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ABSTRACT

Experiments will be described in which the extinction of 10.6 µm photons

by free electrons in a single filamentary discharge is studied. The extinction

ranges from 3 to 10 percent over a path length of 1 cm, depending on the

argon flow rate. The spatio-temporally averaged electron density in the fil-

ament is more than 1015 cm−3, as determined by Stark broadening of the

hydrogen alpha (656.28 nm) and 4p’[1
2
]-4s[3

2
]0 argon I (696.54 nm) lines. Ex-

periments indicate that the observed extinction of 10.6 µm is attributable

to a combination of inverse bremsstrahlung and a negative lens effect, and

the results will be compared to theoretical calculations based on Boltzmanns

equation. The potential application of such high electron density plasmas to

studies of fundamental plasma phenomena, as well as optical applications,

will be discussed.
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CHAPTER 1

INTRODUCTION

Inverse bremsstrahlung is one of the most fundamental processes in optics

and plasmas. In the process, the absorption of a photon occurs during a

collision with a free electron under the influence of a neutral atom or ion.

The photon energy absorbed is converted into the thermal energy of the

electron which results in the increase in electron temperature. Just like the

bremsstrahlung process, inverse bremsstrahlung is often dealt with in high

temperature thermal plasma, such as fusion plasma, because of its linear

dependency of gas pressure and electron density. However, it has been shown

that the process is feasible in low temperature plasma cases [1], and it opens

up interesting possibilities such as optical limiting applications along with

the practical characteristics of low-temperature plasmas.

The theoretical background has been established using the Boltzmann ki-

netic equation [2]. It was also demonstrated that quantum corrections should

be included when the electron velocity is comparable to the speed of light.

Experimental studies were also conducted in various ways. Due to its nature,

the process is typically observed in laser-induced plasmas [3], [4]. Zamir et

al. [1] showed that absorption of 10.6 µm photons from a CO2 laser occurs in

high pressure electron-beam excited xenon plasmas. It was also noted that

the slow component for the decay of electron density is governed by electron

relaxation by collisions between excimer species. Fabre et al. presented that

absorption increases sharply at the critical electron density [5]. In view of

applications, there have been trials to use this phenomenon as a method

to measure electron density of the plasma system because of its strong de-

pendency of the inverse bremsstrahlung absoroption coefficient on electron

density [3].

Although there have been many investigations to understand the phe-

nomenon described above, some parameters, such as an inverse bremsstrahlung

cross-section, are still poorly understood. In this thesis, a filamentary dis-
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charge occurring within a capillary dielectric barrier discharge (DBD) device

will be utilized as a tool to investigate the inverse bremsstrahlung process.

In the experiment, the plasma device is probed by Stark broadening of the

Hα line (656.28 nm) and the 4p’[1
2
]-4s[3

2
]0 Ar I line (696.54 nm), and by CO2

laser absorption. In Chapter 2, important parameters for the wave-plasma

interaction will first be given first. The inverse bremsstrahlung absorption

coefficient will be derived and there will be a brief description of a filamentary

discharge. The theory for Stark broadening will be established in Section 2.4.

After an illustration of the experimental setup, the results of electron density

measurement and attenuation experiments will be discussed.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Wave-Plasma Interaction

The plasma frequency is the speed at which the ionized medium reacts to

an external electromagnetic perturbation. The expression for the plasma

frequency is easily derivable from a conceptual situation as follows. Assuming

ions are immobile as compared to mobile electrons, an instantaneous electric

field causes a charge density shift in the direction of the electric field. Then,

electrons and ions will move toward each other to compensate for the charge

imbalance. In this given situation, the plasma frequency can be obtained

from a second order differential equation [6].

ωp =

√
nee2

mε
(2.1)

where m is the electron mass.

When the interaction between an external electromagnetic wave and the

collisionless plasma is described, the plasma frequency can be considered as

a cut-off frequency that determines whether the wave is propagating through

the medium or not. For a transverse electromagnetic wave in collisionless

plasma, the dispersion relation is written as [6],

k =
ω

c

√
1−

ω2
p

ω2
(2.2)

Although this expression is only applied to collisionless plasmas, it gives

the basic ideas about the interaction between plasmas and electromagnetic

waves along with the plasma frequency. A more detailed analysis including

collisions will be presented later in the following section.
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2.2 Inverse Bremsstrahlung

Figure 2.1: A schematic illustration of the inverse bremsstrahlung process
at the atomic scale.

The primary mechanism for the inverse bremsstrahlung process in a weakly

ionized plasma is attributed to collisions of electrons with neutral atoms as

shown in Figure 2.1. In order to understand the behavior of a large number

of particles, a statistical approach is necessary. For this purpose, distribution

function, fi, is defined in phase space that consists of six axes (rx, ry, rz, vx,

vy, vz). The statistical behavior of particles is governed by the Boltzmann

equation. When the electromagnetic force is dominant in the system, the

Boltzmann equation is expressed as [6],

∂fi
∂t

+ v· ∂fi
∂r

+
ei
mi

(E + v×B) · ∂fi
∂v

= (
∂fi
∂t

)collisions (2.3)

With the assumption that the electron energy distribution function is well

represented by a Maxwell-Boltzmann distribution, the effect of electron-

neutral collisions can be regarded as a small perturbation caused by an RF
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electromagnetic field [2],

fi = f + f1, E = E0 + Erf (2.4)

where f is a time-stationary and isotropic distribution function whereas f1

represents a small perturbation of the distribution function by an RF electro-

magnetic field. In a similar context, E0 is an electrostatic field and Erf is an

RF electromagnetic perturbation. Since f is isotropic and time-stationary,
∂f
∂t

and ∂f
∂r

are zero. The magnetic term is negligible for a non-relativistic

case. Also, the static field terms, E0 and B0, vanish. The decay rate for f1

is assumed to be exp(−νm(v)t) for the short-range electron-atom force [2].

Therefore, the Boltzmann equation simplifies to

∂fi
∂t

+ v· ∂fi
∂r

+
e

m
Erf ·

∂fi
∂v

= −νm(v)f1 (2.5)

where νm is the collision frequency for momentum transfer which is the

frequency for elastic collisions between electrons and neutrals. Applying

a Fourier-analysis and neglecting the term k · v in the present case, f1 is

expressed as,

f1 = − e

m

∂f
∂v
Erf

jω + νm(v)
(2.6)

The conductivity, then, is obtained from the distribution function by the

relation,

J = σ·E(ω) = Σiqi

∫
vfid

3v (2.7)

In general electromagnetic theory, the relative permittivity for a lossy medium

is related to conductivity,

εr = 1 +
σ

jωε0
(2.8)

The resulting relative permittivity is

εr = 1 +
ω2
p

ω

∫ ∞
0

(
ω + jνm
ω2 + ν2m

)
∂f

∂v

4π

3
v3dv (2.9)

The absorption coefficient is obtained from the dispersion relation by the

expression [7],

α = −2× Im(k) = −ω
c

Im(εr)

n
(2.10)
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Finally, the absorption coefficient is

α(ω) = − 1

n

4π

3
(
ωp
ω

)2
∫ ∞
0

νm(v)

1 + (
νm(v)

ω
)2
v3∂f(v)

∂v
dv (2.11)

where n is the real part of refractive index, ωp is the plasma frequency, ω

is the angular frequency of the electromagnetic perturbation, and νm is the

collision frequency for momentum transfer.

Figure 2.2: Inverse bremsstrahlung absorption coefficient versus electron
density at three frequencies. Note that both axes are logarithmic.

The absorption coefficient is plotted versus electron density in Figure 2.2.

The collision frequency for momentum transfer and electron temperature are

assumed to be 10−12 s−1 and 2 eV, respectively.

Note that the absorption is linearly proportional to the electron density

and the collision frequency when the collision frequency is assumed to be in-

dependent of velocity. The absorption from inverse bremsstrahlung is larger

for filamentary discharges, as compared to typical macroscopic plasmas be-

cause of its high pressure operation and high electron density although a

gemoetrical factor has to be considered. In the given pressure and angular

frequency for electromagnetic field, the electron density plays a crucial role
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in the determination of the absorption coefficient.

α(ω) ∝ neνm
ω2

(2.12)

The sudden increase in the absorption coefficient at a certain electron density

is the result of the change in the real part of the refractive index. The sharp

increase happens when the plasma frequency is equivalent to the angular

frequency of electromagnetic wave. The electron density responsible for the

abrupt transition can also be viewed as the critical plasma density which is

readily derivable from the plasma frequency expression.

nc =
ε0me

e2
ω2 (2.13)

For example, the critical plasma density for an incident wave frequency of

30 THz in collisionless plasmas is ∼ 9.8× 1018 cm−3, which is comparable to

the value shown in Figure 2.2 of 3× 1018 cm−3.

Figure 2.3: Inverse bremsstrahlung absorption coefficient for electron-ion
interaction versus electron density of two frequencies. Both axes are
logarithmic.

It should be noted that the ion-electron interaction is not negligible for

electron densities higher than 1017 cm−3. Figure 2.3 shows the absorption

coefficient for electron-ion collisions versus electron density. Assuming the ion
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density is the same as electron density, the ion-electron absorption coefficient

[2] for an electron density of 1017 cm−3 is ∼ 5 %-cm−1 which is non-negligible

when compared to the absorption coefficient of the neutral atom-electron

interactions.

The real part of the refractive index affects not only the absorption of the

laser photons, but also the direction of the beam path. The gradient of the

refractive index along the radial direction acts as a lens. Thus, the beam is

deflected as it propagates through the plasma. The change of the refractive

index by the electron density is shown in Figure 2.4.

Figure 2.4: Real part of the refractive index versus the electron density at
three frequencies.

2.3 Filamentary Discharge

Filamentation of diffusive glow discharges is thought to occur due to thermal

instability, stepwise ionization, and Maxwellization [8]. The narrow channel

shape is formed when the dominant mechanism for electron removal is a

bulk recombination rather than diffusion to the wall. In this situation, the

diffusion length of the electrons before they recombine is too short to reach
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the wall. If a discharge occurs in inert gases, this typically implies that the

main recombination mechanism is a dissociative recombination of dimer ions

which is a fast recombination mechanism [9]. Understanding the mechanism

is especially important to operate a laser system in which a diffusive glow

discharge is preferred.

There have been many efforts to study the mechanism of the transition

from a diffusive glow discharge to a filamentary discharge. Filamentary dis-

charges typically occur at high pressure which is about atmospheric pressure

[8]. Gherardi et al. have suggested that a gas flow can change the working

domain of a filamentary discharge [10]. Also, the contraction of a diffusive

glow discharge in neon gas has been observed by the author as the pressure

increased from a few hundred Torr to a thousand Torr.

A filamentary discharge has characteristics which lie between those of a

diffusive glow discharge and an arc discharge [8]. First, the electric field

strength in a filamentary discharge is greater than that in an arc discharge

but lower than that in a diffusive glow discharge. This is why a voltage drop is

observed when a transition from a glow discharge to a filamentary discharge

occurs. Second, a filamentary discharge is nonequilibrium plasma in the

sense that the gas temperature is much lower than the electron temperature,

but the gas temperature is still higher compared to that of a diffusive glow

discharge. Lastly, the electron density is higher for a diffusive glow discharge,

but lower for an arc discharge. The typical ionization ratio of a diffusive glow

discharge is less than 10−6 while that for an arc discharge is 10−1 to 10−3.

2.4 Stark Broadening

In order to determine a theoretical value for the inverse bremsstrahlung ab-

sorption coefficient, it is necessary to investigate the electron density of the

plasma. As shown in Section 2.2, main factors that determine the inverse

bremsstrahlung absorption coefficient are the electron density, the collision

frequency, and the angular frequency of an electromagnetic wave. Among

them, the collision frequency and the angular frequency are given in the ex-

perimental setup as 1012 s−1 and 30 THz, respectively. Once the electron

density is obtained, the theoretical value for the absorption coefficient of

inverse bremsstrahlung can be calculated.
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In this thesis, a spectroscopic technique known as Stark broadening was

employed to determine the electron density of the capillary plasma device.

There have been many efforts to develop the technique to measure the elec-

tron density by observing a spectral line broadening of atoms or molecules

[11], [12], [13], [14]. In a certain model where ions are stationary compared to

electrons, the electric field felt by a probe species broadens the spectral lines

of the species due to Stark effect. Especially, a Stark broadening technique

that uses a hydrogen molecule as a probe species has been well established

throughout decades [11], [13]. Furthermore, non-hydrogenic atoms have also

been studied as a probe species for quadratic Stark broadening [12], [14], [15].

In this experiment, hydrogen gas is added for 1 %vol as a probe molecule in

argon background gas in order to investigate the broadening of the Hα line,

656.28 nm. The quadratic stark effect is examined using the 4p’[1
2
]-4s[3

2
]0 Ar

I line, 696.54 nm.

Since there are other types of line broadening mechanisms beside the Stark

effect in the system, it is necessary to exclude the line broadenings of other

mechanisms from the measured line width to obtain the broadening purely

from the Stark effect. Broadening of the spectral line can be divided into two

groups, which are Gaussian and Lorentzian [11]. Instrumental and Doppler

broadening are responsible for the Gaussian component. The instrumental

broadening is determined by the parameters of the spectrometer and the

value is obtained as 0.02 nm from an Ar atomic line at 750.39 nm.

Doppler broadening results from the thermal motion of probe atoms rela-

tive to the observer. It is proportional to the gas temperature and inversely

proportional to the mass of the atom. If the Maxwell-Boltzmann distribution

is assumed, the broadening can be calculated using Equation 2.14 [12].

7.162× 10−7λ

√
Th
M

(2.14)

where λ is a wavelength of the photon emitted, Th is a gas temperature, and

M is a mass of the atom.

There are two types of pressure broadenings, van der Waals and Stark

broadening, which are responsible for the Lorentizan component. Van der

Waals broadening is caused by a dipolar interaction of probe atoms with

neutral perturbers. The broadening can be obtained from Equation 2.15
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[12], [16].

8.18× 10−26λ2(αR2)2/5(
T

µ
)3/10N (2.15)

where R2 = R2
i − R2

f , R
2
j = n2

2
[5n2 + 1 − 3lj(lj + 1)], and n = ( EH

Eion−Ej
)1/2.

Finally, the Stark broadening component is obtained by subtracting other

broadenings from a measured line width.
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CHAPTER 3

EXPERIMENTAL ARRANGEMENT

Figure 3.1: A picture of an operating device (left). A drawing showing the
structure of the device (right).

The left portion of Figure 3.1 is a picture of an operating device. A single

filament is observed in the center of the capillary. The right half at the

figure is a simplified drawing of the device structure. The diameter of the

capillary is 1.1 mm. The capillary wall is made of borosilicate, which acts

as a dielectric, has a thickness of 100 µm. Copper tape is wound around the

borosilicate capillary and serves as the electrodes. The capillary is bound

by thermal epoxy to the polypropylene body. A research grade argon flow

introduced to the microcavity is controlled by a mass flow controller. A

waveform generator, an audio amplifer, and a transformer produce a 20 kHz

sinusoidal voltage as large as 3.2 kVrms to the device. The waveform is shown

in Figure 3.2 for four different argon flow rate.

The experimental arrangement for the photon absorption studies is shown

in Figure 3.3. A 400 mW CO2 laser was chosen as a light source. The

wavelength range of the laser is 10.3-10.8 µm and the beam waist is 2.4 mm

while its divergence is 5.5 mrad. The laser beam was chopped by a 1 kHz
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Figure 3.2: Waveforms for a capillary device for argon flow rate of 0.5 slm,
1 slm, 1.5 slm, and 2 slm from left-top corner to right-bottom.

mechanical chopper to prevent overheating the IR detector. The IR detector

module includes a HgCdTe (MCT) detector, a built-in preamplifier, and a

thermoelectrical cooling unit. The spectral response of the detector ranges

from 2.5 to 11 µm, and the frequency response bandwidth of the module is

500 kHz. ZnSe lenses were used to focus the laser beam to the device and

collimate the beam prior to reaching the detector. Two mirrors were placed

between the CO2 laser and the device to control the beam path precisely.

Figure 3.3: Experimental arrangement to observe extinction of a 10.6 µm
photon by a capillary plasma device.
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A Czerny-Turner type spectrometer equipped with an intensified charge-

coupled device (ICCD) camera was utilized to observe the broadening of

the hydrogen and argon lines for the electron density measurements. The

focal length of the spectrometer and the slit width are 0.75 m and 20 µm,

respectively. The groove density for the diffraction grating is 1800 mm−1 and

the blazing wavelength is 500 nm. The resulting resolution of 0.02 nm was

experimentally determined from observation of an Ar atomic line at 750.39

nm.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Electron Density Measurement

Figure 4.1: Spectral broadening of the Hα line, at 656.28 nm. The red line
represents the fitting of a Lorentzian.

Figure 4.1 shows the full width at half maximum (FWHM) of the Hα line

for 2 slm argon flow and less than 1% of hydrogen gas added to the feedstock

Ar. The red line shows a Lorentzian fitting. The Doppler broadening is

calculated from Equation 2.14 to be 0.015 nm for a gas temperature of 1000 K.

Considering the dipole moment of a hydrogen atom and atomic polarizability

of argon, the van der Waals broadening is calculated from Equation 2.15 as

0.049 nm at 760 Torr and 1000 K. The total line width is measured to be

0.19 nm and the resulting Stark broadening after the deduction is 0.106
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nm. Tabulated values [13] give a measured electron density of approximately

2× 1015 cm−3 at an electron temperature of 10,000 K.

Figure 4.2: Spectral broadening of argon I line, 696.54 nm. The red line
represents the fitting of a Lorentzian.

Ar I line broadening is also investigated in order to confirm the electron

density obtained from the Hα line. Figure 4.2 shows the 4p’[1
2
]-4s[3

2
]0 Ar I

line and Lorentzian fitting to it at a 2 slm argon flow rate. Applying the

similar procedure done for Hα, the Doppler broadening and van der Waals

broadening calculated from Equations 2.14 and 2.15 are 0.003 nm and 0.012

nm, respectively. The total line width is measured as 0.039 nm. As a result,

the stark broadening is 0.004 nm. The electron density is approximately

3.6× 1015 cm−3 at an electron temperature of 10,000 K [12], [14].

The inconsistency in electron density measurement could result from a

resolution limit of the spectrometer. Especially when the broadening of Ar I

line was measured, the measured Stark width was 0.004 nm while the error

range of the value was 0.002 nm. The instrumental broadening also has the

same error range. Furthermore, there is a decrease in the H number density

because of ionization when the electron density is high while the neutral

argon density remains almost constant [18]. This implies that radiation from

hydrogen atoms mostly comes from when the electron density is small. The

assumption made for gas and electron temperature which have not been

16



measured experimentally could also result in the inconsistency.

4.2 Attenuation Experiment

Figure 4.3: Magnified view of the detector signal, voltage, and current.

Figure 4.3 shows the voltage, current and detector signal when a discharge

occurs at a 2 slm argon flow rate. A slight decrease in the magnitude of the

voltage and a ringing of the current are observed. Strong noise at the begin-

ning of the extinction of detector signal at around 800 ns in Figure 4.3 results

from an electromagnetic field interference produced from the discharge. The

extinction occurs within 300 ns and it rises again within 1 µs, but these rise

and fall times are limited by the temporal response of the detector specifi-

cation. The maximum extinction ratio is linearly proportional to the root

mean square (RMS) current as shown in Figure 4.4. This result is plausible

because the magnitude of the current is proportional to the electron density

which affects the extinction ratio. Furthermore, the current peak tends to

have a greater magnitude in the negative half cycle of the voltage which is

indicated in the figure.

The maximum extinction which is approximately 12% of the total signal

can be explained either by inverse bremsstrahlung or a negative lens effect,

as discussed in Section 2.2. In order to calculate the theoretical value for

17



Figure 4.4: Maximum extinction versus the RMS current value.

absorption, it is necessary to obtain a filling factor of the plasma in the

capillary tube. Figure 4.5 shows side and end-on views of the image obtained

from an ICCD camera at argon flow rate of 2 slm. When the Gaussian shape

is assumed for both the CO2 laser beam and the intensity profile in the radial

direction, the filling factor can be calculated from the FWHM of the plasma

filament and the beam width. The resulting filling factor is approximately

0.09. Since the average extinction ratio is 10% at argon flow rate of 2 slm,

this indicates that most of the photons passing through the plasma are either

absorbed by either inverse bremsstrahlung absorption or deflected due to a

negative lens effect.

Other possible mechanisms that may affect the photon extinction, such as a

thermal lens effect and an ion thruster effect, were ruled out becuase they are

typically very slow processes which take from microseconds to milliseconds

[17]. Especially, a thermal lens effect has been observed by the author in an

arc discharge in a cylinder-shaped device, and the fall time was approximately

100 ms. A reflection from the plasma and air interface is also possible, but

the reflectance is less than 2×10−4 for an electron density of 1017 cm−3.
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Figure 4.5: A side view (left) and an end-on view (right) of an ICCD image
of the filamentary discharge.
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CHAPTER 5

CONCLUSIONS AND FUTURE PLANS

An extinction of 10.6 µm photons by a filamentary discharge was observed. A

theoretical background has been established for calculation of an absorption

coefficient and a refractive index of plasma. The electron density of the

plasma was obtained by spectral line broadenings of Hα and Ar I lines. At

an argon flow rate of 2 slm, the average extinction for a negative half-cycle

is 10%. The extinction is attributed to either inverse bremsstrahlung or a

negative lens effect.

A further investigation is required to verify which mechanism is dominant

for the extinction. Although a ZnSe lens is located between the plasma device

and the detector to compensate for the deflection, it is difficult to exclude

a negative lens effect totally. Thus, a more detailed theoretical study and

experimental verification of the lens effect are required.

In order to make more apparent observations of inverse bremsstrahlung

absorption, a glow discharge rather than a filamentary discharge is preferable

because the filling factor is much more higher and negative lensing is of less

consquence due to a smaller spatial gradient of the electron density. It is

expected that short pulse voltage operation of the plasma device will produce

many gas breakdowns at the same time so that the discharge becomes glow

rather than filamentary [10], [18]. Cavity ring-down spectroscopy can also

be utilized for a plasma with a small absorption coefficient [19].

Furthermore, a detector with a time constant less than a few nanoseconds

needs to be used to examine the inverse bremsstrahlung cross-section as well

as rate constants of the reactions occurring in the discharge.

20



REFERENCES

[1] E. Zamir, C. W. Werner, W. P. Lapatovich, and E. V. George, “Tem-
poral evolution of the electron density in high-pressure electron-beam-
excited xenon plasmas,” Appl. Phys.Lett., vol. 27, no. 2, pp. 56-58,
1975.

[2] G. Bekefi, Radiation Processes in Plasmas, New York, NY: John Wiley
& Sons, 1979.

[3] A. A. Offenberger, R. D. Kerr, and P. R. Smy, “Plasma diagnostics
using CO2 laser absorption and interferometry,” J. Appl. Phys, vol. 43,
no. 2, pp. 574-577, 1971.

[4] L. Schlessinger and J. Wright, “Inverse-bremsstrahlung absorption rate
in an intense laser field,” Phys. Rev. A., vol. 20, no. 5, pp. 1934-1945,
1979.

[5] E. Fabre and C. Stenz, “CO2-laser beam absorption by a dense
plasma,” Phys. Rev., vol. 32, no. 15, pp. 823-826, 1973.

[6] B. E. Cherrington, Gaseous Electronics and Gas Lasers, Elmsford, NY:
Pergamon Press, 1979.

[7] S. L. Chuang, Physics of Photonic Devcies, 2nd ed. Hoboken, NJ: Wiley
& Sons, 2009.

[8] Y. P. Raizer, Gas Discharge Physics, Berlin, Germany: Springer-
Verlag, 1991.

[9] H. J. Qskam and V. R. Mittelstadt, “Recombination coefficient of
molecular rare-gas ions,” Phys. Rev., vol. 132, no. 4, pp. 1445-1454,
1963.

[10] N. Gherardi and F. Massines, “Mechanisms controlling the transition
from glow silent discharge to streamer discharge in nitrogen,” IEEE
Trans. Plasma Sci., vol. 29, no. 3, pp. 536-544, 2001.

[11] H. Griem, Principles of Plasma Spectroscopy, New York, NY: Cam-
bridge University Press, 1997.

21



[12] S. Djurovic and N. Konjevic, “On the use of non-hydrogenic spectral
lines for low electron density and high pressure plasma diagnostics,”
Plasma Sources Sci. Technol., vol. 18, p. 035011, 2009.

[13] M. A. Gigosos and V. Cardenoso, “New plasma diagnosis table of hy-
drogen stark broadening including ion dynamics,” J.Phys. B: At. Mol.
Opt. Phys., vol. 29, pp. 4795-4838, 1996.

[14] S. Pellerin, K. Musiol, B. Pokrzywka, and J. Chapelle, “Stark width of
4p’[1

2
]-4s[3

2
]0 Ar I transition (696.543 nm),” J. Phys. B: At. Mol. Opt.

Phys., vol. 29, pp. 39113924, 1996.

[15] L. Dong, J. Ran, and Z. Mao, “Direct measurement of electron density
in microdischarge at atmospheric pressure by Stark broadening,” Appl.
Phys. Lett., vol. 86, p. 161501, 2005.

[16] C. S. Lee and D. M. Camm, “Van der Waals broadening of argon
absorption lines,” J. Quant. Spectrosc. Radiat. Transfer., vol. 15, p.
211-216, 1975.

[17] A. Komuro and R. Ono, “Two-dimensional simulation of fast gas heat-
ing in an atmospheric pressure streamer discharge and humidity ef-
fects,” J. Phys. D: Appl. Phys., vol. 47, no. 15, p. 155202, 2014.

[18] D. Yarmolich, Y. E. Krasik, E. Stambulchik, V. Bernshtam, J. K. Yoon,
B. Herrera, S.-J. Park, and J. G. Eden, “Self-pulsing 104 A cm−2 cur-
rent density discharges in dielectric barrier Al/Al2O3 microplasma de-
vices,” Appl. Phys. Lett., vol. 94, p. 011501, 2009.

[19] G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy:
Experimental schemes and applications,” Int. Reviews in Physical
Chemistry, vol. 19, no. 4, pp. 565-607, 2000.

22


