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ABSTRACT 

Several industrial processes, including foam packaging manufacturing, use liquefied 

organic gases (boiling points (Tb) < 20°C) as inert feedstocks. These processes produce low 

concentration (e.g., 2,000 ppmv) organic gas streams that must be treated to prevent emissions 

of the organic gases to the atmosphere. The organic gases are typically not reused in the 

process and are instead thermally oxidized. The ability to selectively capture, concentrate, and 

reuse the effluent organic gases is expected to increase the opportunities to manufacture 

materials in a more sustainable manner and improve the economics of industrial processes that 

emit organic gases to the atmosphere.  

Activated carbon fiber cloth (ACFC) with electrothermal swing adsorption (ACFC-ESA) 

has been shown to be an effective means of capturing and recovering organic vapors (Tb > 

50°C). However, additional gas treatment needs to be coupled downstream of the ACFC-ESA 

system to extend this technology to capture and recover organic gases. To this end, a new 

bench-scale ACFC-ESA gas recovery system (GRS) with post-desorption condensation was 

developed and tested with four organic gases and under a select range of process conditions to 

assess its effectiveness for capturing and recovering organic gases. 

The GRS was tested to determine the mass collection efficiency and energy 

requirements for recovering liquid adsorbate from a carrier gas containing select concentrations 

of each adsorbate. The four adsorbates tested were: isobutane, R134A, n-butane, and 

dichloromethane. The inlet relative pressure of the adsorbates ranged from 8.3x10-5 to 3.4x10-3. 

The GRS successfully captured and recovered all relative pressures and adsorbates of interest 

except dichloromethane, which was chemically incompatible with components of the GRS. Of 

the remaining adsorbates (i.e., isobutane, R134A, and n-butane), each was captured and 

recovered with greater than 99% mass collection efficiency, which meets existing emission 

reduction requirements for packaging manufacturing. The heating and compression energy 
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required to capture and liquefy the gases ranged from 1,200 to 52,000 kJ/mol liquefied 

depending on the relative pressure of the inlet adsorbate. This energy consumption is 0.87 – 

138 times that to recover vapors with boiling points ranging from 56.5 - 101°C using the Vapor 

Phase Removal and Recovery System (VaPRRS), which is similar to the GRS, but does not 

include compression and cooling and thus cannot liquefy low boiling point organic gases. 

The GRS system was also modified to capture isobutane from a carrier gas with select 

relative humidities that ranged from 5-80% while maintaining the water vapor concentration of 

the carrier gas. During this testing, the clean, humid adsorption carrier gas and the N2 used to 

inert the system during desorption were recirculated for the first time, which resulted in a 

reduction in the amount of water vapor and N2 required to operate the system once it reached 

steady state. In an industrial setting, this new ability to recycle the carrier gas stream is 

expected to improve system sustainability and reduce operating costs because it eliminates the 

need for re-humidification, decreases the demand for N2 production to inert the adsorption 

vessels during desorption, and reduces energy requirements. The energy required to capture 

and recover isobutane (relative pressure = 6.7x10-4) with relative humidities ranging from 5 to 

80% ranged from 2910 – 5750 kJ/mol liquefied. Experiments with recirculating carrier gas 

showed that the energy requirements to capture and recover liquid isobutane from a high 

relative humidity adsorption stream were significantly lower at the 95% confidence level than in 

experiments without carrier gas recirculation. Based on these results, implementing ACFC-ESA 

with carrier gas recirculation, particularly for humid adsorption gas streams, reduces the 

humidification energy requirements by 60%, the energy to supply N2 by 25 to 60%, and the total 

energy to capture and recover liquid isobutane (heating, compression, water and N2 energy) by 

38%, while also reusing resources such as N2 and water. 

This research is a significant advancement over previous research accomplishments 

because the GRS expands the applicability of ACFC-ESA to compounds with boiling points 
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below 20°C. Additionally, characterization of the GRS using mass and energy balances has 

shown that it can be used for compounds with boiling points ranging from -26.5°C to -0.5°C so 

long as those compounds have a reasonable, reversible affinity for ACFC. Finally, 

demonstrating that operation of this technology with humidified gas streams and carrier gas 

recirculation reduces the water vapor, N2, and overall energy requirements makes the 

technology more likely to be adopted by industries that generate low concentration organic gas 

streams.  
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1. Organic Gas Emissions / Motivation for This Research 

Organic gases are organic compounds with boiling points (Tb) below 20°C with a range 

of structures including simple alkanes and aldehydes. Select organic gases are considered 

greenhouse gases and they can act as precursors to O3 formation (1). Additionally, select 

organic gases have harmful health effects and are thus regulated via the toxic release inventory 

(e.g., acetaldehyde, Tb = 20.2°C) (2) and others (e.g., isobutane, n-butane) must be controlled 

to comply with other regulations (e.g., 3). The total yearly emissions of organic gases are not 

specifically quantified on a national or international scale, however the 2014 United States 

Greenhouse Gas Emission Report developed by the United States Environmental Protection 

Agency (USEPA) estimates that in 2012 a total of 10,971 Gg/yr of non-methane volatile organic 

compounds (VOCs) were emitted to the atmosphere from the United States with 1,538 Gg/yr 

coming from industrial sources (4). VOCs are defined by the United States Code of Federal 

Regulations (CFR) as any compound of carbon that participates in photochemical reactions with 

the exceptions of CO, CO2, carbonic acid, dichloromethane, 1,1,1,2-tetrafluoroethane, and 

others as described in the CFR (5). 

Several industrial processes use liquefied organic gases as inert feedstocks in their 

facilities resulting in the production of low concentration (e.g., < 2,000 ppmv) organic gas 

streams in air. According to the USEPA’s AP-42, 7.7 – 9.8 g of uncontrolled organic gas per kg 

of expandable polystyrene foam is emitted by the packaging industry during production 

operations (6). Based on the polystyrene production by major US manufacturers of 2,074 Gg in 

2012 (7), the total emission of organic gases from polystyrene production is 16 to 20.3 Gg per 

year in the United States. To reduce the amount of these emissions, treatment of the low 

concentration organic gas stream is necessary (8).  
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The industrial process of particular interest in this research involves production of 

packaging materials. Isobutane and other “blowing agents” are used to create low-density 

polystyrene foam. The resulting gas stream that requires treatment includes air and low 

concentration organic gas, and has 30-50% relative humidity (RH) at a temperature around 

40°C. The humidity and organic gas have to be continually resupplied to the process due to the 

use of thermal oxidation to treat the resulting gas stream. 

Typically, thermal oxidation or adsorption is used to reduce the amount of organic gas 

emissions to the atmosphere (8). Thermal oxidation works by combusting the compound to form 

CO2, H2O and other combustion byproducts (9). However the CO2 produced during the thermal 

oxidation process is a greenhouse gas that contributes to increased climate forcing in the 

atmosphere. In addition, thermal oxidation results in the loss of the properly conditioned (i.e., 

temperature, water vapor concentration, and nitrogen (N2) concentration when appropriate) 

carrier gas, which then must be generated again with heat exchangers, humidifiers, and a N2 

supply as part of the facility operation. A potentially more sustainable emissions reduction 

technique is to capture the organic gases from the industrial carrier gas stream while 

maintaining the condition of the carrier gas and then recover the organic gas in a reusable (e.g., 

liquid) form so that it could be recycled.  

The primary goal of this research is to develop a new technology to capture and recover 

organic gases for reuse to improve the sustainability of using organic compounds until 

alternative manufacturing processes are developed that do not generate these organic gases. In 

addition, maintaining the carrier gas condition is expected to lower the operating costs and 

environmental impact of the facility because the carrier gas will not have to be humidified or 

treated with N2 once steady-state conditions are achieved (10). This would allow valuable 

resources, such as water, N2, and energy, to be conserved.  
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The gases of interest in this research include 1,1,1,2-tetrafluoroethane (R134A), 

isobutane, n-butane, and dichloromethane (DCM). The characteristics of these compounds are 

detailed in section 1.3.2 and Table 1.3.  

1.2. Organic Gas Control Methods 

Generally there are two classes of organic gas pollution prevention: process modification 

and ancillary control. Process modification is the preferred alternative for emissions reductions 

because it reduces the amount of emissions produced. Process modification could involve 

feedstock substitution, where a less harmful chemical replaces the organic gas used in the 

process; operational changes that reduce the formation or volatilization of organic gas; or 

equipment modification that prevents the organic gases from escaping (11). If process 

modifications are not possible or do not result in acceptable reduction of organic gas emissions, 

then ancillary control of organic gas emissions is necessary. 

There are two common classes of ancillary control methods to reduce the amount of 

organic compounds emitted to the atmosphere: destruction-based and recovery-based. 

Destructive methods include incineration and biological treatment, which remove organic 

compounds from gas streams by converting them to CO2, H2O, and/or biomass. The use of a 

destructive method means that the organic compound cannot be recovered for reuse in its 

original form. If recovery for reuse is desired, there are several methods available for gas 

treatment: absorption, condensation, membrane separation, and adsorption. These methods 

are appropriate over different concentration ranges as shown in Figure 1.1 
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Figure 1.1 Range of concentrations for various VOC treatment technologies. 
Adapted from (12), Copyright 2000, with permission from Wiley. 
 

1.2.1. Absorption 

Capture of organic compounds using absorption involves the transfer of the organics 

from the gaseous stream to a liquid stream. Absorption is based on the “preferential solubility of 

a gaseous component in the liquid” (9). Although absorption can process a wide range of carrier 

gas flow rates (13), it is generally not suitable for the recovery of organic gases for several 

reasons. First, many organic gases are insoluble in water (14), which would require the use of 

an absorbent other than water. Additionally, absorption requires post-capture treatment of the 

liquid absorbent stream, which requires handling of large volumes of liquids adding cost to the 

control system.  

1.2.2. Condensation  

Condensation involves cooling and/or compression of a gas stream to lower the organic 

compound’s partial pressure below its saturation point. For pure organic gases at standard 

 
 

 
1.2.1 Substitution 

Substitution consists of replacing the pollutant with another one that is less noxious. An 

example of substitution is replacing VOC based solvent used in oil-based paints with a water 

based solvent for use with water-based paints. Generally, substitution involves compromising 

some of the unique features of the original solvent. While this can be tolerated in some 

applications, such as with house paints, this cannot be a viable option in other applications such 

as with auto paints where the high performance of oil-based paints (brightness, smoothness, and 

durability) cannot be achieved with water-based ones. In addition, substitution reduces but does 

not eliminate VOC emissions (De Nevers, 1995). As such other control technologies still need to 

be used. 

Figure 1.1. Range of concentrations for select VOC treatment technologies (Hunter and 
Oyamam, 2000) 
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pressure, this requires the gas stream to be cooled below the organic gas’ boiling point (e.g., to 

-11.7°C for isobutane). For a low concentration organic gas stream, the cooling requirement is 

even greater. This type of cooling is not possible using the commonly used cooling mediums, 

such as water (15), due to freezing of the coolant. In general, condensation requires high 

organic compound concentrations (> 5,000 ppmv) and is often energy intensive for compounds 

with normal boiling points below 33˚C because large amounts of coolant at a temperature below 

the organic compound’s boiling point or compression to high pressures is required to achieve 

condensation (15,16). Additionally, if water vapor is present in the carrier gas, this water could 

condense or freeze during the condensation operation, which will require subsequent treatment 

of the condensed liquids and defrosting of the heat exchanger (17,18). 

1.2.3. Membrane Separation 

Membrane separation is based on the principle of relative permeability through a 

membrane interface: the higher the permeability of the organic compound relative to the 

permeability of the carrier gas, the better the achievable separation. Membrane separation 

reported in the literature often focuses on organic compound concentrations greater than 10,000 

ppmv, which is higher than the organic gas concentrations being considered here (i.e., 2,000 

ppmv) (19, 20, 21). One paper did report the selective capture and recovery of a low 

concentration (i.e., 3,000 ppmv) ethyl acetate stream using a polydimethylsiloxane membrane 

and showed that the ethyl acetate could be recovered at concentrations up to 20% by volume 

(22). Additionally, membranes are expensive, are susceptible to fouling, and must be replaced 

frequently (16, 18).  

1.2.4. Adsorption 

Adsorption occurs when a compound (adsorbate) adheres to an interface (adsorbent). 

For this application, the adsorbate is the organic gas in a carrier gas and the adsorbent is the 

surface of a solid carbon material. This adherence can be either a chemical or a physical 
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process. Chemical adsorption, or chemisorption, occurs when a covalent bond is formed 

between the adsorbate and the adsorbent. Chemisorption is not easily reversible and therefore 

it is not ideal for the recovery of the adsorbate or reuse of the adsorbent (9, 15). Physical 

adsorption, or physisorption, is achieved through van der Waals interactions between the 

adsorbate and the adsorbent. Physisorption is reversible by application of heat, vacuum, purge 

gas stripping, or displacement desorption (27), making it ideal for recovery of the adsorbate (9) 

and reuse of the adsorbent. Additionally, adsorption can achieve greater than 90% removal 

efficiency for inlet VOC concentrations greater than 500 ppmv and can be effective for removing 

VOCs with molecular weights greater than 45 g/mol (15). These characteristics make adsorption 

a good option for capture of low concentration organic gases.  

1.2.5. Adsorption with Condensation for Capture and Recovery of Organic Gases 

An ideal technique for capture and recovery of organic gases would result in the organic 

gas being recovered as a liquid for compact storage and ease of reuse. As mentioned in section 

1.2.2, condensation of low concentration organic compounds can require cooling and/or 

compression. Additionally, the annual operating costs of a condensation system are sensitive to 

the total flow rate entering the system: up to $4.24/LPM without upstream activated carbon 

adsorption compared to $1.24/LPM (neither standard nor actual conditions were specified) with 

upstream activated carbon adsorption (18). Coupling an adsorption system to capture low 

concentration organic compounds and recover them at high concentration with a condensation 

system to liquefy the organic compound could reduce the flow rate into the condensation system 

by two orders of magnitude resulting in a much smaller condenser, thus lowering the capital and 

operating costs of the system.  

The following sections provide relevant background information and justification for the 

technology developed as part of this research: a bench-scale adsorption system that uses 
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activated carbon fiber cloth (ACFC), electrothermal swing adsorption (ESA), and post-

desorption treatment.  

1.3. Adsorption  

1.3.1. Adsorbents 

There are many adsorbents currently used to remove adsorbates from carrier gases. 

The most industrially relevant adsorbents are activated alumina, silica gel, zeolites, and 

activated carbon (23) (Table 1.1). Activated alumina and silica gel have polar surfaces and are 

typically used to remove water vapor and other polar compounds from carrier gases and can 

also be used for inorganic compounds. Zeolites are inorganic materials with a well-defined 

crystalline pore structure (18). Zeolites can be tailored to a specific application by controlling the 

pore structure and silica to aluminum ratio of the zeolite (27). While zeolites can be tailored to 

have some advantages over activated carbon, such as tolerance to high relative humidities, high 

thermal stability, and low flammability, they are still expensive and are generally not used 

industrially for capture of organic compounds (18).  

Table 1.1. Physical properties of typical adsorbents (24).  
Adsorbent Shapea Surface 

Area (m2/g) 
Pore 

Width (Å) 
Porosity  

(-) 
Bulk Density 

(g/cm3) 
Polarity 

Activated 
alumina 

G, S, T 90-400 70-272 0.25-0.6 0.75-0.8 Polar 

Silica gel G, S, P 300-900 40-144 0.3-0.5 0.43-0.83 Polar 

Zeolites C, S, P 600-800 6-12 0.3-0.55 0.5-0.88 Non Polar 

GACb G 500-1600 10-130 0.4-0.8 0.3-0.56 Largely Non 
Polar 

ACFc (25) F 700-1800 6.1-14.4 0.72-
0.95 

0.6-1.2 Largely Non 
Polar 

a G = granular, S = spherical beads, T = tablets, P = powder, C = cylindrical pellets, F = fiber. 
b GAC = granular activated carbon 
c ACF = activated carbon fiber 
Note that activated carbon can also be in the form of S, P, C, F, and monolith (26). 
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1.3.1.1. Activated Carbon 

There are several forms of activated carbon including granular activated carbon (GAC) 

and activated carbon fibers (ACFs). GAC is commonly used to remove organic compounds from 

gas streams and its physical properties give it a high adsorption capacity for most relevant 

organic compounds (15, 27). ACFs, a nano-engineered material, have been shown to also have 

high adsorption capacities for organic compounds over a wide range of concentrations (28). 

Additionally, ACFs have several advantages over GAC: no ash content, high micropore volume 

(29), rapid heat and mass transfer properties (29, 30, 31), shapeability (31), and electrical 

resistance (29, 30, 31, 32), which allows adsorbate desorption through electrothermal 

desorption (Joule heating). 

ACFs can be made into several forms including felt and cloth. Activated carbon fiber 

cloth (ACFC) is manufactured from one of several precursors including polyacrylonitrile, pitch, 

Novoloid, and Rayon (25). The ACFC used in this research is made from phenolic-Novolac™ 

resin and was manufactured by Nippon Kynol, Inc1. Nippon Kynol ACFC is available in four 

degrees of activation with ACFC-10 being the least activated and ACFC-25 being the most 

activated (25). Several characteristics can be used to describe ACFC including surface area, 

micropore surface area, total pore volume, micropore volume, and microporosity (micropore 

volume as a percentage of total pore volume). The surface area, micropore surface area, and 

total pore volume increase, while microporosity decreases, with levels of increasing activation 

(Table 1.2). These properties were determined using N2 adsorption at 77 K.  

                                                

1 Other manufacturers of ACFC include Calgon Carbon Corporation (http://www.calgoncarbon.com/), 
Jacobi Carbons (formerly PICA, http://www.jacobi.net/), and Nantong Yongtong Environmental 
Technology Company (http://www.ytacf.com/en/). 



 

 9 

Table 1.2. Typical properties of ACFC adsorbents (Adapted from ref 25). 

ACFC 
Type 

Total 
Surface 

Area 
(m2/g) 

Micropore 
Surface 

Area 
(m2/g) 

Total Pore 
Volume 
(cm3/g) 

Micropore 
Volume 
(cm3/g) 

Mean 
Pore 
Width 

(Å) 

Micro-
porosity 

(%) 

ACFC-10 810 790 0.40 0.38 6.1 95.6 

ACFC-15 1,322 1,279 0.66 0.62 7.0 94.4 

ACFC-20 1,604 1,540 0.80 0.75 7.4 92.9 

ACFC-25 1,864 1,786 0.93 0.86 8.9 92.2 
 

ACFC-15, in particular, was chosen for this research because it had been previously 

shown to have a higher adsorption capacity for several compounds (n-butane, benzene, and 

acetone) at low concentrations (< 3,000 ppmv) than the other Nippon-Kynol ACFCs (33). The 

intermediate degree of activation of ACFC-15 also allows for a high degree of microporosity 

while maintaining mechanical integrity at an intermediate cost when compared to the other 

degrees of activation (25). 

1.3.2. Adsorbates 

The adsorbates that will be tested in this research include 1,1,1,2 tetrafluoroethane 

(R134A), isobutane, n-butane, and methylene chloride (dichloromethane, DCM). The physical 

properties of these adsorbates are shown in Table 1.3.  
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Table 1.3. Physical properties of adsorbates of interest. 

Characteristic 
1,1,1,2 

tetrafluoroethane 
(R134A) 

Isobutane n-butane Dichloro-
methane 

Class Haloalkane Alkane Alkane Haloalkane 
Molecular 
Formula CH2FCF3 i-C4H10 n-C4H10 CH2Cl2 

Molecular Weight 
(g/mol) 102.03 58.12 58.12 84.93 

Boiling Point (˚C) 
(34) -26.5 -11.7 -0.5 39.8-40 (35) 

Bulk Liquid 
Density at (T) 

(kg/m3)  

1,206 (25˚C) 
(34) 

548 (27˚C) 
(36) 

582 (22˚C) 
(37) 

1,336 (20˚C) 

(14) 

Saturation Vapor 
Pressure at 20˚C 

(kPa)a  
570  302 207 47 

1χν (molecular 
connectivity 

index)b  
3.01 

(if F treated as Cl) 1.73 1.91 1.6 

Effective 
Molecular 

Diameter (Å) 
6.4c (38) 6.35(39) 4.15 (39) 3.3 (40) 

Effective 
Molecular Length 

(Å) 
NA 6.35 (39) 8.24 (39) NA 

Water Solubility 
(kg/kg) (14) NA Insoluble Insoluble 0.02 

NA= not available; abased on (14); b calculated from (41); c based on predicted molar volume 

Isobutane was chosen for initial testing because of its relevance to the packaging 

industry as an inert gas used to manufacture packaging material. Isobutane has the potential to 

be recovered and recycled to reduce reliance on raw material inputs. R134A is a common 

refrigerant that is regulated by the Clean Air Act Amendment 40CFR. Its boiling point is 14.6˚C 

lower than isobutane, which will help assess the operating range of the gas recovery system 

(GRS). Testing with R134A expands the range of boiling points being tested to 50°C. n-butane 

was selected because it is isomeric to isobutane but has a higher boiling point. Based on this 

boiling point difference, ACFC should theoretically have a higher adsorption capacity for n-

butane than isobutane, which will reduce the energy requirements for capture and recovery. 



 

 11 

DCM was chosen because it appears on the USEPA toxic release inventory and it was difficult 

to capture and recover with the Vapor Phase Removal and Recovery System (VaPRRS) (42), 

which is the predecessor to the GRS studied here. DCM has a higher boiling point (39.8°C) than 

both iso- and n-butane and is considered a haloalkane rather than an alkane because it 

contains chlorine atoms. In addition, these compounds have a range of molecular sizes, which 

is known to affect adsorption behavior (43). Note that the effective molecular diameters are less 

than the mean pore width of ACFC-15 and the effective molecular lengths of the adsorbates 

(when available) are similar to the mean pore width of ACFC-15 (6.35 Å to 8.24 Å for isobutane 

and n-butane, respectively, when compared to 7.0 Å for ACFC-15).  

1.3.2.1. Competitive Adsorption with Water Vapor  

The ability to selectively capture an organic adsorbate from a humid airstream is 

desirable for several reasons. Organic compounds have been shown to interact with water 

vapor during adsorption on activated carbon and this interaction is a function of the 

hydrophobicity and volatility of the organic compound (44, 45). Specifically, hydrophobic, light 

organic compounds compete with water vapor for adsorption sites, lowering the adsorbent’s 

effective capacity for the organic compound and increasing the required amount of adsorbent for 

treating a given waste stream (44, 46, 47). Figure 1.2 shows an example of how water vapor 

can be a competitive adsorbate. Note how the adsorption of benzene (a water-insoluble 

compound) decreases as adsorption of water increases at 45% RH. The competitive adsorption 

not only affects the adsorbent’s capacity for the organic compound, but also reduces the 

adsorbent’s capacity for water vapor. In Figure 1.2, the adsorption capacity of ACFC-20 for 

water vapor at 90% RH is 350 mg water / g ACFC, however the equilibrium adsorption capacity 

of ACFC-20 for water vapor at 90% RH has been shown to be nearly 1.5 times that amount 

(48). Being able to capture and recover organic compounds from a humid carrier gas would be 

beneficial because water vapor is often present in industrial carrier gases. In addition, if the 
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production process requires the maintenance of the water vapor concentration of the organic 

compound laden carrier gas, selectively capturing the organic compound while maintaining the 

water vapor concentration in the carrier gas would provide energy savings because the carrier 

air would not have to be re-humidified. 

 
Figure 1.2 Adsorption capacities of 500 ppmv benzene on ACFC-20 at several 
relative humidities. Reprinted from (46), Copyright 1996, with permission from 
Elsevier. 
 
1.3.3. Equilibrium Adsorption Isotherm 

Adsorption capacity for a given adsorbate is an important characteristic for determining 

the quality of the adsorbent-adsorbate pair. Adsorption capacity is the mass of adsorbate that is 

adsorbed per unit mass of adsorbent at equilibrium. Characteristics of the adsorbent that affect 

its equilibrium adsorption capacity include surface area, pore volume, and surface functional 

groups (24). Additionally, for a given adsorbent-adsorbate pair, the equilibrium adsorption 

capacity is dependent on the system’s total pressure and temperature.  

An equilibrium adsorption isotherm describes the equilibrium adsorption capacity of an 

adsorbent-adsorbate pair as a function of the relative pressure of the adsorbate at a fixed 
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temperature and pressure. Adsorption isotherms are classified as one of five types based on 

their shape. The system of five isotherm types, known as the Brunauer classification, is shown 

in Figure 1.3 (49). Type I isotherms are characteristic of a monolayer adsorption and describe 

the adsorption of organic compounds on microporous activated carbon (50). Type II isotherms 

are typical of gases adsorbing on to nonporous solids. Type III and Type IV isotherms are 

characteristic of multilayer formation of the adsorbate on the adsorbent, with Type IV 

representing monolayer formation followed by the formation of additional layers of adsorbate on 

the adsorbent. A Type V isotherm is typical of water vapor adsorbing on activated carbon. For 

this research, Type I and Type V isotherms are the most relevant because they characterize the 

adsorption of organic compounds and water vapor on activated carbon, respectively. 

 

Figure 1.3. Typical adsorption isotherm shapes. The x-axes are concentration or 
relative pressure of the adsorbate and the y-axes are relative amount of 
adsorbate adsorbed. Reprinted from (51) with permission from David Ramirez. 
 

As an example, Foster, et al. measured the adsorption isotherm for n-butane on ACFC, 

which shows Type I behavior (33). When plotted on a semi-log scale, the rapid change in 

adsorption capacity at low relative pressures is more easily observed (Figure 1.4). 
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Figure 1.4. Adsorption isotherm for n-butane on ACFC-20 measured and 
reported by Foster, et al. (33). Note that the ACFC-20 used by Foster is most 
similar to the ACFC-15 used throughout the research reported here.  
 

1.3.4. Mathematical Models of Equilibrium Adsorption Isotherms for Organic 
Compounds on ACFC 

The various isotherm types can be modeled using mathematical relationships. These 

mathematical relationships can be used in models of adsorption systems to characterize mass 

and energy distributions during operation. The isotherm models also allow for prediction of 

adsorption capacity under different operating conditions (inlet concentration, temperature). 

Some common isotherm models for describing the adsorption of organic compounds on 

activated carbon are the Freundlich, Toth, Yaws, Dubinin Radushkevich (DR), and Direct 

Quantitative Structure–Activity Relationship (DQSAR) equations. Utilization of these adsorption 

isotherm models to describe the adsorption of the compounds of interest on ACFC will allow 
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quantification of the distribution of adsorbate mass during an electrothermal swing adsorption 

process and prediction of the process performance. 

1.3.4.1. The Freundlich Equation 

The Freundlich equation (Eq 1.1) describes the adsorption capacity as a function of 

adsorbate partial pressure (27). It is widely used to describe the adsorption of organic 

compounds on activated carbon, however it is not valid at the high and low end of the 

adsorbate’s partial pressure range (52). 

 q = kfPi
1
n  Eq 1.1 

where q = equilibrium adsorption capacity of the adsorbate on the adsorbent having units 

consistent with the rest of the equation, Pi is the equilibrium gas-phase partial pressure of the 

adsorbate, and kf and n are constants determined by equation fitting. In the case where n = 1, 

the isotherm is linear and in the case when n is greater than 10, the isotherm approaches an 

“irreversible isotherm,” indicating that the equilibrium partial pressure must decrease 

substantially for desorption to occur (53).  

1.3.4.2. The Toth Equation 

The Toth equation (Eq 1.2) is another empirical relationship that, unlike the Freundlich 

equation, is valid over the entire partial pressure range of the adsorbate. Due to this validity, Do 

recommends that the Toth equation be the “first choice… for fitting data” for hydrocarbons and 

other adsorbates on activated carbon (52). Others have successfully used the Toth equation to 

describe the adsorption of light alkanes on nanoporous activated carbon (54). 

 q = qs
bPi

1+ bPi( )t⎡
⎣

⎤
⎦
1
t

 
Eq 1.2 

where qs is the saturation adsorbed phase concentration, b is the Langmuir affinity constant 

(kPa-1), and t is a parameter that is usually less than 1. Both b and t are specific to the 
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adsorbate/adsorbent pair and the model can be fitted to experimental data to determine their 

values. The parameter t is a measure of system heterogeneity: as the value of t deviates from 1 

the system heterogeneity increases (52).  

1.3.4.3. The Yaws Equation 

The Yaws Equation (Eq 1.3) is a correlation isotherm that was developed for adsorption 

of VOCs on activated carbon (55). It is a useful equation due to its simplicity and its reliance 

solely on the concentration of the adsorbate. It uses three fitting coefficients to improve the fit of 

the equation with experimental data. In addition, “results from the equation are applicable for 

conditions commonly encountered in air pollution control techniques” (56) 

   Eq 1.3 

 
where q  has units of g adsorbate per 100 g of adsorbent; A, B, and C are correlation constants; 

and c is the concentration of adsorbate in the gas phase in ppmv.  

1.3.4.4. The DR Equation 

The DR isotherm (Eq 1.4) is based on Polanyi theory and was developed to describe the 

Type I isotherms generated when organic compounds adsorb on microporous adsorbents (57).  

 

W =W0 exp −
RT ln Pi ,s

Pi
⎛
⎝⎜

⎞
⎠⎟

E

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 
Eq 1.4 

where W = volume of adsorbate per mass of adsorbent, W0 = limiting micropore volume per unit 

mass of adsorbent, R = ideal gas constant, T = absolute temperature, Pi,s = saturation partial 

pressure of the adsorbate, and E = characteristic adsorption energy of the adsorbate. The DR 

equation assumes that the vapors adsorbed in micropores can form liquids (52). 

log10q = A +B log10 y +C log10c( )2
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1.3.4.5. The DQSAR Equation 

The DQSAR equation (Eq 1.5) is a semi-predictive model based on the Polanyi-

Radushkevich theory of adsorption potential (58, 59). Theoretically, the DQSAR equation can be 

used to predict the adsorption capacity of an adsorbate/adsorbent pair with knowledge of the 

adsorbent’s micropore volume (often provided by the vendor) and the adsorbate’s molecular 

connectivity index (a function of molecular structure) (50). This is an advantage of the DQSAR 

equation, since it does not require the development of experimental adsorption isotherm data to 

obtain fitting parameters. Ramirez, et al. used this technique to predict the adsorption of several 

organic compounds on ACFC-20 with relative errors from 4 to 14% and coefficient of 

determination, R2
, values between 0.888 and 0.987 (50). However, Ramirez observed that when 

isotherms were measured above the adsorbate’s boiling point (125 or 175°C for methyl ethyl 

ketone (Tb = 80°C)), the DQSAR model had much higher average absolute relative difference 

(15 and 90%, respectively) (50). 

 
q =W0ρexp −k RT ln Pi ,s

Pi
⎛
⎝⎜

⎞
⎠⎟

⎛
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⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 Eq 1.5 

 where ρ = density of the adsorbed material (assumed to be the bulk liquid density (Error! 

Bookmark not defined.), and k = parameter that depends only on the adsorbate. 

Nirmalakhandan and Speece developed a correlation (Eq 1.6) for the calculation of k based on 

the modified, first-order molecular connectivity index, 1χυ (58). 1χυ can be calculated as outlined 

by Prakash, et al. (41) and is listed in Table 1.3 for the four adsorbates being considered in this 

work. 

 logk = 1.585 − 0.4421χυ  Eq 1.6 

The saturation pressure of the adsorbate can be determined using one of several 

available relationships. For this research, the Antoine equation was used:  
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Pi ,s = exp A1 +

A2

T
+ A3 ln T( ) + A4T

A5⎛
⎝⎜

⎞
⎠⎟   Eq 1.7 

where the pressure is in Pascal and An = constants for Antoine’s equation (14).  

1.3.5. Mathematical Models of Equilibrium Adsorption Isotherms for Water Vapor on 
ACFC 

Several studies have shown that untreated ACFC exhibits a Type V isotherm (Figure 

1.5) when adsorbing water vapor with significant adsorption of water occurring at relative 

humidities greater than 30-40% for ACFC-15 (45, 48). This indicates that if the inlet RH is below 

30-40%, the competitive adsorption mentioned above is inhibited (46, 60). Previous researchers 

have lowered the RH of the gas stream within the adsorption vessel while maintaining the water 

vapor’s dew-point temperature by warming the ACFC above the temperature of the inlet gas 

stream (10°C increase) during the adsorption cycle (61). Assuming the gas stream rapidly 

warms to the temperature of the ACFC as it passes through the ACFC, the RH is effectively 

lowered due to the increased dry bulb temperature. For example, if the inlet carrier gas is at 

20°C and 75% RH, heating the air to 30°C lowers the RH to 41% and heating to 40°C lowers the 

RH to 24%, which is below the threshold for water vapor adsorption of 30%-40% RH.  
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Figure 1.5. Water vapor adsorption isotherms on ACFCs. The numbers associated 
with each line in the plot refer to the type of ACFC (e.g., “-10” refers to ACFC-10). 
Reprinted with permission from (48), copyright 2007 Springer. 
 
Equilibrium adsorption isotherms for water adsorption on ACFC have been determined 

by Cal, et al. and Qi, et al. who used the DS-4 (Eq 1.8) and QHR (Eq 1.9) equations, 

respectively to fit the isotherm data (45, 62).  

 
 Eq 1.8 

where a is the amount of water vapor adsorbed at the corresponding relative pressure of water 

vapor, and a0, c, kDS-4, and ac are fitting parameters. 

 

  Eq 1.9 

where P50 is an isotherm constant and P = P50 when q = q50, the amount adsorbed when the 

outlet adsorbate concentration is 50% of the inlet adsorbate concentration during a 

Pi
Pi ,s

= a
ca0 +ca 1− exp −kDS−4

2 a − ac( )2( )⎡
⎣

⎤
⎦
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breakthrough curve, and kQHR is a proportionality constant. The values of the parameters for the 

isotherm equations determined by Cal, et al. and Qi, et al. are shown in Table 1.4.  

Table 1.4. Model parameters for the DS-4 equation (45) and the QHR (60) equation for 
water vapor adsorption on ACFC. (Note: Data for ACFC-10 is not available). 

Adsorbent ac a0 C kDS-4 kQHR P/P50 q0 (g/g) 

ACFC-15 25.6 0.935 2.03 0.154 20.0 0.451 0.351 

ACFC-20 47.9 0.228 1.93 0.0639 27.9 0.542 0.571 

ACFC-25 81.9 0.390 1.62 0.0292 23.3 0.650 0.788 

 

1.3.6. Heat of Adsorption 

To fully model the adsorption/desorption system additional information about the 

different energy components of the process is required. In particular, adsorption is exothermic 

(releases heat) and desorption is endothermic (consumes heat). The thermodynamic quantity 

used to describe the energy released or consumed is the isosteric heat of adsorption (ΔHs). ΔHs 

represents the minimum amount of energy necessary to desorb an adsorbate, assuming the 

adsorption process is completely reversible and no other system components are involved in 

the heat transfer (42). Knowledge of ΔHs for a given adsorbate-adsorbent system allows an 

energy balance to be conducted on the adsorption/desorption process. Dombrowski, et al. 

demonstrated that for organic vapors ΔHs represents 3-10% of the total energy required to 

recover the adsorbate in liquid form with the VaPRRS (42). 

Although the isosteric heat of adsorption is an important thermodynamic quantity in 

adsorption systems, the literature is limited in ΔHs values for adsorbate/adsorbent systems. 

Chakraborty, et al. showed that ΔHs for methane on silicate was 21 kJ/mol (63). Sircar 

determined that the ΔHs for ethane on NaX zeolite was 32 kJ/mol and has determined values for 
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N2, O2, and CO2 on various adsorbents (64, 65). Ramirez, et al. determined that ΔHs values for 

acetone and benzene on ACFC-20 were 40-60 kJ/mol and 60-70 kJ/mol, respectively (66).  

The method for determining the isosteric heat of adsorption for an adsorbate/adsorbent 

pair is described by Ramirez, et al. (66) who used the Clausius-Clapeyron equation coupled with 

the Polanyi adsorption potential and the DR equation to derive an equation for ΔHs (Eq 1.10). 

By determining adsorption isotherms at several temperatures and using Eq 1.10, the isosteric 

heat of adsorption can be calculated for a given adsorbate/adsorbent pair and subsequently 

used in system energy balances. 

 
ΔHs =

RT 2

Pi ,s
dPi ,s
dT

+E ln q0
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 Eq 1.10 

where α is the thermal coefficient of limiting adsorption:  

 
α = 1

Tc −Tb
ln ρb

ρc

⎛
⎝⎜

⎞
⎠⎟

 Eq 1.11 

where ρb and ρc
 are the gas densities at the boiling temperature (Tb) and the critical temperature 

(Tc), respectively. In equations Eq 1.10 and Eq 1.11, the variables R, T, Tc, Tb ρb and ρc are all 

well known from the literature. Pi,s is determined from the Antoine equation, which is an 

accepted correlation for determining saturation pressure. E, q0, and q are all experimentally 

determined using gravimetric adsorption isotherms and best-fit algorithms in Excel (Excel for 

Mac 2011) or MATLAB (2013a). 

1.4. Regeneration 

Regeneration is the process by which an adsorbed compound is desorbed from an 

adsorbent allowing for the adsorbent to be reused and the adsorbate to be recovered. Generally 

this is done in one of several ways: pressure swing, purge gas stripping, displacement, and/or 

thermal swing desorption (27). Pressure swing operation reduces the total system pressure at 
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nearly constant temperature, which results in a lowering of the equilibrium adsorption capacity of 

the adsorbent causing the adsorbate to desorb. This is equivalent to moving to the left on an 

adsorption equilibrium curve like those shown in Figure 1.3. Purge gas stripping works by 

lowering the partial pressure of the adsorbate in the carrier gas, thus causing the adsorbate to 

desorb to maintain equilibrium. Purge gas stripping is effective for weakly adsorbed species and 

results in very low adsorbate concentrations in the desorption gas stream. Displacement 

desorption works by introducing a competitive adsorbate into the system, thus causing the 

adsorbate of interest to be displaced/desorbed as a result of the competitive adsorption. 

Thermal swing operation increases the adsorbent and adsorbate temperatures to lower the 

equilibrium adsorption capacity causing the adsorbed species to desorb. Thermal swing is 

thought to be the most common method of regeneration and usually uses a hot gas to heat the 

adsorbate (27). Steam is also used as the hot medium, in which case the desorption process 

becomes a combination of temperature swing and displacement desorption (27). 

Other methods for heating the adsorbent for thermal swing desorption include 

microwave heating, inductive heating, and electrothermal heating (67). These techniques have 

increased energy efficiency over steam regeneration because they heat the adsorbent directly 

(68). Electrothermal regeneration or Joule heating involves passing an electrical current through 

the adsorbent, which acts as a resistor and causes an increase in temperature. Electrothermal 

regeneration is advantageous because it results in rapid and efficient heating of the ACFC, the 

power and carrier gas flow rate are controlled independently during desorption allowing for 

efficient use of resources, and it does not require additional utilities, like steam, that are 

necessary in traditional regeneration techniques (69). However, electrothermal regeneration has 

a few disadvantages: it requires electricity as the source of energy for regeneration of the 

adsorbent and the atmosphere surrounding the adsorbent must be made inert prior to 

regeneration if the adsorbate is flammable. 
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This research combines the use of adsorption on activated carbon fiber cloth with 

electrothermal heating to capture and recover low concentration organic gases from carrier 

gases. The technology is referred to as activated carbon fiber cloth with electrothermal swing 

adsorption (ACFC-ESA). 

1.5. Existing Adsorption Systems Using ACFC and Electrothermal Regeneration 

Previous research has developed a recovery system for capture and reuse of low 

concentration organic vapors (e.g., toluene with Tb = 111°C) from carrier gases using ACFC-

ESA (69, 70). This system, known as the VaPRRS is capable of capturing 73-1,000 ppmv (P/Pi,s 

= 0.002-0.01) organic vapor and recovering it as a liquid for reuse or more efficient disposal (69, 

70). Extensive characterization of this system has been conducted including material and 

energy balances (70) and cost estimates (69). Systems using this technique currently exist on 

the bench and pilot scales (50 to 1,700 standard liters per minute (SLPM, T = 273 K, P = 1 atm)) 

(71). While the VaPRRS is effective at capturing and recovering high boiling point organic 

vapors (Tb = 55 - 116°C), it is not capable of recovering organic gases as liquids because it 

does not have a post-desorption treatment system to increase the partial pressure of the organic 

gases above their saturation vapor pressure. Dombrowski, et al. showed that for lower boiling 

point organic vapors (e.g., dicholormethane, Tb = 39.8 °C), the VaPRRS could not efficiently 

recover the adsorbate as a liquid (42). The development of an ACFC-ESA system that can 

handle low boiling point compounds would be a significant advancement over the VaPRRS 

technology. 

Additional research has leveraged adsorption on ACFC and electrothermal desorption as 

a pre-treatment process for low concentration organic gas streams being treated with biofilters 

or thermal oxidizers. The steady-state tracking (SST) process captures variable concentration 

VOC in carrier gases that are typically generated by processes such as coating operations and 

produces a steady concentration VOC and carrier gas with VOC concentrations ranging from 
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250 ppmv to 5,000 ppmv. The steady concentration stream at a flow rate 10-20% of the flow rate 

during the adsorption cycle can then be sent to a biofilter or to a thermal oxidizer where the 

VOC is converted to biomass or CO2 and H2O, respectively (72).  

1.6. Mass and Energy Balances to Describe ACFC-ESA 

Several researchers have analyzed ACFC-ESA systems using mass and energy 

balances to predict the amount of condensate captured and quantify the energy use distribution 

in the system to identify potential areas for energy efficiency improvement (70, 72). For 

example, Sullivan, et al. used a combined mass and energy balance, Eq 1.12, to determine the 

ACFC temperature as a function of electrical energy input (70).  

 VRMSIRMS =msΔHs
dq
dt

+ mfcpf
dT
dt∑ +ms cps + qcpi + q0 − q( )cpv( )dTdt +

                   ρgQgcpg
dT
dt

+ hAconv T −T∞( ) + εσArad T 4 −T∞
4( ) + kAcondL

T −T∞( )
 Eq 

1.12 

where VRMS and IRMS are the root mean square (RMS) voltage and current, respectively; ms is the 

mass of the solid adsorbent; q = ρlW where ρl is the density of the adsorbate in liquid form; mf is 

the mass of the adsorption vessel’s components in direct contact with the adsorbent; cp values 

are the mass-specific heat capacities for the adsorber’s components (cpf), the adsorbent (cps), 

the liquid adsorbate (cpl), the gas-phase adsorbate (cpv), and the carrier gas (cpg); ρg is the 

density of the carrier gas; Qg is the volumetric flow rate of the gas; h is the convective heat 

transfer coefficient at the ACFC interface; ε is the emissivity of the ACFC; σ is the Stefan-

Boltzmann constant; Aconv, Arad, and Acond are the effective surface areas for convection, 

radiation, and conduction, respectively; L is the length of the conductive heat transfer, k is the 

conductive heat transfer coefficient, and T∞ is the ambient temperature. 

The mass balance used by Sullivan, et al. to predict the amount of condensate collected 

is described by equation Eq 1.13 and Figure 1.6. This mass balance assumes that liquid 

adsorbate is formed on the inside of the vessel walls and that the vapor phase concentration of 
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adsorbate is in equilibrium with this condensed phase, which is accurate for adsorbates with 

boiling points above 50°C. This temperature limitation makes Eq 1.13 applicable to the 

VaPRRS, but not applicable to the ACFC-ESA system explored in this research, which handles 

adsorbates with boiling points < 20°C. 

 
 Eq 1.13 

where dml is the change in condensate mass in the control volume, Ptot is the total pressure in 

the vessel, P is the pressure of the gas leaving the vessel, V is the volume of the vessel, MW is 

the molecular weight of the adsorbate, yi is the mole fraction of the adsorbate in the gas, and t is 

time.  

  

Figure 1.6. Diagram describing the energy balance for the ACFC-ESA system. 
Reprinted with permission from (70). Copyright 2004 American Chemical Society. 
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dt
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where FR is the resistivity of the ACFC at TR and R is the
thermal resistivity factor of the ACFC. R for the Kynol-based
ACFC has been measured at -3.0 × 10-3 °C-1 (9).

Since the purge gas volume is relatively low (or zero), the
primary mechanism for convective heat transfer from the
ACFC is free convection in the annular space.The convective
heat transfer coefficient for convection of thermal energy
from the ACFC to the gas in the annular space is estimated
using (20)

where h is the convective heat transfer coefficient, NuL is the
Nusselt number, k is the thermal conductivity for the gas, L
is the vertical length of the heat transfer surface, RaL is the
Rayleigh number, Pr is the Prandtl number, g is the constant
of gravity, ! is the reciprocal of the film temperature (average
ofTs andT"),Ts is the surface temperatureof theheat transfer

FIGURE 7. Energy balance diagram.

TABLE 1. Input Parameters for Desorption Modeling
variable description symbol value units source

m ass of a dsorb e nt m s 128 g m easure d
h eat of a dsorptio n Ha ds 917.9 J/g 21
lo a din g, a dsorb ate/A CFC q 0.0-0.6 g/g co m p ute d fro m DR e q
h eat ca p acity (alu m in u m) cpf 0.9 J g-1 K-1 22
h eat ca p acity (304 stainless) cpf 0.468 J g-1 K-1 20
h eat ca p acity (A CFC) cps 0.71 J g-1 K-1 20
h eat ca p acity (M EK(l)) cpl 2.19 J g-1 K-1 18
h eat ca p acity (M EK(g)) cp v 1.4 J g-1 K-1 18
h eat ca p acity (N 2(g)) cp g 1.04 J g-1 K-1 22
total m icro p ore v olu m e W o 0.748 c m 3/g 21
a dsorptio n p ote ntial E 14.43 kJ/m ol 21
e m issivity ϵ 0.9 N/A 20
Stefa n-B oltz m a n n co nsta nt s 5.67E-8 W/m 2‚K4 20
area for co n d uctio n A co n d 8.12E-4 m 2 m easure d
area for co n v ectio n A co n v 0.13 m 2 calculate d b y S E M a

area for ra diatio n A ra d 0.13 m 2 calculate d b y S E M
le n gth of co n d uctio n L 0.038 m m easure d
co n d h eat tra nsfer co eff k 15 W m-2 K-1 20
co n v h eat tra nsfer co eff h f(T) W m-2 K-1 20
m ass of fittin gs (alu m in u m) m f 69 g m easure d
m ass of fittin gs (stainless) m f 262.3 g m easure d
liq uid d e nsity Fl 0.81 g/m L 22
N 2(g) flo w rate Q g 0 or 1 sta n d ard L/m in m easure d
p o w er in p ut fu nctio n f(I,t) I ) 9.8 A m easure d

a S E M , sca n nin g electro n m icro gra p h.

h )
NuLk
L

(7)

NuL ) {0.825 +
0.387RaL

1/6

[1 + (0.492/Pr)9/16]8/27}
2

(8)

RaL )
g!(Ts - T")L

3

ην
(9)

4870 9 E N VIR O N M E N T A L S CIE N C E & T E C H N O L O G Y / V O L. 38, N O . 18, 2004
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The mole fraction of the adsorbate in the gas phase was determined by Sullivan, et al. 

with Eq 1.14, which combines the DR equation (Eq 1.4) with the Wagner equation. The Wagner 

equation predicts saturation vapor pressure as function of temperature and is similar to the 

Antoine equation (Eq 1.7). 

 

yi =
Pc exp

VPA +VPBx 1.5 +VPcx 3 +VPDx 6
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⎥

 
Eq 1.14 

where Pc is the critical pressure of the adsorbate, VPA, VPB, VPC, VPD are Wagner constants for 

the adsorbate, and x = 1-(T/Tc). 

When the modeled and measured results were compared for methyl ethyl ketone (Tb = 

79.6 °C), methyl propyl ketone (Tb = 101°C), and acetone (Tb = 56.5°C), the modeled 

condensate recovery results agreed with the measured values with mean absolute errors less 

than 6.7% (70). However, Sullivan, et al. also indicated that the assumptions used in their model 

are less valid as the saturation vapor pressure of the adsorbate increases (i.e., as the boiling 

point decreases) and that auxiliary cooling of the desorption effluent “may be needed for 

compounds with saturation vapor pressures greater than 0.2 atm at 20°C” (70). 

1.7. Post-Desorption Condensation 

The organic compounds of interest in this research have boiling points below 40°C, 

which, as noted above, precludes the use of the VaPRRS for their recovery as liquids. In order 

to extend the applicability of the VaPRRS and capture and recover low boiling point compounds 

using ACFC-ESA, post-desorption condensation is required. This can be achieved with a 

combination of pressurization and cooling, assuming the concentration of the desorbed organic 

gas is sufficiently high.  
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To define the threshold concentration for effective liquefaction, the organic compound’s 

concentration must exceed its saturation concentration. The relationship between temperature, 

pressure, and concentration can be determined using Antoine’s equation (Eq 1.7). Dalton’s law 

(Eq 1.15) can be used to determine the partial pressure of the adsorbate in the system. The gas 

stream that is generated during desorption cycles is assumed to be a binary mixture of organic 

compound and N2 that obeys the ideal gas law. 

 Pi = yiPtot  Eq 1.15 

This analysis was conducted for isobutane by Mallouk, et al. assuming a total pressure 

of 10.3 bar gauge (1.03x106 kPa gauge) and resulted in Figure 1.7 (73). The crosses marked A 

and B indicate the minimum threshold concentrations to achieve condensation if the 

compression/cooling system could achieve 20 and 30°C, respectively. A reduction in 

temperature in the cooling module would also reduce the minimum threshold concentration 

needed to achieve condensation.  
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Figure 1.7. Isobutane saturation vapor pressure and required concentration for 
condensation as a function of temperature assuming a total pressure of 10.3 bar 
gauge. Reprinted with permission from (73). Copyright 2010 American Chemical 
Society. 

If the conditions indicated in Figure 1.7 are achieved downstream of the desorption 

module, then liquefaction of the captured isobutane is achieved. A similar analysis can be 

conducted for other compounds so that the compression and cooling conditions can be tailored 

to compounds with boiling points different from isobutane. Again, post-desorption condensation 

using a combination of compression and cooling extends the applicability of the VaPRRS to low 

boiling point compounds that were previously not recoverable using ACFC-ESA.  

1.8. Research Objectives and Significance 

This research had three major objectives surrounding the development and 

characterization of a bench-scale adsorption system that combines an ACFC-ESA and post-

desorption treatment for capturing and recovering low boiling point organic compounds.  

1.8.1. Develop and Test a Bench-Scale ACFC-ESA System with Post-desorption 
Treatment 

The first objective of this research was to develop and test an ACFC-ESA system with 

post-desorption treatment to capture low boiling point organic compounds and recover them as 
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liquids. The bench-scale system was first tested with isobutane as a model compound and 

characterized with mass and energy balances. The necessary operating conditions for 

recovering the isobutane as a liquid were determined with thermodynamic analysis. This is a 

significant advancement over previous technology because it expands the range of compounds 

that can be captured and recovered with ACFC-ESA to those with boiling points below 40°C.  

1.8.2. Evaluate and Characterize ACFC-ESA System with Post-desorption Treatment 

The second objective of this research was to evaluate the bench-scale ACFC-ESA 

system with post-desorption treatment using mass and energy balances for several organic 

compounds that span a range of boiling points (-26.5 to 39.8°C) and have different functional 

groups (e.g., alkanes, fluorocarbons). The compounds of interest in addition to isobutane were 

n-butane, dichloromethane, and R134A, which have boiling points that span 50°C. The 

performance of the system, defined by capture efficiency and energy efficiency, was assessed, 

analyzed as function of adsorbate relative pressure, and compared to existing technologies to 

determine the system’s relative performance.  

The experimental results generated with the bench-scale system were also compared to 

modeled results based on gravimetric adsorption isotherms and the isosteric heats of 

adsorption. These comparisons can then be used to make estimations regarding the 

performance of the bench-scale system with other organic gases and the performance of larger, 

industrially-relevant, scale systems. This contribution is important to complete to more fully 

evaluate the general applicability of this new technology and benchmark its performance with 

existing technologies.  

1.8.3. Conduct Multicomponent Adsorption with Carrier Gas Recirculation for Improved 
System Sustainability 

The final objective of this research was to use the bench-scale ACFC-ESA system to 

capture isobutane from a carrier gas with relative humidities ranging from 5-80% while 
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maintaining the water vapor concentration of the carrier gas. In addition, the clean, humid 

adsorption carrier gas and the N2 used to inert the system during desorption was recirculated 

during operation, which resulted in a reduction in the amount of water vapor and N2 required to 

operate the system once it reaches steady state. In an industrial setting, this new ability to 

recycle the carrier gas stream will represent an improvement in system sustainability and a 

reduction in operating costs because it reduces the need for re-humidification and decreases 

the demand for N2 production to inert the adsorption vessels during desorption, which has been 

shown to account for greater than 50% of the total energy usage in the pilot-scale VaPRRS 

system (71). The operation of the ACFC-ESA system with humid air was characterized by mass 

and energy balances. This component of the research is vital because many of the industrially 

relevant treatable gas streams have relative humidities in the range that could affect ACFC’s 

adsorption capacity for the compounds of interest. Understanding how a treatment system could 

be engineered to process humidified gas streams and conserve N2 consumption will make the 

technology more commercially relevant. 
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2. METHODS 

To achieve the research objectives discussed in the previous section, the following 

equipment and experimental procedures were used. 

2.1. Adsorption Isotherm Measurement and Modeling 

2.1.1. Experimental Apparatus: Cahn 2000 Microbalance 

To measure gravimetric adsorption isotherms for adsorbate/adsorbent pairs a Cahn 

2000 microbalance was used (Figure 2.1).  The microbalance measures changes in mass of the 

adsorbent as it is exposed to select concentrations of the adsorbate.   

 

 

 

 

 

 

 

 

 

 

 

 

The specifics of the operating of the Cahn 2000 microbalance have been previously 

described (50), but are summarized here for clarity: The microbalance was operated in a 

controlled temperature and RH room (24°C, 65% RH). The carrier gas for the system was N2 at 

a flow rate of 300 or 500 sccm that was dried and purified using a Dririte filter. Select 

concentrations of the adsorbate of interest were added to the dried and purified N2 stream. The 

Figure 2.1 Diagram of the Cahn 2000 microbalance used for 
measuring adsorption isotherms. 
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gaseous flows were controlled with mass flow controllers (Tylan) and the liquid dichloromethane 

flow was controlled with a syringe pump (kdScientific, model 100). Before each experiment, the 

balance was zeroed and calibrated. The adsorbent sample of interest was then placed on the 

balance pan and heated to 70°C until its mass was changing less than 10 μg over 30 min. The 

sample was then cooled to ambient temperature and its mass was recorded.  

Once exposure to a given adsorbate concentration was underway, the adsorbent was 

monitored for changes in mass. Once the mass was changing less than 10 μg over 30 min, its 

value was recorded and the next adsorbate concentration was supplied. 

Isotherm experiments were conducted with adsorbate concentrations ranging from 20 to 

500,000 ppmv.  All experiments were conducted at 24°C, except for a series of measurements 

conducted for isobutane and R134A on ACFC-15 that occurred at temperatures of 24, 31.5, 40, 

and 50°C, which were used to determine the isosteric heat of adsorption for isobutane and 

R134A on ACFC-15.  The elevated temperatures were achieved with heating tape wrapped 

around the glass vessel containing the sample. 

2.1.2. Modeling of Measured Adsorption Isotherms 

The isotherm data generated using the Cahn 2000 microbalance was fit to five 

adsorption models: Freundlich, Toth, Yaws, DR, and DQSAR, which are described in detail in 

section 1.3.4. MATLAB’s (version R2013a) least squares nonlinear regression function and 

Microsoft Excel’s (version 2010) Goal Seek function were used to find the model parameters 

that best fit the data based on the average absolute relative difference between the data and the 

model.  

2.1.3. Isosteric Heat of Adsorption Determination 

The isotherms for isobutane and R134A on ACFC-15 were measured at four 

temperatures (25, 31.5, 40, and 50°C) prior to the analysis to determine ΔHs  (Eq 1.10). Each of 

these isotherms was fit to a model using the DR equation (Eq 1.4). The isotherm data were then 
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used to determine ΔHs using the DR parameters for the 31.5°C isotherm. The 31.5°C isotherm 

was chosen because it falls in the middle of the explored temperature range (25 to 50°C). 

2.1.4. In-Pore Liquefaction 

To determine if adsorbate liquefaction is occurring in the pores of the adsorbent, the 

volume of adsorbate adsorbed at high relative pressures was determined from the isotherm data 

fitting.  Using the saturated adsorbed phase mass determined from the DR model fitting of the 

measured data and the bulk liquid density of the adsorbates (Table 1.3), the maximum volume 

of each adsorbate that would adsorb at saturation was determined. This volume was assumed 

to be equivalent to the adsorbent’s available pore volume for that adsorbate (Table 1.2). 

Liquefaction was considered likely if the pore volume available for adsorption determined for a 

given adsorbate/adsorbent pair was within 10% of the measured total pore volume determined 

by N2 adsorption at 77 K.   

2.2. Gas Recovery System Setup and General Operation 

An experimental system was developed to complete proof-of-concept tests that 

demonstrated that it is possible to capture and recover organic gases as liquids using ACFC-

ESA. The Gas Recovery System (GRS), which uses ACFC-ESA consists of a gas generation 

system, two ACFC adsorption vessels with electrothermal regeneration capability, a post-

desorption temperature and pressure control module, and a data acquisition and control system 

(73). Two ACFC adsorption vessels were used so that the system could operate continuously: 

while one vessel is adsorbing, the other is regenerating. The post-desorption temperature and 

pressure control module were implemented so that the desorbed gas stream could be cooled 

and pressurized to reach the condensation requirements detailed in section 1.7. The 

determination of operating conditions for this system are described in section 2.5, below. 
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2.2.1. First Generation Gas Recovery System 

Initial tests of the GRS were conducted using first generation GRS with isobutane as the 

sole adsorbate. This system consisted of two large adsorption vessels with two ACFC cartridges 

per vessel and a primitive pressure and temperature control system, as described below. Each 

adsorption/desorption vessel provided 3.5 L of empty internal volume and held two vertical 

annular cartridges, each with 91.3 grams of ACFC (Kynol ACC5092-15) (Figure 2.2). 

 The ACFC-15 studied here has an N2-BET surface area of 1,335 m2/g, as determined 

with adsorption isotherms for N2 at 77 K (Micromeritics ASAP 2010). The arithmetic mean pore 

width for ACFC-15 is 0.76 nm, and 96.6% of the pore volume is microporous (48). Temperature 

of the ACFC was measured using 0.081 cm diameter Type K thermocouples (Omega, Inc.).   
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Figure 2.2 First generation experimental apparatus with 3.5L adsorption vessels 
each containing two annual ACFC cartridges. Reprinted with permission from 
(73). Copyright 2010 American Chemical Society. 
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During the adsorption cycle, pressurized air flowing at 50 – 100 SLPM passed through a 

high efficiency particulate air filter (HEPA) filter and silica gel to remove particulate matter and 

water vapor, respectively. The air was then combined with the organic gas, which was obtained 

from a pressurized cylinder (Aeropres Corp., 97.8% isobutane, vapor withdrawal) at a controlled 

flow rate. The resulting isobutane relative pressure was 6.7x10-4. All gas flow rates were 

controlled with mass flow controllers (air: Aalborg, model GFC571S; N2 and isobutane: Tylan 

Inc.). The isobutane and carrier gas entered the bottom of one vessel and passed through the 

ACFC cartridges in parallel. The organic gas concentration was monitored downstream of the 

adsorption vessel with a photo-ionization detector (PID, RAE Systems, Inc., PDM-10A). The PID 

was calibrated with select concentrations of isobutane in dry air from 0 to 2,500 ppmv.   

The desorption cycle of the second vessel occurred concurrently with the adsorption 

cycle of the first vessel.  N2 entered the top of the vessel experiencing desorption and then 

passed through the ACFC. N2 is used to create a chemically inert atmosphere so that 

combustion cannot take place during regeneration when electricity, flammable concentrations of 

organic gases, and high temperatures are all present. ACFC heating required control of the 

voltage applied to the cloth with a silicon controlled rectifier (SCR, Robicon, Model 440 102.10). 

The ACFC was heated until it reached 200°C, at which point heating was discontinued. 

Isobutane concentration in the desorption gas stream was measured with a flame ionization 

detector (FID, MSA Inc., Series 8800).  The FID was calibrated using mixtures of isobutane (0 – 

100% by volume) and N2.  After the isobutane was desorbed from the ACFC it entered a 

compression module consisting of a compressor (Air Dimensions Inc., R272-BT-EA1) capable 

of producing pressures up to 13.1 bar gauge (190 psig), a custom copper tubing heat exchanger 

(outer diameter 1.59 cm, inner diameter 1.38 cm, length 3.4 m), and a polycarbonate pressure 

vessel (1 L, > 10 bar gauge pressure rating).  Pressure was monitored with a pressure 
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transducer (Dwyer, IS626-12-GH-P1-E1-S1). Gases exiting the pressure vessel were exhausted 

to the hood and not recycled back into the adsorption system. 

2.2.2. Second Generation Gas Recovery System 

Changes were made to the first generation GRS to minimize the internal volume of the 

adsorption vessels and improve the temperature and pressure control system for the desorption 

gas stream. These changes would maximize the concentration of the desorbed organic gas and 

shift the system equilibrium towards a higher liquid fraction. Experiments were conducted with 

isobutane to determine the most cost effective heating temperature during desorption. The 

updated adsorption/desorption vessels (Figure 2.3) each consisted of a custom Pyrex® cylinder 

(height = 38 cm) and conical base (height = 7 cm) with a Teflon® top plate (height = 1.9 cm). 
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 Each vessel provided 1.43 L of empty internal volume, which represents a 40% 

reduction in empty internal volume compared to the first generation adsorption vessels. Each 

second generation adsorption vessel held a vertical annular cartridge with 115 g of ACFC (Kynol 

ACC5092-15).  Each ACFC cartridge had 20 layers of ACFC and was 25 cm from top to bottom 

with a 5 cm outer diameter and 2 cm inner diameter.  Temperature of the ACFC was measured 

using 0.16 cm (0.062 in) diameter Type K thermocouples (Omega, Inc.). To aid in heat removal 

from the adsorption vessels, small electric fans (23 cm diameter) were aimed at the vertical 

midpoint of each adsorption vessel and ran on high for the duration of the experiments. 

Adsorption Gas 
 Inlet 

Desorption Gas Inlet (N2) / 
Adsorption Gas Outlet 

Desorption Gas Outlet 

 ACFC 
Annular Cartridge 
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Figure 2.3 Adsorption/desorption vessel with one annular ACFC cartridge. 
Solid and dashed arrows represent the flow path for adsorption and 
desorption cycles, respectively. 
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The desorption gas entered the same pressurization system as in the first generation 

system, however now the pressure vessel was contained in a polycarbonate vessel that 

contained 16 L of a 70/30 glycol/water mixture that maintained the internal temperature of the 

pressure vessel at ≤ 0°C. The gases exiting the pressure vessel were recycled back to the 

adsorption stream, resulting in only one outlet for isobutane (liquefaction) (Figure 2.4). 

 

Figure 2.4 Second generation experimental apparatus with smaller adsorption 
vessels and recycling of the gases exiting the desorption system. Arrangement of 
the ACFC within the vessel can be viewed in Figure 2.3. Reprinted with 
permission from (75). Copyright 2013 American Chemical Society. 

  
Experimental conditions were the same as those in the first generation GRS with the 

modification that the temperature of the ACFC during desorption was controlled to 150, 175, or 

200°C. 
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2.2.3. Third Generation Gas Recovery System 

Further modifications were made to the GRS to improve the performance of the post-

desorption pressure and temperature control system through a series of controlled experiments 

that varied the ACFC heating and desorbed gas compression time of the system. These 

experiments were conducted on this updated system using isobutane, n-butane, R134A, and 

dichloromethane (DCM). However, the experiments with DCM were discontinued after it was 

discovered that the DCM was destroying valve seals and other components of the GRS. During 

the adsorption cycle, pressurized house-air passed through a pretreatment system that 

consisted of a HEPA filter, silica gel, and ACFC to remove particulate matter, water vapor, and 

organic compounds, respectively. The air flow rate ranged from 10 – 50 SLPM  depending on 

the adsorbate and was controlled with a mass flow controller (Aalborg, model GFC571S). This is 

equivalent to a gas velocity through the outer cross section of the cartridge of 4.2x10-3 – 2.1x10-2 

m/s at actual conditions. The air was then combined with the organic gas, which was obtained 

from a pressurized cylinder (purities as follows: n-butane: 95%2 (74), isobutane: 98.3%, R134A: 

99.5%) at a controlled flow rate.  All gas flow rates were controlled with mass flow controllers (n-

butane/isobutane/R134A: Alicat Scientific, MC-200SCCM- D5/M; N2: Tylan Inc., FC-280).  The 

organic gas concentration was set to a given relative pressure (see section 2.6). The organic 

gas and carrier gas entered the side of one vessel and passed through the ACFC cartridge from 

the outside to the inside of the cartridge. The empty bed contact time determined from the 

envelope volume of the ACFC and the actual gas flow rate ranged from 0.15-0.78 s. The 

organic gas concentration was monitored downstream of the adsorption vessel with either a PID 

(RAE Systems, Inc., PDM-10A) or FID (MSA/Baseline Inc., series 8800). The PID and FID were 

                                                

2 This particular blend of n-butane was used because it represented the n-butane being used by the 
project sponsor. 
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calibrated using multi-point calibration with the relevant compounds used to characterize the 

GRS. The gas streams used in the PID and FID calibrations were generated from the same gas 

cylinders used during GRS operation and the flow rates were controlled using mass flow 

controllers. 

The desorption cycle of one vessel occurred concurrently with the adsorption cycle of the 

other vessel and consisted of six steps, with duration of each cycle provided after the 

description of each cycle: 

1. N2 entered the top of the vessel experiencing desorption and then passed through the 

ACFC from the inside to the outside of the cartridge flowing at 3.5 SLPM (gas velocity 

through inner cross sectional area of the cartridge = 3.9x10-3 m/s at actual conditions). 

This was done to clear oxygen from the vessel prior to heating.  The flow rate was 

chosen to clear greater than 2 column volumes in one minute, which earlier tests 

showed resulted in a 90% reduction in oxygen concentration in the vessel. Note that 

the limiting oxygen concentration (LOC, concentration of oxygen below which 

combustion is not possible, independent of the concentration of fuel) is 12% (14), 

which would require a 42% reduction in atmospheric oxygen concentration. The 90% 

reduction in oxygen concentration allows for a safety factor to prevent explosions in 

the system.  (1 min) 

2. The N2 flow rate was reduced to 0.5 SLPM (gas velocity through inner cross sectional 

area of the cartridge = 5.3x10-4 m/s) to minimize the amount of carrier gas being used 

during desorption. This change allows for high concentrations of organic gas to be 

generated during desorption. The ACFC began heating to a set point of 150°C. The 

value of 150°C was chosen based on previous experiments that examined the energy 

used by the system at 150, 175, and 200 °C. An ACFC temperature of 150°C was able 

to regenerate the carbon sufficiently for the lowest energy cost (75). ACFC heating 
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required controlling the voltage applied to the cloth with an SCR (Robicon, Model 440 

102.10). As the organic gas was desorbed from the ACFC in this step, it was recycled 

to the adsorbing vessel. (1 min) 

3. ACFC heating continued and the desorbing organic gas entered a compression 

module consisting of a compressor (Air Dimensions, Inc., R272-BT-EA1) capable of 

producing pressures up to 13.1 bar gauge (190 psig) and a custom glass pressure 

vessel (0.5 L for isobutane at a relative pressure of 6.7x10-4 and 0.1 L for n-butane, 

R134A, and higher relative pressures of isobutane).  The pressure vessel was 

contained in a polycarbonate vessel that contained 16 L of a 70/30 glycol/water 

mixture that maintained the internal temperature of the pressure vessel at ≤ 0°C. 

Pressure in the pressure vessel was controlled at 10.3 bar gauge (150 psig), with 

exhaust from the pressure vessel being returned to the adsorbing vessel. This 

pressure was chosen to maintain consistency with experiments using the first 

generation GRS (73). Total pressure was monitored with a pressure transducer 

(Dwyer, IS626-12-GH-P1-E1-S1) and temperature was measured with a 0.16 cm 

(0.062 in) diameter type K thermocouple (Omega, Inc.). (2 – 7 min) 

4. The N2 flow rate was increased to 3.5 SLPM and the ACFC heating continued with the 

desorbed gas being recycled to the adsorbing vessel. This step cleared the ACFC of 

desorbing organic gas prior to turning off the voltage applied to the ACFC (0.5 min) 

5. Heating was stopped and the vessel was exposed to 3.5 SLPM of N2. This was done 

to clear any remaining gas-phase organic compound out of the desorbing vessel. (2 

min) 

6. The N2 flow rate was reduced to 0.5 SLPM and once the temperature of the ACFC 

reached 60°C, N2 flow to that vessel was discontinued. Earlier experiments showed 
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that if the desorbing vessel was switched to adsorption before reaching 60°C, the 

initial adsorption of adsorbate would be inferior due to premature breakthrough.  

The desorption process time (steps 1-5) ranged from 6.5 to 11.5 min depending on the 

experiment. During step 3 when the compression module was used, the pressure in the 

desorption system was maintained at 1.05 bar absolute (15.2 psia) by controlling the flow 

through the compressor via a variable area solenoid valve (AscoValve, SD8202G013V). This 

pressure maintenance was done to ensure that the desorbing vessel was slightly pressurized to 

prevent atmospheric oxygen from entering the system. The amount of liquid organic compound 

collected was determined by visually noting the liquid level in the pressure vessel.  

2.2.4. Fourth Generation Gas Recovery System 

Several modifications were made to the third generation GRS to allow for RH control and 

recycling of the carrier gas stream during operation. These modifications allowed testing with 

humid carrier gas streams and helped exhibit proof of concept for the carrier gas recycling. 

Figure 2.5 below, shows the flow schematic for the fourth generation GRS. Major additions 

include two additional pressure sensors (Dwyer IS626-00-GH-P1-E1-S1 and Omega PX309-

030AI), two RH sensors (Vaisala HUMICAP HMT363), an oxygen sensor (Alpha Omega 

Instruments, 2000-B115BTX), an FID (MSA/Baseline Inc. series 8800), a recirculation blower 

(Air Dimensions H302-FT-AA1), and a custom humidification system. The humidification system 

consisted of an annular humidifier which controls the flow of water vapor through a 19.05 mm ID 

tubular Gore Tex® membrane (76). An annular stainless steel mesh supported the Gore Tex® 

membrane on the carrier gas flow side. The RH is controlled with a PID controller (Watlow, 

955A), which modulates the current supply to heating tape surrounding the humidifier. The more 

current flowing through the heating tape, the more heat is transferred to water circulating around 

the membrane, which leads to more water diffusion through the membrane and a higher RH in 

the carrier gas. Due to the addition of heat to the carrier gas from the humidification system and 
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an increase in water vapor in the desorption gas stream due to the humidity in the carrier gas, a 

cooling system was employed to control the temperature of the carrier gas and collect desorbed 

water vapor. The cooling system consisted of polypropylene tubing wrapped around the 

adsorption vessels and a glass Erlenmeyer flask water collection vessel. The tubing had a 70/30 

glycol/water mixture flowing through it that was chilled using a water bath/circulator (Thermo 

Neslab RTE-110). This cooling system allowed for separation of water vapor and the desorption 

gas stream and prevented 99% of adsorbed water vapor from entering the compressor. 

Another modification for the carrier gas recirculation was to implement an outlet for 

system pressure maintenance (“purge”) and a makeup supply of house air to ensure that the 

system had 40 SLPM air flowing during adsorption. The total makeup air supplied to the system 

was 2.65 SLPM to make up the air lost in the purge and through the O2 sensor and FID. 

 

Figure 2.5 Fourth generation experimental apparatus with modifications for RH 
control and recycle of carrier gas stream. Solid and dashed lines represent the 
flow path for adsorption and desorption cycles, respectively. 
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The general operation of the fourth generation GRS is similar to that of the third 

generation GRS with isobutane being the primary adsorbate of interest (with water being a 

competitive adsorbate) and the time for Step 3, above, being 4 min for a total regeneration time 

(Steps 1-5) of 6.5 min.  

2.2.5. Automation Software and Desorption Gas Handling 

All generations of the GRS were fully automated (no human intervention required when 

system was operating once startup is complete). The control system consisted of National 

Instruments Fieldpoint™ hardware connected to a personal computer with LabView™ 6.1 

software (77). The control system monitored and recorded values for gas concentrations and 

temperatures, ACFC temperatures, pressure, RMS voltage, and RMS current. The LabViewTM 

program maintained a user-defined ACFC temperature during desorption by controlling the 

power applied to the ACFC with a proportional-integral-derivative (P-I-D) delayed feedback 

controller (77). For these experiments, the P-I-D constants, which are user-tunable, were: P = 

10, I = 10-5, D = 0.01. The LabViewTM program also determined when the ACFC that was 

undergoing an adsorption cycle was saturated based on user-defined parameters and 

automatically switched that vessel to a desorption cycle while simultaneously beginning the 

reciprocal adsorption cycle. This ensured that the organic gas/carrier gas was treated 

continuously by adsorption. Additionally, for the second through fourth generation GRSs, the 

program was designed to ensure that all gas streams were recycled back to the adsorbing 

vessel except for the treated carrier gas. The recycled streams included the fractions of the 

desorption stream that were not compressed/cooled and the gas stream generated at the outlet 

of the temperature and pressure control module as the pressure vessel’s pressure was 

maintained. As is described above in section 2.2.3, not all of the desorbed gas was 

compressed/cooled because when the ACFC is first heated, the concentration of adsorbate that 
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was produced was low (average of less than 10% by volume based on modeling results) and 

would negatively impact the energy and mass collection efficiencies of the liquefaction. A total of 

1.5 min (Steps 2 and 4) of the 3.5-9.5 min heating time involved desorbed gas bypassing the 

compression/cooling system.  

2.2.6. Risks Associated with GRS Operation 

There are several risks associated with operating the GRS, particularly when 

combustible compounds are involved. For example, there are times during desorption when the 

isobutane concentration is within its flammability limits (1.8 – 8.5% by volume) (34). If air were 

present during these times, due to leaks or lack of N2 supply, a fire could ignite or the ACFC 

could burn. ACFC burning appears to be one cause of adsorption capacity degradation. An 

additional possible source of ACFC burning, besides the ignition of isobutane during desorption, 

is when the ACFC itself experiences elevated temperatures in the presence of O2. Other 

researchers have found that ACFC degradation occurs due to thermal decomposition of 

adsorbates at elevated temperatures ( > 288°C) even in the presence of N2 (78). Other risks 

include high-pressure operations  in select parts of the GRS, which could be dangerous if fittings 

were not secured properly, and the presence of high voltage and current during regeneration 

operations for pilot-scale and full-scale operations. These risks can be minimized with proper 

personnel training and system controls to prevent leaks, over-pressurization, and exposure to 

high voltage and current. 

2.2.7. Engineering Challenges Related to GRS Development 

Many engineering challenges were overcome in the development of the GRS from the 

starting point of the VaPRRS. These challenges included achieving the required conditions for 

condensation downstream of the desorption process and controlling the pressure with the 

adsorption vessels to prevent air infiltration among others.  



 

 46 

In particular, designing the compression, cooling, and storage system for the desorbed 

gas stream required several iterations and constant adjustments. As discussed above, the initial 

system consisted of over 1.5 L of internal volume between the tubing leading out of the 

compressor and the pressure vessel. Considering that the N2 flow through the system during 

desorption was only 0.5 LPM and the total volume of liquid isobutane that could be recovered 

was 12 mL per desorption cycle, this initial volume was much larger than appropriate. 

Subsequently, a new copper tubing heat exchanger and pressure vessel were designed and 

implemented which reduced the volume of the components downstream of the desorption 

process to 0.55 L. This modification ensured that a larger fraction of the desorbed gas made it 

into the chilled pressure vessel and also made it easier for the operator to read the isobutane 

liquid level within the pressure vessel. Due to the high pressure conditions experienced by the 

compression and cooling system, leaks were a common occurrence and the system needed to 

be checked for pressure maintenance regularly. In addition, the back-flow prevention valve that 

was integrated into the compressor failed and required the implementation of an external back-

flow prevention valve, which also had a tendency to fail and needed to be replaced regularly. 

As with the high pressure maintenance in the compression and cooling system, the 

temperature within the pressure vessel also had to be carefully monitored. In order to minimize 

the temperature, a custom acrylic container was built to allow the pressure vessel and 

surrounding tubing to be submerged in a glycol/water mixture that was continuously stirred with 

a magnetic stir bar. The glycol/water mixture was chilled to between -10 and 0°C using a FTS 

Systems FC100 Immersion Cooler. When the immersion cooler was non-operational, dry ice 

was used to chill the glycol/water mixture. 

Another major modification to the GRS that was implemented to improve performance 

was a pressure maintenance system for the adsorption vessels during desorption. Several 

years after the start of this research, it was discovered that that ACFC was burning during some 
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desorption cycles. This was a result of the adsorption vessels experiencing vacuum during 

desorption due to the operation of the compressor downstream of the desorption process. The 

vessels had begun failing to prevent air infiltration under vacuum conditions, so air was 

infiltrating the vessels during desorption and causing the ACFC to burn. The solution to this 

problem was several-fold. First, gaskets and other sealants were added to the adsorption 

vessels to seal them as tightly as possible against vacuum. Next, a variable-area solenoid valve 

was added to the inlet of the compressor so that the flow of gas into the compressor could be 

controlled based on the pressure in the desorbing vessel. Experiments were conducted to 

determine what set-point pressure to use for the compressor flow control, and 15.2 psia was 

found to be a reasonable pressure. After the implementation of this pressure maintenance 

system, the ACFC stopped degrading. 

2.3. Performance Metrics for the Gas Recovery System 

Several performance metrics were used to compare different operating conditions, 

adsorbates, and system configurations for the GRS. These include capture efficiency, energy 

usage, effective adsorption capacity, and mass distribution in the GRS.  

2.3.1. Capture Efficiency 

Figure 2.6 represents the boundaries set for determining material balances for the GRS.  
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Figure 2.6 Experimental apparatus (2nd generation). The grey rounded border 
represents the system boundaries for mass balances for the GRS. 
 

Capture efficiency describes the amount of captured adsorbate relative to the amount 

supplied to the vessel for a particular adsorption cycle (Eq. 2.1). To determine the capture 

efficiency, the total mass adsorbed by the GRS is required. The mass of any adsorbate 

adsorbed at any time, ti, during adsorption is Mti (Eq 2.2) (70), where the subscript i represents 

the percent of the inlet adsorbate concentration reached by the outlet concentration (e.g., t5 is 

the time at which the outlet concentration has reached 5% of the inlet concentration). Once the 

amount of adsorbate adsorbed is determined, it is compared to the amount of adsorbate that 

was supplied to the GRS to find the capture efficiency of the system. Breakthrough time and 

mass of adsorbed adsorbate were determined when the organic gas concentration at the 

vessel’s outlet reached 5% of the inlet concentration, corresponding to t5 and Mt5, respectively.   

 
Capture Efficiency=

Mt ,ads

MwQgyintads( ) RT x100%  Eq 2.1 
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where Mt,ads  = mass adsorbed when ti = tads (Eq 2.2), tads = duration of adsorption cycle, MW = 

molecular weight of the adsorbate, Qg = total volumetric flow rate of the gas, R = ideal gas law 

constant, T = absolute temperature, yin = concentration of the adsorbate in the inlet gas stream 

(mole fraction).  

 
Mti =

PtotMwQg

RT
⎡
⎣⎢

⎤
⎦⎥

yin
1− yin

− yout
1− yout

⎛
⎝⎜

⎞
⎠⎟
dt

t=0

t=ti∫  Eq 2.2 

     

where Ptot = 1 atm, yout = concentration of the adsorbate in the outlet gas stream (mole fraction). 

The minimum acceptable capture efficiency is set by emission permits and will vary by 

process. As an example, the emission requirement for isobutane for the packaging 

manufacturing industry is 98% destruction of organic gases in thermal oxidizers (3).  

2.3.2. Materials Balance 

2.3.2.1. Water 

The amount of H2O entering and leaving the GRS can be calculated from RH 

measurements at the inlet and outlet of the adsorption vessels, total gas flows of the system, 

and the amount of water recovered downstream of the vessels during desorption. The mass 

flow rate of water entering or leaving the system,  !mwater , is found from Eq 2.3: 

  !mwater =Qtotcwater  Eq 2.3 

where cwater is the concentration of water vapor in the gas phase (g/L) in the inlet or outlet gas 

stream: 

 
cwater =

MwPwater
RT

 Eq 2.4 

where Pwater is the partial pressure of water in the gas phase (bar): 

 Pwater = Pwater .sat RH( )  Eq 2.5 
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where RH is the relative humidity (fraction) and Pwater,sat is the saturation pressure of water in the 

gas phase (bar): 

 
Pwater ,sat = 10

A− B
T −C

⎛
⎝⎜

⎞
⎠⎟  Eq 2.6 

And where A, B, and C are Antoine equation constants and T is temperature (K). For these 

calculations A = 5.40221, B = 1838.675, and C = -31.373 (79). 

The total mass water, mwater, that enters or leaves the adsorption vessels during a cycling 

experiment can be found from Eq 2.7. Note that this equation is applicable to both the inlet and 

outlet water vapor. 

 

 
mwater = !mwater

i=0

i=end

∑ ti+1 − ti( )  Eq 2.7 

2.3.2.2. Nitrogen 

The amount of N2 used during non-recirculation mode experiments was calculated from 

the set-point flow rates of the mass flow controllers that were used during the desorption cycle 

and total desorption cycle time (Eq 2.8).  The total amount of N2 used in each cycle was 

dependent on how long the ACFC took to cool from its set-point temperature to its temperature 

swing condition of 60°C. The amount of N2 used was then normalized by the number of moles of 

isobutane recovered during the experiment.  

 MN2
=QN2,lowtlow +QN2,highthigh  Eq 2.8 

where MN2 is the total mass of N2 used during desorption, QN2,low and QN2,high are the low and 

high flow rate settings for N2 during desorption, respectively, and tlow and thigh are the duration of 

the low and high N2 flow rates during desorption, respectively. 

2.3.3. Energy Usage 

There are four major components in the total energy used by the experimental system. 

These are energy to heat the ACFC and adsorbed adsorbates, energy to compress the gas 
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stream after desorption, the energy to humidify the adsorption gas stream and dehumidify the 

desorption gas stream, and the energy to produce N2 to inert the GRS during desorption. The 

energy to produce N2 has been shown to be a significant portion (53.9%) of total energy usage 

in an industrial setting with the pilot scale VaPRRS unit (71). The energy to overcome the 

pressure drop in the system and the energy to cool the desorbed gas are not considered in this 

analysis because they were calculated to be less than 5% of the total energy used by the 

system (see Appendix).  

2.3.3.1. Energy to Heat the ACFC 

 The energy required to heat the ACFC, adsorbate, carrier gas, and fittings during 

desorption, Eheating is calculated using Eq 2.9 (42, 70, 77).  

 
( )1

1
−

=

= −∑
desorpt

heating RMS RMS i i
i

E I V t t  Eq 2.9 

where IRMS and VRMS are the RMS current and voltage for the power supply to regenerate the 

ACFC, respectively, and tdesorp is the duration of the regeneration process.  

2.3.3.2. Energy to Compress the Gas Stream 

The energy required to compress the gas stream is determined directly from the 

electricity used by the compressor. The current consumed by the compressor was continuously 

monitored with an RMS AC current transducer (Omega OM9-31382AHD1). The voltage used is 

assumed to be a constant 120V. An equation analogous to Eq 2.9 was used to determine the 

total energy used by the compressor during operation. 

For the first through third GRS generations, only the heating and compression energy 

were analyzed. For the fourth generation GRS heating, compression, N2 production, and water 

handling energies were all considered. The N2 production and water handling energies were not 

considered in the first through third GRS generations because the systems were operating with 

dry adsorption air and the N2 was considered an available utility. With the introduction of water 



 

 52 

vapor and the ability to recirculate the adsorption gas that occurred with the fourth generation 

GRS, the N2 production and water handling energies were recognized to be important 

components to consider.   

2.3.3.3. Energy to Manage Water Vapor 

For the fourth generation GRS, the energy required to manage water vapor, Ewater, does 

need to be considered. Ewater incorporates two terms: the energy required to humidify the 

adsorption gas (first term on the right hand side of Eq 2.10) and the energy to remove the water 

vapor from the desorbed gas stream by cooling and condensing the water vapor (second term 

on the right hand side of Eq 2.10).  

 Ewater =mwater ,adsΔhvap,25°C +

                   mwater ,des cp,water ,vapΔT 150−100°C( ) + Δhvap,100°C +cp,water ,liqΔT 100−20°C( )( )  Eq 
2.10 

where mwater,ads is the mass of water required to humidify the adsorption gas (Eq 2.7) and 

mwater,des is the mass of water collected, cp is the heat capacity, and Δhvap,T is the enthalpy of 

vaporization at T (Table 2.1). 

Table 2.1 Thermal properties of water. 
 

 

2.3.3.4. Energy to Produce N2 

The energy to produce N2, EN2,Prod is determined based on industry reports of the cost 

required to produce N2 at an industrial scale (80). The energy and operation cost to produce N2 

at 99.5% purity ranges from $0.03 to $0.05 /sm3
 N2 (standard m3). A worst case scenario would 

Quantity Value (14) 

Δhvap, 25C 2440 kJ/g 

Δhvap, 100C 2260 kJ/g 

cp,water,vap 1.86 J/g-K 

cp,water,liq 4.187 J/g-K 
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assume that this entire cost is energy cost and that the cost to produce energy is the lowest 

industrial cost in the U.S. ($0.0653/kWh in July 2014)(81). Using these pieces of information, the 

energy to produce N2 at 99.5% purity at an industrial scale is 0.766 kWh/sm3 N2, or 2.7 kJ/sL N2. 

To determine the contribution of the energy to supply N2 to the GRS, EN2, to the total 

energy used by the system, the normalized N2 amount, MN2/niso was multiplied by EN2,Prod. For 

recycle experiments, the energy to produce N2 was determined as described here and that 

value was then multiplied by the ratio of the average oxygen concentration downstream of the 

adsorption vessels to the atmospheric oxygen concentration (21%) to account for the reduction 

in N2 required as a result of recirculation (Eq 2.11). 

 
EN2

=
yO2,GRS

yO2,atm

MN2

niso
EN2Prod

⎛
⎝⎜

⎞
⎠⎟

 Eq 2.11 

where yO2,GRS is the average concentration of O2 in the GRS during the cycling experiment, 

yO2,atm is the concentration of oxygen in the atmosphere (assumed to be 21%) and niso is the 

number of moles of isobutane recovered during the experiment.  

2.3.3.5. 4th Generation GRS Total Energy 

For the 4th generation GRS, the total energy used by the system (Esys) is the sum of the 

electrothermal, compression, and N2 production energy (Eq 2.12) for experiments with low 

relative humidity adsorption streams and includes the energy to cool and liquefy water for high 

relative humidity adsorption streams. The energy per liquid mol recovered (Etot) was determined 

by normalizing the total energy used by that experiment to the total moles of liquid recovered 

during that experiment. 

 Esys = Eheating +Ecompress +EN2
+Ewater  Eq 2.12 
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2.3.4. Effective Adsorption Capacity 

To determine the effective adsorption capacity of the ACFC (qeffective), the total mass of 

adsorbate captured during operation (Eq 2.2) is divided by the number of adsorption cycles and 

the mass of the ACFC at steady-state operating conditions to determine the actual adsorption 

capacity (82). The maximum theoretical adsorption capacity of the ACFC (qequilibrium) is 

determined with adsorption isotherms (83).  

2.3.5. Mass Distribution of Adsorbate in the GRS 

The mass distribution of adsorbate in the GRS was determined at the conclusion of each 

cycling experiment (i.e., adsorption, regeneration and cooling occurring multiple times over 

several hours). Three possible locations of the adsorbate were considered: liquid phase (Mliq), 

vapor phase (Mvap) in equilibrium with the liquid phase within the pressure vessel, and mass 

adsorbed to the ACFC (Mt,ads). The amount in the liquid phase was determined by measuring 

the volume of liquid recovered and multiplying it by the bulk liquid density (Table 1.3) of the 

adsorbate. The amount in the vapor phase was determined by considering the volume available 

for the vapor phase above the liquid phase in the pressure vessel and assuming that the 

adsorbate concentration in the volume was equivalent to the saturation partial pressure divided 

by the total pressure in the pressure vessel. The amount in the adsorbed phase was determined 

by difference (Eq 2.13) (42). The adsorbed phase includes adsorbate that is liquefied in the 

pores of the ACFC. 

 Mt,ads = Mtot – Mliq – Mvap   Eq 2.13 

where Mtot = total mass supplied to the system during the experiment. 

2.4. Adsorption Characterization from Breakthrough Curves 

2.4.1. Determination of ACFC Adsorption Capacity for Isobutane 

The adsorption capacity of ACFC was determined with individual breakthrough curves 

and during automated adsorption/desorption cycling, without the recycle from the temperature 
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and pressure control module. For individual breakthrough curves, the ACFC was initially heated 

to 200°C in N2 at ambient pressure for 10 min to desorb previously-adsorbed compounds. After 

cooling the ACFC, a feed gas was generated at 100 SLPM or 50 SLPM with an isobutane 

concentration of 2,000 ppmv. The inlet gas concentration was stable before passing the gas 

through the vessels containing the ACFC. The isobutane concentration at the outlet of the 

vessel was monitored until it returned to 2,000 ppmv to determine the ACFC’s adsorption 

capacity.  

The mass of isobutane adsorbed at any time, ti, during adsorption is Mti (Eq 2.2). 

Breakthrough is defined to occur when the isobutane concentration at the vessel’s outlet 

reached 10% of the inlet concentration, corresponding to t10 and Mt10. The adsorption capacity of 

the ACFC is then determined by dividing M10 by the total ACFC mass (82). 

2.4.2. Adsorption Properties from Breakthrough Curves 

Breakthrough curves were also used to evaluate the throughput ratio (TPR), length of 

unused bed (LUB), and fractional LUB (fLUB). TPR characterizes the slope of the breakthrough 

curve (Eq 2.14). As TPR approaches unity, the time to develop the mass transfer zone becomes 

negligible compared to the adsorbent’s saturation time. LUB is a measure of the unused length 

of bed at 5% breakthrough (Eq 2.15) and fLUB is the fractional unused length of bed at 5% 

breakthrough normalized to the total length of the bed (i.e., LUB/L) where L is length of 

adsorbent perpendicular to the adsorbate flow (27). For the characterizations performed here, 

the adsorbent depth (i.e., thickness of the annular cartridge) parallel to the gas flow is 1.5 cm. 

 
TPR = t5

t50
 

Eq 2.14 

where t5 = the time at which the breakthrough curve has reached 5% breakthrough and t50 = the 

time at which the breakthrough curve has reached 50% breakthrough. 
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LUB = 1−

Mt5

Mtsat

 
  Eq 2.15 

where Mt5 = mass of adsorbate adsorbed at time t5, Mt,sat = mass of adsorbate adsorbed at time 

tsat, tsat = time at which the breakthrough curve has reached 100% breakthrough. 

As the value of fLUB approaches 0, the amount of ACFC that is being utilized during 

adsorption approaches 100%, which means that the ACFC is being used to its full potential. 

Achieving fLUB and TPR values less than 0.3 and greater than 0.7, respectively, are guidelines 

used to evaluate if the vessels were designed appropriately for the inlet gas stream (73).  

2.5. Determination of Desorption and Post-Desorption Operating Conditions 

2.5.1. Effect of Regeneration Temperature on Energy Efficiency 

As previously mentioned, experiments were performed at several ACFC regeneration 

temperatures, with all other variables held constant (Table 2.2), to assess the effects of ACFC 

temperature on the performance metrics of interest. These experiments were conducted using 

the second generation GRS and in triplicate. The energy used by the GRS to capture and 

recover isobutane was determined based on the total isobutane captured rather than the 

amount of isobutane liquefied.  

Table 2.2. Operating parameters for the bench-scale system. 
System Component Parameter Value 
Adsorption cycle Air flow rate (SLPM) 40 
 Isobutane relative pressure 6.7x10-4 

 Breakthrough condition (% of inlet 
concentration by volume) (condition at 
which the adsorption vessel is switched to 
the desorbing vessel) 

5 

Desorption cycle N2 low flow rate (SLPM) 0.5 
 N2 high flow rate (SLPM) 3.5 
 Variac setting (%) 50 
 ACFC temperature (oC) 150, 175, 

200 
 Low N2 flow heat time (min) 5 
 High N2 flow heat time (min) 2 
 High N2 flow without heat time (min) 1 
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Table 2.2 (cont.). 

 ACFC temperature swing condition (oC) 60 
Compression/Cooling Maximum pressure (psig / bar-gauge) 150 / 10.3 
 Pressure vessel temperature (oC) < 0 

 

2.5.2. Effect of Heating/Compression Time on Energy Requirements and Mass 
Distribution 

Tests using varying heating and compression times were conducted using isobutane to 

determine what heating and compression times to use for all three adsorbates to be able to 

compare system performance across their relative pressures. All of the experiments used 40 

SLPM air and 2,000 ppmv isobutane (Pi/Pi,s = 6.7x10-4) as the adsorbing gas and the total 

heating and compression time (Step 3 from section 2.2.3, above) varied from 2 – 7 min, with a 

total heating time (steps 2-4) of 3.5 – 8.5 min.  The adsorption and desorption cycling was 

allowed to continue for 5-8 hours so that operational steady-state equilibrium conditions were 

reached. Each experiment was run in triplicate. 

The effect of heating and compression time on the process performance was examined 

because a need to balance the amount of heating and compression that is used to recover the 

adsorbate and the amount of adsorbate recovered is expected. For example, supplying too little 

heat to the ACFC during regeneration could result in much of the adsorbate being left in the 

adsorbed phase leading to a reduction in the amount of adsorbate available for liquefaction. 

This is contrasted by operating the heating/compression module (step 3, above) for too long, 

which has diminishing returns, as there is less and less adsorbed compound to desorb and 

compress.   

2.6. Gas Recovery System Performance: Controlled Adsorbate Relative Pressure 

Once the duration of step 3 during the desorption process that resulted in the lowest 

energy per mole liquid recovered for isobutane (Pi/Pi,s = 6.7x10-4) was determined, the GRS was 

tested with varying relative pressures of isobutane, n-butane, and R134A ranging from 8.3x10-5 



 

 58 

to 3.4x10-3
 (see Table 2.3). The duration of step 3 for all of these experiments was 4 min (total 

heating time in steps 2-4 was 5.5 min), which is justified in the results section 3.3. At a 

minimum, each experiment was conducted in duplicate and lasted for 5 hours to provide greater 

than 5 complete adsorption, regeneration, and cooling cycles to achieve steady-state conditions. 

The system was considered to be at steady state after the first two adsorption cycles were 

complete. The first two adsorption cycles were generally 10-50% longer than the average of the 

remaining adsorption cycles due to less adsorbate being recycled to the adsorbing vessel during 

regeneration and compression. The length of later adsorption cycles generally had a standard 

deviation of less than 5%. The data analysis was only conducted on adsorption/desorption 

cycles considered to be at steady state.  

Table 2.3 Adsorbate relative pressures and carrier gas flow rates tested using the GRS.  

Adsorbate Relative Pressure in 
Adsorption Stream 

Carrier Gas Flow Rate 
(SLPM) 

R134A 8.3x10-5 10 

Isobutane 6.7x10-4 40 

Isobutane 1.6x10-3 20 

Isobutane 3.4x10-3 10 

n-butane 6.7x10-4 50 

n-butane 3.4x10-3 15 

 

2.7. Gas Recovery System Performance for Multicomponent Adsorption and Carrier 
Gas Recycling  

The gas recovery system (3rd generation) was modified as described in section 2.2.4 to 

examine the effects of introducing water vapor into the adsorption gas stream and recycling the 

carrier gas during system operation. Experiments with isobutane (relative pressure 6.7x10-4) 

and 70-80% RH were conducted in the same manner described in section 2.6 prior to 

introducing the recycle of the carrier gas stream. Subsequently, the GRS was tested with 
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isobutane (relative pressure 6.7x10-4) and 30% RH or 75% RH and carrier gas recycle. High and 

low RHs were chosen because they fall on the relatively flat portion of the type V isotherm for 

water on ACFC (Figure 1.5). The middle range of RHs was not tested because small 

perturbations in inlet relative humidity have a large effect on the adsorption capacity of ACFC for 

water vapor, which would make it difficult to control the system operation. 

2.8. Modeling to Describe Isobutane Concentration During Desorption – MATLAB® 

To better understand the best operating parameters for the post-desorption treatment 

system, the desorption cycle was modeled using energy and mass balances. Of particular 

interest was the adsorbate concentration generated during desorption, which directly affects the 

performance of the condensation apparatus. The higher this concentration, the easier it is to 

condense the desorbed adsorbate (see section 1.7). 

2.8.1. Mass balance equation to determine amount of adsorbed adsorbate during 
desorption 

To determine the concentration of adsorbate exiting the adsorption/desorption vessel 

during regeneration, a mass balance is required. There are three possible locations for 

adsorbate in the GRS during regeneration prior to entering the condensation system: in the 

ACFC, in the adsorption vessel, or in the gas flowing out of the adsorption vessel. Eq 2.16 

describes this time dependent process mathematically with the first term representing the total 

adsorbate adsorbed during an adsorption cycle and the terms to the right of the equal sign 

representing the three locations, respectively. In the equations that follow, certain parameters 

are well known either because they are directly measured or represent material properties. ms, 

q0, Mw,i, V, Ptot, R, T, and t are all well-known parameters. q, yi, and Qtot all result from the 

modeling calculations described below. 
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msq0 =msq +Mw ,i y i

VPtot
RT

+Mw ,i y i
QtotPtot
RT

t    Eq 2.16 

The main variable of interest is the concentration of adsorbate exiting the adsorption 

vessel as a function of time, which will allow the GRS operation algorithm to be set to collect the 

most highly concentrated gas stream possible. In order to determine the concentration of 

adsorbate exiting the adsorption vessel, the mass of adsorbate leaving the adsorbed phase as a 

function of time must be determined. To find q(t), the following equations were derived: the 

derivative with respect to t of Eq 2.16, was taken and the product rule for derivatives was 

implemented: 

 
0 =ms

dq
dt

+
Mw ,iPtotV
RT

dyi
dt

+
Mw ,iPtot
RT

dyi
dt

Qtott +
dQtot

dt
yit +Qtotyi

⎛
⎝⎜

⎞
⎠⎟    Eq 2.17 

 

Note that Qtot =
QN2

1− y
 for a binary system assuming N2 and the adsorbate are the only 

two components. The chain rule was applied to obtain expressions in which the only required 

derivatives with respect to time were TACFC and q. dTACFC/dt can be determined from the GRS 

experimental results or modeled data and dq/dt is the variable of interest. Time derivatives in Eq 

2.18 and subsequent equations are represented with a dot over the variable of interest. 
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Isolating the  !q  terms and solving for !q : 
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  Eq 2.19 

 

As noted above, (the derivative of temperature with respect to time) can be determined 

from experimental data generated with the GRS. All other derivatives in the above equation can 

be determined using the Antoine (Eq 1.7) and DR Equations (Eq 1.4) (See Appendix). 

2.8.2. Isobutane Concentration During Desorption from Experimental Temperature Data 

To model the change in adsorbed-phase adsorbate with time, the temperature-time data 

from GRS experiments was imported into MATLAB (version 2013a). The temperature-time data 

was modeled with a cubic polynomial fit and then the ode45 function was used to estimate q as 

a function of time based on Eq 2.19. Ode45 is a built-in MATLAB function that uses a 4th and 5th 

order Runge-Kutta algorithm to solve ordinary differential equations (84). Once the amount of 

adsorbate still adsorbed as a function of time was determined, mass balances (Eq 2.20-Eq 

2.22) were employed to determine the concentration of adsorbate exiting the adsorption vessel 

as a function of time, yi(t) (See Appendix). 

 yi t( ) =
mass of isobutane desorbed in time step
total mass of gas in vessel in time step

 
  Eq 2.20 

 

where the subscript i represents the time step of interest. 

 
yi t( ) =

mti −mti −1

mvessel ,total
 

  Eq 2.21 
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where mti −1 is the average mass of adsorbate that has desorbed from t0 to ti-1, and mvessel ,total  is 

the total mass of gas in the adsorption vessel, and mti is found from Eq 2.22: 

 mti =msqt=0 −msqti    Eq 2.22 

2.8.3. Isobutane Concentration During Desorption from Modeled Temperature Profiles 

To explore the effects of different experimental scenarios (i.e., ACFC temperature during 

desorption and ACFC temperature ramp speed), temperature profiles were constructed with a 

linear ramp ranging from 50 to 300 s to the set point temperature. These temperature profiles 

were used as described above (section 2.8.2) to determine the outlet isobutane concentration 

during desorption as a function of time. 
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3. RESULTS AND DISCUSSION 

3.1. Adsorption Isotherms Measurements and Modeling 

Adsorption isotherms for isobutane, R134A, and dichloromethane were measured on a 

Cahn 2000 microbalance and the results were modeled with five isotherm models: Freundlich, 

Toth, Yaws, DR, and DQSAR. Figure 3.1 shows the results for isobutane on ACFC-15 on a 

linear plot and Figure 3.2 shows the same data on a semi-log scale to better illustrate the 

goodness of fit of the five models.  

 

Figure 3.1 Room temperature adsorption isotherm of isobutane on ACFC-15 with 
the best fit of five isotherm models. Error bars represent +/- one standard 
deviation about the mean. 
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Figure 3.2 Room temperature adsorption isotherm of isobutane on ACFC-15 with 
the best fit of five isotherm models. Error bars represent +/- one standard 
deviation about the mean. 
 

When compared to the adsorption isotherm for n-butane shown in Figure 1.4, it is clear 

that although n-butane has a higher boiling point than isobutane, at low relative pressures, 

ACFC-15 has a higher adsorption capacity for isobutane than n-butane. For example, at a 

relative pressure of 10-4, the adsorption capacity of ACFC-15 for isobutane is 70 mg/g and for n-

butane is 57 mg/g. 

Figure 3.3 and Figure 3.4 show the results of the isotherm measurement and model 

fitting for R134A and DCM, respectively.  
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Figure 3.3 Room temperature adsorption isotherm of R134A on ACFC-15 with 
the best fit of five isotherm models. Error bars represent +/- one standard 
deviation about the mean. 

 
Figure 3.4 Room temperature adsorption isotherm of DCM on ACFC-15 with the 
best fit of five isotherm models. Error bars represent +/- one standard deviation 
about the mean. 
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The fitting parameters for each of the five isotherm models and the three 

adsorbate/adsorbent pairs are shown in Table 3.1. These fitting parameters can be input into 

the models to predict the adsorption capacity of ACFC-15 for each adsorbate. Both the 

Freundlich and Toth model results suggest that the isobutane-ACFC pair favors adsorption 

more strongly than desorption due to the high n and b values. As noted in section 1.3.4.1, n 

values approaching 10 indicate that a significant reduction in partial pressure is required to 

desorb the adsorbed compound. In the Toth equation, b represents the Langmuir affinity 

constant with higher values indicating a preference for adsorption. 

Table 3.1 Fitting parameters for five isotherm models. 
  Freundlich Toth 

  
kf n qs b t 

mg/g*kPa [-] mg/g  kPa-1 [-] 

Isobutane 176 6.75 341 57.8 0.37 

R134A 115 2.03 756 0.56 0.51 

DCM 311 2.99 740 9.00 0.64 
 

  Yaws DR DQSAR 

  
A B C q0=ρlW0 E k 
[-] [-] [-] mg/g  J/mol (J/mol)2 

Isobutane -0.43 0.66 -0.058 325 1.96E+04 3.97E-09 

R134A -1.91 1.07 -0.074 740 1.30E+04 5.00E-09 

DCM -0.85 1.04 -0.100 789 1.36E+04 4.53E-09 
 

The goodness of fit of the models to the isotherm data is dependent on the 

adsorbate/adsorbent pair (Table 3.2). In general, the Toth, Yaws, and DR equations fit the data 

best. Similar to the findings of Ramirez, et al. the DQSAR equation does not provide a good 

prediction (Absolute Relative Difference, ARD > 20%) of the measured isotherm data for these 

compounds, which were all being tested above their boiling points (50). Additionally, the high 
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average ARD for the DQSAR prediction of the R134A isotherm might be attributable to the 

method by which the k parameter was calculated for R134A: k is calculated based on the first 

order molecular connectivity index, which requires the assignment of values to each of the 

atoms in the molecule of interest. In the literature, there is no value given for fluorine, so the 

value for chlorine was used as a surrogate. Of these isotherms, the DR equation is the most 

useful because it can be readily used to provide an estimate of the isosteric heat of adsorption if 

adsorption isotherms are measured at several temperatures. 

Table 3.2 Average absolute relative difference (ARD) of the five isotherm models for 
isobutane, R134A, and DCM adsorption on ACFC-15. 
  

 Average ARD (%) 
Isotherm 
Equation Isobutane R134A DCM 

Freundlich 19.25 21.62 29.96 

Toth 2.15 18.66 9.08 

Yaws 1.07 5.61 3.03 

DR 6.97 9.54 19.98 

DQSAR 20.1 50.42 23.4 
 

3.1.1. Adsorbent pore volume 

Table 3.3 shows the available pore volume for ACFC-15 based on isotherm 

measurements modeled using the DR equation. The average pore volume and standard 

deviation for ACFC-15 determined from this analysis (not including the N2 data point) is 0.60 

cm3/g ± 0.037 cm3/g. This analysis assumes that the adsorbates are condensing in the pores of 

the adsorbent despite isobutane and R134A having boiling points more than 35°C below the test 

conditions of 24°C and 1 atm. This assumption is assumed to be justified based on the precision 

of the results and their agreement with the N2 adsorption-determined pore volume of ACFC-15 

(Table 1.2). This determination is also aligned with the findings of Yun, et al. who noted that the 
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volume of the micropores for a pellet activated carbon determined from the DR fitting of the 

isotherm data for several chlorinated organic solvents (1,1,1 trichloroethane Tb = 74°C and 

trichloroethylene Tb = 87°C) was analogous to the BET micropore volume of the adsorbate 

determined from N2 adsorption (85). The ability to use adsorbates other than N2 to determine 

the pore volume of adsorbents could be beneficial in the case where a surface analyzer that 

relies on N2 adsorption at low pressures (10-3 atm) is not readily available. 

Table 3.3 Available pore volume of ACFC-15 based on isotherm data from 
several adsorbates at 24°C and bulk density of the adsorbates. 
 

Adsorbate Available Pore Volume 
(cm3/g ACFC) 

N2 (77 K) 0.66 (from 25) 

R134A 0.61 

Isobutane 0.63 

Dichloromethane 0.56 
 

3.1.2. Isosteric Heat of Adsorption  

The isotherms for isobutane and R134A on ACFC-15 were measured at four 

temperatures (Figure 3.5 and Figure 3.6, respectively) to determine ΔHs.  As expected, each of 

these isotherms follows Type I behavior and the adsorption capacity at a given relative pressure 

decreases with increasing temperature because adsorption is an exothermic process. The 

isosteric heat of adsorption varies with loading, which is consistent with other analyses (66). The 

isosteric heat of adsorption for isobutane ranges from 58 to 85 kJ/mol (Figure 3.7). The isosteric 

heat of adsorption for R134A ranges from 45 to 54 kJ/mol (Figure 3.8).  
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Figure 3.5 Adsorption capacity of ACFC-15 for isobutane for various 
temperatures. 

 

Figure 3.6 Adsorption capacity of ACFC-15 for R134A for various temperatures. 
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Figure 3.7 Isosteric heat of adsorption for isobutane on ACFC-15. 
 

 

Figure 3.8 Isoteric heat of adsorption for R134A on ACFC-15. 
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The isosteric heats of adsorption determined for isobutane and R134A on ACFC-15 are 

similar to those provided by Ramirez, et al. for acetone and benzene on ACFC-20, which were 

determined to be 40-60 kJ/mol and 60-70 kJ/mol, respectively (66). The isosteric heat of 

adsorption can be used in models that describe the amount of adsorbate released and the 

minimum amount of energy required during desorption.  

3.2. Adsorption Characterization from Breakthrough Curves 

3.2.1. Adsorption Properties from Breakthrough Curves 

Breakthrough curves (e.g., Figure 3.9) were generated for each vessel for an inlet carrier 

gas containing 2,000 ppmv isobutane (Pi/Pi,s = 6.7x10-4). The air and isobutane stream passed 

through the ACFC-15 at ambient temperature (22 to 24°C) and 1 atm. The average adsorption 

capacity calculated from six breakthrough curves was 94 mg isobutane / g ACFC with a 

standard deviation of 17 mg isobutane/g ACFC (73). 

 

Figure 3.9. Typical breakthrough curve for isobutane on ACFC-15. The inlet gas 
was 100 SLPM air with 2,000 ppmv isobutane in air, 22°C, and ambient pressure. 
The mass of ACFC was 183.3 g per vessel (73). 
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Comparing these results to the adsorption isotherms generated using the microbalance 

(Figure 3.1), it is clear that the GRS does not achieve the equilibrium adsorption capacity of 

ACFC for 2,000 ppmv isobutane, which is 135 mg isobutane/g ACFC. This is likely due to 

several factors including the geometry of the ACFC cartridge not allowing 100% contact with the 

adsorbate gas stream and the GRS not reaching equilibrium during the breakthrough curve 

experiments. The other parameters of interest, average and standard deviation of TPR and 

fLUB values were 0.86 ± 0.03 and 0.29 ± 0.03, respectively, for the first generation GRS. These 

results are in the acceptable range of TPR values (> 0.7) and fLUB values (< 0.3) (82) indicating 

that the geometry of the system and adsorption gas flow rates were reasonable.   

3.3. Determination of Desorption and Post-Desorption Operating Conditions   

The success of the GRS depends on the energy efficiency of the process, which is in 

large part due to the effectiveness of the adsorbent regeneration and the adsorbate liquefaction. 

In trying to optimize the energy efficiency, tests were conducted to determine the most effective 

regeneration temperature and the best heating/compression time to minimize energy use while 

maximizing adsorbate liquefaction. 

3.3.1. Effect of Regeneration Temperature on Energy Efficiency 

Figure 3.10 shows an example of the operational results from one of the experiments 

described in section 2.5.1. This figure describes the concentration of isobutane exiting each of 

the vessels, the capture efficiency of isobutane as a function of time, and the ACFC 

temperatures obtained during operation at the conditions listed in Table 2.2. These experiments 

were performed for more than five hours to achieve steady-state operation. Additionally, the first 

adsorption cycle of each experiment is not included because it is not representative of steady-

state conditions. 
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Figure 3.10  A: Outlet isobutane concentration (PID) during adsorption with capture 
efficiency B: ACFC temperature during desorption (Des) for a temperature set point of 
150° C. Experimental conditions: 40 SLPM air; 2,000 ppmv isobutane (73). Note that the 
y-axes for the top plot do not cover the entire range of possible values. The isobutane 
concentration could range from 0 to 2000 ppmv and the capture efficiency could range 
from 0 to 100%. 
 
Material balances based on the operating conditions from Table 2.2 with active cooling 

of the two vessels are included in Table 3.4. At each regeneration temperature tested, the 

system had an overall capture efficiency ≥ 99.4%. This capture efficiency is adequate for 

meeting air quality emission requirements for the packaging manufacturing industry, an example 

of which requires 98% destruction of organic gases in thermal oxidizers (3). Additionally, Table 

3.4 shows that the average ACFC capacity for isobutane was 50 – 56 mg/g, which is 50-60% of 
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reduction in operating adsorption capacity is due to recycling isobutane that is emitted from the 

post-desorption control module during desorption cycles and incomplete regeneration of the 

ACFC during each cycle, leaving a “heel”.   

Table 3.4 Average material balance data for experiments described in Table 1 
and exemplified in Figure 3.10. Results are from duplicate experiments at 150 
and 175°C and triplicate experiments at 200°C. 
 
 

 

 

 

Heating and compression energy consumption for GRS experiments conducted with various 

ACFC desorption temperatures is included in Table 3.5. Energy consumption values for 

VaPRRS is provided in Table 3.6 for comparative purposes. The heating energy for an ACFC 

temperature of 200°C reported in Table 3.5 is similar to values reported by Johnsen for select 

heating control schemes, which showed that the heating energy to desorb isobutane at 200°C 

ranged from 908-1237 kJ/mol (10). 

Table 3.5 Average energy consumption per mol of isobutane captured for the 
experiments described in Table 2.2. (Duplicate experiments at 150 and 175°C 
and triplicate experiments at 200°C were conducted). 
 

 

 

 

 
  

ACFC Temp (°C) Overall Capture 
Efficiency (%) 

ACFC Adsorption Capacity  
(mg isobutane/g ACFC) 

150 99.7 50. 

175 99.6 54 

200 99.4 56 

ACFC Temp 
(°C) 

Eheating 
(kJ/mol) 

Ecompressor  
(kJ/mol) 

Etot 
(kJ/mol) 

150 840 800 1640 

175 990 730 1720 

200 1,100 720 1820 
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Table 3.6 Energy requirements for capture and recovery of several organic 
compounds using VaPRRS (42). 

Compound Boiling Point 
(°C) 

Relative Pressure 
(P/Psat) 

Energy/mole 
recovered 
(kJ/mol) 

Methyl propyl ketone 101 7.4 x 10-3 375 

Methyl ethyl ketone 79.6 2.2 x 10-3 544 

Hexane 69 1.5 x 10-3 629 

Acetone 56.5 2.1 x 10-3 1,367 

Dichloromethane 39.8 2.1 x 10-3 4,698 
 

The heating and compression energy consumption per mol of recovered isobutane (Tb = 

-11.7°C) is 1.2 to 4.8 times the energy consumption to recover organic vapors with boiling points 

greater than 55°C using the VaPRRS. Acetone with Tb = 56.5°C was considered the practical 

limit for efficient recovery using the VaPRRS, and the energy requirements for recovering 

dichloromethane (Tb = 39.8°C) warranted the proposal of system retrofits to improve the energy 

efficiency (42). The energy required to recover isobutane with the GRS is less than half that 

required by VaPPRS to recover dichloromethane, which suggests that the addition of the 

compression/cooling module in the GRS helps to overcome the issue of energy efficiency for 

recovery of low boiling point compounds experienced by VaPPRS. The increased energy 

consumption for isobutane compared to higher boiling point compounds (e.g., methyl ethyl 

ketone), as described above, is expected because of the compression/cooling module used by 

the GRS that is not part of the VaPRRS. The compression module is 40-50% of the total energy 

consumption. However, the values presented here represent the energy required to recover 

isobutane as a concentrated gas, not the energy required to liquefy the isobutane. In order for 

the GRS to remain competitive with the energy efficiency of VaPPRS, high liquefaction 
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efficiency is required. Section 3.3.2 reports the energy requirements to capture, recover, and 

liquefy isobutane using the GRS.     

GRS cycling experiments with isobutane and a desorption temperature of 100°C were 

also conducted and showed that the ACFC did not regenerate sufficiently at that regeneration 

temperature. Based on the experiments conducted at regeneration temperatures ranging from 

100 to 200°C, it was determined that 150°C provided a good balance between sufficient 

regeneration of the ACFC and minimizing energy use by the GRS. All subsequent experiments 

were conducted at 150°C as a result of this investigation. 

3.3.2. Effect of Heating/Compression Time on Energy Requirements and Mass 
Distribution 

The adsorbate concentration during adsorption follows a cyclic pattern similar to those 

reported in Figure 3.10 (75). The capture efficiency was greater than 99% for all experiments. 

Which again suggests that the GRS is an appropriate device for meeting air quality permitting 

requirements.   

The total energy to recover liquid isobutane was determined for several 

heating/compression times. Figure 3.11 shows the combined heating and compression energy 

per mole of liquid isobutane recovered for select heating and compression times (black 

triangles). It also shows the relative contribution of heating and compression to the total energy 

(bars).  As expected, a minimum total energy used per mole liquid of isobutane recovered was 

observed.  As is clear from Figure 3.11, at low heating/compression times, the standard 

deviations are quite high for the energy per mole liquid recovered (16-33% of the mean value), 

suggesting that the heating time was not sufficient to provide consistent regeneration of the 

ACFC. At higher heating and compression times the standard deviations are much smaller (3-

8% of the mean value), suggesting that the system is operating consistently between 

experiments. Additionally, as the heating and compression time increases, the relative 
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contribution of the compressor’s energy to the total energy also increases (from 44 to 63%). 

This is because the compressor’s total energy use increases linearly with time, whereas the 

heating energy is highest during the early stages of heating in order to bring the ACFC from 

room temperature to 150°C and then drops off at longer heating times when the 150°C 

temperature is being maintained. 

 

Figure 3.11 Heating and compression energy per mole liquid recovered (triangles) and 
the relative energy distribution between heating and compressor energy (bars) for 
cycling experiments with inlet isobutane at a relative pressure of 6.7x10-4. Error bars 
represent +/- one standard deviation about the mean. Adapted with permission from 
(86). Copyright 2013 American Chemical Society. 

 
3.3.2.1. Energy Cost and Emissions Estimates 

The energy required to capture, recover, and liquefy a mole of isobutane can converted 

to a cost by comparing the cost of electricity to supply that energy to the cost to purchase the 

isobutane new, rather than attempting to recycle it. In Indiana, where the GRS would likely be 

installed, the average industrial electricity cost was $0.0634/kWh for 2012 (87). The cost to 

3	 4	 5	 6	 7	 8	 9	

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0%

20%

40%

60%

80%

100%

3.5 4.5 5.5 6.5 7.5 8.5

En
er

gy
 p

er
 L

iq
 M

ol
 R

ec
ov

er
ed

 (k
J/

m
ol

)

Pe
rc

en
t o

f T
ot

al
 E

ne
rg

y 
pe

r 
Li

qu
id

  M
ol

 R
ec

ov
er

ed

Heating Time

Average Heat/Mol Liquid Average Comp/Mol Liq Total Energy



 

 78 

purchase liquid isobutane on the market was $1.50/gallon ($0.40/liter) between 2012 and 2013 

(88). Using 2152 kJ/mol, the energy per liquid mole recovered reported in Figure 3.11 for a 

heating time of 5.5 minutes, the ratio of the cost of energy to recover the isobutane to the cost to 

purchase the isobutane was 0.88. This result suggests that the cost in energy to recover 

isobutane is 12% lower than the cost of purchasing isobutane new. This analysis is reasonably 

compelling, and it should be noted that isobutane costs are at near historic lows and industrial 

electricity costs for Indiana are at historic highs when considering the last two decades (87). 

Using values from 2007 when this research was initiated, the ratio of the energy cost to recover 

liquid isobutane to the purchase cost of liquid isobutane was 0.30, making the implementation of 

the GRS much more attractive from a financial standpoint. In addition, Johnsen, in his 2014 

dissertation, determined that using an ACFC-ESA system to control isobutane emissions from 

packaging manufacturing would have an 11% yearly internal return on capital investment, 

indicating that the system would pay for itself within 10 years of operation (10). This analysis 

included capital and operating costs associated with ACFC-ESA, which strengthens the support 

for an ACFC-ESA system from a monetary standpoint. 

The CO2 emissions from implementing a GRS can be estimated based on the energy 

use of the GRS and the average CO2 emissions from power plants. These emissions can be 

compared to the emissions of operating a thermal oxidizer with supplemental fuel to remove the 

isobutane. Using the result from Figure 3.11 and the average CO2 emissions from coal-fired 

power plants of 0.99 kg CO2/kWh (89), the emissions per liquid mole of isobutane is 0.58 kg 

CO2/mol isobutane. For the thermal oxidizer, 0.18 kg CO2/mol isobutane is generated based on 

complete combustion stoichiometry (4 mol CO2 generated per mol isobutane combused) and the 

supplemental fuel consumed by the thermal oxidizer represents less than 3% of the total CO2 

emissions from the oxidizer. This result suggests that implementing the GRS actually increases 

the CO2 emissions related to controlling the emissions of isobutane. However, others have 
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shown with life cycle assessments that the global warming impacts of using ACFC-ESA is lower 

than using a thermal oxidizer system for a variety of electricity sources (10).  

3.3.3. Effect of Heating/Compression Time on Mass Distribution 

The effect of heating time on adsorbate mass distribution for isobutane can be seen in 

Figure 3.12. An increase in total heating time leads to an increase in the fraction of isobutane in 

the liquid phase and a decrease in the fraction of isobutane in the adsorbed phase. This is as 

expected since a higher heating time allows more isobutane to desorb from the ACFC, however 

there are diminishing returns on the reduction of mass in the adsorbed phase and the increase 

of mass in the liquid phase with every added minute of heating time, suggesting that heating 

time (i.e., energy input) and liquid recovery must be balanced for the most efficient operation of 

the GRS. The fraction of mass in the liquid phase at the end of each experiment ranged from 

47.5 to 87%. These values are acceptable when compared to data from previous work. 

Dombrowski, et al., reported fractional liquid recoveries of higher boiling point compounds 

between 11-81% for the VaPRRS, which did not include a post-desorption pressure and 

temperature control system and did not recycle desorbed adsorbate back to the adsorbing 

vessel  (42). Ramirez, et al. reported a fractional liquid recovery of 90.6% for MEK in a bench-

scale ACFC-ESA system that did not include a post-desorption pressure and temperature 

control system, but did include desorbed gas recycle (90). 
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Figure 3.12 Mass distribution of isobutane as a function of heating time 
averaged over the duration of each experiment (> 5 regeneration cycles) Adapted 
with permission from (86). Copyright 2013 American Chemical Society. 
 

Using the results from the isobutane screening experiments, subsequent experiments 

were conducted at varying relative pressures using a heating and compression time (step 3) of 4 

min (total heating time in steps 2-4 was 5.5 min). This heating and compression time resulted in 

the lowest energy per mole liquid recovered for experiments with isobutane at a relative 

pressure of 6.7x10-4 and also had less than 25% of isobutane remaining in the ACFC during the 

experiment, which is reasonable compared to the 15-30% of adsorbate remaining in the vessel 

as was found by Dombrowski, et al. (42). 

3.4. Modeling Results – MATLAB 

Modeled results predicting the adsorbate concentration during desorption were 

generated using time and ACFC temperature data from representative GRS experiments. 

Figure 3.13 shows the temperature of the ACFC during desorption for a cycling experiment on 

the GRS and the corresponding modeled isobutane concentration during desorption. This 

particular experiment had a total of 5.5 min of heating with the first 5 of those minutes having 
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low flow (0.5 SLPM) N2 through the system and the last 0.5 min having high flow (3.5 SLPM) N2, 

which can be seen in the concentration data at t = 300 s where a steep drop in the outlet 

isobutane concentration occurs.  

 
Figure 3.13 Isobutane concentration as a function of time as predicted by a 
MATLAB model. Based on adsorption of 2000 ppmv (Pi/Pi,s = 6.7x10-4) isobutane. 
The ACFC temperature generated during a GRS experiment that was used in the 
model is also included. 
 

The same temperature profile was used to examine the effect of increasing the inlet 

concentration (relative pressure) of isobutane on the desorption concentration profile (Figure 

3.14). Using equivalent temperature profiles for different inlet isobutane concentrations is not a 

perfect representation of reality due to the higher adsorption capacities experienced for higher 

inlet concentrations and thus different heating profiles due to the additional heat required for the 

heat of adsorption of isobutane. However the model shows that when more adsorbate is 
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adsorbed to the ACFC, the adsorbate desorbs from the ACFC more quickly and with a higher 

peak concentration.  

 

Figure 3.14 Modeled isobutane concentration during desorption for select inlet 
concentrations of isobutane. Each model result is based on the ACFC 
temperature profile shown in Figure 3.13 which has a linear increase in 
temperature from 25 - 150°C over 150 s (50°C/min).  
 

The effect of changing the amount of time it takes the ACFC to heat from room 

temperature to its set point temperature was examined with a final ACFC temperature of 150°C 

(Figure 3.15). The modeled results indicate that the faster the ACFC reaches its set point 

temperature, the more highly concentrated the desorption gas stream is. However, the 

temperature ramp speed for the GRS is constrained by the amount of current the system can 

handle. The best ramp time achievable with the GRS is 150 seconds to reach 150°C.  
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Figure 3.15 Modeled isobutane concentration during desorption for different 
ACFC temperature ramp times. Each model result assumed an inlet isobutane 
concentration of 2000 ppmv and a final ACFC temperature of 150°C. 
 

Finally, the effect of changing the set point temperature while maintaining the ramp 

speed is shown in Figure 3.16. This result indicates that as the set point temperature increases, 

the outlet isobutane concentration also increases, but begins to plateau at 150°C. This result is 

consistent with experimental results that showed little difference in the energy performance of 

the GRS when the ACFC set point temperature ranged from 150-200°C (Table 3.5). 
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Figure 3.16 Modeled isobutane concentration during desorption for different 
ACFC final temperatures. Each model result assumed an inlet isobutane 
concentration of 2000 ppmv and a temperature ramp speed of 50 °C per min. 
 
These modeled results can help explain some of the results seen in section 3.3.2 

examining the effect of heating/compression time on the energy required to capture and liquefy 

isobutane. Many attempts were made to generate measured data to compare to the modeled 

results. The PID and FID that had been used for previous concentration measurements were 

considered, but the PID’s concentration range is two orders of magnitude too small for the 

expected desorption concentrations. Additionally, the FID was previously shown to have a large 

lag time, which would affect its reliability when comparing measured to modeled data (91). A 

gas chromatograph (GC) was also considered as a tool for measuring desorption concentration 

as a function of time, but a functioning GC was not available. While it was not possible to 

directly compare these modeled results to the GRS operational results due to lack of access to 

an appropriate concentration measurement device, the trends seen in both the modeled 
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isobutane concentration data and the GRS energy usage data are consistent with one another. 

For example, examining the first 120 seconds of data in Figure 3.14 and Figure 3.15 indicates 

that small perturbations in inlet concentration or ACFC temperature could have a large effect on 

the concentration of isobutane desorbed. For example, increasing the isobutane adsorption 

concentration from 5000 to 10,000 ppmv results in a 10% increase in the peak isobutane 

concentration during desorption. If this trend were accurate, a decrease in the energy to 

capture, recover, and liquefy isobutane would be expected when the inlet isobutane 

concentration increased due to the resulting higher concentration in the desorption stream. 

Experimental results did show a 35% reduction in energy to capture, recover, and liquefy 

isobutane under experimental conditions similar to those modeled (Figure 3.19). It is also clear 

that if the ACFC were only heated for 120 s, much of the isobutane would be left adsorbed on 

the ACFC because heating would stop just as the peak desorption concentration is achieved. 

From an energy standpoint, this could result in the high standard deviations and the higher 

energy required to recover isobutane shown in Figure 3.11 for low heating times. The shape of 

the curve in Figure 3.14 also provides insight in to why longer heating times also result in higher 

energy requirements: as the ACFC heats for more than 2-3 min, the amount of isobutane being 

desorbed decreases, so more energy is being consumed (primarily via the compressor), but not 

much isobutane is being liquefied.  

Similar models were constructed for R134A (Figure 3.17) and n-butane (Figure 3.18). It 

is clear from the figures that both R134A and n-butane achieve lower maximum concentrations 

than n-butane. This is in part due to the lower adsorption capacity of ACFC for the relative 

pressures of R134A and n-butane shown here compared to the adsorption capacity of ACFC for 

isobutane at a relative pressure of 6.7x10-4, as shown in Figure 3.13. However, the reduced 

desorption concentrations are also a function of the characteristic adsorption energy of the 

adsorbate and how the vapor pressure of the adsorbate changes with temperature. 
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Figure 3.17 R134A concentration as a function of time as predicted by a 
MATLAB model. Based on adsorption of 500 ppmv (Pi/Pi,s = 8.3x10-5) R134A. The 
ACFC temperature generated during a GRS experiment that was used in the 
model is also included.  
 

 

Figure 3.18 n-butane concentration as a function of time as predicted by a 
MATLAB model. Based on adsorption of 1324 ppmv (Pi/Pi,s = 6.7x10-4) n-butane. 
The ACFC temperature generated during a GRS experiment that was used in the 
model is also included. 
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There are several areas for improvement in these models. First, the models do not take 

into account the high concentration (15% by volume) adsorbate that is recycled to the 

adsorption vessel during the desorption process, which accounts for approximately 15% of the 

total adsorbate supplied to the adsorption vessel during a given cycle. Including this additional 

adsorbate would likely increase the slope of the desorption curves and the peak concentrations 

achieved during desorption. In addition, direct comparison of the modeled results to measured 

desorption concentrations would improve the credence of the models. 

3.5. Effect of Adsorbate Relative Pressure on Energy Requirements 

The effect of adsorbate relative pressure on the energy required to recover liquefied 

organic gas is shown in Figure 3.19. The standard deviations for the GRS data points were less 

than 7% of the mean for all experiments. The energy to recover the organic compound in liquid 

form increases drastically as the relative pressure decreases. This is expected due to the 

reduction in adsorption capacity associated with reduction in relative pressure of the adsorbate. 

For example, R134A (Pi/Pi,s
 = 8.3x10-5) had an effective adsorption capacity of 5 mg/g ACFC, 

whereas isobutane at the highest relative pressure (Pi/Pi,s
 = 3.4x10-3) had an effective adsorption 

capacity of 78.5 mg/g ACFC. Since the total amount of energy input per cycle is essentially 

equivalent for all GRS experiments (338 ± 16 kJ/cycle) with the same heating/compression time, 

the less adsorbate captured per cycle, the higher the energy required to recover that adsorbate. 

A power law was chosen to model this data because previous researchers had used such a 

relationship and the power law models the data well (R2 > 0.99) (42). The plateau observed at 

high relative pressures is the result of there being a minimum energy required to heat the ACFC 

to desorb the adsorbed compounds. While the number of moles of adsorbed compound could 

increase with higher relative pressures and thus reduce the energy per mole liquefied, this 
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increase would be limited by the pore volume of the adsorbate. However, for this research, the 

power law is a useful descriptor for the data. 

 

Figure 3.19 Average heating and compression energy per mole liquid recovered 
as a function of relative pressure for the GRS operating with three different 
adsorbates (86). Error bars represent +/- one standard deviation about the mean. 
The power law fit is y = 3.386x-0.973, R2 = 0.991. Adapted with permission from 
(86). Copyright 2013 American Chemical Society. 
 

Because the relative pressure of the adsorbate is an important variable in the energy 

requirements of the GRS and the effective ACFC adsorption capacity is related to the relative 

pressure via the equilibrium adsorption capacity, the effective adsorption capacity was 

compared to the theoretical equilibrium capacity of the ACFC to better relate the operating 

conditions of the GRS to its performance. Figure 3.20 compares the average ACFC capacity for 

each of the three adsorbates during cycling experiments (qeffective) to the equilibrium capacity 

determined using the Dubinin Raduskevich (DR) fit of the adsorption isotherms (qequilibrium) or 

data from previous work (92). From this it is clear that the effective adsorption capacity for each 
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of the adsorbates is, on average, 36% lower than the equilibrium capacity. This is likely due to 

three causes: the ACFC in the adsorption vessels is not being used to its full capacity due to the 

nature of the geometry and configuration of the ACFC cartridges, the ACFC is not allowed to 

come to equilibrium with the adsorbate because breakthrough is considered to be 5% of the 

inlet adsorbate concentration, and the qequilibrium value does not take into account the high 

concentration adsorbate that is recycled to the adsorption vessel during regeneration, which 

reduces the amount of adsorbent available for the low concentration gas stream.  

This result suggests that one cannot rely on equilibrium adsorption isotherms to design 

ACFC-ESA systems and it is critical to run bench and pilot studies with representative 

adsorbates prior to designing a full-scale system. However, the linear fit of the data in Figure 

3.20 shows that a reasonable estimate of the effective adsorption capacity during operation of 

the bench scale GRS would be 36% of the equilibrium adsorption capacity predicted by 

adsorption isotherms.  

 

Figure 3.20 Effective adsorption capacity during GRS cycling experiments 
compared to the equilibrium adsorption capacity determined from isotherm 
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experiments. Error bars represent +/- one standard deviation about the mean. 
The linear fit equation is y = 0.3611x ; R2 = 0.92. Adapted with permission from 
(86). Copyright 2013 American Chemical Society. 
  

 Combining Figure 3.19 and Figure 3.20 leads to Figure 3.21. The high R2 values for the 

power law fit of the data shown in Figure 3.21 indicates that using either the equilibrium 

adsorption capacity or the effective adsorption capacity of a given adsorbate to predict the 

amount of energy that would be required to capture, recover, and liquefy that adsorbate would 

be possible. 
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3.6. Performance of the GRS with Multicomponent Adsorption and Carrier Gas 
Recirculation 

For all experiments conducted with multi-component adsorption gas streams, the 

capture efficiency for isobutane was greater than 99%. The following energy use results include 

the energy to heat the ACFC, the energy to compress the desorption gas stream, the energy to 

handle water vapor, and the energy to supply N2 to the GRS, as discussed in section 2.3.3. The 

energies reported for 5% RH experiments without carrier gas recycling are the same as those 
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reported for the 5.5 min heating time in Figure 3.11 with the addition of the energies to handle 

water vapor and supply N2.  

3.6.1. Multicomponent Adsorption 

Prior to implementing carrier gas recirculation, the GRS was tested with a non-recycled 

carrier gas of air, isobutane (relative pressure 6.7x10-4), and water vapor (RH 30-80%) as 

described in section 2.7. As expected, introducing water vapor to the carrier gas stream 

increased the energy required to recover liquid isobutane (Figure 3.22 and Figure 3.23). A 24% 

increase in the GRS energy use was observed when increasing the carrier gas RH from 5% to 

24% (2910 kJ/mol to 3620 kJ/mol), and this difference is statistically significant at the 95% 

confidence level. Similarly, when the RH was increased to 80% the energy usage also 

increased to 5750 kJ/mol.  
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Figure 3.22 Energy required to capture, recover, and liquefy isobutane with 
select amounts of water vapor present in the adsorption gas stream for the 
GRS in non-reciruclation mode. Energy values include ACFC heating, 
desorption gas compression, N2 production, and water vapor 
production/removal. Error bars represent the 95% confidence interval. 
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Figure 3.23 Energy required to capture, recover, and liquefy isobutane with select 
amounts of water vapor present in the adsorption gas stream for the GRS in non-
recirculation mode with specific energy uses denoted.  
 

This result is not surprising considering the adsorption behavior of water vapor on ACFC 

(Figure 1.5) and how water vapor interacts with competitive non-polar adsorbates (Figure 1.2), 

which both show very low water adsorption on ACFC when the inlet RH is less than 40%. At 

higher relative humidities, when the adsorption of water vapor on the ACFC is significant (300 

mg H2O /g ACFC), the energy required to recover liquid isobutane increases significantly. As 

shown in Figure 3.22, when the inlet RH was 80%, the energy required to recover a mole of 

liquid isobutane nearly doubled from 2910 kJ/mol to 5750 kJ/mol. This reflects the decrease in 

the ACFC’s effective capacity for isobutane during high RH experiments and the increased 

energy required to supply the water vapor. The ACFC’s effective capacity for isobutane in the 

presence of high RH decreases by 38% compared to 5% RH conditions (33.5 mg/g ACFC 

compared to 54 mg/g ACFC). If the reduction in isobutane capacity were the only thing 
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contributing to the increase in energy usage, one would expect the energy used by the GRS to 

increase by 1880 kJ/mol liquefied based on the power law data fit in Figure 3.21B. This leaves 

960 kJ/mol liquefied unaccounted for. The energy required to supply water to the adsorption 

gas, heat and vaporize the water that adsorbed to the ACFC, and condense the desorbed water 

to prevent it from contaminating the recovered isobutane averaged 1040 kJ/mol liquefied for the 

experiments with 80% RH in the inlet gas stream for the non-recirculation experiments. This 

energy effectively accounts for the entirety of the energy increase noted. 

Figure 3.23 highlights another major contributor to the energy required to capture, 

recover, and liquefy isobutane: the energy required to supply N2 to the GRS. Based on the 

calculations described in section 2.3.3.4, the energy to supply N2 is approximately 25% of the 

total energy used by the GRS. This value is congruent with results from Rood, et al. who 

determined that N2 accounted for 25% of total operating costs for an ACFC-ESA system that 

used ancillary cooling to recover organic vapors (93). In contrast, this fraction is low compared 

to the results found by Ramirez, et al. who examined the energy use of a pilot-scale VaPRRS 

and found that the compressor that supplied air to a N2-producing membrane accounted for 

greater than 50% of the total energy used by the system and was three times the electrothermal 

regeneration energy (71). However, the energy efficiency of the pressurized membrane system 

used in the pilot scale VaPRRS is unknown.  

In addition to the energy used by supplying N2 to the GRS, the continuous supply of N2 

was found by D.L. Johnsen to contribute to the environmental impacts of the GRS. For example, 

using N2 in the GRS represented nearly 20% of the GRS’s eutrophication and carcinogenic 

impact (10). This N2 energy requirement and environmental impact combined with the large 

fraction of the energy that is due to humidification of the adsorption gas stream highlights an 

important opportunity to reduce the energy used and environmental impact caused by the GRS 
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to capture, recover, and liquefy isobutane. To take advantage of this opportunity, carrier gas 

recirculation was implemented as described in section 2.2.4.  

3.6.2. Multicomponent Adsorption Coupled with Carrier Gas Recirculation 

The GRS was modified to operate by recycling the adsorption carrier gas through the 

system. Prior to implementing carrier gas recycling, the GRS required 40 SLPM of air from a 

compressed air system to operate. Once carrier gas recycling was implemented, the GRS only 

required 2.65 SLPM of air from a compressed air system (less than 7% of the non-recycling 

system’s requirement). Over half of the supplied air was required due to the flow needs of the 

oxygen sensor and the FID, so the dependence on compressed air could be further reduced to 

less than 0.8 SLPM with careful pressure control and gas recirculation from the instrumentation.  

3.6.2.1. Mass Balance Effects of Carrier Gas Recycling 

One of the goals of implementing carrier gas recycling was to reduce the amount of 

water and N2 needed to operate the GRS. Based on the cycling experiments conducted, the 

required N2 was reduced by 25% by implementing carrier gas recirculation, whereas the 

required H2O for high relative humidity experiments was reduced by greater than 60%. 

Based on the gas flows in the GRS in recycle mode (2.65 SLPM makeup air being 

supplied and an average N2 flow of 0.92 SLPM over the course of the entire cycling experiment), 

the lowest steady-state O2 concentration that could be achieved is 15% by volume. In these 

experiments, the average O2 concentration in the GRS for a carrier gas recycling experiment 

was 16% by volume, which is within 7% of the lowest achievable O2 concentration based on the 

flowrates of N2 noted above. 

 The effectiveness of the carrier gas recirculation in terms of maintaining the water vapor 

concentration in the carrier gas is a function of the RH in the adsorption gas stream (Figure 

3.24). Experiments showed that at low relative humidities the inlet and outlet RH of the 

adsorption vessels in the GRS are nearly identical (A). At higher relative humidities, some water 
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vapor is adsorbed to the ACFC, resulting in lower RH in the adsorption vessel outlet gas than in 

the inlet (B). The data in Figure 3.24 also shows the repetitive, cyclical nature of the GRS 

operation with consistent switching between the two adsorption vessels (V1 and V2).  

Despite some water vapor adsorbing to the ACFC at high relative humidities, even at 

75% RH in the inlet adsorption stream, greater than 60% by mass of the supplied water vapor is 

retained in the carrier gas while passing through the adsorption vessel. The remainder of the 

water was not lost; it was condensed into the chilled water trap during desorption as described 

in section 2.2.4. The ability to retain water vapor in the carrier gas could potentially be improved 

by heating the ACFC during adsorption to lower the RH of the adsorption gas stream, and 

consequently lowering the adsorption capacity of ACFC for water vapor. However, this 

technique has drawbacks including lowering the adsorption capacity of the ACFC for the target 

adsorbate and increasing the overall energy used by the system. This strategy will be discussed 

in more detail in the next section. 
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Figure 3.24 Inlet and outlet relative humidities for the GRS with carrier gas 
recycle. A. represents low inlet RH (20%) and B. represents high inlet RH (70%). 
Arrows indicate the duration of vessels 1 and 2 adsorption cycles. Spikes in the 
RH occur when the desorption gas stream, which is saturated with water vapor 
during high RH experiments, is recycled to the adsorption vessel. 
 

3.6.2.2. Methods to Improve O2 Reduction during Carrier Gas Recycling 

The following thought-experiment provides a means to achieve one of the overall goals 

of carrier gas recycling, which is to reduce the amount of N2 needed to operate the GRS 

continuously while maintaining an safe oxygen concentration ( < 6%  by volume, which is 50% 

of the LOC). To reduce the average O2 concentration in the system to 6% by volume, the ratio of 

makeup air flow rate to N2 flow rate would have to be decreased from 2.88 to 0.4. This 86% 

reduction in relative N2 flow rate would also make the ACFC-ESA system more attractive from 

an environmental standpoint when compared to thermal oxidation or using GAC (10). Lowering 

the makeup air flow rate would allow subsequent lowering of the N2 flow rate as long as the ratio 

to achieve the appropriate oxygen level is maintained. While this was not possible with the GRS 

in the configuration discussed here due to the high volume requirements of the oxygen sensor 
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and the FID, in a larger scale system in which the operational monitoring equipment would 

require a smaller fraction of the carrier gas flow rate to operate, or in a system that does not 

require the use of monitoring equipment (94), this reduction in makeup air and subsequent 

reduction in N2 requirement could be achieved. For example, in a pilot scale system, such as 

that described by Ramirez, et al. with an adsorption carrier gas flow rate of 1700 SLPM (71), the 

flow rate of makeup air could be kept the same as for the bench scale GRS (2.65 SLPM), but 

the N2 flow rate would increase by a factor of 40, resulting in a makeup air flow rate to N2 ratio of 

0.07, which would effectively remove the need to supply N2 to the system once steady state was 

achieved. Alternatively, N2 could be supplied to the GRS in place of makeup air to maintain the 

system pressure. In this case, the ratio of makeup air flow rate to N2 flow rate would be 0 and 

would allow for steady state operation well below the LOC. 

3.6.2.3. Energy Requirements for Carrier Gas Recycling 

Figure 3.25 shows how relative humidity and carrier gas recycling affect the energy used 

by the GRS to capture, recover, and liquefy isobutane. At low relative humidities, operating the 

GRS with carrier gas recycle led to a 2.5% decrease in the total energy used per mole liquid of 

isobutane recovered. Under ideal operating conditions, a 25% decrease in the total energy 

would have been observed due to the elimination of the continuous supply of N2. The difference 

between the observed and ideal energy reduction is the result of the high makeup air flow rate 

relative to the N2 flow rate required to maintain the gas pressure in the GRS, which was 

discussed in the previous section.  
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Figure 3.25 Energy consumed by the GRS per mole liquid of isobutane 
recovered. Energy values include ACFC heating, desorption gas compression, N2 
production, and water vapor production/removal. Error bars represent the 
standard deviation of the data. 
 

In contrast, at higher relative humidities, operating with carrier gas recycle provided a 

significant energy benefit to the system: the energy consumed by the GRS in recycle mode was 

74% of the energy consumed in non-recycle mode (4230 kJ/mol liquefied compared to 5750 

kJ/mol liquefied) and this result was statistically significant at the 95% confidence level. Figure 

3.26 shows the energy breakdown of the different energy users for the GRS operating a high 

RH in recycle and non-recycle (normal) mode. Recall that the energy to supply water vapor to 

the system is included because the industrial process of interest requires a humid gas stream to 

operate. Each of the energies shown in Figure 3.26 are normalized by the moles of isobutane 

liquefied downstream of the adsorption vessel. Based on the data shown in Figure 3.26, the 

GRS operating in recycle mode under idealized conditions would use 62% of the energy used 
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by the GRS in normal operation (assuming the energy required to supply N2 and H2O could be 

eliminated completely).  

 

Figure 3.26 Energy required to capture, recover, and liquefy isobutane for the GRS 
operating at high relative humidity with specific energy uses denoted. 
 

As is clear from the above figure, the energy usage in every category decreases in 

recycle operation compared to normal operation. Some of the difference observed could be the 

result of small differences in the RH in the inlet adsorption stream (75% RH vs 80% RH for 

recycle vs non-recycle). This could have affected the extent of the competitive adsorption of 

isobutane with water vapor. Although experiments were conducted at RH greater than 70% to 

operate on the flat part of the water adsorption isotherm found at high RH (Figure 1.5), the 

experimental results shown in Figure 1.2 suggest that water vapor and organic compound 

adsorption capacity are both highly dependent on RH when RH is greater than 45%. The 

adsorption capacities for isobutane for the normal operation and carrier gas recycle operation at 
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high RH were 33.5 mg/g ACFC and 35.7 mg/g ACFC, respectively. This difference in adsorption 

capacity of isobutane will affect each of the energy categories because the reported energies 

are normalized per mole liquid recovered, so the less isobutane that is captured per cycle, the 

higher the energy per mole liquid recovered. Using the power law determined with data shown 

in Figure 3.21, the predicted heat and compressor energy usage for the measured adsorption 

capacities indicate that the heat and compression energy in recycle operation (RH = 75%) 

should be 10% less than the energy in normal operation (RH = 80%).  

In addition to the difference in effective adsorption capacity, there was also a difference 

in the fraction of isobutane that was liquefied. This, again, will have an affect on the energy 

reported in Figure 3.26 due to the nature of normalizing the energy consumed to the amount of 

liquid isobutane recovered. On average, 84% of the captured isobutane was liquefied during the 

recycle experiments, whereas only 78% of the supplied isobutane was liquefied during non-

recycle experiments. This component contributes another 8% to the reduction in energy use 

when considering recycle operation compared to normal operation.  The remaining difference in 

energy usage between normal and recycle operation is due to the reduction in the amount of 

water vapor and N2 that need to be supplied to the adsorption gas stream in recycle mode 

compared to normal operation. As discussed above, more than 60% of the water vapor (by 

mass) is maintained in the carrier gas when the carrier gas is recycled. This reduces the energy 

consumed by humidifying the air by greater than 60% and accounts for 40% of the total energy 

difference between the recycle and non-recycle GRS operation modes.  

The energy benefit from recycling the carrier gas could be further improved if the fraction 

of water vapor recycled were increased. As noted in the previous section, one strategy would be 

to heat the ACFC during adsorption to reduce the effective RH during the adsorption cycle, and 

therefore reduce the adsorption capacity of the ACFC for water vapor. However, there is a fine 

balance that must be achieved when using this technique because while increasing the ACFC 



 

 102 

temperature during adsorption decreases the ACFC’s adsorption capacity for water vapor, it 

also decreases the ACFC’s adsorption capacity for the adsorbate of interest (isobutane). 

 For example, in order to reduce the RH from 80% at 25°C to below 40%, the ACFC 

temperature during adsorption would have to be increased to 40°C. Based on the adsorption 

isotherms reported in section 3.1 and the results shown in Figure 3.20, this temperature 

increase would result in an 18% reduction in the effective isobutane adsorption capacity (49 to 

40 mg isobutane / g ACFC). This reduction in effective adsorption capacity corresponds to a 

32% increase in heating and compression energy from 2325 kJ/mol liquefied to 3070 kJ/mol 

liquefied based on Figure 3.21B. Considering that the energy benefit from operating at low RH 

compared to high RH while recycling the carrier gas is only 20%, heating the ACFC to reduce 

the RH in the adsorption gas stream does not make sense from an energy use standpoint when 

recycling the carrier gas. However, if the system is operated without carrier gas recycling, 

heating the ACFC to reduce the RH is more favorable because the energy benefit from 

operating at low RH compared to high RH is 40% (3620 kJ/mol liquefied compared to 5750 

kJ/mol liquefied for low and high RH experiments, respectively).  

3.6.2.4. Advantages of Carrier Gas Recirculation 

The major advantage of carrier gas recirculation is that it minimizes the need for 

conditioning of the inlet gas during manufacturing operations and therefore reduces the energy 

used to capture and recover low concentration organic gases. The energy reduction from 

operating in recycle mode compared to normal mode ranged from 2.5 to 26%. As discussed in 

the previous sections, there are operational modifications that could be made to improve the 

energy benefits of carrier gas recycle including reducing the dependence on make up air with 

instrumentation modifications, supplying N2 instead of air to maintain system pressure control, 

and heating the adsorption vessels to reduce water vapor loss. If some or all of these 

techniques were implemented, the GRS operating in recycle mode under ideal conditions has 
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the potential to reduce the total energy used by the system by 38% for high RH conditions and 

25% for low RH conditions.  

3.7. System Operation Improvement Strategies 

As discussed in previous sections, improving the GRS performance is critical to 

improving the economics of the system. Improvement strategies implemented in this research 

included physical as well as operational changes. Physical changes that were made included 

reducing the adsorption vessel volume, increasing the amount of ACFC in the vessel, and 

reducing the volume of the post-desorption plumbing and pressure vessel. Operational changes 

resulted from systematic exploration of the effect of certain parameters on the performance of 

the system such as ACFC temperature and heating and compression times during desorption. 

The primary focus of this research was on isobutane, so while other adsorbates were tested and 

the performance of the GRS for those adsorbates was determined, that performance was not 

optimized for each of those adsorbates as it was for isobutane. A similar, parametric approach 

to that used with isobutane could be taken to optimize the GRS performance for any adsorbate 

of interest. 

3.7.1. Optimization with Multi-Component Gas Streams 

While the VaPRRS was previously shown to be able to capture a mixture of toluene and 

methyl isobutyl ketone, no ACFC-ESA system has ever been optimized for mutli-component gas 

streams (95). Optimizing the GRS performance for multiple adsorbates is necessarily more 

complex than optimizing its performance for a single component. For instance, consider a 

carrier gas with both isobutane and water vapor (Sec 3.6): while raising the ACFC temperature 

during adsorption may increase the amount of water vapor that is recycled, it would also likely 

decrease the adsorption capacity of the system for isobutane. In such cases, the goals related 

to each individual component must be balanced with the other performance goals. Again, a 

parametric approach could be useful such that certain parameters are held constant while 
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others are varied and the GRS performance is quantified. While optimization of the system 

during multi-component operation was not part of this research, it is an obvious extension of this 

work that would be worth pursuing. 
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4. SUMMARY AND CONCLUSIONS 

4.1. Research Summary 

This research had three major objectives surrounding the development and 

characterization of a bench-scale adsorption system that combines an activated carbon fiber 

cloth (ACFC) adsorbent, electrothermal swing adsorption (ACFC-ESA) and post-desorption 

treatment for capturing and recovering low boiling point organic compounds. These three 

objectives were achieved as described in the preceding sections. 

4.1.1. Develop and Test a Bench-Scale ACFC-ESA System with Post-desorption 
Treatment 

An ACFC-ESA system with post-desorption treatment was developed to capture low 

boiling point organic compounds and recover them as liquids. The bench-scale system was 

tested with isobutane as a model compound and characterized with mass and energy balances 

which showed that isobutane was captured with greater than 99% capture efficiency and 

required heating and compression energies of 2100 – 3150 kJ/mol of liquid isobutane 

recovered. This is a significant advancement over previous technology because it expanded the 

range of compounds that can be captured and recovered with ACFC-ESA from those with 

boiling points between 50-100°C to those with boiling points below 40°C.  

4.1.2. Evaluate and Characterize ACFC-ESA System with Post-desorption Treatment 

The second objective of the proposed work was to evaluate the bench-scale ACFC-ESA 

system with post-desorption treatment using mass and energy balances for several organic 

compounds that span a range of boiling points and have different functional groups. The 

compounds of interest in addition to isobutane were n-butane, R134A, and dichloromethane, 

which have boiling points that span 50°C. Extensive testing with n-butane and R134A was done, 

however DCM was experienced to be too chemically aggressive for safe and reliable testing 

with the GRS. Results showed that, in addition to isobutane, n-butane and R134A could both be 
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captured and recovered as liquids by the GRS with relative pressures ranging from 8.3x10-5 to 

3.4x10-3. The heating and compression energy to achieve liquid recovery ranged from 103 – 

5x105 kJ/mol liquefied.  

Models to describe the concentration of adsorbate generated during desorption were 

also developed. These models used adsorption isotherms measured as part of this research 

and helped explain experimental data that showed how the energy required to capture and 

liquefy isobutane was a function of ACFC temperature and ACFC heating time. This contribution 

is important to more fully evaluate the general applicability of this new technology and 

benchmark its performance with existing technologies.  

4.1.3. Conduct Multicomponent Adsorption with Carrier Gas Recirculation for Improved 
System Sustainability 

The final objective of this work was to use the bench-scale ACFC-ESA system to capture 

isobutane from a carrier gas with relative humidities ranging from 5-80% while maintaining the 

water vapor concentration of the carrier gas and reducing the O2 concentration in the carrier 

gas. These results showed that the GRS operated with greater than 99% capture efficiency for 

isobutane in low and high humidity carrier gases. In addition, 100% of the water vapor was 

maintained in the carrier gas for low humidity carrier gases and 60% of the water vapor by mass 

was maintained in high humidity carrier gases, which will significantly reduce the amount of 

humidification necessary in an industrial setting. Finally, the steady state oxygen concentration 

in the GRS was lowered from 19.5% to 16% by implementing carrier gas recirculation, which will 

reduce the need for N2 to safely operate the GRS. With changes to the instrumentation or scale 

of the system, the steady state oxygen concentration could be further reduced. These factors 

combined resulted in significantly less energy use by the GRS in recycle mode compared to 

normal operation (4230 and 5750 kJ/mol, respectively). This new ability to recycle the carrier 

gas stream represents an improvement in system sustainability and a reduction in operating 
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costs because it reduces the need for re-humidification, reduces the N2 demand of the system, 

and significantly reduces the energy required by the system.  

4.2. Recommendations for Future Research 

There are several avenues for expansion of this research, which fall into two main 

categories: improving understanding of adsorption/desorption behavior of adsorbates on the 

GRS and improving GRS performance. In the former category, models developed in this and 

other research could be modified to include the adsorption of water vapor and other secondary 

adsorbates on ACFC to better predict performance under realistic operating conditions. While 

this has been done for organic vapors (28) it has not been done for organic gases, such as 

those explored in this research. In addition, the models could be modified to take into account 

carrier gas recirculation and/or desorption gas recirculation to more accurately represent the 

GRS. This would involve modifying the concentration of organic gas in the modeled adsorption 

gas based on the concentration of organic gas during desorption and in the pressure vessel. 

In the latter category, as noted above, performance optimization would be an obvious 

next step for the GRS, especially with respect to multi-component operation. This could take 

place via parametric testing of select variables that are known to affect GRS performance (e.g., 

heating and compression time). The GRS performance could be also improved through 

examination of ways to increase the effective adsorption capacity of the GRS, such as draining 

the liquid isobutane collected during operation to minimize the amount of desorbed gas that gets 

recycled back to adsorption and improving the desorption gas collection algorithm to ensure 

capture of the most highly concentrated gas stream possible. The ACFC or the entire GRS 

could also be heated to reduce the competitive adsorption with water vapor experienced at high 

relative humidities. In addition, the heating algorithm could be modified to allow for a faster 

increase in ACFC temperature, which was shown in the modeling results reported here to result 

in higher isobutane concentrations during regeneration. Furthermore, exploration of the GRS’s 



 

 108 

physical parameters, such as location of adsorption vessel inlets and outlets and the ratio of 

ACFC cartridge volume to adsorption vessel volume could enhance the performance of the 

GRS. Finally, as noted in the results and discussion, reducing the ratio of makeup air to N2 flow 

could greatly improve the energy and material costs related to N2. This could be achieved by 

scaling up the GRS or modifying or eliminating the gas monitoring equipment or, in another 

scenario, replacing the air in the carrier gas with N2 at the start of the experiment to remove 

oxygen from the system entirely.  

With increased understanding of system performance and improvements of that 

performance, the GRS and the ACFC-ESA technology will become more attractive and relevant 

to industries faced with increasing emissions standards and pressure to reduce costs. 
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APPENDIX A 

A.1 Nomenclature 

Variable Definition 

1Χυ first-order molecular connectivity index 

A Yaws correlation constant 

a amount of water adsorbed at corresponding Pi/Pis 

Acond Surface area for conduction 

Aconv Surface area for convection 

Arad Surface area for radiation 

a0 DS-4 fitting parameter 

A1 Antoine correlation constant 

A2 Antoine correlation constant 

A3 Antoine correlation constant 

A4 Antoine correlation constant 

A5 Antoine correlation constant 

α thermal coefficient limiting adsorption 

b Langmuir affinity constant 

B Yaws correlation constant 

C Yaws correlation constant 

c DS-4 fitting parameter (eq. 1.8) 

c concentration in the gas phase (ppmv) 

cp heat capacity 

cpf heat capacity of fittings 
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cpg heat capacity of carrier gas 

cpl heat capacity of liquid adsorbate 

cps heat capacity of adsorbent 

cpv heat capacity of gaseous adsorbate 

ΔHs isosteric heat of adsorption 

Δhvap,T enthalpy of vaporization at temperature T 

E characteristic adsorption energy of the adsorbate 

Ecompress energy required for compression of the desorbed gas 

Eheating energy required for electrothermal regeneration 

Esys total energy used by the system 

ε emissivity of ACFC 

h convective heat transfer coefficient 

IRMS root mean square current 

k DQSAR parameter that depends only on the adsorbate 

k  conductive heat transfer coefficient 

kDS-4 DS-4 correlation constant 

kf Freundlich correlation constant 

kQHR QHR correlation constant 

L length of conduction 

LUB length of unused bed 

ml condensate mass in control volume 

Mliq mass of liquid adsorbate collected 

ms mass of adsorbent 
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Mt,ads mass of adsorbate adsorbed when ti = tads 

Mti mass of adsorbate desorbed at time ti 

mti-1 average mass of adsorbate that has desorbed from t0 to ti-1 

Mtot total mass supplied to the system during the experiment 

Mvap mass of adsorbate in the vapor phase of the system 

mvessel,total total mass of gas in the adsorption vessel 

Mw molecular weight 

mf mass of fittings 

mwater,ads 
mass of water in the adsorption gas stream 

mwater,des mass of water desorbed 

n Freundlich correlation constant 

P atmospheric pressure 

Pc critical pressure 

P50 
isotherm constant defined when q = q50 (the amount 
adsorbed when the outlet concentration is 50% of the inlet 
adsorbate concentration during a breakthrough curve) 

Pi partial pressure of the adsorbate 

Pis  saturation partial pressure of the adsorbate 

Ptot total pressure in the vessel 

q amount of adsorbate adsorbed on the adsorbent  

Qg flow rate of carrier gas 

QN2 flow rate of N2 during desorption 

QN2,low low flow rate of N2 during desorption (0.5 SLPM) 

QN2,high high flow rate of N2 during desorption (0.5 SLPM) 
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qt=0 amount of adsorbate adsorbed at the start of desorption 

Qtot total gas flow rate during desorption 

 !q  

dq/dt 

q0 limiting adsorption capacity 

qs 

amount of adsorbate adsorbed on the adsorbent at 

saturation 

R ideal gas constant 

ρ density of the adsorbed material (assumed to be bulk liquid 
density) 

ρg density of carrier gas 

ρb gas density at the boiling temperature 

ρc gas density at the critical temperature 

ρl density of liquid adsorbate  

σ Stefan-Boltzmann constant 

t fitting parameter (eq. 1.2) 

t time 

tads duration of the adsorption cycle 

tdesorp duration of the regeneration process 

tlow 
total desorption time when low flow rate (0.5 SLPM) N2 
was flowing 

thigh 
total desorption time when high flow rate (3.5 SLPM) N2 
was flowing 

ti 
time at which the adsorption outlet concentration during a 
breakthrough curve has reached i% of the inlet 
concentration 

T absolute temperature 
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!TACFC  dTACFC/dt 

T∞ ambient temperature 

Tb boiling temperature 

Tc critical temperature 

TPR throughput ratio 

V volume of the vessel 

VPA Wagner correlation constant  

VP_B Wagner correlation constant 

VP_C Wagner correlation constant 

VP_D Wagner correlation constant 

VRMS root mean square voltage 

W volume of adsorbate per mass of adsorbent 

W0  limiting micropore volume 

x 1-T/Tc 

yi mole fraction of component i 

yi(t) mass of isobutane desorbed in time step / total mass of 
gas in vessel in time step 

yin concentration of the adsorbate in the inlet gas stream 
(mole fraction) 

yout concentration of the adsorbate in the outlet gas stream 
(mole fraction) 

 

A.2 Cooling Energy Analysis 

The energy required for cooling the desorption gas stream can be calculated using one 

of several methods. The first method is to consider the total power consumed by the cryogenic 

cooler that is used to chill the glycol/water mixture surrounding the pressure vessel (actual 
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conditions for bench-scale). The second method is to consider the total energy required to 

maintain the glycol/water mixture at a given temperature including heat lost to the ambient 

atmosphere and the cooling requirement to cool and condense the N2/adsorbate desorption gas 

stream (100% efficiency for cooling with 16 L glycol/water bath). The third method is to consider 

only the cooling requirement to chill and condense the N2/adsorbate desorption gas stream for 

an adiabatic device. However, analysis of the cooling energy determined using the third method 

above showed that the cooling component of the total energy when considering experiments 

with the first through third generation GRS is 1-3% of the total energy requirement (20 kJ/mol 

compared to 700-1200 kJ/mol for heating (75). 

A.3 Energy Required to Overcome Pressure Drop 

Assuming: 

1. Gas velocity into and out of the GRS is constant 

2. There is no enthalpy change between the inlet and outlet of the GRS 

3. Gas density is constant 

 

Power =Q ΔP( )  

where ΔP  is the pressure drop across the ACFC cartridge, which was measured to be 7 

inH2O when the flow rate through the GRS was 50 SLPM. Converting the  pressure drop to Pa 

and the flow rate to sm3/s, one can determine the power required to overcome the pressure 

drop. 

Power = 8.33x10−4 sm3

s
1742Pa = 1.16 J

s
 

Multiplying by the total time for an experiment and dividing by the total adsorbate 

liquefied during the experiment, one can obtain the total energy required to overcome the 

pressure drop per mole liquid recovered. For example, during an experiment conducted on May 
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3, 2012, the experiment ran for 347 min and 53.4 g of isobutane was liquefied. This is equivalent 

to 26.3 kJ/mol liquefied being used to overcome the pressure drop through the ACFC cartridges. 

The total energy used by the heating and compression systems for this experiment was 2,000 

kJ/mol liquefied. The energy to overcome the pressure drop is less than 2% of the total energy 

used by the system. 

A.4 Calculation of derivatives of interest for modeling the desorption process. 

From equation 2.11 in section 2.8.1 
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The time derivatives of the temperature can be found from experimental data or from 

artificially created data (used to test different scenarios). All other derivatives must be derived 

from the DR and Antoine Equations (below). In particular, the following derivatives are required 

(note that T has replaced TACFC for simplicity): 
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The DR Equation is: 
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and W and W0 can be replaced by q and q0 knowing the following relationships:

 

q = ρLW
q0 = ρLW0  

to give: 

q = q0 exp −
RT ln Pis
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The Antoine Equation is: 

Pis = exp A1 +
A2

T
+ A3 ln T( ) + A4T

A5⎛
⎝⎜

⎞
⎠⎟  

Rearrange the DR equation to solve for Pis
Pi
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According to Dalton’s Law: 

 
y =

Pi

Ptot

 

 



 

 117 

To obtain an expression for y, divide the Antoine equation by the rearranged DR 

equation and Ptot:

y =
exp A1 +

A2

T
+ A3 ln T( ) + A4T A5⎛

⎝⎜
⎞
⎠⎟

Ptot exp
E
RT

− ln q
q0

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

=

exp A1 +
A2

T
+ A3 ln T( ) + A4T A5 − E

RT
− ln q

q0
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

Ptot

  

from this equation, the derivatives of y with respect to T and q can be determined.

 

 

Recalling the exponential rule for derivatives: 

 

deu

dx
= eu du

dx
 

 

  

dy
dT

=

exp A1 +
A2

T
+ A3 ln T( ) + A4T

A5 − E
RT

− ln
q
q0

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ptot

−
A2

T 2 +
A3

T
+ A4 A5T

A5−1 − E
RT 2 − ln

q
q0

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

dy
dq

=

exp A1 +
A2

T
+ A3 ln T( ) + A4T A5 − E

RT
− ln q

q0
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

Ptot
E

2RTq − ln q
q0

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 

Use the equation for y to solve for 
  

1
1− y  

  

1
1− y

= 1

1−
Ptot

exp A1 +
A2

T
+ A3 ln T( ) + A4T

A5 − E
RT

− ln
q
q0

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  
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Use the symbolic method in MATLAB (v. 2013a) to determine 
  

d 1
1− y

⎛
⎝⎜

⎞
⎠⎟

dT and   

d 1
1− y

⎛
⎝⎜

⎞
⎠⎟

dq
 

 

d 1
1− y

⎛
⎝⎜

⎞
⎠⎟

dT
=

−Ptot exp
E − log q

q0
⎛
⎝⎜

⎞
⎠⎟

RT
− A2

T
− A3 log T( )− A4T A5 − A1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

A3

T
− A2

T 2 + A4A5T
A5−1( ) +

E − log q
q0

⎛
⎝⎜

⎞
⎠⎟

RT 2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Ptot exp
E − log q

q0
⎛
⎝⎜

⎞
⎠⎟

RT
− A2

T
− A3 log T( )− A4T A5 − A1

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

2
 

 

 

 

  

d
1

1− y
⎛
⎝⎜

⎞
⎠⎟

dq
=

−Ptot exp

E − log
q
q0

⎛
⎝⎜

⎞
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RT
−

A2

T
− A3 log T( )− A4T

A5 − A1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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q
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E − log
q
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⎛
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RT
−
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T
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⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
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⎟
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A.5 MATLAB® Code 

%This code is written to determine the rate of desorption of isobutane from 
%ACFC-15 during electrothermal regeneration using a combination of mass and 
%energy balances. 
  
clear all 
close all 
clc 
  
%Define the temperature profile we wish to determine the results for. 
 %Read in temperature data from excel 1st column is time (seconds) 2nd column 
    %is temp (K).  
   
   TimeTemp = xlsread('042413_Iso_TempData.xls'); 
     
    Time = TimeTemp (:,1); 
    Temp = TimeTemp(:,2); 
    
%-------------------------------------------------------------------------- 
%Find fitting parameters for temperature data with a polynomial of defined 
%order 
PolyOrder = 3; 
FittingParams = polyfit(Time, Temp, PolyOrder); 
  
  
%General parameters 
P = 1; %pressure in atm 
Ptot = P*101325; %total system pressure in Pascals 
Rconst1 = 0.08206; %L-mol/atm-K gas constant 
Rconst2 = 8.31; %J/mol-K gas constant 
T0 = 293; %K initial temperature in the system ~20C 
Tinf = T0; %temperature far away from vessel (room temp) 
t_init = Time(1); %intial time 
t_final = Time(length(Time)); % seconds final time for analysis (4 minutes) 
TimeSpan = [t_init, t_final]; %defines the time span for analysis 
Boltzmann = 5.67 * 10^(-8); %W/m^2-K^4 Boltzmann constant 
  
%------------------------------------------------------------------------- 
  
V_vessel = 1.436; %L - volume of adsorber see pp 289 of lab notebook #2 
  
  
  
%------------------------------------------------------------------------- 
%Purge Gas parameters 
QN2 = 0.5; %SLPM- flow of nitrogen during regeneration 
LowFlowN2Time = 300; %Time in seconds that low flow N2 + heating is occurring 
QN2_high = 3.5; %SLPM - high flow N2 flow rate 
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MW_N2 = 28; %g/mol 
  
  
%------------------------------------------------------------------------- 
%Isobutane parameters 
MW_iso = 58.12; %g/mol molecular weight of isobutane 
rho_l_iso = 0.598; %g/cm^3 density of the liquid phase at 20C (source: Perry's p2-31) 
 
W0 = 0.543; %cm^3/g ACFC; DR parameter for isobutane on ACFC-15 determined with 
isotherms 
 
q0 = W0*rho_l_iso; %g iso/g ACFC; DR parameter found by multiplying W0 by rhoL 
 
E = 19575; %J/mol; DR parameter for isobutane on ACFC-15 determined with isotherms 
 
Ci = 2000; %inlet concentration of isobutane in ppmv 
 
Piso = Ci/10^6 * 101325; %partial pressure of isobutane in Pascals 
 
reduc = 0.36; %Reduction in adsorption capacity between real system and isotherm model. 
Based on experiments with GRS 
 
q0mod = reduc*q0;%Reduces the q0 value by the reduction multiplier 
  
%Antoine Constants for Isobutane: Ps = exp(A1+A2/T+A3lnT+A4T^A5) gives pressure in Pa if T 
is in K: 
    A1 = 100.18; 
    A2 = -4814.9; 
    A3 = -13.541; 
    A4 = 0.0201; 
    A5 = 1;  
 
%Antoine equation  
Pis = exp(A1+A2/T0 + A3*log(T0) + A4*(T0)^A5); 
  
qiso_0 = q0mod*exp(-(Rconst2*T0*log(Pis/Piso)/E)^2); %Determine the initial amount of 
isobutane adsorbed based on the DR equation 
  
%------------------------------------------------------------------------- 
%ACFC parameters 
  
m_ACFC = 115; %g of ACFC per vessel  
  
%Determine the adsorbed amount at the given time and loading 
  
ADS_AMOUNT = @(t, q) AdsorbedAmount(t, q, A1, A2, A3, A4, A5, Rconst1, Rconst2,... 
    MW_iso, Ptot, V_vessel, QN2, m_ACFC, q0mod, E, FittingParams, PolyOrder); 
    
options = odeset(odeset('RelTol', 1e-4, 'AbsTol', 1E-5));     
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%use an ODE solver and provides a matrix of time and q using the function AdsorbedAmount 
[TimeOut,qCalc] = ode45 (ADS_AMOUNT, TimeSpan, qiso_0, options);  
  
%Set up variables for results 
Y = zeros(1, length(TimeOut)); 
m = zeros(1, length(TimeOut)); 
Q = zeros(1, length(TimeOut)); 
MassLeaving=zeros(1,length(TimeOut)); 
Yavg = zeros(1, length(TimeOut)); 
index = find(TimeOut > LowFlowN2Time); %Find the indices of the TimeOut... 
    %matrix where the values of TimeOut are greater than the LowFlowN2 Time 
     
for i = 1 : length(TimeOut) 
     
    %This if statement determines if we're in the low or high flow N2 range. 
    %If in the low flow, the total amount of N2 through the system is 
    %simply the low flow rate times the total time. If we're in the high 
    %flow rate, the total N2 through the system is the amount that flowed 
    %through during low flow plus however much has flowed during high flow 
    %so far. 
    if i < index(1) 
        QN2_used = QN2; 
        Q(i) = (QN2_used/60) * (TimeOut(i)); %total vol of N2 that has left the vessel 
    else 
        QN2_used = QN2_high; 
        Q(i) = Q(index(1)-1) + (QN2_used/60)*(TimeOut(i)-LowFlowN2Time); 
        
    end 
     
    Z = MW_iso * P / (Rconst1 * T0); 
     
    m(i) = m_ACFC*(qCalc(i) - qCalc(1)); %mass of isobutane that has left the ACFC at time i 
     
         
    if i ==1 
            Yavg(i) = 0; 
            
    else 
            Yavg(i) = mean(Y(1:(i-1))); %calculates the average concentration of isobutane that has 
left the vessel with the nitrogen 
             
            
    end 
   
     
    Y(i) = (- m(i) - (Z*Yavg(i)/(1-Yavg(i)))*(Q(i)))/(Z*V_vessel);  
     
    %Contrain results to be between zero and 1 
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    if Y(i)>1 
        Y(i)=0.99; 
    else if Y(i)<0 
            Y(i)=0; 
        else Y(i)=Y(i); 
        end 
    end 
           
    %outlet isobutane concentration = mass that has left the ACFC - average 
    %amount that has left the vessel (comes from mass balance)  
    %knowing yiso+ yN2 = 1; iso_generated = totalmolesout * yiso,out 
%      
end 
  
  
%Finds T of cloth given the time based on an earlier fitting of the T vs t 
%data 
T = zeros(1,length(TimeOut)); 
  
for j = 1:length(TimeOut) 
     
    for i = 1:length(FittingParams) 
            
          T(j) = T(j) + FittingParams(i)*TimeOut(j)^(PolyOrder-i+1); 
           
     
    end 
end 
  
TempC = Temp - 273.15; 
  
  
%%Plotting data generated 
  
plot(TimeOut, Y, 'k','LineWidth',1.1) 
  
  
hold on 
xlabel('time (seconds)', 'fontsize', 14) 
ylabel('Isobutane Outlet Concentration (mol frac)', 'fontsize',14) 
%title('Isobutane Concentration with Time') 
axis([0 TimeOut(length(TimeOut)) 0 1]) 
  
  
  
figure(2) 
[ax, h1, h2]=plotyy(TimeOut,Y, Time, TempC); %plots isobutane concentration out and temp on 
same plot 
hold on 
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legend('Isobutane Mole Fraction', 'ACFC Temp','Location','NorthWest') 
xlabel('time (s)', 'fontsize', 14) 
  
axes(ax(1)); ylabel('Isobutane Outlet Concentration (mol frac)', 'fontsize',14,'color','black'); 
axes(ax(2)); ylabel('ACFC Temp (\circC)','fontsize',14); 
box(ax(1),'off') 
set(h1,'LineWidth',1.1,'LineStyle','-','color','black'); 
set(h2,'LineWidth',1.1, 'LineStyle','--','color','black'); 
set(ax(1),'ylim',[0 1], 'YTick', linspace(0,1,11),'ycolor','k','fontsize',12) 
set(ax(2),'ylim',[20 160],'YTick', linspace(20,160,8),'ycolor','k','fontsize',12) 
  
  
 
 
function dqdt = AdsorbedAmount(t, q, A1, A2, A3, A4, A5, Rconst1, Rconst2,... 
    MWads, Ptot, V_vessel, QN2, m_ACFC, q0, E, FittingParams, PolyOrder) 
     
%differential equation to determine q as a function of T, which will be fed 
%in to the MATLAB function ode45 
%dq/dt = (-PVMw/RT * dy/dT*dT/dt - WPMwy/RT)/(PVmw/RT *dy/dq - ms) 
%T values must be in kelvin, Ptot in Pa 
  
T0 = 293; 
T_N2 = 298; 
  
Ptot_atm = Ptot/101325; %converts pressure in Pa to atm 
  
T = 0; %initialize the temperature T as 0 before calculating 
  
%Finds T of cloth in K given the time based on an earlier fitting of the T vs t 
%data 
for i = 1:length(FittingParams) 
     
    T = T + FittingParams(i)*t^(PolyOrder-i+1); 
     
end 
  
  
R = Rconst2; 
  
  
Pis = exp(A1+A2/T+A3*log(T)+A4*T^(A5)); % saturated isobutane pressure (Pa) at T 
  
Pads = Pis/(exp((-log(q/q0))^(0.5)*E/(R*T))); %Partial pressure of adsorbate given q and T (Pa) 
  
Y = Pads/Ptot; 
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%Calls function DeltaYDeltaTemp,DeltaYDeltaq, and DeltaTDeltat 
%to determine the change in gas phase concentration with temperature, the 
%change in gas phase concentration with adsorbed amount, and the change 
%ACFC temperature with time. 
  
  
dYdT = DeltaYDeltaTemp(A1, A2, A3, A4, A5, T, R, Ptot, E, q0, q); 
    
dYdq = DeltaYDeltaq(A1, A2, A3, A4, A5, T, R, E, q0, Ptot, q); 
  
dTdt = DeltaTDeltat(FittingParams, PolyOrder, T, t); 
  
dYinvdT = DeltaYInverseDeltaT(A1, A2, A3, A4, A5, T, R, Ptot, E, q0, q); 
  
dYinvdq = DeltaYInverseDeltaq(A1, A2, A3, A4, A5, T, R, Ptot, E, q0, q); 
  
  
Z1 = Ptot_atm*MWads/(Rconst1*T); %defines a common constant  
Z2 = Ptot_atm*MWads/(Rconst1*T_N2); 
  
  
  
dqdt = (-Z1*V_vessel*dYdT*dTdt - Z2*QN2*((1/(1-Y))*t*dYdT*dTdt + Y*t*dYinvdT*dTdt+Y/(1-
Y)))... 
    /(m_ACFC + Z1*V_vessel*dYdq + Z2*QN2*((1/(1-Y))*t*dYdq + Y*t*dYinvdq)); 
 
 
function dYdT = DeltaYDeltaTemp(A1, A2, A3, A4, A5, T, R, Ptot, E, q0, q) 
%This function determines the change in gas phase mole fraction of isobutane as a funciton 
%of temperature assuming that the DR and Antoine equations are applicable. 
%A1 through A5 are Antoine constants, T is the temp in K, R is the gas 
%constant in J/mol-K, Ptot is the total system pressure in Pascals 
%E is the adsorption energy term from the DR equation 
%q0 is the max adsorptionc capacity from the DR equation in g / gACFC and q 
%is the adsorption capacity at T = T from the DR equation g / gACFC 
  
dYdT = (exp(A1 + A2/T + A3*log(T) + A4*T^A5 - (E*(-log(q/q0))^(1/2)) / (R*T))     * (A3/T - 
A2/T^2 + A4*A5*T^(A5 - 1) + (E*(-log(q/q0))^(1/2))/(R*T^2)))/Ptot; 
 
 
 
function dYdq = DeltaYDeltaq(A1, A2, A3, A4, A5, T, R, E, q0, Ptot, q) 
%This function determines the change in gas phase concentration as a funciton 
%of adsorbed mass assuming that the DR and Antoine equations are applicable. 
%A1 through A5 are Antoine constants, T is the temp in K, R is the gas 
%constant in J/mol-K, E is the adsorption energy term from the DR equation 
%and q0 is the max adsorptionc capacity from the DR equation in g / gACFC 
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%%The equation below was found using MATLAB symbolic function 
  
dYdq = (E*exp(-(E*(-log(q/q0))^(1/2))/(R*T))*exp(A1 + A2/T + ... 
    A3*log(T) + A4*T^A5))/(2*Ptot*R*T*q*(-log(q/q0))^(1/2)); 
 
 
 
function dTdt = DeltaTDeltat(FittingParams,order, T, t) 
%this function cacluates dTdt given the fitting parameters for the data of 
%temp versus time, the order of the fitting equation, and the temperature 
%(K) 
  
if t == 0 
    dTdt = 0; 
else 
     
DiffCoeff = zeros(1,length(FittingParams-1)); 
  
dTdt = 0;  
for i = 1 : length(FittingParams-1) 
     
    DiffCoeff(i) = (order-i+1)*FittingParams(i); 
     
    dTdt = dTdt + DiffCoeff(i)*t^(order-i); 
     
end 
end 
 
 
function dYinvdT = DeltaYInverseDeltaT(A1, A2, A3, A4, A5, T, R, Ptot, E, q0, q) 
  
%This function determines the change in the function 1/(1-y) as a function 
%of T assuming that the DR and Antoine equations are applicable. 
%A1 through A5 are Antoine constants, T is the temp in K, R is the gas 
%constant in J/mol-K, E is the adsorption energy term from the DR equation 
%and q0 is the max adsorption capacity from the DR equation in g / gACFC 
  
 
dYinvdT = -(Ptot*exp((E*(-log(q/q0))^(1/2))/(R*T) - A2/T - A3*log(T) -...  
A4 * T ^ A5 - A1)*(A3/T - A2/T^2 + A4*A5*T^(A5 - 1) +... (E*(log(q/q0))^(1/2)) /(R*T^2)))/ 
(Ptot*exp((E*(-log(q/q0))^(1/2))/ ...  
(R*T) - A2/T - A3*log(T) - A4*T^A5 - A1) - 1)^2; 
  
 
function dYinvdq = DeltaYInverseDeltaq(A1, A2, A3, A4, A5, T, R, Ptot, E, q0, q) 
  
%This function determines the change in the function 1/(1-y) as a function 
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%of adsorbed mass assuming that the DR and Antoine equations are applicable. 
%A1 through A5 are Antoine constants, T is the temp in K, R is the gas 
%constant in J/mol-K, E is the adsorption energy term from the DR equation 
%and q0 is the max adsorption capacity from the DR equation in g / gACFC 
 
dYinvdq = -(Ptot*exp((E*(-log(q/q0))^(1/2))/(R*T) - A2/T - A3*log(T)... 
    - A4*T^A5 - A1)*(A3/T - A2/T^2 + A4*A5*T^(A5 - 1) + ... 
    (E*(-log(q/q0))^(1/2))/(R*T^2)))/(Ptot*exp((E*(-log(q/q0))^(1/2))/... 
    (R*T) - A2/T - A3*log(T) - A4*T^A5 - A1) - 1)^2; 
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