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Abstract

Detecting the presence of possible illicit radioactive materials in large areas is

challenging because of changing background radiation, shielding effects and

short collection time, especially when the radioactive materials are moving.

The concept of mobile sensor networks is put forward to solve this problem.

In this thesis, a small mobile sensor network is established using commer-

cially available radiation detectors and cell phones. A spectrum decompo-

sition and reconstruction method based on Principal Component Analysis

(PCA) is proposed to work with mobile sensor networks. Two experiments

are designed to test this method’s performance on real-world data. The

PCA-based method’s performance is analyzed using receiver operating char-

acteristic, or ROC curves. Further study finds that although the PCA-based

method doesn’t work well on current mobile sensor networks, its performance

can be improved by increasing the radiation spectral quality.
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Chapter 1

Introduction

1.1 Radiation Detection Problems

Radiation detection is crucial to the nation’s security. Nuclear weapons or radiological dispersal devices

are big threats to the nation’s security. There is a need to effectively and accurately detect special nuclear

materials (SNM). Currently, detector systems positioned at key choke points such as airports or customs,

have been deployed to prevent the entry or exit of radioactive sources. However, only preventing the entry

or exit of these materials is not enough. Some materials that are already in the country, such as the sources

for medical or research purposes, can also be used by terrorists. In this case, a monitoring system that

can be distributed in large areas, like cities, and can detect moving sources is needed to ensure the nation’s

security.

There are many challenges in the radiation detection field. One big challenge is the background radia-

tion. Background radiation always exists and it can be dramatically influenced by weather conditions, the

surrounding environment and so on. As the distance becomes larger, the signal from actual sources becomes

weaker as a function of 1/r2. The noise, which comes from background radiation, will remain almost the

same or even stronger. In this case, it becomes much harder to correctly detect, locate, and identify the

potential sources. Another challenge is the impact of shielding. The shielding materials reduce the signal

strength and make it difficult to detect. The last main challenge is time. Radioactive materials can be

transported via vehicles and may be used at any moment. It is important to quickly determine the existence

of radioactive sources. So, in summary, a successful radiation monitoring system should have the following

capacities:

1. Sensitivity: It should have enough sensitivity to detect not only the strong radioactive sources, but

also the weak sources. This relies on the development of new generation of detectors.

2. Accuracy: High false alarm rates can cause a severe waste of resources. A successful system should

have a high true positive rate while keeping a low false positive rate.
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3. Adaptability: Weather conditions and the surrounding environment are always changing with time

and location. A good system should be able to work under different conditions. In addition, it shouldn’t

only work for stationary sources, but also for moving sources.

4. Efficiency: As mentioned, time is a big challenge for radiation detection. A good system should be

able to detect, locate and identify all possible sources in a limited time period, especially for moving

sources. This implies both the need for highly-efficient detectors as well as computationally-efficient

analysis algorithms.

To develop a radiation detection system that satisfies these four requirements, not only the new generation

of detectors that have high resolution, high efficiency and good mobility, but also the new algorithms to

efficiently process the data and make the right decisions are needed. This thesis focuses on developing

appropriate algorithms to fulfill these requirements.

1.2 Background Radiation

Background radiation refers to the naturally existing radiation. All humans are continuously exposed to

these kinds of radiation. Natural radiation sources include [1, 2]:

1. Cosmic rays that come from outer space and from the surface of the Sun.

2. Terrestrial radionuclides that occur within the Earth’s crust, in building materials, air, water, foods

and in the human body itself. They mainly come from 40K and the daughter products of the decay

series of 238U , 232Th, 226Ra and 235U [3].

Background radiation amost never remains the same. It can fluctuate with time, weather conditions,

surrounding environment, and so on. It has been proven that during periods of precipitation, the background

radiation level will increase [4, 5]. In addition, soil conditions are found to affect the background radiation

level [6]. Some of theses variations are easy to explain based on the surrounding environments. The changing

background radiation is the main challenge for detecting the movement of small sources.

1.3 Radiation Detection Algorithms

Under the changing background radiation conditions, and with the impact of shielding, the signals that

come from actual sources are hard to distinguish, especially when the background radiation level is high

and the distance to the source is large. In other words, the real-world radiation data will be very noisy and
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the signal-to-noise ratio will not be high. Developing appropriate methods to extract useful information

from the noisy signals is needed. Researchers have been working together to develop appropriate radiation

detection algorithms. According to the number of used detectors, these algorithms can be categorized into

two types: single detector-based algorithms and sensor network algorithms. In this section, a brief overview

of different algorithms in radiation detection is given.

1.3.1 Single Detector-Based Algorithms

Single detector-based systems have been developed for a long time. Traditionally, there are two methods

of detection: active and passive detection [7]. In active detection, the materials of interest are exposed

to neutrons or high-energy photons. The gamma rays associated with fission products are then measured.

Additionally, neutron detectors are employed to measure increases in neutron counts that is indicative of

fission. Special nuclear materials can be determined upon analyzing the spectra [8, 9]. Active detection can

be used in airports or customs, but it is expensive and lacks mobility. This makes it unsuitable for large

scale detection, especially when there are moving sources. On the other hand, passive detection doesn’t need

to generate neutrons or photons and measures the emitted radiation directly. Passive detection is widely

used in radiation detection fields. The existing algorithms, which either analyze the gross count rate or the

spectra, are almost based on passive detection. These algorithms can be categorized into the following three

types:

1. Gross Count Rate: This method uses count rate information only. In this method, a predetermined

threshold is used to determine whether or not there are sources. If the collected data are above the

threshold, it is assumed that some possible source has been detected [10,11]. Usually, the threshold is

set to be k times of the standard deviation of the estimated background count rate. So this method is

also called the k-sigma method. The k-sigma method is a very direct and simple method, but it can

produce high false alarm rates.

2. Spectrum Fitting: This method uses the spectral information instead of count rate information. It

fits the measured spectrum with different templates from pre-calculated library [11]. Spectrum fitting

methods can work well when the spectra are well-collected, but when the collection time is short and

the spectral quality is not high, its performance will be affected.

3. Machine Learning: This method contains different algorithms that mainly focus on spectral in-

formation. In this method, a classifier is trained through different algorithms, such as Support Vector

Machine (SVM) and Random Forests [11]. Then the trained classifier is used to classify new spectra
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into threat or non-threat categories. This method needs a lot of pre-labelled data to train the clas-

sifier. It works well for the cases that only particular sources are included. However, when there are

unknown sources or the background radiation is changing, correctly labelling the training data are

almost impossible.

1.3.2 Sensor Network Algorithms

Single detector systems are suitable for stationary sources in a small area. When the sources are moving and

the area of interest is large, single detector systems are no longer suitable. In this case, networked arrays of

sensors are beneficial. Sensor network detection systems refer to the systems that use multiple detectors to

detect and locate either stationary or mobile sources. With multiple detectors, new methods are needed to

extract useful information from multiple detectors and give more robust conclusions. Several methods have

been developed to improve sensor network detection systems’ performance.

1. Bayesian Methods: Bayesian algorithms compute the posteriori probability distribution based

on an estimated prior distribution [12]. It has been proven to have some good results on certain

simulated scenarios [13–16]. However, its results are based on the prior estimates, which are hard to

accurately determine, especially when the background radiation cannot be simply modeled by Poisson

processes [12].

2. Maximum Likelihood Estimation(MLE): MLE is a widely used method for parameter estimation.

The MLE method has been successfully used to estimate the source parameters and source numbers

[17]. However, MLE has been proven unsuitable for scenarios where there are more than three sources

[17]. In addition, MLE requires extensive computations [12], which makes it unsuitable for real-time

radiation detection.

3. Sequential Probability Ratio Test(SPRT): SPRT is a widely used hypothesis testing method. It

compares current measurements to previous baseline [11]. SPRT is useful for long-term radiation mon-

itoring [18] and for low-level point source detection and localization with stationary detectors [19,20].

Besides the above methods, there are also other methods being developed to address the similar problems,

such as Mean of Estimates [21], Least Squares Estimation [22] and Interactive Pruning [23]. These methods

show some improvement over other methods, but their results are mainly based on simulations and their

performance on real-world data need to be tested.
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1.4 Mobile Sensor Networks

Sensor network detection systems that use stationary detectors have some advantages over single detectors,

even when the detectors’ sensitivity or resolution are not as good as single detectors. It has been proven that

distributed detector systems have improved performance over a single detector [24]. Chandy et al. found

that the networks of static sensors can help people rapidly locate the radiation sources [14]. Nemzed et al.

noticed that with an array of detectors, the signal-to-noise ratio (SNR) increased along a
√
N curve for small

numbers of detectors [16].

However, with a fixed number of detectors, the area that can be covered is predetermined. People have

studied the optimal number of detectors needed in a pre-defined area through simulations [14]. When the

search area is large, like a big city, the cost for detectors would be prohibitive. To solve this problem, the

concept of a mobile sensor network has been put forward.

Mobile sensor networks are easily deployable. Since each detector in mobile sensor network is usually

small, it uses less energy per detector. More importantly, all detectors are mobile. With the same amount

of detectors, mobile sensor networks can cover larger areas than stationary sensor networks. Studies have

shown that mobile sensor networks are more effective than stationary sensor networks [14].

Mobility is one of mobile sensor networks’ biggest advantage. However, mobility also brings some prob-

lems. For some traditional methods, such as Maximum Likelihood Estimation and Least Square Estimation,

the location of radioactive source is determined according to the data acquired from surrounding detectors.

However, in mobile sensor networks, detectors are always moving and the source may not be surrounded by

any detectors. These methods cannot be directly applied without modification. New methods need to be

developed. Research has been done to solve similar problems. For example, Hochbaum et al. used network

flow method to simulate the scenario of locating illicit radioactive sources in an urban environment [25,26].

Tandon et al. used a Bayesian aggregation method to locate and infer properties of radioactive sources

through mobile sensor networks [27].

Although a promising radiation detection method, there are still a lot of problems to be solved for

mobile sensor networks. This thesis manly focus on studying the performance of spectral decomposition and

reconstruction method based on Principal Component Analysis to analyze the data acquired through mobile

sensor networks.
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1.5 Chapter Review

There are five chapters in this thesis. Chapter 1 describes the radiation detection problems and then gives

an overview of existing algorithms for single and multiple detector systems. Chapter 2 focuses on the tech-

nical background of Principal Component Analysis (PCA) and the corresponding spectrum reconstruction

principles. Chapter 3 describes the detector systems used in this thesis and the experiment design. Chapter

4 analyzes the results and gives some explanations. Finally, a short summary and an outlook of possible

future work are given in Chapter 5.
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Chapter 2

Technical Background

With the development of new generation detectors, not only the count rate information, but also the real-time

spectral information can be collected. However, the shielding effects and the distance from the radioactive

sources weaken the signal strength. Additionally, the changing background radiation increases the noise

level. All these factors reduce the signal-to-noise ratio (SNR) and make it difficult to detect the source with

low false alarm rates.

To effectively solve this problem, one direct idea is to separate the background radiation from the observed

spectra. If the background radiation can be successfully separated, the rest can be used to determine the

existence of possible sources. In this way, radiation detection becomes very simple and direct. However, the

background radiation keeps changing all the time and it is very hard to accurately separate it.

In this chapter, a review of existing background radiation estimation methods is given at first, then

a spectral decomposition and reconstruction method based on Principal Component Analysis (PCA) is

proposed. Finally, some simple examples are given to help understand this method.

2.1 Background Radiation Estimation

As mentioned in chapter 1, background radiation exists everywhere. It can change with time, surrounding

environment, weather conditions and so on. For a large area, it is almost impossible to constantly and

accurately measure the background radiation. The random nature of background radiation and the lack of

prior information makes it necessary to develop some dynamic methods to efficiently estimate the background

radiation under different conditions [28].

Currently, several methods have been developed to estimate and separate the background radiation.

Kirkpatrick et al. used Poisson statistics to compute the background contributions to gamma spectra, which

proved to be a sensitive method for the detection of small signals in low-count spectra [29]. Through making

the assumption that the background varied smoothly while the signal varied more rapidly, Fischer et al.

proposed the Bayesian method to estimate the background radiation spectra [30]. A statistics-sensitive
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non-linear iterative peak-clipping (SNIP) based method was applied on γ-ray spectra to determine the peak

regions and then eliminated the background in the spectra [31,32]. An iterative filtering method was proposed

by Zhu et al. to estimate the background in noisy spectroscopic data [33]. Based on the assumption that

the local minimum belonged to the background radiation, Alamaniotis et al. proposed kernel-based machine

learning method to estimate the background radiation for low-count gamma-ray spectra with unknown

sources without any prior information [28]. The estimated background spectra from this method had the

right shape, but the amplitude of the estimated background spectra was either too high or too low. An

algorithm that coupled robust Kalman filter and EM framework was designed by Fraschini and Chaillan

to recursively estimate the background spectra [34]. In addition, other methods, such as spectral peak

erosion [35], digital filters, and Monte Carlo simulations [36] are also used to estimate the background

radiation.

However, among the proposed methods, a few need to manually evaluate some parameters as the prior

information, some methods require long computation time, while other methods focus on high-resolution

spectra [28]. For mobile sensor networks, the data will be constantly collected for one to two seconds only.

This means that the spectra will be low-count and low-resolution. Dynamic methods are needed to estimate

the background radiation for low-count and low-resolution spectra of unknown sources. In this thesis, a PCA-

based spectral decomposition and reconstruction method is proposed to estimate the background radiation

under varying conditions.

2.2 Principal Component Analysis

Principal Component Analysis (PCA), also known as Karhunen-Loève transform [37], is a widely used

method for feature generation and dimensionality reduction. PCA uses an orthogonal transformation to

convert a set of possibly-correlated variables into a set of linearly-uncorrelated variables called principal

components. The number of principal components will be less than or equal to the number of original

features (dimensions). For convenience, all principal components are sorted according to the variance that

is explained by each principal component. In this way, the first principal component can explain the largest

variance among all components. The second component is uncorrelated (orthogonal) to the first component

and can explain the second largest variance and so on for the succeeding components. The original data can

then be represented by the principal components in a new space.

To better understand this process, some derivations are shown as follows. In general case, assume every

input data is an m dimensional row vector:
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~xi = [x1i , x
2
i , · · · · · · , xmi ] (2.1)

where m is the number of features. If there are n sample data in total, then the dimension of given data

will be n by m.

Xn×m =



~x1

~x2
...

~xn


=



x11 x21 · · · xm1

x12 x22 · · · xm2
...

...
. . .

...

x1n x2n · · · xmn


n×m

(2.2)

Usually, the first step of PCA is to standardize the data. In this thesis, since the spectra have the same

unit for each channel, this process can be simply done by subtracting the mean value for each channel. The

mean value, which corresponds to the average background radiation, can be calculated as follows:

meanj =
1

n

n∑
i=1

xji (2.3)

where meanj is the mean value of jth dimension of all background radiation data.

The mean value vector ~mean is a row vector with m dimensions. So the mean value matrix M can be

calculate by multiply ~mean by an n-dimension column vector with all value equals to 1.

Mn×m = [1, 1, · · · , 1]T ∗ ~mean (2.4)

where Mn×m has the same value for each column.

In this way, the centered data Xc
n×m, is calculated by:

Xc
n×m = Xn×m −Mn×m (2.5)

where Xc
n×m has zero mean for each column.

The final goal of PCA decomposition is to find the eigenvectors and eigenvalues for (Xc)
T ∗ Xc [38].

Now, consider the singular value decomposition (SVD) of Xc.

Xc = U ∗ Σ ∗ V T (2.6)

where Σ is an n by m rectangular diagonal matrix, and its diagonal values are called the singular values of
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Xc. U is an n by n matrix, the columns of which are called the left singular vectors of Xc. V is an m by m

matrix, the columns of which are called the right singular vectors of Xc. Each column of V is an orthogonal

unit vector of length m. In this way,

(Xc)
T ∗Xc = (U ∗ Σ ∗ V T )T · (U ∗ Σ ∗ V T ) (2.7)

(Xc)
T ∗Xc = V ∗ Σ2 ∗ V T (2.8)

The columns of V , which are the right singular vectors of Xc, correspond to the eigenvectors of (Xc)
T ∗Xc,

and the singular values in Σ are equal to the square roots of the eigenvalues of (Xc)
T ∗Xc. In this way, the

original data Xc can be decomposed into a series of eigenvectors.

Since each eigenvector corresponds to a unique eigenvalue, all eigenvectors can be sorted according

to the values of eigenvalues in a decreasing sequence. So the first eigenvector corresponds to the largest

eigenvalue, which means that the first eigenvector can explain the most variance of the whole dataset. Up

to m eigenvectors can be chosen to represent the original data in new space. For example, for any input

data ~xci (c implies that the data has been centered), choosing k eigenvectors, after the transformation, the

original data becomes:

~yi = ~xci ∗ Vm×k (2.9)

where Vm×k = (~v1, ~v2, · · · , ~vk) means that only the first k columns of V are chosen.

In summary, the general procedure for PCA decomposition is as follows:

1, Given any n by m input data Xn×m, compute the mean values for each dimension, then get the

centered input data Xc.

2, Do SVD on Xc, and get the U , V and Σ2 of Xc.

3, Sort eigenvectors in V according to the eigenvalues from Σ2 in decreasing sequence.

4, Choose the first k eigenvectors (~v1, ~v2, · · · , ~vk) from V to transform the original data Xc into new

space.

Through the above four steps, the original m dimensional data can be represented through k eigenvectors,

which means that the original m dimensional data has been successfully decreased to k dimensions. Since

the eigenvectors have been sorted, this transformation can keep as much information as possible.
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To show this process clearly, a 2D sample data are chosen as an example. The original data are shown

in the first figure of Figure 2.1. The data are represented using two coordinates (X and Y). However, the

direction that contains the most variance is neither X nor Y. After PCA, two eigenvectors (red arrows in

the second figure) that can represent the variance more clearly are found, which are the first and second

principal components. In this way, the original data can be transformed into the new space, which is shown

in the third figure in Figure 2.1. After transformation, the original data are distributed with a broader

dispersion on the first component direction than the second component direction. In this way, most of its

distribution information is kept in the first component direction. Omitting its distribution on the second

component direction will not lose much information.

Figure 2.1: PCA decomposition and transformation for 2D sample data

2.3 Spectrum Reconstruction

Through PCA decomposition, a series of eigenvectors ~v1, ~v2, · · · , ~vm and the average background radiation

spectrum ~mean are calculated. New data can be transformed on these eigenvectors. Based on this idea,

Runkle et al. transformed observed radiation spectra onto eigenvectors and used the Mahalanobis distance

(MD) to perform anomaly detection [39]. This method shows some promising results. However, considering

the fact that the spectra from mobile sensor networks are low-quality, this method is not a good choice.

In this thesis, a PCA-based spectrum reconstruction method is proposed, which is different from the above

PCA/MD method.

Suppose the PCA model is trained based on n background spectra, each of which is an m dimensional row

vector, which corresponds to the spectrum with m channels. After PCA decomposition, up to m eigenvectors

are obtained, each of which is an m dimensional column vector. All these eigenvectors can be represented
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by a matrix with dimension m by m.

Vm×m = (~v1, ~v2, · · · , ~vm) (2.10)

Now, suppose there is an unknown spectrum ~xi, which is a row vector with dimension m. First, the

average spectrum ~mean is subtracted from the ~xi and the centered spectrum ~xci is obtained. Then, ~xci can

be represented in new space through projecting ~xci onto the first k eigenvectors.

~pi = ~xci ∗ (~v1, ~v2, · · · , ~vk) = ~xci ∗ Vm×k k ≤ m (2.11)

In this way, the original spectrum ~xci will become a row vector ~pi with dimension k. In order to reconstruct

the original spectrum, ~pi is multiplied by Vm×k
T , and the reconstructed spectrum ~yi is obtained:

~yi = ~pi ∗ Vm,k
T + ~mean = ~xci ∗ Vm×k ∗ Vm×k

T + ~mean (2.12)

Note that when k = m,

Vm×m ∗ Vm×m
T = I = Vm×m

T ∗ Vm×m (2.13)

So, when k = m,

~yi = ~xi (2.14)

This means that, if all the eigenvectors are used to reconstruct the data, no information will be lost. The

data are just rotated in the original high dimension space. Apparently, using all eigenvectors cannot help to

estimate the background radiation. But what if only part of the eigenvectors are used?

The normal background radiation spectra, which were measured when there were no sources present,

could be used to build the PCA model. Since the PCA model is built based on a series of normal background

radiation spectra, if only part of the eigenvectors are used to reconstruct the unknown spectra, there is a

higher chance of keeping only the background radiation information, while eliminating the unknown source

radiation information. Based on this idea, after PCA decomposition and spectrum reconstruction, the

difference between original spectrum and reconstructed spectrum will mostly contain the unknown source

radiation information. This process can be expressed as follows:

~bi = (~xi − ~mean) ∗ Vm×k ∗ Vm×k
T + ~mean (2.15)

12



~si = ~xi − ~bi (2.16)

where ~bi is the reconstructed spectrum, which is an estimation of background radiation. ~si is thought to be

an estimation for the unknown source spectrum.

However, after PCA decomposition and reconstruction, some value of reconstructed spectrum ~bi can be

larger than the original spectrum ~xi or to be negative. Since ~bi is thought to be an estimate of the local

background spectrum, its value should be processed to make sure that they are non-negative as well as

smaller than the original spectrum ~xi. In this way, the source spectrum ~si will always be non-negative.

The number of eigenvectors, k, can be determined according to different criteria for different purpose. In

this thesis, k is determined by choosing the desired variance. For example, if 90% of the total information

are to keep, the k is determined to correspond to 90% of the total variance.

To show this process clearly, an example is shown in Figure 2.2. The data included the background

radiation spectra as well as the spectra of 137Cs, 60Co and 152Eu. All spectra were collected for 30 seconds

using a 2× 2 inch NaI detector in laboratory. After PCA decomposition, the first 52 principal components

were used to reconstruct the spectra, which corresponded to 60% of total variance. The reconstructed spectra

were estimates of background radiation, and the source radiation was separated from the original spectra.

From Figure 2.2, the peak regions for 137Cs and 60Co are easy to find. For 152Eu, since its spectrum is

more complex than 137Cs and 60Co, it is a little more difficult to accurately find these peak regions. This

will not affect the proposed method’s effect.

In conclusion, the proposed PCA-based decomposition and reconstruction method has some theoretical

advantages over other methods such as MLE and Bayesian methods:

1, The PCA-based method doesn’t require significant computational resources.

2, The PCA-based method is suitable for real-time monitoring. For mobile sensor networks, the spectra

are collected every one or two seconds. Real-time detection is needed. This method can fulfill this

requirement.

3, The PCA-based method doesn’t require many assumptions or prior information. The only requirement

is to collect enough normal background radiation data to build the PCA model.
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Figure 2.2: Spectrum reconstruction examples (spectra were collected using 2 × 2 inches NaI detector in

laboratory for 30s, and first 52 eigenvectors were chosen to maintain 60% of the total variance)
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Chapter 3

Experiment

In chapter 2, some brief deviations were given as the theoretical support for PCA-based decomposition and

reconstruction method. It showed some advantages over other methods. To study the performance of the

PCA-based method, two groups of data are needed. The first group is the normal background radiation data.

This group of data is used to perform PCA decomposition and calculate the eigenvectors. The second group

of data, which comes from unknown sources, is used to test this method’s performance. In this chapter, the

detector systems that were used to build the mobile sensor networks and collect data are first introduced.

Then, two experiments that were designed to test the performance of the PCA-based method are described

in details. Finally, the ROC curve and the area under the ROC curve, or AUC as a tool to quantitatively

measure the system’s performance are introduced.

3.1 Detector System Introduction

To satisfy the requirements of ease of mobility, each detector couldn’t be too big or too heavy, and it should

be able to work wirelessly. In this thesis, the D3S, or Discreet Dual Detectors, from Kromek Group plc.

were chosen to build the mobile sensor network. The D3S was a compact wireless, gamma-neutron detector.

This thesis only focused on the gamma-ray. For gamma-ray detection, a 2” × 1” × 0.5” CsI(Tl) detector

was used. The D3S not only collected the gamma ray count rate information, but also the gamma-ray

spectral information. The collected spectrum contained 512 channels and the energy range was from 30keV

to 3MeV . The detectors collected data for every second and then transferred the data wirelessly to any

device that was connected to the detector through Bluetooth. The built-in battery could last up to 12

hours. All these features made it suitable to build mobile sensor networks. For mobile sensor networks, each

sensor’s real-time location was important. For this purpose, the Samsung Galaxy S6 cell phone was chosen

to work together with each D3S detector. In this way, not only the radiation data, but also the GPS data

were collected by the phone. A single detector and a coupled cell phone were shown in Figure 3.1.
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Figure 3.1: Single detector system (the D3S detector and cell phone)

The measured D3S detector intrinsic peak efficiency curve is shown in Figure 3.2. The intrinsic peak

efficiency [2] ε is calculated by:

ε =
Number of counted photons

Number of photons entered to detector
(3.1)

Figure 3.2: D3S detector intrinsic peak efficiency curve (the data were collected through 152Eu for 1 hour)
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3.2 Experiment Description

To study the performance of the PCA-based method on real-world data, two experiments were designed.

In both experiments, the detectors and phones were carried by different operators. The operators walked

steadily and didn’t enter any buildings during the experiments. Each experiment collected the normal

background radiation data first. Then, with some sources placed at fixed points, this process was repeated

again to collect data associated with sources.

3.2.1 Experiment 1

Experiment 1 was designed to test the PCA-based method’s overall performance. In this experiment, the

engineering campus of University of Illinois at Urbana-Champaign was chosen as the experimental area. The

experimental area included some parking lots, buildings and laboratories. A map from Google Earth for this

area was shown in Figure 3.3.

Figure 3.3: Experimental area of experiment 1 (source locations and high background radiation areas were

marked with different colors)
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Experiment 1 was conducted over three days (12/11/2015, 12/14/2015 and 12/15/2015). For each day,

the normal background radiation data were collected first, which means that there were no manually-placed

sources in the experimental area. Then, some sources were placed in the experimental area at different

locations. In experiment 1, to make sure that the data were collected under different conditions, the sources

should be distributed in different locations, including both grass lawn as well as road side. In addition, the

placement of sources should make sure that the detectors can pass by these sources in each experiment. So,

all the sources were located at pedestrian sidewalks across the experimental area (detailed locations were

shown in Figure 3.3).

Each time, only one source was placed at a fixed point. Later, the source location was changed and

the experiment was repeated again. So, there were five steps for each day and totally fifteen measurements

for three days. The twelve source locations were marked in Figure 3.3 (location 2, 3, 4, 5 for the first day,

location 7, 8, 9, 10 for the second day and location 12, 13, 14, 15 for the last day). The sources for three

days kept the same during the experiment. So, there were 5 data sets for each day and totally 15 data sets

for experiment 1. Note that there were three areas marked by yellow circles. These three areas included the

Nuclear Radiation Laboratory (B1), the Alma Mater statue (B2) and the Wesley United Methodist Church

(B3). These areas were previously observed and had much higher background radiation levels than other

areas. A detailed procedures for experiment 1 is shown in Table 3.1.

Table 3.1: Experiment 1 procedures

Date Step one (No source) Step two Step three Step four Step five

12/11/2015 Background Radiation Source 2 Source 3 Source 4 Source 5

12/14/2015 Background Radiation Source 7 Source 8 Source 9 Source 10

12/15/2015 Background Radiation Source 12 Source 13 Source 14 Source 15

To cover the whole experimental area, each day in experiment 1, there were 3 operators who carried at

least two detectors. The background radiation was measured first by all detectors for each day. The route

for each operator was different, but each operator’s route remained the same for the duration of the entire

experiment and all operators walked steadily. The three routes were shown in Figure 3.4, which covered a

large part of the experimental area.
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Figure 3.4: Experimental routes for three operators

3.2.2 Experiment 2

Experiment 1 was designed to study the performance of the PCA-based method on real-world data. Ex-

periment 2, on the other hand, was designed to study the influence of integration time on the PCA-based

method. It was based on experiment 1, and more details of which would be covered in chapter 4.

In experiment 1, the data were collected for every second. For 512 channels, generally, there were only

30 to 60 counts in total and most of them concentrated in the low energy region. The spectral quality

was therefore not high. However, PCA decomposition and reconstruction method was based on spectral

decomposition and reconstruction. These low-quality spectra would affect the system’s performance (see

chapter 4 for details). Since extending the integration time can improve the spectral quality, experiment 2

was designed to study the influence of the spectral quality on the PCA-based method through integrating

multiple spectra.

In this experiment, to avoid the influence of high background radiation areas, the experimental area was

restricted to the Bardeen Quadrangle. This area was shown in Figure 3.4. During experiment 2, there was
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only one operator who carried three detectors. Similar to experiment 1, the background radiation data were

collected first. Then, some sources were placed at the center of the experimental area (red circle in Figure

3.5) and the data were collected again. A detailed procedures for experiment 2 is shown in Table 3.2.

Table 3.2: Experiment 2 procedures

Experimental Date 02/06/2016

Step one Collect data without sources

Step two Collect data with sources present

Besides the experimental area, another important difference from experiment 1 was the walking speed.

Experiment 2 was designed to study the influence of spectral quality, the spectra needed to be collected not

only for one second, but also for two seconds, three seconds and so on. However, the D3S detectors only

collected the data for every second. To solve this, the spectra needed to be combined manually for different

integration time. To ensure that the combined spectra still reflected the radiation characteristics as mush

as possible, the walking speed needed to be much lower than in experiment 1.

One thing to be noticed is that, in experiment 1 and 2, although all operators carried the same detectors

and were required to walk steadily along the same path during the experiment, and the sources are the

same, there were still factors that cannot be controlled, such as the changing background radiation. So, it

was impossible to have the exact same conditions for each experiment. The reproducibility may be an issue

for this research.
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Figure 3.5: Experimental area of experiment 2 (red circle marks the location of sources)

3.3 Data Description

In this thesis, the only used information were GPS and spectra, and time was not considered. The data from

different detectors were treated equally. The post-analysis rather than real-time analysis was conducted.

In addition, during the experiment, we did notice that some detector didn’t work properly. For example,

some detectors lost power quickly and died before finishing the experiment and some detectors didn’t collect

the data every second. For these detectors, we didn’t use the data collected by them. After analyzing

the collected data, we chose the data that were collected by the detectors that worked properly during the

experiment. A detailed count rate distribution of background radiation from experiment 1 and experiment

2 was shown in Table 3.3.
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Table 3.3: Background radiation count rate distribution

Item measurements mean (cps) std (cps) minimum (cps) maximum (cps)

Experiment 1 32455 35.71 9.73 8 179

Experiment 2 8995 41.14 7.81 16 71

To build the PCA model, we chose the background radiation measurement from three days. For the

anomaly detection, using the PCA model, we analyzed each source location separately for each source

location. Although the detectors and cell phones were pretty modern, there were still some problems with

the collected data.

The first problem was the spectral quality. Generally, the spectral quality was determined by the detector

itself. Although the detector was very sensitive, its small size and short collecting time affected the spectral

quality. For the normal background radiation, the average count rate in the experimental area was around

36 cps for experiment 1 and 41 cps for experiment 2. For a 512 channel spectrum, this count rate implied

that, only a few channels (around 7%) had records, and most of these records were concentrated on the

first 100 channels. In addition, there was significant deviation in the gross count rate of background. The

standard deviation of the background radiation was more than 9 cps for experiment 1 and around 8 cps

for experiment 2. The range of background radiation was from 8 to 179 cps for experiment 1 (due to high

background area, see Figure 3.3 for details) and 16 to 71 cps for experiment 2. These factors directly

influenced the performance of PCA-based methods (see details in chapter 4).

Secondly, there were also a few problems with the GPS data, one of which was the GPS delay. The

GPS information was used to determine the location of possible radioactive materials, which was important

for a mobile sensor network. In this thesis, the GPS data were acquired through the cell phones. During

the experiment, it was noticed that there were some delay for the GPS information, which implied that the

GPS information was not updated every second. To solve the GPS delay problems, a time step interpolation

method was applied. Another big problem was the GPS accuracy. As estimated, the GPS accuracy for

ordinary use was around 5 meters to 10 meters [40]. In this thesis, this amount of deviation made it difficult

to accurately evaluate the system’s performance (see details in chapter 4).

Finally, another potential problem was that, in this thesis, no study about the relation of detector’s

response to different walking speed was included due to the limit of proper instruments. There was no proper

instruments to accurately measure the walking speed during the experiment and the GPS information, due to

its accuracy problems, could not be used to infer the walking speed. However, since during the experiment,
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all operators walked steadily and there was no big change in walking speed for experiment 1 and experiment

2. So, for this thesis, the influence of walking speed should be very small. The relation between the detector’s

response and walking speed might be studied in the future.

To show the details of the collected data in experiment 1, a subset of the background radiation mea-

surements from experiment 1 were plotted in Figure 3.6. The color was proportional to the count rate. In

Figure 3.6, the three areas with high background radiation levels (B1, B2 and B3 in Figure 3.3) could be

clearly seen. Compared with the exact path in Figure 3.4, although the path for all experiments were kept

the same, the deviation of measurements was also clear in Figure 3.6, which reflected the GPS accuracy

problem.

Figure 3.6: Measurements distributions for experiment 1 (data were from the background radiation mea-

surements. Only a subset of the complete measurements were plotted. The color corresponded to the count

rate (cps).)
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3.4 Performance Measurement - ROC Curve

The final goal of this thesis is to test the performance of proposed method. For this purpose, the Receiver

Operating Characteristic curve is used to quantitatively measure the performance of the PCA-based method.

The Receiver Operating Characteristic curve, or ROC curve [41], is a widely used graphical plot to

illustrate the performance of a system. A typical ROC curve is created by plotting the true positive rate

against the false positive rate at different threshold settings. In other words, it shows how many correct

positive events could happen as there are more and more false positive events. For a perfect system, the true

positive rate is 100%, while the false positive rate is 0. However, this kind of systems almost never happen

in practice. Two sample ROC curves of different methods are shown in Figure 3.7.

For any system, a small false positive rate and a large true positive rate are always preferred. This

implies that on Figure 3.7, the upper left area is always better than the lower right area. So, in figure 3.7,

method 2 had an overall better performance than method 1.

Figure 3.7: Sample ROC curves (method 1 and method 2 stand for two general sample methods)
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For any radiation detection activities, there are two situations: with source or without source. The

predictions from general systems also have two results: alert and non-alert. So, there are four results if the

real situation and system’s predictions are combined: alert when a source is present, non-alert when a source

is present, alert when a source is not present and non-alert when a source is not present. The corresponding

events are defined as true positive events, false negative events, false positive events and true negative events

respectively. In this way, the definition of true positive rate and false positive rate are given as follows [2,41]:

True positive rate =

∑
True positive event∑

True positive event+
∑
False negative event

(3.2)

False positive rate =

∑
False positive event∑

False positive event+
∑
True negative event

(3.3)

However, there is still no clear definitions for how to determine whether or not there are sources. In this

thesis, since the measurements are based on mobile sensor networks, the distance is used to help determine

whether or not there are sources. Suppose that the distance of one measurement from the actual source is

d. With some distance threshold δ, the definition of those four events are given as follows:

True positive event : d ≤ δ and predicted to be alert (3.4)

False negative event : d ≤ δ and predicted to be non− alert (3.5)

False positive event : d > δ and predicted to be alert (3.6)

True negative event : d > δ and predicted to be non− alert (3.7)

Considering the GPS accuracy issue, the distance threshold δ is finally chosen to be 10m.

With the ROC curve, the performance of different methods could be compared directly, such as method

1 and method 2 in Figure 3.7. However, when there are more than three methods, plotting all the ROC

curves in one figure makes it hard to distinguish with each other. In this case, the concept of the area

under the ROC curve (AUC or AUROC) is a good choice. AUC referes to the area that is under the ROC

curve [42]. AUC summarizes the ROC curve into a single number, which measures the overall performance

of one system. So, for different testing systems, a system with a larger AUC is thought to have a better

overall performance than the other systems with a smaller AUC. In chapter 4, both ROC curve and AUC

are used to compare the different settings.
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Chapter 4

Results

In chapter 3, the detector system and two experiments designed to test the performance of the proposed

method were described. In this chapter, at first, PCA decomposition methods were applied to the collected

radiation data and a series of principal components were obtained. Then, these principal components

were used to reconstruct the spectra. Finally, the performance of the proposed PCA-based method was

quantitatively measured through the ROC curve and AUC, and some explanations were given based on

detailed spectral analysis.

4.1 System Performance Analysis

4.1.1 PCA Decomposition

The standard PCA decomposition method was described in section 2.2, which was easy to understand

and apply. In fact, some programming languages, like Matlab and Python, have already included PCA

decomposition methods as built-in functions or external packages. In this thesis, the Python scikit-learn [43]

package was used to conduct PCA decomposition.

The PCA decomposition was conducted based on the background radiation data. For experiment 1,

this meant the measured background radiation data in three days (step 1 in Table 3.1). For experiment 2,

this meant the first measurement where there was no manually placed sources. After PCA decomposition,

the average value for each channel was obtained, which corresponded to the average background radiation

spectrum. Then, a series of principal components were calculated. The principal components also had 512

dimensions. Like the original spectra, only approximately the first 100 dimensions had non-zero values. To

see this process clearly, the average background radiation spectrum and the first seven principal components

calculated through background radiation data from experiment 1 were plotted in Figure 4.1. The first figure

in Figure 4.2 corresponded to the average background radiation, and the summation, which was the average

background radiation count rate, was around 36 cps.
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Figure 4.1: PCA decomposition illustration (including average background radiation spectrum and the first

seven principal components. The background radiation data from experiment 1 are used. )

The principal components had been sorted according to the corresponding variances, but from Figure

4.1, the exact distribution of the variances was not clear. To see the relative importance of different principal

components, the percentage of explained variance of each principal component were calculated and plotted

in Figure 4.2.
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Figure 4.2: Illustration of explained variance ratio (the first figure plotted the variance percentage for all

principal components, the second figure plotted the variance percentage for the first 50 principal components

only, and the third figure plotted the cumulative variance percentage for different principal components)

As expected, after PCA decomposition, the first several principal components contained most of the

information. This was very clear in the first figure of Figure 4.2. The explained variance was close to

zero after the first 100 principal components. In the second figure, only the explained variance for the

first 50 principal components was plotted to show the distribution details. The first principal component

explained 5.8% of all the variance. Since the variance was thought as a measurement of the information, the

first principal component was thus thought to contain 5.8% of all information. From the second principal

component, the explained variance changed very smoothly. In the third figure, the cumulative percentage of

different number of principal components was plotted. The first 100 principal components contained around

90% of all information for background radiation data.
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4.1.2 PCA Reconstruction

After PCA decomposition, the next job was to reconstruct the unknown spectra using the obtained principal

components. How to determine the number of principal components to be used was a critical problem.

Instead of choosing different numbers of principal components directly, the number of principal compo-

nents to be used was determined according to the information that was to keep. According to the cumulative

variances, the percentage of information to keep was first determined. Then, the number of principal com-

ponents to be used was determined. For example, in Figure 4.3, 90% and 50% of the total information were

chosen to reconstruct the radiation spectra collected in Experiment 1 (the data were collected when sources

were placed at location 2 in Figure 3.3), which corresponded to first 67 and first 16 principal components.

Then, the count rate of original spectra (blue points) and reconstructed spectra (green points) were plotted

respectively.

Figure 4.3: Radiation spectra reconstruction (90% and 50% of the information was used. The blue points

was the count rate of original spectra, and the green points was the count rate of reconstructed spectra. A

subset of radiation data with sources placed at location 2 in experiment 1 were plotted.)

In Figure 4.3, the horizontal axis means the number of measurements. More than 8000 spectra were
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reconstructed. All principal components were calculated based on normal background radiation spectra

collected in experiment 1. Figure 4.3 graphically showed the influence of different number of principal

components on reconstruction. With less principal components, for example, using 50% information to

reconstruct the spectra, the difference between original spectra and reconstructed spectra was much clear

than using 50% information to reconstruct the spectra, which corresponded to the analysis in Figure 4.4.

Figure 4.4: Sample spectrum reconstruction comparison (90% and 50% of the information was used to

reconstruct the spectrum. The original spectrum, the spectrum reconstructed using 90% and 50% of the

information were plotted respectively)

In Figure 4.4, a sample spectrum from normal background radiation was chosen. Using 90% and 50%

information, the reconstructed spectra were plotted respectively. Using 90% information, the reconstructed

spectra and original spectra were similar. They didn’t have much difference. When the spectrum was

reconstructed using only 50% information, the difference between the reconstructed spectrum and the original

spectrum was clear.

In addition, note the fact that when there were sources present, the collected spectra showed some
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difference from the normal background radiation, such as some peaks in the higher energy region (see Figure

2.2 in chapter 2 for details). In this way, the count rate difference between the original spectra and the

reconstructed spectra could be used as an indicator to distinguish the spectra with unknown sources from

the spectra with normal background radiation level. With an appropriate threshold, the measurements whose

count rate difference was above the threshold were thought to be alert measurements, while the measurements

whose count rate difference was below the threshold were thought to be non-alert measurements. To see

this, 50% of all information (first 16 principal components) was used to reconstruct the experimental data

acquired from experiment 1. With a small threshold as well as a large threshold, the predicted alert points

(green points) and non-alert points (yellow points) were plotted on a 2D map. In addition, the manually

placed radioactive sources (red circle) were also plotted on the same map. The result was shown in Figure

4.5.

In Figure 4.5, with a small threshold, there was a large chance that all alert measurements were detected,

which implied the true positive rate was higher. However, a small threshold also increased the chance that

a normal background radiation spectrum being thought to contain source information, which increased the

false positive rate. On the other hand, with a large threshold, the false positive rate could be decreased,

but the true positive rate was also decreased. This was clearly shown in Figure 4.5. In Figure 4.5, with a

small threshold, the points that were around the sources were predicted as alert measurements. On other

areas where the measurements were far away from any source, however, there were several measurements

predicted to be alert measurements, which means that the false positive rate was high. Instead, with a large

threshold, the number of false positive events was much less than the situation with a small threshold. But

with a large threshold, several measurements that were around the sources couldn’t be correctly predicted,

which decreased the true positive rate.

Another interesting phenomenon was that, with both a large threshold and a small threshold, on the

areas (B1, B2 and B3 in Figure 3.2) where the background radiation level was higher, several measurements

were predicted to be alert measurements.

In Figure 4.5, the thresholds for each figure were chosen manually. For actual applications, thresholds

should be chosen based on ROC curve analysis. According to different requirements, the allowed false

positive rate and true positive rate were determined and the corresponding thresholds were also determined.
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Figure 4.5: System performance test on experiment 1 (using 50% information (first 16 principal components)

to reconstruct the spectra. Source location, alert and normal measurements were shown with different colors.

The corresponding thresholds were 24 cps and 27 cps for each figure individually.)

32



From the above analysis, the influence of the number of principal components and the threshold was

clear. In order to increase the true positive rate while decreasing the false positive rate, two parameters

needed to be tuned: the number of principal components and the magnitude of threshold. With the ROC

curve, their influence was seen clearly.

In Figure 4.6, 90%, 70% and 50% of all information were chosen to reconstruct the spectra collected in

experiment 1, which corresponds to first 67, 29 and 16 principal components. The true positive rate and

false positive rate were calculated according to the definition in section 3.4. As a comparison, the traditional

k-sigma method was also used to calculate the true positive rate and false positive rate. The corresponding

ROC curve was plotted in the same figure.

Figure 4.6: ROC curves for experiment 1 (all the results were calculated based on 1 s spectra collected by

D3S detectors in experiment 1)

In Figure 4.6, as less principal components were used to reconstruct the spectra, the system’s overall

performance was improved. This proved the feasibility of proposed PCA-based decomposition and recon-
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struction method.

The results in Figure 4.5 and Figure 4.6 were a little worse than expected, especially compared with the

result shown in Figure 2.2. The influence of detector’s sensitivity could explain this. As expected, with a

better detector, for example, in Figure 2.2, the result should be very good. However, more sensitive detector

meant larger size and less mobility. Currently, the small D3S detectors were the only possible choice. Other

detectors, such as the NaI detector used in Figure 2.2, cannot be used as the mobile sensors. More verification

work will be conducted in the future.

In Figure 4.6, among all three ROC curves, even the best one, which was obtained by using 50% of the

information to reconstruct the spectra, was below the ROC curve of traditional k-sigma method. In next

section, some explanations were given to explain this phenomenon.

4.2 Explanation

Figure 4.6 showed that the performance of the proposed PCA-based method was worse than the traditional

k-sigma method. There were several reasons that could explain this phenomenon.

The first reason was related to the detector systems. It was known that there were slight detector-to-

detector variations in total efficiency. Even adjusted algorithmically, this difference always existed between

different detectors, which influenced the system’s performance. In addition, cell phones, which were used

to determine the exact locations in experiment, had different GPS accuracies. Since the distance was

used to calculate the true positive rate and false positive rate, GPS accuracy also influenced the system’s

performance. In this thesis, GPS information was used to measure the proposed method’s performance.

However, for the real scenario where the exact locations of actual sources were unknown, GPS information

was used to find the possible locations where there might be sources.

Secondly, in this thesis, all the measurements that were within 10 m of real sources were thought to

contain source information. In fact, only part of them contained the source information. This assumption

decreased the true positive rate.

Thirdly, there were three areas (B1, B2 and B3 in Figure 3.3) that had much higher background radiation

level. After PCA analysis, some measurements in these areas were thought to be alerts. However, this

wasn’t considered in the analysis because the boundaries of the areas were hard to accurately determine.

This increased the false positive rate.

The last reason, which was almost the most important reason, was the spectral quality. The proposed

method was based on spectral analysis, so its performance was directly determined by spectral quality. To
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see this, two sample measurements were chosen: one had a low count rate (35 counts per second) and was

far away from the actual source (more than 20 m), and the other one had a high count rate (88 counts per

second) and was close to the same source (less than 5 m). The original spectra, reconstructed spectra and

their difference were plotted separately in Figure 4.7.

Figure 4.7: Spectrum comparison 1

In Figure 4.7, the red spectra, which were calculated by subtracting the reconstructed spectra from the

original spectra, were thought to mainly contain the source information. Their count rates were used to

determine whether or not there were unknown sources. After PCA decomposition and reconstruction, the

bottom right spectrum in Figure 4.7 had a higher count rate than the bottom left spectrum. Choosing

appropriate threshold, these two spectra could be distinguished easily. In this case, the PCA-based method

could make right decisions.

However, when the measurements were close to the source but had a medium count rate, the PCA-based

method might not work. In Figure 4.8, two measurements were plotted: one measurement was far away

(more than 20 m) from the actual source and had a low count rate (30 counts per second), and the other

one was close (less than 5 m) to the actual source but had a medium count rate (47 counts per second).

In Figure 4.8, although the measurement that was close to source had a higher count rate than the

normal background radiation (30 counts per second), after PCA decomposition and reconstruction, its

source spectrum (bottom right spectrum) is similar to the spectrum from normal background (bottom left

spectrum). The threshold that worked for the situation in Figure 4.7 didn’t work for Figure 4.8. In this
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case, the PCA-based method couldn’t make right decisions.

Figure 4.8: Spectrum comparison 2

From Figure 4.7 and Figure 4.8, when the measurements that were close to sources only had a medium

count rate, the PCA-based method couldn’t correctly distinguish them from normal background radiation.

Comparing with the theoretical analysis in chapter 2, it was easy to conclude that this phenomenon was

related to the spectral quality. With a small detector and only a 1 second collection time, the peak region,

which reflected the characteristics of unknown sources, couldn’t be clearly identified. This was why spectral

quality influenced the performance of the PCA-based method.

The above four reasons could help with understanding the result shown in Figure 4.6. The next section

focused on the influence of spectral quality on the PCA-based method.

4.3 Performance Analysis

Since spectral quality greatly affected the performance of the PCA-based method, to obtain a better per-

formance, one simple idea was to improve the spectral quality. Based on experiment 1, experiment 2 was

designed to study the influence of spectral quality on the proposed method. In experiment 2, the experi-

mental area was restricted to the Bardeen Quadrangle only (shown in Figure 3.5), and the high background

radiation areas (B1, B2 and B3 in Figure 3.3) were excluded. To improve the spectral quality, one choice

was to use more sensitive detectors, which was not realistic for this thesis. Another choice was to extend the
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collection time from 1 second to multiple seconds. However, the detector only collected spectra for every

second, so the spectra needed to be combined manually to obtain the spectra for more than 1 second. To

make sure that the combined spectra still reflected the characteristics of any sources, the walking speed was

decreased and the operator walked in a straight line as much as possible. Then, the spectra were combined

according to different integration time. Through PCA decomposition and reconstruction using 60% of the

information, the true positive rate and false positive rate were calculated according to the definition in chap-

ter 3. Finally, the ROC curves for different integration time were plotted respectively in Figure 4.9. Figure

4.9 proved that improving the spectral quality (through increasing the integration time) could improve the

performance of PCA-based method.

Figure 4.9: ROC curves for experiment 2 with different integration time (using 60% of the information for

spectrum reconstruction)

The ROC curves in experiment 2 performed much better than those in experiment 1. This was because

37



that, in experiment 2, the high background radiation areas (B1, B2 and B3 in Figure 3.3) were not included.

According to the analysis in section 4.2, the false positive rate was therefore decreased, which made the

overall performance of the ROC curves in experiment 2 to be better than the ROC curves obtained in

experiment 1 (see Figure 4.6 for details).

Increasing the integration time from 1 s to 10 s, the system’s overall performance improved. However,

this improvement was not very clear since the five ROC curves entangle with each other. According to

section 3.4, the area under the ROC curve, or AUC, can be used to see the difference between the ROC

curves. In Figure 4.10, the change of AUC for different integration time was plotted.

Figure 4.10: AUC for different integration time (using 60% information for spectrum reconstruction)

As the integration time increased from 1 s to 10 s, there was an increasing trend of AUC. In fact, the

increase trend only continued from 1 s to 4 s. After 4 s, the AUC was fluctuating around 0.74. This

phenomenon could be explained as follows:

1, From 1 s to 4 s, through the increment of integration time, the spectral quality was improved and

the combined spectra could still reflect the characteristics of unknown sources. So, the system’s
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performance improved.

2, After 4 s, through the increment of integration time, the spectral quality was improved. However,

after a large integration time, the detector has already been far from the source. The combined

spectra will contain more and more background information rather the source information. So, the

system’s performance couldn’t be further improved. What’s more, the system’s performance might be

even worse if too many spectra were combined.

The above analysis proved the preliminary hypothesis that the spectral quality affected the proposed

method’s performance. This limited the application of the PCA-based method. But when the spectral

quality got improved, according to the theoretical analysis, the performance of PCA-based method should

improve.
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Chapter 5

Conclusions

5.1 Contributions

In this thesis, the impact of a PCA-based algorithm for radiation detection using mobile sensor networks

were studied. This was done as follows:

First of all, the characteristics of mobile sensor network were analyzed and it was proven to be a good

choice for radiation detection in large areas for moving or stationary sources. Then, with the D3S detectors

and cell phones, a small mobile sensor network was successfully established.

Secondly, based on the idea of estimating the background radiation, the PCA decomposition and recon-

struction method was proposed. Its performance on mobile sensor networks was then quantitatively analyzed

through experiment 1.

Finally, based on the observed phenomenon from experiment 1, experiment 2 was designed and the

impact of spectral quality on the PCA-based method’s performance was studied, which provided a good

reference for future work in related areas.

Although the PCA-based method currently performed worse than k-sigma method, further studies showed

that its performance could be improved by improving the spectral quality. The future work will be focused

on improving spectral quality through algorithms as well as developing new methods to solve similar issues.

5.2 Future Work

Detecting and localizing possible sources using mobile sensor networks is very challenging. There are a lot

of problems to be solved in the future. Some potential directions for future work include:

1. Improve spectral quality. Using signal processing techniques or other methods to improve the spectral

quality, such as smoothing or fitting the low quality spectra. In this way, the performance of PCA-based

method and other spectrum based analysis methods can be improved.

2. Couple different analysis methods together. Using spectral information only is not enough, especially
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when the spectral quality is low. Combining spectral analysis methods with other methods like MLE

or Bayesian methods makes it possible to draw more robust conclusions.

3. Clustering techniques. Try appropriate clustering methods from machine learning, such as density-

based spatial clustering of applications with noise (DBSCAN) methods to correctly classify normal

background radiation spectra and the spectra with unknown radioactive materials.

4. Anomaly detection. Try anomaly detection techniques, especially semi-supervised anomaly detection

techniques, to identify the spectra associated with unknown radioactive materials.
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[32] M. Morháč. An algorithm for determination of peak regions and baseline elimination in spectroscopic
data. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, 600(2):478–487, 2009.

[33] M. H. Zhu, L. G. Liu, Y. S. Cheng, T. K. Dong, Z. You, and A. A. Xu. Iterative estimation of the
background in noisy spectroscopic data. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, 602(2):597–599, 2009.

[34] C. Fraschini and F. Chaillan. Background spectrum estimation via robust Kalman filtering. In New
Trends for Environmental Monitoring Using Passive Systems, 2008, pages 1–6. IEEE, 2008.

[35] L. V. East, R. L. Phillips, and A. R. Strong. A fresh approach to NaI scintillation detector spectrum
analysis. Nuclear Instruments and Methods in Physics Research, 193(1-2):147–155, 1982.

[36] M. S. Mitra and P. K. Sarkar. Monte Carlo simulations to estimate the background spectrum in a
shielded NaI (Tl) γ-spectrometric system. Applied radiation and isotopes, 63(4):415–422, 2005.

[37] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Elsevier Science, 2008.

[38] M. B. Christopher. Pattern recognition and machine learning. Company New York, 16(4):049901, 2006.

[39] R. C. Runkle, M. F. Tardiff, K. K. Anderson, D. K. Carlson, and L. E. Smith. Analysis of spectroscopic
radiation portal monitor data using principal components analysis. Nuclear Science, IEEE Transactions
on, 53(3):1418–1423, 2006.

[40] M. G. Wing, A. Eklund, and L. D. Kellogg. Consumer-grade global positioning system (GPS) accuracy
and reliability. Journal of forestry, 103(4):169–173, 2005.

[41] C. E. Metz. Basic principles of ROC analysis. In Seminars in nuclear medicine, volume 8, pages
283–298. Elsevier, 1978.

[42] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic
(ROC) curve. Radiology, 143(1):29–36, 1982.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

44


	List of Tables
	List of Figures
	Chapter 1 Introduction
	Radiation Detection Problems
	Background Radiation
	Radiation Detection Algorithms
	Single Detector-Based Algorithms
	Sensor Network Algorithms

	Mobile Sensor Networks
	Chapter Review

	Chapter 2 Technical Background
	Background Radiation Estimation
	Principal Component Analysis
	Spectrum Reconstruction

	Chapter 3 Experiment
	Detector System Introduction
	Experiment Description
	Experiment 1
	Experiment 2

	Data Description
	Performance Measurement - ROC Curve

	Chapter 4 Results
	System Performance Analysis
	PCA Decomposition
	PCA Reconstruction

	Explanation
	Performance Analysis

	Chapter 5 Conclusions
	Contributions
	Future Work

	References

