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Abstract

Professional social networks (PSNs) play the key role in the online social media ecosystem, generate hun-

dreds of terabytes of new data per day, and connect millions of people. To help users cope with the scale

and influx of new information, PSNs provide search functionality. However, most of the search engines

within PSNs today still provide only keyword queries, basic faceted search capabilities, and uninformative

query-biased snippets overlooking the structured and interlinked nature of PSN entities. This results in

siloed information, inefficient results presentation, and suboptimal search user experience (UX). In this the-

sis, we reconsider and comprehensively study input, control, and presentation elements of the search user

interface (SUI) to enable more effective and efficient search within PSNs. Specifically, we demonstrate that:

(1) named entity queries (NEQs) and structured queries (SQs) complement each other helping PSN users

search for people and explore the PSN social graph beyond the first degree; (2) relevance-aware filtering

saves users’ efforts when they sort jobs, status updates, and people by an attribute value rather than by

relevance; (3) extended informative structured snippets increase job search effectiveness and efficiency by

leveraging human intelligence and exposing the most critical information about jobs right on a search engine

result page (SERP); and (4) non-redundant delta snippets, which different from traditional query-biased

snippets show on a SERP information relevant but complementary to the query, are more favored by users

performing entity (e.g. people) search, lead to faster task completion times and better search outcomes.

Thus, by modeling the structured and interlinked nature of PSN entities, we can optimize the query-refine-

view interaction loop, facilitate serendipitous network exploration, and increase search utility. We believe

that the insights, algorithms, and recommendations presented in this thesis will serve the next generation

designers of SUIs within and beyond PSNs and shape the (structured) search landscape of the future.
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Chapter 1

Introduction

“The greatest pay-off for information science will come if and when it

successfully integrates systems and users research.”

— Dr. Tefko Saracevic, Gerard Salton Awardee ’1997

Long ago researchers recognized the importance of social networks and started to study their emergent

properties [24] such as diffusion of innovations [104], resilience to shocks [95], and information propaga-

tion [156], to name just a few. In the last two decades modern technologies, notably wikis, email, and real-

time messaging, further enhanced the power of social networks in information dissemination [31,48,55,148],

viral marketing [23, 35, 73], network search [1], expert search [71, 160] and led to the emergence of a new

concept — an online social network (OSN). OSNs made the revolution in the way people communicate with

each other by connecting millions of individuals on the same platform, simplifying maintenance of connec-

tions with significantly more individuals (weak ties [47]) than it is evolutionary possible [39], and enabling

many engaging and useful applications such as photo sharing, real-time chatting, virtual collaboration, etc.

As we spend most of our time at work and professional activities represent such a significant part of our

life, professional networking has gotten into prominence, and dedicated professional social networks (PSN)

have become a sweet spot in the OSN ecosystem. PSNs are especially valuable since weak ties play a crucial

role in professional networking and job search [47], i.e. PSNs can be considered as a “killer application” for

online social networking. Thus, LinkedIn, undoubtedly the largest PSN, has grown ten times in the last five

years and connected more than 433 million professionals1 as of May 2016. Likewise, Facebook, less often

considered as a PSN but still actively used for this purpose [4,15,33,115], has grown three times since 2010

and scored 1.65 billion monthly active users2 as of March 31, 2016. And, according to Reid Hoffman [56]3,

Tim O’Reilly [96]4, and many other network thinkers, value is yet to come as OSNs, PSNs, and, more

broadly, networked platforms grow, densify [77], and penetrate deeper into our society.

1https://press.linkedin.com/about-linkedin
2http://newsroom.fb.com/Key-Facts
3A co-founder of LinkedIn and Chair of the Board.
4The founder and CEO of O’Reilly Media and one of the key Web 2.0 evangelists.
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Figure 1.1: Existing job SUIs: (A) LinkedIn’s SERP for the query ”Job title: Software Engineer; Location:
New York” as of June 2016. (B) LinkedIn’s SERP for the query ”Data Mining” as of March 2013.

People use PSNs to quickly share personal and professional updates, participate in topical discussions

in groups, form partnerships, post jobs, and market their services. This ease of content production enabled

by Web 2.0 technologies and coupled with the scale of PSNs have resulted in the exponential growth of

information [70] — popular PSNs generate hundreds of terabytes of new data per day [8, 119,149].

To help users cope with the immense scale and influx of new information, PSNs provide search function-

ality. Below, we present a fictional job search scenario to illustrate this functionality, typical PSN search

tasks, search user interfaces and provide the necessary background for the readers unfamiliar with PSNs.

1.1 Scenario: Search Within Professional Social Networks Today

Alice is a new computer science graduate, and she is looking for a software engineering job in New York. Being

a computer geek, she goes online to conduct her job search. She opens the “Jobs” tab on LinkedIn and sees

the input interface with two fields for a job title and a location. She enters ”Software Engineer” and ”New

York” in the corresponding fields and hits the “Search” button. As output, the job search engine returns a

SERP with ten results (Figure 1.1, A). Each result on the SERP is represented by a snippet containing a

location, a company, a publication date, and a company logo (some job search engines additionally show a

short textual job description, e.g. Figure 1.1, B). The results are quite relevant. However, the SERP is not

informative overall as it is difficult for Alice to discriminate one result from another. It is because the titles

for all retrieved jobs are the same and the snippets repeat information from the query. Therefore, Alice has

to click on each result one-by-one. Many of her clicks might be wasteful.

Next, Alice decides to change her search strategy. Instead of sorting jobs by relevance, she tries to resort

them by date because jobs have very short lifespans and HRs usually more actively reply to the job inquiries
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Figure 1.2: (A) LinkedIn’s job search results for the query “Software Engineer in New York” sorted by
“date”. (B) Indeed’s job search results for the query “Software Engineer in New York” sorted by “date”.
While sorting by relevance is accurate, the results sorted by date are hardly relevant for the query.

about the recent jobs. First, she does this search on LinkedIn (Figure 1.2, A). Unfortunately, the results

shown at the top of the list are hardly relevant to the query when she applies results resorting. Some recently

added but weakly relevant jobs from the bottom of the result list sorted by relevance jump to the top of the

list resorted by date. Trying to avoid this problem, she repeats the same search using the Indeed’s job search

engine (Figure 1.2, B). However, the Indeed’s results sorted by date aren’t relevant, either. It is because

nowadays relevance is not taken into account in such cases or very simplistic heuristics are used (e.g. resort

jobs by an attribute value). Despite all these problems she selects a few jobs interesting for her.

Next, Alice wants to learn more information about the jobs and companies she selected. To accomplish

this, she switches to the LinkedIn’s people search tab and searches for friends who work in relevant com-

panies as software engineers. However, none of her friends work in the companies she selected. Therefore,

rather than looking for friends, she starts looking for friends of friends. For that, she uses faceted search

functionality [132, 152] and applies the “2nd degree” filter by clicking on the corresponding checkbox. She

also specifies a company and a location to make sure that search results match her current search goal.

The search engine successfully returns a list of results (Figure 1.3, A). But it is again difficult for Alice to

differentiate one result from another since all people look the same — they all work at Google as software

engineers and live in New York (the redundant information is highlighted in red). Alice executes the same

people search strategy on Facebook but experiences the same difficulties (Figure 1.3, B).

Suddenly, a friend calls Alice and invites her to attend an invite-only tech event. Alice finds this op-

portunity exciting and decides to join in. During the event she makes new friends and, luckily for Alice,

some of them work at the companies she selected earlier. They commit to answering her career questions.

Unfortunately, she forgets to ask for their names. On the way home, she opens the LinkedIn’s mobile appli-

cation and tries to find these people by describing them using the information she remembers. She specifies

3



Figure 1.3: (A) A LinkedIn’s SERP as of May 2016 for the query “Software Engineer at Google; Location:
Greater New York City Area; Degree: 2nd”; (B) A Facebook’s SERP for the query “Friends of my friends
who work at Google and are Software Engineers and live in New York” as of June 2016.

company, location, and profession filters and hits “Search” (Figure 1.4, A). The search engine returns the

SERP where all results look the same (Figure 1.4, B). Moreover, the original seemingly information-rich

SERP actually presents the very minimal amount of new information as indicated by blank areas on the

modified SERP with the redundant information removed (Figure 1.4, C). Again Alice has to click on each

result one-by-one following the inefficient “hub-and-spoke” SERP interaction pattern.

Eventually, having checked many profiles, Alice finds the people she met at the event, asks the necessary

questions, and decides on her career move. She applies for several software engineering jobs in New York.

Although Alice’s story is fictional, the tasks she engaged in and the attempts she made to satisfy her

information needs illustrate the challenges faced by PSN users today. Based on her example, we can see that

search functionality within PSNs is still very limited, which leads to siloed information and suboptimal search

user experience. The SUI for PSN search resembles the one used for web search, which has minimal number

of elements and is optimized to reduce complexity (a common belief among web search engine designers

is that users are non-experts with very minimal computer skills, and hence, all intelligent work should be

off-loaded to a search system [54], Chapter 1). We still have only a simplistic input interface allowing to

submit keyword queries and a faceted search interface [132,152] allowing to filter results based on attribute

values. The presentation of results is far from perfect. Snippets are generated in a query-biased manner as

it was also found to be useful in a web search scenario [131, 145]. There is a lot of redundancy on a SERP

and it is hard to differentiate one search result from another. The structured and interlinked nature of PSN

entities and unique aspects of structured search5 are ignored or severely underutilized.

In this thesis, we present novel insights, algorithms, and recommendations that address these limitations

and improve UX by increasing search relevance, adding more interactivity, and minimizing users’ efforts.

5when both queries and data are structured and the matching is exact and not probabilistic.
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Figure 1.4: The LinkedIn’s Android mobile app in May 2016: (A) the structured query formulation interface
with the query “Software Engineer at Google; Location: Greater New York City Area; Degree: 3rd+”: (B)
the original SERP; (C) the same SERP with the redundant information removed from the snippets.

1.2 Thesis Statement

Search within PSNs is fundamentally different from web search and traditional information retrieval. First,

PSN entities aren’t independent of each other but form an entity graph, which opens up the opportunity

to utilize the rich graph structure to perform navigation, filtering, and exploration of a social network. For

example, we can search for an entity by expressing constraints on the entities connected to it. Moreover,

since users represent a part of this graph, local graph (sub)structures become as important as the global

structure [18]. Personalization is possible not only based on the history of interactions with a search system

but also based on the neighbourhood structure in the social graph. Second, the units of retrieval in PSNs are

structured and typed entities rather than documents. It allows to perform more accurate semantic analysis

at all stages of the search process such as query formulation, result manipulation, result presentation, and

ranking [19,112,123,146]. Queries could be more expressive and precise, snippets could be more informative,

and PSN users could have more control over the search process. For example, we can perform exact matching,

like in databases (DB), rather than probabilistic, like in information retrieval (IR). In turn, because all results
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exactly match a query, snippets are needed mostly to differentiate the results on the SERP and not to

communicate their relevance. Traditional query-biased snippets create redundancy in the case of people/job

search — information from a query is repeated as an attribute value for each search result (in web search,

if the keywords from a query are repeated, the SERP is still informative since the content is diverse). Plus,

specifically in the case of job search, job postings are quite regular (not applicable for documents on the

web), and hence, rather than showing a generic summary, we can accurately parse job postings and generate

more informative structured snippets helping address specific user tasks and needs. Third, sorting is possible

not only by relevance (typical for web search) but also by an attribute value, e.g. sort by publication date

or salary for job postings, by date for status updates or resumes. Finally, rather than providing services to a

mass market, the PSNs’ target audience are knowledge workers, who are more open to innovation and have

the potential to expend cognitive and physical energy for increased search utility [83, 84, 157]. Therefore,

there are many opportunities that we can leverage to facilitate more effective search within PSNs. We

demonstrate that by modeling the structured and interlinked nature of PSN entities, we can optimize the

query-refine-view interaction loop, facilitate serendipitous network exploration, and increase search utility.

1.3 Research Agenda

The primary motivation for this thesis is to improve search user experience within professional social net-

works. However, as a research agenda, we consider a more specific research question: How can we optimize

search user interfaces and interactions within professional social networks? We focus on the SUI because of

the following reasons. While a lot of work has been dedicated to mining social and information networks [51],

effective ranking and recommendation algorithms [121,122,155], the optimization of SUIs within OSNs and

PSNs, in particular, is still in its infancy. At the same time, several influential IR researchers noted that

“system-driven IR” focused on indexing and ranking algorithms isn’t enough to deliver high-quality search

user experience and called for “user-centered IR”. In his ECIR 2008 keynote Nicholas Belkin6 stressed:

“...it is clearly the case that the new models and associated representation and ranking tech-

niques lead to only incremental (if that) improvement in performance over previous models and

techniques, which is generally not statistically significant (e.g. Sparck Jones, 2005); and, that

such improvement, as determined in TREC-style evaluation, rarely, if ever, leads to improved

performance by human searchers in interactive IR systems...” [10].

6Gerard Salton Awardee 2015 for “significant, sustained and continuing contributions to research in information retrieval”.
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Figure 1.5: FBGS UI: (a) Typeahead, which performs query suggestion for both named entity and structured
grammar queries. It handles named entity queries by sending directly to a clicked entity page. (b) Browse,
which presents results for structured grammar queries as a standard list with links and snippets.

We contribute to this new emerging research topic and invite more IR researchers and practitioners to join

the flock. We use the SUI design framework proposed in [112,146] to frame the research questions.

1.3.1 Improving Input Elements of the Search User Interface

We start our investigation by focusing on query formulation with the goal to understand how can we design

this element of the SUI in a native way taking into account the peculiarities of the search vertical (search

within OSNs and PSNs). In 2013 Facebook introduced its innovative Graph Search product (Figure 1.5)

aiming to take the search user experience to the next level and facilitate exploration of the Facebook Graph

beyond the first degree. Uniquely, Facebook Graph Search (FBGS) allowed users to search for entities

and relationships between entities and, following the terminology from [117,153], supported: (a) interactive

free-text queries, like “Lady Gaga” (navigational queries for one entity by name or Named Entity Queries,

NEQs); (b) interactive structured queries, like “Photos of people who live in China” (exploratory queries for

filtering entities with conditions on attributes; the instances of a rich query grammar or Structured Queries,

SQs); (c) one-shot free-text queries, like “query log mining” (limited to users’ status updates). In other

words, FBGS supported more sophisticated queries and provided more control and agility than traditional

SUIs. In turn, it demanded people to take responsibility for this control by expending cognitive and physical

energy [83, 84]. This made FBGS the very system to study to deepen our understanding of how to search

within a social network and guide the future design of interactive SUIs, especially on graphs.

Inspired by many existing query log studies and being in a unique position to have access to both search

logs and the social graph, we designed this study around the following research questions:
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• RQ1: How does search behavior differ for NEQs and SQs? For example, do people use NEQs to find

different people compared to SQs?

• RQ2: How does search behavior depend on the graph search distance? For example, do people search

more for friends compared to non-friends?

• RQ3: What search patterns are typical for users from various demographics? For example, are women

or men more engaged with Graph Search? What influence does age have on search product usage?

• RQ4: How do people search for people using structured grammar queries?

The work is especially notable because FBGS is the first search engine, which offered structured querying

capabilities for non-engineers at scale. We address RQ1-RQ4 in Chapter 2.

1.3.2 Improving Control Elements of the Search User Interface

Following the information seeking journey, our second step is to improve the control aspects of the SUI.

Specifically, we focus on results (re)sorting by an attribute value, which is important in the context of

PSN search since jobs, people, and other PSN entities are structured and can be sorted based on many

meaningful attributes different from relevance, e.g. sort job postings by time or salary or people by years

of work experience or distance from an office location. As we described in Alice’s scenario, nowadays PSNs

address this aspect in a simplistic manner — they merely resort entities by an attribute value. However,

sorting purely by an attribute value is not the best approach since at the top of the list users might find

irrelevant results (Figure 1.2). It motivates the following two related research questions:

• RQ5(a): Can the quality of results sorted by an attribute value be improved by incorporating relevance

into the ranking process?

• RQ5(b): What is the best way to accomplish it?

Apparently, by adding relevance, we can increase ranking quality. For example, we can combine relevance

with other features of an entity using machine learning. The challenging part of this work is how to increase

ranking quality and satisfy the relative ordering constraints imposed by an attribute value to communicate

to the user that she controls the SUI and the search process, which is impossible to ask from a machine

learning-based solution. In Chapter 3, we address RQ5(a) and RQ5(b) and propose the theoretically

optimal algorithm to perform relevance-aware search results filtering that directly optimizes a given search

quality metric and preserves strict ordering constraints imposed by an attribute value.
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1.3.3 Improving Presentation Elements of the Search User Interface

The next step is to improve the presentation of search results. An ideal search system presents the best results

at the top of the SERP. However, due to complexities of the natural language, such as lexical ambiguity

and vocabulary mismatch, existing systems cannot guarantee perfect retrieval results. Therefore, relevant

results might appear in any position on the SERP. To address this issue, search engines “cooperate” with

the users via intelligent SUIs — on the SERP each result is represented as a title/name and accompanied

with a snippet, which contains the key information about the result in a summarized form. The snippets

serve primarily two purposes: (1) help assess result relevance; (2) help differentiate one result from another.

The de facto method to generate search snippets is based on the extraction of sentences or attributes

containing query terms [60, 131, 136, 139, 145]. Initially introduced for full text search [131], this method is

used nowadays for all sorts of search applications, data formats, and across a wide range of search verticals.

However, such an egalitarian approach might be suboptimal, and some search verticals might benefit from

dedicated solutions. By reasoning from basic principles and analyzing Alice’s scenario, we identified that

query-biased snippets aren’t effective for job and people search — it is very hard to differentiate one result

from another when such snippets are used. Moreover, when the matching is exact (e.g. faceted search), we

observe query-snippet duality, i.e. the longer is the query/filter set, the more redundant and less informative

is the query-biased snippet. This might demotivate users from submitting longer queries, which are known

to be more effective [11]. Therefore, we explored new alternative snippet types, methods to generate them,

and conducted user-centric evaluation studies.

Extended Informative Structured Snippets for Job Search

Inspired by the recent success of [151], who studied the problem of expert selection in the enterprise and found

that extended snippets help employees find the right experts more effectively, and of [49], who introduced

the concept of enhanced snippet for web search and demonstrated its utility via an ad-hoc user study and

an A/B test, we proposed the concept of extended informative structured snippet for job search. The idea

is to bring the most important information about a job (responsibilities and requirements) directly to the

SERP and present it in a structured form. In this case, users will incur extra effort (since they will have

to process more information), yet they will be able to scan this information faster, make more thoughtful

choices, and click only on job postings that are genuinely attractive for them. In other words, the addition

of such information to the SERP should result in faster and more effective search. This hypothesis became

the driver for the project, and we formulated three main research questions to test it. First, we conducted

the user study to de-risk the project and understand:
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• RQ6(a): What information is necessary for users to decide whether they want to apply for a job?

• RQ6(b): What information is necessary for users to decide which results to click on a SERP?

The results of this user study turned out to be positive (the participants did want to see the informa-

tion about responsibilities and, especially, requirements on the SERP; they consistently ranked these two

attributes among the top most critical attributes of a job). Therefore, a more pragmatic question became

relevant. How can we generate such snippets? One can build an information extraction model following

the ideas from [94, 147]. However, despite aiming to minimize labeling efforts, this approach still requires

some training to be conducted manually. The problem becomes more severe if we take into account the fact

that major job search engines and PSNs operate internationally, and hence, training sets must be created

for each language, which is costly. Ideally, we should be able to perform information extraction and gener-

ate structured snippets in an unsupervised way or with minimal supervision. It shapes two more research

questions for this project:

• RQ7(a): How can we automatically extract job responsibilities and requirements from an unstructured

job posting with minimal supervision?

• RQ7(b): How can we generate an extended informative structured snippet for a job posting having a

list of job responsibilities and requirements in a structured form?

Finally, having built the algorithm to generate extended informative structured snippets, we have to

evaluate the utility of such snippets. Therefore, the last two research questions in this project were:

• RQ8(a): Do extended informative structured snippets improve search user experience for job search?

• RQ8(b): How do users behave when such structured snippets are used?

We address RQ7-RQ9 and describe three stages of this project (the user study, the algorithm design,

and the user-centric evaluation) in Chapter 4.

Non-redundant Delta Snippets for Job and People Search

Researchers proposed multiple approaches to generate non-redundant and discriminative snippets. The main

idea behind these approaches is that we can utilize space on the SERP more effectively by showing in the

snippets information that helps differentiate the results better, and hence, complementary to the query. For

example, there are methods to generate informative [29, 30] and diverse [79, 91] snippets for tuples from
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a relational database and for XML search [59]. Recently, [49] demonstrated the advantages of enhanced

structured snippets for web search.

Despite the fact that query-biased snippets are suboptimal from a purely information-theoretical perspec-

tive (the information density per pixel of screen space is higher for non-redundant snippets), many popular

(structured) search engines today still use them in practice (e.g. Figure 1.3 and Figure 1.4). There is a

possible explanation which is related to the human factor. According to the SUI design guidelines proposed

in [112], we should: (1) strive for consistency so that users could comfortably switch from one search engine

to another without loss of productivity; (2) offer informative feedback so that users are informed about all

aspects of the search they are preparing to do (the sources, fields, what is being searched for, and what

variants are being allowed); (3) reduce short-term memory load to help users accomplish their search tasks

with minimal efforts and higher satisfaction. Query-biased snippets satisfy these design guidelines — most of

the search engines today use query-biased snippets; query-biased snippets explicitly repeat information from

a query making users confident that the results match the query constraints; with query-biased snippets

rather than trying to recall the query constraints, users only engage in the recognition process, which is

known to be less cognitively demanding [41].

To summarize, there is an inconsistency between theory and practice and between database and human-

computer interaction research. On the one hand, there are very powerful methods to generate non-redundant,

informative, and discriminative snippets for structured data. Unfortunately, none of them were evaluated

in a user-centric fashion. On the other hand, query-biased snippets are used in many search engines and

satisfy seminal SUI design guidelines. We can only speculate which version is better.

In Chapter 5, we resolve this inconsistency and provide new knowledge for the development of more

effective and useful SUIs within and beyond PSNs. Specifically, we consider non-redundant delta snippets,

which show information relevant but complementary to the query, as an alternative to traditional redundant

query-biased snippets and pose the following research questions:

• RQ9: What kind of snippets make users more productive and effective when performing structured

search (e.g. job/people search) on mobile devices? (objective evaluation)

• RQ10: Do users prefer non-redundant delta snippets or query-biased snippets based on their subjective

feelings? (subjective evaluation)

While the problem in question is relevant for both web and mobile devices (e.g. Figure 1.3 and Figure 1.4),

we focus on mobile search because mobile devices have smaller screens and, hence, it is more critical to

understand whether showing redundant query-biased snippets is really necessary. Plus, mobile applications
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and search are getting more and more popular among users [34,97].

1.4 Key Contributions

Taken together, this thesis is a step forward to the better search within PSNs. It could have a massive

positive impact on the lives of people making the search for a dream job or professional career advice more

effective. Broadly speaking, this thesis provides new insights and techniques for the design of search engines

on top of structured and networked data. In particular, the thesis makes the following key contributions:

• A large scale analysis of Facebook Graph Search query logs. Having access to anonymized

query logs, an anonymized social graph, and an anonymized set of user profiles, we examined how search

behavior differs for different query types, how it changes for users from various demographic groups,

and how it depends on the graph distance between a searcher and a person to be searched. The analysis

revealed many exciting findings and suggested numerous design implications. For instance, structured

query usage behavior has a wider variation across different demographics, and hence, it makes sense

to focus search personalization efforts on this query type; users search more for friends using named

entity queries and for non-friends using structured queries, which shows their complementary roles in

enabling effective search. The crux of this work is that users do benefit from more control and highly

interactive query suggestions — they engage in a new type of search behavior (exploratory search for

non-friends). See Chapter 2 for details.

• An algorithm for relevance-aware search results filtering, which addresses the problem that

nowadays users see many irrelevant results at the top of the SERP when they select sorting by an

attribute value, e.g. salary, date, price, etc. It is an efficient and theoretically optimal algorithm based

on the dynamic programming [12], which directly optimizes a given search quality metric, like for the

relevance-based sorting order. According to our extensive experiments, the algorithm outperforms all

baselines and leads to 2-4% increase in search quality. See Chapter 3 for details.

• A user study and an algorithm for extended informative snippet generation for job search.

To motivate this project, we conducted the user study using survey and interview methods. Then, we

designed the effective algorithm. The algorithm allows generating informative snippets that contain

the key information (responsibilities and requirements for a job) right on the SERP and help users

make clicks mostly on relevant results. Plus, it helps optimize content for mobile devices and avoid

irregularities of job postings coming from multiple websites by converting them into the structured
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representation. The algorithm leverages the power of big data to minimize supervision required for

model training (2-3 words per language) and could be easily deployed by a job search engine operating

internationally. We conducted a series of offline and online A/B experiments and found that: (1) the

algorithm achieves high extraction accuracy (86% precision at 94% coverage for English language and

97% precision at 100% coverage by a highly-tuned enterprise-grade model for the Russian language);

(2) extended informative structured snippets improve the majority of search quality metrics and de-

crease SERP click entropy, which implies that we can collect accurate data to further enhance search

utility (e.g. via relevance feedback) with minimal intervention. See Chapter 4 for details.

• A comparative user study of query-biased and non-redundant delta snippets for struc-

tured search on mobile devices. To investigate what kind of snippets are better suited for struc-

tured search on mobile devices, we built an experimental mobile search application and conducted a

task-oriented interactive user study. Four different versions of the SERP were compared by varying the

snippet type (query-biased vs. non-redundant) and the snippet length (two vs. four lines per result).

We adopted a within-subjects experiment design and made each participant do four realistic search

tasks using different versions of the application. During the study sessions, we collected search logs,

“think-aloud” comments, and post-task surveys. Each session was finalized with an interview. We

found that with non-redundant delta snippets the participants were able to complete the tasks faster

and find more relevant results. The participants preferred non-redundant snippets more and wanted

to see more information about each result on the SERP for any snippet type. At the same time, the

participants felt that the version with query-biased snippets was easier to use. Based on the study

results, we proposed a set of design recommendations on how to improve structured search (job and

people search within PSNs), especially on mobile devices. See Chapter 5 for details.

1.5 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we present the query log analysis study of

Facebook Graph Search. In Chapter 3, we present the algorithm for relevance-aware search results filtering

via a direct optimization of search quality metrics. In Chapter 4, we describe the user need elicitation

study, the algorithm for extended informative structured snippets generation for job search, and the A/B

experiment conducted to evaluate the utility of such snippets. In Chapter 5, we describe the user study in

which we compared the utility of query-biased and non-redundant delta snippets for structured (e.g. people)

search on mobile devices. We conclude and present ideas for future work in Chapter 6.
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Chapter 2

Named Entity and Structured Queries
for People Search

In this Chapter 2, we analyze large scale anonymized query logs generated by users of Facebook Graph Search

with the aim to understand whether structured querying capabilities are beneficial for the users of PSNs and

answer our RQ1-RQ4. First, in answering RQ1 (“How does search behavior differ for NEQs and SQs?”),

we studied named entity and structured query usage behavior and established their complementary nature

showcasing the importance of each query type for enabling flexible search and exploration within PSNs.

Second, in answering RQ2 (“How does search behavior depend on the graph search distance?”), we shared

unique insights about people search on Facebook related to the graph search distance via anonymized query

logs and an anonymized social graph mining. Third, in answering RQ3 (“What search patterns are typical

for users from various demographic groups?”), we performed privacy-preserving demographic profiling and

discovered demographic-specific people search patterns. Finally, in answering RQ4 (“How do people search

for people using structured grammar queries?”), we presented insights about the structured grammar usage,

which are unique to the Facebook Graph Search product but have potentially much broader application. By

the end of this Chapter 2, we will better understand how to design interactive query formulation interfaces

for PSNs and, more broadly, for structured networked data.

In the next sections, we cover related work (Section 2.1), necessary definitions and background mate-

rial (Section 2.2); describe the data sets (Section 2.3); and summarize high level properties of logs (Sec-

tion 2.4). Starting from Section 2.5, we share many insights about Facebook Graph Search usage. We

present design implications relevant for the design of future SUIs and interaction techniques within PSNs in

Section 2.7 and discuss the limitations of this work, thereafter.

2.1 Related Work

Research on people search has a long history. Early works studied ways to automatically assign reviewers

to papers [38] or find topical experts [118] by representing people via documents they are associated with

and framing people search as a traditional information retrieval or recommendation problem. However,
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as [129] noticed, it fundamentally changes the nature of the problem when the objects are people rather than

documents. People form social relationships, and therefore, ranking people is qualitatively more complex

than ranking textual documents. As a result, [129] proposed the concept of social matching to emphasize

the social dimension. In turn, that led to the research and development of social matching systems, such

as Referral Web [71], Expertise Recommender [87], and Aardvark [57], which return relevant people taking

into account the social similarity between a candidate result and a searcher. [1] studied the fundamental

properties of social networks making social search possible and concluded that “where the data is incomplete

or reflects non-hierarchical structure, tools that support social search should assist users by either providing

a broader view of their local community or directly assisting users through a global analysis of the network

data” pointing out to the importance of search within online social networks (OSNs). Recently, exploratory

people search was investigated in the context of a PeopleExplorer project [52], which allows users to explicitly

model their search preferences using sliders. Based on extensive experiments, the authors concluded that it

is crucial to model task difference and user variance in people search.

Looking at the related work from a query log mining perspective, there is a large body of research

dedicated to the analysis of the web search engine usage. Starting from the influential taxonomy of web

search queries [19], researchers studied query logs to understand how users search, analyzing the length [11,

63,113,128], topical distribution [9,116], and temporal patterns [9] of queries. Query logs were also used to

understand search sessions [68] and re-finding [126,134].

Because we are exploring people search, which is a type of vertical search operating in the people vertical,

it is important to consider studies of vertical search engine logs. [92] studied queries issued to a blog search

engine, and found that people were particularly likely to search for named entities, e.g. people and blogs

on a topic of interest. [120] compared blog queries with news queries, observing that queries often refer to

people and temporally relevant content. [128] compared microblog search and web search, and found that

Twitter users similarly search for temporally relevant information and people. A study of a web people

search query log [143] revealed that a significant number of users type just one query, that people search

has lower click-through rates (CTR) compared to web search and that the most popular results come from

social media (OSNs). Recently, people search behavior and the role of graph distance in name and non-name

queries was explored using the LinkedIn log [58]. It was reported that for name queries users primarily click

on only one of the results and a shorter graph distance leads to higher CTR, while for non-name queries

users are more likely to click on multiple results that are not among their existing connections, but with

whom they have shared connections, i.e. the second degree connections.

Search logs were also used to uncover relationships between the search behavior and demographic char-
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Figure 2.1: Facebook Graph Search user interfaces: (a) Typeahead, which performs query suggestion for
both named entity and structured grammar queries. It handles named entity queries by sending directly to
a clicked entity page. (b) Browse, which presents results for structured grammar queries as a standard list
with links and snippets.

acteristics of users. [14,140] described the methodologies for usage of query logs and demographic profiles for

search personalization. [142] presented the demographic-specific insights about search sessions and query

topics. Several studies explored the influence of gender and age on search behavior. It is reported based on a

series of interviews that males used search engines more than females in 2004 [44], but in 2012 the numbers

equalized [101]. By analyzing web search engine usage, [80] found that females write longer queries than

males. [36] investigated the search behavior of users retrieving information for children.

The work described in this Chapter 2 complements and extends existing studies from three perspectives.

First, while there is a large body of work on the topic of people search from an algorithmic side, there are

only two people search query log studies [58, 143] and only one of them is about search within a PSN [58].

We continue this line of work and answer previously untouched questions, e.g. “How does search behavior

vary with age?”. Additionally, we present novel insights about the structured grammar usage unique to

Facebook Graph Search, e.g. “What are the strategies for a name disambiguation?”. Second, we extend the

research on social search by studying query logs of an entity search system. Existing query log studies in the

blogosphere [92], web [143], and Twitter [128] focused on document search systems. Third, our analysis uses

logs generated by the system supporting several different query types, and therefore, we can do cross-type

search behavior comparisons. Typically, search systems support only one query type.

2.2 Background Information

In this section, we describe the specifics of the search user interface and provide the necessary definitions.
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2.2.1 Structured Search User Interface

The search process starts by navigating to a Typeahead interface (Figure 2.1(a)). In the null state, before any

symbol is typed, Typeahead presents 7-8 query suggestions personalized for a searcher. These might include

named entity queries or simple structured grammar queries. On every keystroke, the Typeahead results get

updated, and the user is presented with the input-dependent suggestions. At any point in time, the user can

pick a relevant result among the suggested options or keep typing. Suggestions, representing named entities,

serve as search results directly, and upon click redirect to the corresponding entity page. Structured grammar

queries lead to a standard search engine results page, called a Browse interface (Figure 2.1(b)), where the user

is presented with a list/grid of entities matching the query conditions. For example, “Lady Gaga” is a named

entity query, which upon click will navigate a searcher to the page maintained by Lady Gaga. “People who like

Information Retrieval and live in USA” is an example of a grammar query, with three predicates (people,

like, residents) and two entities (USA:Country, Information Retrieval :Field of Study). To effectively

explore entities on Facebook, users may construct sophisticated structured grammar queries by concatenating

predicate-entity pairs using a boolean AND operator. The search engine supports queries for entities in dozens

of categories such as Apps, Pages, People, Posts, and others.

2.2.2 Definitions

Before we proceed to the analysis, it is useful to define some terminology. To make the definitions clear,

where necessary we reference an example shown in Figure 2.1.

Person: In our case, people are represented as entities from: (a) a User category with all standard

capabilities, such as friending, commenting and so forth; (b) human-like subcategories of a Page category

such as Athlete, Music Band, Politician, and others – a broadcast-style account, typically used by celebrities

to interact with their fans. One individual could have a User account and be an admin for several Pages.

Unless otherwise stated, in the rest of this Chapter 2 we focus on queries for Person from the User category.

We only consider queries for Person from the Page category while discussing celebrity search in Section 6.

Celebrity: According to [85,133], a celebrity is a “highly visible in the media and overly public individual,

who usually has emerged from the entertainment or sports industry and whose private life attracts greater

public interest than the professional life”. For consistency, we define a celebrity as a Person with more than

10000 friends, fans, or followers.

Functional Predicate: In typed logic, F is a functional predicate with a domain type T and a codomain

type U if, given any object X of type T , F (X) is an object of type U [62]. The type of the predicate

coincides with the codomain type. Similarly, a query type has the type of the result. Search grammar

17



Figure 2.2: A grammar query (a) after a few transformations becomes a Semantic Query Template (b).

consists of numerous functional predicates, which perform typed mappings defined on the entities. For

example, friends is a functional predicate that, given an entity of type User, produces a set of friends for

this user and, hence, is a User predicate; photos-in, given an entity of type Location, produces a set of

photos taken in that location and, hence, is a Photo predicate.

Semantic Query Template: Grammar queries consist of keywords, entities, and functional predicates,

which can be combined using a boolean AND operator and functional superposition. An example query

“Photos of Alice and friends of Alice and males named Bob who live in California” has a parsing tree shown

in Figure 2(a). It has functional predicates as inner-nodes and keywords (a quoted string) and entities of

types User and State as leaves. Because Facebook Graph Search is a highly personalized search engine,

almost any two query parsing trees are different. However, the semantics of these queries might be similar.

For example, users may search for their friends by name, but names of the friends are likely to be different.

Therefore, to study search patterns at a more general level, we categorize all grammar queries into factor

classes [82] based on the structure of the corresponding parsing tree. First, we replace all leaves with the

generic sentinel, e.g. “Alice”, “Bob”, and “California” are mapped to “$”. Second, we sort tree nodes

level-by-level using a lexicographic ordering on node names. Such factor classes are called Semantic Query

Templates and each query goes to one class. An example is illustrated in Figure 2.2.

Graph [Search] Distance: The entities of all types (vertices) and various relationships between

them (edges) form a Facebook Entity Graph (a Social Graph is an undirected subgraph of the Entity

Graph made of only User vertices and friends edges). We use a traditional graph-theoretic definition of

the graph distance as the minimal number of edges connecting two given vertices [16]. We categorize all

User queries into three major classes based on the graph distance between a searcher and a result:

• Self : queries for herself/himself;
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• Friend : queries for friends, relatives, and many other entities connected to the searcher by an edge;

• Non-friend : out-of-network queries for friends of friends and many other entities not connected to the

searcher.

For example, a user searching for a friend of a friend by name, e.g. “John Smith”, does a Non-friend

query; on the other hand, “My Friends who live in California and like Computer Science” is a Friend query.

It is important to note that while named entity queries are not ambiguous based on the categorization

above, the degree of a structured query is not strictly defined since it might contain multiple entities and

various predicates. Therefore, for structured grammar queries we use the following distance calculation

algorithm. We only consider grammar queries involving at least one User entity, such as “Photos of User1

and User2” or “Places visited by me”. We then look at each entity involved in a query and assign it a

distance using the Social Graph and functional superposition of User predicates. Finally, we compute a bit

vector with the three components, one for each of the three classes of graph distance, and normalize it by

the number of non-zero components. Therefore, a grammar query might contribute to the weighted count

for each of the graph distances.

For clarity, let us apply this algorithm to the query in Figure 2.2(a) by enumerating hypothetical searchers.

Each User entity participates in a path from the root to this entity in the parsing tree: intersect →

photos-of → friends → Alice and intersect → photos-of → Alice. If the searcher is Alice, the output

vector is (0.5, 0.5, 0), a half for herself and a half for friends of Alice. If the searcher is a friend of Alice, the

output vector is (0, 1, 0) because both paths are about Alice, who is one edge apart from the friend. If the

searcher is not a friend of Alice, the output vector is (0, 0, 1).

This and other custom data processing pipelines were implemented as MapReduce jobs [32]. Simple

aggregation statistics were computed using Hive [130].

2.3 Data Sets

We study people search behavior using four data sets collected at Facebook: (a) one which gives insight into

the navigational search – an anonymized log of named entity queries; (b) another which gives insight into

the exploratory search – an anonymized log of structured queries; (c) one which allows us to calculate graph

distances – an anonymized Social Graph; (d) one which allows us to discover demographic-specific patterns

– a set of anonymized User Profiles. Query logs were collected in the second half of 2013. The Social Graph

and User Profiles were captured on 2013-10-17. The sizes of the data sets are given in Table 2.1.
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Data Set Attribute Count
Named Entity Query (NEQ) Log Users 3M

Queries 58.5M
Structured Query (SQ) Log Users 3M

Queries 10.9M
Social Graph Vertexes 858M

Edges 270B
User Profiles Users 858M

Table 2.1: Basic statistics about the data sets used.

2.3.1 Named Entity Query (NEQ) Log

The log contains named entity queries for Person from three million randomly sampled en_US (English,

USA) users, who made at least one such query both in the month preceding the study and during the

study periods. This allowed us to level novelty effects and observe a stable search behavior representative

of a general population. Finally, after filtering we worked with 58.5 million queries. Each query log record

includes such fields as an anonymized id of a searcher, an anonymized id of an entity to be searched, a time

stamp, an entity type, and the query metadata.

2.3.2 Structured Query (SQ) Log

The log contains structured grammar queries of three million randomly sampled en_US (English, USA) users,

who made at least one such query both in the month preceding the study and during the study periods.

Unlike named entity queries, which are handled purely by Typeahead and always require a query writing or

a suggestion selection, each structured grammar query and the corresponding Browse search engine results

page (SERP) gets a unique URL, which can be shared and accessed without writing a query. We excluded

such records from the log to make sure that it contains only authentic user-generated queries. Finally, after

filtering we worked with 10.9 million structured grammar queries.

Users in the Structured Query Log are independent of the users in the Named Entity Query Log. Any

overlaps are due to coincidence. Although the samples are independent and we don’t join them, this doesn’t

prevent us from discovering general insights for both query types.

2.3.3 Social Graph and Demographic Profiles

We used a snapshot of the anonymized Social Graph made of 858 million entities and 270 billion edges.

To gauge an understanding of search patterns for different demographic slices, we used an anonymized

data set with the four user profile attributes: age, gender, number of friends, and celebrity status. Using

information from the profiles, we performed checks for representativeness of our samples by comparing
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Figure 2.3: Power law graphs for query frequency of Named Entity (left) and Structured (right) Queries.

the key statistical properties of attribute value distributions for a sample and all 858 million profiles. The

differences were insignificant because of the large sample size, which aligns with the reasoning on significance

for big data [140].

2.4 First Order Analysis

Characteristic of online usage behavior, we observed power law distributions for query popularity and user

activity. Figure 2.3(a) shows the query frequency distribution in a log-log scale for NEQs, which follows a

power law with the slope α = 2.63. Figure 2.3(b) shows three query frequency distributions in a log-log

scale for SQs. Each graph corresponds to a different definition of a unique grammar query: (a) one which

at a display form level (the query string), e.g. “Photos of Alice and Bob”, has the slope α = 2.38; (b) one

which at an entity level, e.g. {Alice, Bob}, has the slope α = 2.08; (c) one which at a semantic template

level, e.g. “Photos of $ and $”, has the slope α = 1.15. As we can see, most of the queries are issued only a

few times; however, there are some very popular queries. The power law also holds for user activity with the

slopes α = 2.43 for NEQs and (a) α = 2.08, (b) α = 1.90, and (c) α = 1.13 for SQs, which shows that there

are some very avid searchers. This observation is predictable and aligns with existing log studies [5,76,143].

To shed light on the semantics of the most popular people queries, we computed the frequency distribution

over Person subcategories of the Page category for the top-1000 celebrity Page queries for both NEQs and

SQs, shown in Table 2.2. Both distributions are quite similar to each other and follow a power law. Musicians,

21



Rank NEQs Percentage of Queries SQs Percentage of Queries
1 Musician/Band 32.2% Musician/Band 27.7%
2 Public Figure 19.4% Actor/Director 26.9%
3 Actor/Director 17.8% Public Figure 19.1%
4 Entertainer 8.2% Entertainer 8.4%
5 Artist 7.4% Artist 6.4%
6 Athlete 7.3% Athlete 5.2%
7 Character 2.5% Character 2.3%
8 Comedian 2.2% Politician 1.8%
9 Politician 1.9% Author 1.3%
10 Author 1.1% Comedian 0.8%

Table 2.2: Semantics of the top-1000 celebrity queries.

public figures, and actors represent the three most popular celebrity Page categories.

Contributing to the line of work on repeat queries [106, 126], we looked at the query frequency from a

different perspective and computed an average query repetition ratio per user, i.e. a fraction of unique queries

out of all queries. Since in web search navigational queries are repeated differently from others [106], it is

worth seeing how NEQs and SQs compare to each other in our scenario. We found that the repetition ratio

for NEQs is 0.56. For each definition of a unique SQ, the repetition ratios are (a) 0.72, (b) 0.62, and (c) 0.47,

respectively. Therefore, users search for different people using SQs more than NEQs and repeat Semantic

Query Templates to learn about different people. Surprisingly, we found that the repetition ratios both for

NEQs and SQs stay the same for all three classes of queries based on the graph distance. One interesting

implication from it is that users repeatedly search for non-friends without adding them as friends. The

repetition ratios stay the same for various demographic slices.

2.5 Graph Search Distance

Unique to this study are the insights about people search for various demographics and graph distances.

The graph distance is the key parameter to quantify users’ tendency for OSN exploration via search. The

distribution over the graph distances is presented in Table 2.3. Other alternatives to quantify the OSN

exploration via search are the number of unique queries or the repetition ratio (see previous Section 2.4).

Users search for friends using NEQs and for non-friends using SQs. This demonstrates the importance

and utility of having both query types to enable more effective exploration of the social graph. Self queries

are negligible compared to an overall query volume, yet there is a significant difference between NEQs and

SQs Self queries. Users search for themselves more using SQs. We think that this is because SQs are used to

curate personal data published on Facebook, like “My Photos”, while there are many other ways to navigate

to a personal profile beyond using NEQs for yourself.
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Query Type Self Friend Non-friend
NEQs 0.6% 57.6% 41.8%
SQs 5.2% 31.2% 63.6%

Table 2.3: Query distribution over graph distances.

2.5.1 Influence of Demographic Characteristics on Graph Search Distance

Drilling down, we study people search behavior for different demographic slices. Among many available

options, we picked the four attributes of the user profile: age, gender, number of friends, and celebrity

status. Age and gender were used in multiple existing log studies [14, 37, 140–142], and it is interesting to

compare their findings with the ones for Facebook. Number of friends and celebrity status are new attributes

unique for this log study, which allow to capture the social dimension specific to search within OSNs.

We present a series of figures for each of the attributes in question. In the first column, we show fractions

of the Friend queries out of all non-Self User queries for a set of bins; in the second column, we show the

search trends for Named Entity User queries; in the third column – for Structured User queries. We focus

on Friend and Non-friend queries, since Self queries are not common.

Age

Figure 2.4 presents how the graph distance varies with age. Looking at Figure 2.4(b), we see that Friend

queries are more popular among NEQs for all age bins. On the contrary, according to Figure 2.4(c) the

graph for SQs is bi-modal. While Non-friend queries prevail for the younger group of users, Friend queries

prevail for the older group of users. One can also notice a clear cyclic pattern in a combined Figure 2.4(a),

which depicts the fractions of Friend queries out of all non-Self User queries for NEQs and SQs. Both graphs

have one valley for users in their 30s and one peak for users in their 70s, which shows that the younger

users more actively search for Non-friends and the older users more actively search for Friends relative to

an average user. The graph for SQs has a higher variation than the graph for NEQs suggesting that the

search personalization is more beneficial for SQs than NEQs.

Gender

It is reported in [44] that males searched more than females in 2004 but in 2012 the usage of search engines

converged to the same level [101]. At the same time, females communicate more and use the web less than

males [61,74]. We compared the search usage for female and male users in our case and found three insights.

First, females write more queries than males (Figure 2.5(b,c)). Second, females more actively search for

Friends using NEQs compared to an average user (Figure 2.5(a)). The fraction of Friend NEQs to the
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Figure 2.4: Search distance vs. Age (ten-year bins): (a) fraction of 1st degree queries out of all non-Self
User queries; (b) average number of NEQs per user; (c) average number of SQs per user.

Figure 2.5: Search distance vs. Gender: (a) fraction of 1st degree queries out of all non-Self User queries;
(b) average number of NEQs per user; (c) average number of SQs per user.

Figure 2.6: Search distance vs. Number of searcher’s friends (100-friend bins): (a) fraction of 1st degree
queries out of all non-Self User queries; (b) average number of NEQs per user; (c) average number of SQs
per user.

Figure 2.7: Search distance vs. Celebrity status:(a) fraction of 1st degree queries out of all non-Self User
queries; (b) average number of NEQs per user; (c) average number of SQs per user.

sum of Friend and Non-friend NEQs for females is 0.605, while for males it is 0.542. Third, according to

Figure 2.5(a), we also found that males search more actively for Non-Friends using SQs compared to the

mean for the population. The fraction of Friend SQs to the sum of Friend and Non-friend SQs for males is

0.328, while for females it is 0.348. The ideas based on these insights are discussed in Section 2.7.
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Number of Friends

In Figure 2.6 we present how the graph search distance depends on the number of friends. First, note

that the ratio of Friend to Friend and Non-friend User queries reaches its saturation level at around 0.75

for NEQs and 0.43 for SQs (Figure 2.6(a)). Interestingly, the graph for SQs almost reaches its saturation

already for the first bin (less than 100 friends), while the graph for NEQs grows steadily and saturates

at around 10th bin (1000 friends). Second, the more friends a user has, the more Friend NEQs the user

writes (Figure 2.6(b)). This suggests that users actively use NEQs to find information about their existing

friends. On the contrary, the trend for Non-friend NEQs declines slightly with more friends. Therefore,

we speculate that in this case people have already ”friended” a good amount of users they want in their

network. Third, it is worth noticing the volatility of graphs for different graph distances. The trend for

Non-friend NEQs is flat, while Friend NEQs contribute to the growth of the query volume (Figure 2.6(b)).

The trend for Friend SQs is flat, while the volume of Non-friend SQs changes depending on the number of

friends (Figure 2.6(c)). This again suggests that NEQs are fundamental for searching for friends and SQs

are fundamental for searching for non-friends. Together these two query types enable both navigational and

exploratory people search.

Celebrity Status

In Figure 2.7 we extend the analysis presented in the previous section and consider how celebrity status

influences search behavior. This is an important question to study since search effectiveness and, hence,

usage could be different in that extreme case (larger search space of friends). Because having 10, 000 friends

is a rare event, there may only be a few celebrities in the original sampled query logs. Therefore, we considered

a complete set of non-novice celebrity users of Facebook Graph Search and analyzed their anonymized queries

during the same time intervals as for the original NEQ and SQ logs. According to Figure 2.7(b,c), on average

celebrity users submit more NEQs and fewer SQs than typical users, which is in agreement with the findings

presented in the previous section regarding the correlations between the number of queries and the number

of friends. Moreover, from Figure 2.7(a) we conclude that the ratio of Friend queries to the sum of Friend

and Non-friend queries for celebrities is biased towards the first degree connections compared to typical

users. These findings suggest that celebrities are not as interested in exploring the graph and mostly use

Facebook Graph Search for navigational purposes.

We deepen the analysis further by segmenting queries into celebrity and typical groups analogous to the

approach we used for the searchers, i.e. we check whether a query contains an entity which has at least

10000 friends or fans. We computed the ratios of celebrity queries out of all non-Self User queries for NEQs
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Type Ratio NEQs SQs
Typical Celebrity/Typical among friends 0.001 0.001

Celebrity/Typical among non-friends 0.009 0.002
Celebrity Celebrity/Typical among friends 0.167 0.067

Celebrity/Typical among non-friends 0.247 0.123

Table 2.4: Relationship between a celebrity status of a queried entity and a celebrity status of a searcher.

and SQs, two demographic groups (typical and celebrity), and graph distances (Friends and Non-friends).

The results are presented in Table 2.4. It is worth highlighting that this experiment and the corresponding

insights are about searches for celebrities as Users and not about users searching for celebrities as Pages.

According to Table 2.4, celebrities search more for other celebrities than typical users. To see whether

this was a result of celebrities having more celebrity friends, and therefore, simply searching for friends, we

calculated the average number of celebrity friends for a celebrity and found that it is 0.016. The ratio of

celebrity queries is higher than this, i.e. celebrities search for other celebrities disproportionally more than

for typical users. Two other interesting findings are that both typical users and celebrities are more likely to

search for a celebrity when they write a Non-friend query relative to a Friend query and using NEQs relative

to SQs. Therefore, the surplus might be achieved by suggesting Non-friend celebrity NEQs to Facebook

users in Typeahead.

2.6 Structured Grammar Usage

A prior query log study of a web people search engine [143] reports that users write queries with additional

keywords to disambiguate a name of a person to be searched or to find relationships between people. The

most used keywords were city names, jobs, and activities. However, the advanced functionality of that system

was limited only to such keywords. We push this line of work forward and share insights about people search

on Facebook, where users can write non-ambiguous grammar queries using a rich set of predicates.

2.6.1 Finding People Using Functional Predicates

To understand how SQ length depends on the query popularity, we computed the average number of func-

tional predicates for top-100 and top-1000 most frequent semantic query templates (SQ-A). We didn’t use

traditional definitions of the query length such as the number of letters or words [11,63,113] because struc-

tured queries consist of indelible entities and predicates. We additionally computed the lengths of SQs with

at least one (a) friends predicate (SQ-F), (b) friends-of-friends composite predicate (SQ-FF), to un-

derstand how SQ length depends on the graph distance. The former serves as a proxy for Friend queries,
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SQ Type top-100 top-1000
Structrue Query All (SQ-A) 1.64 ± 0.59 2.00± 0.72

Structured Query Friends (SQ-F) 1.01 ± 0.61 1.70± 0.77
Structured Query Friends of Friends (SQ-FF) 1.63 ± 0.76 2.02± 0.89

Table 2.5: Average structured grammar query length measured as the number of functional predicates.

while the latter for Non-friend queries. Table 2.5 summarizes the results.

As we can see, shorter SQs are more popular because the average query length for top-100 is smaller

than for top-1000. This is a predictable finding because shorter queries are likely easier to write. More

interestingly, users write shorter queries when they search for the first degree connections. We have two

ideas to explain this. First, the number of friends is much smaller compared to the number of non-friends, and

hence, it takes less information to encode them (search entropy is lower). Second, according to [134], “repeat

web queries are shorter and more effective”. Analogously, users might be more effective in formulating

queries about their friends because they know more about them.

To understand what predicates people use to disambiguate SQs while searching for people, we computed

top-10 predicates most frequently co-appearing in SQs with at least one User predicate having a clear

distance semantics, i.e the same SQ-F and SQ-FF sets of queries. Table 2.6 summarizes the results. An

exemplary SQ for the second column is “Photos of my friends who like CIKM2014 ”; for the third column

– “Friends of my friends who are not my friends”.

The users disambiguate queries using predicates in the following groups: location – visitors, residents,

home-residents (e.g. “Friends who visited Dublin”), affiliation – employees, students, employer-location,

members (e.g. “Employees of Tesla Motors”), interest – likers (e.g. “People who like Hadoop and Pig”),

gender – females (e.g. “Females who are single”), and relation to other users – non-friends(me) (e.g.

“Friends of Bob who are not my friends”). They also submit queries for people without providing any

predicate, and some queries that have predicates are more popular than queries without them. However, we

found that on average, shorter queries are more popular. To investigate why some longer queries are more

frequent than their shorter counterparts, we introduced the concept of a lift predicate.

A Lift Predicate is a predicate that, when used as part of a query, increases the frequency of the query

compared to the query without this predicate. For example, if we have the query “Users named Alice who

live in California” with the frequency 100 and the query “Users who live in California” with the frequency

50, then users-named is a lift predicate because the former query is more frequent than the latter.

The lift predicates are insightful because unlike in traditional query frequency analysis, which tells us

what queries are popular, they help us understand why some queries are popular. Top-10 lift predicates are

presented in the rightmost column of Table 2.6. In addition to the groups of predicates discussed above,
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Rank in SQ-F in SQ-FF Lift predicates
1 No predicates non-friends(me) users-named
2 likers residents residents
3 residents students photos-of
4 employees employees friends(me)
5 members likers friends(X)
6 students No predicates non-friends(me)
7 females users-named females
8 visitors friends(X) photos-liked
9 home-residents (employees, employer-location) photos-by
10 (likers, likers) home-residents users-interested-in(males)

Table 2.6: Top-k predicates for different user queries.

users are interested in photos. We discuss how to leverage lift predicates in Section 2.7.

2.6.2 Functional Predicates and Graph Distance

In the previous section, we studied what predicates people use to disambiguate their SQs in order to find

other people. Below we study what people want to learn about other people and whether it depends on the

graph distance.

Similar to the distance calculation algorithm described in Section 2.2.2, we consider only queries with

at least one entity. For each entity in a query we (a) identify the distance from the searcher using the

social graph or functional superposition of the User predicates, e.g. friends(friends(me)) has a dis-

tance two; (b) find the closest non-User predicate, for which it serves as an argument unwrapping the

functional embedding. For example, a query photos-of(friends(me)) is a Friend query and the closest

non-User predicate is photos-of; a query videos-commented(123) submitted by a friend of the user with

the anonymous id = 123 is a Friend query and the closest non-User predicate is videos-commented; a query

photos-in(places-liked(me)) is a Self query and the closest non-User predicate is places-liked. The

results for top-30 grammar predicates are presented in Figure 2.8.

Some predicates are “pure” because they can be applied only to the entities at a specific distance,

e.g. places-near, while most of the predicates have all of the distance components. We observe a high

variation from predicate to predicate and most of the predicates have a distribution over the graph distances

deviating from the average distribution presented in Section 2.3. Users apply the friends predicate to non-

friends, while interest-related predicates, e.g. page-liked and videos-liked, are biased towards friends.

Users are also interested in knowing the locations of their first degree connections, e.g. current-cities.

Job-related predicates, e.g. employers, are used more for non-friends, which aligns with Granovetter’s

theory of weak ties [47]. Some predicates with the related semantics, like media, have drastically different
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Figure 2.8: Distributions of graph distances for top-30 functional predicates. The distance is taken between
a searcher and a user entity that serves as an argument for a functional predicate.

distributions: while photos-of is biased towards non-friends, videos-of is often used for friends.

2.7 Design Implications

In this section, we discuss what our findings suggest for the design of next-generation search products on

top of structured and interconnected data sets and PSNs in particular.

2.7.1 Supporting Diverse Information Needs

Our key finding is that users search more for friends using NEQs and for non-friends using SQs (Section 2.5).

Moreover, this behavior is consistent across numerous demographic slices (Section 2.5.1). Therefore, an

interactive Typeahead interface supporting both NEQs and SQs facilitates navigation and exploration and

makes information stored within the OSN useful and easy to search. Having these two query types tailored

to a specific class of information needs within one system is beneficial for users of the OSN as these queries

don’t compete but rather complement each other. A similar idea was proposed based on the analysis of a

LinkedIn people query log, where the authors found serious differences in post-search behavior for name and

non-name queries.

2.7.2 Improving the Quality of (Structured) Query Suggestions

We noticed significant changes in search behavior for users with different demographics. We found that the

number of Friend queries grows as users gain more friends, while the number of Non-friend queries slightly

declines (Section 2.5.1), that celebrity users search for celebrities more than typical users (Section 2.5.1), that
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females and users, who are older than 60, are more interested in the first degree connections compared to the

rest of the users in our sample (Section 2.5.1), and several others. Therefore, we suggest to further innovate

around personalized search query suggestions given our demographics’ distinct people search patterns. It is

worth mentioning that SQ usage behavior has a wider variation across different demographics, and hence,

it makes sense to focus the efforts on that query type.

For example, we recommend building personalized grammar query suggestions at a Semantic Query

Template level because we found that users reuse Semantic Query Templates to search for different entities.

Moreover, users repeatedly search for non-friends without adding them to their friend network. This implies

that query suggestions shouldn’t be limited to friends only, but should also include some interesting distant

vertices in the social graph.

We believe that the quality of search suggestions would improve using lift predicates by concatenating

them to the User queries to facilitate entity disambiguation. Additionally, it would speed up the query

writing process. Lift predicates are advantageous over frequent query suggestions because the former can

boost the popularity of a new query while the latter are limited to the set of existing queries.

We found that the distribution over graph distances varies from predicate to predicate. While some

predicates are used primarily to explore information about friends, other predicates are used for non-friends.

We propose ranking entities for a predicate using its graph distance distribution.

We discovered that users write shorter queries when they search for Friends and use more predicates to

find Non-friends. Therefore, we propose generating interactive query suggestions by predicting an intended

search distance and deciding whether (a) to add one more predicate to the original query to generate a list

of longer queries or (b) to stop growing the query and iterate over the predicates applicable for the entity in

question. For example, once a user specified a name of a friend, it makes sense to show other predicates used

for friends, e.g. pages-liked or videos-liked (Figure 8). At the same time, if the user typed a name of a

non-friend, one can extend the query using disambiguation or lift predicates, e.g. employees or residents.

2.8 Limitations and Future Work

We do acknowledge several limitations of this study. First, we used proprietary data sets, which makes

the reproducibility of the study possible only by a selected few. However, we argue that the methodology

underlying the reported analysis is general to allow similar analyses by other researchers with access to

similar data sets. Moreover, it is the first large scale study of a search system providing structured querying

capabilities for a casual user, which is important to distribute in the information retrieval community.
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Second, throughout this Chapter 2 we considered three categories of queries based on the graph distance

– Self, Friend, and Non-friend. However, we could have done more fine-grained analysis and calculated

exact graph distances between entities by using more compute power. Third, some findings might depend

on the concrete implementation of the Typeahead query suggestion algorithm, e.g. users might search for

Non-friends more using SQs simply because they are shown such suggestions. However, the same applies

to almost any query log study of a modern search engine. Finally, we used a quantitative approach, which

knowingly has its own shortcomings. While it allows uncovering numerous data-driven insights at scale, it

cannot uncover users’ motivations and goals. Therefore, we can only speculate about the reasons underlying

observed user behavior. Qualitative survey or interviews are necessary to backup our quantitative findings.

2.9 Conclusions

In this Chapter 2, we conducted the large scale analysis of Facebook Graph Search query logs. It is the

first analysis that revealed insights on how demographic attributes and graph distance affect people search

within an online social network. We presented the comprehensive overview of named entity and structured

grammar queries usage and uncovered many new insights about people search within OSNs and PSNs. The

key takeaways from Chapter 2 are two-fold. First, named entity and structured queries complement each

other, and it is crucial to have them both in one system to address a diverse set of information needs of

users. Second, search usage behavior changes a lot for users with different demographics, and it is important

to model this variance to fulfill interests of everyone. We proposed numerous suggestions on how to develop

better people search systems within OSNs and PSNs in particular, and, more broadly, how one can improve

interactive structured search interfaces for networked data.
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Chapter 3

Relevance-aware Results Filtering for
Job and People Search

Sorting tuples by an attribute value is a typical search scenario within PSNs and many search engines

within PSNs support such capabilities, e.g. time-based sorting for resumes or status updates, salary-based

sorting for jobs, or distance-based sorting for events. However, sorting purely by an attribute value might

lead to poor user experience because relevance is typically not taken into account. Hence, at the top of

the list users might see irrelevant results (Figure 3). In this Chapter 3, we focus on the control aspect of

the PSN search user interface with the aim to address this significant problem and answer our RQ5(a)

and RQ5(b). First, in answering RQ5(a) (“Can the quality of results sorted by an attribute value be

improved by incorporating relevance into the ranking process?”), we developed a new filtering algorithm

that directly optimizes a given search quality metric and uses predicted relevance scores in the process.

Second, in answering RQ5(b) (“What is the best way to accomplish it?”), we provided an argument that

the proposed algorithm is theoretically optimal as it is based on the dynamic programming framework and,

hence, “virtually” enumerates all possible solutions. Finally, we performed a comprehensive evaluation study

of this algorithm on synthetic and real learning to rank datasets. Based on our experimental results, we

concluded that the proposed algorithm is superior to typically used heuristics and has clear practical value

for search applications. By the end of this Chapter 3, we will better understand how to improve PSN search

user experience when users perform structured entity sorting by an attribute value.

In the next Section 3.1, we describe an ad hoc search engine evaluation study that we conducted to

motivate this project and understand how existing PSN search engines support sorting by an attribute

value. Then, we cover related work in Section 3.2. We introduce our algorithm for relevance-aware tuple

filtering, analyze its computational complexity, and explain why it is theoretically optimal in Section 3.3.

After that, we turn to the experiments and describe the datasets used, the evaluation procedures, and the

results in Section 3.4 and in Section 3.5. We end this Chapter 3 with the discussion of possible limitations

that search engines ought to consider when deciding to use this approach in practice (Section 3.6).
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Figure 3.1: (A) LinkedIn’s job search results for the query “data scientist” sorted by “relevance”.(B)
LinkedIn’s job search results for the query “data scientist” sorted by “date” Sorting by relevance yields
relevant results. The results sorted by the attribute value are hardly relevant for the query.

Figure 3.2: (A) Indeed’s Resume search results for the query “product manager” sorted by “relevance”.(B)
Indeed’s Resume search results for the query “product manager” sorted by “date” Sorting by relevance yields
relevant results. The results sorted by the attribute value are hardly relevant.

3.1 Motivation

To evaluate how attribute-based sorting is supported by PSN search engines today, we conducted the ad hoc

evaluation of four popular job search engines1. For each search engine, we submitted 25 queries, applied the

sorting based on one of the attributes (relevance or date), and judged the quality of results. The following

queries were used: “Account Analyst”, “Account Director”, “Account Manager”, “Analyst”, “Analytical Sci-

entist”, “Business Analyst”, “Data Analyst”, “Database Administrator”, “Driver”, “IT Consultant”, “IT

Manager”, “Java Developer”, “Junior Developer”, “Lead Software Engineer”, “Office Manager”, “Project

Manager”, “Python Developer”, “Quantitative Analyst”, “Real Estate Manager”, “Registered Nurse”, “Re-

search Assistant”, “Risk Manager”, “Sales Manager”, “Software Architect”, “Web Developer”. The statis-

tics from this ad hoc evaluation study is presented in Table 3.1.

We found that the ranking by relevance was of very high quality — the average Precision@10 was 0.86. On

1Indeed, LinkedIn, SuperJob, Monster for jobs.
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Search Engine \ Metric Precision@1 Precision@5 Precision@10 “Weak” SERP
Indeed 0.13 ± 0.34 0.28 ± 0.31 0.25 ± 0.24 78%

LinkedIn 0.26 ± 0.45 0.22 ± 0.27 0.26 ± 0.24 87%
SuperJob 0.52 ± 0.51 0.55 ± 0.39 0.58 ± 0.40 43%
Monster 0.83 ± 0.39 0.89 ± 0.25 0.91 ± 0.22 9%
Average 0.46 ± 0.5 0.48 ± 0.40 0.50 ± 0.39 54%

Table 3.1: The performance of different search engines when sorting by the attribute value is applied.

the other hand, we found that the search results were far from relevant when the attribute-based sorting was

applied. For instance, across the sites the average Precision@1 was 0.46, Precision@5 was 0.48, Precision@10

was 0.50, and 54% of queries had the Precision@10 below 0.5 (denoted as “Weak” SERP in Table 3.1).

By looking at individual SERPs (e.g. Figure 3), we realized that the main reason for failed searches was

due to obviously irrelevant results jumping to the top because they had very high/low attribute values. It

suggests that nowadays search engines don’t take relevance into account when the attribute-based sorting is

requested. Interestingly, we were able to increase the quality of results dramatically even using very simple

heuristics (top-k threshold). On the pages to follow, we describe how we developed our optimal approach.

3.2 Related Work

This work is related to the research on search user behavior analysis, search metrics, and learning to rank.

The proposed algorithm is based on the dynamic programming [12].

Researchers studied the way people interact with search engines by analyzing mouse movements, eye-

tracking and click logs. Joachims et al. [66] discovered the position bias phenomenon, i.e. the results at the

first two positions receive most attention, and then it quickly drops. Plus, on average users tend to read

the results in a linear order from top to bottom. Craswell et al. [27] explored how the position bias might

arise and proposed four hypotheses and the corresponding probabilistic click models. They found that the

“cascade” model, where users view results from top to bottom and leave as soon as they see a worthwhile

document, is the best explanation for position bias in early ranks. Dupret et al. [40] generalized this model

by allowing for the possibility that a user skips a document without examining it.

Complementary to work on search models, a lot of attention has been devoted to the design and analysis

of search metrics. Thus, in addition to the traditional metrics, like the Precision and the Recall, Järvelin

and Kekäläinen proposed the (Normalized) Discounted Cumulative Gain (DCG) [64], Chapelle et al. — the

Expected Reciprocal Rank (ERR) [22], to name just a few. Recently, Chuklin et al. [26] developed a unified

framework to convert any click model into the evaluation metric. Essentially, all search metrics model the

position bias and penalize the top ranked irrelevant results.
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Numerous ranking algorithms have been developed to accurately predict the relevance of documents.

Typically, these algorithms are based on machine learning and find the optimal parameters by optimizing

the “surrogate” objective function. However, the solution to the approximation is not always optimal for the

original ranking problem. Therefore, recently several approaches have been proposed that directly optimize

a given search metric. For instance, Xu et al. [150] focus on the algorithms that optimize the objectives

upper-bounding the original non-smooth search metrics. Tan et al. [125] proposed DirectRank, which is

based on the iterative coordinate ascent with the smart line search procedure.

The attribute-based ranking, however, has been handled very differently. Rather than taking the rel-

evance into account, search engines return the list of results sorted by an attribute value or suboptimal

heuristics are used (Section 4.1). Inspired by the recent advancements in learning to rank, in this work

we bridge the gap between the relevance-based ranking and the attribute-based ranking by proposing to do

relevance-aware search results filtering which directly optimizes a given search metric when the sorting by an

attribute value is requested. It is worth highlighting the difference between the proposed algorithm and the

famous Threshold Algorithm (TA) by Fagin et al. [43]. While the TA algorithm finds top-k most relevant

tuples by scoring them individually, we return the tuples which cumulatively optimize a given search quality

metric.

3.3 Our Approach

We consider the scenario when a user requests the sorting of the search results by an attribute value, e.g.

by salary or date (Figure 3). Our goal is to produce the final ranking that both satisfies strict ordering

constraints and optimizes a given search quality metric (in turn, it minimizes the user’s effort on finding

relevant results). We only focus on results filtering and assume that relevance scores are already predicted

by the ranking algorithm. Therefore, the formalization of our problem looks as follows.

Input: a list of tuples {(ti, ri)}li=1, where ti is the attribute value and ri ∈ R+ is the relevance score

predicted by the ranking algorithm; a search quality metric Q.

Output: a (sub)list of indices J delivering the maximum to the metric Q and totally ordered based on

the attribute value, i.e. J = arg maxQ(rji |ji ∈ J), s.t. tj1 < ... < tjl .

Throughout this Chapter 3, we consider DCG as the search quality metric (although ERR or another

metric could be used), date as the attribute, and the input sorted chronologically. However, these assump-
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Algorithm 1 (A1) Relevance-aware filtering of totally ordered set via direct optimization of a search quality
metric

Input: DCG and {(ti, ri)}li=1, s.t. ti < ... < tl and ri ∈ R+
Output: J = arg maxDCG(rji |ji ∈ J), s.t. tj1 < ... < tjl

1: M ←Matrix(l + 1, l + 1);M(:, 0)← 0;M(0, :)← 0;
2: Path←Matrix(l + 1, l + 1); # to recover max sequence
3: for i in 1, . . . , l
4: for j in 1, . . . , i
5: gain← 2ri−1

log(j+1) ;

6: if M(i− 1, j − 1) + gain > M(i− 1, j)
7: M(i, j)←M(i− 1, j − 1) + gain;
8: Path(i, j)← (i− 1, j − 1);
9: else

10: M(i, j)←M(i− 1, j);
11: Path(i, j)← (i− 1, j);
12: (i, j)← arg maxM(l, :); # last element of solution
13: J ← List(); J.append(j);
14: while i > 1 and j > 1
15: if P (i, j).last < j
16: J.append(P (i, j).last);
17: (i, j)← P (i, j); # jump to shorter subsequence
18: return J.reverse()

tions are made solely to simplify the presentation. It is worth mentioning that the formalization above covers

the post-filtering scenarios as well, i.e. the input might consist of tuples that passed some other filtering

algorithm.

Currently, this problem is solved heuristically. Mainly, there are two approaches built around the same

idea of thresholding. We can take only the results that have a relevance score above the threshold. We can

also sort the results by the relevance scores, take the top-k elements, and, finally, re-sort the list by date.

While these approaches are easy to implement, they have two major drawbacks. First, it is not clear how

to set the threshold. Second, the described approaches provide approximate solutions to our problem. Even

the result set constructed from the top-k tuples sorted by relevance, being re-sorted by the attribute value,

gets ordered randomly if we look at the relevance component.

The solution that guarantees optimality is to enumerate all possible subsequences, compute the metric

for each one, and take the best. However, this approach is not tractable as the number of subsequences is

exponential. We propose a polynomial algorithm based on the dynamic programming [12]. There are three

key observations behind our algorithm: (1) natural enumeration order for subsequences; (2) additivity of

the metric; (3) optimality of subproblems.

First, all subsequences can be partitioned into the factor classes based on their length, i.e. in each factor

class there will be the subsequences of the same length. To enumerate all subsequences, we can iterate

over the factor classes and within each factor class enumerate all subsequences. Second, search metrics are
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Figure 3.3: Dependencies in the memoization matrix, a legal evaluation order, and the optimal path.

additive and can be computed in linear time from the beginning of the list to the end [22]. It means that

having a partial metric value for the prefix, we could compute the next metric value by simply adding the

gain/utility provided by the current element. Third, the optimal subsequence for the prefix of length k is

one of the optimal subsequences from each of the factor classes for the prefixes of length up to k− 1 with or

without the current element appended (proof by induction for the prefix length).

Combining the observations above, we present our algorithm and its analysis. It starts by initializing

the memoization matrix to store the optimal DCG values for subproblems and the transition matrix to

reconstruct the optimal subsequence. Then, it iterates over the prefixes of the input sequence in the outer

loop and over the factor classes in the inner loop. The cell (i, j) is for the optimal subsequence of length j for

the prefix of length i. At each step, we decide whether we should append the current element of the input

sequence i to the optimal subsequence of length j − 1 for the prefix of length i − 1 (the recursion on lines

6-11). If we append the current element, we go diagonally. If we don’t append, we keep the existing optimal

subsequence of length j and stay in the same column. A legal evaluation order and dependencies between

the cells are shown in Figure 3.3, A. Finally, to reconstruct the optimal subsequence, we find the maximum

in the last row (the last element is always “in” since the elements are non-negative) and go backward in the

Path matrix. If the line is diagonal, we take the element in the next cell. Otherwise, we skip. The Path

matrix is depicted in Figure 3.3, B. The complexity (both time and space) of the algorithm is O(l2) because

we have two nested loops, costing us O(1) time at each iteration, and the square memoization matrices. It is

guaranteed to deliver the optimum because we “virtually” enumerate all subsequences within the dynamic

programming framework. For a toy example problem {(0, 0), (1, 3), (2, 1), (3, 2), (4, 1), (5, 3))} the optimal

solution is {1, 3, 4, 5} with the DCG equal to 12.40.
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3.4 Experiments on Real Learning to Rank Datasets

In this section, we study how our approach contributes to the ranking quality using two real learning to

rank datesets (MQ2007LETOR [102] and MSLR-WEB10K). We additionally investigate the effectiveness,

efficiency, and selectivity of the proposed tuple filtering algorithm on four synthetically generated datasets.

3.4.1 Datasets

While there are more than ten publicly available learning to rank datasets that fit our evaluation needs,

we decided to pick MQ2007 and MSLR-WEB10K as they are sufficiently diverse (the number of results

per query, the dataset size, the number of features, the range of possible values for relevance judgments)

and, hence, allow to evaluate the proposed algorithm from multiple points of view. Both MQ2007 and

MSLR-WEB10K datasets can be obtained here2 and here3, respectively.

MQ2007

The MQ2007 learning to rank dataset is a sample of 1,600 queries obtained from a retired training set

of a commercial web search engine (Microsoft Bing) and annotated by professional annotators. It consists

of feature vectors extracted from query-URL pairs along with relevance judgments and has a standard for

machine learning applications sparse matrix format: each row corresponds to a query-URL pair, the first

column is relevance label of the pair, the second column is query id, and the following columns are features.

The relevance judgments are integer numbers ranging from 0 (irrelevant) to 2 (perfectly relevant).

The features include the scores predicted by various information retrieval models, e.g. TF-IDF, BM25 [103],

language models [99, 158, 159] for different web document fields (title, anchor, body, and etc.); quality

indicators; click-based features [25]; PageRank [18], and other web graph measures. There are 46 features

in total. The dataset is pre-partitioned into five folds of equal size for consistent cross validation. Each fold

contains approximately 335 queries. On average there are 40 documents per query.

MSLR-WEB10K

Likewise, the MSLR-WEB10K dataset is a sample of 10,000 queries obtained from a retired training set

of a commercial web search engine (Microsoft Bing) and annotated by professional annotators. It consists

of feature vectors extracted from query-URL pairs along with relevance judgments and has a standard for

2http://research.microsoft.com/en-us/projects/mslr/
3http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4dataset.aspx

38



machine learning applications sparse matrix format: each row corresponds to a query-URL pair, the first

column is relevance label of the pair, the second column is query id, and the following columns are features.

The relevance judgments are integer numbers ranging from 0 (irrelevant) to 4 (perfectly relevant).

The features include the scores predicted by various information retrieval models, e.g. TF-IDF, BM25 [103],

language models [99, 158, 159] for different web document fields (title, anchor, body, and etc.); quality

indicators; click-based features [25]; PageRank [18], and other web graph measures. There are 136 features

in total4. The dataset is pre-partitioned into five folds of equal size for consistent cross validation. Each fold

contains 2,000 queries. On average there are 120 documents per query.

3.4.2 Method

To answer our research questions, we do the simulations as follows. We extend MQ2007 and MSLR-WEB10K

datasets by assigning a random timestamp to each document to model the sorting by the attribute value.

Scikit-learn5 implementation of the Gradient Boosted Regression Trees (GBRT ) [45] is used to predict the

relevance scores. The optimal parameters for the final GBRT model are picked using cross validation for

each dataset. We use the 5-fold cross validation partitioning from LETOR [102].

We consider three popular baselines, which are typically used to perform the filtering of the search results

when an attribute-based sorting is applied:

• Baseline 1 (B1): sort by the attribute value and don’t do any filtering;

• Baseline 2 (B2) based on score thresholding: sort by the attribute value and keep only the

results with the predicted relevance scores above the threshold (we normalized the scores to [0,1] and

set the threshold=0.5);

• Baseline 3 (B3) based on rank thresholding: sort results by the predicted relevance score, take

the top-k (where k is the cut-off point for the metric value calculation), and re-sort by the attribute

value the results that are left after the filtering.

The evaluation procedure works as follows. First, we train the GBRT on the training folds. Second, we

predict the relevance scores using the trained GBRT model for the documents in the testing fold. Third,

we apply a baseline filtering algorithm to the documents in the testing fold by working with the relevance

scores from the step two and the randomly generated timestamps. Fourth, we apply our filtering algorithm

to the tuples that passed the baseline filtering. Finally, knowing the true relevance labels, we calculate the

4http://research.microsoft.com/en-us/projects/mslr/feature.aspx
5http://scikit-learn.org/stable/index.html
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NDCG @1 @5 @10 @20 @40
B1 only 0.226 0.245 0.273 0.336 0.496
A1 ◦ B1 0.299 0.287 0.304 0.363 0.511
B2 only 0.289 0.318 0.357 0.448 0.450
A1 ◦ B2 0.315 0.326 0.364 0.453 0.454
B3 only 0.433 0.417 0.418 0.451 0.498
A1 ◦ B3 0.433 0.417 0.420 0.455 0.512

NDCG @1 @5 @10 @20 @40
B1 only 0.131 0.161 0.190 0.236 0.309
A1 ◦ B1 0.173 0.183 0.208 0.250 0.321
B2 only 0.170 0.208 0.244 0.300 0.379
A1 ◦ B2 0.192 0.215 0.250 0.304 0.383
B3 only 0.390 0.362 0.365 0.380 0.418
A1 ◦ B3 0.390 0.362 0.366 0.382 0.421

Table 3.2: The demonstration of effectiveness of the proposed approach for relevance-aware tuple filtering
on MQ2007 (left) and MSLR-WEB10K (right) datasets.

NDCG@k for the filtered result list sorted by the timestamp. To make sure that the conclusions are not

due to randomness, we average the results from 1, 000 runs.

3.4.3 Results

The results of the experiment are presented in Table 3.2. We can see that the output (post-)filtered with our

algorithm is consistently better than the baselines. We applied the binomial test and found that almost all

differences in the NDCG values are statistically significant (marked in bold), p-value is below 0.001. One

average the increase in the metric value is around 2-4%. Moreover, since the datasets used have very different

characteristics (e.g. the average number of documents per query length for MQ2007 is around 40 and for

MSLR-WEB10K it is around 120), the experiment suggests that the algorithm achieves good performance

for a broad range of ranking problems.

3.5 Experiments on Synthetic Datasets

In this section, we focus on the filtering only (both relevance labels and timestamps are generated) and study

how the algorithm behavior changes for different input sizes and relevance label distributions.

3.5.1 Method

We consider the following four label distributions modeling the real situations: (a) uniform integer in the

range [0, 5]; (b) uniform real in the range [0, 5]; (c) power law, the slope α = 2.0; (d) 3x2

125 with the support in

the range [0, 5]. We generate the input lists for the filtering algorithm by sampling from the corresponding

distribution. Similarly to the previous experiment, we simulate each combination of conditions 1,000 times

and average the runs. Only the Baseline 1 is used in this experiment for simplicity.
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Figure 3.4: The behavior of the algorithm (A1) for different input sizes and relevance label distributions.

3.5.2 Results

The data from the simulation is presented in Figure 3.4. There are several observations that could be made

with the help of this figure. First, the output size is linearly proportional to the input size (Figure 3.4, C).

DCG also grows linearly with the growth of the input size (Figure 3.4, A). Second, the proposed algorithm

always outperforms the Baseline 1 (Figure 3.4, B), which is expected because we do the filtering directly

optimizing a given search quality metric. Third, both the graph for the ratio of the DCG values and the

graph for the ratio of the output sequence length for the proposed algorithm to the output sequence length

for the baseline monotonically converge for longer input lists (Figure 3.4, B and D). This means that our

algorithm works better when the original hit list is shorter. At the same time, the filtering is not effective

when the hit list is too short — the probability for a non-relevant result from the bottom of the list sorted

by relevance to jump to the top of the list sorted by the attribute value is low. Therefore, we conclude

that our algorithm is the most effective for the result sets made of 20-100 elements. Fourth, higher gains

in DCG over the baseline are characteristic for the relevance label distributions where relevant results are

more probable (Figure 3.4, B). This finding has a sound theoretical rationale — combinatorially counting

the permutations of results, one can show that for our approach the DCG as a function of relevance peaks
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Figure 3.5: The indices of the elements included (black cells) by our approach in the optimal subsequence.

when relevance labels are skewed towards higher relevance. It is important to note that the observations

above are valid for non-degenerate cases, e.g. not all labels are the same or sorted in a special order.

To better understand why the proposed approach works, we visualized the positions of elements that

passed the filtering. Specifically, we first generated relevance labels by sampling 400 uniform real numbers6

in the range [0, 5] (the synthetic dataset (b) described above), then, we generated the random timestamps

for each of the numbers, and, finally, applied our filtering algorithm on the sequence of numbers sorted by

timestamps. This procedure was repeated 100 times and the indicator vectors were vertically concatenated

into a 100 x 400 indicator matrix. The matrix is presented in Figure 3.5. As we can see, the algorithm is

very selective at the beginning of the search result sets but it stops filtering the results as it moves deeper

into the search results sets. We think that the main reason behind this behavior is the discounting factor in

(N)DCG. The discounted gains for the elements at the bottom of the search result set become very small

and the condition M(i− 1, j − 1) + gain > M(i− 1, j) from line six of our algorithm 3.3 rarely holds true.

3.6 Limitations and Future Work

In the previous sections, we demonstrated that our approach achieves superior performance by evaluating it

on real and synthetic datasets and providing the argument that this algorithm is theoretically optimal. In

this section, we describe the limitations of the algorithm and ideas for future work.

First, one should note that the increase in the ranking quality comes with the extra computational

cost because the complexity of our algorithm is O( l
log l ) times larger than for the baselines. Therefore, to

satisfy strict search user experience service level agreements (e.g. the results must be served under 300

milliseconds [108]), we recommend working with the result sets made of up to 1,000 elements (according to

our latency benchmarks in Figure 3.6, we can process 1,000 results under 100 milliseconds using our C++

6400 is not special and was picked solely for the purposes of illustration.
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Figure 3.6: Scalability of the proposed approach.

implementation on a workstation with 4GB RAM and two 2.5GHz CPU cores).

Second, the algorithm is based on the idea of filtering and, hence, it removes some results from the

original search result set. Therefore, the users might get confused, especially, if they first view the results

sorted by relevance and then resort them by some other attribute. To avoid this confusion, we recommend

keeping in the output the results already seen by the user within the session. That said, based on our

experience and the evaluation described at the beginning of this Chapter 3, nowadays the results shown at

the top of the SERP resorted by an attribute value are hardly relevant, which suggests that the users won’t

be upset not seeing them. An interactive user study is necessary to definitively answer this question.

Third, we evaluated the algorithm offline on the real and synthetic datasets. However, we didn’t test this

algorithm with real users. Therefore, it will be interesting to conduct an online A/B experiment to learn

how users behave when some results are filtered out of the search output (re-)sorted by an attribute value.

The control version will use the existing algorithm, which merely resorts the results by an attribute value.

The treatment version will use the proposed algorithm. We will track direct and indirect metrics of search

quality such as the number of job views per query, the number of job applications conditioned on SERP

click, the distribution of clicks. The hypothesis will be that with the proposed algorithm users are more

effective at search since they don’t see irrelevant results.
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Figure 3.7: (A) Amazon’s product search results for the query “bicycle” sorted by “relevance”. (B)
Amazon’s product search results for the query “bicycle” sorted by “price (descending)”. Sorting by
relevance yields at least three relevant results. The results sorted by the attribute value are hardly relevant.

We also consider a different solution to the problem that irrelevant results jump to the top of the search

results sorted by an attribute value. Rather than doing the filtering, we can still keep all results but

additionally show a data visualization that signifies relevance for each result and allows to navigate quickly

to a relevant result by clicking on its thumbnail. This idea is not novel as in the past there were several

attempts to use data visualizations in search [3, 137, 144]. However, most of them were unsuccessful (see

conclusions section at http://searchuserinterfaces.com/book/sui_ch10_visualization.html7. Two

main barriers were: (1) that users didn’t understand the concept of topical relevance, which is at the core of

information retrieval and full-text search; (2) that ”the vertical position on the page served as a strong and

effective relative signal of the result relevance” [54]. Luckily, none of this is true in the case of structured

search — the units of retrieval are structured entities which have typed attributes with clear semantics (e.g.

price, date, size, amount, number of publications, age, etc.) and are sorted by an attribute value rather

than by relevance. Therefore, an interactive user study of a new experimental system showing the data

visualization briefly described above will be very fascinating. Plus, it might be useful to investigate the

differences between precision-oriented search and recall-oriented search in the context of attribute-based

sorting since the ranking order of search results doesn’t serve as a proxy to relevance in this case any more.

3.7 Conclusions

In this Chapter 3, we addressed the significant problem in search, that is, how can we increase the relevance

of the search results sorted by an attribute value. Our solution is based on the idea to perform relevance-

aware search results filtering by directly optimizing a given search quality metric. We developed a simple,

7we are aware of seminal visual search user interfaces based on direct manipulation [2, 110] but consider a more traditional
for information retrieval scenario, where the SERP with ten blue is used for the presentation of results.
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yet effective algorithm based on the dynamic programming, which consistently outperforms typically used

heuristic approaches and is guaranteed to deliver the optimal solution.

While this algorithm is extremely relevant for PSNs that contain a lot of structured data, such as user

profiles, job postings, articles, and many others, it has a much wider area of application. Any structured

search engine that deals with the typed data having numeric attributes might benefit from using this al-

gorithm as it is guaranteed to increase the relevance of results when users perform sorting by an attribute

value. For example, we foresee significant utility of this approach in e-commerce search when users do sort-

ing by price, rating, delivery date, popularity, release date, weight, size (e.g. Figure 3.6), academic search

when researchers do sorting by the number of publications, the number of citations, year, local search when

users do sorting by distance or rating, and even web search as more and more data get transformed into the

structured networked representation (e.g. Google Knowledge Graph [20,93]).
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Chapter 4

Extended Informative Structured
Snippets for Job Search

In this Chapter 4, we describe our efforts towards the design of more informative snippets for job search

and answer our RQ6-RQ8. First, in answering RQ6(a) (“What information is necessary for users to

decide whether they want to apply for a job?”) and RQ6(b) (“What information is necessary for users to

decide which results to click on a SERP?”), we conducted a mixed-method user study and found that in

addition to the attributes commonly shown on the SERP by job search engines today (job title, company,

location, date posted, and salary), users also consider responsibilities and requirements as important. Very

often the information presented in the responsibilities and requirements sections of a job posting is used

by users to decide whether they want to continue exploring the job posting. Therefore, we introduced the

concept of extended informative structured snippet for job search that shows this information right on the

SERP to save users’ efforts. However, to be able to display this information, it first needs to be extracted.

Second, in answering RQ7(a) (“How can we automatically extract job responsibilities and requirements from

an unstructured job posting with minimal supervision?”), we developed a novel weakly-supervised approach

for information extraction from job postings, that turns any unstructured job posting into the structured

representation and in particular can extract the responsibilities and requirements sections. The approach

leverages big data redundancy to create a training set with minimal supervision and achieves very high

extraction quality. In answering RQ7(b) (“How can we generate an extended informative structured snippet

for a job posting having a list of job responsibilities and requirements in a structured form?”), we adapted

the Maximum Marginal Relevance Principle to our problem. Third, in answering RQ8(a) (“Do extended

informative structured snippets improve search user experience for job search?”) and RQ8(b) (“How do

users behave when such structured snippets are used?”), we conducted an online A/B test with the real users

of HH.ru to evaluate the utility of extended informative structured snippets. In this Chapter 4, we will learn

why and what information is crucial for users conducting job search online, how to extract this information

from job postings, and how the presentation of this information on the SERP improves search UX.

In the next sections, we first cover the user study for needs elicitation by describing the research method in

Section 4.1.1 and the results in Section 4.1.2. Then, we present a weakly-supervised approach for information
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Figure 4.1: (Left) How many years of work experience do you have? (Right) What is your current student
status (put “working professional” if you aren’t a student)?

extraction from unstructured job postings in Section 4.2 and describe the experiment that we conducted to

evaluate the extraction quality in Section 4.2.1. We share our experience adapting the proposed approach

for new languages in Section 4.3.1 and describe the online A/B experiment in Section 4.3.3.

4.1 User Study for Requirements Elicitation

We first conducted the user study to understand what information is necessary for users to decide whether

they want to apply for a job (RQ6(a)) and what information users want to see on the SERP to make more

informed job click decisions (RQ6(b)).

4.1.1 Method

Participants

Participants were recruited via personal contacts, print ads at UIUC campus, mailing lists, and word-of-

mouth. All participants were required to have at least three months of work experience, be above 18 years

old, and have experience using an online job search engine, e.g. Indeed.com, Monster.com, LinkedIn.com,

Glassdoor.com. 26 people replied and were invited for the study.

Half of the participants were female (13 people). Most of the participants were UIUC students (24 people)

and two were working professionals (a Marketing Manager and a Personal Trainer). The participants had

diverse work experience (0-8 years, the average is 2.3 years) and education (2-9 years in the university, the

average is 4.8 years). See Figure 4.1 for details. The participants represented many professional fields (sorted

by popularity): Software Engineer (8 people), Data Scientist (3 people), Healthcare Consultant (2 people),

Research Scientist (2 people), Personal Trainer (1 person), Genetics Counsellor (1 person), Product Man-
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ager (1 person), Translator (1 person), Occupational Therapist (1 person), Marketing Manager (1 person),

Business Analyst (1 person), Foreign Policy Representative (1 person), Consultant (1 person), Biomedical

Product Developer (1 person), Pharmacist (1 person). By interviewing a diverse set of professionals, we

were able to capture the multiplicity of job search strategies and needs.

Procedure

We started the study session from the orientation (five minutes) where we explained to a participant the

purpose of the study and the experimental procedure. The main part of the study (35 minutes) consisted of

three stages. First, the participant was required to search for a job relevant to her/him using Indeed.com (ten

minutes). The goal was to find and open five relevant job postings. We asked the participant to think aloud

as s/he conducted her/his search to understand the rationale behind the search actions and behavior on

the SERP. Second, once the participant discovered five relevant job postings, we asked her/him to look at

each job posting and highlight information that s/he used to decide whether s/he wants to apply for this

job. A web annotation tool was provided to assist the participant with this task1 (Figure 4.2). Again, the

participant had to explain why s/he highlighted some information to help us understand the rationale behind

the thinking process. We allocated around three minutes per job posting. Third, we asked the participant

to complete two surveys (five minutes per survey). In the surveys, we asked the participant to score each

of 28 job attributes on a scale from 1-5 (5-point Likert scale [100]). We generated a set of 28 job attributes

by analyzing search user interfaces of popular job search engines (LinkedIn, Monster, Glassdoor, Indeed,

HeadHunter, SuperJobs) and a sample of job postings. One survey was directed towards the apply decision,

i.e. we asked the participant to “Rate the usefulness of each piece of information about a job to help you

decide where to apply?”, and the other was directed towards the search process and SERP click decisions,

i.e. “Imagine you are looking for a new job using an online search engine (e.g. Indeed, LinkedIn, Glassdoor,

Monster,...). What information would you like to see on the search results page?”. We intentionally put the

surveys at the end of the user study session to make sure that the participant had the right context after

s/he had engaged in job search/highlighting first. We rewarded the participant with the $5 gratuity.

Measures and Analysis

From each participant, we collected the background survey (also used as an application for the study),

“think-aloud” comments about the job search process, annotated job postings, and survey responses. It

allowed us to answer RQ6(a) and RQ6(b) from multiple perspectives and triangulate the findings.

1https://www.diigo.com/
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Figure 4.2: (Left) Diigo.com web annotation user interface. It allows to highlight text on a page and save
it. (Right) Diigo.com personal cabinet that allows to view all annotations in one place.

4.1.2 Results

Findings from the think-aloud comments

We coded the comments collected from the participants and counted the number of times they referenced

different attributes. Company (36), skills (34), and job title (29) were the top three most frequently

mentioned attributes2. The participants looked for the companies they know, the prestigious companies

with the strong brand names in the respective industries, and the companies they had some relationship in

the past (e.g. worked there in the past as an intern). For example, one participant remarked that “Intel is

a big name, good as the first job since it will help for future job search ”.

Skills were the second most important attribute helping the participants to decide whether they want

to apply for a job. Most importantly, the skills (as well as other attributes related to the requirements

and qualifications, which we will discuss below) were considered as a necessary condition. When the skills

didn’t match the participant background, the participant didn’t click on it (while on the SERP) or stopped

looking at it (when on the detailed job description page). On the other hand, when the skills matched the

participant background, the participant felt very positive and was more willing to learn more about the job.

To illustrate these general observations, we provide several anecdotal comments shared by the participants:

“I stopped once I saw SQL and other coding technologies. I am a different kind of analyst.” [P2]

“I look for the skills and try to evaluate how strong I am so that I don’t get immediately rejected.

Basically, I try to count the number of required skills I covered. If a lot of the skills don’t match

my background, I go for another job.” [P14]

2we report the absolute counts at the attribute level and not at the participant level. While it is less accurate, it is sufficient
to understand the overall attribute preference.
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“When I search I try to follow the following strategy: if I am sure that I fit, I will open the job

posting [form the SERP], if it is 50/50, I will still open it since I am exploring more options, if

am sure that I don’t qualify, I will skip. Basically, I look for must have criteria and if they aren’t

satisfied, I skip. For me, these are title, skill, major, and degree.” [P22]

The participants paid attention to the job title because it is one of the most salient points of the SERP

and the job description. They liked the jobs that had job titles exactly matching the ones they were

interested in, plus the ones that had more specific details in it. For example, the participants liked the

job titles that specified the area of responsibilities and required skills (e.g. “Software Engineer, Back-end

Node.js”), job type and dates of employment (e.g. “Social Media Marketing Intern — Summer 2016”),

location (e.g. “Healthcare Consultant, Greater New York Area”). We learned that background knowledge

about the industry was crucial to make more informed click decisions as one participant remarked that she

knows “...that legal translators are paid well, so I will check this job...”.

Among other attributes, the participants noted (presented in the order of popularity): responsibili-

ties (25), years of work experience (22), degree (15), location (14), about us information describing

culture and mission of the organization (9), visa sponsorship and work authorization (8, especially relevant

for international students), salary (7), job type (7), crowdsourced average company rating (7) and the number

of votes (6), posting date (4) and deadline to apply (2), perks (1), and the amount of travel required (1).

The participants also noted that: (a) on the SERP they paid more attention to the information in

the title since “it is in bold, it stands out and I always look at it first ”; (b) when they “...see something

second time from the same company...”, they “would skip it since the information is redundant”; (c) they

preferred job postings with the structured layout and more visual content (images and may be videos with

the employees); (d) they wanted to be able to specify the attributes the search engine shows to them.

Findings from the job annotations comments

We counted the number of times each specific attribute was highlighted by the participants. The counts

were aggregated at the job posting level to account for the situations when the disproportionate amount

of space is dedicated to one aspect of a job. The ranked list of attributes turned out to be as follows.

The most frequent group of attributes was about qualifications (83 annotations in total). It, in turn,

included required skills (72), degree (59), years of work experience (53), and very rarely GPA (2) and

age (1). The next most frequent group was responsibilities (71). After that, we observed a drastic drop

— location (24), job type (24), job title (16), work authorization / eligibility (13). People also considered

useful the information about companies (14) and specifically about the company culture and mission (11),
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salary (11), how to apply (7), industry (6), application deadline (4) and posting date (3), the amount of

travel required (3), perks (3). Five people highlighted company names and one person highlighted a logo.

Findings from the survey on job attribute importance

At the end of the study, each participant completed two multiple choice surveys. One survey asked the

participants to “Imagine you are looking for a new job. Rate the usefulness of each piece of information

about a job to help you decide where to apply?” and the other to “Imagine you are looking for a new job

using an online search engine (e.g. Indeed, LinkedIn, Glassdoor, Monster, etc.). What information would

you like to see on the search results page?”. The candidate attributes were synthesized by coding a sample

of 100 job postings and by analyzing the SUIs from popular online job search engines before the study. In

total, we identified 28 different attributes. We present the results aggregated at a user level in Table 4.1.

The values above four points on a 5-point Likert scale and the attributes with the cumulative score above

eight points from both surveys are highlighted.

As we can see, the most popular attributes are job type, company, job title, required skills, loca-

tion (country and city), educational requirements (degree and major), responsibilities, and required

years of experience. By exploring the attributes with high variance, we also found that these are typically

attributes with bimodal preferences (e.g. US citizens don’t need visa sponsorship, while all international

employees do). One can notice that the scores assigned to attributes in Survey 2 are usually lower, which

implies that the participants were more selective and wanted to see only the most important information on

the SERP because of the limited presentation space.

4.1.3 Summary of Results

To summarize, following the user-centric design process, we conducted a mixed-method user study (“think-

aloud” protocol, data annotation by the participants, and surveys). Our study revealed that in addition to

the attributes currently presented on the SERP (job title, company, location, job type), the participants

paid attention to responsibilities and requirements (skills, degree, major, years of work experience, work

authorization). In the next section, we will present the algorithm that can extract this additional information

from job descriptions automatically and requires minimal supervision during the training stage.
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Job Attribute \ Survey ID Rank Survey 1 Survey 2
Job Type (Full-time, Contract, Internship) 1 4.69 ± 0.67 4.69 ± 0.54
Company 2 4.34 ± 0.84 4.65 ± 0.89
Job Title 3 4.15 ± 1.12 4.69 ± 0.47
Required Skills 4 4.50 ± 0.64 4.15 ± 1.04
City 5 4.03 ± 0.91 4.38 ± 0.69
Educational Requirements (Degree & Major) 6 4.26 ± 0.77 4.03 ± 1.18
Responsibilities / Duties 7 4.53 ± 0.85 3.88 ± 1.30
Required Years of Experience / Seniority 8 4.34 ± 0.89 3.92 ± 1.19
Country 9 4.38 ± 0.85 3.76 ± 1.45
Salary Range 10 4.11 ± 0.81 3.38 ± 1.09
Industry (e.g. Banking, Internet, Telecom, FMCG) 11 3.96 ± 1.03 3.26 ± 1.53
State / Region (e.g. Midwest, West Coast, East Coast) 12 3.76 ± 1.06 3.00 ± 1.35
Perks and Benefits 13 3.61 ± 0.75 2.76 ± 1.21
Company Mission 14 3.61 ± 1.13 2.38 ± 1.47
Average (Crowdsourced) Rating / Company Review 15 3.46 ± 1.02 2.69 ± 1.28
Company Size (e.g. 1-10, 10-100, 100-1000) 16 3.38 ± 1.16 2.26 ± 1.21
Company Type (e.g. Private, Public, Startup) 17 3.34 ± 1.19 2.69 ± 1.34
People I Know Working in this Company 18 3.30 ± 1.22 2.57 ± 1.33
(short) Company History / About Us 19 3.23 ± 1.14 2.42 ± 1.39
Company Revenue 20 3.15 ± 1.12 2.23 ± 1.36
Link to Company Website 21 3.11 ± 1.60 3.34 ± 1.54
Ready to Sponsor Visa 22 2.84 ±1.82 2.69 ± 1.82
Date the Job was Posted 23 2.76 ± 1.33 3.30 ± 1.34
Distance From Me (X miles around my location) 24 2.69 ± 1.54 2.15 ± 1.22
Hiring Manager is an Alumnus from the Same School 25 2.57 ± 1.33 2.33 ± 1.03
Zip/Postal Code 26 2.23 ± 1.50 1.96 ± 1.31
Company Logo 27 1.88 ± 1.21 2.23 ± 1.24
Founded in Year 28 1.88 ± 1.07 1.53 ± 0.94

Table 4.1: Job attribute importance based on the surveys (26 participants participated in each survey).

4.2 Weakly-supervised Approach for Job Posting Segmentation

Based on Big Data Redundancy

To address RQ7(a) (“How can we automatically extract job responsibilities and requirements from an un-

structured job posting with minimal supervision?”), one can build an information extraction model following

the ideas from [94,147]. The problem is that despite aiming to minimize labeling efforts, this approach still

requires some training to be conducted manually. The problem becomes more severe if we take into account

the fact that major job search engines and PSNs operate internationally, and hence, training sets must be

created for each language. To handle this complication, we propose a weakly-supervised approach for infor-

mation extraction from job postings that requires a very minimal amount of manual data annotation (1-3

words per language) and could be used by a job search engine operating internationally.

The inspiration for our weakly-supervised approach comes from the paper [50], where the authors discuss
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how very large amounts of data make it possible to tackle complex problems, like machine translation, scene

completion, and natural language disambiguation, with relatively intuitive algorithms. The wisdom of the

paper is that one should define a non-parametric model and statistically fit it with very large amounts of data.

In this case, since “most” of the variability of the phenomenon is captured in the data, the model will have

quite high predictive ability. We first present a method for the training set construction from a collection

of job postings, which is the key trick of this work, and then we describe a machine learning algorithm,

which uses this training set to build a model for information extraction from job postings. Since we want to

generate snippets which contain information from the responsibilities and requirements sections, our training

set must contain positive examples from these sections (target classes) and also have some negative examples

representing the irrelevant content.

Our approach to generate the training set with minimal cost is based on the observation that despite

being free text documents, job postings mainly consist of the following sections in the presented order :

short attributes (job title, company, location, etc.), responsibilities, requirements, and company description.

Moreover, some job postings are so well-structured that just one declarative rule is enough to extract

information from them. Specifically, we noticed that a reasonable percentage of pages (about 10% based

on experiments) contain a section header3 followed immediately by a set of sentences wrapped in a < li >

tag. In other words, our extraction rule works as follows. For a job posting HTML page containing <

h3 > Responsibilities :< /h3 >< ul >< li > X < /li >< /ul >, X is a training instance for the

“Responsibilities” class (Figure 4.3). We can extract such sentences and use them during the training stage

as positive instances for the corresponding class. Negative instances (“Others” class) could be generated by

taking sentences preceding the responsibilities and following the requirements sections from pages, where

these sections were detected by the strict rule defined above. The more job postings are crawled and added to

a search index, the more training instances could be generated. In the limit, we could potentially “remember”

all things companies look for in candidates and achieve very high extraction quality. To summarize, we only

have to specify one word per section per language to bootstrap a sufficiently large dataset.

Once the training set is available, the learning task can be formally stated as follows. Given a labeled set

of sentences from the responsibilities, requirements, and “others” sections of job postings, create an algorithm

that can identify important sentences from a new job posting and assign them to the corresponding sections.

Each sentence is used independently as an instance for a machine learning algorithm. As a model, we use

a 2-level ensemble similar to stacking. At a base level, we train 3 textual classifiers based on unigrams,

bigrams, and trigrams. At a meta level, we mix binarized predictions of the base algorithms as well as

3Identifiable with just one seed word per section, like “Responsibilities:” and “Requirements:” used in our experiments.
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Figure 4.3: A highly precise extraction pattern consists of a job posting section header word inside an
HTML header tag and a list tag that contains the target sentence corresponding to this section and used
for information extraction model training.

linguistic features, e.g. sentence length, capitalization, POS tags. As a learning algorithm, at both levels,

we use SVM [135] with a linear kernel, which scales to very large datasets, and a Cutting-Plane Algorithm

described in [65]. To further speed up computation, we use feature hashing as described in [78].

4.2.1 Experiment for Offline Evaluation of Information Extraction Quality

To evaluate the proposed approach, we crawled a corpus of 1,101,482 pages representing job postings.

The set of URLs was generated by submitting top job titles (http://www.indeed.com/find-jobs.jsp)

to Indeed.com and web scraping the corresponding SERPs. The destination pages for each URL were

downloaded and stored locally. We then selected ten distinct job titles spanning multiple industries (16,054

pages total) and annotated 100 randomly sampled pages for each. The annotation speed with the custom-

built annotation tool was about two minutes per page, which demonstrates the cost one must accommodate

if s/he follows a classical supervised approach. We used ten-fold cross validation for the supervised approach

evaluation. The proposed weakly-supervised approach was trained on the sentences automatically extracted

from 16,054 pages excluding the labeled pages to make sure that we evaluated the performance fairly. Then,

we applied the algorithm on the same fold as the supervised algorithm and repeated the procedure ten times.

Since our ultimate goal is to use the extracted information to generate snippets, which is a precision-oriented

task (due to the limited space available on a SERP), we tracked two metrics: Precision averaged across job

titles and Page Coverage (the percentage of pages for which at least one relevant sentence was extracted).

4.2.2 Results

First, we found that the model trained on the dataset created using our weakly-supervised approach per-

formed as good as the model trained on a corpus of 1,000 job postings labeled manually (Table 4.2), which
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Job Section Metric Manual Annotation Weakly-supervised Approach
Responsibilities Precision 0.86 ± 0.09 0.84 ± 0.08

Page Coverage 0.80 ± 0.12 0.92 ± 0.07∗∗∗

Requirements Precision 0.91 ± 0.07 0.88 ± 0.07
Page Coverage 0.94 ± 0.05 0.97 ± 0.04∗∗∗

Table 4.2: The evaluation of information extraction quality. The proposed weakly-supervised approach
achieves similar values for Precision and has higher Page Coverage due to much bigger training set size.

implies that the proposed approach can be used to effectively and efficiently create training sets for infor-

mation extraction algorithms from job postings. Second, one can notice that the proposed approach for

the training set generation yields higher Page Coverage (Table 4.2) and the difference is statistically sig-

nificant using a paired two-tailed t-test with p = 0.05. Generalizing the results from [6], who showed that

simpler algorithms with more data outperform more complex algorithms, we hypothesize that we achieve

better results also because of the larger training set. Third, we graphed the performance of the proposed

weakly-supervised approach for different job titles (Figure 4.4) and found that it consistently extracts correct

information from new job postings. It implies that the approach generalizes to the entire job domain.

To summarize, in this section we demonstrated that we can perform accurate information extraction from

unstructured job postings and turn them into the structured representation with minimal supervision. This

structured representation can be used to generate informative structured snippets by showing on the SERP

not only job titles, companies, and locations but also requirements and responsibilities, which we found to

be equally important as described in Section 4.1.

4.3 Extended Informative Structured Snippet Generation

In this section, we describe our efforts to evaluate the utility of extended informative structured snippets,

which can be generated by having access to the structured representation generated with the approach

presented in the previous Section 4.2. Our evaluation is based on the online A/B test with real users of

HH.ru (the largest job search engine in Russia and CIS4 region). Since HH.ru primarily serves job postings

written in the Russian language, we had to adapt our approach from English to Russian. Therefore, we

also report on how easily it generalizes to new languages. Our ultimate goal in this section is to answer

our research questions RQ8(a) (“Do extended informative structured snippets improve search UX for job

search?”) and RQ8(b) (“How do users behave when such structured snippets are used?”).

4Commonwealth of Independent States
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Figure 4.4: Information extraction Precision by the proposed weakly-supervised approach stably achieves
high values across various job titles. Black bars represent Responsibilities, gray bars represent Requirements.

4.3.1 Adapting the Approach to New Languages

We were able to get access to the dataset of over 4,000,000 job postings provided by HH.ru. We first generated

a training set for the information extraction model from Russian language job postings using our weakly-

supervised approach by “seeding” it with just three most popular section words: the one, which is translated

as “Responsibilities”, the one, which is translated as “Requirements”, and the one, which is translated as

“Conditions”5. As a result, we were able to cover 16.3% of the data set (652,283 job postings)6. The training

set contained 3,462,734 sentences for different sections of the job posting (requirements, responsibilities,

conditions, other). We then trained the algorithm described in the previous section (an ensemble of linear

SVMs on top of N-grams) and calculated the Precision for different sections. We got 91.38% for the

responsibilities section, 90.15% for the requirements section, and 93.66% for the conditions section. These

numbers imply that on average 7-10 out of 100 job postings were parsed incorrectly. This level of performance

wasn’t acceptable for the industrial user-facing service.

Therefore, we experimented with various ways to increase the performance of information extraction.

First, we increased the size of the training set by adding more extraction patterns (section words). For ex-

ample, in addition to using the translated version of “Responsibilities”, we also used the synonyms, like “Du-

ties”, “Key Accountabilities”, “Key Responsibilities”, and etc. Eventually, we added around 50 patterns per

section and covered section headers for almost the entire data set. It is worth mentioning that, as expected,

we observed the effect of diminishing returns (Figure 4.5), i.e. with extra added patterns the amount of

new covered pages that can be used for training didn’t grow as significantly. We retrained the algorithm on

10,000,000 training instances and got the following Precision scores: 95.72% for the responsibilities section,

5due to the specifics of the local recruiting landscape, this section is known to be important and we were recommended to
include it in the snippets by a HH.ru representative.

6precisely, we covered the section headers, but not job postings since not all job postings have a structured layout making
the automated extraction with simple patterns infeasible.
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Figure 4.5: Section headers’ coverage with the extraction patterns as a function of the number of patterns.

94.02% for the requirements section, and for 95.93% for the conditions section, which implies that on average

4-5 out of 100 job postings were parsed incorrectly. This level of performance was still unacceptable.

Second, we turned to the hybrid approach that combined highly precise extraction patterns created

manually and machine learning as a “catch-all” back-off model. Specifically, for a new job posting, we first

tried to parse it using the extraction patterns and only if none of the extraction patterns worked, we used

the prediction from the machine learning model. This hybrid approach allowed to increase the Precision for

information extraction to 96.64% for the requirements section, 96.17% for the responsibilities section, and

98.11% for the conditions section, which means that only 2-3 out of 100 job postings were parsed incorrectly.

With this performance, we were able to move forward.

4.3.2 Assembling Informative Structured Snippets According to the

Maximum Marginal Relevance Principle

In this section, we answer our RQ7(b) (“How can we generate an extended informative structured snippet

for a job posting having a list of job responsibilities and requirements in a structured form?”). Having access

to the structured (fielded) representations of job postings, we generated extended informative structured

snippets in a query-biased manner by following the Maximum Marginal Relevance Principle [21]. Given

a query submitted by the user, for each section (responsibilities, requirements, conditions) we picked the

sentence, which had the highest similarity with the query, and, then, we assembled the rest of the snippet

by taking the sentences maximizing the cumulative utility of the snippet according to the formula:

sk+1 = arg max
si∈S\Sk

{
λ ∗ sim1(si, Q)− (1− λ) ∗ max

sj∈Sk

{sim2(si, sj)}
}
,

57



where sk+1 is the next sentence to be selected; S are all sentences for a given section, Sk are the sentences

selected so far, sim1 and sim2 are the corresponding similarity functions between the query and the sen-

tences (the cosine similarity is used in our case), and λ is a linear mixing factor balancing between relevance

to the query and redundancy of the sentences in the snippet (we set it to 0.5).

4.3.3 A/B Experiment for Online Evaluation of Informative Structured

Snippet Utility

The online A/B experiment was conducted during 12 days in November 2013. Two different versions of

the snippet were considered (Figure 4.6): (A) the one, with the traditional minimalistic snippets showing

only job title, company, location, posting date, and salary; (B) the extended one, additionally showing

requirements, responsibilities, and perks & conditions information. 1/64 of all unique users were sent to

the experimental interface with the randomization at the IP level. All user actions were logged. The log

records consisted of the following data fields: user id, snippet version, action id (click, page view, search),

timestamp, meta params (service field containing context about a user, a query, a region, and other features

relevant for search personalization). In total, 542,298 unique users participated in the study.

Implementation Details

We followed the service oriented architecture (SOA) and exposed the proposed algorithm as a private REST-

ful API. Every time a user visited HH.ru and submitted a search query, HH.ru sent a request to our API

with the goal to get structured snippets for job postings retrieved from the HH.ru’s index. Each request

consisted of a query and 20 unstructured job postings. As output, we returned a list of 20 snippets, one for

each search result. To avoid unnecessary computation, we used Redis7 to build a simple cache layer. As a

key, we used a query and a job posting ID. The value contained a query-biased snippet for the query and

job posting pair. For machine learning, we used a scalable implementation of LibSVM developed specifically

for short texts [154]. The API was hosted in Microsoft Azure Cloud on a machine with 16GB RAM and

two 1.7GHz CPU cores. The API was proxied behind Nginx8, and Gunicorn9 was used as a web server. We

performed load test and found that the described configuration was able to sustain the required portion of

the traffic (around 100,000 requests per day) and serve the snippets for each request under 0.7 seconds10

7http://redis.io/
8https://www.nginx.com/
9http://gunicorn.org/

10HH.ru set 2 seconds as a service level agreement (SLA).
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Figure 4.6: Two experimental snippet versions. (Left) Current snippets used at HH.ru showing job title,
location, company, and posting date. (Right) Extended informative structured snippets additionally showing
information about job responsibilities, requirements, and conditions.

4.3.4 Results

The summary of results from the A/B experiment is presented in Table 4.3.11 We found that the version B

with extended structured snippets led to better search users experience according to the multitude of tracked

metrics. The number of queries per user decreased by 8% and the number of queries before the first apply

action for a new unique user in the A/B experiment decreased by 1.4 times. These findings imply that with

the extended informative structured snippets we increased the efficiency of search and the engagement with

the SERP. In other words, users were able to accomplish their search tasks faster and made more informed

decisions while interacting with the SERP. We also found that the number of short clicks (when a user clicks

on a link on the SERP, visits the page, and then quickly closes it) decreased by 5.5% and that the number

of wasted views (open a job posting page but don’t make any actions) decreased by 1.25 times. At the

same time, the number of applications overall increased by 1.6% (one of the key metrics for a job search

engine related to revenue) and the application rate conditioned on click increased by 13%, which means that

users were opening more relevant job postings from the SERP. By analyzing the SERP interaction logs, we

discovered that click entropy decreased by 1.98 times. This finding implies that with structured snippets we

denoise click data and could perform more effective relevance feedback calculation improving the search user

experience within and across sessions. Finally, we found that the number of detailed page views decreased

by 1.4 times. By combining this fact with the finding that overall the number of applications increased by

1.6%, we again conclude that the proposed snippets make users more efficient at search. Two most important

graphs from the A/B experiment are presented in Figure 4.7.

11we don’t report the absolute numbers because this information is confidential.
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Metric Relative Change
Average Number of Queries per User −8%

Average Number of Detailed Page Views Per Query −28.6%
Average Number of Short Clicks per Query −5.5%

Average Number of Wasted Views per Query −20%
Average Number of Queries before the First Apply Action −27.5%

Average Application Rate Conditioned on SERP Click per Query +13%
Number of Applications Overall +1.6%

Average Click Entropy per Query −49.5%

Table 4.3: Statistics for the A/B experiment conducted with HH.ru.

4.4 Discussion

According to the A/B test, the majority of analyzed metrics related to search user experience and satisfaction

improved significantly demonstrating the usefulness of extended informative structured snippets for the

users. However, the number of detailed page views decreased by 1.4 times. Therefore, the decision to use

the proposed snippets in practice is not obvious and depends on the business model of a job search engine

company and its long-term objectives. For a search engine, which uses advertising as a primary revenue

source (implies that more page views are usually better), there are no reasons to integrate this innovation

in the short-term as it will very likely to decrease revenue. We still recommend using the proposed snippets

since otherwise the users might go away and switch to competitors, who focus on superior user experience

rather than short-term revenue.

The extended informative structured snippets that we proposed are significantly longer than the snippets

currently used by job search engines, and therefore, the users might get tired over time from viewing too

much information on the SERP. We think that a longitudinal study or a longer A/B test might be necessary

to investigate the way people react to the extended snippets over time. Plus, in addition to the query level

analysis described in this section, we think that session level analysis might be necessary as it might reveal

new insights regarding the way people engage with the snippets during a more prolonged period.

Looking more broadly at all projects related to snippets generation and usage, we warn search engine

companies about possible copyright issues since they typically show the content from original websites

without an official permission to do so (it is simply not feasible to do at scale). That said, we think that the

value (measured as visibility, extra traffic, and “leads”) provided by search engines to the original content

owners significantly outweighs possible harm.
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Figure 4.7: The key metrics from the A/B test in the graphical form over time. (Left) The ratio of
SERP clicks per query for two experimental snippet versions. (Right) The ratio of job applications to
job views (SERP clicks).

4.5 Limitations and Future Work

We do acknowledge several limitations of the study described in this Chapter 4. First, to answer our research

questions RQ6(a) and RQ6(b), we conducted the user study in the USA. However, the live A/B test to

evaluate the utility of extended informative structured snippets was conducted in Russia due to the difficulty

finding a research partner for the study in the USA. Therefore, the user needs and search behavior might be

different because of the local job market specifics. For example, we were suggested to include the “Perks and

Conditions” information to the snippets during the A/B test in Russia while this attribute didn’t popup in

the user study conducted in the USA (perhaps, it doesn’t serve as a differentiator in that job market). We

would like to setup an A/B test in the USA and evaluate the utility of the proposed snippet type for this

user demographic to ensure consistency between the user study and the A/B test.

Second, it is important to note that with the limited budget and time in our A/B experiment we

compared only two versions of the snippet (the shortest one with the minimal number of attributes per page

and the longest one with three additional textual attributes including responsibilities, requirements, and

conditions). It might have created invisible interactions between various elements of the snippet and led

to confounding. Plus, the design space is much larger, and there are many other possible snippet versions.

For example, the version extending the default snippet only with information from the requirements section

is very promising because we found it to be the most important attribute among the ones not already

shown by job search engines (Section 4.1.2). Plus, it is shorter than the experimental extended snippet

version studied in Chapter 4. Therefore, it would be interesting to see a series of follow-up A/B experiments

that systematically explore various snippet versions and test atomic snippet modifications. To accomplish

this, we must decide: (1) how many attributes do we show in a snippet? (2) what attributes do we
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show? Given a set of candidate job attributes, we will first find the optimal snippet length and then

find what combination of job attributes is the best by adding subsets of candidate job attributes to the

existing snippet version. For example, assuming that the maximum allowed snippet length is two and

given responsibilities, requirements, and perks attributes, we will test ”{responsibilities}”, ”{requirements}”,

”{perks}”, ”{responsibilities, requirements}”, ”{responsibilities, perks}”, ”{requirements, perks}” subsets.

We also think that a task-oriented interactive user study, similar to the one described in Chapter 5, or an

eye-tracking study, similar to [28], might reveal additional insights.

4.6 Conclusions

In this Chapter 4, we described the user need elicitation study, proposed the new approach for information

extraction from job postings, introduced the new snippet format, and documented the results from the

large scale online A/B experiment that we conducted to ultimately evaluate the value of the proposed

ideas. The key takeaways from this Chapter 4 are four-fold. First, in addition to the attributes that are

currently shown by job search engines on the SERP, users consider responsibilities and requirements as very

important. Second, by leveraging big data redundancy, we can generate large scale annotated datasets made

of job postings with minimum supervision. These datasets can then be used to train machine learning models

that can automatically detect and extract information from the responsibilities and requirements sections of

unstructured job postings. The experimental results show that we can achieve very high extraction quality.

Third, the proposed weakly-supervised approach for information extraction can be easily adapted to new

languages, and hence, it is useful for job search engines operating internationally. Fourth, the proposed

extended informative structured snippets improve search user experience by showing the most important

information right on the SERP and, hence, making users more effective and efficient at job search.
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Chapter 5

Non-redundant Delta Snippets for
Job and People Search

In the previous Chapter 4, we introduced extended informative structured snippets for job search, which

according to our comprehensive experiments led to the improvements in search user experience and higher

SERP utility by presenting the most critical information right on the SERP and eliminating unnecessary

title-snippet redundancy. In this Chapter 5, we continue our investigation of non-redundant snippets and

describe a study aimed to address more general questions RQ9-RQ10. First, in answering RQ9 (‘What kind

of snippets make users more productive and effective when performing structured search (e.g. job, people)

on mobile devices?”), we built an experimental people search application and conducted a task-oriented

interactive user study with 39 participants. Four different versions of the snippet were compared by varying

the snippet type (query-biased vs. non-redundant) and the snippet length (two vs. four attributes per results

on the SERP). We adopted a within-subjects experiment design and made each participant do four realistic

search tasks using different versions of the application. During the study sessions, we collected search logs,

“think-aloud” comments, and post-task surveys. Each session was finalized with an interview. We analyzed

search query log data, post-task subjective relevance judgments and surveys to compare the effectiveness

and efficiency of various snippet versions. Second, in answering RQ10 (“Do users prefer non-redundant

delta snippets or query-biased snippets based on their subjective feelings?”), we further analyzed subjective

post-tasks surveys, “think-aloud” comments, and interview data from the same group of participants. By

the end of this Chapter 5, we will understand why and what snippets to show to the users performing

structured search, especially on mobile devices.

In the next sections, we describe the experimental system (Section 5.1) and our research method (Sec-

tion 5.2). Then, we present the results from the pilot user study in Section 5.3. Starting from Section 5.4, we

share multiple insights from the formal user study. Specifically, we describe the results from the interviews in

Section 5.4.1, System Effectiveness in Section 5.4.2, System Efficiency in Section 5.4.3. Finally, we present

relevant search strategies used by the study participants in Section 5.4.4. We discuss the results, study

limitations, and present our SUI design recommendations and ideas for future work in Section 5.5.
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Figure 5.1: Four primary views of the experimental mobile people search application: (left) Welcome /
Settings page; (2nd left) Filters / Query Formulation page; (2nd right) SERP showing the number of search
results, current query constraints (“breadcrumbs”); (right) Resume / Detailed Profile page.

5.1 Experimental System

To answer our research questions, we built an experimental mobile structured search application. We decided

to focus on People search as it is the most popular search vertical in social networks (Chapter 2), which

contain a lot of structured data on people. Moreover, people search is by nature an exploratory task [52,83],

and hence, it is interesting to understand whether users benefit from having extra non-redundant information

in the snippets. We considered job search as a possible alternative vertical for the study but discarded it

later since it was harder to come up with independent search tasks. We didn’t want to use the repeated

tasks to minimize the influence of learning effects during the study sessions.

In this section, we describe the specifics of the search user interface (most importantly, query formulation

interface and SERP), the dataset, and the implementation details.

5.1.1 Search User Interfaces

Our app consists of four screens/pages (Figure 5.1): (1) Settings, where users can enter their anonymized

userID, select the task type, and the version of the SERP; (2) SERP ; (3) Filters, where users can specify

search criteria; and (4) Detailed Profile with the detailed information about the particular search result.

Settings, Filters, and User Profile screens are the same in all versions of the experimental system, and there

are four different versions of the SERP (Figure 5.2):
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Figure 5.2: Four different versions of the SERP: (QB2) query-biased snippets with two attribute slots per
result; (NR2) non-redundant snippets with two attribute slots per result; (QB4) query-biased snippets with
four attribute slots per result; (NR4) non-redundant snippets with four attribute slots per result.

• one, which shows traditional query-biased snippets and has two lines for result attributes (QB2);

• one, which shows non-redundant snippets and has two lines for result attributes (NR2);

• one, which shows traditional query-biased snippets and has four lines for result attributes (QB4);

• one, which shows non-redundant snippets and has four lines for result attributes (NR4);

A user can interact with the SERP in several different ways: (a) to visit a detailed profile page, s/he

can click on the search result on the SERP; (b) to scroll through the results, s/he can swipe up and down;

(c) to request more results, s/he can click the “Show more results” button at the bottom of the SERP;

(d) to save a search result for future reference, s/he can click on a Star shown next to the result snippet.

We intentionally removed profile images because we wanted to focus user’s attention on the snippets and

eliminate unnecessary noise from the collected data. If we kept images on the SERP, the user would get

distracted by the images lowering the signal-to-noise ratio.

To submit a new query, the user has to open the Filters screen and set constraints on the attribute

values using drop-down menus. Then, s/he can either submit a new query or go back to the original SERP

without changing the query. We don’t support keyword search and only allow users to submit queries by

selecting constraints via filters. Being limiting, such an approach to query formulation is common in popular

mobile search apps over structured data (e.g. Zappos). The user can filter entities by using eight different
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attributes, namely Job Title, Company, University, Degree, Location, Skills, Seniority / Years of Experience,

and Major / Field of Study. The SUI is designed in such a way that only one attribute value can be selected

at a time. We decided to adopt this strategy to get maximum control over the collected data. Otherwise, if

the user has selected several values per attribute, we could not have shown a non-redundant snippet for that

attribute, because we must differentiate one result from the rest. Such queries must have been ignored, which

would be costly, especially given our limited supply of participants and experimental budget. Finally, there

is a special Favorites filter which overrides all other filters and returns only the “starred” profiles (added to

favorites). The search criteria are always shown as the tags in the navigation bar. The navigation bar is

fixed and always stays at the top of the SERP as users scroll down.

Query-biased snippets are generated as follows. First, we take all attributes specified by the user and

sort them by priority (some global score for attribute importance that could be generated by computing the

frequency of filter usage or based on a survey/interview). Then, we append all other attributes that aren’t

mentioned in the query also sorted by priority. Finally, we take as many attributes from the top of this

concatenated attribute list as there are snippet lines in a specific version of the SERP. For non-redundant

snippets, the algorithm is almost the same. The only difference is that we remove the attributes that are

defined in the query.

5.1.2 Experimental Collection

By analyzing HTTP requests exchanged between the client and the server, we learned how to communicate

with Indeed’s resume search API 1. It allowed us to send the search requests directly to production Indeed’s

servers and get the results which are identical to the results shown on the actual Indeed’s SERP. In other

words, we use the whole collection of over 21,000,000 Indeed’s resumes in our experiment.

It is worth mentioning that Indeed is primarily a keyword search engine. However, it supports advanced

query interface, which allows formulation of precise structured queries. We use this functionality while

interacting with Indeed’s servers to retrieve results exactly matching query constraints. For example, to

retrieve only resumes from “New York”, we append in-New-York-NY?co=US parameter string to the URL.

5.1.3 Technology Stack

The front-end is a single page web application built with HTML5, CSS, JavaScript, jQuery 2, Bootstrap 3,

and AngularJS 4. Since in this study we focus on mobile search, the layout is optimized for mobile devices.

1http://www.indeed.com/resumes
2https://jquery.com/
3http://getbootstrap.com/
4https://angularjs.org/
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We use GoNative 5 web-to-mobile SaaS to convert our web application into the mobile app. It helps get rid

of the pesky browser address bar and provide superior user experience to the participants.

The back-end is built on Node.js6 and uses MongoDB7 as a database. MongoDB’s document-oriented

semi-structured model is especially useful for collecting logs as participants interact with the system. Since

Indeed doesn’t provide a public API for resume search, we interact with it by sending carefully tuned HTTP

requests. Some responses are returned in HTML form. In such cases, we use CheerioJS 8 to do real-time

HTML-to-JSON parsing. Despite the fact that we interact with the remote data provider and do real-time

HTML parsing, the system can present new search results under one second. The system is deployed in

DigitalOcean on an instance with Ubuntu (1GB RAM, 1 CPU core, 30GB SSD).

5.2 Method

We used a simulated work task situation approach [17, 72] in our user study, i.e. we analyzed the behavior

of participants seeking to accomplish real tasks by interacting with an experimental search application. The

study had two stages.

In the first stage (a pilot study, 12 participants), we compared four different versions of the SERP by

varying the snippet type and the snippet length9. Adopting a within-subjects study design, we made each

participant do four different search tasks using four different versions of the application. Each participant

did only one randomly assigned task using each version. The task/version order was randomized following

the Greek-Latin square experiment design [124] to account for fatigue, task difficulty, and learning effects.

We present the corresponding complete randomization table in Figure 5.3. The goal of the first stage was

to eliminate the versions, which are clearly less favored by the participants.

In the second stage (a formal study, 24 participants), we compared only the best two versions from the first

stage. This time, each participant did two out of four tasks using each version. It allowed us to increase the

number of measurements per participant-version combination to two and make the analysis more solid. The

goal of the second stage was to actually answer our research questions and collect rigorous data to support

the conclusions. Likewise, we used the Greek-Latin square design as a randomization protocol (Figure 5.4).

In the next section, we describe the elements of the experimental methodology which are shared across

both stages. In case of differences, we make necessary clarifications. The methodology is significantly inspired

by [52,69,145].

5https://gonative.io/
6https://nodejs.org/en/
7https://www.mongodb.com/
8https://github.com/cheeriojs/cheerio
9we decided to vary the snippet length and the snippet type in case there is some interaction between the two.
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Figure 5.3: Greek-Latin square experiment design to randomize conditions for the pilot study.

Figure 5.4: Greek-Latin square experiment design to randomize conditions for the pilot study.

5.2.1 Participants

We recruited the participants by promoting the study via print ads, mailing lists, and word-of-mouth. All

participants were required to be at least 18 years old, use a social networking site at least once a week, search

68



Figure 5.5: (Left) How often do you search for people online? (Right) How often do you use LinkedIn?

for people online at least once a month and have a mobile device. In total, 39 people participated in the

study10. From the pre-study survey, we learned that the recruited participants were primarily students of

University of Illinois at Urbana-Champaign (35 people). Plus, four participants were working professionals.

Twelve students majored in Computer Science, three in Psychology, three in Biology, two in Mathematics,

two in MBA, two in Nutrition, two in Agriculture, two in Mechanical Engineering, and we also had par-

ticipants with the background in Civil Engineering, Political Science, Kinesiology, European Union Studies,

Chemistry, Supply Chain Management, Accounting, Linguistics, Marketing, Medicine, and Education. 21

participants were female, and 18 were male. The age range varied from 22 to 34 years old, with the average

age of 26.3 years old. There were 24 people pursuing or holding the Bachelor degree as the highest degree, ten

people — the Masters degree, and five people — the PhD degree. More than 80% of participants searched for

people online at least once a week, and more than 30% did it every day. All people were active Facebook (log

in at least a few times per week) and LinkedIn (60% log in at least once a week) users (Figure 5.5).

5.2.2 Experimental Tasks

We picked four different people search tasks simulating a real need. The tasks are presented in Table 5.1.

The participants needed to fill the gaps in the task templates based on their background and interests. We

did it to further increase the relevance of the tasks to the participants and make them as realistic as possible.

We asked the participants to choose different topics for each task to minimize the influence of the learning

effects, i.e. so that the participants could not select the same set of candidates as they did for some previous

task. According to our subjective post-task surveys (Table 5.3, Q8), the participants found tasks as realistic

(4.06 on a 5-point Likert scale).

10while we only needed 12 + 24 = 36 participants, we had to recruit three more people to redo the user study sessions when
we experienced technical difficulties with the data logging.

69



Task 1: Find a person to ask for career advice
Suppose you are looking for a new job as a . Before applying, you want to talk to
people from different companies to learn about the culture, typical work-day/week, and existing
projects. However, none of your friends work in the companies of your choice. Luckily for you,
there is a new service that allows you to connect with the employees of a company and ask them
all these questions. Select five people you would like to talk to and ask for career advice. You are
also required to rank and evaluate the selected candidates after you finish the task.
Task 2: Find a keynote speaker for a conference
Suppose you are a part of the organizing committee for a conference on and your
task is to find a keynote speaker. You understand that people are busy and not everyone will
agree/have time to accept your invitation. Your strategy is to find five candidates, message them
and hope that one of them will accept the invitation. A search tool is provided to assist you in
this task. You are also required to rank and evaluate the selected candidates after you finish the
task.
Task 3: Help a recruiter find candidates to hire
Imagine that you are tasked to help a recruiter select a shortlist of candidates for
the interview. The recruiter doesn’t know much about the space and needs your help. Please, find
five candidates that should be invited for the interview by looking at their resumes. If a candidate
is hired, s/he will be working in the same team as you. So, you should take into account your
personal preferences while selecting the candidates. A search tool is provided to assist you in this
task. You are also required to rank and evaluate the selected candidates after you finish the task.
Task 4: Find a collaborator for a project
Imagine that you are working on a project and need help with .
Luckily, there is a searchable resume database that you can use to find a person with the necessary
expertise. You only need one person but want to talk to a few before making the final decision.
Please, select five potential collaborators that you might invite to join your project by looking at
their resumes. You are also required to evaluate the selected candidates after you finish the task.

Table 5.1: Four experimental tasks used in the study.

5.2.3 Experimental Procedure

At the very beginning of the study session, a participant was asked to sign the consent form and fill out a

pre-study survey about their background. Then, the participant was given a tutorial about the experimental

application and offered to perform a training task for ten minutes to get familiar with the user interface.

Then, the participant was asked to work on four tasks using different versions of the experimental search

system. As we mentioned above, in the first stage, we compared four versions of the SERP and, in the

second stage, we compared the best two versions based on the results from the first stage. We allocated ten

minutes per task, which is typically enough for the users to carefully explore the results [52,145]. We asked

the participant to “think-aloud” as s/he worked on the tasks. The experimenter took detailed notes for the

subsequent analysis.

After each task, the participant was asked to complete a short post-task survey to capture the sub-

jective satisfaction with the specific version of the application. The survey contained nine multiple choice

questions (eight 5-point Likert scale [100] and one 5-point semantic differential). We also asked the partic-

70



Snippet
Version

Query-biased, 2
attribute lines

Non-redundant,
2 attribute lines

Query-biased, 4
attribute lines

Non-redundant,
4 attribute lines

Rank 3.5 ± 0.7 2.8 ± 1.0 2.2 ± 0.8 1.5 ± 0.8

Table 5.2: The average rank given to each snippet version during the pilot study (lower is better).

ipant to evaluate the quality of selected search results on a 5-point Likert scale. Each result was judged

independently, and hence, more than one result could receive the same relevance score.

All tasks were completed using our application with no interventions by the experimenter. The study

was conducted in the same room to decrease the influence of external factors on study results. Since we

interacted with the live search index, we grouped all user study sessions as close as possible timewise (12

days starting March 24th, 2016) to make sure that Indeed’s index changes minimally affected the results.

At the end of each study, we conducted a 15-20 minute semi-structured interview by asking open-ended

questions motivating the participant to express her/his thoughts about four (two during the formal study)

versions of the SERP. The participant could see all four (two) versions and provide suggestions on how to

improve the application. In total, one study session lasted approximately 90 minutes, and the participant

was rewarded with the $15 cash gratuity.

5.2.4 System Instrumentation

To understand the way users interact with the search system, we logged all possible participants’ actions,

e.g. page views, clicks on the search results, additions/removals from favorites, page scrolls. For each event

we additionally logged the following metadata: a task type, snippet type, timestamp, current query (com-

bination of constraints on user attributes), and an anonymized userID. It allowed us to measure the system

effectiveness and efficiency.

5.3 Pilot Study Results

We first present the key results from the pilot study and then dig deeper into the analysis of the quantitative

and qualitative data from the formal study.

The main thing that we learned from 12 pilot study sessions is that the participants mostly noticed the

difference in the snippet length and not in the snippet type and favored longer snippets more (11 out of

12 participants). Table 5.2 shows the average rank given to each of the four systems during the post-study

interviews. Eight out of 12 participants placed NR4 in either the first or the second place; three placed QR4

in either the first or the second place. When scored on a scale of 1 to 4 (lower is better), the versions with
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the shorter snippets obtained the mean scores of 3.5 (QB2) and 2.8 (NR2), whereas the versions with the

longer snippets obtained the mean scores of 2.2 (QB4) and 1.5 (NR4).

Surprisingly, we found that extra scrolling cost caused by longer snippets didn’t have a negative impact

on the participants’ system choices. Many participants said that they either didn’t notice it at all or preferred

to have more information on the SERP to make more informed click decisions, like in [49,151].

It is also worth noting that from this pilot study it seems that the participants preferred non-redundant

snippets more than query-biased snippets given the fixed snippet length. However, this finding is not

statistically significant. We will discuss it more in the next section within the scope of the formal study.

5.4 Formal Study Results

Based on the results of the pilot study, we limited the number of the snippet versions to two and only

kept the longer ones, i.e. in the formal study we compared query-biased snippets spanning four lines (QB4)

and non-redundant snippets spanning four lines (NR4). We compared different versions of the SERP using

objective and subjective criteria. The objective evaluation was based on search user interaction logs and the

subjective evaluation was based on user post-task survey responses and post-study interviews.

5.4.1 Subjective System Preference

At the end of each session we asked the participants “Which version do you like most?”. The majority of

participants (19 out of 27)11 preferred NR4. An exact binomial two-tailed test showed that the difference is

significant (p = 0.0357).

Next, we probed the participants further and asked to explain the reasons behind their decision (“Why do

you like this version more? What makes it better than the other version?”). In responding to this open-ended

questions, the participants provided many rich and diverse opinions.

The ones, who preferred non-redundant snippets, said that it: (a) shows new non-redundant informa-

tion (16 out of 19 participants); (b) helps discriminate the results on the SERP (12 out of 19 participants);

(c) shows more relevant attributes (6 out of 19 participants); (d) helps accomplish the task faster (3 out of

19 participants); (e) requires less scrolling (3 out of 19 participants); (f) returns more relevant results (1 out

of 19 participants). To add more color to the aggregated statistics and help the readers better relate to the

participants’ reasoning, we also provide verbatim anecdotal comments made by some of the participants:

11we decided to include post-study interview responses from 27 (and not 24) participants, including three extra people, since
only the log data was corrupted. All participants of the formal study were able to successfully finish the tasks and make their
opinion about different versions of the system.
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“System 2 reduces repetition of information displayed on the screen. It can show more results

per screen and I have to do less scrolling.” [P7]

“It [System 2] is better since there is no extra line of information. I know they are all from

Chicago and it is good that I don’t have to see it here [on SERP].” [P17]

“System 2 shows less information but not loosing any information since it also shows search

criteria compactly at the top.” [P22]

The participants who preferred query-biased snippets paid more attention to different aspects of the

SERP. They liked the version with the query-biased snippets more because it: (a) has a more regular layout

(7 out of 8 participants); (b) shows more relevant attributes (6 out of 8 participants); (c) more predictable

and reassuring (6 out of 8 participants); (d) demands less cognitive load and effort (5 out of 8 participants);

(e) good balance of selected and new information (2 out of 8 participants); (f) works faster (2 out of 8

participants); (g) returns more relevant results (1 out of 8 participants); (h) forces to check individual

profiles (1 out of 8 participants). Likewise, we provide several insightful anecdotal comments made by some

of the participants:

“To be honest, I get distracted easily. If you show so much novel information, I don’t know what

to focus on. System 1 [query-biased] is more moderate in that sense. It either shows all info as

in the query or only a few attributes are new.” [P6]

“If I searched for a person with a doctorate degree, it will obviously have all results matching this

filter. From that point of view, this information is redundant. But I still feel better psychologically

when I see what I searched for. That’s why I prefer System 1 more.” [P13]

To summarize, almost all participants who preferred NR4 noted the fact that non-redundant snippets are

non-redundant. On the other hand, rather than focusing on the informativeness of the user interface, the

participants who favored QB4 paid more attention to the layout of the SERP and the effort required to do

the search.

This key finding is also supported by numerous other subjective data that we collected during the

study (Table 5.3). For example, in the post-task surveys the participants gave slightly higher scores to

NR4 (Q6), but felt that QB4 was easier to use (Q1) and that the search process was less stressful (Q9).

It is important to note that the differences in the post-task survey responses mentioned above and some

of the findings in the next section aren’t statistically significant. That said, we don’t consider it as the flaw

in the analysis since the goal of this study is primarily to compare the systems/snippets from the users’

perspective, and qualitative data is as important as quantitative data. Moreover, the combination of all
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Metric \ Snippet Version Query-biased, 4 Non-redundant, 4
I: Post-task Subjective Survey Responses
Q1: The system is easy to use 4.06 ± 0.59 3.91 ± 0.79
Q2: The system provides me relevant candidates 3.98 ± 0.98 3.98 ± 0.86
Q3: The system helps me decide who to contact 3.92 ± 0.71 4.13 ± 0.64
Q4: The system helps me find relevant candidates effi-
ciently

3.65 ± 0.93 3.69 ± 0.88

Q5: The display of each profile on the SERP is useful 3.96 ± 0.92 4.04 ± 0.77
Q6: Overall, I am satisfied with the system in this task 3.71 ± 0.68 3.73 ± 0.68
Q7: Summaries/attributes presented for each result on the
SERP are useful

3.94 ± 0.93 4.08 ± 0.82

Q8: I can see myself doing this task in the real life 4.06 ± 0.81 4.06 ± 0.78
Q9: The search process is (stressful / relaxing) 3.40 ± 0.87 3.35 ± 0.93
II: Post-task Subjective Relevance Judgments
Selected result relevance 4.00 ± 0.96 4.07 ± 0.92
First selected result 4.23 ± 0.81 4.23 ± 0.93
Second selected result relevance 4.02 ± 0.93 4.04 ± 0.82
Third selected result relevance 3.81 ± 0.87 3.88 ± 1.10
Fourth selected result relevance 3.83 ± 1.17 3.90 ± 0.99
Fifth selected result relevance 4.10 ± 0.97 4.31 ± 0.69
III: Query Log Data
Query length 3.03 ± 0.97 3.14± 0.95
% of new queries 0.16 ± 0.17 0.26 ± 0.19
% of generalization queries 0.11 ± 0.11 0.11 ± 0.12
% of specialization queries 0.15 ± 0.15 0.15 ± 0.16
% of reformulation queries 0.58 ± 0.33 0.48 ± 0.27
# of queries per task session 5.91 ± 5.60 4.96 ± 3.90
Time between consecutive queries within a task session
(seconds)

63.80 ± 39.59 56.77 ± 34.88

Time to complete a task (seconds) 414.77 ± 122.10 389.04 ± 118.30
Time to the first SERP click after submitting a query (sec-
onds)

11.36 ± 4.71 13.17 ± 6.96

Mean SERP click position per task session 6.48 ± 3.97 6.18 ± 4.77
Maximum SERP click position per task session 28.13 ± 21.14 24.39 ± 19.78
# of SERP clicks (profile views) per task session∗∗∗ 18.51 ± 5.80 16.00 ± 4.60
# of profiles added to favorites per task session (SERP) 1.00 ± 2.13 1.44 ± 2.77
# of profiles removed from favorites per task session
(SERP)

0.43 ± 1.11 0.65 ± 1.40

# of profiles added to favorites per task session (detailed
profile page)

4.85 ± 2.11 4.48 ± 2.03

# of profiles removed from favorites per task session (de-
tailed profile page)

0.45 ± 0.78 0.39 ± 0.74

IV: Post-study Subjective Preference (Interview)
Percentage of participants favoring a specific version (out
of 27)∗∗∗

29.6% (8/27) 70.4% (19/27)

Table 5.3: A comparative table with the metrics collected for two experimental versions during the formal
study (query-biased snippets with four attribute lines per result and non-redundant snippets with four
attribute lines per result). ∗∗∗ is used to mark stat. significant differences (a two-tailed test at p < 0.05).
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findings supports the thesis that the version with non-redundant snippets is more effective and efficient since

all of our findings are consistent with each other.

5.4.2 System Effectiveness

Rather than using predefined topics typical for information retrieval system evaluation [72], in this study

we used templatized tasks to closer simulate real life situations and motivate participants to engage more

in exploratory search, where the objective is usually subtle and might evolve during the search session [83].

Therefore, only the participants themselves could evaluate the quality of selected candidates. To this end,

after each task we asked the participants to provide independent relevance judgments to the selected candi-

dates on a scale from 1 to 5 (5 is the highest)12. Then, we computed the average relevance score over the

five selected candidates. We also computed the average relevance score for candidates selected at a specific

position in the session, i.e. if some candidate was the first discovered candidate among the five candidates

selected during the session, then his/her relevance score will be aggregated under the First group. The

results are presented in a global comparative Table 5.3.

It seems that NR4 helps find more relevant candidates than QB4 (Table 5.3, Part II). The data also

suggests that the candidates discovered at a specific position in the session have the higher relevance in

the case of NR4. Remarkably, the candidates selected the last in the session on average had higher ratings

compared to the candidates selected in the middle of the session. From the “think-aloud” comments we

reconstructed that the first few candidates were typically selected from the result sets for the first most

accurate query and, hence, had high relevance scores; then, the relevance started to decay as the participants

scrolled down the SERP and “starred” a few less relevant results; eventually, the participants reformulated

their query several more times and picked a few relevant results from the last SERP being engaged in

exploratory search.

The post-task survey responses also point towards the fact that NR4 helps find more relevant results:

the participants rated NR4 as more helpful to decide who to contact (Q3); felt that the information on the

SERP was more useful (Q5 and Q7); and, overall, NR4 was rated slightly higher (Q6).

5.4.3 System Efficiency

We used query log data and subjective post-task responses to compare the efficiency of different systems.

The primary measure to assess the efficiency of different versions is time. We computed the average time

12This method of using participants’ generated labels to simulate ground-truth data has also been adopted in several other
related works [52,109,151].
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required for each participant to finish a task and found that NR4 led to faster task completion times in

seconds (µ = 389.04; σ = 118.30) than QB4 (µ = 414.77; σ = 122.10).

Then, we dug deeper to understand why the participants were able to complete the tasks faster with

NR4. We discovered that the average time between consecutive queries within a session was smaller for

NR4 (µ = 56.77; σ = 34.88) compared to QB4 (µ = 63.80; σ = 39.59) and that the average number of

queries per session was also smaller for NR4 (µ = 4.96; σ = 3.90) compared to QB4 (µ = 5.91; σ = 5.60).

We went one level deeper to understand why the time between queries was shorter and why did people

submit fewer queries when using NR4.

We found that the participants made less clicks on the SERP (visited fewer number of detailed profiles)

in the case of NR4 (µ = 16.00; σ = 4.60) compared to QB4 (µ = 18.51; σ = 5.80). This difference was

statistically significant according to non-parametric two-tailed Mann-Whitney test (p = 0.0368)13. On the

contrary, time to the first SERP click was longer for NR4 (µ = 13.17; σ = 6.96) compared to QB4 (µ = 11.36;

σ = 4.71), which suggests that the participants engaged with the SERP more and did more informed

decisions by looking at the snippets. Another possible explanation could be that they felt overwhelmed with

the amount of novel information presented on the SERP. However, this is an isolated hypothesis. There are

several other findings supporting the hypothesis that users engaged with the SERP more in the case of NR4.

While not statistically significant, participants added (µ = 1.44; σ = 2.77) and removed (µ = 0.65; σ = 1.40)

from the Favorites on the SERP more often when using NR4 than they added (µ = 1.00; σ = 2.13) and

removed (µ = 0.43; σ = 1.11) when using QB4. In the post-task surveys the utility of NR4 was also rated

higher (Q5, Q7).

Interestingly, we found that people specify more constraints (µ = 3.14; σ = 0.95) using NR4 compared to

QB4 (µ = 3.03; σ = 0.97). A possible reason came from “think-aloud” comments made by two participants

– both of them noted that they tried to limit the number of constraints to three when using QB4 to make

sure that there was at least one attribute to differentiate the results on the SERP. Such problem doesn’t

exist for NR4. The verbatim “think-aloud” comment and the follow-up explanation during the interview

are presented below:

“...since all results would be the same there [on the SERP], I would go with three conditions...”

[P9, think-aloud]

“System 1 shows what I selected, and there is no way I could differentiate one candidate from

another if I specify more than four conditions. Because of that I always submitted less than four.

13we use the non-parametric Mann-Whitney test because of the small sample size and uncertainty that the data is normally
distributed, which make parametric tests not valid.
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Figure 5.6: The percentage of clicks on search results broken down by the result position on the page for
two different versions of the snippets.

System 2 is better...” [P9, interview]

Similarly to [52], we analyzed four query reformulation patterns: new, generalization specialization, and

reconstruction. The corresponding definitions are provided below:

• New: Qi is the first query or does not share any common terms with Qi−1.

• Generalization: Qi shares common terms with Qi−1 but Qi contains fewer terms.

• Specialization: Qi share common terms with Qi−1, but Qi contains more terms.

• Reformulation: Qi shares common terms with Qi−1, but Qi has at least one different term with

Qi−1.

For each pattern, we computed the percentage of this pattern out of all used patterns. We found that the

participants submitted more new queries when using NR4 (µ = 0.26; σ = 0.19) compared to QB4 (µ = 0.16;

σ = 0.17), but reformulated their queries less with NR4 (µ = 0.48; σ = 0.27) compared to QB4 (µ = 0.58;

σ = 0.33). It might be the case since with NR4 the participants explored the neighbourhood of the initial

query faster by looking at the snippets, while with QB4 they had to change the query to see novel information.

Finally, we calculated the mean average and maximum click position on the SERP and found that both

metrics were lower in the case of non-redundant snippets. We further explored this by drawing the histogram

for click positions, which is shown in Figure 5.6.

As we can see, for both snippet types, the participants primarily examined the SERP from top-to-

bottom, which is known as a position bias effect [66]. However, in the case of query-biased snippets the

graph monotonically decays while for non-redundant snippets the first three positions (one screen) have the
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same percentage of clicks. This suggests that in the case of query-biased snippets the participants relied

more on the ranking algorithm while for the non-redundant interface the snippets played a major role, which

is also consistent with the finding that time to the first SERP click is larger for NR4.

To conclude, the combination of all findings provides compelling evidence that the version with non-

redundant snippets makes users more effective and efficient.

5.4.4 Search User Interaction Strategies

In this section, we present query formulation, result examination, and result selection strategies revealed

during the post-study interviews. The strategies provide additional context and help reinterpret some of the

findings presented in the previous sections. For each strategy, we show the count denoting the number of

participants using this strategy.

Query Formulation Strategies

The participants followed four different query formulation strategies. The most popular strategy was to

submit a query that strictly describes an ideal candidate by using many query constraints, then reformulate

or generalize it if is too specific (18 participants). To evaluate the specificity of the query, the participants

paid attention to the number of search results. They considered the queries with less than 100 results as

manageable and added more constraints in the case of 100+ results. On the contrary, some participants

preferred to submit a query only with minimal requirements, then try several more specific queries by

modifying optional attributes (6 participants). Likewise, some participants submitted a very board query

as the first query in the session, then added many results to favorites, and finally picked the top-5 from the

Favorites page (4 participants). In this case, the participants used the SERP rather than the detailed user

profile page to add people to favorites. Finally, the last but not the least was a strategy to create a search

“design space”, then methodically check all possible combinations (6 participants).

The participants tended to change the query if they saw that the quality of results was decreasing with

the rank on the SERP. Plus, half of the participants wanted to select several values per attribute (e.g. “Lyft

or Uber”) to cover a broader set of options with one query.

Result Examination Strategies

When browsing the SERP, several participants explicitly mentioned that they looked at the names and

provided two reasons for doing so. First, the participants remarked that the names were in bold, and hence,

they attracted more attention as being more visually salient. Second, some participants purposefully looked
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for candidates with the names characteristic of a specific demographic group arguing that such candidates

might be more approachable and willing to help them as being members of the same community. This serves

as the demonstration of homophily in social interactions [88].

From the “think-aloud” comments, we also learned that the participants looked at the first and the last

lines of the structured snippet, i.e. it seems that these areas of the snippet attracted more users’ attention.

Although an eye-tracking study is necessary to investigate it more accurately. The participants aligned one

result to the next one to see the difference in attribute values shown and decide what candidate profile to

click. Interestingly, one participant invented a very unusual pattern for adding candidates to favorites. She

first checked the detailed profile page, then went back to the SERP, and finally made the decision to favorite

there arguing that she “could compare it with the candidates above and below in on the SERP” and that it

“gives me [her] one more second to think whether the candidate is good”.

The participants remembered the query if it had 1-2 constraints, but found the “breadcrumbs” area [54]

as useful for cases with 3+ query constraints.

As noted above, all participants explored the SERP from top-to-bottom confirming the position bias

effect [66]. When a participant deviated from this strategy, s/he said that “The order of examination is

actually random, not top-to-bottom. Sometimes I just scroll and see if some word catches my eye.”.

Result Selection / Bookmarking Strategies

People form social relationships, and therefore, ranking people is qualitatively more complex than ranking

textual documents. As a result, [129] proposed the concept of social matching to emphasize the social

dimension. The participants demonstrated the importance of the social dimension in our study. They tried

to assess the social similarity by looking for distinctive names, alumni from the same university, people from

the same age group and with the same level of qualifications. The argument was that “such people will be

more willing to help because they have a lot in common with me” or that “the interaction with them would

be more effective”. All things equal, the participants tended to select candidates, which had some familiar

attribute values in their profiles (e.g. big companies, well-known universities).

Almost all participants added their best choices to favorites from the detailed page explaining that they

“don’t have enough information on the SERP to decide whether the candidate is good”. Some participants

also referred to fairness by saying that “she wanted to give equal chances to all candidates rather than

superficially picking the ones from famous places”. When people added to favorites from the SERP, they did

it: (a) because there were too many results and they wanted to shrink the search space; (b) to compare with

the adjacent results on the SERP as we described in the previous section (can do it with non-redundant
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snippets); (c) intentionally wanted to select only the candidates that “have something remarkable to sell

themselves even from the SERP”. The participants skipped the candidates with “N/A”, “Self-employed”,

“Intern” in the job title.

The participants also mentioned that they wanted to be able to specify the attributes shown on the

SERP and even change the resume layout depending on the task by reordering the sections. For example,

for the recruiting task one might show the education at the top while for a conference speaker show the work

experience at the top.

5.5 Design Implications

In this section, we discuss what our findings suggest for the design of PSN SUIs with the particular focus

on mobile devices.

5.5.1 Eliminate Search User Interface Redundancy

Our key finding is that users do notice redundancy in the search user interface and prefer non-redundant

snippets more. At the same time, non-redundant snippets cannot be used when users specify multiple

constraints per attribute (e.g. “Uber or Lyft or YellowCabNYCTaxi”) or when an attribute has an array

type (e.g. skills “Java, Scala, Hadoop, Spark”) because there will be variability in results’ attribute values.

Therefore, we suggest using non-redundant snippets when the query formulation interface doesn’t allow to

specify multiple constraints per attribute (e.g. Zappos mobile app) or when only one value per attribute/facet

is selected. Query-biased snippets should be used when the query implies that the attribute values might

vary from one result to another (in this case, query-biased snippets are at the same time non-redundant

snippets since for different results they theoretically might be different).

That said, we warn the reader that the design recommendation to eliminate redundancy is somewhat

opposite to the established SUI design guidelines [54, 112]. We speculate that it is due to the fact that in

our study we focused on structured data, which might be associated with the specific information seeking

strategies. More user studies and A/B tests are necessary to confirm that non-redundant snippets are more

useful. Only by combining and triangulating the findings from many studies, we could definitively find that

SUI redundancy must be eliminated in PSNs this way. In that sense, the study described in this Chapter 5

serves as the first step towards more usable and effective snippets for structured PSN search on mobile devices.

We also note that in our study the participants were more effective and efficient with the non-redundant

interface, which is opposite to the known fact that redundancy is beneficial for multi-modal interfaces [75].
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We think that the finding is different in our study because of the different context. Redundancy in the user

interface is useful for critical real-time domains (e.g. airplane cockpit, medical telemetry) when there is a

lot of incoming information and the cost or error is very high. However, redundancy might not be required

in less stressful domains, like search. An in-situ study should reveal additional insights on the way people

search when under pressure.

Furthermore, we recommend experimenting with various other ways to eliminate clutter from the SERP.

For example, we learned that users look at the query constraints at the top of the screen to confirm that the

query is correct mostly when they revisit the SERP the first time after submitting a new query. Therefore,

the SUI can be simplified with the proper interaction techniques by hiding the “breadcrumbs” area at the

top of the screen as users scroll down or showing it only when the users pull the top area of the SERP

down. Based on the fact that users remember the query when they specify less than three constraints, the

“breadcrumbs” area might be eliminated completely. The system could show the “breadcrumbs” only for

“hard” queries when users use more than three constraints. In other words, redundancy in the snippets is

not necessarily required; query redundancy might be enough to provide informative feedback [112].

We also discovered that users mostly add people to favorites from the detailed profile page, and hence,

the stars that occupy a significant part of the SERP space can be eliminated, too. We suggest allowing users

to (un)bookmark candidates by swiping to the left/right rather than by clicking on stars. Since the swipe

is purely an interaction pattern, no space on SERP is required to provide this functionality.

The freed space might be used to show some additional information to help users make more informed

click decisions. From the interviews, we learned that in the case of people search the searchers not only try

to assess candidates based on their relevance to the query/task but also use other factors, such as social

similarity, status, approachability, and seniority, demonstrating the presence of homophily [88]. Therefore, to

simplify this process for users, search engines could explicitly show on the SERP the similarity score between

a searcher and a candidate result or a simple data visualization with the scores along several dimensions [52].

Furthermore, these scores can be made more interpretable by showing explanatory comments next to each

number, e.g. “87% (both you and John Smith went to MIT)” or “95% (Alice Smith is in top 5% among

all people using Python)”. While we share this idea in the design implications section, in the current form

it should be considered more like a hypothesis. This seemingly simple idea to add scores to the snippets is

actually very complex and raises many questions: What if the scores will bias searchers’ click patterns? Will

the presentation of scores cause discrimination? Will searchers pay attention to the scores at all? One can

evaluate this idea by adding the scores and explanations to the SUI and running an interactive user study

or an online A/B test.
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From the pilot study, we learned that users don’t notice the scrolling cost and prefer having more

information about each result on the SERP. Therefore, we suggest using non-redundant long snippets. At

the same time, we warn the readers that there must be at least several results per page to enable comparison

as several of our participants explicitly mentioned that they use the results above and below the current

result to decide whether to add her/him to favorites. Additional user studies are necessary to find the

optimal snippet length on mobile devices. Interestingly, some popular applications do show one result per

page, e.g. LinkedIn Studnets14 and Tinder15.

5.5.2 Provide More Control

Many participants mentioned that they would love to have more control over the search process, e.g. the

ability to specify what attributes to show on the SERP or set attributes’ importance weights to manipulate

results ranking, like in [52]. Plus, the participants mentioned that despite having a good ranking algorithm,

they would love to have more transparency in ranking and be able to resort the attributes based on well-

defined criteria, e.g. years of work experience, age. Therefore, we suggest exposing the seams and provide

more control, which might be especially beneficial for advanced users. Interestingly, some of the participants

even wanted to reorder the sections of the resume depending on the task. The algorithmic transparency

might lead to many positive outcomes for the users [42] and establish a higher level of trust between the

users and the search engines.

From the study, we also learned that some users prefer having input confirmation while others seek

more information per pixel. We think that a balanced solution might be designed. One idea is to mix

non-redundant and query-biased snippets by always showing one query-biased attribute and filling in the

rest of the slots with non-redundant information. Alternatively, this decision might be offset to the users

such that they could select the snippet type in the search settings. Finally, one can predict the user type

algorithmically based on search interaction data and show the snippets, which are more appropriate for

them, e.g. elderly users might benefit from a less dynamic interface with query-biased snippets, while the

younger users actively using digital products might see a more information-rich interface.

5.5.3 Direct Users to Use Better Search Strategies

We also noticed that in our study the participants on average specified more than three query constraints,

while in Chapter 2 we found that structured grammar queries submitted to Facebook Graph Search typically

have less than two constraints [117]. This might be due to our query formulation interface and, hence, we

14https://students.linkedin.com/
15https://www.gotinder.com/
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recommend experimenting with various ways to steer users to write longer queries since it is known that

longer queries tend to provide better results. For example, in [11] a method is proposed to motivate users

to write longer keyword queries by providing a longer query bar.

Similarly, we discovered that the last selected candidate in the session, which is returned as part of the

result set for the last query, has a higher rank than the candidates selected in the middle of the session,

which are typically elements of the result set for the first query. Therefore, it might be beneficial to explore

new mechanisms that encourage users to reformulate their queries. Structured query suggestions innovated

by Facebook Graph Search [117] represent one such example. We envision many new techniques based on

the unique features of mobile devices such as gyro, touch screen, or even eye-tracking.

5.6 Limitations and Future Work

Despite our efforts to design a rigorous study, it still has several limitations. In this section, we discuss the

known limitations and ideas for future work. First, we focused on People search, and that’s why our findings

might be limited only to this search vertical. In the future, we will examine other structured search verticals

within PSNs (e.g. Jobs) and beyond PSNs (e.g. Travel or E-Commerce) to investigate whether there are

some vertical-specific differences. Yet, we argue that our study in its present form is useful since the SUI

is quite the same across many search verticals. Second, the majority of our participants were students.

Therefore, they might search differently than working professionals and be less familiar with the professional

people search. We plan to do the follow-up study and investigate whether there is some interaction between

the snippet type and the level of professional experience. Third, because the study was conducted in a quiet

lab, the participants didn’t have any interruptions. In the real world, users multi-task and are overloaded

with information. This might affect the way they search. Therefore, we think that an ethnographic study

or an online A/B test might be useful to further understand how external context influences the way people

interact with the SUI. Fourth, we used subjective judgments to evaluate system effectiveness since there were

no ground-truth labels. Alternatively, we could have designed known-item search tasks and have objective

criteria for result relevance. However, it might have reduced the relevance of the tasks to the participants

and limited exploration. An A/B test might be the most appropriate method to further understand which

version of the snippet leads to better search outcomes.

We also acknowledge the fact that it might be hard to adopt non-redundant delta snippets in practice

since the objects within PSNs need to be standardized first. At the moment, search ranking and matching are

probabilistic and not exact because different objects have slight variations in attribute values. For example,
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it is not clear whether both people working as “Software Engineer” and “Senior Software Engineer” should

appear as search results for the query “Software Engineer”. Plus, the adoption of non-redundant delta

snippets might be inhibited because users have learned search habits and could object this change. Finally,

it is worth noting that query-biased snippets present to the users information that they expect to see, while

non-redundant delta snippets show novel and unexpected information. And, it is known that mismatch of

expectations and reality leads to anxiety and stress. Therefore, search engine designers must know their

users and their expectations before adopting non-redundant delta snippets.

5.7 Conclusions

In this Chapter 5, we described the comparative study aimed to understand which version of the snippet

is better suited for structured search on mobile devices. We found that the participants preferred non-

redundant snippets more. The multitude of our qualitative and quantitative data also indicate that the

system with non-redundant snippets was more effective and efficient. Non-redundant snippets led to faster

task completion times, helped find more relevant results, and made the participants do more informed SERP

click decisions. The participants engaged with the SERP more when using the system with non-redundant

snippets. On the other hand, the participants who favored query-biased snippets paid more attention to

the layout and visual aspects of the SUI and felt that the system with query-biased snippets was easier to

use. We also learned that the participants favored longer snippets without respect to the snippet type. Our

findings serve as the first real evidence discovered via an interactive user-centric study that structured search

engines should eliminate redundancy from the SUI.
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Chapter 6

Conclusion

In this Chapter 6, we review our key contributions, share SUI design guidelines, and propose ideas for future

work coming from the experience working on the projects described in the previous chapters.

6.1 Thesis Summary

In this thesis, we rethought, redesigned, and optimized search user interfaces and interactions within pro-

fessional social networks. We considered all aspects of the search user interface starting from the query for-

mulation, to control, and to results presentation. By reasoning from basic principles and mining large scale

user behavior and interaction data, we identified areas for improvement and designed novel domain-specific

solutions. We rigorously evaluated each of the proposed new ideas offline and online by using synthetic and

real datasets and by combining various user-centric research methods, such as surveys, interactive lab user

studies, interviews, query log analysis, and large scale online A/B tests.

Following the searcher journey, this thesis started from the query formulation. With the Facebook Graph

Search query log analysis study, we investigated people search patterns and showed how more cognitively

demanding and highly interactive structured query language enables new search behavior within Facebook.

Going forward, we considered the control aspect of the search user interface and proposed to do relevance-

aware search results filtering when sorting by an attribute value rather than by relevance is requested. The

significant number of queries to structured search engines, including the ones inside PSNs, fit this scenario.

We proposed a novel theoretically optimal algorithm to perform such filtering and evaluated it with the

series of experiments on real and synthetic data sets. Finally, we moved on to the presentation of the search

results and focused on various new ways of snippet generation. We challenged the common belief that

query-biased snippets, which are used almost everywhere these days, are the most effective and proposed

domain-specific alternatives. Specifically, based on the results from the mixed-method user need elicitation

study, we proposed the concept of the extended informative structured snippet for job search that shows the

responsibilities and the requirements for a job right on the SERP. We designed the effective and efficient
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weakly-supervised algorithm that can extract relevant information from unstructured job postings to make

the generation of such a snippet possible. We tested the utility of this new snippet type with the online

A/B experiment involving over half a million real users. In another project, we compared the utility of

query-biased and non-redundant delta snippets for structured search on mobile devices by conducting the

comprehensive task-oriented user study. Based on the results of this study, we concluded that structured

search engines should eliminate redundancy from the user interface and shared numerous other design

recommendations relevant for the design of the future SUIs and interaction techniques within PSNs. The

combination of the proposed ideas demonstrates how we can optimize the query-control-view interaction

loop and make users more effective while searching for information within PSNs.

It is important to note that the ideas presented in this thesis have broader applicability beyond the scope

of PSNs. For example, the recommendations derived from the study of structured querying capabilities

within Facebook might be applicable for many other search engines built on top of structured networked

data. We believe that like on Facebook users will be able to more effectively explore any entity graph,

which is meaningful for them, if they are provided with a powerful structured query language and highly

interactive query suggestions. Graph databases (e.g. Neo4j1) democratize the development of search engines

providing such affordances. Likewise, the algorithm for relevance aware search results filtering might be

useful for any structured search engine, where tuples have numeric or even just ordinal attributes. When

users request sorting by an attribute value, we can perform the filtering and increase the cumulative value

delivered in the result list. Finally, despite the limitations described in Section 5.6, the comparative study of

query-biased and non-redundant snippets provides evidence that a wide variety of structured search engines

might increase search utility by eliminating SUI redundancy.

6.2 Search User Interface Design Guidelines for Professional

Social Networks

In this section, we expand on the search user interface design guidelines proposed in previous work [54,112]

and share new design guidelines based on the studies described in this thesis.

• Provide both named entity queries (NEQs) and structured queries (SQs). From the FBGS

query log analysis study (Chapter 2), we learned that both NEQs and SQs are important to facilitate

navigation and exploration within the social network: users search for friends with NEQs and for non-

friends and explore the graph using SQs. Therefore, an interactive Typeahead interface supporting

1http://neo4j.com/
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both NEQs and SQs facilitates navigation and exploration and makes information stored within the

online social network useful and easy to search. Having these two query types tailored to a specific

class of information needs within one system is beneficial for users of an online social network as these

queries don’t cannibalize but complement each other.

• Personalize search user experience and focus on structured query suggestions. As part

of the FBGS query log analysis study (Chapter 2), we noticed significant changes in search behavior

and interaction data for users with different demographics. We found that the number of Friend

queries grows as users gain more friends, while the number of Non-friend queries slightly declines, that

celebrity users search for celebrities more than typical users, that females and users older than 60 are

more interested in the first degree connections compared to the rest of the users in our sample, and

several others. Therefore, we suggest to further innovate around personalized search query suggestions

given our demographics’ distinct people search patterns. Plus, since structured query usage behavior

has a wider variation across different demographics, it makes sense to focus efforts on that query type.

• Account for graph search distance between a searcher and an object to be searched.

Since entities within a PSN are interconnected and form an Entity Graph, it is important to take this

information into account. As part of the FBGS query log analysis study (Chapter 2), we found that

users repeatedly search for non-friends without adding them to their friend network. Therefore, we

suggest including some interesting distant network vertices rather than limiting query suggestions to

friends only. We also found that the distribution over graph distances varies from predicate to predicate.

While some predicates are used primarily to explore information about friends, other predicates are

used for non-friends. We propose ranking entities for a predicate using its graph distance distribution.

We discovered that users write shorter queries when they search for friends and use more predicates

to find non-friends. Therefore, we propose to generate interactive query suggestions by predicting an

intended graph search distance. In the past, the interlinked structure of the web graph turned out to

be very important [18]. We believe that it might be even more important in the context of OSNs.

• Incorporate relevance into the ranking process when sorting by an attribute value is

requested. From the simulations described in Chapter 3, we learned that the quality of search

results sorted by an attribute value could be improved using relevance-aware filtering by 2-4% with

the help of the relevance-aware search results filtering algorithm. Plus, we noticed that higher gains

are characteristic for the relevance label distributions, where relevant results are more probable, and

for medium length result sets (20-100 tuples).
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• Present information about job responsibilities, requirements, and conditions right on the

SERP. From the user need elicitation study described in Chapter 4, we learned that users pay attention

to the job responsibilities and the job requirements when deciding whether they want to apply/click

on a job. Moreover, through the A/B test we learned that by showing this information right on the

SERP we could minimize irrelevant clicks, increase search effectiveness and efficiency, and decrease

SERP click entropy.

• Eliminate query-snippet redundancy. From the comparative study described in Chapter 5, we

learned that users do notice redundancy in the SUI and prefer non-redundant snippets more. Therefore,

we suggest using non-redundant snippets when the query formulation interface doesn’t allow to specify

multiple constraints per attribute (e.g. Zappos mobile app) or when only one value per attribute/facet

is selected. Query-biased snippets should be used when: (a) the query implies that the attribute values

might vary from one result to another (in this case, query-biased snippets are at the same time non-

redundant snippets since for different results they theoretically might be different); (b) users specify

multiple constraints per attribute (e.g. “Uber or Lyft or YellowCabNYCTaxi”); (c) an attribute has

an array type (e.g. skills “Java, Scala, Hadoop, Spark”) because there will be variability in results’

attribute values. That said, we warn the reader that it is necessary to run an A/B test and confirm

that non-redundant snippets are more useful for the users of a specific search system prior to switching.

Only by combining the findings from the interactive user study described in Chapter 5 and from the

A/B test, we could definitively state that redundancy should be eliminated in PSNs this way.

• Help users differentiate one result from another. From the comparative study described in

Chapter 5, we learned that one of the key reasons for users to prefer non-redundant snippets over

query-biased snippets was that with non-redundant snippets they can differentiate results easily and

hence be more effective at search. The approaches described in [29, 30, 79, 91] are especially useful to

accomplish this.

• Eliminate unnecessary input confirmation messages. From the comparative study described in

Chapter 5, we learned that users remember the query when they specify less than three constraints

and look at the query constraints at the top of the screen to confirm that the query is correct mostly

when they revisit the SERP the first time after submitting a new query. Therefore, the SUI can be

simplified with the proper interaction techniques by hiding the “breadcrumbs” area at the top of the

screen as users scroll down or showing it only when the users pull the top area of the SERP down.

A less aggressive solution is to show the “breadcrumbs” only for “hard” queries when users use more
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than three constraints. In other words, redundancy in the snippets is not necessarily required; query

redundancy might be enough to provide informative feedback [112].

• Show “call-to-action” elements only where they are necessary. From the comparative study

described in Chapter 5, we discovered that users mostly add people to favorites from the detailed profile

page and, hence, the “Connect” or “Favorite” buttons that occupy a significant part of the SERP space

can be eliminated from SERP. However, we warn the reader that these findings are specific to the search

scenario employed in our study and with the selected group of participants. A large scale A/B test is

necessary to accurately answer this question and measure user engagement with the “call-to-action”

elements in an unbiased way.

• Provide more and novel information about each result on the SERP. From the comparative

study described in Chapter 5, we learned that users don’t notice the scrolling cost and prefer having

more information about each result on the SERP. Therefore, we suggest using non-redundant long

snippets. At the same time, we warn the reader that there must be at least several results per page to

enable comparison as several of our participants explicitly mentioned that they use the results above

and below the current result to decide whether to add her/him to favorites.

• Provide more control. During the comparative study described in Chapter 5, many participants

mentioned that they would love to have the ability to specify what attributes to show on the SERP

or set attributes’ importance weights to manipulate result ranking, like in [52]. Plus, the participants

mentioned that despite having a good ranking algorithm, they would love to have more transparency in

ranking and be able to resort the attributes based on well-defined criteria, e.g. years of work experience,

age. Therefore, we suggest exposing the seams and provide more control, which might be especially

beneficial for advanced users.

• Direct users to use better search strategies. During the comparative study described in Chap-

ter 5, we discovered that the last selected candidate in the search session, which is returned as part

of the result set for the last query, has a higher relevance score than the candidates selected in the

middle of the session, which are typically elements of the result set for the first query. Therefore,

it might be beneficial to explore new mechanisms that encourage users to reformulate their queries.

Structured query suggestions innovated by Facebook Graph Search [117] represent one such example.

We envision many new techniques based on the unique features of mobile devices such as gyro, touch

screen, or even eye-tracking. We also suggest experimenting with various ways to steer users to write

longer queries since it is known that longer queries tend to provide better results [11].
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6.3 Scenario Revised: Search Within Professional Social

Networks Tomorrow

In this section, we reconsider Alices scenario from Chapter 1 in lieu of the innovations proposed in this

thesis. Alice starts her job search for a software engineering job in New York by going to the “Jobs” tab on

LinkedIn. She types “Software Engineer” to the profession input box and “New York” to the location input

box and hits “Search”. The job search engine returns a list of relevant jobs. Each job is represented by the

job title, which is still the same for all retrieved jobs, and a series of attributes that help Alice differentiate

one result from another. Since Alice already knows that all jobs will be in “New York” area, this information

is not displayed on the SERP for each result but instead it is shown in the “breadcrumbs” area (Chapter 5).

It saves the scarce SERP space and allows to show some other relevant information, e.g. instead of the

location attribute on the SERP Alice could see a salary range as it was shown to be important to help users

make job clicks/apply decisions. Moreover, Alice could also see the responsibilities and the requirements for

each job right on the SERP (Chapter 4). It helps Alice make more informed click decisions and saves her

time searching since she could quickly evaluate job relevance without visiting individual job posting pages.

Next, Alice decides to resort jobs by date. She changes the corresponding selector. The job search engine

resorts the results by date and eliminates from the top of the resorted list the jobs with very low relevance

scores by performing relevance-aware filtering (Chapter 3). It again saves Alice’s effort and makes her search

process more efficient since she doesn’t have to scroll to see relevant results — the most relevant for her

results are displayed right at the top of the SERP.

Next, Alice tries to find friends, who work as software engineers in the companies she selected. For

that, she starts typing her structured query “Software Engineers who... ” in a smart input box and the

people search Typeahead algorithm shows several relevant query suggestions personalized for Alice’s current

search session, e.g. “Software Engineers who live in New York” (because she recently search for jobs in

New York) or “Friends of my friends who are Software Engineers” (because it is known that the majority

of structured queries related to professional search are about non-friends ). Alice selects the most relevant

typeahead query suggestion “Friends of my friends who are Software Engineers” and quickly hits “Enter”

without switching to a mouse. Alice sees a list of relevant people, however, not all of them live in New

York. Therefore, she quickly appends “...and live in New York and work at Google” to her query and hits

“Enter” again. The people search engine returns a list of relevant people, who are “Friends of my friends

who are Software Engineers and live in New York and work at Google”. In other words, Alice interactively

and searches within the professional social network using a powerful query interface described in Chapter 2.
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Satisfied with the query, Alice starts skimming the SERP. The SERP is composed in such a way that

the shared and known to Alice attribute values (location — “New York”, job title — “Software Engineer”,

degree — “Friends of friends”) are shown as “breadcrumbs” at the top of the SERP to avoid redundancy.

Instead of these attribute values in the snippets, Alice could see skills, shared friends, and hobbies, which

are unique for each search result. In other words, the snippets are non-redundant and show information

complementary to the query (Chapter 5). Alice learns a lot about each person just by looking at the SERP,

selects a few similar to her people, and contacts them. These people kindly reply to Alice knowing that they

have strong shared connections.

Finally, based on advice she receives from these people, Alice successfully applies for several software

engineering jobs in New York.

6.4 Future Research Agenda: Graph Search and Beyond

This thesis contributed multiple novel ideas on how to optimize search user interfaces and interactions within

professional social networks to make users more effective and efficient. However, this is just the first step in

this direction. Below we present many exciting directions for future work.

6.4.1 Search User Interface Personalization

Search personalization leads to significant gains in search relevance and improves search user experience [13,

86, 127]. Because of that, different users submitting the same query to the same search engine might get

different results. However, to the best of our knowledge, none of the search engines adapt their SUIs for

different users. They merely provide “Advanced Search” forms that allow formulating more precise queries.

We see it is as a great opportunity for research.

For example, based on our user study presented in Chapter 5, we concluded that non-redundant snippets

are better for structured search on mobile devices and put it as one of our design recommendations. At

the same time, we do acknowledge the fact that not all users might feel comfortable seeing non-redundant

snippets. Elderly users, who typically have less experience with digital products and are subject to age-

related cognitive decline [67,105], might still prefer to see query-biased snippets. With query-biased snippets

rather than trying to recall the query, users only engage in the recognition process, which is known to be

less cognitively demanding [41]. Therefore, similar to the way we personalize search ranking now, we can

personalize the snippet type and the SUI in the future.

Likewise, it is reported that adding information to the contextual snippet significantly improves perfor-
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mance for informational tasks but degrades performance for navigational tasks [28]. Therefore, in addition

to the user-based SUI personalization, we think that task-based SUI personalization might be valuable.

It is worth mentioning that some initial steps have already been made in this direction. For example,

recently [161] proposed an Interface Card Model by framing the task of an interactive retrieval system as a

game, where a search engine and a user cooperate to satisfy the information need of the user and minimize

user’s efforts. It was shown that this model was effective in automatically generating adaptive navigational

interfaces. In the related work, [46] presented the Supple system, which can automatically generate interfaces

adapted to a person’s devices, tasks, preferences, and abilities. Finally, this idea is not completely new for

the users since major search engines continuously test different versions of the SUI using online A/B tests.

6.4.2 Micro-vertical / Task-oriented Search

General web search engines (e.g. Google, Bing, Yandex, Baidu) provide a unified interface to search for

information. However, depending on a search task and a search goal, users sometimes switch to vertical

search engines (e.g. LinkedIn and Indeed for jobs and people search, Twitter for real-time news search, Kayak

for flights and hotel search, Amazon for product search), which provide superior search user experience by

modeling vertical specific aspects in a more principled way, like in this thesis. This illustrates a more general

concept of unbundling [98], when a more general product is replaced by smaller niche products that deliver

more value. The question is what is a vertical search engine and how niche it could be? A user searching for

a person to ask for career advice on LinkedIn might be willing to explore several diverse candidates, while

a recruiter hiring people for a specific position will likely to focus only on people with the strictly matching

skill set. Depending on the task, users employ different search moves, tactics, stratagems, and strategies [7].

It implies that a vertical search engine can be unbundled further to better support well-defined search tasks.

To realize this idea, two different and complementary directions of research might be pursued.

First, we can build powerful machine learning models for task [81, 138] and intent [53, 107] detection

from search query logs and, then, adjust the results based on the best task/intent guess predicted by the

algorithm. This is the most dominant approach used by major search engines. We see many advantages in

this approach. It minimizes user efforts, it can generalize to new queries and search tasks quickly, to name

just a few. Therefore, we think that further research is necessary in this direction. However, we also see one

major limitation. Machine learning algorithms don’t have access to the human brains (yet), and, hence, they

can only adjust the results for a task/intent to the point by mining the traces generated by users online.

Second, we think that this limitation might be addressed by involving users deeper into the search process

and asking them directly about the search tasks they want to accomplish. In this case, we could decrease
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the asymmetry of information between a user and a search system, and, hence, deliver more relevant results.

In turn, this opens up many new questions related to the SUI and interaction design. When should the

search system ask a user about a task? What is the best way to ask the user about the task? How often

can the system ask the users about the task? How could predictive models be used to facilitate the user in

communicating their task to the system? How can we generate task names in a way clear for ordinary search

engine users? By answering these questions, we will develop more interactive and effective search systems.

6.4.3 Transparent User-guided Search

Extending the idea from the previous Section 6.4.2, we think that users could be involved more deeply in the

search process not only during the task specification stage but during the entire search session. Specifically,

from the user studies described in this thesis, we learned that users wanted to specify the attributes shown

in the snippets on the SERP, the order of sections on the detailed profile page for each search result, and the

weights for different attributes, like in [52]. By looking at this idea from a different perspective, one can say

that search engines should open up and become more transparent by exposing more search controls2 and

helping users better understand its inner workings as it was shown to positively affect user experience [42].

Along these lines, search engines can also increase transparency by showing more technical and quanti-

tative information in the snippets. For example, from the study presented in Chapter 5, we learned that

in the case of people search the searchers not only try to assess candidates based on their relevance to

the query/task but also use other factors, such as social similarity, status, approachability, and seniority.

Therefore, to simplify this process for the users, search engines might explicitly show on the SERP the sim-

ilarity score between a searcher and a candidate result or a simple data visualization with the scores along

several dimensions [52]. Furthermore, these scores can be made more interpretable by showing explanatory

comments next to each number, e.g. “87% (both you and John Smith went to MIT)” just like it is done in

recommendation systems [89, 114]. In Section 6.4.1, we proposed an idea to personalize the SUI for each

user. Embracing the idea presented in this Section, we can also let users decide which version of the SUI

to show. Each internal parameter of the search system exposed in the search user interface or even on the

search settings page must be carefully tested, which creates numerous opportunities for research.

6.4.4 Immersive People Search

While working on the “Find a Person to Ask for Career Advice” task (Section 5.2.2) during the user study

described in Chapter 5, the majority of participants said that they looked for people, who had similar

2sliders to adjust feature weights, knobs to communicate search tasks/intents, checkboxes to select relevant attributes.
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Figure 6.1: Interactive visualization of career trajectories providing more immersive way to do people search.
It shows a tree of possible career trajectories for the Software Engineer and an exemplary path to the CTO.

to them background and who managed to grow into the position that they considered as desirable. The

participants often remarked that they looked for matching educational background (major and degree) and

work experience (job titles, companies, and years of experience). However, this information was somewhat

hard to find since in the experimental application only one line per attribute per result was provided.

Therefore, the participants had to check many detailed profiles before they could pick the best candidates.

Plus, many participants tried to select a diverse set of candidates to be able to learn about various possible

career paths. Yet, there was no way to look at the big picture and compare many candidates.

To facilitate users with this task, we envision a completely new immersive search user interface that

employs unique visual information processing capabilities of humans [2] and allows to systematically explore

the entire pool of candidates (Figure 6.1). As nodes, it has job titles, as edges extending to the right, it has

career transitions over time, and on click, it shows candidates, which share the career trajectory. Similar to

the faceted search interface [132, 152], it allows to dynamically filter nodes by submitting relevant keyword

queries. With this interface, a searcher can see the entire tree of career trajectories based on millions of

CVs, narrow down to the specific job title, pick on outliers with non-standard careers, and much more.

In turn, this interface creates numerous research questions that span data mining, data visualization,

privacy, design, and social science. How can we visualize cases when one person works in two companies?
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How can we identify insightful career trajectories? How can we protect the privacy of people presented in

resumes yet provide value for the searchers? How can we normalize job titles (e.g. “Software Engineer”

vs. “Software Developer”)? How can we align people having a different number of jobs and duration in

those jobs along the time axes? How can we index the tree to enable interactivity? We believe that similar

applications could be created for other search tasks relevant for the users of PSNs (and beyond) and that

they will inspire a new set of research questions.

6.4.5 Professional (Structured) Search on Mobile Devices

As mobile devices and search become more prevalent among users [34, 97], it is important to optimize and

rethink the SUI and interactions for this emerging platform. We encourage SUI designers to reason from

basic principles and create innovative native solutions taking into account the constraints and advantages of

mobile devices instead of copying the techniques that work for the web. Natural language, voice, and visual

input should significantly decrease users’ efforts required to enter new queries and increase engagement. For

example, imagine that we can search for a person we “met yesterday at a conference” by describing their

appearance and other known attributes with a paragraph of natural language text dictated to a mobile

microphone or by uploading their photo taken during the keynote presentation that they delivered.

Focusing on structured search, in particular, we think that new innovative ways for query formulation are

necessary and feasible. For example, several of our user study participants mentioned that they would like

to be able to search for similar jobs (Chapter 4) and people (Chapter 5) using the results that they found so

far. Moreover, we think that “search by example” might become the prevalent type of structured search on

mobile devices because: (1) different from web search, where the goal is either to find a definitive document

on the topic or find a set of non-redundant documents complementing each other with new information [19],

in the case of professional structured search the objects (jobs and people) have the clear distance semantics;

(2) typing structured queries or using dropdowns is slow and difficult because of the small screen size; (3)

voice input is not accurate enough for structured data. More research is necessary to make this real.

6.4.6 From Ten Blue Links to Conversational Search

Since the early days of information retrieval, SUIs haven’t experienced many changes. As an input interface,

we still use the simplistic query bar that allows to formulate keyword and, more recently, structured queries.

As an output, we still present ten blue links (TBL) with free text and, more recently, structured snippets. In

this thesis, we also focused on this traditional version of the SUI. However, as we described in Section 6.4.2,

more effective niche micro-vertical search engines targeted to the specific tasks could be built. For example, in
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the context of professional social networks, we imagine an innovative conversational UI that allows searching

for jobs in a more intuitive and interactive way.

The UI represents itself a standard messaging application, like Facebook Messenger or Telegram. As

input, it takes voice/textual natural language replies. As output, it provides relevant jobs by sending the

links to the chat. The unique feature of this SUI and application is that it is more interactive. Plus, we

could make it more engaging by anthropomorphizing it. Ultimately, we envision that such a conversational

job SUI/AI could replace career consultants by providing more affordable3 access to personalized career

advising services to many people. To make this vision the reality, we must answer many new research

questions. What questions should the AI ask? How can we extract meaningful phrases from the user

answers? How can we develop rational and coherent discourse from user replies within and across sessions?

How can we recommend relevant jobs? How can we generate human-friendly answers and avoid repetitions?

How can we incorporate user feedback and ignore deviations from the main topic? How can we measure user

progress and engagement? With all these challenges solved, we could completely redefine the way people

develop their careers and eliminate societal costs associated with the inefficient talent allocation.

Conversational search is also quite appropriate for people search and generally search over networked

and interconnected datasets. Existing input interfaces for Graph Search are based on the textual input,

which requires a lot of efforts. It is hard and inconvenient to type and modify long relational queries such as

“Friends of my friends who are Software Engineers and live in New York”. With conversational and voice

search the query formulation cost will decrease dramatically, which will lead to the increased search usage,

and following the reinforcement loop to even more innovative input interfaces. It is reported by Google that

voice search accounts for over 20% of all mobile search queries4. This trend will continue to grow.

3at the moment, a career consultant might charge $200-300 per session.
4http://searchengineland.com/google-reveals-20-percent-queries-voice-queries-249917
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