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ABSTRACT

We present a method to automatically generate syntactic analogy datasets for

the evaluation of word representations in an unsupervised manner. The auto-

matic generation also allows for customization in terms of word-frequencies,

syntactic rules, part-of-speech tags and size of the dataset. We show the

ability of our method to generate cross-lingual analogy task datasets for

languages other than English, where evaluation datasets are limited if not

nonexistent, by constructing datasets for French, German, Spanish, Arabic

and Hebrew.

Our method clusters pairs of words into morphological rules in an unsuper-

vised manner, using which we generate analogy questions for different rules.

We show the quality of an automatically generated dataset by checking the

correlation of the performance of different word representations on it with

the performance of the same representations on the Google analogy dataset.

The values exhibited a high correlation of 95%. Moreover, we showcase the

benefits of customization through studying the performance of different word

representations when varying the frequency of words in the dataset.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivation

The field of natural language processing (NLP) came to existence with the

purpose of equipping machines with the capability of understanding and gen-

erating natural language. One of the basic units of natural language is words,

and hence to understand or generate pieces of text, machines need to first

grasp the meaning of what composes text: words.

With this in mind, comes the critical problem of word representation. By

word representation, we do not mean representation of words at the sur-

face level (i.e., specification of the characters that make up the word), but

we actually mean representation of words at the semantic level. Such rep-

resentations are recently gaining momentum in comparison to surface level

representations. This is due to the fact that a deeper understanding of the

word leads to smarter machines.

With the rise of such representations and a huge variety of them, it is in

the NLP community’s interest to faithfully evaluate such representations.

Faithful evaluation of word representation algorithms can lead to the un-

derstanding of the downfalls of current algorithms as well as insights into

opportunities of enhancement. Moreover, faithful evaluation methods can

direct the NLP community to the best practices of word representations

when put in use in the building of larger NLP systems.
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1.2 Related Work

Distributed word representations have been shown to represent meaning via

geometry, i.e. the linguistic relationship between two words is captured via

the difference between their corresponding vectors [1]. How good the word

representations are is typically evaluated either via extrinsic or intrinsic eval-

uations. In an extrinsic evaluation, the metric considered is the performance

of a full-fledged downstream system with word representations as an input

(examples: sentiment analysis [2], parsing [3, 4], chunking [5], and named en-

tity recognition [6]). Intrinsic evaluation directly tests for attributes desired

of the word representations broadly classified into four categories: related-

ness, analogy, categorization, and selectional preference [7].

This research focuses on the analogy task as an intrinsic evaluation method.

A word analogy task involves predicting wd that fits wa to wb as wc to wd,

i.e., wa : wb :: wc : wd. This assumes wa and wb to be linked by a semantic

relation and expects the same relation to link wc and wd. Such analogy tasks

(also termed proportional analogies) are important metrics of language un-

derstanding in psychometric tests, such as the Miller Analogies Test (MAT)

and the Graduate Record Examination (GRE).

In [1], word representations were found to exhibit semantic regularities:

words sharing a similar relationship exhibit equivalent difference vectors,

with the difference vector encoding the semantic relation. An example of a

semantic analogy question is, given boy is to girl as brother is to x, the word

representations are able to guess that x is sister through linear operations.

An example of a syntactic analogy task is, given hopeful is to hopefully as

quick is to x, the word representations are able to guess that x is quickly, also

through the same operation. The operation performed on the word repre-

sentations to predict the word fitting the semantic relation is the following:

wd = arg max
x∈V

cos(~x, ~wb − ~wa + ~wc). The accuracy of word representations at

guessing w4 is the evaluation metric used in the analogy task and the types

of semantic relations between word pairs range from those encoded with the

use of morpho-syntactic markers (to indicate that the words are related with

respect to the grammatical category of number or degree of comparison) to

those purely lexicalized (such as currency of country or capital of country).
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Further, the efficacy of word representations in solving the analogy task was

demonstrated via empirical performance over two hand-crafted datasets: [1]

(referred to as the Google dataset in the rest of this document) and the MSR

dataset [8]. Both the datasets include word pair instances collected with sig-

nificant dependence on linguistic tools and resources (examples: POS tagger

and semantic relation similarity tools [9] in the Google data set and knowl-

edge from Wikipedia, a dictionary, and WordNet in [8]). The same reliance

on linguistic tools and resources in conjunction with a human annotation

continues in the creation of other datasets (meant to handle categories other

than analogy): relatedness [10–19], categorization [20–22], and selectional

preference [23, 24]. To summarize: a key feature in the creation of evaluation

datasets is the extensive need for manual labor and linguistic tools/resources,

borrowing opportunistically from disparate studies.

Other works have aimed at creating new evaluation metrics. The work in

[25] claims to have developed the only intrinsic evaluation metric for word

representations. Their method relies on a POS tagged corpus which is used

to create “gold” word representations. Subspace alignment is performed be-

tween the evaluated and the gold representations, and the correlation metric

reflects the “goodness” of the evaluated word representations. The disadvan-

tage of such a method is its limit to languages high on resources (specifically

high quality POS taggers), besides relying on a “gold” set of representations

which are not proven to be truly the “gold”. On the other hand, the work in

[7] devises a method to compare word representations instead of evaluating

each absolutely. The method uses crowd sourcing tools to request humans’

help in evaluating word representation at retrieving the most similar word.

The disadvantage of this method is the need of human input for every com-

parison that needs to be made.

1.3 Contributions and Results

The main contributions of this research are:

• A method to generate more reliable syntactic analogy datasets in an

automatic and unsupervised fashion and that can be applied to any
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language.

• The capability to generate custom datasets based on frequency and

POS tag preferences.

• An extension of the method in [26] to detect infix rules.

• The creation of the first analogy datasets for French, Spanish, German,

Arabic and Hebrew.

• A concrete reformulation of the analogy task whereby the analogy is

specified by all instances of that analogy instead of an arbitrary one,

leading to enhanced performance of word representations on the anal-

ogy task.

• A critical observation on the effect of semantic relatedness on the anal-

ogy task, and how our reformulation effectively eliminates that effect.

A 95% Pearson correlation coefficient on the performances of different word

representations on the our generated dataset with those on the google dataset

reflects the ability of our algorithm to generate datasets of comparable qual-

ity.
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CHAPTER 2

BACKGROUND

2.1 Word Representations

Traditionally, a word in an NLP system is represented via a one-hot vector.

In a vocabulary V , taking a word w ∈ V , and assuming i is the index of

w in V , ~w is set to all zeros, with one in the index corresponding to the

word at hand, i.e. ~wt = 0,∀t 6= i, and ~wi = 1. Such a representation sets

all words in the vocabulary at an equal distance in the space R|V |, although

semantically speaking, “book” is closer to “textbook” than “car”. Because

of that, an NLP system could not statistically learn about “textbook”, for

example, from learning about the word “book”.

To overcome this shortcoming in one-hot vector representation of words,

researchers in the field resorted to distributed representation of words. This

family of representations bases its core on the distributional theory of [27]

that states that similar words keep the same company of words.

2.1.1 PPMI-based

Starting from the previously mentioned distributional theory of words, the

aim is to represent a word through how much it associates with every other

word. For that we rely on counting how much a certain word (c) appears in

the context of the word (w) under consideration. To evaluate the association

between the two words we resort to the pointwise mutual information metric

(PMI). The PMI is estimated as follows:

PMI(w, c) = log(
P̂ (w, c)

P̂ (w) ∗ P̂ (c)
) = log(

count(w,c)
|D|

count(w)
|D| ∗ count(w)

|D|

)
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In the previous equation, count(w,c) refers to the count of occurrences of c

in the context of w. Context could be defined in different ways. Context

is usually defined as within a window of k words from w. Other definitions

could consider the distance in a syntactic dependency tree instead. The term

|D| refers to the number of tokens in the document.

To avoid values of negative infinity when count(w,c)=0, and to avoid nega-

tive values in general, researchers have resorted to positive pointwise mutual

information (PPMI) instead. It was shown in [28] that PPMI-based word

representations outperformed PMI-based representations.

2.1.2 SVD

Word representations in the PPMI regime are high dimensional and sparse.

Dimensionality is |V | in our case, and O(|V |) in general. For computational

purposes, it was in the interest of researchers to create more dense and less

dimensional word representations. For that they resorted to the standard

dimensionality reduction method, namely truncated singular value decom-

position (SVD).

Taking MPPMI to be the matrix that holds the PPMI-based word repre-

sentations (every row corresponds to the representation of one word in the

vocabulary), we perform SVD on it.

MPPMI = U · Σ · Y T

where U is |V | × r, Σ is r × r, Y is |V | × r, and r is the rank of MPPMI .

Assuming that the desired low dimensionality is of size d, we would take the

first d columns of U and the top d eigenvalues in Σ. The matrix holding our

word representations would become:

W SV D = Ud · Σd

where W SV D is a |V | × d matrix instead of |V | × |V |, with d <<< |V |.
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2.2 Unsupervised Morphology Induction

It was shown in [1], that these distributed word representations encode infor-

mation on morphology. For example, you would expect to find the difference

vector ~vhorses − ~vhorse close to the difference vector ~vcows − ~vcow. Exploiting

this regularity in the representation, the authors in [26] devise a method for

unsupervised morphology induction. As described in more detail in [26], the

algorithm divides into four steps:

2.2.1 Candidate Rule Extraction

Morphological rules, in general, are translated orthographically through af-

fixing. For this reason, candidate rules are extracted by checking for every

(w1, w2) ∈ V 2 possible suffix, prefix substitutions from w1 to w2. A rule is

represented as type:seq1:seq2, where type ∈ {pre,suf}, seq1 is the sequence

of characters to be removed from w1 and seq2 is the sequence of characters

to be added to reach w2. For every candidate rule r, there exists a support

set Sr such that:

Sr = {(w1, w2) ∈ V 2|w1
r−→ w2}.

2.2.2 Word Representations Generation

The algorithm authenticates candidate morphological rules if the difference

between the words in the support set shows a systematic pattern in the vector

space. Hence word representations in the vector space are needed. Any off-

the-shelf algorithm for word representation generation could be used.

2.2.3 Candidate Rules Authentication

To check for the authenticity of a rule r, we check for the percentage of

Sr × Sr for which a linear relationship exists in the vector space. For that

we define the notion of a hit: hit = 1(cos( ~w2, ~w4 − ~w3 + ~w1) ≥ tsim),

where (w1, w2), (w3, w4) ∈ Sr and 0 ≤ tsim ≤ 1 stands for cosine similar-

ity threshold. Moreover, a hit rate of a specific rule r is defined as follows:

7



Table 2.1: Top rules in terms of hit rate

rule hit rate Example
suf : sed : zed 100 organised
suf : sed : ze 93.91 organised
suf : y : ical 90.35 history
suf : m : tic 78.69 tourism
suf : y : ies 73.42 penny

hit rate = hit count
|SrxSr| . A rule is authenticated if its hit rate is above a threshold

thr. Table 2.1 shows the top rules extracted in terms of hit rate.

2.2.4 Morphological Rule Disambiguation

The authentication of a rule does not imply that all the instances in its sup-

port set are valid instances. Take for example the rule suf : ε : ly. The

rule is valid and expected to be authenticated but (on, only) is an invalid

instance of its support set.

Moreover, one orthographic rule could correspond to multiple morpholog-

ical rules. Take, for example, the rule suf : ε : s. The surface transformation

represents the plural rule (player, players) and it also represents the person

case change rule (think, thinks). To tackle these two issues, the following

algorithm is proposed.

We greedily search for the instance (w1, w2) ∈ Sr that “hits” with most

of the instances in Sr. These instances form S
(w1,w2)
r . Then we iterate on

Sr − S(w1,w2)
r until the largest possible subset to form is below a threshold in

size.

8



CHAPTER 3

FRAMEWORK

To automatically generate a syntactic analogy dataset we follow an unsuper-

vised morphology induction approach to infer: (1) the morphological rules of

a language, (2) within a morphological rule, the knowledge of pairs of words

adhering to that rule [26].

The system needs as an input only one item: a monolingual corpus. This

reflects the system’s ability to be more widely applicable to other languages,

even low-resource ones. For a detailed description of our implementation of

the unsupervised morphology induction system of [26], the reader is directed

to Section 2.2.

To cover a wider range of languages and respective rules, we expand the

morphology induction system in [26], limited to prefix/suffix rules, with a

heuristic to detect infix rules. For brevity, we only show how to detect can-

didate infix rules while mentioning that the rest of the system is inline with

the method of [26].

Infix rules in Semitic languages exhibit two properties [29]: (1) root words

are dominantly triliteral, (2) the three letters of the root word appear in the

same order in the derived word. Hence, for all (w1, w2) ∈ V 2, if length(w1)

= 3 and the letters of w1 keep positional order in w2, then (w1, w2) is added

to the support set of the rule (inf : r1r2r3: s1r1s2r2s3r3s4). In the naming

of the infix rule, r1, r2, r3 abstract the specific letters of the root, and s1, s2,

s3, s4 indicate the strings of letters that come in between the root letters to

form the derived word.

9



3.1 Automatic Generation of Analogy Datasets

The result of the unsupervised morphology induction stage is a set of mor-

phological rules for the language, and pairs of words adhering to each rule.

It should be noted that the support sets of some rules are unsupervisedly

divided into subsets due to having one surface form rule correspond to mul-

tiple morphological rules, as mentioned in [26].

A high hit rate indicates valid morphological rules, and the support set of

those morphological rules indicates the correct pairs of words adhering to

the respective morphological rule. Hence, for a given number of rules desired

(k) and the number of instances conforming to each rule {s1, s2, ...., sk}, the

algorithm to create a syntactic analogy dataset is as follows:

1. Select the top k rules in terms of hit rate to form the set R (in case of

a priori knowledge of morphological rules in a language, rules could be

manually specified instead).

2. For every rule ri ∈ R, select S
(w1,w2)
ri ⊂ Sri with the largest cardinality.

3. Downsample S
(w1,w2)
ri to size si to control the size of the section in the

dataset.

4. Create the syntactic analogy section of size si.(si − 1) for rule r from

S
(w1,w2)
ri xS

(w1,w2)
ri

10



CHAPTER 4

EXPERIMENTS

We divide our experiments into four parts. In the first, we first empirically

validate our generated dataset. In the second, we show experiments on the

customization capabilities of our method. The third part demonstrates the

quality of our method on other languages. Finally, the fourth part checks for

the impact of the reformulation of the analogy question.

4.1 Unsupervised Morphology Extraction

A prerequisite to all of our experiments is the unsupervised learning of mor-

phological rules as described in Section 2.2. We use off-the-shelf word em-

beddings, trained on the English Wikipedia and limited to the top 100K

words in terms of frequency and made available in Polyglot [30]. These word

representations showed state-of-the-art results when used in a part-of-speech

tagging task. A cosine similarity threshold tsim = 0.5 is used.

4.2 Study 1: Validating the Generated Dataset

Given that all the instances in the Google dataset are correct analogies, we

take it as the gold dataset. To generate the same sections as the Google

dataset we transfer the section rules to their surface form equivalent to the

extent possible. Table 4.1 shows the surface form rules selected as equivalent

to Google’s sections. We omit gram6-nationality-adjective since it is not a

morphological alternation. Also notice that gram8 and gram9 map to the

same rule and thus only the rule with the larger support set would be repre-

sented as indicated by the second step in our method.

11



Table 4.1: Equivalent surface form rules of the Google dataset’s sections.

Google section Generated section
gram1-adjective-to-adverb suf : ε : ly

gram2-opposite pre : ε : un
gram3-comparative suf : ε : er
gram4-superlative suf : ε : est

gram5-present-participle suf : ε : ing
gram7-past-tense suf : ing : ed

gram8-plural suf : ε : s
gram9-plural-verbs suf : ε : s

To prove that the generated dataset achieves the same quality of compar-

ative evaluation as the gold dataset, we check the correlation of performance

scores of multiple word representations on the generated dataset with the

performance scores of the same word representations on the Google dataset.

By comparative evaluation, we mean the dataset’s ability to rank word rep-

resentations and reflect the difference in their quality.

We use five different word representations for this experiment. Each one

is trained on the same English Wikipedia dump (as of 01/15/2016). The

methods for generating the five word representations are:

• CBOW and Skip-Gram (SG): These two methods were introduced

in [31] under the Word2Vec family, a neural-network-based method.

• CWindow (CWin) and Structured Skip-Gram (SSG): These

two methods are syntactic modifications to the two methods in Word2Vec.

They were introduced in [32].

• GloVe: This one is under a different paradigm of word representations.

Word representations are constructed from word co-occurrences. This

method was introduced in [33].

Each word representation was trained with five different dimension sizes

(100, 200, 300, 400, 500), yielding 25 different word representations in all.

It is important to note that this study is concerned with the evaluation

methods for word representations rather than comparing different methods

for creating word representations. The word representations were trained

under default settings and not optimized for the purpose of comparison.

12



4.3 Study 2: Customization Capabilities of our

Method

In addition to automatically generating analogy sections of a dataset, we

provide the ability to customize the selection as well. This helps the research

community by giving a deeper insight in evaluating word representations. In

particular, in this study we provide frequency-related, morphological rule-

related and size-related customization handles.

Frequency: In this experiment, we study the algorithm’s ability to gener-

ate datasets of different frequency properties. This demonstrates the effects

brought about by such a frequency variation, which can potentially offer

valuable insights to researchers. Towards this, we show the variation of per-

formance of different word representations on generated datasets of different

frequency properties.

We achieve this variation as follows:

• generate all possible analogy instances using the support set of a rule

r;

• order these instances in terms of average frequency of the four words

included in the analogy;

• divide them into five different equal bands;

• sample 3000 instances from these bands.

This results in five datasets of the following average word frequency values:

f1=7117.3, f2=15596.4, f3=30050.1, f4=61737.3, f5=353549.4. We average

to account equally for the quality of all word representations participating

in the analogy. These values are the average of the frequency values of all

the words in the analogy dataset. Frequency values are extracted from the

Wikipedia dump the word representations were trained on.

Morphological Rules: A second tunable aspect provided by our method

is the choice of different morphological rules so as to evaluate the performance

of different word representations on them. The Google dataset offers nine

rules, which is a small portion of the possible morphological transformations

in English. Moreover, the control over the rules is equivalent to control over

the POS tags, which has been of interest, as in [7].

13



Table 4.2: Select rules for every language considered

French Spanish German
suf : ont : a suf : mos : ron suf : en : t
suf : ons : ent suf : ron : ban suf : ε : n
suf : ε : s suf : ó : aron suf : s : n
suf : ant : é suf : n : ron suf : st : t
suf : ons : ez suf : án : on suf : ε : es
suf : ε : e suf : z : ces suf : s : m
suf : s : es suf : ra : ndo suf : s : r
pre : ε : ir suf : os : as suf : ε : st

Size: A third benefit of our algorithm is its ability to give the researcher

control over the size of every section. Increasing the size of a section makes

the evaluation more reliable. Increasing the size does increase the evaluation

time, but the evaluation algorithm is fully parallelizable. Hence, this issue

could be alleviated with the use of GPUs.

4.4 Study 3: Dataset Generation for Other Languages

Our next study highlights the fundamental contribution of our work to the

NLP community in general and word representations in particular. We ex-

ploit the language agnostic property of our algorithm presented to generate

datasets for languages other than English using their monolingual corpora

alone as input. In this experiment the respective Wikipedia repositories were

used to create the needed word representations available in [30].

This being a proof-of-concept, we select the rules that encode tense, as-

pect, gender and number in French, German and Spanish to create analogous

datasets. Table 4.2 shows a subset of the rules considered for every language.

As for Arabic and Hebrew, we use complete unsupervision. The system se-

lects the top 8 rules in terms of hit rate rather than us supplying the rules.

For a detailed look at the rules selected and the instances generated, the

datasets are published online. 1

1https://uofi.box.com/s/vla63rquqdpwo0k9uipkfjug493alxqy

14



4.5 Study 4: Reformulating the Analogy Question

In the current formulation of the analogy question (wa : wb :: wc : wd), one

pair of words (wa : wb) defines the analogy. We hypothesize that this is an

underspecification of the analogy relation in the vector space. In the new

formulation we replace ~wb − ~wa by average
(w1,w2)∈Sr

( ~w2 − ~w1) for every rule r in the

dataset.2

A byproduct of this reformulation is the reduction of the size of the analogy

dataset from n2 to n, where n is the number of unique pairs of words in the

analogy questions of a dataset. Thus, another benefit of this reformulation

is the computational speedup while keeping the number of unique pairs of

words constant.

The experiment performed checks for the change in the performance of word

representations after the reformulation of the analogy task. For the purpose

of this experiment we use pre-trained English word representations made

available online.3 These 300-dimensional word representations were trained

on part of the Google News dataset (≈ 100 billion words).

2For the purpose of the immediate use of our published datasets, we represent the
average difference vector by the difference vector of the pair closest to it.

3https://code.google.com/archive/p/word2vec/
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CHAPTER 5

RESULTS

5.1 Study 1: Validating the Generated Dataset

To show that the generated dataset is comparable in quality with the Google

dataset, we use the 25 word representations and obtain their correspond-

ing accuracy values on the generated and the Google datasets, yielding 25

comparison pairs of data points, plotted in Figure 5.1. We observe that the

plot of accuracy values on the generated dataset is a mere shifted and scaled

version of the plot of accuracy values on the Google dataset. This reflects

the high correlation between both sets of accuracy values, thus confirming

the comparable quality of both datasets. We confirm this observation us-

ing a more objective quantifier, the Pearson correlation coefficient r between

the two sets of accuracy values. A high value of r = 0.95 validates our results.

A detailed view of the 25 pairs of data points is shown in Table 5.1.

5.2 Study 2: Customization Capabilities of our

Method

As mentioned in Section 4.3, one of the benefits of the automatic generation

of analogy datasets is the ability to customize the dataset. The properties

considered here are: Frequency, Morphological Rules and Size. Following are

the results of the experiments to demonstrate the algorithm’s customizability

as well as the insights it could bring in evaluating word representations.

Frequency: To demonstrate the algorithm’s ability to accommodate dif-

ferent word-frequency properties, we create five different datasets of respec-

tive average word frequency values: 7117.3, 15596.4, 30050.1, 61737.3, 353549.4

16



Figure 5.1: Performance of different word representations on both datasets.
Representations are ordered as in Table 5.1.

Figure 5.2: Performance of different word representations on datasets of
different word-frequency properties
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Table 5.1: Accuracy values of different word representations on both the
Google dataset and the generated dataset. The dimension size is
represented by n.

Method n Google Generated

SG

100 24.63 17.04
200 33.89 21.73
300 36.85 23.46
400 38.40 24.24
500 39.66 24.95

CBOW

100 27.64 15.95
200 37.08 20.05
300 40.37 22.00
400 42.03 22.87
500 42.31 22.59

CWin

100 64.10 38.48
200 48.02 18.80
300 70.80 44.42
400 69.26 43.64
500 68.20 42.93

SSG

100 53.64 36.98
200 62.90 41.89
300 63.84 42.47
400 64.18 42.09
500 64.13 41.66

GloVe

100 40.95 23.24
200 50.83 27.91
300 52.83 28.46
400 52.98 27.60
500 51.90 27.50

Table 5.2: Comparison between the analogy instances of the dataset with
the most frequent words (average frequency = 353549.4) and the dataset
with the least frequent words (average frequency = 7117.3)

Most Frequent Least Frequent

most mostly new newly diligent diligently seeming seemingly
built unbuilt official unofficial restrained unrestrained paved unpaved
play player work worker import importer ranch rancher
high highest old oldest bright brightest quick quickest

march marching work working modify modifying cull culling
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as detailed in Section 4.3. The ability to create these datasets indicates the

algorithm’s ability to control the word-frequency property of the dataset.

For a closer look at the instances from different frequency bands, we re-

fer the reader to Table 5.2, which considers two datasets: the one with the

lowest frequency property (f1), and the one with the highest frequency prop-

erty (f5).

After demonstrating the algorithm’s ability to customize the words in the

generated dataset by frequency, we show what kind of insights it could bring

when evaluating word representations. Hence, we evaluate the performance

of the five trained word representations (of dimension 300) on the five dif-

ferent datasets. Figure 5.2 shows the performance results for every set of

word representations. We point out that (SG, SSG, CWin) actually per-

form better on datasets with less frequent words, whereas CBOW and GloVe

maintain a more consistent performance across. Although the results are

counter-intuitive, we note that the experiments are performed on the top

100K words in terms of frequency, which are all expected to be well repre-

sented in the vector space.

This shows how representations are differentially susceptible to the frequency

of words, but we refrain from explaining the reason for the phenomenon (such

as method or hyperparameter selection).

Morphological Rules & Size: Study 1 showed our method’s ability to

construct quality datasets based on predefined rules. Since the generation

method is not specific to the rules selected, any morphological rule could be

added to the dataset.

To put the algorithm’s ability to enlarge the dataset into perspective, the

section on adjective-adverb in the Google dataset is of size 992. Our algo-

rithm can generate a section on this rule of size 710 ∗ 709 = 503390 and this

increase directly impacts the reliability of the performance measures.
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Table 5.3: Accuracy of Polyglot word representations on generated analogy
task datasets of respective language

Fr Es De En Ar He
17.10 17.22 15.35 14.64 13.02 12.15

Table 5.4: Accuracy of pre-trained Word2Vec representations on both
datasets before and after reformulation of the analogy question.

Google Generated
Before Reformulation 71.92 47.29
After Reformulation 75.28 61.34

5.3 Study 3: Dataset Generation for Other Languages

We create analogy datasets for French, Spanish, German, Arabic, and He-

brew. Next, we evaluate the word representations in these languages made

available in Polyglot [30] on the respective analogy dataset. The accuracy

scores are indicated in Table 5.3. The scores range between 12% and 18%,

where the analogous word representation and generated dataset on English

return an accuracy of 15%. This indicates that the generated datasets are

suitable for the analogy task and are of comparable quality to that in En-

glish. The low performance of the Polyglot word representations is largely

due to the small dimension size of 64.

5.4 Study 4: Reformulating the Analogy Question

To validate the benefit of the reformulation of the analogy question, we check

the change in the performance of pre-trained Word2Vec representations on

both datasets (generated and Google) after reformulation. The results of

this experiment are shown in Table 5.4. The increase in accuracy values

after reformulation validates our hypothesis that the reformulation better

represents the analogy task for word representations. We highlight that the

gains are even more significant for the generated dataset where robustness is

more called for, given the noise in the dataset.

As a result of the reformulation, we notice that not all word pairs con-

forming to a relation ‘encode’ the relation to the same extent; some are more

canonical than others as seen in the histograms of the distance from the cen-
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Table 5.5: A sample of representative word pairs (column 2) - those closest
to the centroid - encoding the relation (morphological rule) in column 1. As
a comparison, the word pairs in column 4 are farthest from the centroid.

Rule Closest Distance Farthest Distance
suf:ε:ly (random,randomly) 0.76 (amp,amply) -0.02
pre:ε:un (fortunately,unfortunately) 0.77 (commonly,uncommmonly) 0.05

Figure 5.3: Histogram of the distances of word pairs from the centroid to
show the varying degrees to which word pairs encode a relation (left:
adjective-adverb with suffix -ly, right: antonym with prefix un-)

troid, Figure 5.3, for the adjective-adverb relation and the antonym using the

prefix un-. We also tabulate the representative word pairs for the semantic

relations encoded in the stems of the analogy in Table 5.5. This suggests that

the degree to which a word pair encodes a given relation could be chosen as

part of the dataset creation.

5.5 General Discussion

Although Figure 5.1 and a Pearson correlation coefficient of 0.95 are sufficient

to infer the generated dataset’s ability to compare word representations, we

acknowledge that it cannot be used as an absolute metric for evaluating the

word representations on the analogy task. In fact, the accuracy values on the

generated dataset are an underestimate as shown in Figure 5.1. While this

can be attributed to the noisy instances in the generated dataset, the noise

does not affect the comparative evaluation, as was evident from the results

in Figure 5.1, since any noise is expected to affect all word representations

equally.
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Table 5.6: Manual evaluation of the correctness of instances in the
generated dataset per section.

rule type count

suf : ε : est
valid 41

invalid 2

suf : ε : ly
valid 60

invalid 0

suf : ε : ing
valid 60

invalid 0

suf : ing : ed
valid 60

invalid 0

pre : ε : un
valid 60

invalid 0

suf : ε : s
noun 44
verb 7
both 9

suf : ε : er
comparative 15
verb-nominal 41

invalid 3

Statistically speaking, the probability for a noisy analogy question to af-

fect all n different word representations equally is P (equal effect) = (|V |−1)n
|V |n ,

where |V | is the vocabulary size and equal to 100K in our experiments.

Delving deeper into the reason behind the introduction of noisy instances

in the generated dataset, we manually evaluate the distribution of instances

in every section and show the results in Table 5.6. We notice that only 5 out

of 402 are invalid instances of morphological rules. The pair (dens, densest),

where dens is the plural of den, was wrongly identified as an instance of the

superlative rule suf : ε : est. The rest of the noise is due to the ambiguity

of the surface form of the rule. For example, suf : ε : er could represent the

comparative rule (fast, faster) as well as the verb-nominal rule (play, player).

We point out that some of the instances in the suf : ε : s belong to both

the noun category as well as the verb category, e.g., (walk, walks). This

ambiguity in the surface form results in noisy instances like the following:

player : players :: generalize : generalizes.

In this context, we would like to note that the method for comparative evalu-
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Table 5.7: Examples of the effect of semantic similarity between the two
sides of an analogy question on the distance of the analogy. The right (left)
column shows the top (bottom) analogy questions in terms of cosine
similarity. The rule considered is the comparative rule.

Top Analogy Questions Bottom Analogy Questions

large larger big bigger bad worse new newer
strong stronger hard harder low lower old older
tight tighter tough tougher cool cooler old older
hard harder tough tougher great greater old older
big bigger large larger new newer great greater

ation mentioned in [7] requires costly human evaluation, whereas our method

requires no supervision.

Finally, we make an important observation on the effect of semantic related-

ness on the analogy task: The more semantically related the base forms of

both sides of the analogy question are, the “easier” the analogy question is

(i.e. the answer is closer to the linear combination of the three input words).

Figure 5.4 shows the correlation between semantic relatedness and the anal-

ogy task through the high cosine similarity between the base forms of the

top 500 analogy questions in terms of “easiness”. Taking a specific example,

the top instance in terms of analogy distance is large : larger :: big : bigger

(more examples are shown in Table 5.7). This is another argument in favor

of our reformulation of the analogy question, since this issue does not exist

after reformulation.

Finally, one could suspect that the word representations used for unsuper-

vised morphology induction have a comparative advantage over others. Such

a claim was empirically proven wrong by adding English Polyglot representa-

tions (which were used for the automatic generation of the English dataset)

to the calculations of r done over the results in Table 5.1, increasing it from

0.953 to 0.956.
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Figure 5.4: Impact of semantics on the analogy question in the comparative
section
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this research we presented a method to automatically generate analogy

task datasets to evaluate word representations. This automatic generation

allows for customization based on researchers’ needs and required insights,

with a provision to increase the size of datasets for a more reliable evaluation.

The language-agnostic property of our method allows it to be applied to any

language, providing the ability to create datasets for languages other than

English where evaluation benchmarks are limited if not nonexistent. A high

correlation with the evaluation on the Google dataset reflects the quality of

the method used in the automatic generation of the analogy task datasets.

To improve the generated dataset’s capability of absolute evaluation we plan

to remove the noise through enhancing the methods used to disambiguate

surface form rules.

Although the accuracy values on the analogy task are not of central in-

terest in this study, we acknowledge that the evaluation on the generated

datasets is an underestimate of the word representations’ ability to solve the

analogy task. Given that the primary source of noise is the ambiguity of the

rules, we are currently investigating suggested ways to enhance the disam-

biguation capability of the unsupervised morphology induction framework

by using rank-based ordering instead of cosine similarity based ordering of

hit rates, as well as using better quality word representations to learn the

morphological rules.
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versitätsbibliothek, 2007.

[25] Y. Tsvetkov, M. Faruqui, W. Ling, G. Lample, and C. Dyer, “Evalua-
tion of word vector representations by subspace alignment,” in Proc. of
EMNLP, 2015.

[26] R. Soricut and F. Och, “Unsupervised morphology induction using word
embeddings,” in Proc. NAACL, 2015.

[27] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–
162, 1954.

[28] J. A. Bullinaria and J. P. Levy, “Extracting semantic representations
from word co-occurrence statistics: A computational study,” Behavior
Research Methods, vol. 39, no. 3, pp. 510–526, 2007.

[29] R. Fabri, M. Gasser, N. Habash, G. Kiraz, and S. Wintner, “Lin-
guistic introduction: The orthography, morphology and syntax of
semitic languages,” in Natural Language Processing of Semitic Lan-
guages. Springer, 2014, pp. 3–41.

[30] R. Al-Rfou, B. Perozzi, and S. Skiena, “Polyglot: Distributed word
representations for multilingual nlp,” in Proceedings of the Seventeenth
Conference on Computational Natural Language Learning. Sofia,
Bulgaria: Association for Computational Linguistics, August 2013.
[Online]. Available: http://www.aclweb.org/anthology/W13-3520 pp.
183–192.

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[32] W. Ling, C. Dyer, A. Black, and I. Trancoso, “Two/too simple adap-
tations of word2vec for syntax problems,” in Proceedings of the 2015
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, 2015, pp. 1299–
1304.

28



[33] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.” in EMNLP, vol. 14, 2014, pp. 1532–1543.

29


