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ABSTRACT

Numerous event-based probing methods exist for cloud computing environ-

ments allowing a trusted hypervisor to gain insight into guest activities. Such

event based probing has been shown to be useful for detecting attacks, sys-

tem hangs through watchdogs, and also for inserting exploit detectors before

a system can be patched, among others. In this paper, we illustrate how

to use such probing for trustworthy logging and highlight some of the chal-

lenges that existing event based probing mechanisms do not address. These

challenges include ensuring a probe inserted at given address is trustworthy

despite the lack of attestation available for probes that have been inserted

dynamically. We show how probes can be inserted to ensure proper logging of

every invocation of a probed instruction. When combined with attested boot

of the hypervisor and guest machines, we can ensure the output stream of

monitored events is trustworthy. Using these techniques we build a trustwor-

thy log of certain guest-system-call events powering a cloud-tuned Intrusion

Detection System (IDS). Additionally, we identify new types of events that

must be added to existing probing systems to ensure attempts to circumvent

probes within the guest appear in the log. We highlight the overhead penal-

ties paid by guests to ensure log completeness when faced with probabilistic

attacks and show promising results (less that 10% for guests) when a guest

is willing to relax the trade-off between log completeness and overhead. Our

demonstrative IDS shows the ability to detect common attack scenarios with

simple policies built using our guest behavior recording system.
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CHAPTER 1

INTRODUCTION

Cloud computing lends itself to service oriented architectures as one can

more efficiently manage services that run as separate virtual machines. This

approach has led to virtual machine images being sold in marketplaces as

so called Virtual appliances (VAs) meant to run single services [1]. The

second aspect of cloud computing that makes it more amenable to better

IDS systems is the hypervisor’s ability to inspect guest memory to provide

new services [2, 3, 4, 5].

In previous work, we used the hypervisor as a basis for detecting rootk-

its [6]. Examples from literature have used the hypervisor to detect mal-

ware that hides itself from process-listing tools using a variety of approaches

[7, 2]. Many of these approaches either require running a second VM [8, 9],

rely heavily on knowledge about kernel data structures[10], or focus on spe-

cific types of intrusions or malware[11, 7, 2, 12]. Our approach aims to log

malicious activity so higher level services can take action before a malicious

actor has had the chance to modify kernel data structures in an effort to

circumvent detection (e.g.: remove itself from the process list).

Our logging technique utilizes hypervisor level probes such as those pre-

sented by Estrada et al. [13] and Lengyel et al. [14]. These probing tech-

niques utilize Hardware Assisted Virtualization (HAV) to allow the hypervi-

sor to insert probes into guest memory by replacing an instruction with an

instruction that causes control to transfer back to the hypervisor (through

a VMExit). The hypervisor can then inspect guest memory before transfer-

ring control back to the guest. Our IDS is built around logs gathered using

only probes placed at specifically chosen system calls. The system call in-

terface tends to be very stable and only requires knowledge regarding which

arguments are passed in which CPU registers. Specifically, we reduce the

performance impact of a probe induced VMExit’s by evaluating the detection

coverage with the minimal number of system calls probed. We build probes
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that hook two system calls in Linux, sys exec and sys open, highlight the

trade-off between performance and logging guarantees, and show an example

of a service built on top of such a log in the form of an IDS. By hooking only

certain system calls we aim to lower the performance penalty paid by guests

(by logging less information) while increasing the costs to execute a successful

attack against the guest (by limiting the actions that can be taken without

being logged). We do not protect against every attack on the guest, but we

aim to protect against attacks on the logging system that originates from

the guest while increasing the burden of performing unloggable malicious

activity.

In this paper we exploit the “appliance” nature of cloud computing to

develop a service oriented IDS that is easy to manage, has few false posi-

tives, and is built upon a trustworthy logging service running inside of the

hypervisor. We have implemented our system on Linux 3.13 (Ubuntu 14.04

LTS) as the KVM hypervisor host, and are able to detect intrusions into

the popular blogging framework Wordpress. Additionally, we explore how

event based probing systems can be loaded before the probed instruction(s)

have the chance to execute even once. Probe insertion before execution is

guaranteed by inducing a unique sequence of page faults in the hardware

accelerated guest-physical-address to host-physical-address translation avail-

able in modern processors. By combining existing trusted boot techniques

for both the hypervisor and guests, write protecting the probed instruction,

and monitoring specific hardware registers, we can guarantee event log com-

pleteness. Note that currently we do not monitor other hardware generated

events, such as those stemming from a Base Management Controller (BMC).

We show that the integrity of the probe cannot be fully guaranteed by exist-

ing probe based monitoring system and that two more traps which transfer

control back to the hypervisor must be added to ensure correctness of a sys-

tem call based log. Our contributions include a methodology for building

trustworthy services that must use data from untrustworthy guests and the

identification of the events that must be logged to guarantee the integrity of

any data driven response such a system may produce.
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1.1 Goals of a Hypervisor-Based Trusted Log

We set forward four requirements that must be met to guarantee the integrity

of a trusted log meant to monitor guest Virtual Machines (VM’s). Again,

while this logging does not prevent attacks on guests, it can reduce the num-

ber of attack-related events that go unlogged. Guaranteeing the integrity

and completeness of our trusted log provides guarantees for future work in

higher level services built using such a log. The requirements are as follows:

R1 Information provided by the guest cannot alter the logging entity’s

control flow. Information is simply logged and higher level services can

respond to logged data appropriately,

R2 Guests cannot modify or remove an event from the log after the fact,

R3 In-guest modifications to instrumented locations should be logged,

R4 Modifications to functions invoking the hooked instruction should sim-

ilarly be logged,

R5 The event log must contain every event εT of type T if there exists any

probe PT in the set of probes which produces output corresponding to

events of type T , up to and including a malicious action within the

guest.

We also have three design goals that drive the engineering choices behind

the architecture proposed here. These are:

D1 Minimize the performance impact on guests,

D2 Minimize additions to the trusted compute base, and also

D3 Require no modification of guests (i.e., transparent to end users).

R1 implies that probes must not trust memory read from guests. In par-

ticular, probes must not trust the guest to inform the logging function of

appropriate bound lengths. This requires that thorough bounds checking is

performed on memory inspected from the guest and requires reasonable stop-

ping points for data structures that need the size parameter to be inferred

from guest memory. Setting limits also protects against maliciously linked
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recursive data structures. This ensures that a compromised guest cannot

affect probe behavior.

R2 requires that a malicious guest can neither modify nor prevent the

logging of an event εT occurring at time tx in any time tx+n the (i.e.: future

actions in the guests cannot alter previously logged operations). Event-based

logging ensures that the executions of probed instructions in the guest are

captured in the log right away. Preventing log modifications by guests ensures

that events captured cannot be deleted or modified by guests even if the guest

reformats media or terminates.

R3 allows services built on top of the log to decide how much trust to

place in events captured in the log after a modification event. For instance,

if an administrator observes a modification event εmod at time tx she can de-

cide to trust or not trust the events logged after time tx depending on other

available information. For example, a non-malicious kprobe may have caused

the modification event. We only guarantee that the event will appear in the

log and leave any event classification up to higher-level services. Recording

potential attempts to circumvent logging ensures that higher-level applica-

tions have sufficient information to classify events. R4 guarantees that an

attacker cannot circumvent logging by simply redirecting calls to the func-

tions of interest. In our case, that means write protecting both system call

and sys call table and the preceding call stack. The call stack includes

the sys call table indicating the memory locations of the specific system

call handlers, the general system call handler system call and the hardware

registers indicating which block of code to execute after performing an in-

terrupt. In the case of hooking only the general system call handler, only

modifications to system call and the hardware registers (such as the idt

register) must be monitored. We elaborate more on monitoring events and

the specific registers that need to be monitored in Section 3.2.2.

When combined with R2, R3, and R4, R5 can guarantee that every event

of interest up to and including an attempt to circumvent logging is recorded

ensuring completeness. Log completeness is required because the trust placed

in the events occurring at some time point tx relies upon the integrity of every

event logged between when logging can begin, time t0, and the time of the

event immediately preceding event x at time tx−1. If any event before event x

is determined to be malicious, then we may decide that the details of an event

occurring at time tx cannot be trusted. Thus, if a service cannot review the
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events occurring between time t0 and when a probe is inserted, the service

cannot determine the integrity of any event. The situation of missing data

can occur during guest boot; exiting tools built on event based probing insert

probes at some time tb+n. If a malicious action occurs between when the

system boots, tb, and when the probe is inserted, then it will go unlogged by

directly applying the instruction replacement event based probing technique

mentioned in literature. We present a method to guarantee a probe is inserted

before any invocation of the instruction it is replacing. To the best of our

knowledge this paper is the first work that considers completeness of guest

kernel-based events logged using trusted probes. We do not currently support

the ability to log dynamically generated code that modifies itself after boot.

Code generated as part of the boot sequence and never again can be probed

successfully.

Apart from the requirements R1 – R5, an additional goal of our system is

to impose low overheads to remain practical. D1 dictates that any attempts

at logging must pose minimal performance impact on guests while also being

transparent (D3). These two design goals ensure that any ensuing architec-

ture remain feasible for production workloads. Our final design goal (D2)

requires that we keep probing functions to the minimal required for logging

in order to minimize additional attack surface. Below we discuss how we

can achieve these goals through the use of probing techniques, novel guest

boot sequence analysis, and well placed probes. The result is a secure and

trustworthy logging service on which meaningful higher-level services can be

built.
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CHAPTER 2

BACKGROUND

2.1 Hardware Assisted Virtualization

The x86 architecture was not originally designed with virtualization in mind,

but as VM’s became popular hardware manufacturers looked at ways to im-

prove their performance and robustness. Both AMD and Intel have released

support for HAV in the form of extensions to the x86 instruction set.

HAV allows a VM to execute instructions natively on the hypervisor’s

CPU(s). However, the hypervisor must maintain control of the VM’s exe-

cution. When the CPU is executing a VM’s instructions, VMExit events are

generated for any privileged operations that the VM attempts. A VMExit

transfers control from the VM to the hypervisor allowing the hypervisor to

perform any necessary operations before returning control back to the VM.

While allowing for robust and simplified hypervisor software, VMExit’s do

incur performance overhead. Historically, one of the major causes of overhead

in HAV was due to page faults in the VM. In earlier HAV implementations,

every page fault would result in a VMExit since the guest could not control

its own page tables. To alleviate this, vendors introduced a technique called

two-dimensional page tables (TDP). In this paper we utilize Intel’s TDP

implementation, known as Extended Page Tables (EPT). The techniques

apply to AMD’s equivalent Nested Page Tables (NPT).

EPT allows VM’s to manage their own page tables by managing guest-

physical to host-physical address translations in hardware, effectively elimi-

nating VMExit’s on page faults.

In EPT, there are two layers of page tables that must be traversed for

guest memory accesses. Similar to conventional x86 page tables, EPT also

provides a set of access flags that can be set at the page level: execute enable,

write enable, and read enable. A VMExit is triggered on accesses that violate
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the access flags due to an EPT violation. For example, if writes have been

disabled for a page within a guest, an EPT violation VMExit is triggered on

any write attempts to that page, and must be handled within the hypervisor.

We later show how EPT access flags can be used to guarantee that probing

systems do not miss events of interest occurring within the guest, fulfilling

R5. For more information on EPT we refer the reader to Volume 3 of the

Intel Software Development Manuals [15]; for AMD’s equivalent NPT the

reader can refer to Volume 2 of AMD’s Programmer Manual [16].

2.2 Virtual Machine Monitor based Probing

Our work focuses on an audit log of guest-instructions by recording key events

to add an extra layer of protection. Here, we highlight the mechanism used

to enable such logging. Event based probing using debugging techniques has

been proposed and applied in a number of different contexts [14, 17, 13, 18].

Lengyel et al. use event based probing for dynamic analysis of malware

with the goal of remaining undetected during monitoring [14]. Estrada et.

al. show the effectiveness of similar techniques for reliability and security

monitoring [13, 19]. XenProbes uses the technique for profiling performance

inside guests [17] and Spider uses it for stealthy debugging [18].

All of these approaches utilize HAV to invoke VMExits upon execution of

int3 (0xCC) instructions in the guest. The key feature of event based probing

is that an instruction within an untrusted environment can be replaced by

an instruction (int3 in this case) that causes a hardware enforced trap (i.e.,

a VMExit) to transfer control flow to a trusted environment. After guest

inspection is done, the original instruction is executed within the guest and

the breakpoint is re-inserted before guest execution resumes. Because probes

cause a VMExit, which is an expensive operation, one must carefully design

services built on such probes to reduce the number of exit events while also

ensuring enough information is available to ensure meaningful services can

be developed utilizing the logged data. We do not consider the event based

approached used by LibVMI [20] as it invokes a VMExit on every single

instruction in the target page for the logged event. Such an approach causes

high overhead and is intractable due to our performance requirement D1.

Our approach gives users the flexibility to determine the overhead paid based
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on the level of protection deemed necessary for a given application.

Instruction replacement techniques for event based monitoring differ sub-

stantially from the event based monitoring used in libraries such as LibVMI

[20]. LibVMI “inserts” probes by simply marking the page containing the

probed instruction as non-executable within the two dimensional page table

structures. Any time an instruction on that page is executed, an excep-

tion is raised and the hypervisor must ensure the offending address is the

“probed” instruction before performing any action. We use the finer grained

instruction-level probes discussed in the literature and referenced above. Ad-

ditionally, we limit ourselves to only on event based systems. The research

community has shown that timer based guest introspection (passive mon-

itoring) can be easily circumvented by a malicious or compromised guest

[21, 22].

2.3 The Semantic Gap

Any Virtual Machine Introspection (VMI) application must cross the “Se-

mantic Gap” - the gap faced by developers of code running within the Virtual

Machine Monitor (VMM) that must inspect guest memory with no knowl-

edge of the kernel data structures or memory layout of the guest. Much

research has been done in this area, and we point the reader to the overview

done by Hebbal et al. for a more thorough discussion of the issue and many

of the proposed solutions [23]. For this work, we assume that the address of

the sys exec and sys open calls in Linux, along with the offset at which the

Linux kernel .text addressing begins are provided (this memory mapping

is well documented [24]). The latter is needed in order to identify the guest

physical locations of the above functions (which are loaded into memory be-

fore paging is enabled in the guest). In Section 3.2 we discuss in more detail

why this is necessary.

We favor the approach of querying System.Map for the location of relevant

functions due to ease of access; this approach has shown to be successful in

the literature for providing a low cost method for crossing the semantic gap

[5, 17, 9]. We limit our discussion to Linux guests as the open source nature

of Linux lends itself to easier distribution of VAs, the focus of our IDS, but a

similar approach of querying the debug symbols for the Windows kernel has
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also been met with success [14, 9].

We have intentionally made an effort to keep probed functions to a min-

imum and have limited ourselves to probing simple kernel functions as op-

posed to kernel data structures in order to limit the size of the trusted com-

pute base (D2). As we show in Section 4.2, initial results indicate that many

attacks can be detected with minimal probing, thus reducing not only the

impact of the semantic gap issue, but the size of the trusted compute base

as well. We also assume that the guest kernel is booted using an attestation

technique. This allows probes to trust that the kernel being probed pre-

serves the few properties necessary for probing, such as the address of the

instruction to be probed.

2.4 Virtual Appliances

VA1

Reverse 

Proxy

VA3-n

Application 

Server

VA2

Database 

Server

VA3-n

Application 

Server

VA3-n

Application 

Server

VA3-n

Application 

Server

Figure 2.1: Typical Virtual Appliance Based Deployment of a Web
Application

VAs are a popular method for deploying cloud services. One can sim-

ply choose an appliance from a list of images made available on a cloud

provider’s marketplace and immediately deploy services such as databases

or web servers with minimal configuration. The tuned nature of these ap-

pliances makes their behavior more predicable than a VM used for general
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purpose computation. In this paper we present an IDS that leverages the

“appliance” nature of cloud based deployments instantiated using VAs. The

IDS is built using guest event driven hypervisor-level probes to deliver rele-

vant information to the policy compliance layer.

A typical deployment of a cloud based web application is shown in Figure

2.1 which shows a reverse proxy routing requests to an application process-

ing layer, each of which communicate with a database before returning a

response. We envision a system for which different policies protect each kind

of VA. For Figure 2.1 there would be three main policies, one for VA1 the

reverse proxy, one for VA2 the database and one for VA’s 3 through N which

serve as the application server(s). Policies can share layers if VAs are built

using the same base distribution as a single distribution will have the same

cron binaries running for example. While policies are stackable, the main

advantages reside in the policies for each that differ, allowing for good cov-

erage while limiting false positives. For example, a database server running

MySQL should never execute a shell outside of configuration events; our

monitoring system would detect such an operation as a violation. The event

log can then also be used as compliance monitoring during configuration pe-

riods, and could serve as a method to detect insider threats attempting to

re-configure applications in an attempt to cause unstable behavior.
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CHAPTER 3

DESIGN

3.1 Attack Model

We assume that the hypervisor is a trusted entity and that the hypervisor

side of the logging framework is secure. For the log file itself, a simple way to

provide guarantees is to use remote logging, or approaches used in literature

[25]. Here, we focus on the elements of logging that must be in place to

facilitate proper logging of a guest that may become malicious at some point

after boot. We assume that the hypervisor is using trusted boot, thus the

integrity can be attested. Additionally, we assume that guests running on

the hypervisor are also using attested boot mechanisms or guest kernels are

known, non-malicious builds of Linux. This allows the hypervisor to guaran-

tee the integrity of any guest kernel before the guest boots. We assume that

the guest kernel is not malicious until after the first user-space program runs.

This is a reasonable assumption as attempts to exploit a kernel will come from

software loaded after boot (either malicious software will be loaded or vul-

nerable software exploited). Attacks can come in the form of modifications

to guest memory, writes to guest registers (such as Model Specific Registers

(MSRs), or the IDT) in an attempt to modify the location of the system call

handler. We assume that the kernel can be fully compromised anytime after

boot. Attacks can include loading kernel modules, modification of the kernel

in place, or attempts to circumvent the scheduling of processes on the sys-

tem. An attacker may try and copy the page of memory with the replaced

instruction, fix said instruction, and redirect system calls to this new page.

Such a redirect would either require modification of the Interrupt Descriptor

Table in memory that is referenced to by the general system call handler or

may come as a write to a hardware register in an effort to circumvent the

code block executed after an interrupt.
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3.2 Trustworthy Log

We start with our attack model and then show how through log acquisition

and careful consideration of event types we can protect against such a model.

Additionally, we explore the performance trade-off associated with log guar-

antees and highlight an approach we feel is a reasonable trade-off in providing

a defense in depth solution. Based on our design requirements listed above,

we guarantee that certain malicious activity within the guest can be logged

and that every attempt to circumvent logging will be logged.

The guarantee we provide is that malicious activity with the goal of by-

passing the logging mechanism will appear in the output log. These log

events are the minimal required to enable trustworthy logging. We also show

how relaxing this guarantee allows for much faster performance of the logging

interface without a large increase in attack space that cannot be monitored.

With a trustworthy logging mechanism in place, we can consider other events

for logging that will reduce the size of the attack space that will go unlogged.

The goal is to provide enough logging that an attacker will have difficulty in

launching meaningful attacks while going unnoticed.

3.2.1 Log Acquisition

Figure 3.1 highlights how we probe the Linux kernel system calls sys exec

and sys open. As mentioned above, we utilize an int3 based probing mech-

anism to replace instructions in the guest kernel, ensuring information is

logged anytime the affected functions are called, fulfilling R2.

To ensure that any attempt to modify a probe is logged (R3) we use EPTs

to remove write permissions for the affected page, register a callback to han-

dle these EPT violations, and within the callback handler only log attempts

to modify the affected page if the violation occurs for the guest virtual ad-

dress on which we inserted the probe. This gives administrators knowledge

of attempts to subvert the logging system. While kprobes within the guest

might cause non-malicious writes to locations of logging probes, an adminis-

trator would know the event is benign. Event classification is left to higher

level services, we simply guarantee that modification events do appear in

the log. Logging code also remains small, making formal verification more

feasible. There are only 72 and 41 lines of code for our sys exec logger and
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Guest Kernel Address Space

0xFFFFC08c|sys_exec|int3
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KVM Hypervisor
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SysOpenProbeSysExecProbe

Host
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Figure 3.1: Event Driven Probe Architecture

sys open logger respectively (not including the code required to insert the

probes), keeping in line with D2. To ensure R4 is met, we must consider ev-

ery attack vector that could be used to circumvent logging. For every attack

AT there must be an event corresponding to actions of type T . Consider the

following list of attacks that could circumvent logging:

A1 Rewrite replaced instruction(s) with the original instruction.

A2 Rewrite the general system call handler to reference a new, attacker

supplied, Interrupt Descriptor Table.

A3 Rewrite the entry for the specific system call being hooked in the Inter-

rupt Descriptor Table to point to an attacker supplied handle for the

system call.

A4 Write to either the IDTR register (for legacy int $80 based system

calls) or various MSRs for so called “fast” system calls to force the

hardware to invoke a malicious code block after interrupts (See Section

3.2.2 for a more detailed discussion of the specific registers).

A5 Probabilistically insert an interrupt after a system call (that is being

logged) is made. Upon interruption, modify the thread struct of the

system call invoking process to point to a different system call handler

upon being re-scheduled.

In section 3.2.2 we highlight how each attack is accounted for through

hardware enforced events. It is worth noting here that A5 would require
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careful timing and is unclear if such an attack can be carried out successfully.

Assuming it can be, such an attack would be probabilistic and not guaranteed

to work for every system call made. We later discuss how removing the A5

constraint greatly reduces the performance impact and we believe it has

minimal affects on the overall trustworthyness of our logging architecture.

In future work, we will look at dynamically paying the performance penalty

to protect against A5 by analyzing guests and dynamically moving probe

locations if an attack is more probable based on logged data.

In order to ensure log completeness and fulfill R5 we must place probes in

their respective locations before the instructions at those locations are exe-

cuted. The system calls being probed will be loaded at a predictable location

within the guest physical memory (as noted in Linux’s memory mapping doc-

umentation [24]). The knowledge of these locations allows us to determine

the page number indicating the page containing the target instruction, which

we use to watch for EPT violations of any guest physical address that oc-

curs on the same page as an instruction of interest during the guest boot

sequence. We are able to watch for such violations by utilizing a callback

handler that gets called after KVM performs any necessary actions to handle

the violation. Upon observing the first write violation for any address within

the page of interest, we remove the execute bit from that page, allowing our

callback handler to be invoked if any instruction on the page is executed.

Subsequently, upon observation of any instruction execution on the page of

interest, we know that the remaining code for that page must be loaded and

can safely insert the probe. Having inserted the probe, we restore EPT per-

missions to allow execution and remove our checks for EPT violations due to

execution exceptions on the page in which the probe is inserted as the checks

are only required as the final step before probe insertion. By inserting probes

in this manner during boot of guests, we are able to ensure log completeness

and log every call to these two system calls, even while the first userspace

applications are being started.

Finally, we must ensure that the actions taken within the probe do not

place unwarranted trust in data obtained from the guest (R1). For example,

our sys exec logger logs two variable length string arrays. While these string

are typically \0 terminated, the guest could point the probe to a location

with an arbitrarily large number of bytes before a \0 is encountered. To

protect against copying strings from guest memory, we only copy 500 bytes
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and place a \0 at the 500th byte. While we may log garbage data in cases of

an intentionally malicious guest and may truncate binary names in the case of

exceptionally long, but legitimate, calls to sys exec, this is a necessary trade

off to ensure the probing interface remains resilient. Potential for truncating

can be seen again when iterating through variable length arrays, which should

be NULL terminated. We only iterate over up to 50 entries and exit iteration

if NULL is encountered (in a legitimate case) and stop at 50 in the case of

a malicious guest pointing the probe to a random memory location. Again,

this has the side effect of potentially truncating logged arguments. In our

experiments, we never truncated any legitimate data. Logging code also

remains small, making formal verification more feasible. There are only 72

and 41 lines of code for our sys exec logger and sys open logger respectively

(not including the code required to insert the probes). In our experiments

these length decisions did not have an affect on the effectiveness of the IDS.

3.2.2 Events Logged

In addition to the information listed for each event type as defined below, all

events also include the hostname of the KVM hypervisor on which the event

occurs, a timestamp for the event, and the vmid (the qemu-kvm process id

of the VM on the host on which the event is logged).

The three event types currently implemented in our system, and informa-

tion collected unique to that type, are as follows:

• Tse - sys exec events containing: filename, argv, and envp

– filename - a \0 delineated string.

– argv - a NULL delineated variable length array containing string

pointers.

– envp - a NULL delineated variable length array containing string

pointers.

• Tso - sys open events containing: filename, mode and flags.

– filename - a \0 delineated string.

– flags - an integer flags variable indicating options for the file.

– mode - an integer indicating the mode for the file being opened.
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• Tmod - Probe modification events containing: gva

– gva - A long integer indicating the guest virtual address being

modified.

The following two events are unique to logging system calls and provide

guarantees that malware within the guest is unable to circumvent the logging

mechanism. These require additional callbacks be provided by the underlying

probing framework; we save implementation of these events for future work.

These two events are not currently provided by any event based monitoring

framework in the literature [13, 17, 14].

• Tlidt - lidt event. Triggered on execution of the lidt (Load interrupt

descriptor table) x86 instruction.

• Twrmsr - wrmsr event. Triggered on execution of the wrmsr (Write

Model Specific Regsiter) x86 instruction.

These two events are hardware enforced; once the hypervisor has config-

ured the processor to trap these calls, their execution will always force a

VMExit. The lidt trap can be configured by setting bit 2 (Descriptor Ta-

ble Exiting) of the MSR IA32 VMX PROCBASED CTLS2 model specific register

to 1 within the hypervisor before VM’s are started. Similarly, writes to

model specific registers within the guests can be trapped by setting bit 28 of

the same model specific register to 0. For int $80 based system calls, the

lidt trap is sufficient. For sysenter invoked system calls, the three MSRs

IA32 SYSENTER {ES, EIP, ESP}must be monitored through the wrmsr trap.

Finally, for syscall invoked system calls, the MSR IA32 LSTAR must be mon-

itored with the wrmsr trap. The registers listed above are used to register

Interrupt Service Routines (ISRs) with the processor; in Linux, these point

to the general system call handler. The performance impact of these two

events is negligible under normal operation as these events occur only during

boot of the guest kernel and during configuration of MSRs.

Let us now consider how these event types can protect against the attacks

listed above. Attacks A1, A2, and A3 can be protected by properly remov-

ing the write enable bits for the pages containing the instruction modified,

the general system call handler, and the interrupt descriptor table and lis-

tening to events of type Tmod. The event Tmod is hardware enforced by EPT.
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Attempts to modify pages for which the write enable bit has been removed

will trigger a VMExit through an EPT violation. Attacks that try to change

the ISR for system calls (A4 above) can be logged with events of type Tlidt

and Twrmsr; again, these are hardware enforced events. Finally, careful place-

ment of probes can ensure that logging occurs before interrupts have been

re-enabled by placing the probe on the general system call handler, mitigat-

ing attack A5. Mitigating A5 does have high performance impact as we

discuss in Section 3.3; we believe placing the probe at the general system call

handler is a reasonable trade-off as attacks of this kind would be unreliable.

Note that many more event types are possible as event based probing

provides a trusted mechanism with which to hook any kernel function. But in

keeping with D1 and D2, we choose to keep this number small. In this work,

each event type T above corresponds to an equivalent probe PT inserted into

each guest. An interesting area for future research (discussed more in Section

6) is building new event types based on the output of the above events types.

For instance, a new apt-get type could be defined to allow an administrator

to write fine grained policies regarding arguments to apt-get on a particular

machine. These apt-get events would be not require additional probing

as all the information required is already stored within the sys exec event.

Such an approach would allow for more dynamic auditing approaches while

not impacting the size of the trusted compute base as any such event types

would be based on the trusted log and not on the addition of (potentially

fragile) probes into guest memory. Future work will explore adding more

probes in to improve the efficacy of higher level services while minimizing

performance costs to guests.

3.2.3 Logging Format

At this point, we are placing all probe output into /var/log/kern.log and

then processing the output with a user space application to build and then

processes events. This process is show in Figure. 3.2 below. In order to allow

for easier processing by higher level applications, we adhere to a JSON like

format when doing logging within the host kernel.

A log sample for a touch text.log event looks like the following:

Listing 3.1: Example sys open Probe Output
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{"VMID": 1884, "LOGGER": "SYS_OPEN_LOGGER", "KIND": "BEGIN"}

{"VMID": 1884, "LOGGER": "SYS_OPEN_LOGGER", "KIND": "ARG",

"ARG_NAME": "filename", "VALUE": "test.text"}

{"VMID": 1884, "LOGGER": "SYS_OPEN_LOGGER", "KIND": "ARG",

"ARG_NAME": "flags", "VALUE": "0x941"}

{"VMID": 1884, "LOGGER": "SYS_OPEN_LOGGER", "KIND": "ARG",

"ARG_NAME": "mode", "VALUE": "0x1b6"}

{"VMID": 1884, "LOGGER": "SYS_OPEN_LOGGER", "KIND": "END"}

The TIMESTAMP, HOSTNAME and LOG ID are also included and are set by the

printk function within the hypervisor. We trust these fields to be accurate

when read by higher level tools. The accuracy of these fields is important as

will be discussed in the next section on the development of higher level tools.

For each event, we have a BEGIN statement and an END statement. Every-

thing in between those statements make up the body of the event and are

used to log parameters read from the guest.

3.3 Intrusion Detection System for Virtual Appliances

To highlight our approach to services built on top of an event based trust-

worthy log, we have developed an IDS which triggers alerts on violations

of filename white-lists. The checks are performed on filenames passed to

guest sys exec and sys open calls. To enable ease of use, we have also built

a policy recorder that translates guest events to white-list policies during

recording.

The architecture of our intrusion detection system is show in Figure 3.2.

Raw probe logs are transferred from kernel to user space using the /var/log/

kern.log interface. From there, the logs are placed in a buffer as they are

read from the file. An ioctl interface to /var/log/kern.log is used to en-

sure updates are pushed to the user space application as soon as probes write

to the file. Within the user space event parser, buffers must be used to ensure

that output from a probe P 1
so into guest G1 do not become integrated into an

event ε2 from the output of the probe P 2
so placed into guest G2, as the arrival

of such logs may be intermingled within /var/log/kern.log. This is en-

sured by placing all logs from a given probe into a unique buffer identified by

the LOGGER TYPE,HOSTNAME,VMID sequence. As mentioned previously, since
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Output Log

TIME: VMID: X, …, LOGGER: SYS_EXEC, BEGIN

TIME: VMID: X, …, LOGGER: SYS_EXEC, ARG

TIME: VMID: X, …, LOGGER: SYS_EXEC, END

…

TIME: VMID: Y, …, LOGGER: SYS_EXEC, BEGIN

…

Event Based Probing

SysExecProbe

SysOpenProbe

Event Parsing

Log Buffer

{B1,A1,…,E1} -> Event ɛ1

{Bn,An,…,En} -> Event ɛn

…
Policies

{exec: {filename: 

/sbin/dhclient-script}}

{open: {read_only, filename: 

/sbin/resolvconf}}

Alert System

Policy 

Reader

Event 

Monitor & 

Policy 

Alerts

Policy Recorder

Event ɛ1-> Policy P1

…

Event ɛn -> Policy P2

Figure 3.2: Trustworthy-Log Driven IDS Architecture

the buffer being used is determined by these sequence of values, these values

must be set by the hypervisor. To ensure the guest can not impact actions

taken by the logging system, no value read from the guest is used to identify a

probed event or which buffer in which to place a logged statement. For now,

we do not consider multiple vCPU guests, thus only need to worry about

intermingling between guests. In the case of multiple vCPUs, the vCPU id

would also need to be used as a unique identifier as it would be possible that

a probed location be called from multiple vCPUs simultaneously. Extending

this approach to multiple vCPU based guests will be done in future work.
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We note here however that there are certain limitations to our approach

that would allow an attacker to commit a malicious action without being

logged. Consider a vulnerable binary running on a system that is compro-

mised through a buffer overflow attack. Assuming the attacker does not

crash the binary, it might be possible to run code under the guise of an

already executing process. As long as the payload never opened a file or

executed another binary, it would go unlogged. However, our approach sub-

stantially reduces the actions that can be taken by an attacker. Adding a

separate event for system calls dealing with network access further mitigates

the possibility that a malicious payload is able to do any useful work with-

out being logged. This can be combined with ASLR, non-executable heaps

and other defenses to increase the cost of a successful attack. On the other

hand, all attempts to modify the logging facility are logged (depending on

the performance trade-off chosen for a given guest).

After event parsing is complete, processed events are passed to either a

policy recording layer or an alert system for our IDS. The policy recording

system allows an administrator to record standard behavior for a VA in

terms of white-listing the actions taken during policy recording. Listing

3.2 shows an example policy built using our policy recorder while executing

the which command on a guest under inspection. Currently, white-lists are

separated from attackers executing in the guest by the VMM. In future work

we will investigate using attestation mechanisms for the white-list and while-

list enforcing mechanism.

Listing 3.2: Example which.policy file

{ "policies": [

{"exec": {"type": "whitelist","filename":"/usr/bin/which"}},

{"open": {"type": "whitelist","access_type": "read",

"filename": "/etc/ld.so.cache"}},

{"open": {"type": "whitelist","access_type": "read",

"filename": "/lib/x86_64-linux-gnu/libc.so.6"}},

{"open": {"type": "whitelist","access_type": "read",

"filename": "/usr/bin/which"}}

]}
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CHAPTER 4

EVALUATION

In this section we evaluate both the impact of the probes on the performance

of the guest and on the ability of the IDS to detect a real world attack on a

popular cloud based web application.

4.1 Performance

To evaluate the overhead of our probing mechanisms driven by guest events,

we run three benchmarks that are representative of cloud workloads. These

include:

• Apache Bench - a web serving benchmark for the Apache web server,

[26],

• Redis Bench - a benchmark for the in memory data store [27],

• OpenSSL Profiling - used to understand the impact on encrypted com-

munication within guests.

These tests were chosen because they represent a disk-read heavy work-

load (Apache), network heavy workload (Redis, Apache), and a CPU heavy

workload (OpenSSL). Web applications will often call in memory caches be-

fore sending a response using Apache configured with OpenSSL. All tests are

configured using the Phoronix Test Suite and are run 90 times each. The first

30 runs are performed with our trusted probes loaded and then we run 30

without. The last 30 runs are done while having probes loaded at the general

system call handler, before interrupts have been re-enabled in the guest to

highlight the performance penalty paid while protecting against A5. Figure.

4.1 shows the results for both Apache Bench and for OpenSSL. The results

have been normalized to running in a guest without probing. Apache bench
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results are in terms of requests served per second and those for OpenSSL

are in terms of signatures generated per second, but here both have simply

been normalized to highlight the percentage decrease in performance caused

by probing. Figure. 4.2 is for the Redis benchmark, which runs five separate

requests types to the in memory data store.
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Figure 4.1: Apache Bench and OpenSSL Overhead Relative to Running
with no Probing.

In the case of hooking specific system call handlers, it is clear to see that

overheads remain tolerable (less than 10%), because we are only probing

two guest kernel functions. The overheads are large when protecting against

A5 though, around 55% for Apache and 75% for Redis. Notably, we see

very little slow down for OpenSSL in both cases. This is because OpenSSL

does not have to interact with the kernel as much as Apache and Redis to

complete its workload. OpenSSL works by loading a key in memory and then

generating signatures using that key. It is up to another process, Apache in

our case, to write out any information to the network. Apache and Redis are

both opening sockets and sending data over the network, which is why we

see a much higher penalty being paid when hooking the generic system call

22



0

100000

200000

300000

400000

500000

600000

A B C A B C A B C A B C A B C

SET GET LPUSH LPOP SADD

Re
qu

es
ts
	P
er
	Se

co
nd

	

Figure 4.2: Redis Benchmark Overhead for 5 Redis Operations.

(A) is without probing the guest, (B) is probing only the specific system
call handlers, and (C) is probing the general system call handler.

handler. We feel that the protections against A1, A2, A3, A4 (requirements

D3 and R4) go a long way in protecting the specific system call handler,

substantially reducing the unloggable attack space when hooking only the

specific system call handlers. In future work, we will investigate dynamically

choosing probe location based on observed events. Such an approach could

utilize game theory to model situations in which inserting probes at the

general system call handler is worth the performance penalty. We found

that the majority of overhead when hooking the specific system call handlers

comes from the sys open probe due to the large number of times that system

call is used.

4.2 IDS Evaluation

We evaluate the efficacy of the IDS built on top of our trusted logging plat-

form by looking at real world exploits for motivation. In a recent attack

on the website for the Linux distribution Linux Mint [28], attackers were

able to gain shell access as the www-data user, the user typically reserved for

only running the httpd process [29]. The attack exploited a vulnerability

in the popular blogging framework, Wordpress. Wordpress is representative
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of a typical cloud application as it can be deployed on many VAs to enable

horizontal scalability as show in Figure. 2.1. To see how our system would

have handled such an attack, we installed a copy of Wordpress and a typical

plugin and attacked the setup using Wordpress Vulnerability Database ID

#8209 [30].

We first setup a Wordpress application server and separate database server

to act as our VAs. Since our IDS supports policy stacking, we are able to

record a separate policy for Wordpress and use the dhcp.policy file common

to all VAs built using the same base Ubuntu 14.04 LTS distribution. Includ-

ing that policy is necessary as it removes the chance of false positives every

time a dhcp lease renewal is performed. It would not be necessary for VAs

using static IP’s. An abridged version of the wordpress policy file is show in

Listing 4.1. Our policy recording utility produced a policy that served as a

starting point and then we used knowledge about proper wordpress installs

to fine tune the policy. For example, the policy recording utility produced

many single filename: /var/www/html/*.php entries. We removed these

and converted it into a single directory: /var/www/html entry as shown

on the first line of the policy in the listing.

Listing 4.1: Abridged wordpress.policy file

{"open": {"type": "whitelist","access_type": "read",

"directory": "/var/www/html"}},

{"open": {"type": "whitelist","access_type":"create",

"directory": "/var/www/html/wp-content/uploads"}},

{"open": {"type": "whitelist","access_type":"modification",

"directory": "/var/www/html/wp-content/uploads"}},

{"open": {"type": "whitelist","access_type":"read",

"directory": "/var/www/html/wp-content/uploads"}},

{"open": {"type": "whitelist","access_type":"create",

"directory": "/var/www/html/wp-content/plugins"}},

{"open": {"type": "whitelist","access_type":"modification",

"directory": "/var/www/html/wp-content/plugins"}},

{"open": {"type": "whitelist","access_type":"read",

"directory": "/var/www/html/wp-content/plugins"}},
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{"open": {"type": "whitelist","access_type":"create",

"directory": "/var/www/html/wp-content"}},

{"open": {"type": "whitelist","access_type":"modification",

"directory": "/var/www/html/wp-content"}},

{"open": {"type": "whitelist","access_type":"read",

"directory": "/var/www/html/wp-content"}},

We exploit the vulnerability using Metasploit [31] to determine if our alert-

ing system is able to capture anomalous events. Because the exploit works

by injecting arbitrary PHP code, we can only detect attacks that use PHP to

access other files on the system (outside of the /var/www/html directory) or

execute system binaries. We detect the exploit immediately upon the attack

dropping into a shell, as /bin/sh should never execute on the system. We

could detect the exploit sooner by adding an extra probe to sys socket. In

future work, we will explore detection coverage and delay in relationship to

the overheads paid by guests (when only hooking specific system call han-

dlers) to determine which functions to probe.

Our approach relies on the fact that many exploits require a binary to

load and execute on a system. And if the exploit does not run in a separate

process, as is the case in the example given above, the attacker will likely

either execute a system binary or open a file, revealing malicious activity

(assuming an oracle exists that can classify logged events). For instance, the

loading of kernel modules could be audited by looking at events of type Tse

with filename equal to insmod. This would potentially reveal the loading

of a rootkit. We note here however that there are certain limitations to our

approach that would allow an attacker to commit a malicious action without

being logged. Consider a vulnerable binary running on a system that is com-

promised through a buffer overflow attack. Assuming the attacker does not

crash the binary, it might be possible to run code under an already executing

binary. Payload code could then explore the full system call interface and

potentially exploit the running kernel. Such an event would not be logged,

though any attempt to remove our probe using such an exploit would be

noted in the log. While the attack event itself would not be logged, any

rootkit loaded in such a manner could not hide invocations of a userspace

application making sys exec and sys open system calls. This increases the
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burden of carrying out a successful attacks as malicious payloads will have to

be carried out within a vulnerable binary or the kernel to go undetected. In

future work we will explore creating probes for the most vulnerable locations

within the Linux kernel by evaluating past exploits.
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CHAPTER 5

RELATED WORK

Huh et al. discuss a trusted logging architecture for grid computing using

Xen [25]. Their approach relies on logging events as they are intercepted by

Xen device drivers. Our trusted logging is more flexible as any action within

the guest can be logged on instruction execution. Additionally, the authors

propose an extensive architecture for guaranteeing the log is not fabricated

by the provider. We view this work as complementary. Thus far, we have

focused on trust related issues related to log generation and can utilize similar

techniques for improving trustworthiness.

Montanari et al. discuss using VMI for integrity checking of credit card

security policies for monitored guests [32]. We share similar goals in that

the authors wanted to perform compliance auditing with the least amount of

evidence. Our system builds on or extends on these ideas by implementing

a trusted event based logging system on which compliance audits could then

be performed.

Crawford et al. discuss a methodology for detecting insider threats that

relies on scanning the memory of running virtual machines every 30 min-

utes [11]. As we discussed earlier, polling techniques such as this are limited

in that they are easily circumvented, giving attackers a 30 minute window

in which to perform malicious activities. Kienzle et al. explore using VMI

techniques for endpoint configuration compliance, but require the compli-

ance audit package run in a separate VM, increasing the resources of the

monitor [33]. Their approach to compliance also relies on polling, thus can

be circumvented. Our approach provides a trusted log which is guaranteed

to capture every event probed. In future work, we intend to use our trusted

event log to perform compliance checks of Mandatory Access Control (MAC)

systems running within the guests. Win et al. propose using VMI to provide

additional layers of security for a similar system, but rely on information

from a trusted in-guest monitoring agent to report relevant accesses to a
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trusted compliance layer VM [34]. Our approach places no trust in the guest

after the initial kernel is loaded using an attestation technique provided by

a TPM.

KvmSec is a security extension for KVM, but relies on probes running

in untrusted guests [35]. Numerous papers have been published regarding

detection of specific kinds of malware. For example, Liu et al. address

issues related to the “Heartbleed” OpenSSL vulnerability using a VMM [12].

AntFarm and Lycosid both present ways to address the semantic gap and

track running processes on guests [7, 2]. Our approach uses event based

probing, thus will not miss events while having less overhead when compared

to a system that requires running a separate trusted VM from which to

perform monitoring.

In “Space Traveling across VM” [8], the authors cross the semantic gap

by relying on an additional virtual machine from which to run probes. This

approach has a large over head, thus would violate R6. Techniques like

“Virtuoso” are complimentary to our trusted log and could be used to in-

form future probes of relevant locations within the guest for probing [36].

With regards to work related to IDS, Kosoresow and Hofmeyr show the ef-

fectiveness of system call traces by using temporal patterns of system calls to

detect intrusions [37]. While the IDS presented here relies upon white-listing,

their technique could also be applied. Performance considerations and tech-

niques to improve the performance of logging with kprobes is discussed by

Feng et al. [38]. While our approach does not use kprobes, their techniques

for improving the performance of the communication between kernel space

and user space may prove to be useful in future work.
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CHAPTER 6

CONCLUSION & FUTURE WORK

In this paper we have shown the events that must be logged when prob-

ing guest instructions from within a VMM to ensure attempts to circumvent

logging can be audited by higher level services. We show how existing instruc-

tion replacement based probing mechanisms must be extended to include a

mechanism to guarantee that every invocation of a probed instruction trig-

gers an event. We do this by inducing a unique sequence of EPT violations

to guarantee probes placed in a guest kernel are placed before the instruc-

tion can be invoked. We also identify two new events that must be added

to ensure attempts to circumvent logging can be audited. These events will

allow writes to MSRs and the idt to be audited to determine if an attacker

is attempting to circumvent probes placed in system calls.

We highlight a methodology for creating trustworthy services built on top

of instruction based probes. Namely, attempts to circumvent probes must

be well understood and handled appropriately. This requires one consider

not just protection of the instruction being replaced by the probing mecha-

nism, but protection for every instruction that transfers control flow to the

probed instruction. We highlight five requirements that drive this methodol-

ogy. These include control flow considerations (R1), log integrity protections

(R2), probe robustness (R3), calling function considerations (R4), and a

requirement that logged data contain every event up to and including an at-

tempt to circumvent logging (R5). Additionally, we try to adhere to design

goals to minimize the performance impact on guests (D1), reduce additions

to the trusted compute base (D2) and require not guest modifications (D3).

We also outline potential attacks against an event-driven log and show how

such attacks can be audited.

To highlight how higher level services can be built on a trusted log, we

developed a white-list based IDS and policy recording system. The IDS aims

to provide defense-in-depth to VAs. Cloud computing and the prevalence
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of VAs allows for more complete white-listing with fewer false positives as

VAs are commonly deployed to perform a single task. Any deviation from

that task is a potential security violation. We demonstrate the effectiveness

of our system using a real world vulnerability. Finally, we have shown the

performance trade-offs required to protect against attack vectors when using

hypervisor-based probing mechanisms. In particular, protection against the

preemption attack vector requires a large overhead (55-75% in some bench-

marks). Such an attack would be probabilistic and relaxing our logging

system to not defend against this attack still greatly increases the cost of

carrying out a successful attack against the logging system while providing

more tolerable performance overhead (around 10% in the worst case among

evaluated benchmarks).

In future work we will explore reducing the performance impact so that

guests do not have to choose between protection guarantees and performance

through the usage of Intel’s new #VE exceptions that allow certain EPT

violations to be handled in the guest. When combined with additional logging

mechanisms in the hypervisor (to monitor register writes) this could allow

operations causing the highest performance impact be moved to the guest.

Any code base handling the exception could be protected using a unique

EPT view (also controllable by guests) to ensure that a compromised kernel

could not manipulate the exception handler.
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