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Abstract	
Continued	integration	of	renewable	energy	resources	onto	the	electric	grid	increases	variability	and	

decreases	grid	stability.	Energy	storage	can	help	mitigate	some	of	these	effects,	but	conventional	energy	

storage	such	as	batteries	is	typically	expensive	and	has	other	disadvantages	such	as	round	trip	

inefficiency	and	limited	lifetime.	Real,	high-speed	solar	panel	data	is	used	to	characterize	the	stochastic	

energy	output	of	PV	sources,	and	the	numerous	challenges	faced	and	methods	used	when	manipulating	

this	real-life	data	set	are	detailed.	Two	alternative	methods	are	then	presented	to	absorb	or	reduce	the	

variability	imposed	upon	the	grid	by	PV	or	other	generation.	(1)	Dynamic	HVAC	load	compensation	is	

shown	to	absorb	or	“filter”	short-term	PV	variability	and	act	as	effective	grid	inertia.	A	proposed	

Butterworth	filter	power	target	technique	balances	energy	storage	demands	with	decreased	

uncertainty.	A	small-scale	model	of	a	variable	speed	blower	and	fan	is	used	to	provide	a	conversion	

between	fan	speed	and	power	consumed	and	to	estimate	filtering	limitations	imposed	by	undesirable	

acoustic	effects.	Considering	the	acoustic,	physical,	and	thermal	limitations	simultaneously,	the	variation	

absorption	or	filtering	capability	of	dynamic	HVAC	load	compensation	is	analyzed	for	various	building	

sizes	and	on-site	PV	penetrations.	The	resulting	reduction	in	battery	storage	capacity	and	utilization	is	

briefly	investigated.	(2)	PV	operating	reserve	curtailment	is	introduced.	The	same	Butterworth	filter	

power	set-point	is	used,	its	implementation	is	shown	as	feasible	through	simulation,	and	the	variability	

reduction	is	quantified	in	two	different	ways.	The	claim	is	made	that	PV	should	be	treated	and	priced	

like	conventional	grid	generation,	which	is	responsible	for	both	energy	and	regulation	capabilities.	PV	

operating	reserve	curtailment	is	then	shown	to	be	economically	favorable	for	at	least	some	level	of	

reserve.	Finally,	a	proposed	metric	of	optimality	is	presented	that	balances	energy	production	with	

decreased	variability.		
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1. Introduction	and	Motivation	
Intermittent	renewable	energy	resources	are	rapidly	becoming	significant	players	in	the	power	

generation	landscape	[1],	but	they	have	been	shown	to	be	extremely	variable,	even	over	short	time	

scales	of	seconds	to	tens	of	seconds.	Solar	in	particular	can	exhibit	rapid	power	changes	in	the	vicinity	of	

80%	peak	power	on	days	where	intermittent	clouds	block	the	sun.	Figure	1.1	represents	one	such	typical	

day	with	intermittent	cloud	cover.	This	unpredictability	coupled	with	reduced	traditional	generation	that	

solar	is	replacing	threatens	the	stability	and	reliability	of	the	electric	grid	[2].	The	default	solution	to	

these	challenges	is	typically	energy	storage	in	the	form	of	batteries,	but	this	thesis	focuses	on	cheap,	

partial,	alternative	solutions	that	provide	numerous	benefits	without	the	need	for	significant	additional	

cost	or	hardware.		

	
Figure	1.1.	Sample	power	output	from	20	W	solar	panel	demonstrating	rapid	changes	in	PV	power	output.	

1.1. Wind	and	solar	as	“negative	loads”	
The	fundamental	key	to	successful	operation	of	the	electric	grid	is	maintaining	power	balance	at	all	

times.	That	means	that	at	every	instant	in	time	power	demanded	must	be	met	by	power	supplied.	

Thanks	to	a	number	of	market	structures	and	grid	controls,	small-	to	mid-size	electricity	consumers	

could	turn	on	and	off	any	electric	load,	unannounced,	at	any	time,	and	the	grid	could	maintain	stable	
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operation.	When	wind	and	solar	energy	generation,	specifically	photovoltaics	(PV),	were	introduced	to	

the	grid,	they	were	treated	in	the	same	way	as	loads	had	been;	independently	owned	wind	and	solar	

could	produce	largely	unregulated	amounts	of	power	whenever	it	was	available.	Despite	being	electric	

generation	units,	neither	wind	nor	solar	were	originally	responsible	for	maintaining	stability	or	reliability	

of	the	electric	grid.	In	contrast,	they	were	increasing	variability	and	uncertainty.	For	this	reason,	these	

renewable	resources	were	deemed	“negative	load”	as	they	behaved	just	like	typical	electric	loads	might	

with	the	exception	that	they	produced	power	rather	than	consumed	it,	and	therefore	utility	companies	

could	not	charge	them	for	the	power	flow	or	variation	in	power	that	they	produced.	Payment	structures	

for	electricity	availability	insurance	or	electricity	prices	for	reverse	flow	are	outside	the	scope	of	this	

thesis;	however,	the	cost	of	variability	imposed	upon	the	grid	is	relevant.	Arguably,	as	wind	and	solar	

become	increasingly	significant	sources	of	energy	and	as	their	costs	continue	to	fall,	they,	as	generation	

sources,	should	be	responsible	for	mitigating	some,	if	not	all,	of	their	variability.	The	focus	of	this	thesis	

is	entirely	on	solar	PV	generation,	though	many	of	the	same	problems	and	potential	solutions	exist	for	

wind	or	other	resources	as	well.	

1.2. Variability	and	inertia	in	the	grid	
Unless	every	generator	and	load	schedules	its	future	activities,	temporary	imbalances	will	be	intrinsic	to	

the	grid,	and	this	is	normal;	small	load-change	variations	occur	all	the	time,	and	the	grid	has	operated	

satisfactorily	with	these	and	much	larger	disturbances	(such	as	lightning,	faults,	or	generator	outages)	

for	many	decades.	The	key	to	grid	stability	is	the	inertia	found	mostly	in	large	turbine	generators.	Any	

time	a	grid	disturbance	occurs,	the	rotational	speed	of	the	on-line	generators	changes,	but	their	large	

inertia	keeps	them	moving.	This	form	of	energy	storage	permits	governors	or	other	fast	control	

mechanisms	to	maintain	synchronous	operation	of	generators	and	thus	stability	of	the	grid.	

Unfortunately,	PV	generators	connect	to	the	grid	through	power	electronic	inverters,	and	they	do	not	

possess	any	inherent	inertia	or	significant	energy	storage;	changes	in	irradiance	on	a	solar	panel	

translate	to	near	instantaneous	changes	in	electrical	power	output.	On	top	of	this,	as	PV	produces	more	

and	more	power,	traditional	generators	will	be	taken	off-line,	further	reducing	the	available	stabilizing	

inertia	on	the	grid	and	replacing	predictable,	controllable	generation	with	hitherto	stochastic	sources.	

IEEE	standard	1547	compounded	all	of	these	issues	by	requiring	inverters	to	disconnect	during	faults,	

though	such	standards	have	been	revised	in	recent	years	to	allow	for	low-voltage	ridethrough	[3].	

Nevertheless,	the	takeaway	is	that	continued	penetration	of	distributed	PV	systems	is	not	sustainable	

unless	the	uncertainty	and	stability	issues	can	be	addressed.	
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1.3. Understanding	and	quantifying	the	problem	
To	address	the	issue	of	PV	variability,	it	is	important	to	identify	the	relevant	time	scales	using	long-term,	

real	life	solar	data.	No	other	random	pattern	generator	can	accurately	simulate	the	stochasticity	of	real-

life	changes	in	irradiance,	at	least	not	until	it	is	well	understood.	One	of	the	major	foci	of	this	thesis	is	to	

quantify	the	variability	at	various	time	scales	and	ensure	that	all	possible	dynamics	were	captured	and	

considered	when	performing	this	analysis.	Previous	work	has	differed	in	its	definition	of	high-frequency	

solar	data	with	sampling	rates	ranging	from	1	min	[4]	to	20	s	[5],	[6]	and	topping	out	at	about	1	Hz	[7],	

[8].	As	will	be	shown,	all	of	these	fall	well	short	of	the	sampling	frequency	required	to	capture	all	

possible	fluctuations.	Chapter	2	will	detail	the	origins	of	the	real-life	data	used	and	the	assertion	that	the	

test	setup	captured	all	possible	dynamics,	discuss	challenges	encountered	in	using	the	raw	data	set,	

outline	the	procedures	used	to	clean	up	the	data	set	and	make	it	useable,	and	present	some	results	on	

what	was	deemed	to	be	the	magnitude	of	variation	associated	with	various	time	scales.	

1.4. Energy	storage	and	proposed	alternatives	
After	determining	the	extent	of	variability	during	the	day,	the	question	becomes	how	to	mitigate	it.	In	

this	thesis,	the	focus	is	largely	on	short-term	diurnal	storage	as	opposed	to	overnight,	multi-day,	or	

seasonal	storage	requirements	(though	thermal	storage	for	such	durations	is	possible,	such	as	full-day	

energy	storage	with	ice	[9]	or	phase	change	materials	[10]).	To	date,	there	are	three	main	strategies	for	

absorption	or	mitigation	of	PV	induced	grid	variations	with	battery	storage	being	the	most	common	

approach.	The	other	two	are	generally	called	demand-side	response	and	curtailed	PV.	Variations	on	

these	two	latter	strategies	will	be	the	focus	of	this	thesis.		

1.4.1. Traditional	energy	storage	solutions	

Traditional	energy	storage	typically	consists	of	a	large	bank	of	batteries	(or	supercapacitors)	[11]–[13].	

These	units	either	connect	to	the	PV	string	DC	bus	(Figure	1.2.a)	or	through	a	bidirectional	converter	to	

an	ac	circuit	breaker	or	grid	(Figure	1.2.b).	There	are	some	positive	aspects	of	batteries	as	a	variability	

reduction	solution.	The	system	can	be	highly	modular	and	is	therefore	expandable	and	relatively	easy	to	

implement	as	a	post-market	solution.	Unlike	the	alternative	solutions	that	will	be	presented,	batteries	

can	also	enable	long-term	energy	storage	in	place	of,	or	even	in	addition	to,	short-term	variability	

reduction.	Such	capability	highlights	the	cycling	limitation	associated	with	batteries,	however.	Batteries	

designed	for	long-term	deep	discharge	are	usually	not	also	capable	of	short,	high-power	bursts	without	

degrading	the	battery	lifetime	(the	number	of	times	it	can	be	charged	and	discharged	before	requiring	

replacement).	In	addition,	all	battery	storage	solutions	present	possible	chemical	and	fire	hazards;	they	
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also	suffer	from	round-trip	inefficiencies,	i.e.	energy	losses	associated	with	voltage	conversion,	

Coulombic	efficiencies,	and	other	losses	associated	with	charging	and	discharging.	Perhaps	the	largest	

downside	to	battery	storage	is	cost.	Long-term	goals	of	$150/kWh	and	$0.010/kWh/cycle	

($10/MWh/cycle)	of	cycled	energy	have	been	discussed	for	storage	[14].	In	contrast,	the	two	

alternatives	proposed	here	cost	very	little	to	implement	and	should	be	cheaper	alternatives	overall,	

even	when	taking	into	account	the	cost	of	energy	losses.	Other	solutions	such	as	supercapacitor	banks	

or	flywheels	were	not	investigated,	though	they	suffer	from	their	own	short-comings,	primarily	cost.	

(a) 	

	

(b) 		

	
Figure	1.2.	Energy	flow	for	a	PV	system	with	battery	storage	where	(a)	the	battery	is	connected	to	the	dc	bus	and	(b)	the	

battery	is	connected	through	a	bidirectional	inverter	onto	the	grid	side.	

1.4.2. Variable	speed	drives	in	HVAC	

Energy-efficient	buildings,	including	several	net-zero	energy	commercial	buildings,	have	been	

constructed	around	the	globe.	Research	activities	on	this	topic	have	increased	in	recent	years	[15]–[18],	

and	many	occupants	have	shown	interest	in	having	net-zero	energy	buildings	as	their	future	offices	such	

as	the	new	Apple	“Spaceship”	in	Cupertino,	California	[19].	Energy	efficient	or	net-zero	energy	buildings	

often	include	onsite	photovoltaic	(PV)	solar	panels	that,	as	mentioned,	provide	non-constant	power	that	

can	vary	rapidly.	Considering	this	inconstancy	to	represent	an	unwanted	ac	signal	from	a	PV	system,	a	

suitable	filter	could	be	implemented	but	would	require	storage.	If	instead	one	utilizes	the	thermal	

storage	capacity	or	thermal	inertia	inherent	in	a	building,	then	HVAC	(heating,	ventilation,	and	air-

conditioning)	system	adjustment	can	emulate	electrical	storage,	much	like	an	electric	swing	bus	[20]–

Solar	Panel dc/dc	Converter dc/ac	Inverter Power	Grid

dc/dc	Converter

Solar	Panel dc/dc	Converter dc/ac	Inverter Power	Grid

dc/dc	Converter dc/ac	Inverter
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[24].	To	clarify,	after	converting	electricity	to	thermal	energy,	the	reverse	would	not	take	place	as	such	

conversion	is	inefficient.	Instead,	the	“release”	stage	of	this	energy	storage	would	be	experienced	when	

an	HVAC	system	consumes	less	energy	than	it	otherwise	would	to	heat	or	cool	the	given	space.	Such	an	

electric	swing	bus	could	offset	fast	variations	of	local	solar	power	from	a	grid	perspective	with	reduced	

need	for	conventional	storage.	The	scaling	potential	is	sizeable,	given	that	nearly	40%	of	annual	U.S.	

energy	is	consumed	in	residential	and	commercial	buildings	[25]	with	nearly	half	of	that	consumed	by	

HVAC	systems	[26].	

This	thesis	will	demonstrate	in	Chapter	3	how	intelligent	control	of	HVAC	drives	can	compensate,	within	

predetermined	frequency	and	amplitude	limits,	for	onsite	solar	power	over	short	time	intervals	without	

disrupting	building	temperature	and	comfort.		The	process	is	based	on	concepts	in	[20]–[22].		In	

particular,	[20]	shows	how	bandwidth	concepts	can	take	advantage	of	HVAC	dynamic	adjustment	to	

offset	energy	resource	variability.	Power	electronics	enables	this	control	via	dc-dc	converters,	inverter-

based	drives,	and	other	existing	hardware,	as	illustrated	in	Figure	1.3.	The	results	formally	take	

advantage	of	thermal	energy	storage,	but	in	this	thesis	the	emphasis	is	on	mitigating	fast	dynamic	

variability,	more	akin	to	treating	HVAC	as	accessing	thermal	inertia.	Utilizing	thermal	inertia	can	alleviate	

the	need	for	inherently	expensive,	fast-varying,	grid-side	(or	building-side)	resources.	This	is	nearly	

equivalent	to	placing	a	low-pass	filter	on	a	building’s	net	generation	and	usage,	requiring	grid-side	

assistance	only	when	changes	in	load-side	demand	persist	beyond	an	extended	interval	[27].		Given	the	

slow	thermal	response	of	a	building,	we	might	anticipate	that	time	scales	of	a	few	minutes	or	faster	can	

be	used	to	advantage	to	offset	resource	variability	without	noticeable	impact	on	occupants.	

	
Figure	1.3.	Energy	flow	inside	a	building	with	various	types	of	converters	that	may	be	utilized	to	implement	dynamic	energy	

filtering.	

A	fundamental	advantage	of	HVAC	adjustment	for	effective	dynamic	thermal	storage	is	that	it	is	

relatively	easy	to	implement.	Conventional	building	energy	management	systems	and	thermostats	are	

designed	to	perform	in	slow	control	loops,	on	time	scales	of	minutes.	HVAC	adjustment	can	use	time-
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scale	separation	and	stay	away	from	this	“effective	dc”	loop	action.		In	this	sense,	an	ac	feedforward	

signal	is	injected	into	a	drive	to	adjust	power	flow	on	fast	time	scales,	while	avoiding	interference	on	

slow	time	scales.		The	average	performance	of	the	HVAC	system	remains	intact,	and	the	fast	adjustment	

can	be	made	transparent	to	users.			

1.4.3. Curtailed	PV	power	

Instead	of	using	storage	elements	or	creative	alternatives	such	as	dynamic	load	compensation	with	

HVAC,	PV	variability	can	be	partially	reduced	at	the	source,	which	in	this	analysis	would	mean	at	the	

photovoltaic	module.	This	is	the	idea	of	PV	curtailment	based	on	operating	reserve:	sacrificing	a	bit	of	

energy	production	for	a	reduction	in	uncertainty	and	variability.	PV	curtailment	is	not	especially	new,	

but	it	is	typically	used	as	a	last	resort	when	voltage	rise	on	distribution	lines	becomes	problematic	[28].	

Running	with	operating	reserve	is	also	not	new	and	has	been	shown	to	be	economical	for	wind	energy	

[29],	but	poor	implementation	and	worries	about	cost	effectiveness	may	have	previously	limited	its	

adoption	for	PV.		

Cost	in	particular	has	typically	been	calculated	with	the	mindset	that	PV	is,	and	should	be,	treated	as	

negative	load.	Therefore,	curtailment	has	an	opportunity	cost	equal	to	the	cost	of	energy	(below	

$0.05/kWh	for	systems	with	25	year	warranties)	times	the	amount	of	energy	sacrificed.	This	thesis	will	

make	the	case	in	Chapter	4	that	this	is	an	incomplete	picture	since	intermittency	and	inconsistent	grid	

support	capabilities	mean	that	PV	systems	cannot	be	traded	against	most	electricity	generation	

resources.	A	comparable	cost	structure	would	include	storage.	Continuing	cost	reductions	that	take	PV	

below	cost	parity	introduce	more	direct	opportunities	for	mitigating	intermittency	and	providing	active	

grid	support.	Chapter	4	will	discuss	how	decreases	in	PV	system	costs	can	be	leveraged	against	storage	

and	grid	support	to	provide	“true”	system-level	cost	parity	comparable	to	large,	cycling	utility	plants.		

Curtailment	has	typically	been	treated	as	an	ad-hoc	solution	to	problems	such	as	overvoltage	[30].	It	has	

been	done	out	of	necessity	and	therefore	only	affects	periods	of	high	or	peak	power	output.	It	has	also	

been	unidirectional	–	able	to	back	off	of	power	production,	but	unable	to	provide	additional	power	

capability.	The	proposed	method	of	operating	reserve	curtailment	provides	both	positive	and	negative	

operating	headroom,	enables	variability	reduction	throughout	the	full	solar	day,	and	does	not	restrict	

overvoltage	protection	algorithms.	If	implemented	properly,	PV	curtailment	with	operating	reserve	

could	economically	transform	PV	into	a	grid	resource	rather	than	a	grid	nuisance	and	enable	deeper	

penetration	of	PV	without	destabilizing	the	grid.	Chapter	5	details	such	a	proposed	operating	reserve	

curtailment	implementation.	 	
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2. High-speed	Solar	Data	
A	large	portion	of	the	results	in	this	thesis	are	either	derived	from	direct	analysis	of	solar	data	or	

simulations	that	depend	upon	it.	Therefore,	it	is	imperative	to	discuss	the	origin	of	the	high-speed	solar	

data	set	used,	the	processing	methods	from	which	the	useable	metrics	were	derived,	and	the	

assumptions	made	in	estimating	high-speed	changes	in	solar	power.	After	all,	photovoltaic	arrays	and	

panels	are	typically	connected	through	maximum	power	point	(MPP)	controllers	to	the	grid,	and	it	is	

thus	the	variability	of	the	MPP	power	that	is	truly	seen	by	the	grid	or	a	net-zero	building.	In	addition,	the	

raw	data	contained	numerous	imperfections	and	inconsistencies	that	presented	processing	challenges,	

so	the	assumptions	made	as	well	as	approaches	used	in	creating	a	continuous,	useable	data	set	will	be	

presented.	Finally,	the	solar	data	represents	a	valuable	resource,	not	only	for	this	thesis	work,	but	

potentially	for	numerous	others	interested	in	the	real-life,	long-term,	high-frequency	solar	data.	For	this	

reason,	the	essential	content	is	slated	for	eventual	publication,	and	the	additional	processing	steps	

performed	on	the	raw	data	are	presented.		

2.1. Data	acquisition	history	
Professor	Robert	Pilawa	of	the	University	of	Illinois	Urbana-Champaign	and	his	students	designed	and	

implemented	a	fast	solar	data	acquisition	setup	in	2012	[31].	While	[31]	describes	the	experimental	

setup	in	more	depth,	here	is	a	summary	as	it	pertains	to	this	work:	During	data	collection,	two,	identical,	

rooftop-mounted,	20	W,	PV	panels,	connected	to	two	different	meters,	were	placed	side	by	side	to	

eliminate	spatial	variation	as	much	as	possible.	One	meter		was	a	Keithley	2420	that	performed	a	sweep	

across	the	current-voltage	(I-V)	curve	every	2.5-3.9	seconds,	and	the	other	was	an	Agilent	34410A	that	

recorded	short-circuit	current	at	5	kHz.	The	data	acquisition	mechanism	is	depicted	in	Figure	2.1.	The	

sweeps	from	the	Keithley	(“slow”)	meter	enable	us	to	calculate	open-circuit	voltage	(VOC),	short-circuit	

current,	and	MPP	voltage,	current,	and	power	(VMPP,	IMPP,	PMPP).	The	Agilent	(“fast”	or	“high-speed”)	data	

provides	high-frequency	short-circuit	current	readings	(ISC)	that,	as	will	be	shown,	can	be	used	to	

calculate	high-frequency	changes	in	the	available	power.	To	clarify,	both	meters	measured	short-circuit	

current,	but	in	this	thesis	ISC	will	almost	always	refer	to	the	fast	data.	Slow	short-circuit	current	data	was	

used	for	verification	of	measurement	accuracy	against	the	fast	meter	and	as	a	check	of	instrument	

synchronization.		
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Figure	2.1.	Solar	data	acquisition	hardware	setup	[31].	

2.2. Capturing	all	possible	dynamics	
Five	kHz	short-circuit	data	was	recorded	by	the	fast	meter	to	ensure	that	all	possible	dynamics	were	

captured.	The	explanation	for	why	short-circuit	current	should	capture	(or	at	least	indicate)	the	

presence	of	fast,	irradiance-based	dynamics	has	been	addressed	[32].	When	it	comes	to	solar	panels,	

the	fastest	dynamics	are	likely	to	be	shadow-based,	induced	primarily	by	clouds	and	flying	objects.	

Consider	the	fastest	dynamic	that	could	reasonably	be	expected:	a	shadow	from	a	passing	bird.	A	

Canada	Goose	has	a	typical	cruising	speed	of	40	mph	(64	km/h)	[33]	and	a	minimum	wing	chord	of	

about	0.4	m	[34].	This	means	the	shadow	could	pass	on	the	order	of	1/45th	of	a	second.	By	sampling	at	5	

kHz,	even	this	hypothetical	occurrence	could	be	recreated	with	more	than	110	data	points.	Atmospheric	

noise	has	the	potential	to	induce	still	faster	dynamics	but	given	the	broad	area	covered	by	solar	arrays,	

the	effects	are	assumed	to	average	out	by	spatial	variation	and	will	not	be	specifically	addressed	in	this	

thesis.	Rigorously	demonstrating	that	all	of	these	dynamics	were	captured	using	numerical	data	is	

difficult.	The	following	subsections	will	describe	proposed	solutions	that	rely	upon	knowledge	of	

reasonably	expected	disturbances.	They	will	show	that	even	flickering	shadows	are	fully	captured	at	100	

Hz,	and	that	faster	dynamics	are	sufficiently	insignificant	as	to	not	be	considered.		

2.2.1. Demonstrating	smooth	dynamics	during	characteristically	noisy	period	

The	dominant	and	most	frequent	dynamics	in	solar	data,	other	than	basic	diurnal	variation,	are	caused	

by	passing	clouds,	so	the	first	and	simplest	test	is	to	visually	ensure	that	even	the	most	rapid	transients	

are	captured	by	the	fast	meter.	That	is	to	say	that	enough	samples	were	taken	such	that	the	original	

signal	could	be	accurately	recreated,	which	would	be	evident	if	the	data	were	“smooth”	and	did	not	

contain	visual	jumps	or	discontinuities	between	samples.	To	demonstrate	that	indeed	the	sampling	rate	

is	sufficient,	one	of	the	dynamic	days	in	the	entire	data	set,	namely	March	31st,	2013,	is	closely	

investigated	in	Figure	2.2.	On	this	day,	the	solar	panels	experienced	intermittent	cloud	cover	and	rapid	
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ramp	rates	as	seen	in	the	top	image	of	Figure	2.2.	The	subsequent	images	depict	some	of	the	most	

dynamic	subsets	of	data	from	that	day	to	demonstrate	that	even	during	some	of	the	most	variable	

moments,	all	possible	dynamics	were	captured	in	their	entirety.	In	fact,	the	bottom	sub-figure	in	this	

case	still	contains	100,000	data	points,	providing	an	exceptionally	“smooth”	recreation	of	the	analog	

irradiance	change.		

	
Figure	2.2.	Sample	day	containing	numerous	rapid	transients	(top)	and	subsequent	close-up	views.	
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2.2.2. Verification	during	flickering	shadows	

Variability	in	solar	irradiance	can	arise	from	sources	other	than	clouds.	While	typically	less	frequent,	the	

fastest	dynamics	are	almost	always	caused	by	the	flickering	shadows	of	large	bugs,	birds,	or	airplanes	

passing	between	the	panel	and	the	sun.	In	order	to	more	easily	identify	their	occurrence,	a	high-pass	

Butterworth	filter	was	applied	to	the	raw,	short-circuit	current	data	(thick,	blue	line	in	Figure	2.3)	and	

any	ultra-narrow	spikes	were	singled	out.	The	spikes	of	interest	do	not	have	the	characteristic	curves	on	

either	side;	such	instances	are	a	byproduct	of	a	nonideal	filter	applied	to	rapid	cloud	transients.	Example	

power	dips	of	interest	are	circled	in	Figure	2.3	and	appear	as	blips	on	moderate	time	scales	(seconds	to	

hours).	Nevertheless,	zooming	in	on	these	circled	regions	as	in	Figure	2.4	reveals	that	even	the	fine	

details	of	these	transients	are	fully	captured	at	5	kHz.	Instance	#4	(Figure	2.4	on	right)	reveals	four	local	

minima	that	might	be	a	result	of	a	bird	flying	across	the	four	columns	of	cells	on	the	solar	panel	tested.	

While	a	100	Hz	subsampling	does	not	capture	these	cell-level	dynamics,	it	does	capture	the	panel-level	

power	dip	with	3-4	points.	From	a	panel	energy	production	perspective,	this	is	shown	to	be	sufficient	in	

Section	2.2.3.	

	
Figure	2.3.	Sample	solar	data	from	July	16th,	2013	containing	multiple,	very	rapid	dips	in	power	output	(circled).	



11	
	

	
Figure	2.4.	Highly	zoomed-in	views	of	the	two	most	significant	circled	instances	from	Figure	2.3.	

2.2.3. Investigation	of	dynamics	in	terms	of	potential	energy	loss	

In	section	2.2.2,	the	fastest	expected	class	of	shading	dynamics	were	easily	captured	by	a	5	kHz	signal,	

and	could	largely	be	recreated	with	a	sampling	frequency	of	just	100	Hz.	The	question	then	becomes:	

Are	there	unknown	sources	of	dynamics	in	solar	power,	and	even	if	they	exist,	are	they	significant	

enough	to	be	worth	caring	about?	For	example,	atmospheric	noise	was	mentioned	in	Section	2.2,	but	if	

its	effect	on	solar	power	output	does	not	meaningfully	change	the	potential	output	power,	then	

arguably,	it	is	not	worth	tracking.	Up	to	this	point,	high-speed	variations	were	observed	in	the	short-

circuit	current,	but	[32]	argues	that	at	least	to	first	order,	high-speed	variations	in	power	can	be	

obtained	from	the	high-frequency	short-circuit	data	in	conjunction	with	slower	I-V	sweep	data.	The	full	

process	will	not	be	outlined	here	as	this	can	be	found	in	[32];	only	the	result	is	presented	here.	

Assuming	that	a	maximum	power	point	tracker	(MPPT)	with	constant	update	rate	is	used	to	maximize	

power	output	from	a	PV	panel,	then	fast	dynamics	will	result	in	decreased	power	output	until	the	MPPT	

updates	to	the	new	MPP	voltage.	The	cumulative	energy	missed	during	these	periods	is	summed	for	a	

given	10	day	sample	as	discussed	in	Section	2.3.1.	Then,	the	energy	sacrificed	for	a	given	MPPT	update	

rate	is	divided	by	the	total	possible	energy	available	(assumed	to	be	the	same	as	the	MPP	measured	at	5	

kHz).	This	ratio	is	plotted	against	the	given	update	rates	in	Figure	2.5.	Note	that	if	any	dynamics	

therefore	exist	above	100	Hz,	for	example,	the	energy	sacrificed	will	only	be	about	1	part	in	4000.	At	this	

point,	the	potential	energy	lost	or	gained	by	knowing	the	highest	frequency	variation	is	negligible.	

Perfect	insight	into	the	analog	variations	would	only	amount	to	about	$0.35	of	energy	production	value	

for	a	250	W	panel	over	its	lifetime	[32].	Therefore,	what	meaningful	irradiance	dynamics	exist	are	
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arguably	captured	completely	with	100	Hz	data,	and	any	additional	high-speed	dynamics	are	not	worth	

investigating	for	MPPT	purposes.		

	
Figure	2.5.	Modeled	energy	sacrifice	of	10,	10-day	samples	with	varying	MPPT	update	rates	and	mean	in	bolded	black.	

Entries	in	legend	represent	final	day	in	10-day	series.	

While	perhaps	less	insightful	to	power	engineers	than	sacrificed	energy,	fast	Fourier	transform	(FFT)	

analysis	of	three	very	different	days	corroborated	the	100	Hz	conclusion.	Figure	2.6	depicts	the	FFTs	of	a	

cloudless	(smooth)	day,	a	largely	overcast	(noisy)	day,	and	a	day	with	a	cloudless	morning	and	partly	

cloudy	afternoon	(partially	noisy).	Each	has	differing	characteristics	at	lower	frequencies,	but	above	100	

Hz	(or	even	50	Hz)	the	frequency	content	is	well	below	one	part	in	one	million	with	the	exception	of	the	

180	Hz	coupled	grid	harmonic.	At	these	scales,	frequency	content	is	effectively	negligible	and	is	on	the	

order	of	fine	measurement	accuracy	anyway.	
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Figure	2.6.	Full-day	FFTs	of	5	kHz	short-circuit	current	for	three	different	days.	

2.3. Data	processing	challenges	and	approaches	
The	raw	data	set,	as	the	name	implies,	was	not	immediately	conducive	to	analysis.	Missing	data,	

formatting	inconsistencies,	and	data	rate	variability	were	the	primary	obstacles.	More	specific	details,	

along	with	the	strategies	used	to	correct	or	avoid	these	unexpected	obstacles,	are	outlined	in	the	

following	sections.	Additionally,	the	raw	data	did	not	directly	provide	us	with	the	desired	parameters,	

namely	high-frequency	values	for	the	maximum	power	point	(MPP)	power.	As	a	first	step	toward	this	

end,	the	final	subsection	will	address	the	procedure	used	to	calculate	slow	MPP	values	from	current-

voltage	(I-V)	sweeps.	

2.3.1. Missing	data	

The	first	problem	encountered	was	that	of	local	missing	data	or	non-sequitur	time	stamps.	Such	gaps	

are	to	be	expected	from	real-life	data	sets	due	to	equipment	glitches	or	failures,	instances	where	the	

code	was	updated,	or	other	incidences.	The	first	step	to	address	this	problem	was	to	identify	and	flag	

missing	or	unexpected	data.	This	was	accomplished	by	computer	code	that	recorded	any	instances	

where	actual	timestamps	did	not	fall	within	windows	of	reasonably	expected	timestamps.	A	sample	of	

the	output	data	is	shown	in	Figure	2.7	with	red	boxes	indicating	missing	segments.	A	partial	day	is	

missing	for	the	afternoon	of	March	28th,	2013,	and	a	full	day	is	missing	on	April	12th,	2013.		
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Figure	2.7.	Solar	panel	short-circuit	current	vs.	time	with	highlighted	missing	data	segments.	

Suitable	data	substitutions	from	other	portions	of	the	data	set	are	discussed	in	Table	2.1,	but	for	the	

energy	sacrifice	analysis	of	Section	2.2.3,	a	different	approach	was	taken.	Ten	different,	randomly	

selected,	non-overlapping,	10-day	samples	(100	total	days)	were	taken	from	the	roughly	500	days	of	

data	to	obtain	a	representative	sample	of	long-term	solar	data.	This	was	accomplished	by	randomly	

selecting	a	starting	day,	and	then	proceeding	to	use	that	day	and	the	nine	subsequent	days,	provided	

that	none	of	them	overlapped	with	other	samples	or	contained	a	segment	of	missing	data.	For	example,	

if	the	first	random	number	generated	corresponded	to	March	31st,	2013,	then	the	segment	of	data	

spanning	March	31st,	2013	to	April	9th,	2013	would	be	used	since	Figure	2.7	indicates	that	it	does	not	

contain	a	segment	of	missing	data.	As	a	counter	example,	if	the	next	random	number	happened	to	

correspond	to	April	7th,	2013,	then	the	selection	would	be	invalidated	and	a	new	random	starting	date	

selected	since	the	segment	beginning	with	April	7th	overlaps	with	the	first	sample	(and	contains	missing	

data	for	April	12th,	2013).	This	process	was	selected	because	it	contained	representative	segments	from	

all	times	of	year,	incorporated	long-term	effects	that	might	appear	in	multi-day	weather	patterns,	and	

enabled	direct	use	of	the	solar	data	without	additional	complications	or	uncertainty.	

2.3.2. Substituted	data	for	public	use	
The	long-term,	high-speed	PV	data	set	is	useful	for	analysis	in	this	thesis,	but	it	has	long	been	a	goal	to	

prepare	a	version	for	public	use.	The	finalized	data	set	provides	one	continuous	year	of	data	that	can	be	

used	in	simulations	to	accurately	represent	real-life	power	outputs	from	a	panel.	No	matter	the	start	

date	chosen,	though,	no	365	consecutive	days	were	without	some	missing	data	segments.	Dismissing	

the	work-around	mentioned	in	Section	2.3.1,	missing	or	incomplete	days	thus	had	to	be	substituted.	To	

avoid	introducing	sudden	changes	or	stark	weather	pattern	contrasts,	whole	days	were	substituted	even	

when	partial	data	was	available.	Table	2.1	summarizes	all	incomplete	days	between	November	1st,	2012	

and	November	1st,	2013,	the	portion	and	type	of	data	missing,	and	the	respective	daily	substitutes.	
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Table	2.1.	Summary	of	Days	with	Missing	Data	and	Substitutions	Used	

Missing	Day	 Part	Missing	 Missing	Slow	and/or	
Fast	Meter	Data	

Replacement	Day	 Scaling	Factor	

11/23/2012	 1	min	section	 Fast	 11/23/2013	 1.0000000	

12/02/2012	 All	day	 Slow	 12/02/2013	 1.0000000	

02/26/2013	 Partial	day	 Slow	 10/05/2012	 1.0000000	

02/27/2013	 Morning	 Both	 10/02/2012	 0.9163347	

03/28/2013	 Afternoon	 Both	 03/21/2013	 1.0405904	

04/12/2013	 All	day	 Both	 08/13/2013	 1.0000000	

07/27/2013	 Partial	day	 Slow	 07/27/2012	 1.0000000	

08/05/2013	 Partial	day	 Slow	 08/05/2012	 1.0000000	

08/29/2013	 Partial	day	 Slow	 08/12/2012	 1.0000000	

08/31/2013	 Partial	day	 Slow	 08/20/2012	 1.0000000	

09/02/2013	 Partial	day	 Slow	 08/10/2012	 1.0000000	

10/14/2013	 Partial	day	 Both	 10/25/2012	 1.0000000	

Substitute	days	were	chosen	with	the	following	preference:	

1. If	a	non-repeated,	complete	day	(containing	all	data)	was	available	from	one	year	either	prior	or	

subsequent,	this	day	was	selected	as	a	replacement.		

2. Else,	if	a	non-repeated,	complete	day	was	available	from	an	equidistant	time	away	from	the	

Winter	or	Summer	solstice,	this	day	was	selected	as	a	replacement.	In	other	words,	the	

replacement	day	would	be	as	many	days	after	the	solstice	as	the	original	was	before	it,	or	vice	

versa.		

3. Else,	days	with	similar	historic	weather	patterns	and	temperatures	were	selected	with	a	

preference	for	days	close	to	the	original	date	(in	a	prior	or	subsequent	year)	and	secondary	

preference	for	days	close	to	an	equidistant	Winter	or	Summer	solstice	counterpart	(as	in	2).		

Typically,	unity	scaling	factors	were	chosen,	but	in	cases	where	partial	data	existed,	substitute	data	

could	be	scaled	slightly	to	better	match	the	original	data.		
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2.3.3. Data	synchronization	

In	short,	data	synchronization	was	accomplished	by	aligning	data	with	matching,	corresponding	time	

stamps.	In	reality,	however,	the	process	was	a	bit	more	involved.	First	of	all,	there	was	no	consistent	file	

length,	duration,	or	number	of	data	points	per	file.	For	example,	the	fast	short-circuit	current	data	

varied	in	rate	between	about	5010	Hz	to	5014	Hz	with	the	first	file	recording	at	about	5250	Hz	and	time	

stamps	spanning	between	57	and	59	seconds.	Setting	a	nominal	increment	of	200	𝜇s	(inverse	of	5	kHz)	

therefore	caused	significant	offsets	over	the	tens	of	thousands	of	seconds	recorded	each	day.	To	resolve	

this	offset	and	enable	synchronization	with	the	slow	sweep	data,	the	computer	program	had	its	own	

master	clock	which	it	would	increment	with	the	mean	period	Tmean	between	data	samples	as	determined	

by	the	following	simple	equation:	

 𝑻𝒎𝒆𝒂𝒏 =
𝒕𝒆𝒏𝒅 − 𝒕𝒔𝒕𝒂𝒓𝒕

#	𝒔𝒂𝒎𝒑𝒍𝒆𝒔	𝒊𝒏	𝒇𝒊𝒍𝒆
	 (2.1) 

While	time	stamps	only	had	precision	down	to	0.01	s,	this	was	overshadowed	by	the	fact	that	the	slow	I-

V	sweeps	did	not	identify	time	stamps	between	regions	of	the	sweep.	That	is	to	say	that	the	open-circuit	

voltage,	MPP	values,	and	short-circuit	current	measurements	took	place	ambiguously	within	the	2.5-3.9	

second	duration	of	each	sweep.		

To	improve	synchronization	of	data,	raw	short-circuit	data	from	both	fast	and	slow	sets	were	compared	

over	a	±	1	s	window.	Since	we	would	expect	the	short-circuit	current	to	be	the	same	on	both	panels	(the	

one	measured	by	the	fast	meter	and	the	one	measured	by	the	slow	meter),	it	was	reasonable	to	assume	

that	similar	values	should	be	recorded	at	the	same	instant	in	time,	and	thus	we	could	adjust	the	slow	

meter	time	stamp	to	better	match	the	interpolated	time	stamp	of	the	fast	meter.	This	was	accomplished	

by	maximizing	the	correlation	of	the	two	current	measurements	over	the	course	of	each	day.	If	n	is	the	

total	number	of	points	in	a	day	and	m	is	the	maximum	sample	offset	to	be	considered,	then	the	most	

likely	timestamp	offset	for	the	slow	meter	will	be	the	value	of	toffset	that	maximizes	

 𝑻𝒐𝒇𝒇𝒔𝒆𝒕 = 𝐦𝐚𝐱 𝑰𝑺𝑪𝒔𝒍𝒐𝒘 𝒕 ×𝑰𝑺𝑪𝒇𝒂𝒔𝒕 𝒕 − 𝒕𝒐𝒇𝒇𝒔𝒆𝒕

𝒕<𝒏=𝒎

𝒕<𝒎

, −𝒎 < 𝒕𝒐𝒇𝒇𝒔𝒆𝒕 < 𝒎 (2.2) 

The	effectiveness	of	this	calculation	is	presented	at	seven	equally	spaced	points	throughout	each	day	to	

visually	verify	that	the	calculated	offset	improved	overall	alignment	of	short-circuit	data	in	time.	A	

sample	of	two	of	the	seven	windows	from	3/31/2013	is	shown	in	Figure	2.8.	These	samples	visually	

depict	better	alignment	of	data	from	the	two	separate	meters	during	periods	of	rapid	irradiance	

changes.	The	solid	blue	curve	represents	the	high-speed	short-circuit	data,	the	red	dashed	line	

represents	the	slow	meter	short-circuit	current	with	original	timestamps	and	the	green	dotted	line	
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represents	measurements	from	the	slow	meter	with	optimal	offset.	In	an	ideal	case,	the	apparent	

vertices	of	the	slow	meter	would	lie	precisely	on	top	of	the	smooth,	high-speed	data	as	if	being	sampled	

from	the	same	data	set.	Note	that	this	analysis	was	only	performed	for	the	two	short-circuit	

measurements.	I-V	sweep	data	and	open-circuit	voltage	would	have	additional	offsets	as	they	were	

recorded	subsequent	to	the	short-circuit	current	on	the	slow	meter.	However,	aligning	these	

parameters	using	the	same	method	would	assume	that	increases	and	decreases	correlate	to	increases	

and	decreases	in	short-circuit	current,	which	may	not	always	be	true,	especially	given	the	variability	of	

where	within	the	I-V	sweep	MPP	values	occurred.		

	
Figure	2.8.	Two	sample	windows	of	data	alignment	from	March	31st,	2013	showing	better	data	alignment	with	time	offset.	

2.3.4. Parameter	calculation	
Even	after	all	of	the	data	was	synchronized	and	missing	data	segments	filled,	some	of	the	desired	

parameters	had	to	be	calculated	before	they	were	used.	The	5	kHz	data	came	in	an	immediately	usable	

form,	but	the	slow	I-V	curve	data	required	specific	processing	techniques	in	order	to	obtain	short-circuit	

current,	open-circuit	voltage,	MPP	current,	MPP	voltage,	and	MPP	power	values.	Slow	short-circuit	

current	data	consists	of	three	data	points	near	0	V,	the	square	symbols	in	Figure	2.9.	Open-circuit	

voltages	(VOC)	were	obtained	from	the	sweeps	that	crossed	the	voltage	axis,	the	triangle	symbols	in	

Figure	2.9.	MPP	voltage,	current,	and	power	took	the	most	processing.	In	Figure	2.9,	the	MPP	region	

contains	100	points	on	the	“knee”	of	the	I-V	curve.	As	can	be	seen	in	Figure	2.10,	the	measurements	

contain	a	combination	of	high-frequency	fluctuations	and	measurement	noise.	Simply	picking	the	point	

with	the	peak	value	can	lead	to	misleading	and	inaccurate	MPP	values.	To	alleviate	this,	a	4th-order	

polynomial	least-squares	fit	was	applied	to	the	data	to	capture	the	overall	nature	of	the	sweep.		
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Figure	2.9.	Slow,	current-voltage	(I-V),	full-range	sweep	containing	data	points	near	the	short-circuit,	open-circuit,	and	

maximum	power	point	region.	

	
Figure	2.10.	Slow	I-V	sweep	in	MPP	region	and	max	power	curve	with	polynomial	least	squares	fits.	

Implementing	a	4th-order	fit	instead	of	the	2nd-order	polynomial	used	in	[31]	increased	the	regression	

coefficient	from		R2	=	0.95	to	R2	=	0.995	for	a	typical	MPP	sweep.	Higher-order	polynomials	or	other	

functions	may	be	used	instead,	but	the	4th-order	polynomial	captures	the	expected	shape	of	the	power	

curve	well.	Rather	than	solving	for	the	peak	algebraically,	it	was	computationally	more	efficient	to	

evaluate	the	polynomial	function	at	500	equally	spaced	points	over	the	same	range	of	voltages	as	the	

original	MPP	region	and	then	select	the	maximum	value	from	this	finely	discretized	set.		
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For	instances	where	a	peak	value	was	not	found,	the	polynomial	kept	increasing	or	decreasing	

monotonically	because	the	slow	meter	missed	the	MPP.	In	this	case,	the	maximum	interpolated	value	

(an	endpoint)	was	chosen	as	the	MPP.	An	example	is	provided	in	Figure	2.11	in	which	three	consecutive	

MPP	sweeps	are	shown	with	the	middle	(orange)	sweep	failing	to	span	the	peak	power	value.	This	

failure	is	likely	due	to	a	sudden	drop	in	irradiance	following	a	previously	increasing	trend.	According	to	

the	procedure	mentioned	above,	the	MPP	power	would	be	that	associated	with	the	power	at	the	left	

end	of	the	middle	curve,	or	16.00	V	in	this	specific	instance.	Sometimes	the	fluctuations	were	so	fast	

that	within	a	single	sweep,	the	polynomial	approximation	generated	two	peaks	(or	potentially	more	if	a	

higher-order	polynomial	were	to	be	used).	Figure	2.12	exemplifies	such	a	scenario,	where	the	

polynomial	was	a	poor	approximation	of	the	raw	data.		In	cases	like	this,	the	maximum	value	of	the	raw	

sweep	data	(marked)	was	chosen	instead	of	the	polynomial	peak.	More	generally,	polynomial	

approximations	with	R2	<	0.99	were	deemed	invalid	and	the	raw	data	peak	used	instead.	The	polynomial	

fit	is	only	beneficial	if	it	closely	represents	the	original	data.	Thus,	the	instance	of	two	peaks	in	Figure	

2.12	would	be	ruled	out	due	to	a	poor	polynomial	fit.	After	computing	values	from	the	slow	meter	data,	

the	results	were	synchronized	with	the	fast	meter	measurements	using	time	stamps	recorded	in	both	

data	sets.	

	
Figure	2.11.	Three	consecutive	MPP	power	curve	sweeps	with	the	middle	sweep	missing	the	MPP.	
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Figure	2.12.	Rapid	transient	during	MPP	sweep	and	associated	poor	fit	polynomial	approximation.	

2.4. Slow	meter	current	saturation	and	action	taken	
When	verifying	the	data	synchronization	in	Section	2.3.3,	it	was	observed	that	slow	meter	I-V	sweep	

currents	saturated	at	approximately	1.35-1.375	A	despite	simultaneous	fast	meter	short-circuit	

measurements	recording	higher	currents,	up	to	almost	1.8	A	at	times.	Saturation	affects	about	half	of	

the	recorded	days	after	April	2nd,	2013,	and	was	likely	a	result	of	an	improper	range	setting.	This	

deduction	is	backed	by	two	pieces	of	evidence.	First,	the	beginning	of	the	inaccurate	data	coincides	with	

a	break	in	the	data	during	which	data	recording	formats	were	changed.	Secondly,	the	saturation	point	is	

just	slightly	greater	than	the	rated	peak	current	of	1.29	A.	This	means	the	1.35	A	set-point	would	be	

suitable	for	most	instances	except	for	when	the	sun	appeared	between	clouds	on	bright,	partly	cloudy	

days.	In	the	short	term,	nothing	much	can	be	done	about	the	inaccurate	data.	Results	of	Section	2.2.3	

might	be	slightly	skewed	and	could	be	recalculated	with	only	days	unaffected	by	the	saturation.	Longer	

term,	the	proposed	published	data	set	already	excludes	any	potentially	inaccurate	sweep	data	and	a	

repeat	experiment	for	data	acquisition	is	encouraged.		

2.5. Public	and	auxiliary	uses	for	PV	data	set	
The	primary	purpose	of	the	high-speed	solar	data,	as	it	pertains	to	this	thesis,	is	to	obtain	a	realistic	data	

set	to	better	model	effects	of	solar	power	variability.	As	mentioned,	though,	a	cleaned-up	version	of	the	

long-term	PV	data	set	is	intended	for	public	use.	Thanks	to	lessons	learned	through	utilization	of	the	

high-speed	data,	a	few	changes	were	made.	Time	stamps	and	file	length	were	made	more	consistent	

across	the	slow	and	fast	meter	data;	sweep	data	was	simplified	down	to	the	key	points	of	interest	such	

as	MPP	current	and	open-circuit	voltage;	and	thanks	to	the	analysis	performed	on	the	dynamic	content,	
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high-speed	data	could	be	down-sampled	(after	passing	a	median	filter	to	eliminate	measurement	noise)	

to	just	100	Hz	to	reduce	file	sizes	without	losing	substantive	information.	

As	in	Section	2.2.2,	finding	the	fastest	dynamics	took	considerable	effort.	The	Butterworth	filter	used	to	

isolate	rapid	changes	had	to	be	applied	to	billions	of	points	per	day	and	anomalies	had	to	be	identified	

manually.	With	the	down-sampled	data	set,	this	search	becomes	much	easier.	The	median	filter	applied	

before	down-sampling	eliminates	presumed	measurement	and	atmospheric	noise	enabling	a	

computationally	simple	derivative	to	be	taken.	Strings	of	data	with	large	derivatives	should	indicate	a	

rapid	dynamic	and	can	be	further	investigated.		
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3. Dynamic	HVAC	Load	Compensation	
Dynamic	load	compensation	is	a	variability-reducing	alternative	to	chemical	storage.	It	can	be	relatively	

cheap	and	easy	to	implement,	provide	effective	grid	inertia,	and	reduce	variability	of	onsite	PV	power	

variations	[35],	[36].	When	heating,	ventilation,	and	air	conditioning	(HVAC)	systems	are	to	be	used	as	

the	load	medium,	though,	dynamic	load	compensation	also	has	its	limits.	This	chapter	focuses	on	

variable	speed	drives	involved	in	dynamic	HVAC	compensation	with	multiple	portions	having	been	

previously	published	in	[35],	[36].		

HVAC-implemented	energy	resource	filtering	has	both	upper	and	lower	frequency	band	bounds	beyond	

which	it	should	not	operate.	The	lower	frequency	limit,	meaning	the	lowest	update	rate	for	HVAC	speed	

and	power	commands,	is	established	to	shield	building	users	from	substantial	temperature	swings,	

ideally	keeping	variations	imperceptible.	An	upper	frequency	limit,	meaning	the	highest	update	rate	for	

HVAC	speed	and	power	commands,	is	needed	such	that	the	following	conditions	are	met:	(1)	HVAC	

drives	are	capable	of	responding,	(2)	undue	wear	and	tear	is	not	induced	on	drives	or	mechanical	parts,	

and	(3)	update	rates	do	not	create	discomforting	audible	pitch	or	amplitude	changes.		

Frequency	domain	analysis	is	performed	to	illustrate	available	filtering	potential,	and	approximate	upper	

and	lower	frequency	bounds	are	discussed.	This	analysis	utilizes	PV	data	from	the	high-frequency	data	

set	presented	in	Chapter	2.	If	the	HVAC	system	can	effectively	filter	power	usage	over	a	useful	frequency	

band,	the	power	grid	will	then	be	better	able	to	provide	and	absorb	slower	changes	in	demand	to	

balance	the	longer-term	building	energy	flow.	Conventional	onsite	energy	storage	could	absorb	

additional	power	shortages	and	surpluses	where	HVAC	falls	short,	such	as	changes	extending	outside	of	

frequency	band	boundaries.	As	a	result,	the	electric	grid	benefits	from	a	much	slower	varied	energy	

demand,	and	conventional	energy	storage	size	is	substantially	reduced.	This	chapter	will	investigate	

what	high-frequency	variations	there	are	to	remove	and	how	they	were	determined.	It	will	also	present	

the	fan	drive	experiment	performed	and	the	bandwidth	permissible	for	filtering	capabilities.	Finally,	

simulated	filtering	capability	of	dynamically	controlled	HVAC	systems	is	presented	for	various	cases	with	

differing	sizes	of	PV	installations	and	HVAC	limitations.		

3.1. Desired	solar	power	variation	absorption	
In	an	ideal	scenario	where	dynamic	HVAC	load	compensation	has	infinite	storage	capacity	and	

instantaneous	response	times,	fixed	power	targets	can	be	set,	and	solar	energy	variation	can	be	filtered	

completely	by	the	HVAC	system	(without	being	imposed	on	the	power	grid).	In	other	words,	the	ideal	
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system	would	store	or	release	building	thermal	energy	via	the	HVAC	system	so	that	the	combined	power	

of	the	PV	system	and	HVAC	perturbation	would	exactly	match	the	desired	power	target	at	each	

moment.	With	the	frequency	domain	analysis,	we	model	the	effects	of	an	idealized	HVAC	system	that	

offsets	variations	by	passing	the	solar	data	through	various	low-pass	filters,	each	with	a	different	cut-off	

frequency,	to	obtain	the	desired	power	targets.	For	most	of	the	analysis	in	this	section,	raw	data	came	

from	June	15th,	2013,	shown	as	day	1	(hours	0-16)	in	Figure	3.1.	

	
Figure	3.1.	Solar	power	profile	from	June	15th-18th,	2013	(only	4	a.m.	to	8	p.m.	shown	per	day).	

Figure	3.2	shows	low-pass	filtered	solar	panel	power	targets	from	June	15th,	2013	under	filters	with			1,	

5,	15,	and	30	min	cut-off	time	constants.	Power	values	are	normalized	to	a	cloud-free	daily	maximum.	

	
Figure	3.2.	Ideal	solar	power	profile	seen	from	the	grid	after	HVAC	filtering	effect.	
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Figure	3.3	shows	the	power	that	the	ideal	HVAC	system	would	need	to	absorb	or	supply	in	order	to	

realize	the	filtered	outputs	of	Figure	3.2.	This	power	would	be	imposed	on	top	of	a	baseline	power	

consumption	dictated	by	conventional	thermostatic	controls.	A	sample	baseline	profile	and	profile	with	

dynamic	filtering	imposed	on	it	are	shown	in	Figure	3.4.	In	the	figure,	the	profile	is	given	in	terms	of	

commanded	HVAC	fan	speeds,	but	the	general	idea	is	the	same;	increased	speeds	above	the	baseline	

correspond	to	positive	power	demand	or	power	needing	to	be	absorbed,	while	decreased	speeds	below	

the	baseline	profile	correspond	to	negative	power	demand.	

	
Figure	3.3.	Solar	power	to	be	filtered	by	the	HVAC	systems.	

	
Figure	3.4.	Fan	drive	speed	profile	without	and	with	dynamic	HVAC	filtering	superimposed.	
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In	reality,	HVAC	systems	have	limited	filtering	capability,	so	a	compromise	between	power	demand	and	

certainty	of	net	power	output	is	needed.	By	following	the	general	or	large-feature	trends	in	the	solar	

data,	load	compensation	power	demands	are	decreased,	while	still	providing	increased	confidence	that	

net	power	in	the	next	moment	will	not	vary	drastically	from	its	current	level.	Figure	3.5	illustrates	the	

difference	in	filtering	power	required	between	two	different	set-point	algorithms.	In	one,	set	points	

consist	of	Butterworth	filter	output	with	an	upper	cut-off	point	of	15	min,	while	in	the	other,	15	min	

sample-and-hold	values	(taken	from	the	filtered	data)	constitute	constant	obligation	set	points.	As	

would	be	expected,	the	constant	obligation	requires	longer	periods	of	increased	power	compensation	

when	compared	to	the	filtered	power	set	point,	especially	in	times	of	slower	dynamics.		

	
Figure	3.5.	Filter	power	requested	of	HVAC	compensation	for	June	15th,	2013.	

Compensation	in	Figure	3.5	still	neglects	ramp	rate,	thermal,	and	acoustic	limitations	of	the	HVAC	

system.	Such	limitations	and	their	effect	are	discussed	in	subsequent	sections.	

3.2. Scale	model	setup	and	fan-power/-speed	profiling	
A	scale	model	HVAC	test	bed	was	implemented	to	demonstrate	and	validate	the	potential	of	an	HVAC	

system	to	filter	energy	content.	This	proof	of	concept	blower	setup	needed	to	be	characterized	to	

understand	the	relation	between	rotational	speed	and	power	consumed.	During	the	experiment,	

acoustic	variations	were	recorded	and	analyzed	for	later	use.	Once	validated,	scaled	up	filtering	

capabilities	could	be	calculated	given	proper	assumptions.	
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3.2.1. Small	blower	characterization	

A	small	fan	drive	was	used	to	follow	scaled	responses	to	various	band-limited	solar	power	profiles.	Since	

the	controller	accepts	fan-speeds	as	input	and	not	power,	a	conversion	was	necessary.	For	our	

experiment,	the	electrical	synchronous	fan	drive	speed	𝜈	in	Hz	and	its	power	𝑃	in	watts	are	related	by	

 𝑷 𝝂 = 𝟏. 𝟔𝟐𝟔𝟔×𝟏𝟎=𝟒𝝂𝟑 + 𝟐. 𝟗𝟗𝟗𝟕×𝟏𝟎=𝟑𝝂𝟐 + 𝟕. 𝟕𝟗𝟐𝟓×𝟏𝟎=𝟑𝝂 + 𝟕. 𝟖𝟎𝟔𝟒 (3.1) 

where	the	coefficients	were	identified	by	a	least	squares	fit	as	in	Figure	3.6.	

	
Figure	3.6.	Small-scale	motor	blower	power	vs.	electrical	speed.	

Acoustic	effects	of	the	fan	drive	were	recorded	with	a	high	fidelity	microphone	to	test	whether	machine	

speed	update	rates	cause	distracting	sounds.	Figure	3.7	shows	the	experimental	setup.	A	1/3	HP,	three-

phase,	four-pole,	induction	machine	was	coupled	with	a	fan	blower.	A	Yaskawa	CIMR-F7U23P7	drive	

was	used	to	control	the	fan	speed	through	frequency	and	voltage.	The	drive	was	externally	programmed	

by	a	TI	MSP430	microcontroller	to	adjust	fan	speed	with	a	0.02	s	update	rate	to	follow	the	solar	power	

profiles	with	high	fidelity.		
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Figure	3.7.	Experimental	setup	for	recording	acoustic	effects	of	various	fan	speed	profiles.	

3.2.2. Scaling	assumptions	

Acoustic	effects	of	the	small-scale	blower	were	recorded	at	unity	scale	to	emulate	the	airflow	through	

an	individual	vent	in	a	room.	The	merits	of	this	choice	are	discussed	in	Section	3.3.2.	Electrically,	blower	

power	results	were	scaled	up	to	building	level	before	being	fed	into	a	full-scale,	filtering-potential	

simulation.	Scaling	was	assumed	linear	as	a	fraction	of	peak	power	both	for	the	PV	data	and	HVAC	

variable	speed	drives.	It	was	assumed	that	both	systems	are	fairly	modular	with	increased	capacity	

typically	resulting	from	an	increased	number	of	units.	This	is	a	better	approximation	for	PV	systems	than	

HVAC	as	centralized	blowers	are	often	much	larger	than	the	fan	used	in	this	experiment	and	may	not	

scale	exactly	linearly.	Peak	building-level	power	values	were	based	on	projected	power	consumption	of	

the	Electrical	and	Computer	Engineering	Building	(ECEB)	with	1.5	MWp	designed	solar	capacity	[37]	and	

about	18.6%	of	this	peak	power	anticipated	for	average	load	conditions.	Since	ECEB	is	expected	to	be	

nearly	net-zero,	its	average	load	should	approximately	equal	the	capacity	factor	of	the	installed	PV	

generation	for	Illinois,	and	hence	the	estimate	of	18.6%	peak	capacity	[38].		

3.3. Variation	absorption	capability	
The	limitation	of	any	dynamic	load	compensation	technique	is	that	it	requires	full	cooperation	on	the	

part	of	the	load,	which	may	or	may	not	interfere	with	its	effectiveness	at	performing	the	originally	

intended	task.	The	absolute	power	capability	is	also	a	factor.	If	performance	of	the	native	task	is	

prioritized	over	dynamic	load	compensation,	then	the	capacity	to	absorb	variability	will	be	reduced.	This	

will	also	be	true	if	the	load	power	is	insufficient	to	meet	the	demanded	compensation.	Variable	speed	
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drives	in	HVAC	systems	experience	a	number	of	such	limitations.	There	are,	of	course,	peak	power	

limitations	associated	with	the	fastest	possible	fan	drive	speed	available	and	minimum	power	limitations	

associated	with	variable	speed	drives	operating	at	0	Hz	(off	or	standby	mode).	In	our	experiment,	these	

limits	were	overshadowed	by	an	allowable	range	of	speeds	associated	with	amplitude	variation	that	is	

discussed	in	Section	3.3.1.	Then	there	are	ramp	limits.	Fans	cannot	accelerate	or	decelerate	faster	than	a	

given	rate	for	reasons	discussed	in	Section	3.3.2.	While	ramp	rates	limit	load	compensation’s	upper	

frequency	bound,	thermal	variation	typically	limits	the	lower	frequency	bound.	Absorbing	or	“releasing”	

electrical	energy	into	thermal	energy	alters	the	temperature	of	a	building.	Work	by	Cao	[35]	estimates	

that	filtering	capability	associated	with	a	15	min	cutoff	filter	or	faster	could	be	implemented	in	large	

structures	without	altering	the	temperature	too	greatly	as	to	be	noticeable	by	occupants.	

3.3.1. Amplitude	variance	bounds	

When	more	or	less	energy	is	dissipated	into	variable	speed	drives,	airflows	either	increase	or	decrease	

relative	to	their	baseline	speed.	These	changes	in	airflow	have	differing	acoustic	amplitudes.	Therefore,	

absolute	minimum	and	maximum	fan	speeds	were	defined	based	on	an	objective	of	imperceptible	

acoustics.	A	series	of	acoustics	tests,	injecting	1	min	sinusoidal	speed	commands	with	various	

amplitudes	into	the	motor	drive	controller,	were	conducted.	Taking	60	Hz	as	a	baseline,	the	sinusoidal	

amplitudes	vary	±5%,	±10%,	…,	±45%.	The	respective	recorded	noise	envelopes	in	dB	are	shown	in	

Figure	3.8.	Also	shown	is	the	peak-to-peak	amplitude	of	each	curve	compared	to	the	baseline	magnitude	

to	generate	a	normalized	expectation	about	amplitude	variations.	As	verified	by	subjective	human	

hearing	tests,	the	speed	variation	corresponding	to	0	dB	in	Figure	3.8,	or	equivalently	a	peak-to-peak	

change	equal	to	the	baseline	magnitude	(±16%),	seems	to	be	imperceptible.	This	means	that	about	50	

Hz	and	70	Hz	are	appropriate	minimum	and	maximum	fan	speed	limits	for	a	60	Hz	base.	Note	that	this	

introduces	a	more	stringent	constraint	on	the	overall	HVAC	filtering	capability	than	the	maximum	and	

minimum	power	limits.	Filtering	capability	with	this	narrower	constraint	is	considered	in	the	far	right	

column	in	Table	3.1	in	Section	3.4.	
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Figure	3.8.	Acoustic	noise	amplitude	(top)	and	relative	amplitude	change	compared	to	baseline	(bottom)	for	various	

sinusoidal	fan	speed	profiles.	

3.3.2. Ramp	rate	limit	

In	conventional,	thermostatically	controlled	environments,	HVAC	blower	motor	drives	normally	operate	

at	fixed	frequencies	as	might	be	observed	in	red	in	Figure	3.4.	Impose	additional	filtering	dynamics,	

however,	and	the	fan	speed	will	likely	vary	constantly,	much	like	the	blue	curve	in	Figure	3.4.	If	this	

variation	is	rapid	enough	it	will	attract	unwanted	attention	from	building	occupants,	so	a	ramp	limit	

should	be	imposed	to	never	allow	commanded	dynamics	to	exceed	a	certain	rate.	To	determine	this	

allowable	limit,	approximately	1	min	of	solar	power	data	from	June	15th,	2013	at	10:00	AM	was	used	for	

audio	analysis.	This	sample	was	chosen	because	it	included	a	mix	of	relatively	constant	(±3%)	and	rapidly	

varying	(±20%)	power.	The	scenario	tested	was	for	a	building	in	which	50%	of	the	average	power	would	

come	from	solar	and	about	45%	of	this	average	load	would	be	attributable	to	the	HVAC	system	[26].	

Various	ramp	rate	limits	were	applied	and	the	research	team	commented	on	which	they	found	to	be	

highly	noticeable.	In	the	end,	the	team	agreed	that	a	9	Hz/s	ramp-limited	profile	significantly	reduced	

the	attention	drawn	to	the	blower’s	operation,	though	they	admitted	that	the	changes	would	still	

probably	be	distracting	if	occupants	were	to	focus	on	them.	In	this	experiment,	9	Hz/s	means	that	the	

motor	drive	would	ramp	from	a	standstill	to	peak	speed	(capped	at	about	90	Hz)	in	10	s.	
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As	previously	mentioned	in	Section	3.2.2,	unscaled	acoustic	measurements	in	this	experiment	were	

taken	from	a	0.5	m	away.	The	idea	was	to	emulate	airflow	out	of	a	single	vent,	but	in	such	a	setup	motor	

sounds	dominate	noise	production.	In	contrast,	motors	and	blowers	in	more	realistic	HVAC	systems	are	

distant	from	the	occupants,	hence	dampening	the	sound	of	all	but	the	changing	air	flow.	Therefore,	real	

ramp	rate	limits	and	amplitude	limits	could	likely	be	relaxed,	and	a	repeat	experiment	with	a	typical	air	

vents	and	ducts	is	recommended.	Still,	initial	results	and	subjective	perspectives	indicate	that	a	9	Hz/s	

frequency	ramp	appears	to	be	a	plausible	upper	limit.	A	commanded	speed	profile	abiding	by	this	

limitation	(in	addition	to	the	hard-set	max/min	limit)	is	shown	as	a	dashed	line	in	Figure	3.9	along	with	

the	purely	capacity-limited	speed	profile.	Note	that	the	minimum	and	maximum	values	in	effect	in	

Figure	3.9	are	0%	and	~120%	of	baseline	speed	(60	Hz),	even	over	the	course	of	just	1	min.	Therefore,	

the	linear	frequency	change	limits	are	enforced	any	time	the	desired	frequency	change	exceeds	9	

Hz/sec.	

	
Figure	3.9.	Commanded	speed	profile	with	speed	caps	and	ramp-limiting.	

An	unfortunate	side	effect	of	ramp	limiting	is	that	during	periods	of	rapid	power	fluctuation	there	are	

times	during	which	the	HVAC	filter	is	slow	enough	to	be	counterproductive.	This	is	easier	to	see	in	Figure	

3.10	when	the	ramp	limited	power	compensation	(dotted	orange	line)	is	compared	to	the	ideal	power	

compensation	(solid	light	gray	curve).	In	such	cases,	a	proportional-derivative	(PD)	control	might	

produce	better	performance.		
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Figure	3.10.	Desired	power	compensation	requested	from	full-scale	HVAC	systems	with	and	without	speed	clamps	and	ramp	

limiting.	

Ramp-rate	acoustic	changes	when	following	a	filtered	profile	as	in	Figure	3.9	can	be	decomposed	into	

changes	in	amplitude	and	changes	in	frequency.	These	dominant	frequencies	can	originate	from	motor	

properties	or	structural	resonances	and	correspond	to	different	operating	regions.	Figure	3.11	highlights	

the	recorded	sound	frequency	amplitudes	across	the	audible	spectrum	when	moving	from	a	high-speed	

“Loud”	region	to	a	low	speed	“Quiet”	region.	The	regions	are	designated	in	the	top	part	of	the	figure	by	

the	light	(pink)	region	around	20	s	and	the	darker	(green)	region	around	32	s.	The	middle	depicts	the	

frequency	content	for	comparison	of	frequency	amplitudes.	Obviously,	louder	periods	will	contain	

greater	broadband	frequency	content,	but	to	focus	on	just	the	pitch	changes,	the	bottom	portion	of	

Figure	3.11	normalizes	the	peak	frequency	amplitudes.	This	isolates	the	pitches	from	changes	in	

amplitude.	The	encircled	regions	indicate	dominant	frequencies	that	arise	or	become	noticeably	absent	

relative	to	baseline	operation.	Therefore,	while	not	an	explicit	constraint,	frequency	changes	should	not	

be	ignored	as	they	will	likely	contribute	to	the	conspicuousness	of	speed	changes.	
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Figure	3.11.	Sound	amplitudes	across	audible	frequency	spectrum	for	the	baseline,	“Loud”	sample,	and	“Quiet”	sample.	

3.4. Effectiveness	of	dynamic	HVAC	compensation	
Depending	on	the	PV	capacity	installed	and	the	relative	size	of	the	building	load,	the	capability	of	

dynamic	load	compensation	will	differ.	Table	3.1	summarizes	capabilities	for	different	building	types	

with	average	solar	power	installations	ranging	from	25%	to	100%	of	average	building	load.	Figure	3.12	

depicts	the	same	data	in	graphical	form.	To	understand	the	origins	of	these	results,	a	1	min	sample	of	

this	potential	power	compensation	was	depicted	in	gray	in	Section	3.3.2,	Figure	3.10.	The	filtering	

capabilities	of	Table	3.1	for	maximum	and	minimum	limitations	were	found	by	integrating	the	area	

under	the	dashed	(blue)	curves	and	solid	(light	gray)	curves	and	then	finding	the	ratio	between	the	two.	

The	ramp-limited	case	is	more	complicated	because,	as	observed	in	Figure	3.10,	the	power	consumption	

represented	by	the	dotted	(orange)	curve	is	effectively	time-delayed	relative	to	the	ideal	filter.	Table	3.1	

confirms	this	unfortunate	side	effect	with	ramp-limited	filtering	percentages	that	are	strictly	less	than	or	

equal	to	the	capacity	limited	case.		
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Table	3.1.	Filtering	Capability	Percentage	Compared	to	Ideal	HVAC	Filter	

		
Upper	Filter	

Limit		
(period	in	min)	

Max/Min	Limited	
Filtering	Capacity	

Ramp-Rate	Limited	
Filtering	Capacity	

Acoustic	Amplitude	&	
Ramp-Rate	Limited	
Filtering	Capability	

Av
er
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So
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r	C
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ity

	(a
s	%

	o
f	t
ot
al
	lo

ad
)	

100	

1	 73.20%	 57.90%	 47.00%	
5	 70.70%	 65.40%	 44.50%	
15	 66.90%	 63.90%	 39.90%	
30	 65.20%	 62.90%	 37.70%	

50	

1	 89.50%	 74.20%	 62.20%	
5	 85.80%	 79.40%	 61.00%	
15	 84.70%	 81.10%	 56.00%	
30	 83.50%	 80.80%	 54.40%	

25	

1	 98.80%	 92.30%	 80.30%	
5	 96.60%	 91.70%	 77.70%	
15	 95.90%	 93.00%	 75.40%	
30	 95.70%	 93.40%	 73.70%	

There	are	a	few		general	take-away	points	from	Table	3.1	or	Figure	3.12.	Most	obviously,	the	filtering	

capability	of	HVAC	systems	approaches	the	ideal	case	(100%	desired	filtering)	as	the	average	power	of	a	

solar	installation	decreases	in	relative	size	to	the	average	HVAC	power.	Decreasing	or	eliminating	

limitations	such	as	ramp	rate	and	acoustic	amplitude	of	course	permits	increased	capability	as	well.	

More	subtly,	while	the	ideal	HVAC	filter	increases	in	effectiveness	with	shorter	period	filters	(less	energy	

to	filter),	realistic	implementations	including	ramp	limiting	controls	perform	more	ideally	for	longer	filter	

cut-off	periods	(30	or	15	min)	due	to	the	slower	dynamics.	Fortunately,	this	coincides	with	utility	

aspirations	of	more	constant	power	over	periods	of	15	or	more	minutes	[20].		

In	the	scenarios	studied,	not	all	desired	variation	could	be	absorbed	through	dynamic	HVAC	

compensation.	However,	in	buildings	with	occupancy	sensors,	less	stringent	limitations	could	be	set	in	

unoccupied	rooms	or	zones,	enabling	increased	energy	storage	potential.	Dynamic	load	compensation	

might	also	be	sufficient	if	some	PV	variation	could	be	eliminated	at	the	start,	as	will	be	discussed	in	

Chapter	4.	Otherwise,	the	missed	or	unfiltered	energy	must	be	absorbed	by	other	energy	storage	

mechanisms,	as	mentioned	in	Section	1.4.1.	
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Figure	3.12.	Graphical	representation	of	Table	3.1.	

3.4.1. Reduced	battery	storage	requirement	

Implementing	dynamic	load	compensation	should	require	no	more	than	an	outer	control	loop	built	on	

top	of	existing	thermostatic	controls	and	variable	speed	drives,	which	are	becoming	the	norm	in	new	

commercial	buildings.	Therefore,	the	cost	of	implementation	is	almost	certain	to	be	lower	than	the	

additional	battery	storage	that	it	is	meant	to	offset.	Results	from	a	ten-day	sample	suggest	that	a	battery	

storage	unit	could	be	downgraded	in	size	by	at	least	25%	with	the	dynamic	HVAC	compensation	strategy	

discussed	[39].	The	benefits	of	dynamic	load	compensation	are	visibly	present	as	well.	One	sample	day	is	

provided	in	Figure	3.13	and	indicates	the	reduction	in	battery	demand	(filled-in	regions)	when	dynamic	

HVAC	load	compensation	is	implemented	vs.	the	baseline	case	of	raw	solar	power	(middle	vs.	top).	

Figure	3.13	also	includes	an	additional	scenario	where	the	principle	of	dynamic	load	compensation	is	

extended	to	a	large	water	reservoir	used	for	chilled	beam	cooling	(bottom).	In	this	case,	battery	storage	

requirements	are	nearly	eliminated.	
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Figure	3.13.	Grid	and	battery	energy	contribution	for:	raw	solar	profile	(top),	filtered	solar	profile	using	just	HVAC	(middle),	

and	filtered	solar	profile	with	HVAC	and	water	tank	acting	as	dynamic	load	compensators	(bottom).	

Another	benefit	of	dynamic	load	compensation	is	the	reduction	of	energy	entering	and	exiting	the	

battery,	degrading	battery	lifetime.	Compared	to	the	baseline	case,	HVAC	filtering	can	reduce	energy	

cycling	by	more	than	25%	for	an	overcast	day,	and	nearly	eliminate	energy	cycling	when	combined	with	

dynamic	load	compensation	of	a	very	large	water	tank.	While	excess	thermal	losses	associated	with	

increased	temperature	gradients	have	not	yet	been	considered,	there	is	potential	for	significant	energy	

savings	from	reduced	power	electronic	losses	and	battery	cycling	inefficiencies.		 	
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4. PV	Operating	Reserve	Curtailment	
PV	operating	reserve	curtailment	can	eliminate	short-term	solar	power	variability	by	partially	controlling	

the	power	production	of	a	PV	panel	or	system.	In	other	words,	the	technique	enables	more	predictable	

power	output	by	attempting	to	supply	certain	power	set-points	rather	than	simply	tracking	the	natural	

dynamics.	PV	operating	reserve	curtailment	has	been	shown	to	effectively	and	economically	prevent	the	

production	of	significant	variability	at	the	panel	level	[40].	This	chapter	restates	many	of	the	arguments	

and	findings	previously	published	in	[40].	As	an	overview,	this	chapter	focuses	on	what	is	meant	by	

dynamic	operating	reserve	curtailment,	the	electrical	benefits	that	PV	systems	can	provide,	the	

economic	argument	for	why	some	level	of	reserve-based	curtailment	makes	sense,	and	a	few	different	

variability	and	optimality	metrics.		

4.1. Operating	reserve	curtailment	scheme	
Both	curtailment	and	reserve	can	have	multiple	definitions	depending	upon	the	application.	For	this	

thesis,	curtailment	means	operation	of	a	PV	panel	at	some	power	set-point	below	its	MPP	while	reserve	

is	the	power	(or	percentage	of	power)	available	on	top	of	the	commanded	set-point.	Dynamic	operating	

reserve	curtailment	is	the	combination	of	these	two	in	a	time-varying	environment.	To	clarify,	operating	

reserve	curtailment	is	not	equivalent	to	continuous	operation	at	a	nominal	fraction	of	MPP	output.	

Instead,	a	nominal	fraction	is	set,	and	then	a	low-pass	filter	control	or	other	slow	strategy	is	used	to	

calculate	a	slow-changing	set-point	or	power	target.	In	this	way,	a	PV	system	actively	offsets	some	of	its	

own	variability.	The	set-points	could	also	come	from	historical	solar	data,	weather	forecasts,	generic	

output	profiles,	15	min	constant	or	first-order	grid	commands,	or	combinations	of	these	or	other	inputs.		

To	illustrate	the	concept,	a	PV	system	employing	operating	reserve	curtailment	with	a	low-pass	filter	

was	simulated	and	analyzed	on	the	same	June	15th,	2003	data	used	throughout	Chapter	3.	Much	like	

Section	2.2.3,	variations	in	the	MPP	power	(not	current	or	voltage)	were	of	concern.	A	subset	of	MPP	

power	data	and	the	calculated	reserve	powers	(nominal	10%	held	in	reserve)	is	seen	as	the	solid,	jagged	

curves	(gray)	near	the	top	of	Figure	4.1.	The	heavy,	dotted	and	dash-dotted	curves	(in	red)	are	

calculated	from	a	1st-order	low-pass	Butterworth	filter	applied	to	the	peak	and	reserve	power	curves.	

Since	these	filters	are	causal	and	slow-changing,	a	high-probability	estimate	of	the	next	moment’s	

power	target	could	be	found	through	extrapolation	methods	based	on	past	data.	Relative	to	the	MPP	

filtered	set-point,	excesses	or	shortages	imposed	upon	the	grid	are	called	fluctuations	and	is	

represented	as	the	jagged,	dashed	curve	near	the	axis	(pink)	in	Figure	4.1.	If	pure	curtailment	is	

permitted,	then	all	instances	of	excess	power	can	be	eliminated.	Additionally,	if	the	reserve	set-point	is	
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used	instead	of	the	MPP	set-point,	then	power	short-falls	can	be	partially	or	completely	supplied	thanks	

to	the	available	power	reserve.	Such	a	scenario	with	10%	reserve	can	be	described	as	the	heavier,	solid,	

mostly	flat	curve	near	zero	(purple)	in	Figure	4.1.	Note	that	a	majority	of	the	time,	the	power	target	

could	be	achieved	(fluctuation	from	set-points	=	0)	and	that	residual	deviations	are	reduced	in	

magnitude	compared	to	the	MPP	case.		

	
Figure	4.1.	MPP	PV	power	available,	reserve	power,	associated	"filtered"	power	targets,	and	remaining	fluctuations	imposed	

upon	the	grid.	

A	modified	incremental	conductance	algorithm	was	designed	and	simulated	that	would	operate	at	the	

power	target	when	possible	and	maximize	power	output	when	experiencing	a	shortage.	Chapter	5	

contains	details	of	the	project,	the	algorithm,	and	simulated	results.		

4.2. PV	systems	as	a	grid	resource	
When	photovoltaic	technology	was	new	and	inherently	expensive,	it	made	sense	to	continuously	

operate	at	peak	capacity	to	maximize	energy	output.	Unfortunately,	this	meant	that	solar	installations	

behaved	like	“negative	load”	grid	connections	–	introducing	stochastic	variability,	producing	unregulated	

power	output,	and	potentially	degrading	system	dynamic	performance	[41].	As	the	cost	of	PV	continues	

to	decrease,	however,	it	may	be	time	to	transition	from	PV	as	a	liability	to	PV	as	a	grid	resource.	When	it	

comes	to	traditional	spinning	generation,	active	grid	support,	implying	dynamic	control,	is	essential	for	

full-function	supply-side	resources.	Without	similar	controls	for	PV	systems,	models	of	PV	generation	(as	
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in	[42])	typically	add	fossil	fuel	reserve	capacity	to	help	offset	intermittency.	However,	we	do	not	have	

to	operate	PV	this	way.	It	can	not	only	offset	some	of	its	own	variability,	but	also,	together	with	an	

“active”	grid-ready	inverter,	it	can	actually	offer	grid	support	beyond	what	conventional	generation	

provides.		

Not	including	energy	storage,	some	examples	of	active	grid	support	include:		

• Voltage	support	–	Reactive	power	capability	to	help	regulate	local	voltage.		

• Frequency	support,	including	regulation	up	and	down	–	Real	power	adjustment	to	maintain	

fixed	frequency.		

• Operating	reserves	–	Additional	capacity	that	can	be	connected	when	required.		

• Ramp	rate	capability	–	Track	expected	load	ramping	at	near	arbitrary	rates.	

• Stability	maintenance	–	Rapidly	respond	to	faults,	line	removals	or	insertions,	or	large	

instantaneous	load	changes.	

The	inverters	for	grid	connection	in	many	PV	systems	operate	at	unity	power	factor	and	maximum	

power	capacity	at	all	times,	and	therefore	do	not	provide	any	of	these	active	support	capabilities.	The	

situation	is	changing	rapidly	in	Europe,	however,	as	requirements	for	active	inverters	move	toward	

standardization	[43].	Reactive	power	and	voltage	support	are	feasible	in	these	designs,	and	the	

implementation	of	reserve	could	mean	available	inverter	capacity	even	during	times	of	peak	power	

production.	Low-voltage	ridethrough,	requiring	continued	operation	through	an	external	fault,	is	

emerging	in	PV	systems.	Frequency	support	and	other	regulation	requirements	tend	to	be	one-sided,	

requiring	power	reduction	during	over-frequency	conditions	or	power	curtailment	in	some	situations	

[30].	Operating	reserve	curtailment	could	expand	this	capability	to	include	some	level	of	power	increase	

during	under-frequency	conditions.	Broader	active	grid	support	is	typically	associated	with	storage,	but	

dynamic	controls	for	active	grid	functions	are	possible	even	with	small	inverters	[44].	

4.3. Economic	justification	of	PV	curtailment	
All	of	the	potential	benefits	of	PV	curtailment	with	operating	reserve	must	be	made	economically	

competitive	against	alternative	solutions.	This	section	argues	that	some	reserve	capacity	does	make	

economic	sense	given	grid	support	as	an	inherent	requirement	of	supply-side	resources.		

For	some	tangible	metrics,	consider	the	cost	of	PV	energy	to	be	about	$0.05/kWh	[45]	and	the	cost	of	

conventional	spinning	reserve	to	be	$0.0058/kWh	[42].	Photovoltaic	(PV)	energy	systems	have	quoted	

installation	costs	at	or	below	US$2	per	peak	watt	across	scales	from	residential	[46]	to	utility	[47].	In	
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systems	with	25	year	warranties,	this	means	that	electricity	is	produced	below	$0.05/kWh	at	this	

installed	cost.	As	a	side	note,	this	approaches	cost	parity,	at	which	PV	energy	production	costs	are	

comparable	to	those	from	other	fuels	measured	at	distribution	points	in	the	grid	[45].	The	cost	of	

operating	reserves	has	been	explored	in	depth	by	NREL	[42]	and	averages	about	$5.80/MWh,	or	the	

$0.0058/kWh	figure.	Conventional	PV	practice	treats	any	energy	sacrificed	as	having	an	opportunity	cost	

of	$0.05/kWh;	however,	this	neglects	the	cost	of	regulation	which	either	must	be	supplied	by	traditional	

generation	or	battery	storage.	Battery	storage,	for	comparison,	has	target	costs	of	$250/kWh,	installed	

[14].	Assuming	linear	degradation,	more	than	40,000	equivalent	cycles	would	be	necessary	to	be	cost	

competitive	with	spinning	reserves.	This	is	unlikely	with	modern	battery	technology.		

Consider	instead	the	scenario	in	which	the	value	of	a	PV	system	as	a	generation	resource	is	maximized	

rather	than	just	the	energy	production.	Say	that,	on	average,	10%	of	available	power	is	set	aside	for	grid	

support.	Therefore,	the	cost	of	this	reserve	would	be	10%	of	the	overall	cost	of	energy,	with	the	caveat	

that	the	remaining	energy	is	now	about	10%	more	expensive.	After	all,	for	the	same	installed	system,	

10%	reserve	means	that	you	would	only	be	receiving	90%	as	much	energy	as	without	reserve.	

Mathematically,	the	cost	of	reserve	is	calculated	to	be	

 𝑪𝒓 =
𝑷𝒔𝒐𝒍𝒂𝒓
𝟏 − 𝝌

⋅ 𝝌	 (4.1) 

where	the	cost	of	solar	energy	is	labeled	as	Psolar	and	the	reserve	fraction	as	χ.	We	see	in	Figure	4.2	the	

cost	of	PV	operating	reserve	curtailment	plotted	over	various	amounts	of	reserve.	The	circles	(blue)	

curve	represents	the	approximate	cost	of	modern	PV	technology,	as	discussed,	while	the	triangles	

(orange)	curve	represents	a	hypothetical	future	cost	as	PV	continues	to	get	cheaper.	The	solid	(yellow)	

line	represents	the	cost	of	spinning	reserve,	below	which	PV	reserve	has	a	cost	advantage.	

As	would	be	expected	from	(4.1),	increasing	reserve	corresponds	to	significantly	increased	cost.	This	is	

because	larger	amounts	of	reserve	constitute	larger	fractions	of	the	baseline	PV	cost	and	effectively	

cause	the	remaining	energy	to	be	more	expensive.	In	contrast,	small	percentages	of	reserve	cost	very	

little.	This	means	that	for	any	PV	price	level,	including	the	very	pessimistic	gray	(squares)	cost	curve	in	

Figure	4.2,	some	percentage	of	reserve	is	cheaper	than	conventional	reserve	resources. Curtailment	cost	

issues	erode	as	PV	installed	costs	continue	to	fall	and	as	PV	inverters	become	responsible	for	more	than	

just	energy	conversion.	In	this	analysis,	no	economic	value	was	attributed	to	potential	PV	inverter	grid	

support	capabilities,	though	these	could	certainly	defray	some	reserve	costs.	
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Figure	4.2.	Opportunity	cost	of	reserve	for	different	prices	of	solar	as	compared	to	conventional	reserves.	

4.4. Measures	of	variability	and	optimality	
PV	variability	can	be	defined	in	a	number	of	different	ways.	Section	4.1	refers	to	variability	as	the	

deviation	from	the	low-pass	filtered	peak	power	profile.	This	can	be	defined	in	at	least	two	different	

ways	-	either	the	maximum	absolute	difference	or	the	integral	of	power	differences.	This	section	

presents	how	the	operating	reserve	curtailment	scheme	reduces	variability	in	both	metrics.	Additionally,	

while	the	focus	of	this	thesis	is	to	reduce	variability,	the	value	of	renewable	energy	is	not	to	be	ignored,	

so	one	measure	of	optimality	is	presented	that	tries	to	maximize	energy	production	while	minimizing	

variability	imposed	upon	the	grid.	

Let	us	first	consider	variability	as	defined	by	the	peak	difference	between	the	power	available	and	the	

output	power	set	point.	Allowing	for	curtailment	means	that	only	negative	variability	(power	below	the	

set	point	that	cannot	be	supplied)	will	persist,	because	positive	variability	would	represent	an	excess	

that	could	be	curtailed	to	meet	the	set	point.	Figure	4.3	shows	comparative	operation	on	a	day	with	

substantial	cloud	cover	variation	and	intermittency.	In	the	left	plot,	actual	solar	production	(scaled	to	an	

arbitrary	power	peak)	is	shown	as	the	light	trace,	and	the	desired	output	based	on	a	low-pass	filter	

inverter	set	point,	but	no	reserve,	is	shown	as	the	dark	trace.	All	negative	variability	is	imposed	directly	

on	the	grid,	and	as	such,	the	maximum,	traditional	(spinning)	operating	reserve	would	be	the	ratio	of	the	

negative	peak	in	variability	to	the	positive	peak	in	the	solar	data,	in	this	case	about	5/11.5	or	43%.	In	the	

right	plot,	the	same	control	is	employed	with	a	nominal	85%	operating	set	point.	This	allows	for	some	
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negative	variability	to	be	reduced	by	utilizing	some	reserve	power	capability,	and	thus	there	is	a	

substantial	reduction	in	variability	imposed	on	the	grid.	The	operating	reserve	requirement	drops	to	

3.6/11.5	or	31%;	the	drop	is	not	quite	a	1:1	reduction	(15%	PV	for	12%	conventional),	but	it	is	still	

substantial.		

The	alternative,	integral	definition	of	variability	is	perhaps	better	suited	to	battery	storage	metrics	

rather	than	spinning	reserves	as	it	represents	watt-hours	of	energy	storage	rather	than	just	watts.	A	

claimed	“reduction	in	variability”	would	be	the	difference	between	the	base	case	and	the	reserve	case	

fluctuation	integral.	This	corresponds	to	the	difference	taken	between	the	integrals	of	the	bottom	

(purple)	curves	in	Figure	4.3.		

	
Figure	4.3.	Variability	mitigation	over	a	day	with	substantial	solar	intermittency	(June	15th,	2013).	Left	plot:	no	reserve	

capability.	Right	plot:	nominal	15%	reserve.	

The	integral	definition	of	variability	was	used	to	calculate	the	optimal	PV	reserve	percentage.	Generally	

speaking,	increasing	the	nominal	reserve	will	reduce	variability	but	increase	energy	sacrifice.	Much	like	

the	absolute	variability	related	to	spinning	reserve	reductions,	the	integral	variability	does	not	trade	off	

with	energy	sacrifice	in	a	1:1	manner.	Instead,	it	is	nonlinear	and	depends	upon	the	“type”	of	day	as	it	

pertains	to	various	amounts	of	cloud	cover.	Figure	4.4	shows	the	reduction	ratio	vs.	the	nominal	

curtailment	level	for	the	same	three	days	as	Figure	2.6.	Each	type	of	day	experiences	a	level	of	reserve	

above	which	increased	reserve	has	diminishing	returns.	The	peak	of	this	curve	represents	one	measure	

of	optimality	as	the	marginal	benefit	of	increased	reserve	is	maximized	at	this	point.	This	point	of	

optimal	operation	typically	supports	the	overall	cost-benefit	analysis,	too.		
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According	to	Figure	4.2,	modern	day	systems	operating	with	0-10%	reserve	correspond	to	direct	energy	

reduction	costs	that	are	lower	than	reduced	operating	reserve	costs	in	the	power	grid.	For	example,	in	

Figure	4.4	an	optimal	trade-off	is	observed	at	about	8%	reserve	for	the	overcast	day.	Given	a	$2/W	PV	

system,	a	curtailment	of	8%	translates	to	effective	operating	reserves	costing	$174/kW	and	$4.35/MWh	

using	an	approach	similar	to	(4.1).	These	values	are	substantially	lower	than	existing	grid	reserve	

methods,	and	for	clear	and	overcast	days	this	is	likely	to	be	the	case.	Days	with	intermittent	cloud	cover	

pose	a	larger	obstacle	to	variability	reduction	so	the	optimal	energy	vs.	variability	point	may	lie	to	the	

right	of	the	cross-over	cost	in	Figure	4.2	and	may	thus	be	cost	limited	and	not	quite	ideal.	

	
Figure	4.4.	Cost-benefit	curves	for	finding	optimal	reserve	percentage.	

The	optimality	curves	of	Figure	4.4	indicate	that	the	best	reserve	level	should	adapt	to	conditions.	

Though	outside	the	scope	of	this	thesis,	a	hybrid	approach	of	low-pass	filtering	and	weather	forecasting	

may	lead	to	improved	energy	capture	and	variability	reduction.	For	example,	weather	forecasts	for	

partial	or	full	days	could	be	distributed	to	control	algorithms	through	internet	connectivity	and	set	

recommended	reserve	capacity	based	on	predicted	cloud	cover	type	and	quantity.	Then,	the	low-pass	

Butterworth	filter	would	use	the	updated	curtailment	level	when	determining	power	set-points.	

Alternatively,	reserve	percentages	could	be	dynamically	increased	and	decreased	based	on	the	

perceived	volatility,	relaxing	during	periods	of	clear	sky	and	slow	changes	and	increasing	during	periods	

of	partial	cloud	cover.	 	
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5. Implementation	analysis	
The	proof	of	concept	Simulink	model	presented	here	demonstrates	the	successful	modification	of	an	

incremental	conductance	maximum	power	point	tracking	(MPPT)	algorithm	to	achieve	the	desired,	

arbitrary	power	output.	More	specifically,	the	model	sets	a	target	power	output	based	on	“filtered”	

historical,	curtailed	solar	data	and	then	operates	at	varying	levels	of	curtailment	to	best	match	the	

desired	output.	This	capability	is	coined	desired	power	point	tracking	(DPPT).	

As	a	broad	overview,	Section	5.1	reviews	the	conventional	operation	of	the	incremental	conductance	

algorithm	and	introduces	the	modification	used	to	operate	at	points	away	from	the	MPP.	Section	5.2	

then	builds	up	the	model	piece	by	piece,	beginning	with	a	simple	control	loop	and	evolving	into	the	final	

control	system	with	cross	comparisons	and	verifications	between	versions	along	the	way.	The	final	

output	to	some	sample	data	may	be	found	at	the	conclusion	of	this	section.	Section	5.3	then	provides	

some	brief	economic	justification	and	an	alternative	perspective	for	why	trading	uncertainty	for	energy	

production	might	make	sense.		

5.1. Incremental	conductance	–	a	review	
The	proposed	implementation	of	power	curtailment	is	based	on	an	incremental	conductance	MPPT	

algorithm,	so	it	is	important	to	understand	its	typical	operation	before	proceeding.	In	addition,	a	high	

level	description	of	how	DPPT	adapts	this	algorithm	is	presented.		

5.1.1. Conventional	algorithm	
Incremental	conductance	relies	upon	measurements	being	taken	at	discrete	instances	in	time.	At	each	

time	step	the	algorithm	compares	the	latest	voltage	and	current	measurements	to	the	prior	

measurements	and	then	calculates	the	difference	to	obtain	∆V	and	∆I.	By	comparing	the	instantaneous	

conductance,	I/V,	to	the	negative	of	the	discrete	change	in	conductance,	-∆I/∆V,	a	decision	can	be	made	

to	either	increase	or	decrease	the	operating	voltage	set	point.	The	derivation	of	the	incremental	

conductance	relationship	is	as	follows:	The	slope	is	0	at	peak	power	on	the	power	vs.	operating	voltage	

curve	(Figure	5.1).	This	MPP	is	indicated	in	the	figure	by	the	circles	atop	each	irradiance	curve.	Put	

simply,	

 𝒅𝑷
𝒅𝑽

= 𝟎 (6.1) 

at	the	MPP.	Next,	we	expand	out	the	power	P	into	its	voltage	and	current	components	and	evaluate	the	

derivative	using	the	product	rule.	
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 𝒅𝑷
𝒅𝑽

=
𝒅(𝑰 ⋅ 𝑽)
𝒅𝑽

=
𝒅𝑰
𝒅𝑽

𝑽 +
𝒅𝑽
𝒅𝑽

𝑰 =
𝒅𝑰
𝒅𝑽

𝑽 + 𝑰 = 𝟎  (6.2) 

We	approximate	that	for	rapid	sampling	(faster	than	the	dynamics	found	in	the	solar	data)	we	can	

replace	the	instantaneous	derivative	with	a	ratio	of	discretized	differences.		

 𝒅𝑰
𝒅𝑽

≈
∆𝑰
∆𝑽

 (6.3) 

Implementing	this	approximation	and	simplifying	the	expression	into	two	conductance	terms,	we	have	

 ∆𝑰
∆𝑽

+
𝑰
𝑽
= 𝟎	 →

∆𝑰
∆𝑽

= −
𝑰
𝑽

 (6.4) 

where	the	term	on	the	left	of	the	equals	sign	is	called	the	incremental	conductance	and	the	term	on	the	

right	is	the	instantaneous	conductance.		

	
Figure	5.1.	Power	vs.	operating	voltage	curves	for	three	different	irradiance	levels.	

The	final	step	for	the	incremental	conductance	algorithm	is	to	either	increment	or	decrement	the	

operating	voltage	(x-axis	in	Figure	5.1).	Considering	that	dP/dV	is	greater	than	0	to	the	left	of	the	MPP	

we	can	use	the	final	expression	in	(6.2)	and	(6.4)	to	infer	that	when	the	incremental	conductance	is	

greater	than	the	negative	of	instantaneous	conductance,	the	operating	point	is	likewise	to	the	left	of	the	

MPP	and	that	the	voltage	set	point	should	be	incremented.	The	complimentary	state	and	actions	for	

dP/dV	less	than	0	likewise	hold.		

5.1.2. Modified	algorithm	
The	conventional	algorithm	presented	in	the	previous	subsection	is	designed	to	operate	at	peak	power,	

but	for	DPPT,	it	is	most	often	the	case	that	the	desired	operating	point	will	not	be	the	MPP.	It	was	

therefore	necessary	to	generalize	the	incremental	conductance	algorithm	to	accept	target	operating	
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points	below	the	MPP	and	corresponding	non-zero	slopes.	Mathematically,	rather	than	searching	for	the	

zero	slope	point	as	in	(6.1),	we	are	now	searching	for	where	

 𝒅𝑷
𝒅𝑽

= 𝐒 (6.5) 

where	S	is	the	variable	for	slope.	Following	the	same	procedure	as	in	Section	5.1.1,	we	obtain	

 ∆𝑰
∆𝑽

=
𝑺 − 𝑰
𝑽

 (6.6) 

at	our	desired	operating	point.	Just	as	before,	if	the	incremental	conductance	is	greater	than	the	

negative	of	this	new,	modified,	instantaneous	conductance,	then	the	operating	point	is	to	the	left	of	the	

DPP	and	thus	the	voltage	set	point	should	be	incremented.	The	complimentary	state	and	actions	again	

hold.		

Figure	5.2	represents	such	a	scenario	where	the	power	demanded	is	90%	of	peak	power	for	that	

irradiance.	The	target	power	and	associated	slope	are	indicated	by	the	green	dot	and	straight	line	that	

passes	through	it.	Note	that	only	the	non-shaded	region	to	the	right	of	each	MPP	is	utilized.	Even	though	

there	are	two	points	at	which	output	power	equals	the	desired	fraction	of	peak	power,	the	slope	to	the	

left	of	the	MPP	is	largely	constant,	which	leads	to	poor	conditioning	of	the	look-up	values	to	be	

discussed	in	Section	5.2.4.		

	
Figure	5.2.	Useful	region	of	power	vs.	operating	voltage	curves	(non-gray	section)	with	a	new	target	power	(green	dot)	and	

associated	power	vs.	voltage	slope	indicated	on	the	peak	irradiance	curve.	

5.2. Modeling	procedure	and	verification	

To	ensure	accuracy	of	the	final	result,	the	simulation	was	built	in	multiple	stages	with	each	successive	

stage	adding	either	a	new	subsystem	or	a	simplifying	approximation.	Additionally,	the	simulation	utilized	

90%
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PV	data	from	the	finalized	data	set	presented	in	Chapter	2	to	model	the	response	to	real-life	PV	power	

profiles.		

5.2.1. Stage	1:	Base	case	

The	base	case	consisted	of	a	classical	incremental	conductance	algorithm	wrapped	around	a	boost	

converter.	The	boost	converter	was	implemented	with	a	model	MOSFET	and	diode	as	well	as	PWM	

generator	built	from	a	triangle	waveform	generator,	the	output	from	the	control	loop,	and	a	

comparator.	The	output	of	the	boost	converter	was	connected	to	a	fixed-voltage	bus	of	95.2	V.	Such	an	

arbitrary	value	is	the	result	of	a	scaling	approximation.	Initial	model	plans	were	for	a	more-typical	235	W	

panel	with	30	VMPP	to	be	connected	through	the	boost	converter	to	an	ideal	voltage-sourced	inverter	as	

in	Figure	5.3.	The	configuration	might	resemble	a	typical	microinverter	that	connects	a	single	solar	panel	

directly	to	the	ac	electric	grid.	In	order	to	output	a	120	VRMS	waveform	to	the	grid,	the	boost	converter	

would	need	to	supply	a	170	V	dc	bus	(for	an	ideal	inverter).	In	order	to	transform	the	panel	parameters	

from	Chapter	2	(20	W,	16.8	VMPP)	into	those	for	the	235	W	panel	desired,	a	linear	scaling	approach	was	

taken,	much	like	Section	3.2.2.	That	is,	a	converter	boosting	30	V	to	170	V	was	assumed	to	have	linearly	

proportional	dynamic	properties	to	one	boosting	16.8	V	to	95.2	V.		

	
Figure	5.3.	Block	diagram	illustrating	the	envisioned	implementation	of	a	MPPT	boost	converter	as	part	of	a	microinverter.	

In	order	to	permit	numerical	integration	without	a	singular	solution,	Simulink	required	a	small	resistance	

in	series	with	either	the	voltage	source	or	output	capacitor.	Consequently,	an	8.13×10=]	p.u.	resistor	

was	inserted	in	series	with	the	infinite	bus.	The	resistor	was	placed	here	instead	of	in	series	with	the	

capacitor	to	avoid	excess	ESR-related	voltage	jumps	at	the	output.	The	selected	placement	conveniently	

resembles	line	resistance	that	would	be	likely	encountered	if	implemented	in	real	life.		

5.2.2. Stage	2:	Average	circuit	model	

Simulating	just	0.1	s	of	model	time	in	the	base	case	took	considerable	computational	power	and	time	-	

probably	over	100	s	on	a	2.4	GHz	dual	core	processor.	Significant	solar	variation	caused	by	clouds	occurs	

over	a	period	of	a	few	seconds	to	minutes,	so	the	simulation	had	to	be	drastically	simplified	if	it	were	to	

provide	any	meaningful	results	in	time.	To	this	end,	the	switching	circuit	was	replaced	with	an	average	

Solar	Panel dc/dc	Converter dc/ac	Inverter Power	Grid
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circuit	model	to	observe	the	response	of	the	converter	on	time	scales	much	longer	than	a	few	switching	

periods.		

Modifications	from	the	switching	model	included	switch	replacement	and	an	increase	in	output	

capacitance.	The	diode	in	the	base	model	was	replaced	by	a	dependent	current	source	valued	at	

1 − 𝐷 ⋅ 𝐼`	where	𝐼`	is	the	average	inductor	current;	the	MOSFET	was	replaced	by	a	dependent	voltage	

source	valued	at	 1 − 𝐷 ⋅ 𝑉bcd	where	𝐷	is	the	commanded	duty	ratio;	and	the	output	capacitance	was	

increased	significantly.	Since	the	average	model	has	a	tendency	to	exaggerate	oscillations,	the	increased	

capacitor	size	dampens	the	response	to	create	similar	output	power	responses	to	duty	ratio	

perturbations.	The	output	power	waveforms	from	the	base	case	with	switching	and	the	average	case	

are	largely	consistent	(Figure	5.4).	Differences	include	a	slight	phase	shift	due	to	the	effect	of	local	

averaging,	and	larger	steady-state	ripple	in	the	base	case	due	to	the	switching	ripple.		

	
Figure	5.4.	Power	output	response	to	start-up	disturbance.	

5.2.3. Stage	3:	Constant	curtailment	

Before	implementing	any	advanced	control,	it	was	important	to	ensure	that	the	modeled	boost	

converter	could	properly	operate	at	a	desired	level	of	curtailment.	In	this	stage,	a	fixed	fraction	of	

reserve	was	set,	namely	10%.	Figure	5.5	shows	the	power	output	of	the	converter	with	10%	reserve	in	

green.	Maximum	possible	power	from	the	panel	is	shown	in	orange	and	the	desired	output	power	of	

90%	peak	power	is	shown	in	blue	for	comparison	with	actual	power	output.		
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Figure	5.5.	Power	output	with	a	fixed	curtailment	(reserve)	command	relative	to	ideal	case.	

The	modeled	converter	output	closely	tracks	the	ideal	90%	peak	power	curve	with	two	distinct	feature	

types	of	note.	The	first	is	small,	intermittent	step	changes	that	typically	bring	the	output	closer	to	the	

desired	level.	While	not	confirmed,	these	are	likely	due	to	the	discrete	changes	in	look-up	table	values.	

As	the	algorithm	transitions	from	one	breakpoint	to	another,	it	is	possible	that	irregularities	in	the	slope	

value	along	the	x-	or	power-axis	of	Figure	5.6	could	cause	some	jagged	behavior.	The	other	feature	is	

triangular	oscillation	about	the	desired	operating	point,	most	notably	where	increases	in	power	output	

are	desired.	This	near	instability	is	likely	a	result	of	the	boost	converter’s	naturally	occurring	right	half	

plane	zero	in	combination	with	control	actions	that	are	delayed	by	0.01	s	from	the	measurements	taken	

and	a	limited	set-point	voltage	step	rate.	When	more	power	is	desired,	the	converter	output	voltage	will	

initially	drop	before	rising	again.	However,	if	the	control	measures	this	decrease,	then	0.01	s	later	it	will	

demand	that	the	next	step	be	an	increase	and	only	add	to	potential	overshoot.		

5.2.4. Look-up	table	creation	

One	of	the	downsides	to	the	proposed	algorithm	is	that	you	need	advanced	knowledge	of	the	power	vs	

voltage	slope	for	each	level	of	curtailment	desired.	Unfortunately,	the	desired	slope	also	changes	with	

irradiance	for	a	given	curtailment	level.	Therefore,	a	two-dimensional	look-up	table	was	used	to	indicate	

an	approximate	slope	for	a	given	curtailment	level	and	peak	power	(related	to	level	of	irradiance).	Figure	

5.6	is	a	graphical	representation	of	the	look-up	table	where	the	x	and	y	axes	represent	“inputs”	and	the	

associated	z	value	“output”	at	those	coordinates	represents	the	slope	dP/dV	for	those	conditions.		
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Figure	5.6.	Look-up	table	in	graphical	form.	

Photovoltaic	current	vs.	voltage	(I-V)	curves	also	have	a	temperature	dependence,	but	these	effects	will	

be	secondary	in	significance	and	would	require	a	3-D	look-up	table,	so	temperature	dependence	was	

ignored	in	this	analysis.	Creation	of	this	look-up	table	was	still	complicated,	however,	and	involved	the	

following	procedure:	

1. Extracting	raw,	slow	meter,	I-V	sweep	data	(as	discussed	in	Section	2.1)	for	August	1st,	2013.	

2. Grouping	well-behaved	I-V	sweeps	(as	defined	 in	Section	2.3.4)	 into	0.1	W	resolution	bins	based	

on	the	peak	power	of	each.	

3. Calculating	the	mean	I-V	sweep	for	each	bin.	

4. Deleting	values	of	P-V	pairs	to	the	left	of	the	MPP.	

5. Performing	 “localized	moving	 average”	 operations	 to	 smooth	 the	 P-V	 data	 to	 be	monotonically	

decreasing.	

6. Calculating	discrete	derivatives	with	a	centralized	difference	approximation	

 
𝑷𝒊e𝟏 − 𝑷𝒊
𝑽𝒊e𝟏 − 𝑽𝒊

≈ 𝐒
𝐢e𝟏𝟐

 (6.7) 

in	order	to	create	a	slope	vs	voltage	or	S-V	curve.	

7. Repeating	 the	 “localized	 moving	 average”	 where	 needed	 (on	 non-monotonically	 decreasing	

derivative	curves).	

8. Using	linear	interpolation	on	the	P-V	curve	to	calculate	approximate	voltage	associated	with	each	

discretized	curtailment	level	between	0%	and	99%	of	peak	power.	
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9. Correlating	each	interpolated	voltage	with	a	slope	value,	again	using	linear	interpolation.	

10. Repeating	this	process	(steps	2-9)	for	each	peak	power	range	or	“bin”.	

11. Running	 a	 5-element-wide	 window	moving	 average	 across	 the	 peak	 power	 possible	 values	 for	

constant	curtailment	ratio	to	try	and	smooth	out	the	rather	jagged	output	data	surface.	

Once	all	of	the	above	steps	were	performed,	the	output	yielded	Figure	5.6,	which	is	the	same	data	used	

for	the	look-up	table	in	the	DPPT	algorithm.		

5.2.5. 	Butterworth	calculation	

Once	the	constant	curtailment	was	functional,	most	any	piecewise	continuous	power	output	sequence	

could	be	commanded.	In	this	study,	the	same	low-pass	Butterworth	filter	was	implemented	as	in	

Chapters	3	and	4	except	with	a	low-pass	cutoff	of	(1/60)	Hz	(or	slower	than	1	min).	Once	achieved,	this	

target	power	output	would	possess	much	slower	dynamics	than	the	raw	solar	data,	decreasing	the	

uncertainty	associated	with	solar	power	from	a	utility	perspective.	With	this	expected	operating	point,	

any	time	that	available	power	is	greater	than	commanded	power	the	solar	power	can	be	curtailed	to	

produce	the	expected	power	output.	The	purple	curve	in	Figure	5.7	represents	power	commitment	or	

command	that	cannot	be	met	with	this	strategy	because	there	is	no	headroom/reserve	during	those	

times.	The	integral	of	these	shortcomings	is	defined	to	be	the	remaining	variability,	and	must	be	met	

with	additional	energy	storage	or	reserves	if	the	Butterworth-filtered	commitment	is	to	be	met.		

	
Figure	5.7.	Raw	solar	data	together	with	filtered,	curtailed	power	demanded,	and	power	lacking	curves.	
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5.2.6. Results	

The	final	step	in	this	model	creation	was	to	implement	the	Butterworth	filter	into	the	control	loop.	The	

filter	took	as	input	raw	data	multiplied	by	one	minus	the	nominal	reserve	or	0.90	in	this	case.	The	output	

was	used	to	calculate	the	next	curtailment	percentage	command,	and	dividing	the	current	panel	power	

by	the	filter	output	provided	the	needed	estimate	of	peak	power	available	at	that	instant.	Figure	5.8	

illustrates	a	sample	of	the	final	output	in	which	the	darkest	curve	(black)	represents	the	MPP	at	all	

times,	the	medium	darkness	curve	(blue)	is	the	nominal	90%	value	for	the	case	where	10%	reserve	is	

desired,	and	the	smooth,	dashed	curve	(magenta)	is	a	first-order,	low-pass,	Butterworth	filter	with	cut-

off	frequency	of	(1/60)	Hz.	The	light	curve	(green)	represents	the	modeled	output	of	the	DPPT	

algorithm,	which	as	desired,	tracks	the	magenta	Butterworth	curve	whenever	possible,	and	maximizes	

power	output	(tracks	orange	curve)	whenever	insufficient	power	is	available.	Again,	there	is	notable,	

triangular	oscillation	about	the	filtered	power	set	point	(Figure	5.8)	though	this	virtually	disappears	

when	limited	by	the	peak	power.		

	
Figure	5.8.	Actual	output	of	DPPT	model	compared	to	commanded	power	set-point	with	raw	MPP	data	and	10%	reserve	

curve	for	reference.	

5.3. Economic	justification	for	implementation	
Solar	power	“reserve”	can	certainly	lower	the	cost	of	battery	storage	necessary	to	meet	power	

commitments,	but	the	question	is	if	the	opportunity	cost	of	the	reserve	is	greater	than	the	battery	cost	

being	offset.	To	investigate	this	question,	two	scenarios	were	compared:	(1)	MPP	solar	power	is	output	

at	all	times,	and	sufficient	battery	capacity	is	required	to	absorb	all	peaks	and	supply	for	all	valleys	

relative	to	the	filtered	MPP	output.	(2)	The	filtered	power	output	target	is	based	on	a	90%	nominal	
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power	output,	overhead	or	reserve	power	can	be	utilized	when	beneficial,	and	solar	energy	can	be	

“spilled”	when	not	useful	in	meeting	claimed	commitment.	The	simplifying	assumptions	are	that	in	both	

scenarios	the	batteries	are	lossless	and	the	filtered	power	output	commitment	must	be	met	at	all	times	

throughout	the	day.	

For	case	1,	raw	capacity	was	determined	to	be	the	peak	cumulative	sum	of	energy	either	supplied	or	

demanded	from	the	batteries.	This	is	because	we	would	need	to	absorb	any	possible	variation	from	the	

filtered	power	into	the	batteries	to	meet	our	commitment.	Excess	energy	and	energy	shortages	would	

offset	one	another	in	said	summation.	Actual	battery	capacity	would	have	to	be	~3.33	times	larger	than	

the	raw	capacity	so	that	the	battery	would	operate	between	20%	and	80%	state	of	charge	(SOC)	and	so	

that	it	could	start	at	50%	SOC	to	equally	handle	a	potential	surplus	or	deficit	of	equal	magnitude.	

For	case	2,	raw	capacity	is	calculated	in	a	similar	manner	except	that	full	panel	power	may	be	used	when	

convenient	and	energy	can	be	“spilled”	by	operating	the	solar	panel	off	of	its	MPP.	The	same	multiplier	

of	3.33	will	be	used	for	consistency,	though	in	reality,	since	reserve	energy	is	very	likely	to	be	available	

throughout	the	day	and	shortages	are	typically	brief,	much	less	surplus-energy	capacity	would	be	

needed	and	the	central	SOC	might	be	closer	to	70%	so	that	overall	battery	capacity	required	could	be	

reduced.	Alternatively,	battery	capacity	could	remain	the	same	as	case	1	and	be	used	for	nighttime	

energy	rather	than	pure	regulation	capability.	

For	the	purpose	of	this	calculation,	a	sample	day	was	selected	from	the	raw	data	set.	All	power	and	

energy	values	will	be	scaled	by	1000	to	represent	a	commercial	solar	installation	of	20	kW.	While	battery	

degradation	is	likely	nonlinear,	battery	cycling	in	this	analysis	was	calculated	as	the	cumulative	total	of	

all	energy	in	and	out	as	a	fraction	of	necessary	battery	capacity.	The	two	scenarios	were	calculated,	and	

full	battery	storage	(scenario	1)	would	require	0.399	kWh	of	storage	while	the	reserve-based	method	

would	require	only	0.131	kWh.	Additionally,	the	filtering	required	for	the	sample	day	would	cycle	

approximately	140%	of	the	battery	capacity	and	in	scenario	2,	3.41	kWh	of	energy	would	be	sacrificed	

over	the	course	of	the	day.	Taking,	for	example,	the	capacity	and	cost	of	a	Tesla	Powerwall	battery	[48]	

we	can	estimate	a	per	kW	cost	of	battery	storage	to	be	

 $𝟑𝟎𝟎𝟎
𝟔. 𝟒	𝒌𝑾𝒉

= $𝟒𝟔𝟖. 𝟕𝟓/𝒌𝑾𝒉 (6.8) 

With	the	rated	cycling	estimate	of	5000	cycles	[49]	at	1.4	cycles	per	day,	that	yields	~9.78	years.	Call	it	

10	years	for	convenience.	The	reduced	battery	storage	requirement	can	save		

 𝟎. 𝟑𝟗𝟗 − 𝟎. 𝟏𝟑𝟏 𝒌𝑾𝒉	× $𝟑𝟎𝟎𝟎
𝟔. 𝟒	𝒌𝑾𝒉

𝟏𝟎𝒚𝒆𝒂𝒓𝒔
	= $𝟏𝟐. 𝟓𝟔/𝒚𝒓 

(6.9) 
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The	energy	sacrificed	can	be	viewed	in	two	different	ways.	If	viewed	as	an	operating	cost,	then	every	

kWh	missed	has	the	opportunity	cost	of	the	electricity	rate	of	about	$0.0999/kWh	[50].	Thus,	over	one	

year	the	opportunity	cost	would	be	a	substantial		

 
$𝟎. 𝟎𝟗𝟗𝟗
𝒌𝑾𝒉

	×	𝟑. 𝟒𝟏
𝒌𝑾𝒉
𝒅𝒂𝒚

	×	𝟑𝟔𝟓
𝒅𝒂𝒚𝒔
𝒚𝒓

= $𝟏𝟐𝟒. 𝟑𝟒/𝒚𝒓 (6.10) 

However,	we	are	reaching	a	point	where	solar	power	can	no	longer	be	treated	as	a	negative	load	

without	grid	stability	consequences.	If	it	is	to	be	treated	as	a	traditional	generator	that	must	provide	

regulation	capability	and	abide	by	its	forecast	commitment,	then	a	cost	calculation	paradigm	shift	is	

required.	The	cost	of	regulation	becomes	part	of	the	initial	solar	installation	or	investment	fixed	cost.	At	

current	costs,	solar	energy	is	estimated	to	cost	$0.05/kWh	[45].	If	10%	reserve	is	assumed,	then	the	cost	

of	the	solar	energy	goes	up	by	1/(1-10%)	or	111%	and	the	reserve	will	cost	10%	of	this	new	cost	or	

 𝟏𝟎%	×	𝟏𝟏𝟏%	×	
$𝟎. 𝟎𝟓
𝒌𝑾𝒉

=
$𝟎. 𝟎𝟎𝟓𝟓𝟔
𝒌𝑾𝒉

 (6.11) 

With	this	new	perspective	on	the	cost	of	the	reserve,	the	cost	per	year	becomes	

 
$𝟎. 𝟎𝟎𝟓𝟓𝟔
𝒌𝑾𝒉

	×	𝟑. 𝟒𝟏
𝒌𝑾𝒉
𝒅𝒂𝒚

	×	𝟑𝟔𝟓
𝒅𝒂𝒚𝒔
𝒚𝒓

=
$𝟔. 𝟗𝟏
𝒚𝒓

 (6.12) 

which	is	considerably	lower	than	the	benefit	gained	by	reduced	energy	storage	needs,	which	is	also	an	

upfront,	fixed,	investment	cost.		
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6. Conclusion	
Continued	integration	of	renewable	energy	resources	onto	the	electric	grid	increases	variability	and	

decreases	grid	stability.	Energy	storage	can	help	mitigate	some	of	these	effects,	but	traditional	energy	

storage,	such	as	batteries,	is	typically	expensive	and	has	other	disadvantages	such	as	round	trip	

inefficiency	and	limited	lifetime.	Real,	high-speed	solar	panel	data	was	used	to	characterize	the	

stochastic	energy	output	of	PV	sources,	and	the	numerous	challenges	faced	and	methods	used	when	

manipulating	this	real-life	data	set	were	detailed.	Two	alternative	methods	were	then	presented	to	

absorb	or	reduce	the	variability	imposed	upon	the	grid	by	PV	or	other	generation.	

Dynamic	HVAC	load	compensation	was	proposed	as	a	method	to	absorb	or	filter	short-term	PV	

variability	and	act	as	effective	grid	inertia	that	is	being	replaced	by	non-inertial	generation.	A	proposed	

Butterworth	filter	power	target	technique	balanced	energy	storage	demands	with	decreased	

uncertainty.	A	small-scale	model	of	a	variable	speed	blower	and	fan	was	used	to	estimate	filtering	

limitations	imposed	by	undesirable	acoustic	effects	and	to	provide	a	conversion	between	fan	speed	and	

power	consumed.	Physical	ceiling	and	floor	limitations	as	well	as	thermal	limitations	further	constrain	

the	available	filtering	potential.	Considering	all	of	the	imposed	limitations,	the	variation	absorption	or	

filtering	capability	of	dynamic	HVAC	load	compensation	was	analyzed	for	various	building	sizes	and	on-

site	solar	penetrations.	As	would	be	expected,	the	larger	the	relative	size	of	the	HVAC	power	

consumption	to	the	PV	power	capacity,	the	greater	the	system	ability	to	absorb	variations	in	power	

production.	Decreased	limitations	such	as	ramp	rate	and	amplitude	limits	would	also	enable	increased	

filtering	capability.	The	reduction	in	battery	storage	capacity	was	briefly	investigated	and	of	note	was	

the	substantial	reduction	in	energy	that	had	to	pass	into	and	out	of	the	battery	when	dynamic	load	

compensation	was	implemented.		

PV	operating	reserve	curtailment	was	then	introduced	as	a	way	to	reduce	variability	both	through	

cropping	of	power	spikes	through	curtailment	as	well	as	partially	compensating	power	“valleys”	by	

utilizing	PV	operating	reserve.	The	same	Butterworth	filter	power	target	method	was	used	for	analysis,	

and	the	variability	quantified	in	terms	of	absolute	variation	and	integrated	differences	from	the	target	

set	point.	The	idea	of	operating	reserve	curtailment	then	led	to	the	argument	that	as	prices	of	PV	

continue	to	come	down,	the	cost	of	grid	regulation	should	be	included	in	the	cost	of	installed	PV	and	

renewable	resources	just	as	it	is	for	conventional	grid	generation.	PV	already	can	act	as	a	grid	resource	

rather	than	a	grid	nuisance	by	providing	rapid	response	times	to	faults,	frequency	regulation,	ramping	

capability,	and	other	services.	This	mindset	of	solar	as	a	grid	resource	makes	operating	reserve	
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curtailment	an	economical	choice,	and	the	cost	comparison	was	provided	for	varying	amounts	of	

curtailment	and	PV	price	points.	A	proposed	metric	of	optimality	was	presented	that	balances	energy	

production	with	decreased	variability.	The	results	indicate	that	no	one	level	of	operating	reserve	

curtailment	is	optimal	for	all	days,	and	that	depending	upon	the	type	of	cloud	cover	experienced,	the	

optimal	energy-variability	peak	may	lie	beyond	the	economic	break-even	point	and	thus	be	cost	

constrained.		

A	proof-of-concept	model	for	desired	power	point	tracking	or	“DPPT”	was	demonstrated.	The	model	

was	built	up	in	stages,	first	implementing	an	MPPT	incremental	conductance	algorithm,	then	replacing	

the	converter	with	an	average	model	and	similar	dynamics,	then	operating	at	a	fixed	fraction	of	the	

MPP,	and	finally	tracking	a	dynamic	Butterworth	signal.	The	end	result	was	an	algorithm	that	could	

calculate	and	track	a	filtered	version	of	the	raw	solar	panel	power	available.	By	demonstrating	that	such	

operation	can	be	accomplished	with	nothing	more	than	a	modified	control	scheme,	there	exists	a	clear	

path	to	real-life	implementation	in	photovoltaic	inverters	without	additional	hardware.	With	the	

paradigm	shift	in	PV	variability	mitigation	requirements,	implementing	such	a	change	will	provide	the	

necessary	regulation	for	predictable	power	output	at	a	lower	cost	than	additional	investment	in	

chemical	energy	storage.		

6.1. Future	work	
While	the	solar	data	used	for	this	work	was	sufficient,	rerunning	simulations	for	an	entire	year	or	more	

of	solar	data	would	lead	to	more	realistic	results.	Knowing	now	that	100	Hz	effectively	captures	all	

meaningful	dynamics,	and	taking	lessons	from	the	first	PV	acquisition,	a	repeat	experiment	could	yield	a	

continuous	data	set	suitable	for	long-term	analysis	of	variability	mitigation	techniques.		

Regarding	the	HVAC	analysis,	full-scale	data	or	experiments	are	essential	to	verify	or	adjust	the	

assumptions	made	when	investigating	dynamic	load	compensation.	With	recent	access	to	fan	power	

and	airflow	measurements,	data	from	full-scale	HVAC	units	could	be	substituted	in	for	the	scaled	

approximations.	Additionally,	correlated	audio	recordings	from	actual	labs	or	classrooms	with	power	

usage	data	could	lead	to	better	ramp	rate	and	amplitude	limit	approximations.	Occupancy	sensor	data	is	

also	available,	so	further	analysis	is	encouraged	to	determine	how	much	of	the	building	is	unoccupied	at	

a	given	time	and	what	additional	flexibility	that	lends	to	HVAC	power	filtering.	Along	these	same	lines,	

water	tank	storage	has	a	giant	potential	capacity	for	thermal	energy	absorption	and	little	to	no	
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limitation	on	ramp	rate,	so	if	such	systems	can	be	more	accurately	characterized,	their	thermal	inertia	

could	supplement	that	of	buildings	and	air.		

Much	of	this	data	could	be	gathered	from	sensors	and	fed	to	control	algorithms,	but	public	awareness	

would	be	excluded	from	such	a	setup.	Future	work	should	almost	certainly	include	public	education	of	

the	variability	imposed	on	the	grid	by	photovoltaic	fluctuations	and	the	mitigation	techniques	actively	

engaged	in	combatting	it.	The	format	could	be	as	simple	as	an	energy	dashboard	displaying	prevented	

power	variation	and	where	that	energy	is	being	stored,	diverted,	or	eliminated.	After	all,	short-term	

variability	of	renewables	is	often	overlooked,	so	if	the	problem	is	to	be	addressed,	people	first	need	to	

know	that	the	problem	exists	and	then	need	to	know	what	solutions	exist	and	how	they	work.	

The	DPPT	algorithm	still	needs	considerable	optimization	requirements	before	operational	hardware	

may	be	realized.	Of	primary	concern	is	the	high-frequency	oscillation	in	power	output,	which	would	be	

undesirable	to	connect	to	the	grid.	Additionally,	future	work	will	include	investigating	alternative	set-

point	power	targets.	For	example,	short-term	forecasts	may	be	substituted	for	the	Butterworth	filter	set	

points.	

To	summarize,	both	of	the	two	proposed	variability	mitigation	methods	presented	in	this	thesis	are	

inexpensive	alternatives	to	battery	storage,	needing	little	more	than	an	advanced	control	to	be	

implemented.	However,	each	method	is	also	incapable	of	removing	all	variability	introduced	by	PV.	

Together	(with	other	thermal	storage	outlets	potentially	utilized),	the	proposed	alternatives	can	

drastically	decrease	or	eliminate	necessary	chemical	energy	storage,	provide	inexpensive	grid	stability	

resources,	and	enable	increased	penetration	of	renewable	energy	technologies	for	a	clearer,	brighter	

future.		 	
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