions
and time with Aditya – his dedication and commitment to work has been inspiring and
will stay with me for a long time. I am sure I have a lot more to learn from him.

I’d also like to thank my collaborators – Hari Sundaram, Jennifer Widom and Dan
Roth – for their insightful comments and stimulating discussions over the last two years
that have helped make this thesis richer.

I have also had the pleasure of collaborating with other students who made working
on these problems more fun and rewarding. I’d like to thank Akash Das Sarma, Joon
Young Seo, Karan Goel and Andrew Kuznetsov.

I’d also like to thank other members of the group - Tarique Siddiqui, Sajjadur Rah-
man, Silu Huang, Yihan Gao, Vipul Venkataraman, Liqi Xu, Stephen Macke, Himel
Dev, among many others - for stimuating intellectual conversations over lunch and
coffee.

My heartfelt gratitude to my parents and family for encouraging me to aim higher.
Their support and encouragement over the years has been the greatest gift I have re-
ceived.

Lastly, to Aparna, for everything.

iv

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

CHAPTER 1 Introduction . 1

CHAPTER 2 ORCHESTRA: Crowd-powered Consensus Organization of
Corpora . 3
2.1 Introduction . 3
2.2 Preliminaries . 5
2.3 Hierarchy Construction . 11
2.4 Extending the Hierarchy . 20
2.5 Categorization . 25
2.6 Experiments . 26
2.7 Related Work . 43
2.8 Summary . 45

CHAPTER 3 JELLYBEAN: Crowd-Vision-Hybrid Counting Algorithms . . . 46
3.1 Introduction . 46
3.2 Preliminaries . 49
3.3 Crowdsourcing-Only Solution . 51
3.4 Incorporating Computer Vision . 57
3.5 Experimental Study . 65
3.6 Related Work . 76
3.7 Summary . 78

CHAPTER 4 Conclusions . 79

REFERENCES . 80

APPENDIX A Worker Behavior in Counting 86

v

List of Tables

2.1 Quantitative Comparison of algorithms 30
2.2 Comparison of clusterings by workers on Amazon MTurk 32
2.3 The mean and variance of ORCHESTRA’s quality across 50 cluster-

ing HITs for each dataset . 38
2.4 Human Evaluation of organizations provided by algorithms for scenes

dataset . 41
2.5 Human Evaluation of organizations provided by algorithms for im-

agenet dataset . 42

3.1 Notations . 51

A.1 Validation of Interaction Model and Worker Error Model 88

vi

List of Figures

2.1 Distinction between concept trees and hierarchies 7
2.2 Clustering interface . 9
2.3 Categorization interface . 9
2.4 ORCHESTRA Workflow . 10
2.5 An example demonstrating our iterative workflow approach on the

Shapes dataset of Figure 2.1(f). 12
2.6 Variation in the probability of ORCHESTRA providing a clustering

based on SHAPE with the number of worker responses 16
2.7 (a) Plot showing sample size n vs. size of complete frontier f to

ensure δ expected coverage. (b) Plot showing lower bound on ex-
pected coverage vs. actual expected coverage over 1000 trials – the
dotted line is the 45 deg line. 22

2.8 Sample Images from the Datasets . 26
2.9 Qualitative Comparison of clusters provided by different algorithms

on scenes . 31
2.10 Qualitative Comparison of Clusters provided by different algorithms

on imagenet . 31
2.11 Hierarchy constructed by ORCHESTRA on the Scenes dataset 32
2.12 Performance of prior work with best-case future worker responses . . 33
2.13 Perspective Disambiguation for the shapes dataset 34
2.14 Clusters provided by ORCHESTRA on the Scenes dataset 35
2.15 Advantage of using kernel-based GENERATESAMPLE 35
2.16 Clustering: Performance of prior work with varying budget 37
2.17 ORCHESTRA’s robustness to variations in item sampling 39
2.18 ORCHESTRA’s robustness to variations in number of worker re-

sponses for the scenes dataset . 39
2.19 Effect of drill-down . 40

3.1 Counting: Challenging image for Machine Learning 47
3.2 Counting: Worker Error . 47
3.3 Segmentation Tree . 50
3.4 Biological image (a) before and (b) after partitioning 57
3.5 Articulation Point . 60

vii

3.6 Performance of algorithms for merging partitions 64
3.7 Images in the crowd dataset . 66
3.8 Counting Interface: Sample Image shown to workers 67
3.9 Counting Interface: Instructions shown to workers 68
3.10 Performance of Face-ML . 71
3.11 Counting Accuracy . 72
3.12 Cost of counting for the crowd dataset 72
3.13 Aggregating worker answers . 75

A.1 Worker errors on biological dataset 87
A.2 Worker Behavior . 88

viii

CHAPTER 1

Introduction

With the increasing intelligence of AI systems and advancements in hardware to enable
processing of big data, machine learning has shown tremendous promise in solving the
most pressing challenges of our time. It is thus no surprise that crowdsourcing has
evolved as the primary means to gather or generate annotated training data at scale for
these new applications. Starting from identifying spam emails to now scraping satellite
images to find a lost aircraft [1] and detecting cancer in tissue images [2], crowd-
sourcing applications have witnessed a manifold increase even in its nascent stage of
development.

Over the last few years, researchers in crowdsourcing have made rapid progress to
meet the demands posed by evolving applications. As a result, the community has now
developed optimized algorithms for fundamental tasks like filters and joins [3, 4, 5, 6, 7,
8]. These works have striven to provide accurate answers while keeping costs low, for
basic tasks where human responses are derived from a small space of possible answers.
We call these boolean operators, as natural analogs to computer-like operators.

These boolean operators, while being easy to abstract and develop algorithms for,
do not make the best use of human time or ability. As an example, consider the task of
organizing a collection of images. Current state-of-the-art techniques only allow hu-
mans to compare two images and make a judgement about whether they are similar or
not. The restriction of looking at only two images does not completely utilize humans
ability to look at a collection of images and identify different themes in the collection,
thereby organizing them better. Furthermore, by providing humans with the ability to
organize images into clusters, humans can provide us more information in lesser time
through smaller number of tasks.

This warrants the study and development of open-ended crowdsourcing, where hu-
mans perform tasks where their responses do not necessarily come from a small, finite
set of possibilities. In addition to making the best use of human ability, open-ended
crowdsourcing is also relevant in present context. One, our studies have shown that a
significant fraction of tasks – 47% of the tasks on images and text – on a typical crowd-
sourcing platform are open-ended. Two, as machine intelligence strives to come closer
to human intelligence, it must be trained on data incorporating fine-grained human
reasoning instead of coarse-grained machine responses.

The goal of this thesis is to study two popular open-ended crowdsourcing applica-
tions, and for each (a) develop formalism and characterize open-ended operators, and

1

(b) design algorithms that are cost-efficient while providing provably accurate answers.
Our first application, motivated by the example above, is clustering, i.e, the problem

of organizing a collection of objects (images, videos) by allowing workers to form as
many clusters as they would like and organize items across them. This is especially
useful within commercial, government, humanitarian, and educational institutions that
have seen a proliferation of images and videos with the decreasing cost of storage. Two
factors make this human-powered data organization challenging. First, when asked to
organize the same set of items, different people may propose different organizations.
As an example, to organize a collection of travel photos, some might prefer to organize
by location, whereas others might prefer to organize them as beach/downtown/hotel.
We formalize and address these issues, and develop our workflow ORCHESTRA to
orchestrate crowdsourced data organization in Chapter 2.

The second application, counting, is the problem of counting the number of objects
of a particular type in an image. This is a ubiquitous problem with many applications
– biologists are often interested in counting the number of cell colonies in periodically
captured photographs of petri dishes; counting the number of individuals at concerts
or demonstrations is often essential for surveillance and security [9]; counting is often
necessary in military applications; counting nerve cells or tumors is standard practice in
medical applications [10]; and counting the number of animals in photographs of ponds
or wildlife sanctuaries is often essential for animal conservation [11]. Furthermore,
counting is a prerequisite to other, more complex computer vision problems requiring
a deeper, more complete understanding of images. In spite of being useful in a variety
of areas, counting is still incredibly hard for automated algorithms. As an example,
most object detectors fail to detect objects that are hidden behind (or occluded by)
other objects. On the other end of the spectrum, even humans have trouble in counting
- we found that humans can only count accurately up to a limit. Therefore, in Chapter
3 (reference: [12]), we present our JELLYBEAN suite of algorithms, that use the best
of crowds and computer vision, and judiciously decomposes images to elicit accurate
counts from workers at low costs.

2

CHAPTER 2

ORCHESTRA: Crowd-powered Consensus
Organization of Corpora

2.1 Introduction

The decreasing cost of storage has led to the proliferation of images and videos within
commercial, government, humanitarian, and educational institutions. Unfortunately,
automated schemes perform poorly at organizing this data since they are not able to
interpret or understand content adequately. Human beings, on the other hand, can
easily interpret content, but the scale of these collections precludes the use of any single
human individual for manual organization. So we turn to crowdsourcing for organizing
content.

However, employing crowdsourcing is rife with several issues, stemming from the

fact that there are often many correct ways of organizing complex content such as
images. To illustrate the issues, we asked 20 workers on Amazon’s Mechanical Turk
to each cluster a stylized set of 25 images, where each image shows an object with a
random shape, color, and size. For instance, one of the images was a large blue circle.
Workers were allowed to create as many clusters as they wanted, and populate these
clusters with the 25 images. We note that this is a simple experiment—we expect real
world corpora to be much more complex.

• Issue 1: Perspectives. Human workers often organize items using distinct orga-
nizational perspectives, rendering the answers or clusters obtained from different
workers incomparable, making it hard to combine opinions across workers. For
example, in our experiment, 85% of the workers chose to organize by shape,
10% by color, and 5% by size.

• Issue 2: Granularities. Even within a single organizational perspective, work-
ers often organize at different “granularities”. For instance, for workers that
chose to organize based on shape, some chose to create the following clusters:
{Polygons, Ellipses}, while others chose to split the Polygons cluster, giv-
ing us {Rectangles, Triangles, Ellipses}. Consequently, the number of
clusters given by the workers also varied drastically.

• Issue 3: Limited Understanding of the “Big Picture”. To limit cognitive load,
workers can only cluster or organize a small number of items at once, making
it hard for them to understand how the small set of items fits in with the rest.

3

For instance, if there were no triangles in the set of 25 items given to a worker,
they would organize the items assuming that triangles did not exist in the dataset,
while that might not actually be true.

We address these issues in this chapter, developing a cost-efficient, accurate, and ro-

bust workflow to perform consensus organization of large corpora, one that majority of
the workers agree with. In our experiment above, we found that majority of the workers
clustered on shape, and that would represent our consensus organizational perspective.
Work from behavioral psychology on free classification has similarly demonstrated that
humans have a tendency to pick a specific organizational perspective, while at the same
time humans do adopt different perspectives [13, 14, 15, 16, 17].

Prior work has considered the problem of crowd clustering [18, 19, 20]. However,
this line of work falls short in three ways: (a) These papers do not take into account the
fact that different workers may organize using different perspectives and at different
granularities, leading to an organization that is sub-optimal with mixed organizational
perspectives. (b) Prior work have workers cluster random samples of objects; however
in the absence of any relationship between the samples that the workers are asked to
cluster, this can be costly. Indeed, [18] report in their paper that they require each
item to appear in a large number of random samples to ensure goodness of clustering,
making it impractical in terms of cost. (c) These papers transform the clusters provided
by workers into votes on the similarity or dissimilarity of pairs of items, losing out
on the overall clustering structure. This transformation is done because the eventual
goal of these papers is to recover pairwise similarity or dissimilarity information, as
opposed to finding a consensus organization. Due to these limitations, prior work
can only organize items appropriately if there is a single perspective with no variable
granularities (which is not true even in our stylized example above and certainly not
true in real datasets). Indeed, we find that on real datasets, their results are much worse.
We describe related work in more detail in Section 2.7.

Our workflow, termed ORCHESTRA, instead uses workers to repeatedly organize
carefully selected groups of items. Instead of decomposing the responses from work-
ers into pairwise comparisons, we operate on them directly. We develop algorithms to
infer not just which organizational perspective a worker is clustering using but also the
granularity within that perspective. We use these algorithms in conjunction with tech-
niques to identify the maximum likelihood granularity organization in the maximum
likelihood perspective, assembled into a workflow for organization.

There are several challenges in assembling ORCHESTRA. First, ensuring adequate
coverage is hard—all clusters need to be well represented, even when individual work-
ers may not see representatives from all clusters. Second, it is not easy to identify if
workers are clustering on the same organizational perspective, especially if they are
using different granularities, or combining granularities. For instance, a worker may
provide triangles, squares, non-polygons as three clusters, while another worker may
provide polygons, ellipses, circles as three clusters; both these workers are using dif-
ferent granularities on the same perspective. Third, even if we identify that workers are

4

indeed clustering using the same perspective, it is not trivial to combine information
across workers. In our example given previously, no two clusters provided by workers
are alike, making it challenging to combine information across them. Fourth, relat-
ing information across workers is exacerbated by the fact that different workers may
be clustering different sets of items; we need to identify common “pivots” that can
help us relate clusters across workers on different sets of items. Last, assembling re-
peated worker clusterings into a cost-effective workflow, while setting the parameters
that control the workflow in a principled manner, is yet another challenge.

Here is a list of technical contributions in this chapter:

• We model the notions of perspectives, and granularities formally. (Section 2.2)

• We design, ORCHESTRA, a robust, low-cost workflow for organization compris-
ing the following algorithmic components:

• We develop techniques to relate worker clusterings to each other (to identify
worker perspectives), formalize the identification of the consensus perspec-
tive using maximum likelihood. We demonstrate its equivalence to the MAX-
CLIQUE problem, thereby showing that it is NP-HARD. (Section 2.3.1)

• We formulate the problem of identifying consensus in the presence of worker
errors or ambiguous items as a novel N-CONSISTENCY problem and show
that it is NP-HARD. (Section 2.3.3)

• We develop probabilistic techniques to ensure that our maximum likelihood
perspective has adequate coverage of the space of all concepts in the dataset.
(Section 2.4.1)

• We develop the notion of a kernel to relate worker clusterings on different
samples of items to the maximum likelihood hierarchy. (Section 2.4.2)

• We design techniques to extend the current maximum likelihood hierarchy
by merging worker responses on new items to the existing hierarchy. (Sec-
tion 2.4.3)

• We develop algorithms that operate bottom-up to identify the maximum like-
lihood frontier on the maximum likelihood hierarchy, which can then be
leveraged for categorization, providing further savings on cost and improved
accuracies. (Section 2.5)

• We further couple these algorithmic contributions with experiments on three real
datasets on Amazon’s Mechanical Turk (Section 2.6), and demonstrate that our
techniques lead to better quality clusterings (up to a factor of 4 on accuracy and
a factor of 6 on recall), when compared to prior work in this space.

2.2 Preliminaries

In this section we introduce the problem of consensus organization, and provide a high-
level overview of our solution. In Section 2.2.1, we present a sequence of definitions

5

to help formalize our problem. In Section 2.2.2, we describe our model for worker be-
havior and our interfaces, and in Section 2.2.3, we describe the ORCHESTRA workflow
at a high level. Finally, in Section 2.2.4, we provide a breakdown of the ORCHESTRA

clustering phase that will be our focus in the subsequent sections.

2.2.1 Data Model

In this subsection, we provide a series of definitions related to four ideas: clusterings,
hierarchies, frontiers and complete frontiers. At a high level, workers provide clus-
terings, hierarchies refer to organization of clusters via the subsumption relationship,
and frontiers are portions of a hierarchy that are disjoint. We begin first with a formal
definition of a clustering.

Definition 1 (Clustering). Given a set of items D, a clustering is a partitioning of D
into clusters C1, . . . , Ck such that,

(1)Ci ∩ Cj = ∅ ∀ i 6= j ∈ {1, . . . , k}; (2)

k⋃
i=1

Ci = D

Every cluster in a clustering (and by consequence any set of items) can be associ-
ated with an underlying latent concept. Informally, a concept is a property that is
satisfied by each item in a cluster. For example, in Figure 2.1(f), the clusters—from
top to bottom, one corresponding to each row—represent the concepts Triangles,
Quadrilaterals and Ellipses. We say that the items in a cluster are instances of
its latent concept. Anything that holds true for a concept, also holds true for the cluster
that it represents; we may therefore use clusters and concepts interchangeably.

Concepts may have subset-superset relationships among them. Formally, we say
that concept B generalizes concept A (denoted B � A) if every item in D that is an
instance of A is also an instance of B. For example, the concept Quadrilaterals
generalizes Rectangles. We additionally introduce the concept Universe, which
generalizes every concept associated with any subset of D.

We can organize concepts based on the generalize relationship into a tree with
Universe as its root. We call this tree a hierarchy.

Definition 2 (Hierarchy). For the set of itemsD, a hierarchy T (D) is a rooted concept

tree where

(1) A concept A ∈ T (D) is a parent of another concept B ∈ T (D) if A � B and

there exists no C ∈ T (D) such that A � C and C � B
(2) Every instance of C ∈ T (D) is also an instance of exactly one of its children in

T
(3) For every C ∈ T (D), at least one item in D is an instance of C.

Intuitively, a hierarchy is a concept tree in which every item of D can be assigned to
exactly one of the leaf nodes (and consequently all of its ancestors), and no leaf node
is empty. Note that a dataset may be representable by multiple hierarchies.

6

Universe

Polygons

Quadrilaterals

Round

Triangles

Rectangles Squares Equilateral Scalene

Circles Ellipses

(a) Hierarchy

Universe

CyanGreenBlueRed Pink Yellow

(b) Hierarchy

Universe

Polygons Non-Triangles

(c) Not a hierarchy

Universe

Triangles Non-Triangles

RoundEquilateral Scalene

Circles Ellipses

(d) Not a hierarchy

Universe

Polygons

Qudrilaterals

Round

Triangles Hexagons

Rectangles Squares Equilateral Scalene

Circles Ellipses

(e) Not a hierarchy

(f) Shapes

Figure 2.1: Distinction between concept trees and hierarchies. (a) – (e): Concept trees
for the clustering example shown in Figure 2.2 — (a) and (b) are hierarchies; (c) is not
a hierarchy since it violates (3) in Definition 2 — quadrilaterals in the dataset are
instances of both children of Universe; (d) is not a hierarchy since it violates (2) —
quadrilaterals in the dataset are instances of Non-Triangles but not of any children;
(e) is not a hierarchy — Hexagons is a superfluous concept for this dataset. (f) Some
examples of items in our Shapes dataset, which we use as a running example in this
chapter

7

Figure 2.1 shows some concept trees for the dataset of shapes in Figure 2.1(f). Fig-
ures 2.1(a) and 2.1(b) depict hierarchies since every item in the dataset can be as-
signed to one of the leaf nodes. Other trees, shown in Figure 2.1(c), 2.1(d) and 2.1(e),
are not hierarchies. Figure 2.1(c) is not a hierarchy because the concepts Polygons
and Non-Triangles are not disjoint. Rectangles in the dataset are instances of both
concepts and cannot lie in exactly one of them. In 2.1(d), the concept Round does
not cover all instances of its parent concept Non-Triangles since the dataset has a
Quadrilaterals concept in addition to Round. Figure 2.1(e) is also not a hierarchy
as there are no instances of Hexagons in the dataset.

Notice that while a hierarchy is defined in terms of concepts, each concept can be
replaced by the cluster that it describes, to get a hierarchy of clusters, all built on the
subset relation. We will treat these hierarchies as equivalent.

We now describe a method to find the hierarchy corresponding to any subset of items
S ⊆ D, when a global hierarchy T (D) is given. This is important because workers
often see a small number of items at a time, hence knowing how to project a hierarchy
to a subset of items is necessary. Say S is associated with a concept C ∈ T (D) such
that every item in S is an instance of C. (It is easy to see that there has to be such
a concept.) S may or may not contain every instance of C. Consider the subtree
of T (D) rooted at C. If we enforce Universe as the root and condition (3) in our
definition of a hierarchy — replacing C by the Universe placeholder, and dropping
superfluous concept nodes in this subtree — the resulting tree will be a hierarchy T (S).
For instance, in Figure 2.1(a), the subtree rooted at Polygons is a hierarchy if S is the
set of all polygons in the dataset. If S only contains squares and all triangles, then we
would remove Rectangles as it is now a superfluous concept, and the leftover tree
would be a hierarchy. We now define the concept of a frontier.

Definition 3 (Frontier). A frontier F is a set of disjoint concepts {C1, . . . , Ck} in a

hierarchy T (D) such that:

@ i, j ∈ {1, . . . , k} : Ci � Cj

In words, a frontier is a set of disjoint concepts such that no two concepts in a frontier
are connected by the generalizes relationship. For the hierarchy shown in Figure 2.1(b),
{Red, Green, Blue} forms a valid frontier. Since concepts in a frontier F are disjoint,
an item in D can be an instance of at most one concept in F .

Definition 4 (Complete Frontier). A frontier F in T (D) is said to be complete if⋃k
i=1 Ci = Universe

In other words, F is said to be a complete frontier if every item in D is an instance
of exactly one concept in F . For the hierarchy of Figure 2.1(b), the frontier {Red,
Blue, Green}, when expanded to {Red, Blue, Green, Cyan, Pink, Yellow} becomes
complete as every item in the dataset is an instance of exactly one of these concepts.
Similarly, for Figure 2.1(a), {Polygons, Circles, Ellipses}, {Quadrilaterals,
Triangles, Round}, {Squares, Rectangles, Equilateral, Scalene, Circles,
Ellipses} are all complete frontiers.

8

Notice the similarities in the definition of clustering and that of a complete frontier.
Just as a cluster operationalizes a concept, a specific clustering of the set of items can
be viewed as an operationalization of a complete frontier on a set of items. Thus, a
complete frontier is associated with a specific clustering or organization of the dataset.

2.2.2 Interacting with Workers

We use two interfaces to interact with workers. The first interface is a clustering inter-

face. Here, workers are presented with a carousel of items, which they can drag into as
many clusters as they like. This interface allows us to generate partial clusterings for a
small set of items. See Figure 2.2 for an example worker session using our clustering
interface.

Figure 2.2: Clustering interface. In this example, workers are asked to organize
shapes into multiple clusters. They can determine the number of clusters by using the
‘+’ and the ‘-’ buttons seen on the right.

Figure 2.3: Categorization interface. In this example, workers are asked to organize
shapes into existing clusters (Notice that ‘+’ and ‘-’ are missing here). Pivot items in
these clusters are pre-populated. A separate none-of-these cluster option is also
provided.

We model the response to this interface, resulting in a clustering, as a frontier in some
latent, underlying hierarchy. Different workers may have completely different latent
hierarchies in mind; for instance, Figures 2.1(a) and 2.1(b) are both valid hierarchies

9

GenerateSample

Hierarchy
Construction

MergeHierarchies

Categorize

Figure 2.4: ORCHESTRA Workflow

for the data shown in Figure 2.2. Thus, the worker clustering process can be modeled as
follows. First, given a subset S ∈ D, a worker picks some latent hierarchy T (S). Then,
the worker chooses a complete frontier F in T (S). Notice that while F is complete in
T (S), it will not in general be complete in T (D). Finally, the output of the worker is
the clustering of S associated with F .

We also use a categorization interface, shown in Figure 2.3, which is similar to the
clustering interface except that a fixed number of clusters are shown, and each cluster
is pre-populated with a fixed set of items. Workers are asked to drag the new items
into one of these existing clusters, thereby categorizing them. In this case, workers no
longer have the freedom to select their own latent hierarchy for organization and must
instead use the clustering already provided.

2.2.3 Overall Workflow for ORCHESTRA

Our overall workflow comprises of two phases: the clustering phase and the categoriza-
tion phase. The clustering phase discovers a consensus hierarchy of the data using just
a small fraction of items from the corpus. Once the consensus organization on this hi-
erarchy is determined, most of the items are then organized in the categorization phase,
where we place items into clusters with which they share greatest similarity. Unlike
previous work [18, 20], we don’t make workers cluster every item in the dataset, which
allows us to cut costs significantly. Also unlike previous work, we do not randomly

sample items in each iteration. Instead, we systematically pick some items that are al-
ready part of the hierarchy, so that new clusterings can be easily integrated into it. Fig-
ure 2.4 shows our workflow; the first three boxes refer to the clustering phase, while the
last one refers to the categorization phase. The categorization phase is straightforward,
with the only goal being to categorize the remaining items in the dataset; categorization
will be applied to the majority of the items. The transition from the clustering to the
categorization phase will depend on the dataset complexity. Our primary focus will be
the clustering phase; we describe how it is broken down, next.

2.2.4 Clustering Phase for ORCHESTRA

Given a dataset D, the goal of the clustering phase is to recover the most likely hi-
erarchy Tml(D), such that the probability of a worker choosing this hierarchy’s or-

10

ganizational perspective is maximum. To find Tml(D), ORCHESTRA has an itera-
tive refinement procedure that performs repeated iterations of (GENERATESAMPLE

→ CONSTRUCTHIERARCHY → MERGEHIERARCHIES → . . .). Each iteration first
intelligently generates a sample S ∈ D for workers to cluster. Note that |S| � |D| to
limit cognitive load. We then use worker clusterings on S to construct a new hierarchy
and merge this hierarchy into our previous estimate of Tml(D) to update Tml(D). A
description of this workflow is given below.
• GENERATESAMPLE. This algorithm generates samples of items for workers to

cluster. Any sample of items that we generate must contain some item overlap
with previously generated samples, as well as contain new items from the rest of
the dataset. The overlap helps us locate worker frontiers on this sample within the
current estimate of Tml(D), while the new items allow us to expand Tml(D) by
finding new concepts. We provide a procedure to check if two workers—working
on different samples—are providing frontiers on the same latent hierarchy.

• HIERARCHYCONSTRUCTION. The construction algorithm takes as input multiple
worker frontiers collected for a single sample, and outputs the dominant or consen-
sus hierarchy. To separate the dominant hierarchy, HIERARCHYCONSTRUCTION

infers whether the worker provided frontiers are drawn from the same hierarchy, or
different ones.

• MERGINGHIERARCHIES. To combine hierarchies across multiple samples, the
merging algorithm takes as input two hierarchies — the current estimate of Tml(D),
and the hierarchy constructed on the current sample — and outputs a new estimate
of Tml(D). The merging exploits the placement of the overlap items in the current
estimate of Tml(D).

At the end of this iterative procedure, we return the maximum likelihood frontier in
Tml(D) as the consensus clustering. The quality of the consensus clustering depends
on whether the number of iterations were sufficient to ensure that most items in D can
be categorized into this consensus clustering. In the next section we provide the details
of the workflow for ORCHESTRA — including a sampling guarantee that gives a lower
bound on the size of the samples needed to cover at least some fraction of items in D.

In the subsequent sections, we describe the details of different components in the
ORCHESTRA workflow. In Section 2.3, we describe the HIERARCHYCONSTRUCTION

algorithm. Thereafter, in Section 2.4, we provide details of GENERATESAMPLE and
MERGINGHIERARCHIES, closing the iterative loop of the clustering phase. We also
provide theoretical results that allow us to limit the number of iterations in the OR-
CHESTRA workflow. Finally, in Section 2.5, we examine the categorization phase of
the workflow.

2.3 Hierarchy Construction

As we noted in the previous section, the goal of the clustering phase is to recover
Tml(D), the most likely hierarchy. In this section, we describe the HIERARCHYCON-

11

(a) Examples of real worker clusterings for the dataset in Fig-
ure 2.2.

Universe

Quadrilaterals Circular
Shapes

Triangles

Squares Rectangles ScaleneEquilateral

CirclesEllipses

(b) The hierarchy T corresponding to the maximum sized clique 3, 4, 5 in
(c) using CONSTRUCTHIERARCHY.

(c) The clustering
graph for the
worker clusterings
shown in (a).

Universe

HexagonsCircular
Shapes

Quadrilaterals

Triangles

(d) A hypothetical hierarchy T (S) constructed in the
2nd iteration of our workflow, which contains an extra
Hexagons concept.

Universe

Quadrilaterals Circular
Shapes

Triangles Hexagons

Squares Rectangles ScaleneEquilateral

CirclesEllipses

(e) The hierarchy T ′ constructed by merging (b) and (d) using MERG-
INGHIERARCHIES after 2 iterations.

Figure 2.5: An example demonstrating our iterative workflow approach on the Shapes
dataset of Figure 2.1(f).

STRUCTION algorithm that aims to construct the hierarchy Tml(S) for a small sample
of items S ⊂ D. Thereafter, in Section 2.4, we provide algorithms that extends this
hierarchy to get an estimate of Tml(D).

2.3.1 Mapping to MAX-CLIQUE

Given a set of items S ⊆ D, we ask m workers to cluster the items in S. We denote the
set of worker clusterings by C = {C1, . . . ,Cm}, where Ci = {Ci,1, . . . , Ci,ki} is the
set of clusters proposed by worker i. Note that workers can give as many clusters as

12

they like, but no cluster is allowed to be empty. Figure 2.5(a) shows some clusterings
proposed by workers on the sample of items shown in Figure 2.2.

Problem 1 (Hierarchy Construction). Given clusterings C of S, find a hierarchy

T (S) that maximizes the number of clusterings in C that are associated with complete

frontiers in T (S).

We will show that Problem 1 is equivalent to the MAX-CLIQUE problem. MAX-
CLIQUE refers to the problem of finding the maximum sized clique in a graph G,
and is a well-known NP-COMPLETE problem. Consequently, the optimal solution is
computationally intractable for large graphs. However, in our case the graph for which
MAX-CLIQUE must be solved is small, so the computation is feasible. We show the
equivalence to MAX-CLIQUE below, first defining a notion of consistency that allows
us to create a graph from our clusterings.

Definition 5 (Consistency of Clusterings). Clusterings Ci = {Ci,1, . . . , Ci,ki
} and

Cj = {Cj,1, . . . , Cj,kj
} are said to be consistent if and only if for every (s, t) ∈

{1, . . . , ki} × {1, . . . , kj}, Ci,s ∩ Cj,t 6= ∅ =⇒ Ci,s ⊆ Cj,t ∨ Ci,s ⊃ Cj,t

Intuitively, two clusterings are consistent if every concept in one either generalizes or
is a generalization of some concept in the other. In Figure 2.5(a), the worker clus-
terings 1 & 2 are consistent: Blue Shades decomposes perfectly into Azure Blue

and Dark Blue, as does Green Shades, while 1 is inconsistent with 3, 4, 5. Since
every clustering is associated with a frontier, we can also define a corresponding no-
tion of consistent frontiers: we simply replace ⊃ by � in Definition 5. It is useful
to note that any two complete frontiers in the same hierarchy will always be consis-
tent. In Figure 2.5(b), the complete frontiers {Quadrilaterals, Ellipses, Circles,
Triangles} and {Squares, Rectangles, Circular Shapes, Triangles} are con-
sistent.

Next, we define a graph of clusterings using the above consistency relation that will
allow us to map Problem 1 to MAX-CLIQUE on this graph.

Definition 6 (Clustering Graph). The clustering graph GC is an undirected graph,

where each clustering in C corresponds to a unique vertex in GC and there is an edge

between Ci and Cj ∀ i, j ∈ {1, . . . ,m} if and only if Ci and Cj are consistent.

Figure 2.5(c) depicts the clustering graph for the clusterings shown in Figure 2.5(a).
Notice that there is no edge from 1 to any of 3, 4, 5, due to pairwise inconsistency
between the corresponding clusterings.

We now show that a set of clusterings can be organized into a hierarchy if and only
if they form a clique in the clustering graph. Note that if the clusterings do not form a
clique, then any pair of clusterings that do not share an edge can not be consistent and
hence they can not represent complete frontiers from the same hierarchy. On the other
hand, let CCLIQUE ⊆ C be a clique inGC. Let the set of all unique clusters in CCLIQUE

be H = {Ci,j | Ci,j ∈ Ci,∀Ci ∈ CCLIQUE}. We show that H can be organized into
a hierarchy TH as follows: for every cluster Ci,j ∈ H, find the smallest cluster in

13

H ∪ Universe that is a superset of Ci,j and mark that as the parent of Ci,j in TH.
Algorithm 4 shows the pseudocode for this HIERARCHYCONSTRUCTION algorithm.

Consider the clique 3, 4, 5 in the clustering graph of Figure 2.5(c). H contains 9
unique (of 14 total) clusters as shown in Figure 2.5(a). Suppose we wanted to find the
parent of Rectangles; the smallest cluster inH ∪ Universe containing Rectangles

is Quadrilaterals. The cluster Universe also contains Rectangles but it is not the
smallest such cluster. Thus, we make Quadrilaterals the parent of Rectangles, as
shown in Figure 2.5(b). Similarly, Universe becomes the parent of Quadrilaterals.
The hierarchy after this construction is shown in Figure 2.5(b).

Algorithm 1 HierarchyConstruction(H)
Require: Set of clustersH
Ensure: Hierarchy TH
TH(V)← {Universe} ∪ H
for each Hi ∈ H do
P ← smallest sized Hj ∈ H that is superset of Hi

if P is null then
Parent(Hi)← Universe

else
Parent(Hi)← P

end if
end for

The following lemma and theorem show that our construction is valid.

Lemma 1. For any Ci,j ∈ H, the smallest cluster inH ∪ Universe that is a superset

of Ci,j is unique.

Proof. Since Universe is the superset of all clusters in H, every Ci,j has at least one
superset in H ∪ Universe. Assume that there are two distinct smallest clusters C1,x

and C2,y that are both supersets of Ci,j . It follows that the clusterings to which C1,x

and C2,y belong i.e. C1 and C2 cannot be consistent. This can be seen by noting that
C1,x and C2,y do not satisfy any of the four conditions of Definition 5. This contradicts
the fact that C1 and C2 are part of the same clique in the clustering graph, and the result
follows.

Theorem 1. TH is a hierarchy.

Proof. By Lemma 1, it is easy to see that TH is a tree with Universe as its root. Let
C be a cluster in TH, and denote by {C1, . . . , Ck} the children of C in TH. To prove
that TH is a hierarchy, we must show that for every such C, (i) Ci ∩Cj = φ ∀ i 6= j ∈
{1, . . . , k} and (ii)

⋃k
i=1 Ci = C.

For (i), 2 cases arise: either Ci and Cj are both from the same clustering and are
disjoint by definition, or they come from different clusterings, in which case their cor-
responding clusterings would not be consistent if Ci ∩ Cj 6= φ.

For (ii), we know that
⋃k

i=1 Ci ⊆ C by construction. Now suppose
⋃k

i=1 Ci 6= C

and let X = C \
⋃k

i=1 Ci. Items in X are not see in any child of C.

14

Let C1, . . . ,Ck be clusterings that contain C1, . . . , Ck respectively. Each Ci con-
tains atleast Ci. C cannot be in any Ci, since that Ci would no longer remain disjoint.
Every Ci is a clustering on S and therefore cluster all items in X .

For every Ci, items in X cannot lie in Ci and must lie in other clusters that are not
children of C. For any item x ∈ X , consider the largest cluster Clarge that contains
x across C1, . . . ,Ck. Since Clarge is the largest such cluster, its parent — from our
construction — cannot lie in C1, . . . ,Ck. It is easy to see that the smallest sized cluster
that contains it must be C. Therefore, Clarge is a child of C which leads us to a
contradiction.

We can now pick CCLIQUE to be the maximum sized clique in GC. Denote by Tmax,
the hierarchy that is generated using this clique. It is easy to see that Tmax is a solution
to Problem 1. We also note that since the size of GC is atmost m (which is small as
discussed later on in this section), solving MAX-CLIQUE is feasible. Figure 2.5(b)
shows the maximum likelihood hierarchy constructed for the maximum clique 3, 4, 5

in Figure 2.5(c).

2.3.2 Worker Responses

Having proved the equivalence of Problem 1 to MAX-CLIQUE, we introduce the notion
of a hierarchy’s affinity to motivate the probabilistic guarantees that Tmax provides.

Definition 7 (Affinity of a hierarchy). The affinity p of a hierarchy T is the a-priori

probability that a worker picks some frontier from T while performing clustering.

We assume that the affinities are independent of the samples seen by workers. Our
goal is to construct the hierarchy with greatest affinity (the most likely hierarchy Tml).
We now concretize the connection between Tml and our solution Tmax to Problem 1.

Lemma 2. Assume the existence of exactly k latent hierarchies T1, . . . , Tk with affini-

ties p1 > · · · > pk. Suppose that the hierarchies do not share any frontiers. Let

p̂1, . . . , p̂k be the maximum likelihood estimates of the affinities. If p̂1 > p̂i ∀ i, Tmax

(the maximum likelihood hierarchy) has maximum affinity.

Proof. Notice that every maximal clique in GC will correspond to a single, distinct hi-
erarchy. Letm1, . . . ,mk be the sizes of the maximal cliques corresponding to T1, . . . , Tk.
If some hierarchy has no associated maximal clique, the corresponding value of mi

would be 0.
Since every clustering lies in exactly one maximal clique of size mi, each worker’s

clustering can be viewed as a vote for that hierarchy Ti. We can then define a multi-
nomial distribution (m, p1, . . . , pk) that captures worker tendency to pick a particular
latent hierarchy.

The likelihood function corresponding to the m trials (clusterings) can be written as,

L ∝ pm1
1 pm2

2 . . . pmk

k

15

It is easy to show that the maximum likelihood solution is simply p̂i = mi

m . If p̂1 >
p̂i ∀ i, i.e., m1 > mi ∀ i, then the largest clique corresponds to Tmax = Targmaxi m̂i =

Targmaxi p̂i = T1

The lemma above shows that the convergence of maximum likelihood estimates p̂i
to the true values pi is a sufficient condition for Tmax to be Tml. We will thus refer to
Tmax as the maximum likelihood hierarchy for the rest of the chapter. Thus, there is a
clear dependence on the number of workers m; a large m would cause the estimates to
converge.We now address a natural question: how do we fix m?

Intuitively, increasing m leads to an increase in two probabilities of interest: (a) the
probability of discovering the most likely hierarchy i.e., the probability that there exists
a clique corresponding to Tml, and (b) the probability that Tmax is Tml.

To see this dependence for (b), we randomly subsample the worker responses on our
shapes dataset (giving us different m values) and plot (in Figure 2.6) the fraction of
trials (out of 200) where the maximum clique corresponded to the dominant SHAPE

perspective. Since shapes is a stylized dataset with a clear dominant perspective and
unambiguous items, Pr(Tmax = Tml|m ≥ 12) = 1. Therefore, m = 15 seems a
reasonable conservative choice.

However, for general datasets, Pr(Tmax = Tml|m) is extremely hard to characterize
because (i) the number of latent hierarchies is unknown, (ii) their corresponding affini-
ties are also unknown, and (iii) a worker clustering may be a frontier in multiple latent
hierarchies (seen as nodes belonging to multiple maximal cliques in GC). We note an
interesting connection: on relaxing (i) and (iii) our problem becomes identical to the
multinomial selection problem (see [21]). We utilize a result from [21] in Theorem 3
as well as a simple guarantee for (a) in Theorem 2, to show that m = 15 guarantees
high probability of both discovering Tml and having Tml = Tmax, and fix this value
for the purpose of this chapter.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 2 6 10 14 18

P
ro

b
a

b
ili

ty

of worker responses

Figure 2.6: Variation in the probability of ORCHESTRA providing a clustering based
on SHAPE with the number of worker responses

Theorem 2. Suppose that the number of latent hierarchies is exactly k and these hier-

archies do not share any frontiers. Then the hierarchy with greatest affinity corresponds

to one of the cliques with probability at least
[
1−

(
1− 1

k

)m]
.

Proof. Since there are k latent hierarchies, the most likely hierarchy must have prob-
ability atleast 1

k of being discovered, since otherwise it could not be the most likely
hierarchy. The probability that this hierarchy goes undiscovered after m worker re-
sponses is upper bounded by (1− 1

k)
m, and the result follows.

16

Corollary 1. For k = 4 and m = 15, the hierarchy with greatest affinity is discovered

with probability at least 0.98.

Theorem 3 (see [21]). Let k = 4 with affinities p1 > · · · > p4 and assume that these

hierarchies do not contain identical frontiers. Then, Pr(Tmax = Tml|m = 15) ≥ 0.5

if p1

p2
≥ 1.5.

Proof. See [21].

These theorems suggest that m = 15 guarantees high probability of discovering and
constructing Tml when the underlying assumptions are met. While these assumptions
may not always hold, we examine the effect of varying m in Section 2.6.2 and find that
in practice this value of m turns out to be sufficient.

2.3.3 Worker Mistakes

So far, we have assumed that workers do not make mistakes by associating items with
the wrong concepts and therefore placing them in the wrong cluster either due to item
ambiguiity or worker fatigue. However, due to the presence of ambiguous items or
human error, workers may end up placing items in incorrect clusters. For instance, a
worker could add a circular shape to a cluster that was meant to represent triangles.
In this situation, our ‘hard’ definition of consistency may lead to the maximum sized
clique being small since not too many clusterings will be consistent. In such cases,
we can relax our consistency relationship to tolerate slight worker errors in order to
discover larger cliques. One such relaxation is to remove a small number of ambiguous
or difficult items from the sample, whose presence causes worker answers to become
inconsistent. In particular, we examine the problem of determining the minimum set
of items whose removal makes the clusterings of two given workers consistent (by
Definition 5).

Problem 2 (2-CONSISTENCY). Given two worker clusterings C1 and C2 on a set of

items S, find a minimum sized subset I ⊂ S such that C1 and C2 are consistent on

S − I.

Theorem 4. 2-CONSISTENCY is NP-HARD.

We show this hardness via a reduction from the NP-HARD problem of finding the
smallest dominating set in bipartite graphs [22]. The details of the reduction are avail-
able below.

We divide the proof into two parts. First, we show that finding smallest dominating
set in bipartite graphs is equivalent to another problem, MINSSFCUT-BIPARTITE (de-
scribed below). Thereafter, we reduce MINSSFCUT-BIPARTITE to 2-CONSISTENCY.
We first define a special type of graph, spanning star forest (SSF) below.

Definition 8 (Spanning Star Forest). A spanning star forest (SSF) of a graph G is a

spanning subgraph Gs of G where each connected component is a star. We define the

cardinality of a star forest Gs as the number of connected components in Gs.

17

Intuitively, any graph can be converted into a spanning star forest by removing some
edges. In the trivial case, when all edges in a graph are removed, each vertex forms
a star component. We define such a set of edges whose removal makes the graph a
spanning star forest as a SSF-cut.

Definition 9 (SSF-cut). A SSF-cut of a graphG is a set of edges in which their removal

results in a SSF.

We now formalize the problem of finding the smallest sized SSF-cut in any bipartite
graph as the MINSSFCUT-BIPARTITE problem.

Problem 3 (MINSSFCUT-BIPARTITE). Given a bipartite graph G, find the smallest

SSF-cut of G.

Next, we show that MINSSFCUT-BIPARTITE is NP-HARD. This is done by proving
that it is equivalent to the NP-HARD problem of finding smallest dominating set in
the same graph [22]. This equivalence is shown by the following two lemmas. They
together show that a biparitite graph G has a dominating set of size k if and only if it
has an SSF-cut of size k − |V (G)|+ |E(G)|.

Lemma 3. A graph G has a dominating set of size k if and only if G has a SSF of

cardinality k.

Proof. Each element of the dominating set can be the center of a star. Conversely, the
centers of the stars form a dominating set.

Lemma 4. A graph G has a SSF-cut of size k if and only if G has a SSF of cardinality

|V (G)| − |E(G)|+ k.

Proof. The result follows immediately from the fact that a SSF of cardinality n has
|V (G)| − n edges.

The above lemmas show that an algorithm that finds the smallest SSF-cut for a bi-
partite graph would also correctly determine the size of the smallest dominating set in
that graph. We conclude that MINSSFCUT-BIPARTITE is NP-HARD.

Lemma 5. MINSSFCUT-BIPARTITE is NP-HARD.

The above lemmas together prove the hardness of MINSSFCUT-BIPARTITE. Next,
we prove that 2-CONSISTENCY is NP-HARD by reducing MINSSFCUT-BIPARTITE

to it.
Given a bipartite graph G having disjoint sets of vertices V1 = {V1,1, . . . , V1,d1}

and V2 = {V2,1, . . . , V2,d2}. Define two clusterings C1 and C2, one each for V1 and
V2. For every vertex in V1,i ∈ V1, add a cluster C1,i in C1. Repeat for C2. For every
edge (V1,a, V2,b), add a new item to both C1,a and C2,b.

18

Lemma 6. G has an SSF-cut of size k if and only if there exists a set of k items whose

removal makes C1 and C2 consistent.

Proof. We first note that each item in the clusterings can be associated with a unique
edge in G, by construction.
⇐= Assume that there exists a set of k items whose removal makes the cluster-

ings consistent. Fix any one such set. From G, remove the k edges corresponding
to these items. We claim that after this removal, G is a SSF. On the contrary, as-
sume that G is not SSF. Then there exists a path of length ≥ 3 in G, say, WLOG,
(V1,a, V2,b, V1,c, V2,d). For the corresponding clusters, we have:

1. C1,a ∩ C2,b 6= ∅

2. C2,b ∩ C1,c 6= ∅,

3. C1,c ∩ C2,d 6= ∅

Since C2,b ∩ C1,c 6= ∅ and the clusterings are consistent (after the removal of items),
that means that either C2,b ⊂ C1,c or C1,c ⊂ C2,b or C2,b = C1,c. In either of these
cases, both (1) and (3) can not be true simultaneously without violating consistency.
=⇒ Assume that G has an SSF cut of size k. Take any such cut arbitrarily and

remove the items corresponding to the edges in this SSF-cut. We claim that the clus-
terings are consistent after the removal of these items. On the contrary, assume that the
clusterings are inconsistent. This means that ∃C1,a, C2,b such that

1. C1,a ∩ C2,b 6= ∅

2. C1,a \ C2,b 6= ∅

3. C2,b \ C1,a 6= ∅

Since C1,a \ C2,b 6= ∅, there must be some other cluster C2,t apart from C2,b that has
a non-empty intersection with C1,a. Recall that both clusterings organize the same
set of items and thus the items in C1,a \ C2,b must appear in some other cluster in
C2. Similarly, there must be some other cluster C1,s apart from C1,a that has a non-
empty intersection withC2,b. Consider the vertices (V2,t, V1,a, V2,b, V1,s). Consecutive
vertices in this tuple must share an edge because the corresponding clusters have non-
empty intersections. If the consecutive vertices share an edge, then the graph is not
an SSF (the SSF-cut has already been removed). This leads to a contradiction and
therefore, the clusterings must be consistent after removing the items corresponding to
the SSF cut.

�

A natural extension of 2-CONSISTENCY is to determine the smallest set of items
whose removal makes the clusterings of N workers pairwise consistent i.e., they form
a clique in GC.

Corollary 2. N-CONSISTENCY is NP-HARD.

19

Given the hardness of these problems, we defer the development of algorithms to
handle worker mistakes and ambiguous items to future work. In our experiments, we
find that worker mistakes with respect to their chosen perspective and granularity are
very infrequent. Even if some workers do make mistakes, our maximum likelihood
hierarchy only contains those workers who clustered items consistently, and so either
these errors would not be incorporated, or a large number of workers would have to
make these errors in the same way, which is unlikely. Thus, for the purposes of this
chapter and the datasets we consider, we use Definition 5 for consistency.

2.4 Extending the Hierarchy

In the previous section, we explained the HIERARCHYCONSTRUCTION algorithm that
estimates the hierarchy Tml(S) for a sample S. In this section, we describe how to
extend this hierarchy to Tml(D). First, in Section 2.4.1, we provide a result that al-
lows us to determine |S| that guarantees that Tml(S) is an accurate representation of
Tml(D). When |S| is large, the corresponding cognitive load on workers may neces-
sitate splitting this large sample into smaller samples. Section 2.4.2 provides details
of our algorithm GENERATESAMPLE that generates different samples for workers to
cluster. Thereafter, in Section 2.4.3, we describe an algorithm that allows us to merge
hierarchies Tml(S) obtained for different samples S.

2.4.1 Sampling Guarantee

As discussed in Section 2.2, our approach is to first construct an estimate Tmax of
the most likely hierarchy Tml using several samples and then categorize the remaining
items into the maximum likelihood frontier in this hierarchy. Recall that for S ⊆ D,
complete frontiers in a hierarchy T (S) are not generally complete in T (D). This is
because some concepts may have instances in D, but not in S . For instance, suppose
D contains instances of Ellipses and Circles while S only contains items from
Ellipses, but no instance of Circles. Then, T (S) would not contain the Circles

concept. Circles would therefore go undiscovered in our sample. We now prove a
guarantee that allows us to make a suitable choice for the parameter n; |S| = n.

Intuitively, if n is large, we can be confident that the sample will discover the con-
cepts that occur frequently in the dataset, i.e., the concepts that have many instances in
the dataset. On the contrary, when n is small, a large number of concepts are likely to
go undiscovered. Thus the hierarchy constructed on a small sample may not be repre-
sentative of the entire dataset. We formalize the notion of representativeness below.

Definition 10 (Concept Coverage). The coverage of a concept C is the fraction of

items in D that are instances of C.

We say that a sample S discovers C if and only if there is an item s ∈ S that is an
instance of C.

20

Definition 11 (Frontier Coverage). The coverage of a frontier F with respect to a

sample S is the sum of coverages of the concepts in F that S discovers.

Intuitively, frontier coverage is the fraction of items in the dataset that are covered

by the concepts in the frontier.
Suppose that S contains n randomly sampled items. Let T (D) be a hierarchy con-

structed onD and let F be a complete frontier in T (D) containing f concepts. We give
a lower bound on the expected coverage of F with respect to S , ES [XF] below.

Theorem 5. ES [XF] ≥ 1− f
n+1 (1−

1
n+1)

n

Proof. Let pi be the coverage of the ith concept in F . Let XF,i be a random variable
that equals 0 if S does not discover the ith concept of F and equals pi otherwise. Using

Definition 11, the coverage of F is XF =

f∑
i=1

XF,i. We have,

E[XF] =

f∑
i=1

E[XF,i] =

f∑
i=1

pi(1− (1− pi)n)

= 1−
f∑

i=1

pi(1− pi)n ≥ 1− max
0≤pi≤1∑

i pi=1

f∑
i=1

pi(1− pi)n

≥ 1− max
0≤pi≤1

f∑
i=1

pi(1− pi)n

Now, for pi ∈ [0, 1], pi(1− pi)n is maximum when pi = 1
n+1 and the result follows.

In Figure 2.7(a), we plot n vs. f for different values of a threshold δ, which lower
bounds the expected coverage. Observe that for fixed values of δ, n increases linearly
with f . However, this lower bound is not tight and the actual coverage turns out to
be greater than δ. To observe this, we plot δ vs. the actual coverages that we get in
Figure 2.7(b). For each value of δ, we pick 20 (f, n) pairs that satisfy the bound and
conduct 1000 random trials for each pair. Each trial consists of assigning a random
probability distribution to f bins, which gives the probability of an item in the dataset
belonging to a bin (concept). We then draw n samples from this distribution, and
compute the actual coverage that we get.

We can similarly find an upper bound for the variance of XF .

Theorem 6. VarS [XF] ≤ 1−
(
1− f

n+1

(
1− 1

n+1

)n)2
As a rule of thumb, we pick δ = 0.95 and f = 16 for the experiments that we carry
out, which results in n = 115. For n = 115 and f = 16, the variance is upper bounded
by 0.1. However, we note that we cannot expect a single worker to be able to organize
115 items at once, so we describe how to iteratively cluster smaller sets of items while
being able to combine the information across these iterations in the next section.

21

f
0 5 10 15 20

n

0

50

100

150

δ = 0.95

δ = 0.90

Lower Bound on Coverage
0.4 0.6 0.8 1

A
c
tu

a
l
c
o

v
e

ra
g

e

0.4

0.6

0.8

1

Figure 2.7: (a) Plot showing sample size n vs. size of complete frontier f to ensure δ
expected coverage. (b) Plot showing lower bound on expected coverage vs. actual
expected coverage over 1000 trials – the dotted line is the 45 deg line.

2.4.2 The GENERATESAMPLE Algorithm

As we noted earlier, it is not possible for a single worker to generate a clustering for
large S, especially one as large as ≈ 120. Instead, our approach will be to repeatedly
instantiate smaller S for every iteration, while bounding its size. For example, one
approach would be to instantiate four distinct sets S of size 30 each, each of which
is organized by workers. However, due to the lack of overlap across these sets, it is
impossible to relate the hierarchies constructed across these sets to one another. Intu-
itively, for each new iteration, it is desirable that S contains some item overlap with
the current estimate of the maximum likelihood hierarchy (at the end of the previous
iteration), so that the new hierarchy we generate can be easily merged into the current
estimate of the maximum likelihood hierarchy. We now provide a mechanism to fix
the size of this overlapping set, which we call the kernel of S. Each sample S consists
of some new items, not encountered before, along with items that have already been
organized in the current maximum likelihood hierarchy, which constituteK, the kernel
of S.

To set a reasonable value for the kernel K, we need it to be large enough to allow
us to perform hierarchy merging at each iteration. It also needs to be small enough to
allow introduction of some new items into our sample. Our strategy for picking the
kernel items is to pick a single item from each of the leaf nodes in the current hierarchy
estimate. Therefore, we set |K| = # of leaves and randomly sample the rest of the
items in S from D.

The justification for this strategy is that sampling a single item from every leaf allows
us to determine any concept a worker generates — whether an internal node in the
hierarchy, or a leaf in our current maximum likelihood hierarchy. If a worker combines
some kernel items into a single cluster, we can infer the concept of the entire cluster
(which includes some new items) by finding where these kernel items occur together
in our hierarchy. We will make this idea more precise in the MERGINGHIERARCHIES

algorithm. Algorithm 6 shows the pseudocode for the GENERATESAMPLE algorithm.
In our experiments, we have never encountered a case where |K| is too large: nev-

ertheless, in such cases, we can simply split |K| up into equal sized smaller portions,
and repeat the clustering of the same set of new items with these smaller portions of
the kernel, such that each of the new items gets the opportunity to be associated with
or clustered with any of the kernel items.

22

Algorithm 2 GenerateSample(|K|, T , h)

Require: Kernel size |K|, current hierarchy T , sample size h
S ← {}
for each leaf node C ∈ F do
S ← S ∪ random item from C

end for
S ← S ∪ (h random items from D not in T)
return S

2.4.3 The MERGINGHIERARCHIES Algorithm

In this subsection, we describe our MERGINGHIERARCHIES algorithm, in which we
make use of the kernel formulation that we introduced above.

Let T be our current maximum likelihood hierarchy generated after the τ th iteration.
Suppose that we run HIERARCHYCONSTRUCTION on the sample S generated for the
(τ +1)th iteration, and get a hierarchy T (S). Using K, the kernel of S, we would like
to merge T (S) into T to generate a new hierarchy T ′, by mapping known concepts
across these hierarchies. To carry out this merging, we will assume that the kernel items
in a cluster represent that cluster’s concept accurately, as well as any super-concepts
(i.e. concepts that are ancestors of the cluster’s concept).

Consider the set of leaf nodes C1, . . . , Cl in T (S) and let the set of kernel items in
Ci be Ki. For each leaf Ci:
• Suppose |Ki| > 0 for Ci; we map Ci to the node C in T that contains the smallest
superset of Ki. This is simply the lowest common ancestor of the leaf nodes in T that
contain kernel items from Ki. Intuitively, if the kernel items are identical then both
clusters are associated with the same concept, and can therefore be merged. All items
in Ci are transferred to C.
• Suppose |Ki| = 0 for Ci; we first find the ancestor Ca (with kernel Ka) closest to Ci

(the lowest ancestor) in T (S) such that |Ka| > 0. Since Ci contained no kernel items,
it is clear thatCi represents some new concept; we must search for another concept that
generalizes Ci. As before, we map Ca to the node C in T that contains the smallest
superset of Ka. However, since we need to map Ci and not Ca, we instead insert Ci as
a new child of C in T .

After mapping all leaf nodes in T (S) to T , we get a new maximum likelihood
hierarchy T ′ after the (τ +1)th iteration. It is easy to see that T ′ is indeed a hierarchy.
The only changes we make are (a) adding in new items to the concept of which they are
instances, which does not modify the hierarchy and (b) adding in new concept nodes.
For (b), notice that by construction, we attach the new concept Ci to the lowest concept
C that generalizes it. Ci is disjoint with respect to all other children of C, otherwise it
would contain a kernel item. Ci is also necessary to allow all items to exist at the leaf
nodes, since no other child of C covers the concept discovered in Ci. Therefore, T ′ is
a hierarchy.

Figure 2.5 demonstrates an example of MERGINGHIERARCHIES. Figure 2.5(c) is
our current estimate T to be merged with Figure 2.5(d), depicting T (S). The merged

23

hierarchy T ′ is shown in Figure 2.5(e). By our GENERATESAMPLE algorithm, the
kernel of S would contain 6 items, one each for the leaves of T in Figure 2.5(c). Even
though T (S) combines the kernel items corresponding to Squares and Rectangles

into the Quadrilaterals cluster in Figure 2.5(e), we can map Quadrilaterals in
T (S) using these 2 kernel items, to the Quadrilaterals cluster in T , the lowest
node where they occur together. For the Hexagons cluster in T (S), we first find its
deepest ancestor in T (S) that contains a kernel item, which turns out to be Universe.
Universe in T (S) is mapped to Universe in T , and Hexagons is inserted as a child,
as shown in Figure 2.5(e).

Algorithm 3 MergingHierarchies(T , T (S))
Require: current hierarchy estimate T , generated hierarchy T (S)
Ensure: Hierarchy T ′

for each leaf node Ci ∈ T (S) do
Ki ← kernel items in Ci

F ← {}
if |Ki| > 0 then

for x ∈ Ki do
F ← F ∪ leaf node in T containing x

end for
C ← deepest common ancestor of F
C ← C ∪ Ci

else
Ca ← deepest ancestor of Ci with some kernel item(s) Ka

for x ∈ Ka do
F ← F ∪ leaf node in T containing x

end for
C ← deepest common ancestor of F
Parent(Ci)← C

end if
end for

We now conclude this section with a discussion of the cost of our iterative workflow
for clustering.

Cost of Iterative Workflow. Our sampling guarantee requires us to sample n items,
while the kernel overlap is fixed to be the # of leaves in the current hierarchy estimate.
Notice that when fixing the value of n, we assumed that the size of a complete frontier
in the dataset hierarchy is f . We do not expect our choice of n to discover any more

than an f -sized complete frontier. We can therefore upper-bound the value of |K|,
the size of the kernel, to be f , since we would not expect the number of leaves in our
maximum likelihood hierarchy to exceed f . Assume that in each iteration, we ask for
clusterings on h items. To find the total number of iterations τ , we find the smallest
value that satisfies h+(h− f)(τ − 1) ≥ n, where we have replaced |K| with its upper
bound f in each iteration. We typically set h = 35. For f = 16 and n = 115, τ turns
out to be 6. If each iteration is clustered by m workers, the total cost of our iterative
workflow becomes O

(
m
⌈
(n−f)
(h−f)

⌉)
. The cost of clustering phase is independent of the

24

size of the dataset D.

2.5 Categorization

At the end of our iterative workflow, we have a final maximum likelihood hierarchy T ,
from which we must extract the consensus clustering granularity or frontier to carry out
categorization. As we stated in Section 2.2, the reason we construct this hierarchy is to
preserve information about the granularities at which workers cluster items. We now
describe a procedure to determine the consensus clustering by finding the maximum
likelihood complete frontier in T . We now outline a procedure to find this frontier.

Maximum-Likelihood Frontier. Suppose that T consists of the set of nodes V with
root node R. Associate with each node v, an event Ev that v is split by a worker i.e.,

a worker chooses to give us concepts below v in their frontier. Let F be a frontier
in T and A be the set of ancestors of F , excluding R. Also define v(1), . . . , R to be
the ancestors of v where v(1) is the parent of v, v(2) is the parent of v(1), etc. First
observe that p(Ev|Ev(1), . . . ,ER) = p(Ev|Ev(1)) i.e. Ev is conditionally independent
of the rest of its ancestors, given its parent. We now define the likelihood of F as,

L(F) = p(ER)
∏
v∈F

p(Ev|Ev(1))
∏
v∈A

p(Ev|Ev(1))

Given a set of worker responses, we approximate p(Ev|Ev(1)) as the ratio of the
number of workers who gave node v as a frontier to the total number of workers
who gave node v or its descendants as frontiers. Note that p(ER) = 1. We are
interested in argmaxF L(F) which can be computed using the recurrence relation
D(v) = max

(
p(Ev|Ev(1)), p(Ev|Ev(1))

∏
u∈C(v)D(u)

)
, where C(v) is the set of

children of v. Intuitively, at node v, there are two choices: either keep node v as the
frontier, or drill down and check for more likely frontiers, and using this, we can find
the maximum likelihood frontier.

Categorization on Frontier. To carry out categorization we present workers with an
interface similar to the clustering interface of Figure 2.2 with certain key differences.
For each cluster in our consensus maximum likelihood clustering, we give a few ‘pivot’
items to the worker as exemplars for that cluster. Our assumption is that these pivots
completely capture the concept represented by that cluster. Workers are asked to cat-
egorize items into the cluster which seems most appropriate. Once again, we do not
point workers to any attributes in the data, instead relying on our pivots to allow them
to infer the organization of our consensus clustering.

The cost of our categorization step is easily calculated — there are |D|−n items left
after the clustering phase, and suppose we take θ votes per item. Typically n � |D|,
so the total categorization cost is then O(θ|D|), linear in the size of the dataset.

25

(a) Scenes Dataset

(b) Imagenet Dataset

Figure 2.8: Sample Images from the Datasets

2.6 Experiments

In our experiments, our goals are to (i) compare ORCHESTRA to other crowd-powered
clustering algorithms for organizing data, and (ii) examine the effects of ORCHESTRA’s
stages and algorithms.

Datasets. We used three datasets in our experiments.
• Our first dataset, titled shapes, is a synthetic dataset consisting of 25 shapes, from

Section 2.2. As described, each item has a random assignment of shape, size,
and color. The images from this dataset include the ones displayed in Figure 2.2.
Despite being stylized, we use this dataset since we can control the underlying
organizational perspectives, allowing us to evaluate the performance of algorithms
on recovering clusterings across one or more hierarchies in the dataset.

• The second dataset, titled scenes, contains 1025 images from 13 categories [23] in
natural and man-made surroundings. This dataset has also been used in prior work
on crowd clustering [18, 20].

• The third dataset, titled imagenet, contains images from ImageNet [24]. Images
are sampled randomly from: {buildings, cars, parrots, vulture, fruit, flower, veg-
etable, fighter, commercial, helicopter, ship, seahorse, whale, cheetah, lion, ele-
phant, tiger, jellyfish, sparrow, leaves}. For consistency with scenes, we sample
1025 images from these categories.

Sample images from scenes and imagenet are shown in Figure 2.8.

Algorithms. We compare the following state-of-the-art crowd powered clustering al-
gorithms with ORCHESTRA:
• CrowdClust: This is the algorithm from Gomes et al. [18].
• MatComp: This is the algorithm from Yi et al. [20].

Code for both these algorithms was provided by the authors; we faithfully set the pa-
rameters as described in the papers. Each clustering HIT for these algorithms was
repeated by 5 workers – exactly as reported in the respective papers. For MatComp, we
found that the recommended value of parameter C = 1√

N
fails to return clusterings

because the item co-clustering matrix is extremely sparse at our level of sampling. In-

26

stead of not reporting results, we tuned this value until it reliably returned results. The
value was 1

N
2
5

.
Both these algorithms require workers to cluster random samples of items repeatedly,

while ensuring that no item is repeated in a task.

Worker Responses. We used Amazon’s Mechanical Turk to gather worker responses
for all tasks. Each task asked the workers to organize a collection of at most 35 images.
For ORCHESTRA, the categorization task used 10 images from each consensus cluster
as pivots for categorization. Workers were paid 20 cents for a clustering task and 10
cents for a categorization task, since the categorization tasks are considerably simpler.
(We consider the impact of this cost ratio subsequently.)

For each dataset, the clustering phase of ORCHESTRA organizes a fixed number
of images n = 115 clustering tasks. For the scenes and imagenet, each of these
tasks was performed by 15 workers. As noted in Section 2.3, to study the effect of
m on the clustering, shapes had 20 workers repeating each task. The kernel size is
taken to be 15, as discussed in Section 2.4.2. Thus, 115−35

35−15 + 1 = 5 clustering HITs
were sufficient for this phase. In the next phase, ORCHESTRA organized the remaining
1025−115 = 910 items using categorization tasks. This required a total of d 91035 e = 26

categorization tasks, with each categorization task being repeated by 5 workers.

Evaluated Aspects. We divide the experimental evaluation into two parts (i) a head-to-
head comparison of the various algorithms, and (ii) evaluation of internal components
of ORCHESTRA.
Head-to-Head Comparison
• Quality: For a fixed total cost, how does the quality of clusterings provided by the

different algorithms differ?
• Cost: How much cost do different algorithms need to reach a fixed level of quality?

Component Evaluation
• Perspectives Disambiguation: How well is ORCHESTRA’s HIERARCHYCONSTRUC-

TION component able to differentiate between different worker perspectives?
• Sampling: What is the benefit of GENERATESAMPLE’s intelligent sampling com-

pared to random sampling?
• Categorization: What is the impact, on cost and quality, of the categorization inter-

face?
• Robustness: How robust is ORCHESTRA with respect to variations in worker re-

sponses and item sampling?

Metrics. To quantitatively compare ORCHESTRA with prior work, we adopt five met-
rics. Note that prior work has considered only a subset of these metrics. We consider
the additional metrics to be part of our contributions.
• Precision (Pr) and Recall (Re). For every pair of distinct items that are clustered

together by the algorithm, precision measures the fraction that are also clustered
together in the ground truth, while recall measures the fraction of pairs that are
clustered together by the algorithm, out of pairs of items that are clustered together

27

by the ground truth. Let G be the set of item pairs that are clustered together by
the ground truth, and let A be the set of item pairs that were clustered together by
the algorithm. Then

Pr =
|G ∩ A|
|A|

Re =
|G ∩ A|
|G|

(2.1)

Note that the metrics of precision and recall penalize any deviation from the ground
truth, even if these deviations are meaningful. Therefore, an algorithm that returns
a coarser granularity clustering (where the clusters correspond to unions of ground
truth clusters) would have high recall but low precision. Further, recall is more
critical in clustering than precision. If the recall of a coarse clustering is high, a
finer granularity of clusters can be discovered in a hierarchical manner by asking
the workers to cluster only the items belonging to a coarse cluster. These finer
granularity clusters can further improve precision.

• Accuracy (Ac). To avoid unnecessarily penalizing algorithms for identifying mean-
ingful but coarser granularity clusters, we introduce another metric that measures
the accuracy of an algorithm’s clustering with respect to the closest coarse cluster-
ing. Here, coarse clusterings are groupings of ground truth clusters. For example,
given the ground truth clustering (living room, bedroom, kitchen), some possible
coarse clusterings are (living room, bedroom, kitchen), (living room, non-living

room), (bedroom, non-bedroom), (kitchen, non-kitchen) and (home areas) To find
the closest coarse clustering, consider a ground truth clustering G consisting of
clusters Gi indexed by i. Let the clustering provided by the algorithm to be evalu-
ated be A comprising of clusters Aj indexed by j. Map every ground truth cluster
Gi to some cluster A[i] such that the number of items in Gi that are common with
A[i] is maximized. The ground truth clusters that get mapped to the same Aj are
part of the same cluster in the closest coarse clustering. The mapping from clusters
in G to clusters inA thus defines the closest coarse clustering. The accuracy is then
defined as the fraction of items that are placed in the correct cluster based on this
coarse clustering.

Ac =

∑
i max[i] |Gi ∩A[i]|∑

i |Gi|
(2.2)

The above metrics are all defined on a scale of [0, 1], where the ground truth clustering
would have Pr, Re and Ac all equal to 1. These metrics are useful to compare algo-
rithms against a known ground truth. However, for shapes, where no ground truth is
available, we introduce a new metric:
• Clustering Hierarchies, the number of hierarchies that ‘explain’ the clustering re-

turned by the algorithms. This is calculated as the minimum number of features
(out of shape, size, color) required by a decision tree to place every item in the
right cluster.

Since the algorithms are provided a fixed budget to cluster a given set of items, we
have a penalty in each of the above metrics for algorithms that are unable to cluster

28

some of these items; each unclustered item is treated as its own independent cluster.
This captures the fact that we have no information about these items and do not know
any other items they are clustered together with. So, our final metric is the number of
unclustered items after having consumed the entire budget.
• Unclustered Items (Ui), the number of items not assigned by the algorithm to any

cluster.

2.6.1 Head-to-Head Comparison

In this section, we compare all algorithms on (i) quality, keeping the cost fixed, and (ii)
cost to achieve a fixed quality.

Quality Comparison

In this set of experiments, we ensure that all algorithms use the exact same cost. Since
worker payments for categorization were half of that for clustering, ORCHESTRA uses
an equivalent of 5×15+ 1

2 ×26×5 = 140 clustering tasks. For a comparison on even
footing, MatComp and CrowdClust are also provided a budget of 140 clustering tasks
to organize the same set of items.

Quantitative Comparison. We compare the results of ORCHESTRA versus the other
two algorithms on scenes and imagenet. The quantitative results are listed in Ta-
ble 2.1. We find that ORCHESTRA outperforms both MatComp and CrowdClust on all
metrics for the challenging imagenet dataset. For instance, ORCHESTRA’s recall of
0.800 is at least 3× that of MatComp and CrowdClust. Moreover, ORCHESTRA has an
accuracy of 0.881 - this is 1.9× that of MatComp and CrowdClust, which means that
ORCHESTRA clusters 90% more items correctly with respect to the closest granularity.

The scenario is similar even on the easier scenes dataset, with ORCHESTRA’s re-
call being as high as 0.985 indicating that ORCHESTRA rarely assigns items from the

same categories into different clusters. In comparison, CrowdClust and MatComp

have recall of only 0.161 and 0.089 respectively, making ORCHESTRA atleast 6×
better on recall. In terms of accuracy, ORCHESTRA’s accuracy is more than 3× of
CrowdClust, and 4.4× of MatComp. The gains in recall and accuracy are not at the
cost of precision—ORCHESTRA is close to the maximum precision of MatComp. The
slightly higher precision of MatComp is because MatComp uses a much larger number
of clusters and therefore has fewer opportunities to be incorrect. As we see in the
qualitative comparison described next, MatComp’s organization into a higher number
of clusters ends up assigning items from the same ground truth categories to different
clusters.

Furthermore, looking at unclustered items in the table, we note that due to random
sampling, both CrowdClust and MatComp are unable to cluster more than 37% of the
dataset within the budget. In comparison, ORCHESTRA leaves no item unclustered on
the scenes dataset, and only 1% items for the imagenet dataset. For ORCHESTRA, the

29

scenes imagenet
Pr Re Ac Ui Pr Re Ac Ui

ORCHESTRA 0.230 0.985 0.992 0 0.283 0.800 0.881 12
CrowdClust 0.105 0.161 0.319 387 0.115 0.241 0.465 394
MatComp 0.234 0.089 0.226 387 0.072 0.268 0.457 394

Table 2.1: Quantitative Comparison of algorithms. The best values in every column
have been highlighted in bold.

unclustered items are those that get assigned to nodes above the maximum likelihood
frontier in the MERGINGHIERARCHIES step.

ORCHESTRA’s clustering is at least 3× better on recall and 1.9× better on accu-

racy while maintaining the best precision and organizing 60% more items in the

same cost.

Qualitative Comparison. Next, we qualitatively examine the resulting clusters for
the scenes and imagenet datasets via Figures 2.9 and 2.10 respectively. We depict a
confusion matrix corresponding to each algorithm, where each ground-truth category
corresponds to a row, while each cluster in the result corresponds to a column. Ideally,
for each row we want a single column to have non-zero presence, indicating that the
entire ground-truth category appears as a whole in some cluster. The items that are
not clustered by the clustering algorithm are ignored for the computation of this con-
fusion matrix. On examining Figure 2.9, it is clear that CrowdClust and MatComp

have much worse matrices than ORCHESTRA. For instance, the only two rows in OR-
CHESTRA that have non-zero presence in more than one column are ‘opencountry’ and
‘highway’ (11/13 rows are good). Even for these categories, most of the items are
assigned to one cluster. On the other hand, for CrowdClust, all rows have non-zero
presence in multiple columns. Further, the items belonging to categories ‘livingroom’,
‘forest’, ‘opencountry’, ‘highway’ and ‘street’ are almost evenly split between two
clusters (having similar color in two columns). Similarly, for MatComp, all rows have
non-zero presence in multiple columns. Besides, it also gives clusters having items
from the same categories (cluster #5 and #6), which should have been merged together.
Thus, there is a clear benefit to ORCHESTRA in identifying organizational perspectives
and and treating worker responses accordingly, as opposed to operating on all of them
at once.

Furthermore, the clusters provided by ORCHESTRA have clearly associable concepts
— cluster 0 consists of indoor categories; cluster 2, of outdoor categories in natu-
ral setting; and cluster 1, of outdoor categories involving man-made structures; while
there are no discernible concepts corresponding to the clustering of CrowdClust and
MatComp. The hierarchy provided by ORCHESTRA is shown in Figure 2.11.

Similar results can be observed on the imagenet dataset, shown in Figure 2.10. Even
though this dataset is significantly more challenging, ORCHESTRA is able to identify
meaningful clusters – cluster 0 consists of all birds; cluster 2, of edible plant food; and
cluster 1 of inedible plants. However, due to the challenging nature of this dataset,
we see some rows where multiple columns are colored. Nonetheless, in such cases,
ORCHESTRA still places a majority of items from a single category in a single cluster

30

— in all but 1 rows, there is only one column that is red/orange/yellow. It is also de-
sirable that every cluster returned should have some underlying concept, i.e., at least
one ground truth category for which a majority items appear in that cluster. Exam-
ining ORCHESTRA’s organization closely, we note that 8/9 clusters have clear repre-
sentations from some ground truth categories. In contrast, 10/13 clusters provided by
CrowdClust have no such representation. In addition, items from the same category
appear in as many as 5 clusters. MatComp’s clustering is even worse – it returns just
two clusters with 11/20 ground truth categories appearing almost evenly across both
cluters (having similar color in both columns).

0 1 2

Assigned Cluster

bedroom

coast

forest

highway

insidecity

kitchen

livingroom

mountain

office

opencountry

street

suburb

tallbuilding

G
ro
u
n
d
 T
ru
th
 C
a
te
g
o
ry

0

15

30

45

60

75

90

105

(a) ORCHESTRA

0 2 4 6 8

Assigned Cluster

bedroom

coast

forest

highway

insidecity

kitchen

livingroom

mountain

office

opencountry

street

suburb

tallbuilding

G
ro
u
n
d
 T
ru
th
 C
a
te
g
o
ry

0

4

8

12

16

20

24

28

32

36

(b) CrowdClust

0 2 4 6 8 10 12

Assigned Cluster

bedroom

coast

forest

highway

insidecity

kitchen

livingroom

mountain

office

opencountry

street

suburb

tallbuilding

G
ro
u
n
d
 T
ru
th
 C
a
te
g
o
ry

0

4

8

12

16

20

24

28

(c) MatComp

Figure 2.9: Qualitative Comparison of clusters provided by different algorithms on
scenes

ORCHESTRA’s clusters show clear underlying concepts making the whole organi-

zation understandable. The clusters are accurate with most items in every category

appearing together in a cluster.

0 2 4 6 8

Assigned Cluster

buildings
cars

cheetah
commercial

elephant
fighter
flower
fruit

helicopter
jellyfish
leaves

lion
parrot

seahorse
ships

sparrow
tiger

vegetable
vulture
whale

G
ro
u
n
d
 T
ru
th
 C
a
te
g
o
ry

0

6

12

18

24

30

36

42

48

54

(a) ORCHESTRA

0 2 4 6 8 10 12

Assigned Cluster

buildings
cars

cheetah
commercial
elephant
fighter
flower
fruit

helicopter
jellyfish
leaves
lion

parrot
seahorse

ships
sparrow
tiger

vegetable
vulture
whale

G
ro
u
n
d
 T
ru
th
 C
a
te
g
o
ry

0

4

8

12

16

20

24

28

32

36

40

(b) CrowdClust

0 1

Assigned Cluster

buildings
cars

cheetah
commercial

elephant
fighter
flower
fruit

helicopter
jellyfish
leaves

lion
parrot

seahorse
ships

sparrow
tiger

vegetable
vulture
whale

G
ro
u
n
d
 T
ru
th
 C
a
te
g
o
ry

0

5

10

15

20

25

30

35

40

(c) MatComp

Figure 2.10: Qualitative Comparison of Clusters provided by different algorithms on
imagenet

Human Evaluation. We also asked workers on Amazon Mechanical Turk to eval-
uate the clusterings derived from the three algorithms. In particular, the evaluation
task showed clusterings from two algorithms on one of the datasets and asked workers
to identify the one that they felt was more coherent — they were told that coherent

clusterings had similarities between items in the same cluster, while being different

31

ORCHESTRA vs. CrowdClust ORCHESTRA vs. MatComp
scenes 15/20 16/20

imagenet 17/20 15/20
Table 2.2: Comparison of clusterings by workers on Amazon MTurk. The values are
the number of workers (out of 20) who preferred ORCHESTRA’s clustering.

from the items in other clusters. Workers were also asked to explain their choice. The
results of this evaluation are available in Tables 2.2. Overall, close to 80% of the work-
ers preferred ORCHESTRA’s clustering over other clusterings. In their feedback, most
workers stated that ORCHESTRA’s organization was easier to understand — items in
a cluster are all alike and distinct from the items in other clusters. A full description
of the workers’ feedback can be found in Table 2.4 and 2.5at the end of this chapter.
There is, thus, definite utility in identifying and separating different perspectives.

Close to 80% of the evaluators prefer ORCHESTRA’s organization over prior work

because it is more consistent and easier to understand.
Universe

IndoorOutdoor

Home OfficeNaturalCity/Town

Figure 2.11: Hierarchy constructed by ORCHESTRA on the Scenes dataset

Cost Comparison

In the previous experiments on quality, we saw that ORCHESTRA outperformed MatComp
and CrowdClust. In this experiment, we examine the amount of monetary cost re-
quired by MatComp and CrowdClust to match ORCHESTRA on quality. To do this,
we simulate clustering HITs beyond the 140 original ones for which worker responses
were sought. These simulated HITs were assumed to have received perfect responses
from each of the 5 workers repeating this task, i.e. each worker provides exactly the
ground truth clustering (Pr = Re = Ac = 1) on these HITs. These perfect worker
responses represent the best-case future scenario for MatComp and CrowdClust and
allows us to to quantify the cost saving of ORCHESTRA in comparison with this best
case for other algorithms.

The results of this simulation for scenes and imagenet are shown in Figure 2.12.
The left, center and right figures show Pr, Re and Ac respectively. The x-axis for each
plot shows the total tasks (real + simulated) relative to the number of real tasks. The
left most point on x-axis for each plot represents the performance of algorithms when
no simulated data is added. From these plots, we can see that for scenes, even with
perfect worker responses and 3× cost, CrowdClust and MatComp are unable to match
ORCHESTRA on recall and accuracy. Even on precision, CrowdClust requires an
additional 1× simulated perfect responses to cross this precision. Even after crossing
ORCHESTRA’s precision, the clusterings do not show high quality — the recall and
accuracy indicate that items in the same ground truth category are split across multiple
clusters. We also note that adding worker responses leads to more improvement in

32

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0x 2.0x 3.0x

P
re

c
is

io
n

of HITs

MatComp

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0x 2.0x 3.0x

R
e
c
a
ll

of HITs

CrowdClust

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0x 2.0x 3.0x

A
c
c
u
ra

c
y

of HITs

Orchestra

(a) Scenes dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0x 2.0x 3.0x

P
re

c
is

io
n

of HITs

MatComp

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0x 2.0x 3.0x

R
e
c
a
ll

of HITs

CrowdClust

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0x 2.0x 3.0x

A
c
c
u
ra

c
y

of HITs

Orchestra

(b) Imagenet dataset

Figure 2.12: Performance of prior work with best-case future worker responses. HITs
beyond 1× are simulated.

CrowdClust than MatComp.
On the challenging imagenet dataset, MatComp returned only one single cluster

when the number of HITs went beyond 1.5×. This grouping of all items together leads
to perfect Re and Ac, barring the penalty for unclustered items. However, this trivial
clustering isn’t informative from a requester’s standpoint – it only indicates that all
items share a similarity and does not delve into the differences between the items. On
the other hand, CrowdClust is unable to match ORCHESTRA on any metric even with
2× additional HITs with perfect worker responses.

Even with 2× additional perfect responses, prior work does not match ORCHES-
TRA on Re and Ac without returning a trivial organization (having only one clus-

ter).
Thus, ORCHESTRA is able to provide more accurate and relevant clusterings, while

being at least 60% more efficient on cost, as compared to prior work.

2.6.2 Component Evaluation

In this part of the experimental evaluation, we examine the components of ORCHES-
TRA in detail (i) HIERARCHYCONSTRUCTION, (ii) GENERATESAMPLE, (iii) Catego-
rization followed by (iv) an analysis of the ORCHESTRA workflow’s robustness.

33

 0

 0.5

 1

 1.5

 2

 2.5

 3

 4 6 8 10 12 14 16 18 20

A
v
g
 c

lu
s
te

ri
n
g
 h

ie
ra

rc
h
ie

s

of worker responses

MatComp
CrowdClust

Orchestra

Figure 2.13: Perspective Disambiguation for the shapes dataset

Perspective Disambiguation

To evaluate ORCHESTRA’s performance in handling multiple worker perspectives, we
check the number of organizational perspectives required to explain the clustering pro-
vided by ORCHESTRA. We use 20 different worker responses for shapes. Recall that
shapes is small enough to be grouped into one single clustering task. Thus, ORCHES-
TRA is restricted to the HIERARCHYCONSTRUCTION step, and all algorithms are run
on the same data, by repeatedly taking subsets of worker responses.

We compute the number of clustering hierarchies that appear in the consensus clus-
tering. Figure 2.13 shows the average number of organizing hierarchies vs. the number
of worker responses (r), repeated over 100 random samples of r worker responses.
While ORCHESTRA is always able to identify one dominant organizing hierarchy,
the other algorithms tend to mix hierarchies frequently, with the average number for
MatComp being larger than CrowdClust. (We were unable to run MatComp for r <
12—the spectral clustering found no principal eigen-components due to the matrix be-
ing low-rank.) This is despite the fact that 85% of workers are actually organizing by
SHAPE — so most samplings of worker responses get this dominant organization.

We would also like to test all algorithms in situations when the multiple hierarchies
are equally probable i.e., workers are equally likely to use any one of these organiza-
tions. We pick a subset of 5 responses from the 20 that we received, where 2 workers
organize by SHAPE, 2 by COLOR and 1 by SIZE. On this data, CrowdClust mixes
the SHAPE and SIZE organizing principles: the clustering they get is Small Shapes,
Big Triangles, Big Rectangles. Similarly, MatComp is unable to come up with
a consensus clustering that relies on a single hierarchy of organization. In contrast,
ORCHESTRA is able to identify a consensus clustering based on SHAPE.

For all worker responses, ORCHESTRA is able to disambiguate the multiple

worker perspectives and treats them accordingly to provide an organization on a

single consensus perspective; other algorithms mix organizational perspectives.

Sampling

To evaluate the impact of our GENERATESAMPLE procedure, we run our HIERAR-
CHYCONSTRUCTION and MERGINGHIERARCHIES algorithms on randomly sampled

34

clustering tasks for scenes. One such result is shown in Figure 2.14(a). Observe that
clusters 1 and 4 have items from the same categories – (bedroom, living room, kitchen).
This happens because the corresponding samples share have no items from these cat-
egories, and hence it is not possible to determine that these sets of items should be
grouped together, resulting in a near-duplicate cluster. This is undesirable behavior,
motivating the need for a kernel of items.

(a) with randomly sampled clustering
tasks

(b) before categoriza-
tion

0 1 2

Assigned Cluster

bedroom

coast

forest

highway

insidecity

kitchen

livingroom

mountain

office

opencountry

street

suburb

tallbuilding
G
ro
u
n
d
 T
ru
th
 C
a
te
g
o
ry

0

15

30

45

60

75

90

105

(c) after categorization

Figure 2.14: Clusters provided by ORCHESTRA on the Scenes dataset

In comparison, ORCHESTRA’s kernel-based sampling is able to handle undiscovered
categories. As an example, for the scenes dataset, we take a case where the categories
Bedroom, Living Room and Kitchen do not have any samples in the first HIT. Con-
sequently the hierarchy constructed after the first HIT is shown in Figure 2.15(a). Sub-
sequently, these categories are sampled in the second HIT. Because the kernel contains
items from all leaf nodes of the current hierarchy, workers are able to group these new
categories with Office, resulting in a hierarchy shown in Figure 2.15(b).

Universe

Man-madeNatural

Streets/Highways Office City/TownForestNon-Forest

(a) ORCHESTRA Hierarchy constructed after first HIT. Note that Bedroom,
Living Room and Kitchen were not sampled in this HIT

Universe

Man-madeNatural

Streets/Highways Indoor City/TownForestNon-Forest

(b) ORCHESTRA Hierarchy constructed after second HIT. After Bedroom,
Living Room and Kitchen are sampled, they are clustered together with
Office to create a new Indoor node.

Figure 2.15: Advantage of using kernel-based GENERATESAMPLE

35

GENERATESAMPLE ensures sufficient overlap between samples to prevent multi-

ple clusters from having the same underlying concept.

Categorization

In this set of experiments, we examine (i) the effect of categorization phase on the qual-
ity of clusterings, (ii) worker agreement on categorization tasks and (iii) comparison
with other algorithms as the cost of a categorization task is varied.

Effect on Quality. We compare the change in the quality of clustering through the cat-
egorization interface on scenes - Figures 2.14(b) and 2.14(c) show the quality of clus-
tering before and after categorization. Essentially, the categorization stage preserves
the quality of the clustering stage, i.e., no new “bad” rows—corresponding to errors—
are introduced. The highway category was split across two clusters at the end of the
clustering stage. The pivots actually help the workers in placing most of the highway
images in the outdoor-city/town cluster, as opposed to the outdoor-natural

cluster.
The quantitative metrics also reflect this preservation of quality. The change in Pr

is from 0.224 before categorization to 0.230 after categorization. The corresponding
changes in Re and Ac are 0.988→ 0.985 and 0.982→ 0.992 respectively.

The categorization stage maintains the quality of organization - Pr, Re or Ac

remain high even after categorization.

Worker agreement. The categorization phase of ORCHESTRA had a very high agree-
ment between workers. For imagenet, on average, 4.11 out of 5 workers agreed on the
cluster to be assigned to an item in the categorization task. This average was computed
over 910 items assigned to clusters using categorization. The corresponding agreement
on scenes was 4.69. This high level of agreement in categorization is indicative of the
easily discernible concepts underlying each cluster produced by ORCHESTRA and sug-
gests that simple strategies (like majority vote) are sufficient for aggregating worker
responses in this phase. Furthermore, exemplar based categorization where workers
are shown examples for each category (instead of a description) is effectively able to
convey these latent underlying concepts to the workers. Thus, it is even more impor-
tant to separate worker responses by perspectives and present only one perspective for
categorization — as is done by ORCHESTRA.

The categorization phase has high worker agreement because of easily discernible

concepts underlying each cluster. This high agreement ensures that simple strate-

gies like majority vote suffice to aggregate responses from multiple workers.

Cost. In the preceding section, the clustering algorithms were compared on fixed cost
with the assumption that the cost of a categorization task is half the cost of a clustering
task. However, if the cost of categorization was more, MatComp and CrowdClust

would get more clustering HITs to organize the items in the same dollar budget as
ORCHESTRA. We therefore examine the effects of varying this cost.

36

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.5 1.0

P
re

c
is

io
n

Relative Cost

MatComp

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.5 1.0

R
e
c
a
ll

Relative Cost

CrowdClust

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.5 1.0

A
c
c
u
ra

c
y

Relative Cost

Orchestra

(a) Scenes dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.4 0.8

P
re

c
is

io
n

Relative cost

MatComp

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.4 0.8

R
e
c
a
ll

Relative cost

CrowdClust

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.4 0.8

A
c
c
u
ra

c
y

Relative cost

Orchestra

(b) Imagenet dataset

Figure 2.16: Performance of prior work with varying budget. The cost of
categorization task (relative to clustering task) is varied. The performance of
ORCHESTRA is shown for reference.

In Figure 2.16, we plot the performance of CrowdClust and MatComp while varying
the number of clustering HITs for scenes. The number of clustering HITs determined
by the cost of a categorization task (relative to clustering) is plotted on the x-axis.
For a point x on the x-axis, CrowdClust and MatComp are given a budget equal to
ORCHESTRA’s cost, i.e. an equivalent of 15 × 5 + x × 26 × 5 clustering tasks. From
the plots, it is clear that for all relative costs, the accuracy and recall of ORCHESTRA

are more than that for CrowdClust and MatComp on both datasets with ORCHESTRA

having either the highest or close to the highest precision.
As noted earlier, the cost of a categorization task was half of that for clustering.

Combined with the fact that only 5 worker responses were sought (as opposed to 15
for clustering), this stage has a per-item cost that is at least 1/6-th the cost in clustering
stage. The high level of agreement for categorization further indicates that even fewer
worker answers can be sought. Further, categorization does not require different tasks
to share a common kernel of items — each item needs to appear in only one task. This
significant cost saving, while retaining the quality of the clustering stage, demonstrates
that categorization is a cheap, unambiguous way of clustering items, once the clusters
have been discovered with reasonable confidence.

Even when categorization is as costly as clustering, ORCHESTRA’s organizations

are much better on recall and accuracy while being close to the best precision

attained by prior work.

37

Dataset Precision Recall Accuracy
Mean Variance Mean Variance Mean Variance

scenes 0.306 0.008 0.927 0.014 0.966 0.003
imagenet 0.319 0.007 0.953 0.004 0.98 0.0007

Table 2.3: The mean and variance of ORCHESTRA’s quality across 50 clustering
HITs for each dataset

Robustness

In general, the workers’ perspective will depend on the set of items to be organized.
On seeing only triangles, they may organize them by color even though the dominant
organization is shape. In addition, the final organization outcome of any algorithm may
also vary with the number of workers who perform a task. As we showed in Section 2.3,
dominant perspectives are more probable when a sufficient number of workers perform
every task. Thus, our goal in this set of experiments is to examine the robustness of
ORCHESTRA to variations in (i) item sampling and (ii) number of responses.

Variation in item samples. To examine the effect of item sampling, we created 50
different random samples of 35 items each from scenes and imagenet. These samples
were then arranged into one clustering HIT. Each such HIT was repeated by 15 workers
as earlier. We run ORCHESTRA’s HIERARCHYCONSTRUCTION step on each of these
100 HITs and show the scatter plots of Pr, Re and Ac in Figures 2.17(a), 2.17(b) and
2.17(c) respectively. The x-axis shows the number of the HIT and the y-axis shows the
corresponding metric. For both datasets, the metircs are well concentrated, with only
5% of the HITs having Pr < 0.2 or Re < 0.8 or Ac < 0.9. As we have already
seen in Table 2.1 and in Section 2.6.1, clusterings having metrics close to these values
are of high quality. This clearly indicates that ORCHESTRA provides high clusterings
irrespective of the item set. Additionally, we also show the mean and responses of all
metrics for both datasets in Table 2.3. The low values of variance indicate that the
mean quality is close to the values reported in Table 2.1 with high confidence.

In addition, in Figure 2.17(d), we also plot a histogram of the size of the largest
clique sizes in the clustering graph. The x-axis shows this size whereas the y-axis
shows the number of HITs where the largest clique had that size. From this plot,
we note that more than 60% of the HITs had a clique size of at least 5. In addition,
the average clique size across both datasets was 5.4, i.e. the maximum clique was
able to explain 5 workers responses (out of 15). This suggests that irrespective of
item sampling, ORCHESTRA is able to identify the dominant perspectives, providing
relevant and accurate clusterings.

ORCHESTRA handles variations in item sampling while maintaining high quality

- 95% of the HITs have Pr ≥ 0.2 and Re ≥ 0.8 and Ac ≥ 0.9.

Variation in number of responses. As noted in Section 2.3, the chances of recovering
the dominant perspective are higher when a larger number of workers perform each
task. For shapes, we saw that m = 15 was conservative estimate for the number of
workers to guarantee that the probability of getting an organization on SHAPES was 1.

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

P
re

c
is

io
n

HIT #

Scenes Imagenet

(a) Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

R
e

c
a

ll

HIT #

Scenes Imagenet

(b) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

A
c
c
u

ra
c
y

HIT #

Scenes Imagenet

(c) Accuracy

 0

 5

 10

 15

 20

 25

2 3 4 5 6 7 8 9 10

#
 o

f
H

IT
s

Size of Max Clique

Scenes
Imagenet

(d) Max Clique Size
Figure 2.17: ORCHESTRA’s robustness to variations in item sampling. Each point in
the scatter plots represents a clustering HIT.

 0
 0.2
 0.4
 0.6
 0.8

 1

 4 6 8 10 12 14 16

Number of responses

Accuracy
Recall

Precision

Figure 2.18: ORCHESTRA’s robustness to variations in number of worker responses
for the scenes dataset

In this experiment, we see the effect of varying m for the more challenging scenes
and imagenet datasets.

We use the same data as the previous experiment - 50 clustering HITs from scenes.
For every HIT, we take a subset of worker responses and run ORCHESTRA on this
subset. Figure 2.18 shows the quality of the eventual organizations as the size of this
subset is varied. These metrics are averaged over the 50 HITs and 200 random subsets
for each subset size. The plots for Pr, Re and Ac show that the quality of the eventual
organization is not sensitive to the number of workers providing the clustering. This
suggests that our estimate of m = 15 is conservative and lower values can be used
without any loss in quality. This robustness to worker responses is built into ORCHES-
TRA since it identifies a group (clique) of workers who are consistent with each other,
thereby providing validation for the group’s reponses.

ORCHESTRA’s clustering maintains high Pr, Re and Ac even with fewer worker

responses by still identifying a core group of workers who organize items consis-

tently.
The above experiments show that ORCHESTRA produces high-quality, meaningful or-

39

ganizations in a cost-efficient and robust manner.

2.6.3 Discussion

As the above results show, our approach of choosing the maximum likelihood frontier
in the maximum likelihood hierarchy ensures that the chosen frontier represents a high-
quality clustering. However, it does not provide control over number of clusters – it
varies from 3 for scenes to 9 for imagenet.

To tune the number of clusters (z), the strategy of choosing the maximum likeli-
hood frontier can be easily modified to incorporate constraints. One way to satisfy
constraints of the form z = z0 or z ≥ z0 or z ≤ z0 is to look at frontiers that satisfy
these constraints and return the frontier with the highest likelihood. While this may not
be the maximum-likelihood frontier overall, this is the best viable frontier satisfying
the constraints. Another strategy could be to drill-down on course granularity nodes in
the maximum-likelihood frontier. Asking workers to organize only Quadrilaterals

– a cluster in the maximum-likelihood frontier – can help in discovering finer granu-
larities (Rectangles, Squares) with high confidence. This drill-down and associated
discovery of finer granularity clusters can further improve the precision from the values
reported in Table 2.1.

To examine this experimentally, we asked workers to organize some items belonging
only to the indoor category (cluster # 0) in scenes, i.e., the ORCHESTRA workflow
was run on a sub-category (indoor) of items. The qualitative results of this drill down
can be seen in Figure 2.19. The four categories making up the indoor cluster are
all discovered in the drill-down. These categories are recovered with Pr, Re and Ac
of 0.84, 0.94 and 0.94 respectively. Furthermore, the size of the max-clique in the
clustering graph was 13 (out of 15). On closer examination, the two images of bedroom
category that were placed in cluster #3 are ambiguous and do infact resemble living
rooms.

0 1 2 3

bedroom

kitchen

livingroom

office

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

Figure 2.19: Effect of drill-down

40

Dataset Sentiment ORCHESTRA CrowdClust MatComp

scenes
+

“... seems to follow a more cohesive pattern.”
“The flow of the images are more enjoyable on the left hand side.”
“... more coherent as it contained more of the same type of images ...”
“It’s a more appropriate, identifiable way to group pictures.”
“Each row represented a certain type of image clearly.”
“... is predictable.”
“In vs. out seems a more contrasting comparison”
“... is more coherent and in three distinct groups ...”
“It would be the easiest way to sort through and find particular items.”
“It would be easy to determine which group a new picture should go in.”
“The images seem more ordered and similar ...”
“... groups... have a clear distinction. They are each grouped in a clear,
distinguishable group with no overlap”
“... makes a clear division between the three characteristics (structure in-
ternals, structure externals, structureless)”
“The picture groupings are more obvious and definite in nature”
“It is more understandable and interesting as an organizing idea to me.”

“looks more robust”
“more interesting photos”
“... looks like a story of building and the
beach... seems to tell a story.”
“... it had a better mix and was more visu-
ally appealing.”
“... more coherent ... more content flows
from a small room space to larger outdoor
spaces.”
“It just seemed to flow better.”
“makes sense to me as a scroll from left to
right (typical reading style)”
“... seemed to have different columns of
sort of the same pictures”

“they all share the black and
white theme”
“It has more images that match
most of them are of a outdoor
scene”
“... have more in a common
like many are scenic pictures
...”
“is a better setup and format
for organizing”
“It has greater depth and gives
a much fuller picture due to
there being more images.”

−

“I cannot tell what each column is trying to
group together.”
“... shows so many pictures in an almost
random order”
“... have no clear grouping method”
“... images do not always follow a clear pat-
tern”
“... too much variation ..., eg pictures of na-
ture jumbled with pictures of buildings”
“There are more categories ... than make
sense.”
“... is confusing and there are too many
columns to see it all clearly”

“I dont get the right (one) at
all”
“has a lot of similar pictures”
“some of the pictures didn’t fit
their categories”

Table 2.4: Human Evaluation of organizations provided by algorithms for scenes dataset

41

Dataset Sentiment ORCHESTRA CrowdClust MatComp

imagenet
+

“The theme makes more sense”
“This one was best organized.”
“This is the only organizational option that made sense to me.”
“Just seems more understandable”
“The subjects are more similar to each other with less outliers”
“.. is more coherent because the images are similar and you
can follow along with the theme”
“... flows nicely and makes at least a bit of sense.”
“Just seems more effecient”
“It makes more sense and everything is in the right place.”
“... most of the images are put into a sensible category.”
“... more reproducible ... ”
“There’s a theme and overall idea to what I’m looking at”
“it is more organized. each row consist of mostly the same
images”
“Things were lumped together in a way I could see the con-
nections.”

“Habitat makes more sense than if
the item is edible or not.”
“It seems to make more sense to
show the animals first in 1 collumn”
“... each group that was clear was
very thorough and did not have any
outliers.”

“This one is better oraganized.”
“These images look like they had
slightly more thought put into choos-
ing them.”
“A little more eye pleasing in general
to me.”
“Only 2 columns and easier to view”
“Images are lined up better.”
“Easier to look at”

−
“I could find NO single theme.”
“... there’s some overlap ...”
“Living versus nonliving is a very basic categorization
scheme.”

“ I didn’t understand why nonliving
and living things were grouped to-
gether ...”
“I could not even tell what the orga-
nizing principle in the right hand box
was supposed to be!”
“... is a little more abstract.”
“... had a couple groups that were not
coherent at all”
“has some pics that are not related”

“Couldn’t find any coherency”
“... it’s almost completely random.”
“... seems to be have to much variety
and I can’t really get a feel for what
it is aiming”
“ ... just random photos grouped to-
gether, nothing coherent. It’s hard to
follow any line of thought ...”
“I don’t understand the timeline or
connections”

Table 2.5: Human Evaluation of organizations provided by algorithms for imagenet dataset

42

The above discussion shows that different strategies can help in controlling the orga-
nization granularity of ORCHESTRA. One such strategy, drill-down, was observed to
be effective for finding finer granularity clusters. A detailed examination and compar-
ison of such strategies requires further investigation and we defer that to future work.

2.7 Related Work

Our work is related to prior work on crowd clustering, taxonomy generation, as well as
other work on crowdsourced algorithms.

Crowd-Based Clustering. Our work is most closely related to the prior work on
crowd-powered clustering via a matrix completion approach, including [18, 19, 20]. In
all these papers, worker clusterings are performed on randomly selected sets of items.
Then, the results of worker clusterings are interpreted as pairwise comparisons: for
example, if a worker placed items a, b, c in one cluster, then this is interpreted as three
pairwise comparisons, between a and b, b and c, and c and a. Subsequently, matrix
completion techniques are applied to infer the missing entries in the matrix. We iden-
tify multiple ways this line of work fails to take into account the complexity of crowd-
powered organization: (a) Mixing of hierarchies and frontiers: since these papers do
not interpret different worker responses as being derived from different hierarchies or
frontiers within a hierarchy, they tend to provide clusterings that mix hierarchies and
mix frontiers within a hierarchy, leading to poor organization. ORCHESTRA, on the
other hand, carefully treats distinct hierarchies as well as frontiers within a hierarchy.
(b) Random samples of items: unlike ORCHESTRA, which uses intelligently chosen
samples of items, these papers use random samples of items. (c) Loss of information:
since these papers interpret worker clusterings as pairwise information within the ma-
trix, they lose valuable information, as opposed to ORCHESTRA, which operates on
clusters as a whole. (d) No categorization: since the ORCHESTRA approach identifies
the consensus hierarchy, this hierarchy can be leveraged to subsequently categorize the
remaining items, providing further cost savings. None of these papers perform catego-
rization to save cost.

There has been other work on variants of clustering: Heikinheimo and Ukkonen [25]
describe the CROWD-MEDIAN algorithm whose goal is to compute centroids, as op-
posed to identifying clusterings. For example, as soon as they locate some represen-
tative object, they can stop, instead of having to organize all the objects, like in our
case. Further, they do not explicitly capture different perspectives of workers, limit-
ing the applicability in practice. Davidson et al [26] provide theoretical guarantees for
aggregation (GROUP BY) queries, where workers are asked to answer questions of
the form ”are a and b of the same type”. This paper makes a simplifying assumption
that there is a correct answer (i.e., there is a ground truth collection of types), with
workers answering incorrectly with a fixed error probability. ORCHESTRA uses a more

43

general question type (i.e., cluster a collection of objects) since it provides more con-
text, and also does not make the same assumptions about worker answer correctness.
[27] propose a collaborative clustering scheme where they discover user preferences
for clustering as opposed to identifying a consensus clustering of the data, as we do.

Crowd-Based Hierarchy Building. A variety of papers use the crowd for hierarchy
construction: Chilton et al. and Bragg et al. [28, 29] use text labels and filtering on
the labels to create a hierarchy while Sun et al. and Karampinas et al. [30, 31] ask the
crowd for pairwise ancestor descendant relationships, also demonstrating that identi-
fying the optimal set of ancestor descendant questions is NP-HARD. While hierarchy
construction could, in principle, be used as a precursor to clustering or organization,
none of these papers take into account different organizational principles (i.e., the ex-
istence of many hierarchies); it remains to be seen if hierarchy construction can be
improved by taking into account our techniques for identifying organizational princi-
ples. At the same time, it would be interesting to extend our algorithms to generate a
complete hierarchy on the set of clustered items.

Other Crowdsourcing or Active Learning Work. Past work on active learning has
utilized human workers to provide constraints for automated clustering algorithms.
This work relies on human competence in making judgments for ambiguous image
pairs, rather than using humans expertise in organizing data into clusters. Biswas et
al. [32] obtain hard pairwise constraints in a crowdsourced setting by asking targeted
questions related to an item pair. Lad et al. [33] ask humans to provide attribute-based
explanations, rather than pairwise constraints, and opt to use these as soft constraints.
Neither work allows humans to explicitly cluster data.

Other work focuses on learning a embedding of the data using crowd workers, and
then clustering in this latent space using a standard clustering algorithm. The disad-
vantage of this approach is that it mashes together worker responses, and loses rich
information that can be extracted from workers. Wilber et al. [34] create concept em-
beddings by combining human experts with automation. Tamuz et al. [35] learn a
‘crowd kernel’, which embeds items into a Euclidean space. Neither work explores
how to cluster this embedding effectively, to extract different organizational hierar-
chies.

Prior work on categorization does not attempt to discover organizational principles,
instead presenting a predefined organization to workers, and asking them to assign
items into categories. Both papers in this space [36, 37] use graph-based approaches
to carry out categorization into a taxonomy of concepts. Our work can be considered a
precursor to the algorithms described in these papers, which can be integrated into our
categorization step.

Work on entity resolution (ER) can be regarded as clustering with a different objec-
tive: find clusters of homogenous (identical) items, in contrast to our setting, where the
organizing principle is not clear. [38, 39, 40, 41, 3] are all examples of work that rely
on human judgments to carry out ER, all using pairwise comparisons.

44

2.8 Summary

We described ORCHESTRA, our approach to perform consensus organization of cor-
pora using the crowd. We developed techniques for identifying maximum likelihood
frontiers, for issuing additional questions from the crowd, ensuring that the eventual
frontiers have high coverage, and combining information across different crowd an-
swers. We demonstrated the benefits of ORCHESTRA versus other crowd-clustering
schemes on three datasets with different characteristics. The organizations returned
by ORCHESTRA are higher quality (up to 4× better on accuracy) and are more cost
effective (reduction of at least 60%) than other schemes.

We believe our work raises a number of interesting unanswered questions: (a) Would
it help to ask workers to describe, in words, the clustering that they are using, and
combine that information with the hierarchy construction or merging algorithm? Once
we identify the maximum likelihood hierarchy, could we ask workers to cluster on
that hierarchy (in words)? (b) Would it help at all to drill-down on certain nodes in a
given hierarchy by asking workers to only organize objects that are known to be part
of the concept corresponding to that node? One drawback of this is that we may end
up mixing hierarchies: if we apply drill-down to a node containing triangles, we may
end up introducing size or color as the organizational principle at that point. (c) We
observed that often the hierarchies that we obtain (corresponding to the cliques) may
in fact share many clusterings: in such cases, we still just end up picking the largest
clique. Would it be possible to merge these hierarchies together, despite not being part
of a single clique, by using a more tolerant merging criteria—would that lead to any
benefits? (d) Can we combine our algorithm with an automated scheme that provides
prior assessments of similarity using automatically extracted features?

45

CHAPTER 3

JELLYBEAN: Crowd-Vision-Hybrid Counting
Algorithms

3.1 Introduction

The field of computer vision [42, 43] concerns itself with the understanding and inter-
pretation of the contents of images or videos. Many of the fundamental problems in
this field are far from solved, with even the state-of-the-art techniques achieving poor
results on benchmark datasets. For example, the recent techniques for image catego-
rization achieve average precision ranging from 19.5% (for the chair class) to 65%
(for the airplane class) on a canonical benchmark [44]. Another study [45] has shown
that even the state-of-the-art deep-network methods are susceptible to high-confidence
erroneous labels, recognizing objects within images containing no objects visible to
the human eye.

Counting is one such fundamental image understanding problem, and refers to the
task of counting the number of items of a particular type within an image or video.

Counting is important. Counting objects in images or videos is a ubiquitous problem
with many applications. For instance, biologists are often interested in counting the
number of cell colonies in periodically captured photographs of petri dishes; counting
the number of individuals at concerts or demonstrations is often essential for surveil-
lance and security [9]; counting is often necessary in military applications; counting
nerve cells or tumors is standard practice in medical applications [10]; and counting the
number of animals in photographs of ponds or wildlife sanctuaries is often essential for
animal conservation [11]. In many of these scenarios, making errors in counting can
have unfavorable consequences. Furthermore, counting is a prerequisite to other, more
complex computer vision problems requiring a deeper, more complete understanding
of images.

Counting is hard for computers. Unfortunately, current supervised computer vision tech-
niques are typically very poor at counting for all but the most stylized settings, and can-
not be relied upon for making strategic decisions. In our conversations with microbiol-
ogists, they report that they do not rely on automated counts [46], and will frequently
spend hours painstakingly counting and cataloging photographs of cell colonies. The
computer vision techniques primarily have problems with occlusion, i.e., identifying
objects that are partially hidden behind other objects. As an example, consider Fig-
ure 3.1, depicting the performance of a recent pre-trained face detection algorithm [47].
The algorithm performs poorly for occluded faces, detecting only 35 out of 59 (59.3%)

46

Figure 3.1: Counting: Challenging image for Machine Learning

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80

A
v
e

ra
g

e
 E

rr
o

r

Number of Objects

Figure 3.2: Counting: Worker Error

faces. The average precision for the state-of-the-art person detector is only 46% [44].
Furthermore, these techniques are not generalizable; separate models are needed for
each new application. For instance, if instead of wanting to count the number of faces
in a photograph, we needed to count the number of women, or the number of people
wearing hoodies, we would need to start afresh by training an entirely new model.

Even humans have trouble counting. While humans are much better at counting than
automated techniques, and are good at detecting occluded (hidden) objects, and not
missing them while counting, as the number of objects in the image increases, they
start making mistakes. Psychology studies have estimated that human beings have a
memory span of 7 chunks of information at a time [48]. While counting objects is a
simpler problem than remembering objects, we expect a similar (but possibly higher)
threshold for counting—this is because workers may end up counting the same object
multiple times or not count them at all. To observe this behavior experimentally, we
had workers count the number of cell colonies in simulated fluorescence microscope
images with a wide range of counts. We plot the results in Figure 3.2, displaying the
average error in count (on the y-axis) versus the actual count (on the x-axis). As can be
seen in the figure, crowd workers make few mistakes until the number of cells hit 20 or
25, after which the average error increases. In fact, when the number of cells reaches
75, the average error in count is as much as 5. (There are in fact many images with
even higher errors.) Therefore, simply showing each image to one or more workers and
using those counts is not useful if accurate counts are desired (as we will show later).

The need for a hybrid approach. Thus, since both humans and computers have trouble

47

with counting, there is a need for an approach that best combines human and com-

puter capabilities to count accurately while minimizing cost. These techniques would
certainly help with the counting problem instance at hand—the alternative of having
a biology, security, military, medical, or wildlife expert count objects in each image
can be error-prone, tedious, and costly. At the same time, these techniques would also
enable the collection of training data at scale, and thereby spur the generation of even
more capable computer vision algorithms. To the best of our knowledge, we are the
first to articulate and make concrete steps towards solving this important, fundamental
vision problem.

Key idea: judicious decomposition. Our approach, inspired by Figure 3.2, is to judi-
ciously decompose an image into smaller ones, focusing worker attention on the areas
that require more careful counting. Since workers have been observed to be more accu-
rate on images with fewer objects, the key idea is to obtain reliable counts on smaller,
targeted sub-images, and use them to infer counts for the original image. However, it
is not clear when or how we should divide an image, or where to focus our attention
by assigning more workers. For example, we cannot tell a-priori if all the cell colonies
are concentrated in the upper left corner of the image. Figuring out the granularity of
this sub-division scheme is another problem. Once it has been decided that a partic-
ular image region needs to be divided, how many portions should it be divided into?
Another challenge is to divide an image while being cognizant of the fact that you
may cut across objects during the division. This could result in double-counting some
objects across different sub-images. Lastly, given that there may be computer vision
algorithms that can provide us a good starting point for deciding where to focus our
attention, yet another challenge is to exploit this information in the best way possible.

Adaptivity to two modes. In the spirit of combining the best of human worker and com-
puter expertise, when available, we develop algorithms that are near-optimal for two
separate regimes or modes:

• First, assuming we have no computer vision assistance (i.e., no prior computer
vision algorithm that could guide us to where the objects are in the image), we
design an algorithm that will allow us to narrow our focus to the right portions
of the image requiring special attention. The algorithm, while intuitively simple
to describe, is theoretically optimal in that it achieves the best possible compet-

itive ratio, under certain assumptions. At the same time, in practice, on a real
crowd-counting dataset, the cost of our algorithm is within 2.75× of the optimal

“oracle” algorithm that has perfect information, while still maintaining very
high accuracy.

• Second, if we have primitive or preliminary computer vision algorithms that pro-
vide segmentation and prior count information, we design algorithms that can use
this knowledge to once again identify the regions of the image to focus our re-
sources on, by “fast-forwarding” to the right areas. We formulate the problem as
a graph binning problem, known to be NP-COMPLETE and provide an efficient

articulation-point based heuristic for this problem. We show that in practice, on

48

a real biological cell dataset, our algorithm has a very high accuracy, and only
incurs 1.3× the cost of the optimal, perfect information “oracle” algorithm.

We dub our algorithms for these two regimes as the JellyBean algorithm suite, as a
homage to one of the early applications of crowd counting1.

3.2 Preliminaries

In this section, we describe our data model for the input images and our interaction
model for worker responses. We provide a list of notations in Table 3.1 for easy refer-
ence.

3.2.1 Data Model

Given an image with a large number of (possibly heterogenous) objects, our goal is
to estimate, with high accuracy, the number of objects present. As noted above in
Figure 3.2, humans can accurately count up to a small number of objects, but make
significant errors on images with larger numbers of objects. To reduce human error,
we split the image into smaller portions, or segments, and ask workers to estimate
the number of objects in each segment. Naturally, there are many ways we may split
an image. We discuss our precise algorithms for splitting an image into segments
subsequently. For now, we assume that the segmentation is fixed.

We represent a given image and all its segments in the form of a directed tree G =

(V,E), called a segmentation tree. The original image is the root node, V0, of the
tree. Each node Vi ∈ V , i ∈ {0, 1, 2, . . . } corresponds to a sub-image, denoted by
Image(Vi). We call a node Vj a segment of Vi if Image(Vj) is contained in Image(Vi).
A directed edge exists between nodes Vi and Vj : (Vi, Vj) ∈ E, if and only if Vi is the
lowest node in the tree, i.e. smallest image, such that Vj is a segment of Vi. Note that
not all segments need to be materialized to actual images — the tree is conceptual and
can be materialized on demand. For brevity, we refer to the set of children of node
Vi (denoted as Ci) as the split of Vi. If Ci = {V1, · · · , Vs}, we have Image(Vi) =⋃

j ∈ {1,··· ,s} Image(Vj).
For example, consider the segmentation tree in Figure 3.3. The original image, V0,

can be split into the two segments {V1, V2}. V1, in turn, can be split into segments
{V3, V4}, and V2 into {V5, V6, V7}. Intuitively, the root image can be thought of as
physically segmented into the five leaf nodes {V3, V4, V5, V6, V7}.

We assume that all segments of a node are non-overlapping. That is, given any node
Vi and its immediate set of children Ci, we have (1) Image(Vi) =

⋃
Vj ∈Ci

Image(Vj)

and (2) Image(Vj) ∩ Image(Vk) = φ ∀Vj , Vk ∈ Ci We denote the actual number of
objects in a segment, Image(Vi), by TrueCount(Vi). A significant challenge is to
ensure that each object appears in exactly one segment in Ci. We will describe how

1 Counting or estimating the number of jellybeans in a jar has been a popular activity in fairs since 1900s,
while also serving as unfortunate vehicle for disenfranchisement [49].

49

V0

V1

V3 V4

V2

V5 V6 V7

Figure 3.3: Segmentation Tree

we handle this in Section 3.3.4. Our assumption of non-overlapping splits ensures that
TrueCount(Vi) =

∑
Vj ∈ Ci

TrueCount(Vj).
Our first constraint (1) above ensures that each object is counted at least once, while

the second constraint (2) ensures that none of the objects are counted more than once.
One of the major challenges of the counting problem is to estimate these TrueCount

values with high accuracy, by using elicited worker responses. Given the segmentation
tree G for image V0, we can ask workers to count, possibly multiple times, the number
of objects in any of the segments. For example, in Figure 3.3, we can ask workers
to count the number of objects in the segments (V3), (V4), (V5), (V6), (V7), (V1 =

V3 ∪ V4), (V2 = V5 ∪ V6 ∪ V7),(V0 = V3 ∪ V4 ∪ V5 ∪ V6 ∪ V7). While we can
obtain counts for different nodes in the segmentation tree, we need to consolidate these
counts to a final estimate for V0. To help with this, we introduce the idea of a frontier,
which is central to all our algorithms. Intuitively, a frontier F is a set of nodes whose
corresponding segments do not overlap, and cover the entire original image, Image(V0)
on merging. We formally define this notion below.

Definition 12 (Frontier). Let G = (V,E) be a segmentation tree with root node V0 .

A set of k nodes given by F = {V1, V2, . . . , Vk}, where Vi ∈ V ∀ i ∈ {1, . . . , k} is a

frontier of size k if Image(V0) =
⋃

Vi ∈ F Image(Vi), and Image(Vi) ∩ Image(Vj) =
φ ∀ Vi, Vj ∈ F

A frontier F is now a set of nodes in the segmentation tree such that taking the sum
of TrueCount(·) over these nodes returns the desired count estimate TrueCount(V0).
Note that the set containing just the root node, {V0} is a trivial frontier. Continuing
with our example in Figure 3.3, we have the following five possible frontiers: {V0},
{V1, V2}, {V1, V5, V6, V7}, {V2, V3, V4}, and {V3, V4, V5, V6, V7}.

3.2.2 Worker Behavior Model

Intuitively, workers estimate the number of objects in an image correctly if the image
has a small number of objects. As the number of objects increases, it becomes difficult
for humans to keep track of which objects have been counted. As a result, some objects
may be counted multiple times, whereas others may not be counted at all. Based on the

50

G = (V,E) Segmentation Tree
V0 Root Node

Image(Vi) Image/Segment corresponding to node Vi
F Frontier

TrueCount(Vi) Actual number of objects in Image(Vi)
WorkerCount(Vi) Worker estimate of number of objects in Image(Vi)

Ci Children of node Vi
b Fanout of the segmentation tree
d∗ Counting threshold for worker errors

GP = (VP , EP) Partition Graph
Table 3.1: Notations

experimental evidence in Figure 3.2, we hypothesize that there is a threshold number
of objects, above which workers start to make errors, and below which their count
estimates are accurate. Let this threshold be d∗. So, in our interface, we ask the workers
to count the number of objects in the query image. If their estimate, d, is less than d∗,
they provide that estimate. If not, they simply inform us that the number of objects is
greater than d∗. This allows us to cap the amount of work done by the workers and
ensure that we pay them a minimum wage–the workers can count as far as they are
willing to correctly, and if the number of objects is, say, in the thousands, they may just
inform us that this is greater than d∗ without expending too much effort. We denote the
worker’s estimate of TrueCount(V) by WorkerCount(V).

WorkerCount(V) =

{
TrueCount(V) : TrueCount(V) ≤ d∗

> d∗ : TrueCount(V) > d∗

Based on Figure 3.2, the threshold d∗ is 20. We provide further experimental verifica-
tion for this error model in Appendix A. While we could choose to use more complex
error models, we find that the above model is easy to analyze and experimentally valid,
and therefore suffices for our purposes.

3.3 Crowdsourcing-Only Solution

In this section, we consider the case when we do not have a computer vision algorithm
at our disposal. Thus, we must use only crowdsourcing to estimate image counts. Since
it is often hard to train computer vision algorithms for every new type of object, this is
a scenario that often occurs in practice.

As hinted at in Section 3.2, the idea behind our algorithms is simple: we ask workers
to estimate the count at nodes of the segmentation tree in a top-down expansion, until
we reach a frontier such that we have a high confidence in the worker estimates for all
nodes in that frontier.

51

3.3.1 Problem Setup

We are given a fixed b-ary segmentation tree i.e. a tree with each non-leaf node having
exactly b children. We also assume that each object is present in exactly one seg-
ment across siblings of a node, and that workers follow the behavior model from Sec-
tion 3.2.2. Some of these assumptions may not always hold in practice, and we discuss
their relaxations later in Section 3.3.4.

For brevity, we will refer to displaying an image segment (node in the segmentation
tree) and asking a worker to estimate the number of objects, as querying the node.
Our problem can be therefore restated as that of finding the exact number of objects

in an image by querying as few nodes of the segmentation tree as possible. Next,
we describe our algorithm on this setting in Section 3.3.2, and give complexity and
optimality guarantees in Section 3.3.3.

3.3.2 The FrontierSeeking Algorithm

Our algorithm is based on the simple idea that to estimate the number of objects in the
root node, we need to find a frontier with all nodes having fewer than d∗ objects. This
is because the elicited WorkerCounts are trustworthy only at the nodes that meet this
criteria. We call such a frontier a terminating frontier. If we query all nodes in such
a terminating frontier, then the sum of the worker estimates on those nodes is in fact
the correct number of objects in the root node, given our model of worker behavior.
Note that terminating frontiers are not necessarily unique for any given image and
segmentation tree.

Definition 13. A frontier F is said to be terminating if ∀ V ∈ F , TrueCount(V) ≤
d∗

If a node V has greater than d∗ objects, then we cannot estimate the number of
objects in its parent node, and consequently the root node, without querying V ’s chil-
dren. Our Algorithm 4, FrontierSeeking(G), depends on this observation for find-
ing a terminating frontier efficiently, and correspondingly obtaining a count for the
root node, V0. The algorithm simply queries nodes in a top-down expansion of the seg-
mentation tree, for example, with a breadth-first or depth-first search. For each node,
we query its children if and only if workers report its count as being higher than the
threshold d∗. We continue querying nodes in the tree, only stopping our expansion at
nodes whose counts are reported as smaller than d∗, until we have queried all nodes
in a terminating frontier. We return the sum of the reported counts of nodes in this
terminating frontier as our final estimate.

3.3.3 Guarantees

We now prove the optimality that our Algorithm 4 provides under our proposed model.
Given an image and its segmentation tree, let F ∗ be a terminating frontier of the small-
est possible size, having k nodes. Although there are many terminating frontiers, there

52

Algorithm 4 FrontierSeeking(G)

Require: Segmentation Tree G = (V,E)
Ensure: Terminating Frontier F , Actual count count
F ← φ
count← 0
create a queue Q
Q.enqueue(V0) {Add root V0 to Q}
while Q is not empty do
V ← Q.dequeue()
Query(V)
if WorkerCount(V) > d∗ then
Q.enqueue(children(V))

else
F ← F ∪ {V }

end if
end while

exists a unique minimal terminating frontier with k nodes, such that all other terminat-
ing frontiers, F , have |F | > k. Our goal is to find the minimal terminating frontier
with as few queried nodes as possible.

First, we describe the complexity of a baseline optimal oracle algorithm using the
following lemma, whose proof follows trivially from the observation that we need to
query at least one complete terminating frontier to obtain a count for the root node of
the tree.

Lemma 7. The number of questions required to get a true count of the number of

objects in the given image is ≥ k.

Thus k is the minimum number of questions that an algorithm with prior knowledge
of a minimal terminating frontier requires to determine the true count, if it were only
allowed to ask questions at nodes of the tree. We use this as the baseline to compare
against online algorithms, that is, algorithms which have no prior knowledge and dis-
cover counts of segments only through the process of querying them. To measure the
performance of an algorithm against this optimal baseline, we use a competitive ratio

analysis [50]. Let AFS(G) denote the sequence of questions asked, or nodes queried,
by an online deterministic algorithm A on segmentation graph G. Let |AFS(G)| be
the corresponding number of questions asked. For the optimal oracle algorithm OPT ,
|OPT (G)| = k where k is the size of the minimal terminating frontier of G. For
brevity, we also denote FrontierSeeking algorithm by AFS .

Definition 14 (Competitive ratio). Let G be the set of all segmentation trees with fanout

b. The competitive ratio of an algorithm A is given by CR(A) = max
G∈G

|A(G)|
|OPT (G)| .

Intuitively, the competitive ratio of an algorithm is a measure of its worst case perfor-
mance against the optimal oracle algorithm. Note that since our segmentation graphs
represent real segmentations on images, the true counts on nodes are constrained by
TrueCount(parent node) =

∑
TrueCount(children nodes). This means that when

querying nodes in segmentation trees, only answers that are consistent with our worker

53

behavior model over some consistent assignment of TrueCounts will be observed.
We now show that our Algorithm 4 has a constant competitive ratio that depends only
on the fanout of the given segmentation tree.

Theorem 7. Let G be the set of all segmentation trees with fanout b. We have, CR(AFS) =
b

b−1 over G.

Proof. Let G be any given segmentation tree with fanout b with minimal terminating
frontier F ∗. Let G∗ be the subtree of G above and including F ∗. Now, our algo-
rithm asks nodes in a top-down search expansion, querying a node’s children only if
it is not a terminating node. Therefore, the set of nodes queried by our algorithm is
upper bounded by G∗. This follows from the fact that to ask any node below F ∗, our
algorithm would have to first ask a node in F ∗, at which point, our algorithm will re-
ceive a count report of less than d∗, and choose not to continue its expansion in that
subtree. We also observe that our algorithm has to query at least all nodes in G∗. This
follows from the fact that F ∗ is a minimal terminating frontier which means that ev-
ery node above F ∗ has count greater than d∗. Combining these two bounds, we have
|Alg 4(G)| = |G∗|. Therefore, CR(Alg 4) = max

G∈G
|G∗|
|F∗| . We show below that this

value converges to b
b−1 .

Definition 15 (Compact Frontier). Frontier FC is compact if the difference in depths

of any two nodes in FC is ≤ 1.

Lemma 8. Consider a segmentation tree G with minimal terminating frontier F ∗ of

size k. Let G∗ be the subtree of G above and including F ∗. Then, there exists a

compact frontier FC of size k in G such that |G∗| = |GC|, where GC is the subtree

of G above and including FC and |G| = number of nodes in G.

Proof. If F ∗ is compact, then FC = F ∗ and the proof follows trivially. Suppose F ∗ is
not in the above compact form, that is, it has two nodes whose depths differ by more
than 1. Let Vi and Vj be two nodes such that depth(Vi) − depth(Vj) is maximum.
We transform F ∗ as follows: pick Vj in F ∗ (topmost layer) and replace it by its b
children. Simultaneously, pick b siblings that include Vi in F ∗ (F ∗ necessarily has
nodes occurring with all siblings), and replace them by their parent. Let the new set of
nodes be F ′. It is easy to prove that F ′ is a frontier of size k such that |G∗| = |G′|.
Here, G′ is the subtree of G above and including F ′. We observe that F ′ is “more
compact” than F ∗ in that it reduces one node from the top most layer and b nodes
from the bottom most and replaces them with nodes in between. It is easy to see that
repeating this transformation iteratively converges to a compact frontier FC with all
nodes lying in two consecutive depths, say d and d+ 1.

Now, we calculate |G
∗|

|F∗| =
|GC|
|FC | . Let the number of nodes from FC at depth d be n1.

Let n2 = bd−1 − n1 be the remaining nodes in depth d. Then, we know that the nodes
from FC at depth d+1 is the set of children corresponding to the n2 remaining nodes.
Therefore, |FC | = n1 + bn2. We have |GC| = (1 + b + . . . + bd−2) + n2 + |FC |

54

and |FC | = n1 + bn2. Substituting, and simplifying we obtain |GC|
|FC | = 1 + 1

b−1 [1 −
1

bd−1+(b−1)n2
]. Note that this is an increasing function of n2 that converges to 1 + 1

b−1

as n2 →∞. Therefore
|GC|
|FC |

≤ b

b− 1
, and CR(Alg 4) =

b

b− 1
.

The following theorem (combined with the previous one) states that our algorithm
achieves the best possible competitive ratio across all online deterministic algorithms.

Theorem 8. Let A be any online deterministic algorithm that computes the correct

count for every given input segmentation tree G with fanout b. Then, CR(A) ≥ (b
b−1).

Proof. We divide our proof into two parts. First, we construct a segmentation tree
G∗ for which our algorithm 4 queries fewer nodes than A to arrive at the correct an-
swer. That is, |A(G∗)| > Alg 4(G∗). Next, we show that for G∗, |A(G∗)| ≥
(b
b−1)|OPT (G

∗)|, thereby proving that CR(A) ≥ (b
b−1).

Let G be any segmentation tree such that |A(G)| < Alg 4(G). Let A(G) =<

V1, V2, . . . , Vn > be the sequence of nodes queried by A. Then, either V1 is not the
root node of G, or there exists i such that parent(Vi) 6∈ V1, V2, . . . , Vi−1. Intuitively
this claim is equivalent to saying that at some pointA queries a node Vi without having
first queried its parent, and can be proven by contradiction. If our claim is not true, then
the set of nodes A(G) is in fact the same set of nodes queried by our algorithm 4 in its
top-down traversal. Since we assume |A(G)| < Alg 4(G), we have a contradiction.
Now, pick the first i such that parent(Vi) 6∈ V1, V2, . . . , Vi−1 (similar proof when V1
is not the root of G). We can also assume that if a node Vj having count less than d∗ is
queried at some point, then algorithm A does not subsequently query a descendant of
Vj (otherwise we can replace A by a strictly better deterministic algorithm and repeat
our analysis with that).

Let F ′ = {Vj ∈ A(G)| j < i ∧ TrueCount(Vj) ≤ d∗} be the set of termi-
nating frontier nodes queried by A before Vi. Now, consider the set of nodes V \
{V1, V2, . . . , Vi−1}. For any other image segmentation tree having identical TrueCounts
on {V1, V2, . . . , Vi−1}, and arbitrary TrueCounts on the nodes V \{V1, V2, . . . , Vi−1},
deterministic algorithm A queries the same sequence of nodes, {V1, V2, . . . , Vi−1}. It
is easy to see that all possible segmentation trees (with TrueCounts on {V1, V2, . . . , Vi−1}
fixed) contain F ′ in their minimal terminating frontiers. Consider the new segmenta-
tion tree G∗ which has identical TrueCounts on {V1, V2, . . . , Vi−1} and the smallest
set of nodes F ′′ (across all the possible segmentation trees described), such that F =

F ′∪F ′′ is the minimal terminating frontier. Intuitively, this new segmentation tree will
have a TrueCount of less than d∗ on every node just after {V1, V2, . . . , Vi−1} in the
top-down expansion. We observe that our algorithm 4 matchesA up to {V1, V2, . . . , Vi−1},
and then asks the minimal possible number of questions to discover F ′′. It follows that
|A(G∗)| > Alg 4(G∗).

We have shown above that there exists at least one segmentation tree G∗ such that
|A(G∗)| > Alg 4(G∗). Recall from Theorem 3.3.3 that |Alg 4(G∗)|

|OPT (G∗)| = 1 + 1
b−1 [1 −

1
bd−1+(b−1)n2

]. Using |A(G∗)| ≥ Alg 4(G∗) + 1, we can show that |A(G∗)| ≥
(b
b−1)|OPT (G

∗)|.

55

This completes our proof.

3.3.4 Practical Setup

In this section we discuss some of the practical design challenges faced by our algo-
rithm and give a brief overview of our current mechanisms for addressing these chal-
lenges. While our current mechanisms suffice for deriving accurate results, it remains
to be seen if further exploration into these choices would give greater benefits—this
forms an important direction for our future work in this space. Further details can be
found in Section 3.5.

Worker error. So far, we have assumed that human worker counts are accurate for
nodes with fewer than d∗ objects permitting us to query each node just a single time.
However, this is not always the case in practice. In reality, workers may make mistakes
while counting images with any number of objects (and we see this manifest in our
experiments as well). So, in our algorithms, we show each image or node to multiple
(five in our experiments) workers and aggregate their answers via median to obtain a
count estimate for that node. We observe that although individual workers can make
mistakes, our aggregated answers satisfy our assumptions in general (e.g., that the
aggregate is always accurate when the count is less than d∗). While we use a primitive
aggregation scheme in this work, it remains to be seen if more advanced aggregation
schemes, such as those in [51, 4, 52] would lead to better results; we plan to explore
these schemes in future work.

Segmentation tree. So far, we have also assumed that a segmentation tree with fanout
b is already given to us. In practice, we are often only given the whole image, and have
to create the segmentation tree ourselves. In our setup, we create a binary segmentation
tree (b = 2) where the children of any node are created by splitting the parent into two
halves along its longer dimension. As we will see later on, this choice leads to accurate
results. While our algorithms also apply to segmentation trees of any fanout; further
investigation is needed to study the effect of b on the cost and accuracy of the results.

Segment boundaries. We have assumed that objects do not cross segmentation bound-
aries, i.e., each object is present in exactly one leaf node, and cannot be partially present
in multiple siblings. Our segmentation does not always guarantee this. To handle this
corner case, in our experiments we specify the notion of a “majority” object to workers
with the help of an example image, and ask them to only count an object for an image
segment if the majority of it is present in that segment. Once again, we find that this
leads to accurate results in our present experiments.

Note that this notion of “majority object” is harder to define for segmentation trees
with fanout higher than 2, as the same object could be present in 1, 2, 3 or 4 image
segments. To check for “majority”, the worker would have to look at all segments
containing a portion of the object simultaneously and gauge which contains the largest
chunk. An alternate way to handle this could be to instead just ask the worker to
populate a table for each displayed image containing two columns: (a) Number of

56

(a) (b)

Figure 3.4: Biological image (a) before and (b) after partitioning

boundaries crossed, and (b) Number of objects crossing these many boundaries. This
table could then be used to avoid the double-counting of objects when aggregating
counts across different image segments.

As mentioned earlier, while our present design decisions are adequate for high qual-
ity results, a complete exploration of the effect of aggregations schemes, fanout, and
objects crossing segment boundaries is left for future work. We revisit these design
decisions in Section 3.5.

3.4 Incorporating Computer Vision

Unlike the previous section, where we assumed a fixed segmentation tree, here, we
use computer vision techniques (when easily available) to help build the segmentation
tree, and use crowds to subsequently count segments in this tree. For certain types
of images, existing machine learning techniques give two things: (1) a partitioning of
the given image such that no object is present in multiple partitions, and (2) a prior
count estimate of the number of objects in each partition. While these prior counts
are not always accurate and still need to be verified by human workers, they allow us
to skip some nodes in the implicit segmentation tree and “fast-forward” to querying
lower nodes, thereby requiring fewer human tasks. Note that this is a departure from
our top-down search based approach discussed in Section 3.3. We formulate our idea
of fast-forwarding through the segmentation tree as a merging problem and discuss it
in greater detail in Section 3.4.2.

3.4.1 Partitioning

As a running example, we consider the application of counting cells in biological im-
ages. Figure 3.4(a) shows one such image, generated using SIMCEP, a tool for simu-
lating fluorescence microscopy images of cell populations [53]. SIMCEP is the gold
standard for testing algorithms in medical imaging, providing many tunable parameters
that can simulate realworld conditions. We implement one simple partitioning scheme

57

that splits any given such cell population image into many small, disjoint partitions.
Applying this partitioning scheme to the image in Figure 3.4(a) yields Figure 3.4(b).
Combined with the partitioning scheme above, we can leverage existing machine learn-
ing (ML) techniques to estimate the number of objects in each of the partitions. We
denote these ML-estimated counts on each partition, u, as prior counts or simply priors,
du. Note that these priors are only approximate estimates, and still need to be verified
by workers. We discuss details of our partitioning algorithm, prior count estimation,
and other implementation details later in Section 3.4.3.

We use these generated partitions and prior counts to define a partition graph as
follows:

Definition 16 (Partition Graph). Given an image split into the set of partitions, VP , we

define its partition graph, GP = (VP , EP), as follows. Each partition, u ∈ VP , is a

node in the graph and has a weight associated with it equal to the prior, w(u) = du.

Furthermore, an undirected edge exists between two nodes, (u, v) ∈ EP , in the graph

if and only if the corresponding partitions, u, v, are adjacent in the original image.

Notice that while we have used one partitioning scheme and one prior count estima-
tion technique for our example here, other machine learning or vision algorithms for
this, as well as other settings provide similar information that will allow us to generate
similar partition graphs. Thus, the setting where we begin with a partition graph is
general, and applies to other scenarios.

Now, given a partition graph, one approach to counting the number of objects in
the corresponding image could be to have workers count each partition individually.
The number of partitions in a partition graph is, however, typically very large, making
this approach impractical. For instance, most of the 5–6 partitions close to the lower
right hand corner of the image above have precisely one cell, and it would be wasteful
and expensive to ask a human to count each one individually. Next, we discuss an
algorithm to merge these partitions into a smaller number, to minimize the number of
human tasks.

3.4.2 Merging Partitions

Given a partition graph corresponding to an image, we leverage the prior counts on
partitions to avoid the top-down expansion of segmentation trees described in Section
3.3. Instead, we infer the count of the image by merging its partitions together into
a small number of bins, each of which can be reasonably counted by workers, and
aggregating the counts across bins.

Merging problem. Intuitively, the problem of merging partitions is equivalent to iden-
tifying connected components (or bins) of the partition graph, with total weight (or
count) at most d∗. Since workers are accurate on images with size up to d∗, we can
then elicit worker counts for our merged components and aggregate them to find the
count of the whole image. Overall, we have the following problem:

58

Problem 4 (Merging Partitions). Given a partition graphGP = (VP , EP) of an image,

partition the graph into k disjoint connected components in GP , such that the sum of

node weights in each component is less than or equal to d∗, and k is as small as

possible.

In other words, given a partition graph GP = (VP , EP) of an image, we wish to
find m disjoint connected components in GP , such that the sum of node weights in
each component is close to d∗. Enforcing disjoint components ensures that no compo-
nents overlap over a common object, thereby avoiding double-counting. Furthermore,
restricting our search to connected components ensures that our displayed images are
contiguous — this is a desirable property for images displayed to workers over most
applications, because it provides useful, necessary context to understand the image.

Hardness and reformulation. The solution to the above problem would give us the
required merging. However, the problem described above can be shown to be NP-
Complete, using a reduction from the NP-Complete problem of partitioning planar
bipartite graphs [54]; our setting uses arbitrary planar graphs, and so our problem is
more general. Thus, we have:

Theorem 9 (Hardness). Problem 4 is NP-COMPLETE.

We consider an alternative formulation for the above balanced partitioning problem
based on the idea that given an upper bound on the size of each component, balancing
component sizes is intuitively similar to finding the minimum number of covering com-
ponents satisfying the size constraint. That is, given total weight on the graph of sayD,
and upper bound on component weight d∗, the problem of partitioning the graph into
roughly even sized components with weights as close to (but not exceeding) d∗ will
yield roughly D/d∗ components. Conversely, the problem of partitioning the segmen-
tation graph into the smallest set of components, each upper bounded by size d∗, will
yield roughly D/d∗ even sized components. We formalize this problem of partitioning
the segmentation graph into the number of disjoint connected components bounded by
size d∗ below. Note that while this problem is still NP-COMPLETE, as we see below,
it is more convenient to design heuristic algorithms for it.

Problem 5 (Modified Merging Problem). Let dmax = maxu d
u, u ∈ VP be the max-

imum partition weight in the partition graph GP = (VP , EP). Split GP into the

smallest number of disjoint, connected components such that for each component, the

sum of its partition weights is at most k × dmax.

By setting k ≤ d∗/dmaxin the above problem, we can find connected components
whose prior counts are estimated to be at most d∗. Observe that here, although we
do not start out with a segmentation tree, the partitions provided by the partitioning
algorithm can be thought of as leaf nodes of a segmentation tree and our merged com-
ponents form parents, or ancestors of the leaf nodes. We comment on the relationship
between the partition graphs (discussed in this section) and the segmentation graphs
(discussed in Section 3.3) in greater detail below.

59

Figure 3.5: Articulation Point

Each component produced via a solution of Problem 5 also corresponds to an ac-
tual image segment formed by merging its member partitions: if the prior counts are
accurate, these image segments together comprise a minimal terminating frontier for
some segmentation tree. While in practice, they need not necessarily form a minimal
terminating frontier, or indeed even a terminating frontier, we observe that they provide
very good approximations for one.

Relationship between Partition graphs and Segmentation trees. So far we have
looked at the problem of counting given a partition graph as as an independent merging
problem. In this section, we discuss how this problem is related to that of counting on
a segmentation tree described in Section 3.3. First, we note that since partitions are
atomic segments that we do not split further, they can be thought of as the leaf nodes
of a segmentation tree for a given image. Observe that fixing the partition graph does
not necessarily fix a segmentation tree – there can be many segmentation trees with
the same set of leaf nodes (partitions). Intuitively, each intermediate (non-leaf) node
in any such segmentation tree is the union of a group of adjacent partitions (or leaf
nodes), and its prior count estimate is the sum of the priors of its constituent partitions.
Note that by only taking the union of adjacent partitions to form intermediate nodes
of the segmentation tree, we restrict ourselves to trees where each node, or image, is
contiguous.

If the prior count on an intermediate node is greater than d∗, we can now directly
query a lower node in the segmentation tree, without verifying this image against the
crowd. Intuitively, this is exactly what we do when we display our merged components
to workers — we are skipping the nodes for which querying them would anyway yield
incorrect answers resulting in image splitting. This is equivalent to jumping ahead to a
lower layer of the segmentation tree, one that is potentially very close to a terminating
frontier. Also note that jumping too far ahead (segments having counts� d∗), while
yielding accurate counts on each node, will result in the counting of a large number
of nodes, which will correspondingly increase the cost of counting. As a compromise,
we wish to jump ahead to nodes that ideally each have prior counts just smaller than or
equal to d∗. This motivates our merging problem 5.

Given the hardness of this modified merging problem, we now discuss good heuris-
tics for it, and provide theoretical and experimental evidence in support of our algo-
rithms. Note that while we discuss the complexity of our merging algorithms, in

60

practice their running time is small compared to the latency of human workers. It is
still impractical to run a brute force algorithm to solve the merging problem optimally –
fortunately, our second, relatively sophisticated heuristic, ArticulationAvoidance,
described below achieves the theoretical optimum for most problem instances and is
very close to it for the rest.

FirstCut Algorithm.

One simple, natural approach to Problem 5, motivated by the first fit approximation to
the Bin-Packing problem [55], is to start a component with one partition, and incre-
mentally add neighboring partitions one-by-one until no more partitions can be added
without violating the upper bound, k × dmax on the sum of vertex weights. We refer
to this as the FirstCut algorithm, and detail it in Algorithm 5.

Algorithm 5 FirstCut(GP)

Require: Partition Graph GP = (VP,EP)
Ensure: Set SP of components
Vcopy ← VP

SP← φ
while Vcopy is not empty do
newComponent← φ
Choose V ∈ Vcopy

newComponent← newComponent ∪ V
N← Vcopy.neighbors(V)
Vcopy.removeNode(V)
while Sum of vertex weights in newComponent < k × dmax do

Choose V ∈ N
newComponent← newComponent ∪ V
N← N ∪Vcopy.neighbors(V)
N.removeNode(V)
Vcopy.removeNode(V)

end while
SP ← SP ∪ {newComponent}

end while

Consider running this algorithm on a complete partition graph (every partition touches
every other partition). By repeating this procedure to termination, (1) each of the
merged components should have between (k − 1) × dmax and k × dmax objects, and
(2) the number of components obtained will be at most k

k−1 ×OPT , where OPT is a
theoretical lower bound to the minimum number of components possible in Problem 5.
In practice, however, we find that for several graphs, certain partitions and components
get disconnected by the formation of other components during this process, resulting
in a sub-optimal merging. For example, consider the partitioning shown in Figure 3.5.

Suppose partitions A, . . . , G contain 100 objects each and parameter k = 6. The
maximum allowed size for a merged component is 6 × dmax ≥ 6 × 100. Supposing
we start a component with A, and incrementally merge in partitions B, . . . , F , we
end up isolating G as an independent merged component. This causes a significant

61

departure from our first bound on component size described above (500 ≤ (k − 1) ×
dmax ≤ component containing G), which in turn will result in a higher final number
of merged components than optimal. Note that if we relaxed our requirement of only
merging adjacent partitions and allow arbitrary non-connected components, the above
guarantees would hold for our FirstCut algorithm over arbitrary partition graphs.

Theorem 10 (Complexity). The worst case complexity of the FirstCut algorithm is

O(n2) where n is the number of nodes in the partition graph.

Proof. First, we observe that for each growing component, each partition is examined
at most once - if it is not added to the component at that time (because adding it will
cause the component to exceed the threshold size), then it need never be looked at for
that component again. So each component takes at mostO(n) time to form, where n is
the total number of partitions. In the worst case, when every component is an individual
node (for example if the partition graph was a star with every node connected to just
one common large central node), the number of components formed could at most be
O(n), resulting in an overall complexity of O(n2) for the FirstCut algorithm.

While the number of components formed could at most be O(n), in practice, given
an upper bound on component size of kdmax, we observe that this number is close to
n/k resulting in an effective run time of O(n2/k). Also, if we relax the requirement
of only merging adjacent partitions, then the worst case running time of our algorithm
is O(n2/k) since (as discussed above) every component will have size lying between
(k − 1)dmax and kdmax resulting in O(n/k) components.

Next, we describe an algorithm that builds on the binning ideas used in Algorithm 5,
while also efficiently handling cases like the one shown in Figure 3.5.

ArticulationAvoidance Algorithm.

Recall that applying our first cut procedure to Figure 3.5 results in poor quality compo-
nents if we merge partitions B . . . F to A before G. Intuitively, when adding B to the
component containingA, the partition graph is split into two disconnected components:
one containing G, and another containing C . . . F . Given our constraint requiring con-
nected components (contiguous images), this means that partition G can never be part
of a reasonably sized component. This indicates that merging articulation partitions

likeB, i.e. , nodes or partitions whose removal from the partition graph splits the graph
into disconnected components, potentially results in imbalanced final merged compo-
nents:

Definition 17 (Articulation Partition). A node v in graph GP is defined to be an artic-

ulation partition iff removing it (along with the edges through it) disconnects the graph

GP .

Since adding articulation partitions early results in the formation of disconnected
components or imbalanced islands, we implement our ArticulationAvoidance al-
gorithm detailed in Algorithm 6 that tries to merge them to growing components as

62

late as possible. We merge partitions as before, growing one component at a time up
to an upper bound size of k × dmax, but we prioritize the adding of non-articulation
partitions first. With each new partition, u, added to a growing component, we update
the graph of the remaining unmerged partitions by removing the node corresponding to
u from the remaining partition graph—we also update our list of articulation partitions
for the new graph and repeat this process until all partitions have been merged into
existing components.

Algorithm 6 ArticulationAvoidance(GP)

Require: Segmentation Graph GP = (VP,EP)
Ensure: Set SP of components
Vcopy ← VP

SC← φ
while Vcopy is not empty do
newComponent← φ
Choose V ∈ Vcopy with priority to non-articulation points
newComponent← newComponent ∪ V
N← Vcopy.neighbors(V)
Vcopy.removeNode(V)
Update articulation points of Vcopy

while Sum of vertex weights in newComponent < k × dmax do
Choose V ∈ N with priority to non-articulation points
newComponent← newComponent ∪ V
N← N ∪Vcopy.neighbors(V)
N.removeNode(V)
Vcopy.removeNode(V)
Update articulation points of Vcopy

end while
SP ← SP ∪ {newComponent}

end while

Again, we state and prove the worst-case complexity of our algorithm below.

Theorem 11. The worst case complexity of the AritculationAvoidance algorithm

is O(n2(n+m)) where n is the number of nodes and m is the number of edges in the

partition graph.

Proof. Each time a partition is added to an existing component, we recompute the set
of articulation points. Since the maximum size of a component is kdmax, we update
the set of articulation points at most min(n, kdmax) times for each component (if each
new partition added is of size 1). We use a standard library to compute the set of
articulation points whose running time isO(n+m) where n is the number of partitions,
and m is the number of edges between partitions in the partition graph. Here, we
use the articulation points function of Python’s NetworkX library [56] which
is implemented using a non-recursive depth-first-search (DFS) that keeps track of the
highest level that back edges reach in the DFS tree.

Similar to the FirstCut algorithm, for each growing component, each partition is
examined at most once. So each component takes at mostO(n+(n+m)min(n, kdmax)),
or O(n(n + m)) time to form. Again, in the worst case, the number of components

63

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16 18 20

#
 o

f
b

in
s
 g

e
n

e
ra

te
d

k

Merging Partitions: Performance

FirstCut
ArticulationAvoidance

Min

Figure 3.6: Performance of algorithms for merging partitions. Min corresponds to the
absolute minimum number of segments required such that each segment has less than
k × dmax objects

formed could at most beO(n), resulting in an overall complexity ofO(n2(n+m)) for
the ArticulationAvoidance algorithm.

While the worst case complexity is O(n2(n + m)), in practice, we observe the
number of components formed using this algorithm is closer to n/k resulting in an
effective run time of O(n2(n+m)/k).

Evaluation. We perform extensive evaluation of our algorithms on synthetic and real
partition graphs on the metric of number of components generated. Since the optimal,
minimum number of bins is not known to us, we compare our algorithms against the
theoretical minimum. That is, given a partition graph with sum of partition weights
N , highest partition weight dmax, and upper bound on component size kdmax, the
theoretically minimum number of components possible is N

kdmax
. Note that this is a

lower bound to the true optimal number of components. We show one representative
plot for the variation in number of components created (y-axis) on the partitioned image
shown in Figure 3.4(b), against the maximum component size determined by k (x-axis)
in Figure 3.6. The image has 315 objects with dmax = 5 and the plot is representative
of the following general trend—we observe that ArticulationAvoidance performs
close to the theoretical optimum; FirstCut, on the other hand, often gets stuck at
articulation partitions, unable to meet the theoretical optimum.

3.4.3 Practical Setup

In this section we discuss some of the implementation details of and challenges faced
by our algorithms in practice. Many of the challenges faced in Section 3.3.4 apply here
as well.

Partitioning. The first step of our algorithm is to partition the image into small,
non-overlapping partitions. To do this, we use the marker-controlled watershed al-
gorithm [57]. The foreground markers are obtained by background subtraction using
morphological opening [57] with a circular disk.

Prior counts. In the example of Figure 3.4, we learn a model for the biological cells
using a simple Support Vector Machine classifier, trained on positive and negative ex-

64

amples extracted from 25 such images. For a test image, every 15 × 15 pixel window
in the image is classified as ‘cell’ or ‘not cell’ using the learned model to obtain a
confidence map of the original image. The confidence value associated with each win-
dow is a measure of probability that the window contains a cell. Simple local maxima
search and thresholding of this confidence map provides the locations of the cells. For
more details of this approach, we refer the reader to [58]. Empirically we observed
that our choice of threshold = 0.5 gave closest estimates to the true counts. Note that
this procedure always undercounted, that is, the prior count estimate obtained for any
partition was always smaller than the true number of objects in that partition. Setting
a lower threshold value can cause overcounting, and we found these estimates to be
more erroneous than the ones obtained by higher thresholds. Additionally, if the ma-
chine learning algorithm overcounts, then each component will have TrueCount < d∗.
This implies that the corresponding nodes will lie below the actual minimal terminating
frontier in the segmentation tree, and the size of our guess of the frontier will be higher
than the minimal frontier. It is thus more costly (in terms of number of nodes queried)
to overcount.

Traversing the Segmentation Tree. While Section 3.4.2 gives us a set of merged
components, or unified image segments with prior count estimates, we still need to
show these images to human workers to verify the counts. As mentioned earlier in
the same section, by setting k = b d∗

dmax
c, we find connected components whose prior

count is estimated to be at most d∗. Since the prior count estimates are approximate
and lower than the true counts, we expect these merged image segments constructed to
have true counts close to, and potentially higher d∗. One option is to have (multiple)
workers simply count each of these image components and aggregate the counts to
get an estimate for the whole image. Since some of these image components may
have counts higher than our set worker threshold of d∗, our model tells us that worker
answers on the larger components could be inaccurate. So, another option is to use
these images as a starting point for an expansion down the segmentation tree, and
perform a FrontierSeeking search similar to that in Section 3.3 by splitting these
segments until we reach segments whose counts are all under d∗. We compare these
two counting algorithms (termed AA and AA-Split) further in Section 3.5.

3.5 Experimental Study

We deployed our crowdsourcing solution for counting on two image datasets that are
representative of the many applications of our work. We examine the following ques-
tions:

• How do the JellyBean algorithms compare with the theoretically best possible
“oracle” algorithms on cost?

• How accurate are the JellyBean algorithms relative to machine learning base-
lines?

65

Figure 3.7: Images in the crowd dataset

• What are the monetary costs of our algorithms, and how do they scale with the
number of objects?

• How accurate are the JellyBean algorithms relative to directly asking workers to
count on the entire image?

• Do we get any additional benefit from counting nodes below the initially deter-
mined terminating frontier (when we work in concert with an ML algorithm)?

Later, in Section 3.5.4, we provide details of experiments evaluationg various answer
aggregation schemes beyond median. In our appendix, we experimentally study
worker behavior, including the frequency of errors and level of confidence in answers.

3.5.1 Datasets

Dataset Description. Our first dataset is a collection of 12 images from Flickr. These
images, shown in Figure 3.7, depict people in various settings, with the number of peo-
ple (counts) ranging from 41 to 209. This dataset is representative of the applications
in surveillance. This is a challenging dataset, with people looking very different across
images—ranging from partially to completely visible, aligned at different angles and
sizes, and varying backgrounds. Furthermore, no priors or partitions are available for
these images—so we evaluate our solutions from Section 3.3 on this dataset. For the
rest of this section, we refer to this as the crowd dataset.

The second dataset consists of 20 simulated images showing biological cells, gen-
erated using SIMCEP [53]. The number of objects in each image was sampled uni-
formly from the range 150 to 350. The minimum number of objects in an image in
our (randomly) generated dataset was 151, and the maximum was 328. The computer
vision techniques detailed in Section 3.4 are applied on each of these images to get
prior counts and partitions. For the remainder of this section, we refer to this as the
biological dataset.

Segmentation Tree Construction. For the crowd dataset, the segmentation tree was

66

(a) Biological dataset (b) Crowd dataset

Figure 3.8: Counting Interface: Sample Image shown to workers

constructed with fanout b = 2 until a depth of 5, for a total of 31 nodes per image. At
each stage, the image was split into two equal halves along the longer dimension. This
ensures that the aspect ratios of all segments are close to the aspect ratio of the original
image. Given a segment, workers were asked to count the number of ‘majority’ heads
(as described in Section 3.3.4)—if a head crossed the image boundary, it was to be
counted only if the worker felt that majority of it was visible. To aid the worker in
judging whether a majority of an object lies within the image, the surrounding region
was also shown demarcated by clear lines. One such image is shown in Figure 3.8(b).

For the biological dataset, bins were generated by our ArticulationAvoidance
algorithm. As detailed in Section 3.4, we start our search for the terminating fron-
tier from these nodes. Starting from these bins, subsequent layers of the segmentation
tree are constructed by applying ArticulationAvoidance recursively, but with a re-
duced bin size threshold. The threshold d∗ in the algorithm is reduced by a factor of
split ratio for subsequent layers. Although any split ratio > 1 suffices, choos-
ing higher values generates more segments (children), leading to more nodes being
queried. Smaller values generate less segments (children), but the number of objects in
each segment is possibly higher. If the WorkerCount on these nodes is still more than
d∗, going deeper into the segmentation tree becomes necessary, thereby increasing the
number of round-trips to crowd market. Additionally, the number of segments gen-

erated by ArticulationAvoidance is more than
TrueCount(

d∗

split ratio

) . Therefore, values

smaller than 2 may lead to fewer nodes being queried if the prior counts are reason-
able. We chose split ratio = 1.75 and find that our algorithm never needs to go
more than one layer below the created bins.

Task Generation. The segments/bins, generated as above, were organized randomly
into Mechanical Turk HITs (Human Intelligence Tasks) having 15 images each. The
workers were paid 30¢ for each HIT. Additionally, workers had the option to check
‘Too many to be counted precisely’. However, they were still expected to provide a
rough estimate. Figure 3.9 shows the instructions given to workers for both datasets.
Across both datasets, workers provided counts for 2250 segments. Each HIT was an-
swered by 5 workers and then take the median of their responses as the WorkerCount.
Getting responses from multiple workers is necessary as workers often unwittingly an-

67

(a) Biological dataset

(b) Crowd dataset

Figure 3.9: Counting Interface: Instructions shown to workers

68

swer questions incorrectly. We examine this behavior in greater detail in A and find
that groups of workers, as a whole, are generally accurate despite making errors indi-
vidually.

Given the generated segmentation trees, as well as the outcomes of the generated tasks,
we are able to simulate the runs of different algorithms on the two datasets and compare
them on an an equal footing.

3.5.2 Variants of algorithms

Algorithms for Both Datasets. For the above datasets, we evaluate the following
algorithms:

• FS: our FrontierSeeking algorithm from Section 3.3;

• OnlyRoot: This algorithm queries only the root node of the segmentation tree,
to test how workers perform without any algorithmic decomposition;

• Optimal: Given our worker behavior model, a worker’s answer is expected to be
accurate only if the number of objects to be counted is< d∗. Thus, any algorithm
requires at least d TrueCountd∗ e questions to count accurately, even if it knows the
exact nodes to query (i.e., it was an omniscient oracle), and also had the ability
to magically create questions with d∗ objects combining arbitrary portions of the
image. We call this Optimal since it is a lower bound for any algorithm given
our error model.

Algorithms for Crowd Dataset. For the crowd dataset, we additionally evaluate the
following algorithms:

• Face-ML: a pre-trained face detector from [47], to test how just machine learning
performs;

Algorithms for Biological Dataset. For the biological dataset, we also evaluate the
following algorithms:

• Bio-ML: the sum of the prior counts from our machine learning algorithm from
Section 3.4.3;

• AA-Split: the AA algorithm, aggregating the counts from the immediate next
level of the implicit segmentation tree below the terminating frontier discovered
by AA, revealing how much descending below the initial terminating frontier will
help accuracy

• AA: our ArticulationAvoidance algorithm (Section 3.4.1), that stops at the
initially determined terminating frontier;

69

Ground Truth. For both datasets, we denote the true counts of images by Exact.
While the (generated) images in the biological dataset have a known ground truth, the
images in the crowd dataset were evaluated independently and agreed upon by two
annotators. Two images and their ground truth counts were taken from [59].

Accuracy. The error of our algorithms is calculated as: |TrueCount-WorkerCount|
TrueCount

. The
percentage accuracy is therefore 100× (1−Error). We also use the percentage of im-
ages where TrueCount = WorkerCount as another accuracy metric for the biological
dataset.

3.5.3 Results

In this section, we describe the results of our algorithms when run on the two real
datasets described above.

How do the JellyBean algorithms compare with the theoretically optimal oracle
algorithm on cost?

Crowd Dataset Optimality. For the crowd dataset, we compare the performance of
FS against Optimal. Averaging across images, the number of questions asked by FS

is within a factor 2.3 of Optimal. Further, this factor does not cross 2.75 for any
image in the dataset. This is especially low considering how hard the images in this
dataset are (see Figure 3.7). Optimal has perfect information about the location of
objects in the image, and is able to generate components having precisely d∗ objects
(without having to obey connectedness as with AA or FS). Note that this factor is
different from competitive ratio CR defined in Section 3.3. While Optimal represents
a theoretical lower bound on the performance of any algorithm, OPT was defined for
a given segmentation tree.

Biological Dataset Optimality. For the biological dataset, we compare the perfor-
mance of FS and AA against Optimal. The average number of questions asked by AA

is within a factor 1.35 of Optimal, which is significantly lower than the 2.3 factor for
FS. This indicates that leveraging information from computer vision algorithms helps
bring AA closer to “oracle” optimality.

On both datasets with hundreds of objects, the costs of algorithms FS and AA are

within a small constant factor–between 1 to 2.5–of Optimal.

How accurate are the JellyBean algorithms relative to machine learning baselines
(ML)?

Crowd Dataset Accuracy. For the crowd dataset, we compare the performance of
FS against Face-ML. As we have noted previously, this is an extremely challenging
dataset with images that look very different from each other. As a result, Face-ML fails

to detect any faces for 7 out of the 12 images (i.e., making 100% error on 58.3% of the

70

(a) Actual = 96, Detected
= 80

(b) Actual = 92, De-
tected = 74

(c) Actual = 75, De-
tected = 32

(d) Actual = 65, Detected
= 53

Figure 3.10: Performance of Face-ML

images), and has an average accuracy of 70.1% on the remaining, demonstrating how
challenging face detection can be to state-of-the-art computer vision algorithms. In
comparison, FS counts people in all these images with an average accuracy of 92.5%

for an average cost of just $1.17 per image. In particular, for the 5 images where
Face-ML did detect heads (shown in Figure 3.10), the average accuracy of our algo-
rithm was 97.5%. The accuracy of FS, which is independent of the domain and does not
need dataset specific training, on this difficult dataset demonstrates that crowdsourcing
can be very powerful for tasks such as counting.

Biological Dataset Accuracy. For the biological dataset, FS has an average accuracy
of 96.4%. In fact, the minimum accuracy for all images in the dataset is 94%. Next,
we compare AA to Bio-ML, our supervised, confidence-map based machine learning
algorithm, whose counts and partitions we also use as input to AA. We observe that out
of 20 images, AA gets the correct Exact count for 17 (85%) of the images, while the

ML approach gets only 9 (45%) images exactly correct. The fact that AA gets the count
correct for so many images is a further indication of how much easier this dataset is
compared to the previous, due to the items being homogeneous and easily identifiable
and distinguishable. To study the errors further, we plot a histogram of the deviation
from the correct counts in Figure 3.11(a). The x-axis shows the deviation from Exact

for an image, and the y-axis shows the frequency, or number of images for which
the count estimated by an algorithm deviated for a specific x-value. Ignore the blue
bar (AA-split) for now. We observe that even though the counts provided by FS are
96.4% accurate, they deviate by more than 5 for 18/20 images. AA is significantly better
– only 3 images deviating by counts of 1, 2, and 3 respectively. In comparison, Bio-ML

estimate deviates by at least 5 for 7 images. Thus, AA, which leverages both crowds
and computer vision algorithms, outperforms both FS and Bio-ML, often being very

close to or equal to the right answers.
On the crowd dataset, FS has a much higher accuracy of 97.5% relative to 70.1%

for Face-ML on the 5/12 images Face-ML works on; for the remaining 7/12 im-

ages, Face-ML detects no faces at all.

On the biological dataset, FS has an accuracy of 96.4%. In comparison, AA in-

creases the accuracy to 99.87%, returning exact counts for 85% of the images (off

on the rest by counts of 1 to at most 3), while Bio-ML gets only 45% correct (off

on the rest by counts of at least 5).

71

 0

 5

 10

 15

 20

<=-5 -4 -3 -2 -1 0 1 2 3 4 >=5

Deviation from Actual Count

FS
AA-split

AA
Bio-ML

(a)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 40 60 80 100 120 140 160 180 200 220

Actual Count

FS

Exact

OnlyRoot

(b)

Figure 3.11: Counting Accuracy. (a) Biological Dataset: Number of Images vs. Deviation
from actual counts (b) Crowd Dataset: Estimated count vs. Actual Count – Each point
represents an image

How expensive are the Jellybean algorithms (FS and AA)?

Crowd Dataset Cost. In Figure 3.12 we plot the cost of counting an image from the
crowd dataset using FS against the number of objects in that image. Each vertical slice
corresponds to one image with its ground truth count along the x-axis, and dollar cost
incurred along the y-axis. The cost is of the order of just a few dollars even for very

large counts, making it a viable option for practitioners looking to count (or verify
the counts of) objects in an image. It is possible to reduce our costs further by using
additional heuristics. For example, if we get multiple responses with WorkerCount�
d∗, we may choose not to present this node to more workers — small deviations in
the WorkerCount for this node are not going to impact our traversal strategy. Another
possible heuristic could be to show the segmentation tree to workers and have them
point out nodes where the number of objects is close to d∗. We leave the exploration
of such additional heuristics for future work.

 0

 0.5

 1

 1.5

 2

 2.5

 40 60 80 100 120 140 160 180 200 220

C
o

s
t

o
f

C
o

u
n

ti
n

g
 (

$
)

Actual Count

Counting Cost

Figure 3.12: Cost of counting for the crowd dataset

Biological Dataset Cost. The average cost of counting an image from the biological
dataset incurred using AA was $1.6, as compared to $2.7 using FS. The average cost
of counting per object was 0.63¢ for AA and 1.25¢ for FS. This significant reduction
(2×) for AA is a direct result of our merging algorithm which skips the larger granularity
image segments and directly elicits accurate counts on the generated components.

72

On both datasets with hundreds of objects, the algorithms FS and AA return accu-

rate results at the cost of a few dollars per image. The cost of AA is approximately

half of the cost of FS per object, indicating that “skipping ahead” in the segmenta-

tion tree using information from computer vision algorithms followed by merging

partitions cleverly helps reduce cost significantly.

How accurate are the JellyBean algorithms (FS and AA) relative to directly asking
workers to count on the entire image (OnlyRoot)?

Crowd dataset. We now compare OnlyRoot, i.e., only asking questions at the root,
versus FS. We plot the results in Figure 3.11(b). The x-axis marks the ground truth
(Exact) counts of images, while the y-axis plots the predicted counts by different al-
gorithms. Each vertical slice corresponds to an image, and each point on the plot
corresponds to the output of an algorithm for a given input image. We find that av-

erage accuracy of OnlyRoot is 81.8% as compared to the 92.5% of FS. Furthermore,
on the 5 images that the pre-trained classifier worked on, OnlyRoot has an average

accuracy of only 82.4% as compared to 97.5% accuracy of FS. We observe that per-
forming our top-down expansion of the segmentation tree and splitting the image into
smaller pieces improves counts significantly for most images. Our algorithm performs
consistently better in terms of counts. The only image for which the baseline is better
has TrueCount = 209 – fairly close to the approximate number (200) provided by
workers for the whole image.

Biological Dataset. For the biological dataset, the OnlyRoot baseline performs poorly,
achieving an accuracy of < 75% for 14/20 images. In comparison, FS counts with an
accuracy of 96.4% for all images. Further, AA has 100% accuracy on 17/20 images as
shown in Figure 3.11(a), indicating that using vanilla crowdsourcing without applying
our JellyBean algorithms can lead to low accuracy.

On the crowd dataset, FS estimates counts with > 90% accuracy on 9/12 im-

ages, relative to 2/12 images for OnlyRoot. Further, on the 5 challenging images

where Face-ML failed, FS provides a significant 15% higher accuracy compared

to OnlyRoot.

On the biological dataset, FS and AA improve the accuracy by 27% and 30.7% as

compared to OnlyRoot.

Do we get any additional benefit from counting nodes below those we determine as
the terminating frontier?

There is no benefit, at least for biological dataset.

Biological dataset. For the biological dataset, we already start with a set of merged
image segments (or components) corresponding to the output of our AA algorithm. We
have seen above (Figure 3.11(a)) that aggregating worker count estimates from just
each of these components yields accurate results (17 out of 20 images exactly correct).

73

We now explore whether going a level below this initial terminating frontier in this
tree helps, i.e., does splitting these components into smaller sub-segments and eliciting
worker counts on these smaller sub-images help. Note that while this means a strictly
higher cost because we query a larger number of image segments, our experiments on
the crowd dataset have shown that splitting segments, or traversing the segmentation
tree, gives the potential for improved accuracy. The full details of this splitting algo-
rithm, titled AA-Split are discussed in Section 3.4. The output from this algorithm
corresponds to the blue bar in Figure 3.11(a). Based on the figure, we observe that
this algorithm gives us no improvement over just querying our original components, in
spite of showing smaller image segments and incurring a higher cost. We attribute this
to two factors — (1) the TrueCounts in components created by AA are close to 20,
and (2) our estimate of d∗ = 20 is conservative. Together these imply that the worker
counts obtained on the components created by AA are accurate by themselves. So, while
splitting the merged components could be beneficial for certain datasets, for the pur-
pose of this work, just our AA algorithm with worker counts on generated components
is sufficient for the biological dataset.

3.5.4 Aggregating Worker Answers

As noted previously, individual workers make mistakes but groups of workers are gen-
erally ‘good’. However, having responses from multiple workers necessitates a way
to aggregate their answers. In this section, we provide experiment results for different
aggregation functions, including median that we have seen performs well.

Mutual agreement among the workers’ responses is a useful indicator of worker
response quality, i.e., WorkerCounts having ‘high’ agreement are trustworthy, as mul-
tiple workers have independently verified this count. We quantify this notion of ‘high’
agreement with the fraction of workers who agree on a particular count. We return the
WorkerCount having maximum agreement as the consolidated count, if this fraction
is greater than a threshold a. Otherwise, if there is disagreement, we require another
scheme to aggregate the different responses elicited from the workers. In particular, we
experimented with mean, median and maximum denoted by avg, mid and max respec-
tively. These aggregation functions have been evaluated on (i) accuracy and (ii) cost
for both datasets in Figure 3.13(a) and Figure 3.13(b) respectively.

In these figures, the x-axis shows the agreement threshold a as noted previously. For
the plots denoting ‘Aggregated Count’, the y-axis shows the count obtained by aggre-
gating worker answers, summed over all images in the respective dataset. The prior
counts have also been shown along with the ground truth for the biological dataset. For
the plots denoting ‘# of nodes queried’, the y-axis shows the total number of nodes
queried in the segmentation trees of these images. We make the followings observa-
tions:

• max: Higher values of agreement are rare. This implies that for higher a, our
algorithm ends up using the max aggregation for more segments – causing the

74

consolidated count to increase with a. The number of nodes queried also in-
creases with a for the same reason. We observe that the number of nodes queried
by max aggregation is always more than median and avg. This is because the
chosen worker answer tends to be above the threshold and hence max goes deeper
in the segmentation tree.

• avg: The count aggregated by avg decreases with the increase in a. This is
explained by the fact that workers tend to err on the lower side of TrueCount
more often as we see in Appendix A.

• mid: For both counts and number of nodes queried, mid is insensitive to changes
in agreement threshold a. This insensitivity to agreement threshold a is impor-
tant, as practitioners don’t have to tune any parameter.

The above experiments with different combinations of agreement threshold a and ag-
gregation functions indicate that a = 0.5 and taking median of worker responses works
best. Note that median aggregation for a ≥ 0.5 is equivalent to simply taking the
median of all worker responses.

 1000

 1050

 1100

 1150

 1200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Agreement (a)

Aggregated Count

FS-avg
FS-mid

FS-max
Exact

 60

 80

 100

 120

 140

 160

 180

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Agreement (a)

of nodes queried

FS-avg
FS-mid

FS-max
Optimal

(a) Crowd dataset: Counting accuracy and # of nodes queried

 4920

 4940

 4960

 4980

 5000

 5020

 5040

 5060

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Agreement (a)

Aggregated Count

AA-avg
AA-mid

AA-max

Exact
Bio-ML

 260
 280
 300
 320
 340
 360
 380
 400
 420
 440

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Agreement (a)

of nodes queried

AA-avg
AA-mid

AA-max
Optimal

(b) Biological dataset: Counting accuracy and # of nodes queried

Figure 3.13: Aggregating worker answers

75

3.6 Related Work

The general problem of finding, identifying, or counting objects in images has been
studied in machine learning, computer vision and crowdsourcing communities. Many
of the existing techniques, however, make limiting assumptions on the types of images,
or are heavily dependent on large volumes of training data. We discuss recent related
work from each of these areas and compare them against our approach.

Unsupervised learning. A number of recent solutions to object counting problems
tackle the challenge in an unsupervised way, grouping neighboring pixels together on
the basis of self-similarities [60], or similarities in motion paths [61]. Another work
[62] leverages depth information from vertical Kinect sensors to count the number of
people entering or leaving a room. However, unsupervised methods have limited accu-
racy, and the computer vision community has therefore considered supervised learning
approaches. These fall into three categories:

Counting by detection. In this category of supervised counting algorithms, a object
detector is used to localize each object instance in the image. Training data for these
algorithms is typically in the form of images annotated by bounding boxes for each
object. Once all objects have been located, counting them is trivial. Most of the current
object detectors (including our approach detailed in Section 3.4) operate in two steps
— generating a confidence map that gives the probability of a pixel belonging to an
object, followed by thresholding and non-maxima suppression to find locations of the
objects [58]. However, object detection is an unsolved problem in itself even though
progress has been made in recent years [44].

Counting by regression. Algorithms in this category bypass the detection phase and
try to learn a mapping from image properties like texture to the number of objects. This
mapping is inferred using one of the large number of available regression algorithms in
machine learning e.g., neural networks [63, 64]. For training, images are provided with
corresponding object counts. In such methods [?], the mappings from local features to
counts are global, that is, a single function’s learned parameters are used to estimate
counts for the entire image or video. This works well when crowd densities are uniform
throughout the image or video — a limiting assumption that is largely violated in real
life applications because of perspective, non-uniform density and changes in viewpoint.
A characteristic feature of perspective is that objects become smaller in images, as their
distance from the recording camera increases. For example, in Figure 3.1, the density
of crowd in bottom-right (closer to camera) is much less than in the top part of the
image.

Counting by annotation. A third approach has been to train on images annotated with
dots. Instead of bounding boxes, each object here is annotated with a dot. For instance,
in [67], an image density function is estimated, whose integral over a region in the
image gives the object count. Another recent work accomplishes the counting task in

76

extremely dense crowds by leveraging the repetitive nature of such crowded images
[59]. The techniques in this work are however only applicable in densely crowded
images.

A common theme across these methods is that they deliver accurate counts when
their underlying assumptions are met but are not applicable in more challenging situa-
tions. This guides us to leverage the ‘wisdom of the crowds’ in counting heterogeneous
objects, which may be severely occluded by objects in front of them.

Image segmentation. Segmentation of images into meaningful chunks is an active
area of research in the computer vision community. Approaches for counting pedestri-
ans for surveillance in images and videos involve segmentation based on motion [68].
Foreground extraction has also been dealt with in [65], where pedestrians are being
counted. Texel extraction [60] can also be used to get foreground blobs, aiding in seg-
mentation. Ahmed et. al. [69] is another recent work on interactive segmentation,
where users provide tags for the objects to be segmented. An image database is then
queried using this tag to gather exemplars that help localize the object in image. Mod-
ified versions of watershed transform have been shown to segment microorganisms
in images [70]. Multi-level active learning approaches have been investigated [71] to
leverage human annotations at varying levels of richness and manual effort.

Crowdsourcing for image/video analysis. The above considerations indicate the re-
quirement of human input in the object counting pipeline. The idea of using human
inputs for complex learning tasks has recently received attention; in [72], the authors
present a hybrid crowd-machine classifier where crowds are involved in both feature
extraction and learning. Although crowdsourcing has been extensively used on im-
ages for tasks like tagging [73], quality assessment [74] and content moderation [75],
the involvement of crowds in image analysis has been largely restricted to generating
training data [76, 77]. In a recent work, human answers to questions like ‘Does this
bird have a blue belly?’ were combined with image analysis techniques to classify
bird images into species [78]. In [79], the authors get discriminative features from the
crowd for bird classification using an online game. Another approach is to ask work-
ers to describe the differences between pairs of images [80]. Human input has also
been explored for tracking objects in videos [81]. This enables detection of objects at
interactive speed.

In a recent feasibility study of crowdsourcing for malaria image analysis [82], non-
expert players achieved a counting accuracy of more than 99%. In our work, we build
on this feasibility study to identify and propose solutions to the challenges that arise
when using crowds to estimate counts in images across different application settings.
Our approach is aligned with the findings in [83]—global decisions (counting) are
possible with each worker seeing a small part of the input image. Recent work [84] has
examined the use of humans for large-scale selectivity estimation. For example, they
display 100 images with a single person in each image, and ask workers how many of
these images contain old individuals. While operating on more images at a time, the

77

paper addresses a simpler problem since each image only needs to be evaluated as a
YES/NO, as opposed to our case, where a count is desired.

Summary. While there have been many studies on computer vision for counting and
segmentation, either (a) the described settings are stylized or make application-specific
limiting assumptions, or (b) the designed algorithms have relatively low accuracy in
practice. Compared to the computer vision algorithms described, our approach to count
objects is generic—it can be used to count heterogeneous, occluded objects in diverse
images. From the crowd research community, to the best of our knowledge, there
has been no principled study of the cost-accuracy trade-off for optimizing complex
computer vision tasks. Given the accuracy of our algorithms, this makes our work the
first step towards efficient generation of large scale accurate training data for complex
computer vision problems.

3.7 Summary

We tackle the challenging problem of counting the number of objects in images, a ubiq-
uitous, fundamental problem in computer vision. While humans and computer vision
algorithms, separately, are highly error-prone, our JellyBean suite of algorithms com-
bine the best of their capabilities to deliver high accuracy results at relatively low costs
for two separate regimes or modes, while additionally providing optimality guarantees
under reasonable assumptions that we validate in the thesis.

Our JellyBean algorithms were shown to (a) be within a 2.75× factor of the best
possible oracle algorithm in terms of cost when operating without computer vision
help, and within a 1.3× factor of the best possible oracle algorithm, with average cost
reduced by almost half, when operating in concert with computer vision and employ-
ing articulation-avoiding partition merging schemes, (b) have high accuracy relative to
both computer vision baselines (e.g., 18% increase in accuracy on images where the
baselines detect faces) as well as vanilla crowdsourcing (e.g., 15% increase in accu-
racy).

While our algorithms already have low cost and high accuracy, we believe that addi-
tional techniques, such as (a) human-aided partitioning of images, (b) better interfaces
to remove the ambiguity of “partial” objects, (c) asking fewer questions on images with
existing high count estimates, (d) using humans to “skip-ahead” in a segmentation tree,
can further reduce cost. We leave the exploration of these directions as future work.

78

CHAPTER 4

Conclusions

In this thesis, we developed crowd-powered open-ended data processing algorithms for
fundamental problems of organization and counting. For both problems, we started by
investigating human behavior. The findings of these investigations led us to develop
accurate models of human behavior — for clustering, it allowed us to formalize the
notion of granularities and perspectives; whereas for counting, it helped us characterize
counting errors. With these worker behavior models, we formulated the open-ended
tasks as algorithmic problems.

For clustering, we developed cost-efficient, accurate algorithms for identifying the
consensus organization and incorporated this workflow into a cost-effective and robust
workflow for organizing a collection of objects. We demonstrated that ORCHESTRA

organizes items at 24× higher accuracy for the same cost. Similarly, for counting,
we showed that our algorithms were theoretically optimal or near-optimal, in that they
ask as few questions as possible to humans; and they perform very well in practice,
increasing counting accuracy by at least 15% on images that no individual worker or
computer vision algorithm can count correctly, while not incurring a high cost.

Our work in this thesis has demonstrated the benefits of open-ended crowdsourc-
ing. By making the best use of human ability and time, open-ended tasks have the
potential to provide accurate training data at scale for complex applications while in-
curring low costs. But for this potential to be realized, researcher efforts need to be
devoted to understanding the applications, develop open-ended operators and optimize
them to ensure quality. Some other applications that can vastly benefit from open-
ended crowdsourcing are (i) translation – asking humans to provide correspondances
between words in the translated sentence and the translation (in addition to the trans-
lation itself) can help us develop more fine-grained language understanding systems,
(ii) detection – asking humans to draw polygons around specific objects in images is
useful for training accurate detection algorithms in computer vision, but this isn’t yet
fully understood and optimized by the crowdsourcing community.

79

REFERENCES

[1] V. K. Kirpalani and M. E. Tayab, “Enhancing data quality using human computa-
tion and crowd sourcing,” Journal of Independent Studies and Research, vol. 13,
no. 1, p. 74, 2015.

[2] C. Eickhoff, “Crowd-powered experts: Helping surgeons interpret breast cancer
images,” in Proceedings of the First International Workshop on Gamification for
Information Retrieval. ACM, 2014, pp. 53–56.

[3] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowdsourcing entity
resolution,” Proceedings of the VLDB Endowment, vol. 5, no. 11, pp. 1483–1494,
2012.

[4] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and
J. Widom, “Crowdscreen: Algorithms for filtering data with humans,” in Pro-
ceedings of the 2012 ACM SIGMOD International Conference on Management
of Data. ACM, 2012, pp. 361–372.

[5] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller, “Human-powered sorts
and joins,” Proceedings of the VLDB Endowment, vol. 5, no. 1, pp. 13–24, 2011.

[6] A. D. Sarma, A. Parameswaran, H. Garcia-Molina, and A. Halevy, “Crowd-
powered find algorithms,” in 2014 IEEE 30th International Conference on Data
Engineering. IEEE, 2014, pp. 964–975.

[7] S. Guo, A. Parameswaran, and H. Garcia-Molina, “So who won?: dynamic max
discovery with the crowd,” in Proceedings of the 2012 ACM SIGMOD Interna-
tional Conference on Management of Data. ACM, 2012, pp. 385–396.

[8] V. Polychronopoulos, L. De Alfaro, J. Davis, H. Garcia-Molina, and N. Polyzotis,
“Human-powered top-k lists.” in WebDB, 2013, pp. 25–30.

[9] X. Liu, P. H. Tu, J. Rittscher, A. Perera, and N. Krahnstoever, “Detecting and
counting people in surveillance applications,” in AVSS, 2005. IEEE, 2005, pp.
306–311.

[10] C. G. Loukas, G. D. Wilson, B. Vojnovic, and A. Linney, “An image analysis-
based approach for automated counting of cancer cell nuclei in tissue sections,”
Cytometry part A, vol. 55, no. 1, pp. 30–42, 2003.

[11] J. Russell, S. Couturier, L. Sopuck, and K. Ovaska, “Post-calving photo-census
of the rivière george caribou herd in july 1993,” Rangifer, vol. 16, no. 4, pp.
319–330, 1996.

[12] A. D. Sarma, A. Jain, A. Nandi, A. Parameswaran, and J. Widom, “Surpassing hu-
mans and computers with jellybean: Crowd-vision-hybrid counting algorithms,”
in Third AAAI Conference on Human Computation and Crowdsourcing, 2015.

80

[13] S. Imai and W. Garner, “Discriminability and preference for attributes in free and
constrained classification.” Journal of Experimental Psychology, vol. 69, no. 6, p.
596, 1965.

[14] G. Regehr and L. R. Brooks, “Category organization in free classification: The
organizing effect of an array of stimuli.” Journal of Experimental Psychology:
Learning, Memory, and Cognition, vol. 21, no. 2, p. 347, 1995.

[15] S. Handel and S. Imai, “The free classification of analyzable and unanalyzable
stimuli.” Perception & Psychophysics, 1972.

[16] D. L. Medin, W. D. Wattenmaker, and S. E. Hampson, “Family resemblance, con-
ceptual cohesiveness, and category construction,” Cognitive psychology, vol. 19,
no. 2, pp. 242–279, 1987.

[17] F. Milton and A. Wills, “The influence of stimulus properties on category con-
struction.” Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, vol. 30, no. 2, p. 407, 2004.

[18] R. G. Gomes, P. Welinder, A. Krause, and P. Perona, “Crowdclustering,” in Ad-
vances in neural information processing systems, 2011, pp. 558–566.

[19] J. Yi, R. Jin, S. Jain, T. Yang, and A. K. Jain, “Semi-crowdsourced clustering:
Generalizing crowd labeling by robust distance metric learning,” in Advances in
Neural Information Processing Systems, 2012, pp. 1772–1780.

[20] J. Yi, R. Jin, A. K. Jain, and S. Jain, “Crowdclustering with sparse pairwise la-
bels: A matrix completion approach,” in AAAI Workshop on Human Computa-
tion, vol. 2, 2012.

[21] R. E. Bechhofer, S. Elmaghraby, and N. Morse, “A single-sample multiple-
decision procedure for selecting the multinomial event which has the highest
probability,” The Annals of Mathematical Statistics, pp. 102–119, 1959.

[22] M. Liedloff, “Finding a dominating set on bipartite graphs,” Information Process-
ing Letters, vol. 107, no. 5, pp. 154–157, 2008.

[23] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning natural
scene categories,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 2. IEEE, 2005, pp. 524–
531.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 248–255.

[25] H. Heikinheimo and A. Ukkonen, “The crowd-median algorithm,” in First AAAI
Conference on Human Computation and Crowdsourcing, 2013.

[26] S. B. Davidson, S. Khanna, T. Milo, and S. Roy, “Using the crowd for top-k
and group-by queries,” in Proceedings of the 16th International Conference on
Database Theory. ACM, 2013, pp. 225–236.

[27] Y. Yue, C. Wang, K. El-Arini, and C. Guestrin, “Personalized collaborative clus-
tering,” in Proceedings of the 23rd international conference on World wide web.
ACM, 2014, pp. 75–84.

[28] L. B. Chilton, G. Little, D. Edge, D. S. Weld, and J. A. Landay, “Cascade: Crowd-
sourcing taxonomy creation,” in Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems. ACM, 2013, pp. 1999–2008.

81

[29] J. Bragg, Mausam, and D. S. Weld, “Crowdsourcing multi-label classification
for taxonomy creation,” in Proceedings of the First AAAI Conference
on Human Computation and Crowdsourcing, HCOMP 2013, November
7-9, 2013, Palm Springs, CA, USA, 2013. [Online]. Available: http:
//www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7560

[30] Y. Sun, A. Singla, D. Fox, and A. Krause, “Building hierarchies of concepts via
crowdsourcing,” arXiv preprint arXiv:1504.07302, 2015.

[31] D. Karampinas and P. Triantafillou, “Crowdsourcing taxonomies,” in The seman-
tic web: Research and applications. Springer, 2012, pp. 545–559.

[32] A. Biswas and D. Jacobs, “Active image clustering with pairwise constraints from
humans,” International Journal of Computer Vision, vol. 108, no. 1-2, pp. 133–
147, 2014.

[33] S. Lad and D. Parikh, “Interactively guiding semi-supervised clustering via
attribute-based explanations,” in Computer Vision–ECCV 2014. Springer, 2014,
pp. 333–349.

[34] M. J. Wilber, I. S. Kwak, D. Kriegman, and S. Belongie, “Learning con-
cept embeddings with combined human-machine expertise,” arXiv preprint
arXiv:1509.07479, 2015.

[35] O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. T. Kalai, “Adaptively learning
the crowd kernel,” arXiv preprint arXiv:1105.1033, 2011.

[36] A. Parameswaran, A. D. Sarma, H. Garcia-Molina, N. Polyzotis, and J. Widom,
“Human-assisted graph search: it’s okay to ask questions,” Proceedings of the
VLDB Endowment, vol. 4, no. 5, pp. 267–278, 2011.

[37] J. Fan, G. Li, B. C. Ooi, K.-l. Tan, and J. Feng, “icrowd: An adaptive crowd-
sourcing framework,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 2015, pp. 1015–1030.

[38] J. Lee, H. Cho, J.-W. Park, Y.-r. Cha, S.-w. Hwang, Z. Nie, and J.-R. Wen, “Hybrid
entity clustering using crowds and data,” The VLDB JournalThe International
Journal on Very Large Data Bases, vol. 22, no. 5, pp. 711–726, 2013.

[39] S. E. Whang, J. McAuley, and H. Garcia-Molina, “Compare me maybe: Crowd
entity resolution interfaces.”

[40] S. E. Whang, P. Lofgren, and H. Garcia-Molina, “Question selection for crowd
entity resolution,” Proceedings of the VLDB Endowment, vol. 6, no. 6, pp. 349–
360, 2013.

[41] N. Vesdapunt, K. Bellare, and N. Dalvi, “Crowdsourcing algorithms for entity
resolution,” Proceedings of the VLDB Endowment, vol. 7, no. 12, pp. 1071–1082,
2014.

[42] D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 2003.

[43] R. Szeliski, Computer vision: Algorithms and Applications. Springer Science
& Business Media, 2010.

[44] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zis-
serman, “The pascal visual object classes challenge: A retrospective,” Interna-
tional Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, 2014.

82

http://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7560
http://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7560

[45] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images.” in Proceedings of Com-
puter Vision and Pattern Recognition. IEEE, 2015.

[46] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman,
D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat et al., “Cellprofiler: im-
age analysis software for identifying and quantifying cell phenotypes,” Genome
biology, vol. 7, no. 10, p. R100, 2006.

[47] X. Zhu and D. Ramanan, “Face detection, pose estimation, and landmark local-
ization in the wild,” in CVPR, 2012. IEEE, 2012, pp. 2879–2886.

[48] G. A. Miller, “The magical number seven, plus or minus two: some limits on our
capacity for processing information.” Psychological review, vol. 63, no. 2, p. 81,
1956.

[49] NBC News, “Exhibit traces the history of the voting rights act,” in nbc-
news.com/id/8839169/ns/us news-life/t/exhibit-traces-history-voting-rights-act,
2005.

[50] A. Borodin, Online computation and competitive analysis, 1998, vol. 2.

[51] D. R. Karger, S. Oh, and D. Shah, “Iterative learning for reliable crowdsourcing
systems,” in NIPS, 2011, pp. 1953–1961.

[52] V. S. Sheng, F. Provost, and P. G. Ipeirotis, “Get another label? improving data
quality and data mining using multiple, noisy labelers,” in Proceedings of the 14th
ACM SIGKDD. ACM, 2008, pp. 614–622.

[53] A. Lehmussola, P. Ruusuvuori, J. Selinummi, H. Huttunen, and O. Yli-Harja,
“Computational framework for simulating fluorescence microscope images with
cell populations,” Medical Imaging, IEEE Transactions on, vol. 26, no. 7, 2007.

[54] M. Dyer and A. Frieze, “On the complexity of partitioning graphs into connected
subgraphs,” Discrete Applied Mathematics, vol. 10, no. 2, pp. 139–153, 1985.

[55] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Approximation algorithms
for bin packing: a survey,” in Approximation algorithms for NP-hard problems.
PWS Publishing Co., 1996, pp. 46–93.

[56] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dy-
namics, and function using NetworkX,” in Proceedings of the 7th Python in Sci-
ence Conference (SciPy2008), Pasadena, CA USA, Aug. 2008, pp. 11–15.

[57] S. Beucher and F. Meyer, “The morphological approach to segmentation:
the watershed transformation,” Optical Engineering-New York-Marcel Dekker
Incorporated-, vol. 34, pp. 433–433, 1992.

[58] T. W. Nattkemper, H. Wersing, W. Schubert, and H. Ritter, “A neural network ar-
chitecture for automatic segmentation of fluorescence micrographs,” Neurocom-
puting, vol. 48, no. 1, pp. 357–367, 2002.

[59] H. Idrees, I. Saleemi, C. Seibert, and M. Shah, “Multi-source multi-scale counting
in extremely dense crowd images,” in CVPR. IEEE, 2013.

[60] N. Ahuja and S. Todorovic, “Extracting texels in 2.1 d natural textures,” in ICCV
2007. IEEE, 2007, pp. 1–8.

[61] V. Rabaud and S. Belongie, “Counting crowded moving objects,” in CVPR, 2006,
vol. 1. IEEE, 2006, pp. 705–711.

83

[62] X. Zhang, J. Yan, S. Feng, Z. Lei, D. Yi, and S. Z. Li, “Water filling: Unsupervised
people counting via vertical kinect sensor,” in AVSS, 2012. IEEE, 2012, pp. 215–
220.

[63] S.-Y. Cho, T. W. Chow, and C.-T. Leung, “A neural-based crowd estimation by
hybrid global learning algorithm,” Systems, Man, and Cybernetics, Part B: Cy-
bernetics, IEEE Transactions on, vol. 29, no. 4, pp. 535–541, 1999.

[64] A. Marana, S. Velastin, L. Costa, and R. Lotufo, “Estimation of crowd density
using image processing,” in Image Processing for Security Applications (Digest
No.: 1997/074), IEE Colloquium on. IET, 1997, pp. 11–1.

[65] D. Ryan, S. Denman, C. Fookes, and S. Sridharan, “Crowd counting using multi-
ple local features,” in DICTA, 2009. IEEE, 2009, pp. 81–88.

[66] D. Kong, D. Gray, and H. Tao, “Counting pedestrians in crowds using viewpoint
invariant training.” in BMVC. Citeseer, 2005.

[67] V. Lempitsky and A. Zisserman, “Learning to count objects in images,” in Ad-
vances in Neural Information Processing Systems, 2010, pp. 1324–1332.

[68] A. B. Chan, Z.-S. Liang, and N. Vasconcelos, “Privacy preserving crowd monitor-
ing: Counting people without people models or tracking,” in CVPR 2008. IEEE,
2008, pp. 1–7.

[69] E. Ahmed, S. Cohen, and B. Price, “Semantic object selection,” in CVPR, 2014.
IEEE, 2014, pp. 3150–3157.

[70] S. Bergner, R. Pohle, S. Al-Zubi, K. Tönnies, A. Eitner, and T. R. Neu, “Segment-
ing microorganisms in multi-modal volumetric datasets using a modified water-
shed transform,” in Pattern Recognition. Springer, 2002, pp. 429–437.

[71] S. Vijayanarasimhan and K. Grauman, “Multi-level active prediction of useful im-
age annotations for recognition,” in Advances in Neural Information Processing
Systems, 2009, pp. 1705–1712.

[72] J. Cheng and M. S. Bernstein, “Flock: Hybrid crowd-machine learning classi-
fiers,” in CSCW ’15, 2015.

[73] C. Qin, X. Bao, R. Roy Choudhury, and S. Nelakuditi, “Tagsense: a smartphone-
based approach to automatic image tagging,” in MobiSys. ACM, 2011, pp. 1–14.

[74] F. Ribeiro, D. Florencio, and V. Nascimento, “Crowdsourcing subjective image
quality evaluation,” in ICIP. IEEE, 2011, pp. 3097–3100.

[75] A. Ghosh, S. Kale, and P. McAfee, “Who moderates the moderators?: crowd-
sourcing abuse detection in user-generated content,” in EC, 2011. ACM, 2011,
pp. 167–176.

[76] A. Sorokin and D. Forsyth, “Utility data annotation with amazon mechanical
turk,” in CVPR Workshops, 2008.

[77] W. S. Lasecki, Y. C. Song, H. Kautz, and J. P. Bigham, “Real-time crowd labeling
for deployable activity recognition,” in CSCW, 2013. ACM, 2013.

[78] S. Branson, G. Van Horn, C. Wah, P. Perona, and S. Belongie, “The ignorant led
by the blind: A hybrid human–machine vision system for fine-grained categoriza-
tion,” International Journal of Computer Vision, pp. 1–27, 2014.

84

[79] J. Deng, J. Krause, and L. Fei-Fei, “Fine-grained crowdsourcing for fine-grained
recognition,” in CVPR, 2013. IEEE, 2013, pp. 580–587.

[80] S. Maji, “Discovering a lexicon of parts and attributes,” in ECCV 2012. Work-
shops and Demonstrations. Springer, 2012, pp. 21–30.

[81] Y. Wei, J. Sun, X. Tang, and H.-Y. Shum, “Interactive offline tracking for color
objects,” in ICCV 2007. IEEE, 2007, pp. 1–8.

[82] M. A. Luengo-Oroz, A. Arranz, and J. Frean, “Crowdsourcing malaria para-
site quantification: an online game for analyzing images of infected thick blood
smears,” Journal of medical Internet research, vol. 14, no. 6, 2012.

[83] V. Verroios and M. S. Bernstein, “Context trees: Crowdsourcing global under-
standing from local views,” in Second AAAI Conference on Human Computation
and Crowdsourcing, 2014.

[84] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh, “Counting with the
crowd,” Proceedings of the VLDB Endowment, vol. 6, no. 2, pp. 109–120, 2012.

85

APPENDIX A

Worker Behavior in Counting

Our counting algorithms rely on the assumption that workers can count images with up
to a threshold of d∗ objects correctly, but make mistakes for images with larger counts.
In this section, we provide experimental evidence to justify this model.

We plot the worker errors for the biological dataset in Figure A.1. In Figure A.1(a),
each integer value on x-axis denotes a unique worker. The corresponding bar-chart
shows the percentage of questions where WorkerCount 6= TrueCount in red bars,
and the percentage of questions where WorkerCount < TrueCount in green bars.
Similarly, in Figure A.1(b), the y-axis shows the the mean of the errors made by each
worker. Finally, in Figure A.1(c), we show the TrueCounts on x-axis. The y-axis
shows the percentage of workers whose WorkerCount 6= TrueCount. We note the
following observations from these plots:
• Figure A.1(a) shows that workers err more often on the lower side of TrueCount.

Coupled with the observation from Figure A.1(b) that average errors are negative
for most workers suggests that negative errors are a big part of overall worker errors.

• Figure A.1(b) shows that the mean of the worker errors are negative. This suggests
that workers tend to err more heavily on the lower side of TrueCount. Moreover,
we also observed that workers erred more frequently on the negative side.

• Workers make errors on all possible counts, as can be seen from A.1(c). This is
because some workers are spammers — they do the bare minimum to complete the
HIT, or they do not understand the task correctly. Even for a single object in the
image, there is a small fraction of workers who make mistakes. Asking multiple
workers is thus necessary.

• Even though individual workers make mistakes, the group as a whole is good — in
Figure A.1(c), the worker error rates do not cross 35% for any value of TrueCount.

86

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70 80 90

Percentage of incorrect answers by workers

Overall
-ve Error

(a) Worker error rates

-10

-8

-6

-4

-2

 0

 2

 4

 0 10 20 30 40 50 60 70 80 90

Average error in incorrect answers by workers

(b) Average worker error

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25

Actual Count

Percentage of workers making error

(c) Number of errors made by
workers for different number of
objects in images

Figure A.1: Worker errors on biological dataset

Self-confidence in Answers. We also explored worker behavior using another set
of artificially generated biological images. We generated images having 5 to 75 cells
(objects) across them and distributed them to 30 workers on Amazon Mechanical Turk,
who were then asked to count the number of objects in each image. Workers were
also provided the option of selecting a checkbox labeled “Too many to be counted
precisely”, in which case they were asked to additionally provide a rough estimate.
The results of this experiment are summarized in Table A.1.

We plot the probability of a worker making an error in Figure A.2(a), where the
fraction of workers making error (y-axis) has been plotted against the number of objects
in the image (x-axis). We observe that a significant number of workers start making
errors for images with count threshold 20. For images with counts higher than 35, their
answers cannot be trusted. Based on this evidence, we propose a threshold of d∗ = 20.
Additionally, as can be seen from Figure A.2(a), the magnitude of error also increases
with the number of objects in the displayed image.

Figure A.2(b) shows the percentage of workers who checked “Too many to be counted
precisely”. Beyond 35 objects, workers felt that the number of objects were too many.
We also observed that for images with fewer than 60 objects, 75% of the errors were
made by workers who did not check this option. This implies that having the workers
express confidence in their counts and using this additional information will not help.

Additionally, in Figure A.2(c), we show the distribution of HIT Completion time
for the workers. The x-axis denotes the time, and corresponding y-value indicates the
percentage of workers who were able to complete the HIT within that time. The median
time to HIT completion was around 13 minutes.

87

objects Incorrect Too Many Confident & Incorrect
5 0 0 0

10 0 0 0
15 2 0 2
20 1 0 1
25 7 0 7
30 4 0 4
35 12 3 10
40 11 6 8
45 11 8 7
50 10 9 7
55 19 10 12
60 16 15 7
65 18 16 6
70 19 15 7
75 21 16 10

Table A.1: Validation of Interaction Model and Worker Error Model. Column 1 is the
number of objects in the image, Column 2 is the number of workers who counted
incorrectly, Column 3 is the number of workers who checked “Too many to be
counted precisely”, Column 4 is the number of workers who did not check “Too many
to be counted precisely” but still made mistakes, Columns 2,3 and 4 are all out of 30

.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Number of Objects

Worker Error Probability

(a) Error Probability of Workers

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

Number of Objects

Workers marking ‘Too Many’ (in %)

(b) % of workers who checked “Too
Many to be counted precisely”

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120

HIT Time (in minutes)

Distribution of Time taken to complete the HIT

(c) Time taken by workers to complete
the HIT

Figure A.2: Worker Behavior

88

	List of Tables
	List of Figures
	CHAPTER 1 Introduction
	CHAPTER 2 Orchestra: Crowd-powered Consensus Organization of Corpora
	Introduction
	Preliminaries
	Data Model
	Interacting with Workers
	Overall Workflow for Orchestra
	Clustering Phase for Orchestra

	Hierarchy Construction
	Mapping to Max-Clique
	Worker Responses
	Worker Mistakes

	Extending the Hierarchy
	Sampling Guarantee
	The GenerateSample Algorithm
	The MergingHierarchies Algorithm

	Categorization
	Experiments
	Head-to-Head Comparison
	Component Evaluation
	Discussion

	Related Work
	Summary

	CHAPTER 3 JellyBean: Crowd-Vision-Hybrid Counting Algorithms
	Introduction
	Preliminaries
	Data Model
	Worker Behavior Model

	Crowdsourcing-Only Solution
	Problem Setup
	The FrontierSeeking Algorithm
	Guarantees
	Practical Setup

	Incorporating Computer Vision
	Partitioning
	Merging Partitions
	Practical Setup

	Experimental Study
	Datasets
	Variants of algorithms
	Results
	Aggregating Worker Answers

	Related Work
	Summary

	CHAPTER 4 Conclusions
	REFERENCES
	APPENDIX A Worker Behavior in Counting

