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ABSTRACT 

The relationship between physical activity (PA) and cardiovascular disease (CVD) is well 

established; however, questions about the appropriate dose of PA to reduce CVD risk still remain 

(Blair, LaMonte, & Nichaman, 2004; Pate et al., 1995). The optimal dose and the effects of 

intensity, duration, and frequency of PA are not fully understood (Haskell et al., 2007). This 

study connects objectively measured PA with a cross-sectional measure of CVD risk for an in-

depth analysis of PA patterns that contribute to higher risk of CVD. Specifically, this study 

applied machine learning algorithms to NHANES accelerometer data from the 2003-2006 

cohorts with the Reynolds cardiovascular risk score as the outcome.  

Using accelerometer data as a proxy for the Reynold’s risk score to study cardiovascular 

disease risk allows the use of cross-sectional data when the longitudinal outcome is not known. 

A major benefit of using accelerometers to objectively measure of PA is that the data is easy and 

inexpensive to obtain. Furthermore, most locomotive activities are measured with a high degree 

of accuracy. Accelerometers can gather highly detailed information about an individual’s PA 

pattern over extended periods of time. This produces a large amount of data that requires 

specialized techniques to analyze. The analysis for this study was conducted using a variety of 

machine learning techniques to identify individual patterns in the data and evaluate what 

contributes most to high CVD risk.  

Comparison of machine learning algorithms shows that all classifiers perform well when 

given appropriate features. Using predefined intensity thresholds to compute average time spent 

in a PA category yielded good classification results in identifying study participants at high and 

low risk for CVD (Troiano et al., 2008). Adding PA pattern-related features to the model did not 

appear to improve classification. Features derived using k-means and the Hidden Markov Model 
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(HMM) performed on the level of using predefined intensity thresholds, indicating that data 

driven methods may be used for feature extraction without relying on prior knowledge of the 

data.  

In general, the lasso regression, support vector machines (SVM) and random forest (RF) 

classifiers all performed well on large sets of data-driven features, achieving greater than 82% 

classification accuracy when time spent in PA intensity categories was combined with k-means 

and HMM-derived inputs. Neural networks performed well on smaller uncorrelated feature sets, 

and decision trees produced consistent results with the most transparency and interpretability. 

With respect to physical activity recommendations, the findings indicate that gender and 

time spent in lifestyle minutes (760-2019 intensity counts) play a key role in classifying CVD 

risk. Thus, a greater emphasis on gender specific recommendations focusing on lifestyle minutes 

in addition to moderate and vigorous activity may be necessary.  Furthermore, time spent in the 

activity categories, not how PA is spread throughout the day and week appear to be most 

important for classification of CVD risk.  
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CHAPTER 1 INTRODUCTION 

The connection between physical activity (PA) and health outcomes is a central theme in 

kinesiology and public health research. This relationship is well documented with studies 

showing that physical inactivity leads to increased risk of all-cause mortality, is associated with 

coronary heart disease, osteoporosis, diabetes and some cancers (Pate et al., 1995; NIH 

Consensus Development Panel on Physical Activity and Cardiovascular Health., 1996). PA 

offers a wide range of health benefits that include weight control, longevity, reduced risk of 

various diseases, and improved mental health (Hebebrand & Hinney, 2015). Furthermore, PA 

has been shown to improve cardiovascular function and reduce the risk of cardiovascular disease, 

the number one killer of Americans (Go et al., 2014). Given the numerous preventive benefits of 

engaging in PA, physicians are recommending PA to their patients (Blair et al., 2004).  

However, in order to recommend PA as a way of improving cardiovascular health and 

preventing risk of chronic diseases, appropriate dosage for different populations must be 

established. Currently, to enjoy the benefits of PA, the US Federal Physical Activity Guidelines  

recommend at least 150 minutes of moderate intensity or 75 minutes of vigorous intensity PA, 

along with biweekly strength training for adults (United States Department of Health and Human 

Services., 2008). Nevertheless, unanswered questions remain about the appropriate length of 

continuous PA bouts, optimal intensity, and the effects of light PA (Haskell et al., 2007). The 

dose-response relationship between PA and various health outcomes is less understood and 

requires further investigation (Kesaniemi et al., 2001). 

Measuring Cardiovascular Health Status 

A particular interest in studying the benefits of PA is disease prevention. Examining the 

impact of PA on cardiovascular health status as an outcome is a challenge since there is no single 
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criterion measure of cardiovascular health. Longitudinal studies using mortality rates due to 

cardiovascular disease as outcomes have established a number of modifiable and non-modifiable 

risk factors that may lead to cardiovascular disease (Blair et al., 1989; Pate et al., 1995).  While 

age, gender, and family history cannot be changed, regular exercise has been shown to have the 

potential to reduce a number of modifiable risk factors that include high blood pressure, poor 

glucose tolerance, high cholesterol, and obesity (D’Agostino et al., 2008). 

Therefore, cross-sectional and intervention studies measuring cardiovascular health status 

as an outcome may focus on specific risk factors such as blood pressure and cholesterol levels. 

However, to study a more general representation of cardiovascular health status, it may be of 

interest to account for several known risk factors simultaneously by using a composite risk score. 

Several cardiovascular risk scores have been developed beginning with the Framingham Heart 

Study 10 year cardiovascular risk score (D’Agostino et al., 2008). These risk scores aim to 

represent the percent risk that an individual will have a cardiovascular event in the next 10 years 

and offer a possible solution for representing cardiovascular health status in cross-sectional data 

and intervention studies.  

Measuring Physical Activity 

Accurate and objective measures of PA are also imperative for establishing 

recommendations for cardiovascular health improvement (Strath et al., 2013). However, these 

measures may be difficult to obtain. PA takes on various forms and can include exercise with the 

intention of improving fitness, playing sports, engaging in leisure activity, and performing 

household chores. The choice of PA varies greatly amongst individuals and may be difficult to 

monitor. Multiple methods including questionnaires and direct observation exist to estimate PA; 
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however there is a tradeoff between accuracy and cost effectiveness (Ainsworth & Coleman, 

2006).  

Recent technological advances may offer a solution to some of these challenges. 

Electronic devices such as accelerometers, heart rate monitors, and GPS trackers provide insight 

into when and at what intensity, frequency, and duration the activity was performed at every 

preset interval. These devices provide a very large amount of detailed data with frequent 

readings for each individual. Furthermore, accelerometers, heart rate monitors, and GPS trackers 

have become fairly inexpensive and readily available, making these useful for a wide range of 

studies (Chen, Janz, Zhu, & Brychta, 2012).  

For example, accelerometers have become increasingly popular in PA and health research 

(Troiano, 2006) . Studies have used accelerometers to establish the connection between PA and 

breast cancer, cardiometabolic syndrome, kidney disease, insomnia, and depression (Chasens & 

Yang, 2012; Hawkins et al., 2011; Healy, Matthews, Dunstan, Winkler, & Owen, 2011; Lynch et 

al., 2011; Vallance et al., 2011). These findings indicate that the use of these electronic devices is 

appropriate in a variety of settings, offering objective and fairly accurate ways of assessing PA 

with possible insights into optimal dosage on an individual basis. 

At the same time, data collection using electronic devices creates a new set of problems. 

While a large volume of detailed data is inexpensive and relatively easy to obtain, special 

analytic techniques are required to derive useful information from the data while retaining its 

richness. Each individual has a pattern to his or her daily PA based on daily habits, occupation, 

and health status. Identifying the complex individual’s PA patterns derived by electronic devices 

in conjunction with health outcomes may be very helpful for establishing PA guidelines and 
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recognizing at risk populations. This type of research requires a way of accurately classifying 

health outcomes based on the individual’s PA patterns. 

Machine Learning 

Machine learning techniques are useful for analyzing large volumes of data, recognizing 

patterns, and classifying outcomes with existing applications in a broad range of topics. Machine 

learning is a subset of artificial intelligence that utilizes a collection of algorithms that help 

computers learn from the data, predicting a set of outcomes or recognizing patterns, where the 

prediction gets better with experience. These techniques allow for individualized analysis, and 

while it takes more time, it also yields more accurate results. Furthermore, advances in 

computational technology help make this process fast. 

 Applications of machine learning algorithms include speech and handwriting 

recognition, DNA sequencing, stock market analysis and robotics (Hastie, Tibshirani, & 

Friedman, 2009). Machine learning and data mining techniques have been used in various 

disciplines to find patterns in accelerometer data but have yet to be used to their full potential in 

the field of PA and health research. So far, the main objective of accelerometer data analyzed 

using machine learning has been to recognize the individual’s mode of PA (Ermes, Pärkka, 

Mantyjarvi, & Korhonen, 2008; Freedson, Lyden, Kozey-Keadle, & Staudenmayer, 2011; 

Mannini & Sabatini, 2010). These studies are typically conducted in a controlled environment, 

such as a laboratory, where the study participants are asked to perform a choreographed routine 

while wearing an accelerometer. Prediction of PA type is used to estimate energy expenditure.  

The goal is to accurately predict energy expenditure from accelerometer data for applications in 

heath related research or in engineering to provide feedback to users tracking their PA using 

electronic devices (Bouten, Koekkoek, Verduin, Kodde, & Janssen, 1997; Long, Yin, & Aarts, 
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2009; Rothney, Neumann, Béziat, & Chen, 2007; Rothney, Schaefer, Neumann, Choi, & Chen, 

2008). Few studies have attempted to classify health outcomes directly from accelerometer data.  

NHANES Accelerometer Data 

Health monitoring and research into chronic disease prevention that will further inform 

public health policy, prevention strategies, and medical treatment options is of national 

importance according to the Center of Disease Control’s (CDC) mission. The National Health 

and Nutrition Examination Survey (NHANES) collected for the years 2003–2004 and 2005–

2006 by the CDC offers objective measures of PA of a representative sample of the U.S. 

population using ActiGraph accelerometers. Step counts are available for each minute of the 

week the participants wore the PA monitors. The NHANES data also provides an extensive 

number of health related outcome variables and is ideal for establishing a connection between 

health status and objectively measured PA.  

The accelerometers used in the NHANES are an example of how electronic devices are 

able to provide highly detailed data for each individual and thus have tremendous potential in 

numerous research settings. Though the NHANES data has many advantages, the large volume 

of readings provided by the accelerometers and individual variation of the participants is also 

problematic as discussed above. So far, studies using the NHANES accelerometer data have 

shown connections between objectively derived PA and various health outcomes measured by 

the NHANES (Healy et al., 2011; Luke, Dugas, Durazo-Arvizu, Cao, & Cooper, 2011). 

However, these studies compress the detailed accelerometer data into a few data points using 

standardized thresholds (Atienza et al., 2011; Camhi, Sisson, Johnson, Katzmarzyk, & Tudor-

Locke, 2011b; Evenson & Wen, 2011). Machine learning techniques have yet to be used to 

classify individual health status via PA patterns in this data. 
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Statement of Problem 

Electronic devices such as accelerometers provide large volumes of readings that offer 

rich information about PA patterns. However, this data requires special pattern recognition, data 

reduction and classification techniques to arrive at meaningful conclusions about the relationship 

between PA and health outcomes and consequently provide PA recommendations. 

Solutions 

Utilize machine learning algorithms to analyze PA data collected using electronic 

devices. These techniques may prove to be useful not only for categorizing the type of PA but 

also for classifying health outcomes based on PA patterns. 

Purpose 

This study is dedicated to selecting features and applying machine learning algorithms to 

find associations and patterns in accelerometer-derived free-living daily PA that can help predict 

the participant’s cardiovascular health status based on cardiovascular risk scores using several 

machine learning techniques using the 2003–2004 and 2005–2006 NHANES data. More 

specifically, this study will attempt to:  

 connect intensity readings from accelerometer data recoded over the course of a week to a 

cardiovascular risk score; 

 extract, compare and select appropriate features from accelerometer data to use with 

machine learning algorithms; 

 predict cardiovascular health status of an individual based on accelerometer-derived PA 

using machine learning approaches; 

 compare machine learning algorithms for classification of accelerometer-derived PA by 

cardiovascular health status.  
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Significance of Study 

So far, machine learning techniques have been applied to accelerometer-derived PA data 

that were collected in controlled, clinical conditions with a main focus on classifying activity 

type, not predicting health status. The NHANES data offers accelerometer-derived, free-living 

PA collected over the course of one week. Previous analysis of this data was either descriptive in 

nature or established connections between various health markers and objectively measured PA 

by condensing a week’s worth of step counts recorded every minute into a single data point.  

The analysis of the rich information offered by the NAHNES PA monitor data has 

tremendous potential in providing valuable feedback on an individual basis. As Figure 1 shows, 

machine learning algorithms could help classify cardiovascular health status based on 

accelerometer-derived PA. Subsequently, these findings will help develop individualized 

interventions and prevention programs. Additionally, these methods may be successful in 

detecting unknown and future health problems, allowing the development of PA 

recommendations based on health status. Furthermore, the NHANES 2011–2012 study will have 

PA data using waterproof accelerometers for seven consecutive days without breaks for 

swimming, bathing or sleeping. Innovative methods to analyze this data are needed and will be 

proposed in this study.  
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Figure 1. The potential of using objectively measured PA for prediction of cardiovascular health status, which will in turn 

lead to individualized recommendation for PA. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter reviews potential measures of PA and cardiovascular health status, and how 

accelerometer data has been used to further research in PA and health. The challenges and 

possible solutions associated with analyzing large volumes of accelerometer data are discussed. 

Specifically, studies utilizing the NHANES accelerometer data are examined in detail, and 

machine learning techniques for recognizing PA patterns are introduced.  

Prevalence of Cardiovascular Disease 

Although death rates due to heart disease have declined from 2000 to 2010 by 31%, 

cardiovascular disease is still the leading cause of death in the U.S., killing nearly one in three 

Americans (Go et al., 2014). Increased public awareness, better preventive measures, improved 

treatment options, and quicker response times have all contributed to the decrease in 

cardiovascular disease death rate; however, known risk factors remain poorly controlled. 

Although fewer American adults smoke, few adults meet the recommendations for body 

composition, PA, cholesterol, and glucose levels (Go et al., 2014). At the same time, the 

financial burden of cardiovascular disease is extremely high, estimated to be $445 billion in 2010 

in the U.S. (Heidenreich et al., 2011).  

Forms of Cardiovascular Disease 

 Cardiovascular disease refers to any disease that affects the cardiovascular system. 

Although heart disease manifests itself in many forms, coronary heart disease kills the greatest 

number of Americans by far, causing 1 in 6 deaths (Go et al., 2014). The next leading killer is 

stroke, causing 1 in 19 deaths in the U.S., though death from stroke decreased by 35.8% from 

2000 to 2010 (Go et al., 2014). Hypertension affects 29.6% of Americans, while 48.0% are 

successfully controlling the disease (Gillespie & Hurvitz, 2013). Other types of heart disease 
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affecting the U.S. population are heart failure, arterial disease, and congenital heart disease 

(Kenney, Wilmore, & Costill, 2012). The prevalent types of heart disease with controllable risk 

factors are discussed below.  

 Coronary heart disease. As described by Kenney et al. (2012), coronary heart disease is 

characterized by narrowing of the arteries, a process known as atherosclerosis. Damage to the 

innermost lining of the arterial wall leads to an inflammatory response, with platelets, smooth 

muscle cells and connective tissue attaching to the affected site and beginning the formation of 

plaque. Low-density lipoprotein (LDL) cholesterol attaches itself to the area, contributing to the 

size of the plaque. Overtime, the plaque grows and leads to restricted blood flow, or ischemia, to 

the heart. The plaque may become unstable and rupture, forming a blood clot or thrombus and 

eventually blocking the artery. Myocardial infarction, or a heart attack, occurs when the heart 

muscle is deprived of oxygen due to the impeded blood flow (p. 524). 

Stroke. Kenney et al. (2012) characterize stroke is the disease of the cerebral arteries. 

Ischemic stroke occurs when blood flow to the brain is restricted. This type of stroke may be the 

result of thrombosis, where an artery in the brain is obstructed due to atherosclerosis, or an 

embolism, where a thrombus or fat globule have become dislodged and traveled to a cerebral 

artery, causing blockage. Stroke may also result from a hemorrhage in the brain due to a ruptured 

artery. An artery may rupture due to atherosclerotic damage to its walls. Both types of stroke 

lead to brain tissue damage (p. 525). 

 Hypertension. As explained by Kenney et al. (2012), blood pressure is the pressure 

exerted on the arterial walls by the circulation of blood. High blood pressure, or hypertension, 

means the blood is circulating with greater pressure on the arterial walls that what is considered 

normal for the individual’s size and age. Hypertension signals that the heart has to pump harder 
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to circulate the same amount of blood due to the increased resistance in the arteries. Overtime, 

the heart muscle becomes strained and enlarged, and the arteries become less elastic and 

damaged. This mechanism eventually leads to atherosclerosis and other cardiovascular diseases 

(p.525). 

Heart failure. According to Kenney et al. (2012), when the heart muscle is too weak to 

adequately circulate the blood due to hypertension and atherosclerosis, the condition is referred 

to as heart failure. The disease is characterized by reduced force of contraction, an enlarged heart 

muscle, and increased heart rate. Heart failure results in poor circulation and fluid accumulation, 

or edema. When the lungs are affected, heart failure causes shortness of breath and exercise 

intolerance (p.526).  

Risk Factors of Cardiovascular Disease 

Although cardiovascular disease usually presents itself in late adulthood, changes that 

signal the beginning of atherosclerosis have been shown to occur in the early stages of life with 

some infants exhibiting early formation of plaque in the aorta (Kannel & Dawber, 1972). Of the 

300 autopsied American soldiers with average age of 22.1 killed in the Korean war, 77.3% 

exhibited some signs of atherosclerosis in the aorta (Enos, Holmes, & Beyer, 1953). The 

progress of the decease is determined by genetics, lifestyle, and environmental factors and is 

largely asymptomatic until later in life. While some factors like genetics, age, and gender could 

not be changed, risk of developing heart disease may be significantly reduced by modifying 

lifestyle factors (Go et al., 2014).   

 Obesity and overweight. Obesity and overweight describe the degree of excess 

accumulation of body fat that poses a risk to one’s health. Due to the relative difficulty and cost 

of measuring body fat directly, to classify individuals as overweight or obese on a population 
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level, the body mass index (BMI), popularized by Ancel Keys in 1972, is used. BMI is an index 

of the relationship between the weight and height of an individual, calculated by dividing the 

weight in kilograms by the height in meters squared (Keys, Fidanza, Karvonen, Kimura, & 

Taylor, 1972). Overweight is defined by a BMI greater than 25 but less than 30, and obesity is 

defined by a BMI of 30 and greater (Hebebrand & Hinney, 2015).  

Obesity affects more than a third of the U.S. population with levels rising from 30.3% in 

2000 to 35.9% in 2010 according to the CDC (Ogden, Lamb, Carroll, & Flegal, 2010). The 

adverse health effects associated with excess weight are well documented and mortality rates 

increase exponentially with increases in BMI (Bray, 1985). It has been shown that excess body 

fat leads to impaired bodily functions and has been linked to various forms of cardiovascular 

disease, diabetes, cancer, and respiratory problems. Specifically, obesity leads to decreased 

oxygenation of the blood, causing hypertension, enlargement of the heart and thrombosis 

(Kenney et al., 2012). To lower the risk of cardiovascular disease it is recommended that BMI be 

kept between 18 and 25 through weight control (Hebebrand & Hinney, 2015).  

Inflammation. Inflammation is a natural immune response of the body to injury. 

Characterized by increase blood flow that causes redness, heat, swelling and pain at the site of 

the injury, inflammation prevents the spread of infection, removes damaged tissue, and assists 

healing (Kenney et al., 2012). Infections or tissue injuries such as a cut on the hand or a sprained 

ankle are all types of acute inflammation that is elicited by an external stimulus and is necessary 

to promote the healing process. However, inflammation may also be chronic in response to 

stress, smoking, poor diet, and environmental factors. Chronic inflammation contributes to heart 

disease by hardening the arterial wall and increasing its permeability, leading to the formation of 

plaque (Danesh, 2000; Kaptoge et al., 2010; Medzhitov, 2008).  
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 C-reactive protein (CRP) is released by the liver in response to inflammation and is 

considered to be a relatively new indicator of cardiovascular disease risk (Danesh et al., 2007). 

CRP levels are measured by a blood test where < 1.0 mg/L is considered normal. CRP levels 

between 1.0 and 3.0 mg/L are indicators of chronic inflammation, while 3.0 mg/L and greater 

indicates a high risk of heart attack (Go et al., 2014; G. L. Myers et al., 2004). 

Abnormal lipoprotein levels. As described by Kenney et al. (2012), cholesterol is a type 

of lipid molecule, a sterol that carries out a number of vital functions in the body. Cholesterol is 

produced by the liver but may also be obtained from foods from animal sources. Cholesterol is 

essential for building cell membranes and determining cell membrane permeability. Furthermore, 

it helps in the production of various hormones including sex hormones and those released by the 

adrenal gland. Additionally, cholesterol is used for the producing bile, insulating nerve fibers, 

converting sunlight exposure to vitamin D, and metabolizing fat soluble vitamins (p. 530).  

While cholesterol is essential for numerous mechanisms in the body, it also plays a role 

in atherogenesis, or plaque formation (D’Agostino et al., 2008; National Cholesterol Education 

Program (NCEP) Expert Panel, 2002). Because cholesterol is a fat-like substance, it is 

transported through the water-based bloodstream by lipoproteins. While low-density lipoproteins 

(LDL) help transport cholesterol molecules to the cells, high-density lipoproteins (HDL) 

transport cholesterol back to the liver. When the blood vessels are inflamed, LDL containing 

cholesterol molecules may permeate and get deposited in the arterial wall thus contributing to 

plaque formation and further inflammation (Kenney et al., 2012). The optimal ranges for total 

cholesterol, LDL, and HDL are described in Table 1below. 
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Table 1. Optimal levels of cholesterol from ATP III (National Cholesterol Education Program (NCEP) Expert Panel, 

2002) 

Total cholesterol Category 

Below 200 mg/dL Desirable 

200-239 mg/dL Borderline high 

240 mg/dL and above High 

LDL cholesterol Category 

Below 70 mg/dL Ideal for people at very high risk of heart 

disease 

Below 100 mg/dL Ideal for people at risk of heart disease 

100-129 mg/dL Near ideal 

130-159 mg/dL Borderline high 

160-189 mg/dL High 

190 mg/dL and above Very high 

HDL cholesterol Category 

Below 40 mg/dL (men) Poor 

Below 50 mg/dL 

(women) 

40-49 mg/dL (men) Better 

50-59 mg/dL (women) 

60 mg/dL and above Best 

 Hypertension. Hypertension is a form of cardiovascular disease when the arterial blood 

pressure is chronically high, placing additional stress on the arterial walls and the heart (Kenney 

et al., 2012). Therefore, not only is high blood pressure a form of cardiovascular disease, but it is 

also an important risk factor for coronary heart disease, stroke, and heart failure.  

According to Kenney et al. (2012), blood pressure is characterized by systolic and 

diastolic blood pressure. Systolic blood pressure refers to the maximum force that occurs when 

blood is driven out of the heart due to the contraction of the left ventricle. Diastolic blood 

pressure occurs when the heart is filling with blood, and the ventricle is relaxing. Although blood 

pressure depends on body size, for the average adult, the normal ranges of systolic blood 

pressure are shown in Table 2 below. Individuals with blood pressure above these ranges are 

considered at risk and treatments for lowering and controlling blood pressure are recommended 

(p. 525). 
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Table 2. Optimal blood pressure levels (Chobanian et al., 2003) 

Blood Pressure Category Systolic mmHg  

 

Diastolic mmHg  

Normal less than 120 and less than 80 

Prehypertension 120 – 139 or 80 – 89 

High Blood Pressure Stage 1 140 – 159 or 90 – 99 

High Blood Pressure Stage 2 160 or higher or 100 or higher 

Hypertensive Crisis higher than 180 or higher than 110 

 Diabetes and insulin resistance. Diabetes mellitus (DM) is a health condition 

characterized by elevated blood sugar due to either a lack of insulin production (Type I DM) or 

insulin resistance (Type II DM). Insulin is a hormone released by the pancreas that helps regulate 

carbohydrate metabolism. While a disease in itself, Type II diabetes is a major cardiovascular 

disease risk and is also strongly associated with obesity (Bray, 1985). High levels of sugar or 

glucose in the blood lead to damage of the arterial walls contributing to atherogenesis (Kenney et 

al., 2012).  

 Blood glucose and glycated hemoglobin (HbA1c) levels are used to diagnose diabetes. 

The glucose tolerance test measures the baseline blood sugar level after an overnight fast, and the 

blood sugar level 2 hours after drinking a glucose solution. Glycated hemoglobin (HbA1c) 

measures the plasma glucose levels over the past three months (the half-life of red blood cells) 

(Q. Yang et al., 2012). The optimal ranges of these indicators of diabetes are presented in the 

Table 3 below. 

Table 3. Optimal Blood glucose and glycated hemoglobin (HbA1c) levels (American Diabetes Association, 2010) 

Condition 2 hour glucose Fasting glucose HbA1c 

Unit mmol/l(mg/dl) mmol/l(mg/dl) mmol/mol DCCT % 

Normal <7.8 (<140) <6.1 (<110) <42 <6.0 

Impaired fasting glycaemia <7.8 (<140) 
≥6.1 (≥110) & 

<7.0 (<126) 
42-46 6.0–6.4 

Impaired glucose tolerance ≥7.8 (≥140) <7.0 (<126) 42-46 6.0–6.4 

Diabetes mellitus ≥11.1 (≥200) ≥7.0 (≥126) ≥48 ≥6.5 

Smoking. Smoking has been shown to increase the risk of heart disease nearly twofold 

(Lloyd-Jones, Adams, & Brown, 2010). Smoking increases the inflammatory response of the 
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body, contributing to the calcification of the arterial walls and atherosclerosis (Ambrose & 

Barua, 2004). While smoking history may be assessed via a questionnaire, recent exposure to 

nicotine may be measured by blood cotinine levels (Caraballo, R. S., Giovino, G. A., Pechacek, 

T. F., & Mowery, 2001). Cotinine is a byproduct of metabolizing nicotine and may be detected 

days after nicotine exposure. Thus, even exposure to second hand smoke may be detected by a 

cotinine test. Levels of ≥ 10 ng/mL are indicative of some smoking or exposure, while active 

smokers will have cotinine levels of 100 ng/mL or greater (Wall & Johnson, 1988).  

Non-modifiable risk factors. Certain indicators of cardiovascular disease risk cannot be 

changed. Age and gender are strongly associated with cardiovascular disease risk where the 

majority of heart disease related deaths occur in people over 65 and males are at a higher risk of 

a cardiovascular event (Wilson et al., 1998). Having a close relative who had cardiovascular 

disease before the age of 60 increases one’s risk of heart disease as well (D’Agostino et al., 

2008). Race has also been shown to be a factor in cardiovascular disease risk with African 

Americans at a higher risk than white Americans (Hozawa, Folsom, Sharrett, & Chambless, 

2007).  

 Thus, recommendations for cardiovascular disease prevention focus on modifiable risk 

factors that may be influenced by drugs, diet, and exercise (Lloyd-Jones, Hong, et al., 2010). 

Figure 2 shows the factors that influence cardiovascular disease risk and which of these may be 

modified by PA.  

Reducing Cardiovascular Disease Risk with Physical Activity 

Research shows that PA effects cardiovascular health through a variety of pathways. 

Numerous studies have demonstrated that engaging in regular exercise has to the potential to 

reduce cholesterol and inflammation, lower blood pressure, improve glucose tolerance, and 
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change body composition by increasing bone density and muscle mass while reducing body fat. 

These benefits, in turn, contribute to the reduction of cardiovascular disease risk (Lloyd-Jones, 

Adams, et al., 2010).  

Epidemiological evidence. Following World War II, the development of penicillin as a 

mass-produced drug contributed to a reduction in the prevalence of infectious diseases in the 

U.S. and Europe. Non-communicable, chronic diseases, specifically cardiovascular disease, 

emerged as the leading cause of death (Mahmood, Levy, Vasan, & Wang, 2014). Several 

landmark epidemiological studies around this time led to the identification of risk factors of 

cardiovascular disease, establishing a connection between PA and various health outcomes. 

To promote better understanding and prevention of heart disease, President Harry 

Truman signed the National Heart Act of 1948, thus establishing the National Heart Institute, 

now known as the National Heart, Lung, and Blood Institute. The Framingham heart study was 

initiated in 1948 by the Institute as an ongoing longitudinal study of risk factors of 

cardiovascular disease (Chapman, 1958).  This landmark study initially recruited 5,209 

participants from Framingham, MA aged 30 to 62 with a follow up every two years. In 1971, 

children of the original participants and spouses were recruited by the study. The third generation 

consisting of grandchildren of the original participants was recruited in 2002. To reflect a more 

diverse population, an Omni cohort was recruited in 1994, and a second cohort in 2003 

(Mahmood et al., 2014).  

After six years of follow up, an inverse relationship between levels of PA and 

cardiovascular disease mortality was noted (Kannel, Dawber, Kagan, Revotskie, & Stokes, 

1961). Since PA data in the study was collected by a 24-hour history and the study population 

was generally sedentary, effects of PA were difficult to establish (Kannel & Sorlie, 1979). The 
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investigators noted that after 24 years of follow up, the participants increased their PA levels and 

a stronger relationship between PA and reduced cardiovascular disease risk was observed 

(Kannel et al., 1986).  

Research into heart disease in Europe was initiated by Jeremy Morris who conducted one 

of the first large scale epidemiological studies linking PA and cardiovascular health 

(Paffenbarger, Blair, & Lee, 2001). Morris led the London Transport workers study comparing 

the incidence of cardiovascular disease in 31,000 men employed by the London Transport 

Executive from 1949 to 1952. The study found that a higher proportion of drivers experienced 

coronary heart disease than conductors. The investigators attributed this difference to the amount 

of PA (total energy expenditure) performed by the two jobs, with conductors being more active 

than the sedentary drivers (Morris, Heady, Raffle, Roberts, & Parks, 1953). 

To further study the effects of PA on cardiovascular disease, Morris et al. controlled for 

PA demands in a professional setting by studying British civil servants with sedentary office jobs 

only.  The study compared reported weekend leisure time activity in 16,882 male participants 

between the ages of 40 and 64. The study revealed that the intensity of the PA, not the total 

energy expenditure had the strongest effect on cardiovascular disease (Chave, Morris, Moss, & 

Semmence, 1978; Morris et al., 1973).  

Numerous large-scale longitudinal studies followed, confirming the positive health 

benefits of PA. The Harvard Alumni study that was started in 1962 focused specifically on the 

effects of PA on cardiovascular disease risk. The data was collected via a simple questionnaire 

from 16,936 male Harvard graduates, and the researchers found that PA lowered the risk of heart 

disease even when controlling for the effects of age, BMI, family history and smoking 

(Paffenbarger, Wing, & Hyde, 1978; Sesso, Paffenbarger, & Lee, 2000). Another ongoing 
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longitudinal study, the Nurses’ Health Study, started in 1976, recruited 121,700 female nurses 

with the aim of identifying chronic disease risk factors specific to women (Belanger, Hennekens, 

Rosner, & Speizer, 1978). The study found that PA not only reduces risk of coronary heart 

disease and stroke but also various types of cancer (Colditz, Manson, & Hankinson, 1997; 

Holmes, Chen, Feskanich, Kroenke, & Colditz, 2005).  

The Cooper Center Longitudinal study is an ongoing and comprehensive assessment of 

the effects of PA on various health outcomes. Founded in 1970 by Kenneth Cooper, the “father 

of aerobics” and a strong believer in the importance of physical fitness, the study recruited 

10,224 male and 3,120 female participants with an average eight-year follow up (Blair et al., 

1989). Similar to the Harvard study and the Nurses’ Health Study findings, the researchers found 

that participants with higher baseline PA levels had lower all-cause mortality, cardiovascular 

disease and cancer rates even after adjusting for age, smoking status and various heart disease 

risk factors (Blair et al., 1989). 

Exercise training adaptations. While epidemiological studies suggest a relationship 

between PA and cardiovascular disease risk, intervention studies shed light on the pathways 

through which PA affects cardiovascular fitness. Studies have shown that a dose-response 

relationship exists between PA and cardiovascular fitness in children, adults, and the elderly 

(Haskell et al., 2007; Lloyd-Jones, Hong, et al., 2010). Furthermore, evidence suggests that PA 

offers benefits to fit and unfit populations and has potential of reversing the effects of aging on 

the cardiovascular system (Blair et al., 1995). It appears that beginning an exercise program has 

potential of reducing cardiovascular disease risk even in high-risk populations (Chamnan, 

Simmons, Sharp, Griffin, & Wareham, 2009; Chobanian et al., 2003; Hawkins et al., 2011; 

Holmes et al., 2005; Smith, Nolan, Robison, Hudson, & Ness, 2011). 
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Engaging in PA has been shown to lead to various cardiovascular adaptations such as 

increased maximal oxygen uptake, maximal cardiac output and stroke volume and a decreased 

heart rate (Blomqvist & Saltin, 1983). While improving indicators of cardiorespiratory fitness, 

PA has also been shown to directly improve specific risk factors of cardiovascular disease. 

Regular PA has been shown to reduce cholesterol, cRP levels, risk of type II diabetes, and 

obesity (Dunn et al., 1999). 

The numerous benefits of PA have been noted in various training protocols. While steady 

endurance aerobic activity has often been recommended for optimal health, in recent years, high 

intensity interval training has been shown to produce similar cardiovascular adaptations and 

health benefits (NIH Consensus Development Panel on Physical Activity and Cardiovascular 

Health., 1996). Engaging in short bursts of vigorous PA has been shown to improve 

cardiorespiratory fitness measured by VO2max as much as regular endurance aerobic activity 

(Tabata et al., 1996). Furthermore, high intensity interval training has been shown to improve 

cardiovascular disease risk factors to a greater degree than moderate intensity steady state 

exercise (Wisløff et al., 2007). These findings are in line with the British Civil Servant Study 

conclusion that the intensity of leisure time PA, not total energy expenditure contributes to a 

greater reduction in mortality risk (Morris et al., 1973). 

Physical activity recommendations. It has been well established that PA carries positive 

health benefits (Blair et al., 1989), while physical inactivity may lead to numerous health 

problems that include diabetes and cardiovascular disease (D’Agostino et al., 2008; Healy et al., 

2011). Medical professionals are beginning to recognize the importance of recommending PA 

for overall health improvement and prevention of chronic disease to patients (Blair et al., 2004). 

Consequently, a main focus of kinesiology and public health research includes establishing a 
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dose-response relationship between PA and various health outcomes to eventually establish PA 

recommendations for different populations and health conditions. 

Although numerous studies successfully showed positive health effects of PA in various 

populations, questions in PA and health-related research remain. Establishing recommendations 

for health improvement and disease risk reduction via PA is a challenge. The current guidelines 

are based on existing findings from longitudinal data and intervention studies establishing a 

dose-response relationship between PA and health outcomes. However, the optimal dose and the 

effects of intensity, duration, and frequency of PA remain unclear (Haskell et al., 2007). 

Attempts to establish a set of recommendations for PA were initiated by the American 

College of Sports Medicine (ACSM) in 1978. Three to five days a week of aerobic exercise at 

15–60 minutes per session and an intensity between 50% and 85% of the maximum heart rate 

were advised. The guidelines were geared toward improving and maintaining cardiorespiratory 

fitness and were therefore perceived as highly structured. Revised versions of the guidelines 

were released in 1990 and again in 1998 to emphasize health rather than performance-oriented 

fitness. The 1998 guidelines were less rigid, suggesting at least 20 minutes of aerobic activity 

three to five times a week (Blair et al., 2004). 

The shift toward prescribing exercise as a way to improve health related outcomes led to 

more simplified guidelines. The CDC and ACSM released a joint recommendation for the 

general public to accumulate at least 30 minutes of moderate-intensity PA on most days of the 

week (Pate et al., 1995). This suggestion was based on epidemiologic studies showing an inverse 

dose-response relationship between PA and disease risk. To make the guidelines accessible to the 

general population, the researchers focused on the minimum amount of activity necessary to 

achieve the greatest health benefit (Blair et al., 2004). 
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Next, a set of PA guidelines were issued by the U.S. Department of Health and Human 

Services in 2008. These guidelines target several populations that include children, older adults, 

pregnant and post-partum women and provide more individualized recommendations. For the 

general adult population, at least 150 minutes of moderate or 75 minutes of vigorous-intensity 

aerobic activity spread throughout the week are recommended for important health benefits, 

however the idea that more activity leads to greater benefits is emphasized. Additionally, the 

guidelines stress that accumulating 10 minute bouts of sustained moderate to vigorous activity 

are sufficient to benefit from the activity (United States Department of Health and Human 

Services., 2008). 

 Since PA recommendations are geared toward the general population, focusing on the 

least amount of exercise for the greatest benefit for most people, individual activity patterns are 

still overlooked. Further studies to examine different patterns of PA throughout the day and 

week, the effects of light and highly vigorous intensity activity, and continuous bout length of 

exercise are needed. 

Measuring Cardiovascular Disease Risk 

Since numerous mechanisms through which PA impacts cardiovascular health have been 

identified, summary outcome measures that combine several risk factors have become popular in 

PA and health research. Cardiometabolic risk scores that combine risk factors for both 

cardiovascular disease and type II diabetes have been used in cross-sectional and intervention 

studies as measures of general health outcomes (Camhi et al., 2011b; Holman, Carson, & 

Janssen, 2011; Sisson et al., 2010). However, for explicit study of cardiovascular health 

outcomes, a summary score that combines several know risk factors for cardiovascular disease 
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may provide an interesting solution for representing cardiovascular health outcomes in cross-

sectional data. 

Figure 2. The relationship between PA and cardiovascular risk as mediated by other variables. 

 

  Cardiovascular risk scores.  Several cardiovascular risk scores that estimate the risk of 

having a cardiovascular event in the next 10 years have been developed and are compared below. 

The goal for this study is to choose the most appropriate risk score to represent cardiovascular 

health of the U.S. adult population using NHANES data.  

 Framingham risk scores (FRS) consist of several models with slightly different outcomes. 

The Coronary Heart Disease (CHD) Risk Score controls for gender, age, smoking status, total 

cholesterol (TC), HDL cholesterol, systolic blood pressure (SBP), whether the patient is 

receiving treatment for high blood pressure (BP) and diabetes (Wilson et al., 1998). This model 
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is applicable for patients 30 to 74 years old and without overt CHD at the baseline examination. 

The hard CHD (myocardial infarction or coronary death) risk score controls for gender, age, 

smoking status, TC, HDL, SBP and BP treatment and is appropriate for individuals free of CHD, 

intermittent claudication and diabetes, 30–79 years of age (National Cholesterol Education 

Program (NCEP) Expert Panel, 2002). The General Heart Disease Risk Score controls for 

gender, age, diabetes, smoking, BP, TC, LDL cholesterol and is also applicable to patients 30 to 

74 years old and without overt CHD at the baseline examination (D’Agostino et al., 2008). 

Comparison of the FRS with metabolic syndrome (MetSyn) classification showed that MetSyn is 

better at predicting diabetes while FRS is more successful at predicting cardiovascular events 

(Wannamethee, Shaper, Lennon, & Morris, 2005).  

 The Reynolds Risk Score was developed to improve prediction of CVD risk in women 

and is based on an initially healthy cohort of 24,558 U.S. women age 45 and over followed for a 

median of 10.2 years (Ridker, Buring, Rifai, & Cook, 2007). A model for men was later 

developed based on 10,724 men with a median follow up of 10.8 years (Ridker, Paynter, Rifai, 

Gaziano, & Cook, 2008). The Reynolds risk score controls for the same variables as FRS with 

the addition of C-reactive protein (CRP) levels and family history of mother or father having a 

heart attack under the age of 60.  Reynolds performed better than FRS when applied to data form 

NIH’s multiethnic Women's Health Initiative Observational Cohort with the latter model tending 

to overestimate CVD risk (Cook et al., 2012).  

 There are many other 10-year cardiovascular risk scores that were developed following 

the FRS to better fit a specific population. The SCORE (Systematic COronary Risk Evaluation) 

project focused on development of a risk score based on 12 European cohort studies for 

Europeans. Calibrated by country, it controls for gender, age, SBP, smoking status and 
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cholesterol ratio (TC/HDL) (Conroy et al., 2003). QRisk2 was developed specifically for 

England and Wales, controlling for gender, age, ethnicity, SBP, BMI, smoke status, BP 

treatment, type 2 diabetes, rheumatoid arthritis, renal disease, arterial fibrillation, TC/HDL, and 

Townsend deprivation score that describes material deprivation based on census data and family 

history of CHD (Hippisley-Cox et al., 2008). The SCORE risk score utilizes similar variables as 

FRS, but is specifically calibrated for the European population, while QRisk2 includes many 

more variables including a measure of socioeconomic status that is particular to the region the 

model was calibrated on.  

 Gaziano et al. (2008) developed laboratory and non-laboratory based CVD risk 

assessment models using NAHNES I follow up study cohort. The laboratory model uses age, 

gender, SBP, smoking status, TC, reported diabetes status and treatment for high BP for 

prediction while the non-laboratory model replaces TC with BMI yielding similar results. This 

model is very interesting in practice as the non-laboratory version does not require a blood draw; 

however, the goal of this study is to use the most accurate representation of cardiovascular risk, 

not the most practical.  

 Mora et al. (2007) found that the relationship between PA (assessed via questionnaire) 

and cardiovascular risk is mediated in large part by inflammatory/hemostatic factors, BP, 

cholesterol, and BMI and less so diabetes based on the Women’s Health Study data. The 

mediation effect of homocysteine and creatinine levels was almost negligible. The only 

inflammatory/hemostatic biomarker available in the NHANES is CRP, a variable used in the 

Reynolds risk score. Additionally, studies show that risk scores such as the FRS and Reynolds 

developed on the general population do well in predicting CVD risk in diabetics (Chamnan et al., 
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2009). Thus, it appears that the Reynolds risk score is a good candidate for the outcome variable 

for this study without the need for a separate model for diabetics.   

Measuring Physical Activity  

 PA is bodily movement produced by contracting skeletal muscle that in turn increases 

energy expenditure. This broad definition leads to much confusion and consequent difficulty in 

measuring PA. Many forms of PA exist and may be classified by purpose, mode, or intensity. 

Methods of measuring PA strive to assign a number to the PA an individual has performed for 

comparative purposes. 

To better study the dose-response relationship between PA and cardiovascular health, 

accurate and objective measures of PA are needed. Frequency, intensity and duration of the PA 

are often studied to identify the optimal dose of PA needed to elicit a positive health benefit and 

reduce disease risk. Currently, several methods of measuring PA are used in practice. Since there 

is no gold standard measure of PA, indirect and direct measures are used as estimates. All 

methods have advantages and disadvantages and are chosen based on the target population, study 

costs and administrative burden (Ainsworth & Coleman, 2006; Strath et al., 2013).  

Indirect measures. These measures are retrospective and are based on PA that has 

already occurred. Some examples of indirect measures include surveys and questionnaires that 

ask study participants to recall the amount and type of PA performed over a period of time in the 

past. These methods are by far the easiest and least expensive to administer to a large number of 

participants and are therefore most often used in large-scale longitudinal studies.  

The main disadvantages of indirect measures are their low accuracy and potential bias on 

the part of both researchers and participants. Because questionnaires rely on memory, study 

participants tend to either overestimate or inadequately recall the amount of PA performed. 
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Numerous studies have documented the low correlation of self-report PA questionnaires and 

actual activity performed (Atienza et al., 2011; Clark et al., 2011; Lynch et al., 2011; Troiano et 

al., 2008). At the same time, questionnaires may be constructed such that a major part of 

someone’s PA is overlooked. An example may be a compendium of activities that does not 

include household chores and gardening. A study participant may be physically active, but not 

according to the categories provided by the researchers.  

 Additionally, the intent of PA questionnaires is to obtain a general picture of an 

individual’s PA in a large-scale study. Thus, these approaches focus on aggregate measures, 

likely ignoring individual PA patterns and specifics regarding frequency, duration and time. An 

avid exerciser who has a sedentary job versus someone who does no exercise at all, but walks all 

day due to his occupation have very different PA patterns. These patterns of PA are highly 

individual and lifestyle dependent and may not be adequately captured via am indirect measure 

such as a questionnaire.   

Direct measures. These measures are collected as the PA is happening. Methods of 

direct measures include diary entries, where the participant records all PA preformed, and direct 

observation, where all PA performed by the participant is observed and recorded by the 

researcher. Direct measures yield objective and fairly accurate assessments of PA performed. 

Additionally, the measures provide information about the pattern of PA that includes the 

frequency, duration, and intensity. Data obtained with direct measures allows to further study 

bout length of the activity. However, the numerous advantages of direct measures carry a much 

greater burden than indirect measures.  

First, these methods are only accurate for a specified time frame of the study; however, 

participants may alter their behavior in response to having to record their actions or to being 
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observed. Thus, findings may not be representative of the typical PA of an individual. Next, to 

obtain detailed direct measures of PA, careful planning, monitoring and training are often 

required. Additionally, the recorded qualitative data is time consuming to code and difficult to 

score and analyze, making these approaches inefficient for large scale studies. Thus, likely 

applications of direct measures are for smaller scale interventions and exercise training studies.  

Recent technological advances offer a solution to some of the challenges associated with 

diary and observation methods. Electronic devices such as accelerometers measure when and at 

what intensity, frequency and duration the PA was performed and are continuously becoming 

more accurate and less expensive. Furthermore, wearing an accelerometer for a study solves 

issues with recall or overestimation while being unobtrusive for the participants. Thus, these 

devices offer objective and fairly accurate measures that are appropriate for large-scale studies 

and carry little administrative burden.  

Accelerometers contain a small mass on a spring that is displaced by the movement of the 

case and presses on either a crystal (piezoelectric) or a capacitor (capacitative) to convert the 

motion into an electric signal. This configuration is only able to measure acceleration in one 

plane of motion, so the basic accelerometers are uniaxial. Triaxial accelerometers consist of three 

uniaxial accelerometers measuring acceleration in three different planes of motion. These types 

of accelerometers are included in many cell phones and fitness devices.  

However, these devices are somewhat limited in detection of certain activities. Due to 

their construction, accelerometers are most appropriate for detecting ambulatory activities such 

as walking and running. Activities that do not involve undulating motion such as swimming or 

rowing may not be detected by certain types of accelerometers. Also, accelerometer accuracy 

varies depending on placement of the device on the body. It has been shown that hip placement 
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is more accurate for detection of most ambulatory activities, while wrist or ankle placement 

works better for finer movements (Cleland et al., 2013). It also appears that using two 

accelerometers on different locations on the body works better for detection of finer grained 

activities (Cleland et al., 2013).  

Finally, a major issue in research using accelerometer-derived PA data is usability and 

interpretability of the findings. Raw accelerometer results are provided as step counts for a preset 

interval. Thus, the number of raw readings is usually very large. To render the data useful, the 

counts must be summarized in a meaningful way. Often, accelerometer data is reduced using 

predetermined intensity thresholds for light, moderate, and vigorous activity or converted to 

energy expenditure using existing models (Alhassan & Robinson, 2010; Bouten et al., 1997; 

Crouter, Clowers, & Bassett, 2006; Rothney et al., 2008; Troiano, 2006; Tudor-Locke, Johnson, 

& Katzmarzyk, 2009; Vanhelst, Béghin, Turck, & Gottrand, 2011; Wong, Colley, Connor 

Gorber, & Tremblay, 2011). The use of cutoffs, however, is a “crude categorization of activity 

status” and overlooks the unique pattern of PA on the individual level (Ainsworth & Coleman, 

2006). Approaches to extracting useful findings from accelerometer data are still in development 

with noteworthy methods discussed below.  

Accelerometers in health research. The use of accelerometers has become popular in 

health research (Troiano, 2006). Accelerometer data has been used to assess the adherence to PA 

recommendations in population-based studies and to examine the relationship between PA and a 

variety of health outcomes such as cancer, diabetes, kidney disease, and cardiometabolic risk 

factors (Camhi et al., 2011b; Gerber et al., 2012; Hawkins et al., 2011; Lynch et al., 2010, 2011; 

Smith et al., 2011; Tudor-Locke, Brashear, Johnson, & Katzmarzyk, 2010; Tudor-Locke et al., 

2009; Wong et al., 2011). Additionally, the popularity of accelerometers in various handheld 
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devices such as smart phones and wristbands has sparked interest in providing real-time 

feedback to users tracking their own PA for fitness purposes (Cleland et al., 2013; Pärkkä, 

Cluitmans, & Ermes, 2010; Tapia et al., 2007). Finally, accelerometers have been used to assess 

PA in nonhuman subjects, notably cattle, with growing interest in assessment of pets (Guo et al., 

2009; Michel & Brown, 2011; O’Connell, Tøgersen, Friggens, Løvendahl, & Højsgaard, 2010; 

Robert, White, Renter, & Larson, 2009).  

NHANES Accelerometer Data 

The National Health Survey Act of 1956, signed by President Eisenhower, commenced 

an on-going, cross-sectional survey representative of the American people, focusing on disease, 

injury, impairment, and disability (“NHIS - About the National Health Interview Survey,” 2015). 

Conducted by the National Center for Health Statistics, initial surveys in the 1960’s concentrated 

on chronic diseases in the adult population.  In 1970, a new component focusing on nutrition and 

its relationship to health outcomes was introduced. In the 1980’s the survey expanded to include 

a major focus on representing minority ethnic groups in the U.S. The current NHANES survey 

began in 1999, collecting numerous health related variables using questionnaires, examinations 

and laboratory based tests from 7,000 randomly chosen American residents every year 

(“NHANES - History,” 2011).  

In 2003, the NHANES introduced accelerometers to the examination. As described 

earlier, gathering free-living PA data is a challenge and a survey may not capture true activity 

patterns accurately. Including accelerometers in a large-scale study aimed at gathering an 

objective view of free-living PA patterns of a representative sample of US residents (“NHANES 

2003–2004: Physical Activity Monitor Data Documentation, Codebook, and Frequencies,” 

2007). The NHANES 2003–2004 and 2005–2006 cycles used uniaxial accelerometers to gather a 
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week of PA readings. Thus, the data offers a unique opportunity to objectively study PA patterns 

of a representative sample of the U.S. population in conjunction with a variety of health 

outcomes. 

Studies using NHANES accelerometer data. One of the goals of studies using the 

NHANES accelerometer data is to compare self-reported PA measures to those derived by the 

ActiGraph PA monitor. Atienza et al. (2011) show a large discrepancy between self-reported and 

objectively measured PA and the relationship of the two measures to various biomarkers. Studies 

also use the NHANES accelerometer data to look at PA patterns of the general U.S. adult 

population, as well as special populations including children, pregnant women, and cancer 

survivors (Belcher et al., 2010; Camhi, Sisson, Johnson, Katzmarzyk, & Tudor-Locke, 2011a; 

Clark et al., 2011; Evenson & Wen, 2011; Smith et al., 2011; Troiano et al., 2008; Tudor-Locke, 

Brashear, et al., 2010; Tudor-Locke et al., 2009; Tudor-Locke, Johnson, & Katzmarzyk, 2010, 

2011).  

Since the NHANES data also offers a variety of health-related outcomes derived both by 

questionnaire and laboratory testing, numerous studies strive to establish a relationship between 

accelerometer-derived PA and various health outcomes. These include breast cancer, kidney 

disease, non-alcoholic fatty liver disease, depression, and insomnia (Chasens & Yang, 2012; 

Gerber et al., 2012; Hawkins et al., 2011; Lynch et al., 2010, 2011; Vallance et al., 2011).  

Several approaches were used to study cardiovascular health outcomes. Some studies 

focused on metabolic syndrome defined as having three or more cardiometabolic risk factors that 

include large waist circumference, high levels of triglycerides, low HDL, high blood pressure 

and elevated fasting glucose while others concentrated on the risk factors individually adding 

high BMI as an outcome (Camhi et al., 2011a; Holman et al., 2011; Luke et al., 2011; Sisson et 
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al., 2010). Healy et al. (2011) considered the effects of sedentary time on cardiometabolic and 

inflammatory markers using CRP in addition to the outcomes listed above. Atienza et al. (2011) 

also used skinfold measures, glycohemoglobin, C-peptide and homocysteine levels as outcomes 

to compare self-reported and accelerometer derived PA. No studies using NHANES 

accelerometer data used 10-year cardiovascular risk scores as outcomes.  

 Reduction of NHANES accelerometer data. The NHANES PA monitor data provides 

readings for every consecutive minute of the week the subject wore the accelerometer. Thus, 

10,080 intensity readings are available for every individual included in the study, provided that 

the data is complete. Techniques are needed to extract useful information from such a large 

volume of data for further analysis. The majority of the studies using the NHANES 

accelerometer data rely on a SAS macro provided by the National Cancer Institute (NCI) to 

summarize the data and render it usable.  

The approach suggested by NCI involves dividing the week’s data into days and 

classifying the data into intensity categories defined by predetermined thresholds of intensity 

counts (Troiano et al., 2008; Trost, Pate, Freedson, Sallis, & Taylor, 2000). Once categorized, 

the amount of time spent in each category during the day is averaged for each person over the 

course of the week. This way, the average time per day spent in low, moderate, and vigorous 

intensity activity is calculated and the continuous nature of the data is discretized (Tudor-Locke 

et al., 2009). For example, every minute of an adult’s intensity reading above 2,020 would be 

categorized as vigorous activity. Total or average time spent in vigorous activity over the week 

would be used for the analysis.  

This approach successfully reduces the large volume of data to just one reading for the 

three intensity categories per person rendering it possible to use regression models to establish 
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the connection between PA and health status. Some studies used slightly different approaches to 

categorization such as analyzing cadence instead of intensity or using different thresholds for a 

closer look at lifestyle activity instead of the low, moderate and vigorous intensity categories 

(Camhi et al., 2011a; Tudor-Locke, Camhi, et al., 2011). Nevertheless, the use of thresholds to 

separate accelerometer data into PA categories may be masking some individual differences that 

may be of interest with respect to predicting health outcomes of the participants. 

 The rich details the data may offer are lost due to the data reduction via averaging the 

intensity readings using thresholds. Each individual has a unique pattern to his daily PA based on 

daily habits, occupation, and health status. Important clues to an individual’s health status may 

be averaged out with this technique and remain unnoticed. Additionally, Tudor-Locke et al. 

(2011) suggest that the population estimates are distorted due to non-wear time at the end of the 

day. Furthermore, the use of thresholds may distort the results since these cutoff points are the 

same for everyone while moderate intensity for one person may be vigorous intensity for another 

who is less fit. Loprinzi et al. (2012) compare different thresholds for PA and show that changes 

in cut points for PA in both children and adults influenced the resulting adherence to PA 

guidelines and relationship to health outcomes. Analysis of the NHANES accelerometer data 

may be improved by using a more individualized approach to data reduction rather than the use 

of cutoff scores.  

Analysis of NHANES accelerometer data. Following the data reduction described 

above, studies analyzing the NHANES accelerometer data utilized linear or logistic regression 

models to study the relationship between PA and health outcomes. Logistic regression is a type 

of regression model where the dependent variable is categorical. This approach was used when 

the outcome was coded as a binary variable dependent on average accelerometer-derived PA 
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(Belcher et al., 2010; Camhi et al., 2011b; Sisson et al., 2010; Smith et al., 2011). Linear 

regression models were used when continuous variables such as triglycerides or blood glucose 

levels were studied as outcomes (Atienza et al., 2011; Chasens & Yang, 2012; Clark et al., 2011; 

Gerber et al., 2012; Hawkins et al., 2011; Healy et al., 2011; Lynch et al., 2010, 2011; Tudor-

Locke, Johnson, et al., 2011). Correlations, coefficients, and analysis of variance (ANOVA) 

were also used to study differences in PA levels in various groups (Chasens & Yang, 2012; 

Hawkins et al., 2011; Luke et al., 2011; Tudor-Locke, Camhi, et al., 2011; Van Domelen et al., 

2011).  

Studies analyzing NHANES accelerometer data focused on either the adherence to PA 

recommendations or establishing the relationship between PA and various health outcomes. 

These approaches to NHANES accelerometer data used standard statistical procedures for 

analysis and did not take advantage of machine learning methodology that would allow for a 

more tailored approach to recognizing patterns in the data. Although prior studies of the 

accelerometer-derived PA data show a clear relationship with health-related outcomes measured 

by the NHANES, analysis of the data with the help of machine learning techniques may 

potentially augment the findings. Machine learning techniques may be helpful for extracting 

useful information while retaining the individualized and highly detailed nature of the NHANES 

accelerometer data.  

Analysis of Accelerometer Data in Other Settings 

Studies that use machine learning algorithms for analysis of accelerometer-derived PA 

largely focus on predicting the mode of PA performed in clinical settings (Baek, Lee, Park, & 

Yun, 2004; Bao & Intille, 2004; Gaura, Rider, Steele, & Naguib, 2001; Mannini & Sabatini, 

2010; Pärkkä et al., 2006; Pober, Staudenmayer, Raphael, & Freedson, 2006; Sprager & Zazula, 
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2009; Staudenmayer, Pober, Crouter, Bassett, & Freedson, 2009). Some studies aim to connect 

PA patterns to posture recognition and fall detection but are also conducted in a controlled 

environment with known activities (Giansanti, 2006; Gjoreski, Lustrek, & Gams, 2011; S.-H. Liu 

& Chang, 2009). 

Some accelerometer studies also focusing on activity recognition have been conducted in 

realistic conditions outside of a clinical environment (Bao & Intille, 2004; Ermes et al., 2008; 

Pärkkä et al., 2006). Accelerometer-derived PA patterns in cattle, data that was collected in a 

free-living environment, have also been studied using machine learning algorithms with the main 

focus of classifying cattle movements into lying, standing, grazing etc. (Guo et al., 2009; 

Martiskainen et al., 2009; Robert et al., 2009).  

 One study did aim to connect cattle behavior monitored by accelerometers with 

reproductive status based on progesterone levels (O’Connell et al., 2010). That application 

suggests that machine learning methods may successfully be applied not only for classifying 

accelerometer-derived PA into activity types but also for recognizing patterns in movement that 

help predict health status. 

Machine learning algorithms have also been applied to accelerometers data for diagnosis 

of tremor related disease such as Parkinson’s, the classification and assessment of severity of 

Levodopa-Induced Dyskinesia, and recognition of involuntary gestures in babies with cerebral 

palsy (Gaura et al., 2001; Keijsers, Horstink, & Gielen, 2003; Keijsers, Horstink, van Hilten, 

Hoff, & Gielen, 2000; Singh & Patterson, 2010; Tsipouras et al., 2010). Thus, machine learning 

methods show promise in recognizing abnormal movement patterns for classification of disease 

status.  
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The NHANES accelerometer data offers a look at a week of PA in a natural setting 

connected with a variety of health-related biomarkers of the participants. No known studies have 

attempted to connect accelerometer-derived PA in a free-living environment and health status in 

human participants using machine learning.  

Classification of Health Status Using Machine Learning 

 Machine learning algorithms have been successfully used for classification of health 

outcomes using other types of data in the medical field. Machine learning applications include 

detection of breast cancer from biopsied tissue, prediction of functional health status of 

HIV/AIDS patients, genetic research using mass spectrometry for detection of various types of 

cancers, and detection of pulmonary disease from breath data (Hauschild & Baumbach, 2012; 

Kwak & Lee, 1997; Shipp et al., 2002; Wolberg, Street, & Mangasarian, 1995; Wu et al., 2003).  

Studies have shown that machine learning algorithms show greater accuracy for 

classification of at-risk populations in public health settings when compared with more 

traditional methods such as the logistic regression (Lemon, Roy, Clark, Friedmann, & Rakowski, 

2003). Furthermore, Song, Mitnitski, Cox, and Rockwood (2004) show that machine learning 

algorithms are superior to traditional methods for predicting health outcomes, particularly when 

nonlinear relationships between the inputs and outcome variables are present. It appears that 

health status may successfully be classified by machine learning, but the method has yet to be 

applied to the NHANES accelerometer data.   

Machine Learning Methods 

 There are two major types of problems that machine learning algorithms help solve: 

supervised and unsupervised. Supervised learning occurs when the outcomes are known and the 

machine learns to predict outcomes given new cases. A set of training data, where both inputs 
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and outcome variables are known, is used to build a model. The model is then applied to a set of 

new test data where the input variables are classified and compared to actual outcome variables. 

Supervised learning algorithms include regression (for continuous variables) and classification 

(for discrete variables) problems. Unsupervised learning problems do not assume a set of specific 

outcome variables and the algorithms used are aimed at finding patterns and clusters in the input 

variables. In this scenario the machine learns by itself (Hastie et al., 2009). Given a set of 

accelerometer-derived PA data from the NHANES, the purpose of this study is to classify the 

cardiovascular health status of the participant, a known outcome, thus supervised learning 

algorithms are of particular interest.  

 As described by Hastie et al. (2009), there are two main approaches to classification in 

machine learning: discriminative and generative. The first relies on the conditional probability of 

the outcome given a set of inputs or features. The goal is to build a decision or boundary to 

separate the data, for example positive and negative cardiovascular health status. Discriminative 

algorithms include logistic regression, decision trees, support vector machines, and neural 

networks. Generative algorithms, on the other hand, focus on specifying the distribution from 

which the input data is generated. Separate models are estimated for each outcome and each new 

case is classified according to which model fits best. Algorithms using this approach include 

hidden Markov models and naïve Bayes. To improve the predictive power of all of these 

algorithms, ensemble classifiers consisting of multiple models may also be used. 

 All of the machine learning algorithms mentioned above will be discussed in the context 

of accelerometer data and predicting disease outcomes or health status. A discussion of ensemble 

learning methods will follow. Finally, because the choice of algorithm is secondary to the choice 
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of features to be used as inputs in the model, the selection of features in prior work related to 

accelerometers will also be discussed.  

 Naïve Bayes classifier. Naïve Bayes is another type of generative algorithm that is 

popular with text classifications i.e., spam filtering (Hastie et al., 2009). The classifier “naively” 

assumes that different features that contribute to classification are independent of each other. 

Bayes’ formula is used to estimate the probability that a test case belongs to a particular 

category. The Naïve Bayes classifier has been used for classifying activities in a gym setting 

using accelerometers and HR monitors (Tapia, 2008). 

The simplicity of this algorithm yields quick and easy implementation and is therefore a 

good starting point for analysis. However, studies comparing the performance of several machine 

learning classifiers on accelerometer data found that other machine learning algorithms described 

below performed better than Naïve Bayes (Bao & Intille, 2004; Bao, 2003; Gjoreski et al., 2011; 

Hauschild & Baumbach, 2012; Patel, Mancinelli, Healey, Moy, & Bonato, 2009; Tapia, 2008).  

Penalized logistic regression. Logistic regression is a popular technique that has been 

applied to the NHANES accelerometer data to classify binary health outcomes like 

cardiometabolic syndrome and cancer status (Camhi et al., 2011b; Sisson et al., 2010; Smith et 

al., 2011). However, Song et al. (2004) showed that since the logistic regression assumes a linear 

separation between the observations, it does not perform as well as NN and SVM for classifying 

binary health outcomes. Furthermore, multicollinearity between the input variables poses a 

problem (Hastie et al., 2009).  

To prevent overfitting and achieve more accurate classification results in the presence of 

highly correlated features, a regularization penalty has been proposed (Friedman, Hastie, & 

Tibshirani, 2010). The penalty term, called the least squares absolute shrinkage operator (lasso) 
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or the L1 regularization, shrinks coefficients not contributing to improved classification to zero. 

This method improves classification accuracy of a logistic regression and works well when there 

are correlated predictors in the feature set, essentially performing variable selection (Friedman et 

al., 2010). The lasso regression has been used on accelerometer data for activity recognition in 

multiple studies (Bai et al., 2014; Trost, Zheng, & Wong, 2014; Zheng, 2012). 

 Neural networks. Artificial neural networks (NN) are another type of discriminative 

classifier, as described by Hastie et al. (2009). Considering the brain is an advanced learning 

machine, neural networks were originally explored in an attempt to mimic the neurons in the 

brain for applications in artificial intelligence. The model consists of inputs that are evaluated by 

the neuron and sent out as outputs. The hidden layer computes a set of new features using some 

function of the combination of inputs to help classify them. In other words, NN is a multistage 

regression model that consists of input, output, and at least one hidden layer (see Figure 3 

below). Various NN architectures may contain multiple hidden layers with a second layer 

building on the first to compute a more complex function (Hastie et al., 2009). 

Figure 3. Neural networks chart. 
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Popular applications of NN include handwriting and handwritten zip code recognition 

(Hastie et al., 2009). The algorithm has also been popular for estimating energy expenditure and 

PA recognition using accelerometer data (Baek et al., 2004; Ermes et al., 2008; Freedson et al., 

2011; Rothney et al., 2007; Staudenmayer et al., 2009; Trost, Wong, Pfeiffer, & Zheng, 2012). 

Other accelerometer-based applications include fall risk assessment in the elderly using self-

constructing, fuzzy-logic NN and identification of abnormal gait patterns in patients with 

Complex regional pain syndrome using MLP (S. H. Liu & Chang, 2009; M. Yang et al., 2012). 

Comparison studies show that MLP outperformed logistic regression, single layer NN, and 

Support vector machines (SVM) for predicting health outcomes of at-risk Canadian subjects 65 

and older (Song et al., 2004). NN work well with nonlinear hypotheses and are flexible when 

learning features; however they are slower to train than SVM and do not work well with many 

features.  

 Support vector machines. SVM is a discriminative classifier that separates data into 

outcomes by maximizing the margin or distance between the data belonging to different 

categories (Cortes & Vapnik, 1995). SVM utilizes optimization rather than search and is 

sometimes referred to as a large margin classifier. If it is not possible to separate the data by a 

straight line as shown in Figure 4 below, a more complex nonlinear classifier is fitted with the 

help of a kernel function.  
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Figure 4. Support vector machines chart. 

 

SVM has been shown to be effective for studies using accelerometer data (Sprager & 

Zazula, 2009). Cow behavior accelerometer derived movement patterns were classified using 

SVM with excellent results (Martiskainen et al., 2009). In comparison studies, SVM 

outperformed nearest neighbor, decision tree, multilayer perceptron (MLP)—a type of neural 

network discussed below—Naïve Bayes, and Random Forrest classifiers for activity recognition 

of accelerometer data (Patel et al., 2009; S. W. S. Wang, Yang, Chen, Chen, & Zhang, 2005). 

Additionally, SVM was shown to perform better than decision trees, Naïve Bayes, nearest 

neighbor, and as good as ensemble classifiers such as Random Forests, bagging and boosting for 

fall detection (Luštrek & Kaluža, 2008).  

Decision tree models. Decision trees are a popular type of discriminative algorithm that 

originated in psychology to model human decision-making. This algorithm partitions data 

recursively and develops rules for categorizing the data. The classifier begins at a node that tests 

the value of one feature deemed to be most informative. The node then branches the data and the 

resulting partitions are tested and classified separately based on new features.  

 Several studies comparing machine learning classifiers found that decision trees 

performed better than decision tables, nearest neighbor instance based learning (IBL), and Naïve 

Bayes classifiers for activity recognition using accelerometers (Bao & Intille, 2004; Bao, 2003). 
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Pärkkä et al., (2006) found that custom and automatically generated decision trees outperformed 

artificial neural networks discussed below for activity recognition. Decision trees have also been 

successfully used to classify movements based on accelerometer data in cattle (Robert et al., 

2009). The decision tree is an efficient constructive search algorithm that builds on itself and 

may prove to be an excellent starting point for health status classification. 

Random forests. Numerous machine learning algorithms exist for the task of pattern 

recognition and many appear to be promising for classifying accelerometer data by 

cardiovascular health outcomes. Instead of focusing on one classifier, a current trend in analysis 

is to combine several classifiers into a single, stronger classifier for improved classification 

performance. These techniques are called ensemble learning methods and include techniques 

such as boosting, stacking, plurality voting, and bootstrap aggregation, often referred to as 

bagging. Comparison of several ensemble classifiers for activity recognition using accelerometer 

data revealed that plurality voting performed better than boosting, bagging with stacking coming 

in a close second (Ravi, Dandekar, Mysore, & Littman, 2005).  

 An ensemble classifier that shows particular promise in classifying accelerometer data is 

the random forest (RF) framework that consists of bagged decision trees. RF have been used to 

classify PA and assess functional impairment of fine motor tasks in recovering stroke patients 

(Casale, Pujol, & Radeva, 2011; Kozina, Lustrek, & Gams, 2011; Patel et al., 2010). 

Additionally, the RF framework has been shown to perform better that than Naïve Bayes, NN, 

SVM, and decision trees for classification of pulmonary disease using breath data, for detecting 

ovarian cancer using mass spectrometer data, and for posture recognition and fall detection using 

accelerometer data (Gjoreski et al., 2011; Hauschild & Baumbach, 2012; Wu et al., 2003). 
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 Various machine learning algorithms have been applied to accelerometer data and for 

classification of disease status and health outcomes. These methods have yet to be applied to 

accelerometer derived PA data with the intention of classifying cardiovascular health status. 

Based on the success of classification of accelerometer data using machine learning algorithms 

in previous studies, the methods described above appear to be promising for the purposes of this 

study.  

Feature Extraction 

All of the machine learning algorithms described above require a set of features to be 

derived from the raw data as inputs. Feature extraction and selection is the key to successful 

classification and will lead to shorter training times and reduce overfitting. Studies analyzing 

accelerometer data for activity recognition also use mean acceleration value, standard deviation 

for the range of acceleration values and correlation of pairs of axes for triaxial accelerometers 

(Bao & Intille, 2004; Ravi et al., 2005; S. W. S. Wang et al., 2005). Others also use root mean 

square and maximum value, median, peak frequency and sum of variances, and a jerk metric 

computed as the root mean square value of the derivative of the acceleration data (Ermes et al., 

2008; Gjoreski et al., 2011; Pärkkä et al., 2006; Patel et al., 2010).  

A study comparing various features for optimal activity classification with NN found that 

mean and standard deviation are best for distinguishing static from dynamic states and between 

static states for activity recognition while skewness and kurtosis best distinguish amongst 

dynamic states (Baek et al., 2004). Martiskainen et al. (2009) used mean, standard deviation, 

skewness, kurtosis, maximum value, and minimum value for activity recognition in cows using 

SVM. Smoothing techniques such as fast Fourier transforms (FFT), Radon (R) transforms, and 

Holt-Winters exponential smoothing have also been applied to accelerometer data for improved 
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activity recognition (Elle et al., 2005; J. Liu, Pan, & Xiangcheng, 2010; O’Connell et al., 2010; 

Ravi et al., 2005; Tapia, 2008; Y. Wang, Huang, & Tan, 2007).  

Selection of accelerometer data features for the purposes of classifying cardiovascular 

health status have yet to be conducted. The NHANES offers accelerometer readings over the 

course of the week, aggregated by one minute. As mentioned earlier, the data has been processed 

with methods proposed by NCI relying on predetermined thresholds to categorize the 

observations into PA intensity categories (Evenson, Wen, Metzger, & Herring, 2015; Troiano et 

al., 2008; Tudor-Locke et al., 2009). Unsupervised learning algorithms may also be used to 

cluster the data into groups to derive useful features. These methods are entirely data driven, 

focusing on describing individual PA patterns, and are discussed below. 

K-means. K-means is a type of clustering algorithm that aims to separate the data into k 

groups by minimizing the distance of the observations to the group means. This is a popular 

unsupervised learning technique that yields a non-overlapping partition of the data (Hastie et al., 

2009). Multiple studies have used k-means clustering as an intermediate step to process 

accelerometer data (Choe, Min, & Cho, 2010; Krause, Siewiorek, Smailagic, & Farringdon, 

2003; Laerhoven, 2001; J. Liu et al., 2010; Tapia, 2008; Zhang, Chen, & Li, 2011). This 

approach reduces dimensionality of the large volume of accelerometer readings, while retaining 

relevant data attributes.  

Hidden Markov model. Hidden Markov model (HMM) is a type of generative algorithm 

that predicts the unobserved or hidden state of a system using a Markov chain. When the 

probability of an outcome or state depends only on the previous state, i.e,. the system has no 

memory of the events that preceded the state, the system has a Markov property (Rabiner, 1989). 

HMM has been used to learn from accelerometer data to recognize type of activity based on 
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intensity readings (Guo et al., 2009; Mannini & Sabatini, 2010; O’Connell et al., 2010; Pober et 

al., 2006; Reddy, Burke, Estrin, Hansen, & Srivastava, 2008). Applications of HMM to other 

fields include speech and gesture recognition (J. Liu et al., 2010; Pylvänäinen, 2005; Rabiner, 

1989).  

One advantage of the HMM is that it uses the sequential temporal information embedded 

in the accelerometer data and is therefore particularity useful in recognizing a sequence of 

physical activities performed. However, HMM may be useful as an intermediate step for feature 

extraction as well. Figure 5 shows a graphical representation of the HMM where X is the 

observed accelerometer data and Y is unobserved state to be predicted. 

Figure 5. HMM with X as the observed state and Y as the hidden state. 

 

Principal components analysis. Principal components analysis (PCA) is a popular 

dimensionality reduction technique that produces uncorrelated linear combinations of the data 

(Hastie et al., 2009). This is accomplished by a single value decomposition of the feature matrix 

that may be interpreted as revealing the underlying structure of the data. Because the possible 

features of accelerometer data described above are likely to be correlated with each other, this 

technique is very useful in ensuring that the feature set contains all of the relevant information 

while maintaining full rank. Furthermore, the number of features needed is reduced since the first 

principal component explains the largest amount of variance in the data. Many studies rely on 

PCA to process accelerometer data (Long et al., 2009; Sprager & Zazula, 2009; Trost et al., 

2000).  
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Summary of Needs for Study 

No known study has attempted to connect accelerometer-derived PA in a free-living 

environment and cardiovascular health status in human participants using machine learning. 

Machine learning algorithms have been successfully used to predict health outcomes in medical 

fields and have been used in various disciplines to find patterns in accelerometer data but have 

yet to be used to their full potential in the field of PA research. PA patterns have been studied to 

predict the activity type of an individual using machine learning, but not health status. Moreover, 

many of these studies were conducted in clinical settings, not free-living conditions. 

The NAHNES offers accelerometer derived PA data that was obtained in free-living 

conditions in addition to an extensive number of health-related outcomes. The NHANES 

accelerometer data have been processed using a data reduction method that uses uniform 

thresholds to summarize the data that may miss more subtle individual patterns. The relationship 

between NHANES accelerometer data and various biomarkers has been established using and 

logistic regression and not machine learning techniques.  

This study attempts to establish a set of features to be used with several machine learning 

algorithms and ensemble classifiers to best predict cardiovascular health status via a 

cardiovascular risk score using objective measures of PA in a nationally representative sample. 

Using a 10-year cardiovascular risk score as the outcome controls for age, gender, SBP, TC, 

HDL, and CRP by default, thus eliminating the need to control for these variables in the model. 

This approach allows researchers to focus the analysis on features of accelerometer data as 

inputs. Thus, classification algorithms would only use features obtained from the accelerometer 

data for prediction yielding a very versatile model.  
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Specific Aims  

1. Explore the possibility of using the Reynolds 10-year cardiovascular risk score as an 

outcome measure of cardiovascular health status. 

2. Connect intensity readings from accelerometer data recoded over the course of a week to 

a Reynolds cardiovascular risk score. 

3. Extract, compare and select appropriate features from accelerometer data to use with 

machine learning algorithms for classification by Reynolds cardiovascular risk score.  

4. Classify individuals by Reynolds cardiovascular risk score based on accelerometer-

derived PA using machine learning methods. 

5. Compare machine learning algorithms for classification of accelerometer-derived PA by 

Reynolds cardiovascular risk score. 
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CHAPTER 3 METHODS 

The goal of this study was to assess methods for recognizing patterns in PA data that will 

help predict individual health outcomes. The methodology for extracting and selecting features 

from free-living accelerometer-derived PA NHANES data to accurately classify cardiovascular 

health status characterized by a cardiovascular risk score is discussed in this chapter.  

Data  

Free-living PA data obtained using ActiGraph accelerometers from both the NHANES 

2003–2004 and 2005–2006 was used. The participants wore the activity monitors for seven 

consecutive days and were instructed to remove the device for sleep and water activities such as 

showering and swimming. 10,080 readings of intensity counts, representing each minute of the 

seven day period for each individual wore the PA monitor during the study were recorded 

(Troiano et al., 2008; Tudor-Locke, Johnson, et al., 2011). 

Exclusion Criteria 

Although data for ages 6 to 85 was available, only individuals 30 and older were included 

in the analysis since none of the risk models apply to a younger population. Furthermore, it has 

been shown that children’s data is less consistent (Lloyd-Jones, Hong, et al., 2010; Trost et al., 

2000). It must be noted that the ages of participants were censored above 85 years old. Pregnant 

women were also excluded from analysis as gait and PA levels are affected by pregnancy. 

Women who were pregnant were identified by urine sample results. 

Participants returned the activity monitors by mail following the seven-day study period. 

Monitors that were not calibrated when returned were flagged as uncalibrated and were excluded 

from analysis as the resulting data may be unreliable. Additionally, the National center for 

Health Statistics (NCHS) and the National Cancer Institute (NCI) reviewed the data and flagged 
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intensity values that were outside a reasonable range (intensity ≥ 32,767). Thus, the data flagged 

as unreliable was also excluded from analysis.  

 Finally, additional screening for incomplete data was performed to identify consecutive 

wear of the ActiGrah monitor for the full week (Masse et al., 2005). Participants with insufficient 

valid data were excluded from analysis. As a starting point, the methodology proposed by the 

NCI was used to define non-wear time (Tudor-Locke, Camhi, & Troiano, 2012). Non-wear time 

was determined by consecutive intensity counts of 0, uninterrupted by either 1 minute of an 

intensity count > 100 or 3 consecutive intensity counts between 1 and 100. Valid wear time was 

summarized for each participant and those not meeting the criteria, 4 days of at least 10 hours of 

wear time were excluded (Luke et al., 2011; Masse et al., 2005). Participants with missing values 

for the outcome variables used in the analysis were excluded as well.  

Measures 

Due to the large number of variables collected for the participants in the NHANES in 

addition to accelerometer derived PA, the choice of variables to be used as outcomes was not 

straightforward. Studies that assessed the relationship between health outcomes and 

accelerometer data in the NHANES focused on cardiometabolic and inflammation biomarkers 

available in the data. Classification of cardiovascular health status was difficult since the 

NHANES is not a longitudinal data set. A potential solution explored in this study is the 

Reynolds 10-year cardiovascular risk score (Ridker et al., 2007).  
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Reynolds risk score women*:  

10-year CVD risk [%] = [1 - 0.98634^(exp[B - 22.325])] x 100    [1] 

where B = 0.0799*age + 3.137*ln(systolic BP (mmHg)) + 0.180*ln(CRP (mg/L)) + 

1.382*ln(total cholesterol (mg/dL)) - 1.172*ln(HDL-C (mg/dL)) + 0.134*HbA1c (if diabetic) + 

0.818 (if smoker) + 0.438 (if family history). 

Reynolds risk score men*:  

10-year CVD risk [%]= P = [1 - 0.8990^(exp[B - 33.097])] x 100    [2] 

where B = 4.385*ln(age) + 2.607*ln(systolic BP (mmHg)) + 0.102*ln(CRP (mg/L)) + 

0.963*ln(total cholesterol (mg/dL)) - 0.772*ln(HDL-C (mg/dL)) + 0.405 (if smoker) + 0.541 (if 

family history). 

*CVD = cardiovascular disease; BP = blood pressure; CRP = c-reactive protein; HDL-C = high 

density lipoprotein cholesterol 

Reynolds risk scores were calculated using gender, age, smoking status, SBP, TC, HDL 

CRP and family history of the mother or father having a heart attack before the age of 60 (Ridker 

et al., 2007). Smoking status was categorized according to serum-cotinine levels and 

questionnaire (Wall & Johnson, 1988). 10 year cardiovascular disease risk of 10% and above 

was considered high risk and coded as “1” while risk lower than 10% was considered low risk 

and coded as “0” (Cook et al., 2012). The resulting binary variable of cardiovascular risk was 

used for classification. 

Additionally, the major cardiovascular disease risk factors that make up the Reynolds 

risk score were assessed individually. Systolic blood pressure, total cholesterol, HDL cholesterol, 

cRP levels were coded as binary variables according to Table 4 below, with “1” being considered 
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high risk and “0” low risk, and were used as outcome measures. Self-reported questionnaire data 

was combined with blood serum levels to determine diabetes and smoking status.  

Table 4. Cardiovascular disease risk factors as individual outcomes. 

Cardiovascular Disease Risk Factors Low Risk ("0") High Risk ("1") 

Systolic blood pressure (mm Hg) < 140 ≥ 140 

Total cholesterol (mg/dL) < 240 ≥ 240 

HDL cholesterol  (mg/dL) men ≥ 40 < 40 

HDL cholesterol  (mg/dL) women ≥ 50 < 50 

cRP levels (mg/L) < 1 ≥ 1 

Diabetes measured by HbA1c (%) < 6.5 ≥ 6.5 

Diabetes (self-reported) No Yes 

Smoker status measured by cotinine (ng/mL) < 10 ≥ 10   

Smoker status (self-reported) No Yes 

Family history of myocardial infarction before age 60? No Yes 

Features 

Prior to applying any of the machine learning algorithms, features from the accelerometer 

data were identified to be used as inputs. The NHANES accelerometer data contains intensity 

readings for every minute of the week the participants wore the accelerometer and thus contains 

redundant and uninformative data, for example, non-wear periods. As discussed earlier, the 

NHANES accelerometer data was originally processed using thresholds and the features used for 

classification included mean and total minutes at a low, moderate, or vigorous intensity PA. 

Many studies using accelerometer data focus on activity recognition and therefore utilize by the 

second intensity readings for precision (Kozina et al., 2011). The NHANES data on the other 

hand, focuses on health outcomes and only by the minute intensity readings are provided. Thus, 

the NHANES accelerometer data poses a unique problem of feature extraction that was explored 

in this study. 

Certain features used for activity recognition from accelerometer data were not applicable 

to the data available from the NHANES. For example, Actigraph monitors used in NHANES 
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were uniaxial and therefore correlations of accelerations of axis pairs of triaxial accelerometers 

such as by Ravi et al. (2005) were not applicable. Also, the mean, root mean square, standard 

deviation, and other features were derived over sliding or overlapping windows of around six 

seconds by Gjoreski et al. (2011) were again not applicable for the by minute readings in the 

NHANES data. Feature selection for this data focused on representing a general pattern of PA of 

an individual over the course of the week, not concentrating on the type of activity performed. 

Feature extraction. Multiple features sets were extracted for this study. First, NCI based 

features that focus on time spent in each intensity category outlined in Table 5 were computed 

(Freedson, Bowles, Troiano, & Haskell, 2012; Tudor-Locke et al., 2012). Features that further 

describe the pattern of PA throughout the week, including the number of 10 minute bouts of 

moderate and vigorous activity (MVPA), the number of sedentary bouts greater than 60 minutes, 

and the difference in lifestyle and MVPA minutes and bouts between week and weekend days 

were also considered.   

Table 5. Thresholds for PA intensity categories. 

Activity type Intensity counts 

Sedentary <100 

Light 100 - 759 

Lifestyle 760 - 2019 

Moderate 2020 - 5998 

Vigorous ≥5999 

Feature extraction using clustering algorithms was also explored. K-means and HMM 

were applied to the data, grouping the accelerometer readings of each individual study 

participant into five categories. Five categories were chosen to correspond to the five PA 

intensity categories used for the NCI features. Means, variances, skewness, and kurtosis were 

computed for the distribution of each cluster group for both k-means and HMM. Additionally, 
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the probability of each individual transitioning between the five states was estimated by the 

HMM and used as features for classification.  

Feature selection. First, each set of features was checked for full rank and linear 

combinations were eliminated. Next each feature set was reduced using a high correlation filter 

with a threshold of 0.7. Thus, subsets of the NCI, k-means and HMM derived features sets were 

created to only contain features whose absolute correlation coefficient with any other feature in 

the set was less than 0.7. A subset of the NCI features was also manually chosen to accomplish 

the task of creating a low correlation subset. Next, each feature set was broken down into 

principal components. The principal components that explain at least 90% of the variance were 

chosen and used as features. Finally, the three features sets were combined and used for model 

training all together. Because the Reynold’s risk score was developed separately for men and 

women, gender was included as a control variable in all feature sets. 

Classification 

 Lasso penalized logistic regression, neural networks, SVM, decision trees, and random 

forest classifiers were trained on the accelerometer-derived feature sets described above. The 

binary outcomes used for classification were the Reynolds CVD risk score as well as its 

individual components, systolic BP, cRP, total and HDL cholesterol, as outlined in Table 4. Due 

to the difference in the Reynold’s risk score between men and women, the classifiers were also 

trained separately by gender.  

Comparison and Validation 

The classifiers were trained using randomly selected 80% of the data and tested on the 

rest of the data. The models were compared using several performance indicators. First, 

classification accuracy, the model prediction agreement with the true outcome, was computed. 
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Because the sample contained more low risk than high risk cases, the outcome measure was 

imbalanced. Therefore, relying solely on classification accuracy for model assessment would be 

misleading. To account for bias, the kappa coefficient was also computed, thus adjusting the 

observed agreement rate by the expected agreement due to chance. If either the false positive or 

the false negative rate was heavily favored, the kappa coefficient would be lower than if the 

misclassification was more balanced.  

Another measure of model performance used was the area under the receiver operating 

characteristic (ROC) curve, or AUC. The ROC curve plots the false positive rate (1-specificity) 

against the true positive rate (sensitivity). Therefore, the AUC represents the probability of 

correctly identifying a randomly selected high risk participant over a randomly selected low risk 

participant. The AUC ranges from 0.5 to 1. Unlike classification accuracy, this measure is not 

biased by an unbalanced sample. Additionally, performance of the machine learning algorithms 

was assessed using sensitivity (proportion of correctly identified positives), specificity 

(proportion of correctly identified negatives), false negative and false positive rates (Bao, 2003; 

Loprinzi et al., 2012; Patel et al., 2009; Song et al., 2004).  

Software 

 All analysis was performed using R statistical software (R Core Team, 2014). The 

penalized logistic regression was fit using the ‘glmnet’ package (Friedman et al., 2010). The 

neural network with the ‘nnet’ package (Venables & Ripley, 2002); random forest classifier with 

the ‘randomForest’ package (Liaw & Wiener, 2002); decision trees with the ‘rpart’ package 

(Therneau, Atkinson, & Ripley, 2015); and SVM with the ‘e1071’ package (Meyer, Dimitriadou, 

& Hornik, 2015). Model tuning was conducted with the ‘caret’ (Kuhn, 2008) and ‘e1071’ 
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packages depending on the model; visualizations were created with the ‘ggplot2’ (Wickham, 

2009), ‘corrplot’ (Wei & Simko, 2016), and ‘tabplot’ packages (Tennekes & Jonge, 2012). 
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CHAPTER 4 RESULTS 

 This chapter describes the results of the analysis described in Chapter 3 to meet the 

specific aims of this study. First, the characteristics of the study participants, including the 

Reynolds 10-year cardiovascular risk score are summarized. Next appropriate features from the 

accelerometer data are extracted, compared and selected. Then, individuals are classified by their 

binary Reynolds cardiovascular risk score using the various feature sets. Finally, the machine 

learning algorithms used for classification are compared. 

Summary Statistics 

As a result of filtering the 2003-2006 NHANES data by the exclusion criteria outlined in 

Chapter 3, data for 4,236 individuals remained and was used in this study. Table 6 shows the 

characteristics of the remaining participants, including demographics and CVD risk factors. The 

sample data consists of 2029 women and 2207 men with an average age of 56.24 (SD = 15.67). 

The average Reynold’s risk score was 9% with a standard deviation of 13%. However, the 

distribution of this measure was positively skewed, with a maximum computed Reynold’s risk 

score of 96% in the sample; the median Reynold’s risk score was 4%.  

Table 6. Summary statistics of study participants. 

 Cardiovascular Disease Risk Factors Mean SD Median Min Max 

Age 56.24 15.67 55 30 85 

BMI 28.65 5.82 27.85 13.36 63.87 

Systolic blood pressure (mm Hg) 129.39 21.4 126 80 270 

Total cholesterol (mg/dL) 203.12 40.93 200 84 458 

HDL cholesterol  (mg/dL)  54.3 15.96 52 17 154 

cRP levels (mg/L) 0.43 0.78 0.21 0.01 18.5 

HbA1c (%) 5.7 1.02 5.5 3.9 14 

Reynold’s risk score 0.09 0.13 0.04 0 0.96 

Next, the summary statistics are presented by gender in Table 7. There did not appear to 

be any notable differences between men and women in this study except for HDL, HbA1c and 

Reynold’s risk score. Women appeared to have a higher HDL (0.49 mg/dL) and HbA1c 
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(60.05%), and a lower Reynold’s risk score (6%) than men (0.38 mg/dL, 49.01% and 11%, 

respectively).  Figure 6 illustrates the CVD risk factors partitioned by gender with the Reynold’s 

risk score presented separately in Figure 7.  

Table 7. Summary statistics of study participants by gender. 

 Female (N = 2029) Male (N = 2207) 

Cardiovascular Disease Risk Factors Mean SD Mean SD 

Age 56.41 15.57 56.09 15.77 

BMI 28.94 6.53 28.38 5.08 

Systolic blood pressure (mm Hg) 129.92 23.82 128.91 18.91 

Total cholesterol (mg/dL) 206.73 40.54 199.79 41 

HDL cholesterol  (mg/dL) 60.05 16.29 49.01 13.68 

cRP levels (mg/L) 0.49 0.71 0.38 0.83 

HbA1c (%) 5.67 0.95 5.73 1.07 

Reynold’s risk score 0.06 0.11 0.11 0.14 

Figure 6. Individual CVD risk factors grouped by male (green) and female (coral) participants. 
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Figure 7. Reynold’s risk score by male (green) and female (coral) participants. 

 

Table 8 summarizes the CVD risk factors in terms of high and low risk (with the 

thresholds for high risk described in Table 4 in Chapter 3).  28.38% of the participants had a 

Reynold’s risk score of 10% or greater, indicating a high risk of a cardiovascular event in the 

next 10 years. More than half of the participants had a family history of myocardial infarction, 

and less than 10% were considered at a high risk based on their cRP levels. Interestingly, the 

self-reported smoking status was slightly lower than that determined by serum cotinine levels, 

while the self-reported diabetes status was slightly higher than the one based on HbA1c levels.  

Figure 8 shows the CVD risk factors by high and low CVD risk score. The most apparent 

difference between high and low risk categories was in age. Unsurprisingly, participants who 

were at a high risk of CVD, appeared to be older. Another risk factor that appeared to be 

different for the high and low risk categories was BP. Again, since high BP was in itself a form 

of CVD, those at high risk of CVD appeared to have high BP. The rest of the risk factors, 



59 
 

including TC, HDL, cRP and Hba1c did not appear to be different between the high and low risk 

categories.  

Table 8. Binary CVD risk factors. 

Cardiovascular Disease Risk Factors Low Risk  High Risk  % High Risk 

Systolic blood pressure (mm Hg) 3088 1148 27.10% 

Total cholesterol (mg/dL) 3519 717 16.93% 

HDL cholesterol  (mg/dL)  3137 1099 25.94% 

cRP levels (mg/L) 3829 407 9.61% 

Diabetes measured by HbA1c (%) 3777 451 10.67% 

Diabetes (self-reported) 3719 517 12.20% 

Smoker status measured by cotinine (ng/mL) 3276 955 22.57% 

Smoker status (self-reported) 3412 824 19.45% 

Family history of myocardial infarction before age 60? 1835 2401 56.68% 

Reynold's Risk score >= 10% 3034 1202 28.38% 

Figure 8. Individual CVD risk factors grouped by high (green) and low (coral) CVD risk score. 

 

Figure 9 shows a visual representation of the binary risk factors for CVD. The first bar 

represents the outcome measure based on the Reynold’s risk score. The rest of the data was 

ordered according to high and low risk CVD category of the outcome measure. Again, there did 
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not appear to be a difference between the amount of smokers, people with diabetes, high cRP, 

total and HDL cholesterol in high and low risk categories. However, there did appear to be more 

participants with high blood pressure in the high CVD risk category. 

Figure 9. Binary CVD risk factors ordered by high and low risk categories. 

 

Table 9 shows the CVD risk factors separated by gender. There were fewer female 

smokers, and the discrepancy between self–reported and cotinine–derived smoking status 

appeared only in men. Slightly more women seemed to have high systolic BP and cRP levels 

than men.  Notably, the percentage of participants at high CVD risk based on their Reynold’s 

risk score differed by almost 20% between men and women, with more men at high risk.  

Counts of participants in high and low risk categories based on CVD factors that make up 

the Reynold’s risk score are shown in Table 10. While no one in the sample had all six risk 

factors flagged, three participants, one male and two female had five of the six risk factors. There 

did not appear to be a gender difference in terms of the number of CVD risk factors.   
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Table 9. Binary CVD risk factors by gender. 

Gender Female (N = 2029) Male (N = 2207) 

Cardiovascular Disease Risk Factors Low Risk  

High 

Risk  

% High 

Risk 

Low 

Risk  

High 

Risk  

% High 

Risk 

Systolic blood pressure (mm Hg) 1419 610 30.06% 1669 538 24.38% 

Total cholesterol (mg/dL) 1639 390 19.22% 1880 327 14.82% 

HDL cholesterol  (mg/dL)  1463 566 27.90% 1674 533 24.15% 

cRP levels (mg/L) 1763 266 13.11% 2066 141 6.39% 

Diabetes measured by HbA1c (%) 1820 209 10.30% 1957 242 11.01% 

Diabetes (self-reported) 1783 246 12.12% 1936 271 12.28% 

Smoker status measured by cotinine (ng/mL) 1702 324 15.99% 1574 631 28.62% 

Smoker status (self-reported) 1709 320 15.77% 1703 504 22.84% 

Family history of myocardial infarction 

before age 60? 844 1185 58.40% 991 1216 55.10% 

Reynold's Risk score ≥10% 1660 369 18.19% 1374 833 37.74% 

Table 10. Count and percentage of participants having a combination of CVD risk factors. 

Number of 

CVD risk 

factors 0 1 2 3 4 5 

 N % N % N % N % N % N % 

Female 334 16.46 718 35.39 636 31.35 285 14.05 54 2.66 2 0.10 

Male 412 18.67 812 36.79 683 30.95 261 11.83 38 1.72 1 0.05 

All 746 17.61 1530 36.12 1319 31.14 546 12.89 92 2.17 3 0.07 

 Overall, there did not appear to be a gender effect for the individual CVD risk factors. 

While the average Reynold’s risk score did not appear to be substantially different between men 

and women, there were almost 20% more men with a Reynold’s risk score of ≥ 10% in the 

sample. These findings are a strong indicator that gender should be controlled for when using the 

Reynold’s risk score as the outcome measure.  

Features 

 The features extracted from the accelerometer data are discussed in this section. Three 

categories of features were chosen for this study, those based on the established PA intensity 

thresholds (Troiano et al., 2008), those derived by k-means clustering and those based on the 

HMM.  
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 NCI methods. The methods proposed by NCI to process the NHANES accelerometer 

data and the thresholds proposed by Troiano et al. (2008) were used to establish the first set of 

features in this study. The average number of minutes spent in each PA intensity category is 

presented in Table 11. The participants spent the most time in sedentary and light categories. At 

the same time, it appears that individuals spent less than a minute in vigorous activity, on 

average.  

Table 11. NCI PA categories. 

PA type minutes Mean SD Median Min Max 

Sedentary 494.89 124.81 492.15 67.5 1088.33 

Light 258.68 69.71 257.67 31 608 

Lifestyle 81.62 50.73 73.86 0.67 393.2 

Moderate 19.26 21.41 12.29 0 208.5 

Vigorous 0.63 2.93 0 0 63.4 

Table 12 shows the breakdown of minutes spent in various PA categories by gender. 

While sedentary and light minutes appeared to be similar, there did appear to be a difference in 

the amount of lifestyle and moderate activity performed by men and women. The activity 

categories separated by gender are illustrated in Figure 10. 

Table 12. NCI PA categories by gender. 

 Female (N = 2029) Male (N = 2207) 

PA type minutes Mean SD Mean SD 

Sedentary 491.31 117.13 498.19 131.42 

Light 268.47 68.38 249.68 69.73 

Lifestyle 72.46 45.11 90.05 54.05 

Moderate 13.88 15.62 24.2 24.59 

Vigorous 0.42 2.26 0.82 3.42 
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Figure 10. Time spent in NCI PA categories by male (green) and female (coral) participants. 

 

The PA intensity features separated by CVD risk based on the Reynold’s risk score are 

presented in Table 13 and illustrated in Figure 11. Those at high risk of CVD appeared to have 

spent more time in the sedentary category and less time in lifestyle and moderate activity. 

Table 13. NCI PA categories by CVD risk. 

 Low CVD Risk High CVD Risk 

PA type minutes Mean SD Mean SD 

Sedentary 475.12 121.2 544.8 119.81 

Light 269.36 66.98 231.71 69.21 

Lifestyle 92.99 49.88 52.94 40.5 

Moderate 23.25 22.61 9.19 13.57 

Vigorous 0.83 3.41 0.12 0.76 
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Figure 11. Time spent in NCI PA categories separated by high (green) and low (coral) CVD risk. 

 

Finally, Table 14 shows the PA intensity categories by gender and CVD risk. There did 

not appear to be a gender effect for sedentary and light time, with men and women spending 

roughly the same amount of time for the high and low risk categories. For both high and low 

CVD risk categories, women spent less time in lifestyle and moderate PA than men.  

Table 14. NCI PA categories by gender and CVD risk. 

 Low CVD Risk High CVD Risk 

 Female Male Female Male 

PA type 

minutes Mean SD Mean SD Mean SD Mean SD 

Sedentary 478.11 112.62 471.52 130.76 550.7 118.75 542.19 120.25 

Light 275.95 64.28 261.4 69.31 234.83 75.84 230.33 66.06 

Lifestyle 80.61 43.74 107.95 52.69 35.83 30.74 60.52 41.98 

Moderate 15.98 16.06 32.02 26.02 4.42 8.5 11.3 14.81 

Vigorous 0.5 2.47 1.23 4.25 0.07 0.81 0.14 0.74 

In addition to the NCI PA categories, features that account for how PA was spread 

throughout the day and week were calculated. The features still relied on the NCI methods 
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(Tudor-Locke et al., 2009) and thresholds outlined in Table 5. The features included the amount 

of time spent in sedentary bouts of one hour or longer, the number of times per day the 

participant engaged in at least 10 minute bouts of MVPA, the number of days per week with 2 or 

more bouts if MVPA, and the difference between the number of MVPA bouts accumulated 

during the week and the weekend. Also, the total minutes spent in lifestyle and MVPA categories 

per day were included for the top four days for each participant. The summary of all NCI 

features, along with the descriptions of each variable is presented in Table 15. 

K-means clustering. To further explore various PA activity patterns, the data was 

clustered into categories for each participant using k-means. With this method, thresholds for 

each participant would vary given the activity levels recorded throughout the week. The data was 

divided into five clusters to correspond to the five PA intensity levels established by Troiano 

(2008) and used as part of the NCI feature set. Table 16 summarizes the results of applying a k-

means cluster to the data.  

HMM clustering. The accelerometer data was also clustered using the HMM. Similar to 

k-means, the data was clustered into 5 categories; however, in addition to computing the 

distributions for the categories for each participant, the probabilities of transitioning between the 

categories were also estimated. In order to fit HMM, the zero readings were removed from the 

data. Table 17 shows a summary of the HMM features.  
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Table 15. NCI PA pattern features. 

Variable Name Variable Description Mean SD Median Min Max 

sed_min Sedentary minutes per day 494.89 124.81 492.15 67.5 1088.33 

light_min Light minutes per day 258.68 69.71 257.67 31 608 

life_min Lifestyle minutes per day 81.62 50.73 73.86 0.67 393.2 

mod_min Moderate minutes per day 19.26 21.41 12.29 0 208.5 

vig_min Vigorous minutes per day 0.63 2.93 0 0 63.4 

sed_bouted_60min 

Sedentary minutes accumulated in 

bouts of length ≥ 60 min 21.66 35.66 10.71 0 441.57 

num_mvpa_bouts 

Number of MVPA bouts per day ≥ 

10 0.29 0.6 0 0 7.67 

num_vig_bouts 

Number of vigorous bouts per day 

≥10 0.02 0.15 0 0 3.29 

mvpa_bouted 

MVPA minutes accumulated in 

bouts of length ≥ 10 min 5.72 12.46 0 0 141.83 

vig_bouted 

Vigorous intensity minutes 

accumulated in bouts of length ≥ 

10 min 0.36 2.49 0 0 56.4 

tot_mv_bouts Total week MVPA bouts 1.79 3.64 0 0 46 

tot_mv_min Total week MVPA Minutes 120.27 136.41 74 0 1251 

tot_li_min Total week Lifestyle Minutes 494.85 317.29 442 4 2332 

wk_mv_dif_bout Week - weekend MVPA bouts 0.07 0.64 0 -7.5 6.4 

avg_wk_mv_dif_min 

Average week - weekend MVPA 

minutes 5.29 21.04 1.8 -186.5 194.8 

avg_wk_li_dif_min 

Average week - weekend lifestyle 

minutes 15.54 49.54 7.5 -178.67 393.2 

tot_wk_mv_dif_min 

Total week - weekend MVPA 

minutes 68.12 95.18 35 -266 974 

tot_wk_li_dif_min 

Total week - weekend lifestyle 

minutes 264.06 222.13 213 -178 1966 

perc_wk_mv Percent week MVPA minutes 0.77 0.19 0.8 0 1 

perc_we_mv Percent weekend MVPA minutes 0.23 0.18 0.2 0 1 

perc_wk_li Percent week lifestyle minutes 0.76 0.13 0.76 0.16 1 

perc_we_li Percent weekend lifestyle minutes 0.24 0.13 0.24 0 0.84 

mv_wk2 

Number of days with at least two 

MVPA bouts >= 10 0.4 0.99 0 0 7 

top_mv.1 Highest MVPA minutes in one day 37.46 38.95 26 0 365 

top_mv.2 

Second highest MVPA minutes in 

one day 26.57 30.11 16 0 278 

top_mv.3 

Third highest MVPA minutes in 

one day 20.56 24.92 11 0 257 

top_mv.4 

Fourth highest MVPA minutes in 

one day 15.85 20.59 8 0 194 

top_li.1 

Highest lifestyle minutes in one 

day 123.32 72.65 112 2 470 

top_li.2 

Second highest lifestyle minutes in 

one day 99.71 62.4 90 0 445 

top_li.3 

Third highest lifestyle minutes in 

one day 85.6 56.35 75 0 441 

top_li.4 

Fourth highest lifestyle minutes in 

one day 72.81 50.06 64 0 340 
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Table 16. K-means clustering features. 

Variable Name Variable Description Mean SD Median Min Max 

min.1 Minutes in category 1 8223.14 560.5 8254.5 5858 9805 

min.2 Minutes in category 2 1042.16 290.55 1027 168 2657 

min.3 Minutes in category 3 517.03 196.84 502.5 36 1394 

min.4 Minutes in category 4 223.24 115.93 208 7 889 

min.5 Minutes in category 5 74.43 55.91 63 1 550 

threshold.1 Threshold for category 1 198.5 82.81 185 40 806 

threshold.2 Threshold for category 2 649.44 278.35 598 143 3979 

threshold.3 Threshold for category 3 1346.05 648.01 1218 315 11364 

threshold.4 Threshold for category 4 2745.86 2096.29 2273 564 32767 

threshold.5 Maximum for category 5 5856.37 3526.98 4981.5 1192 32767 

center.1 Centers of category 1 16.11 8.88 14.26 1.25 77.98 

center.2 Centers of category 2 379.9 158.25 354.72 76.24 1552.91 

center.3 Centers of category 3 916.57 401.67 844.21 203.86 6579.47 

center.4 Centers of category 4 1763.67 891.05 1580.99 417.43 15664.24 

center.5 Centers of category 5 3517.13 2565.77 2898.34 707.2 32767 

variance.1 Variance of category 1 1770.91 1695.23 1278.12 28.47 20808.17 

variance.2 Variance of category 2 18711.43 18699.16 13575.72 803.5 351468.19 

variance.3 Variance of category 3 44559.42 105371.38 28547.3 2226.8 5795191.63 

variance.4 Variance of category 4 137420.87 409281.55 71276.34 4885.76 13800445.2 

variance.5 Variance of category 5 869534.31 3715371.22 313846.95 0 105947456 

skewness.1 Skewness of category 1 2.95 0.62 2.88 1.13 7.18 

skewness.2 Skewness of category 2 0.39 0.16 0.38 -0.51 1.72 

skewness.3 Skewness of category 3 0.44 0.21 0.41 -0.56 2.73 

skewness.4 Skewness of category 4 0.62 0.4 0.56 -2.32 5.35 

skewness.5 Skewness of category 5 1.41 1.13 1.29 -4.83 11.65 

kurtosis.1 Kurtosis of category 1 8.62 4.46 7.76 -0.08 57.04 

kurtosis.2 Kurtosis of category 2 -0.98 0.22 -1.03 -1.31 2.67 

kurtosis.3 Kurtosis of category 3 -0.88 0.43 -0.97 -1.41 9.78 

kurtosis.4 Kurtosis of category 4 -0.43 1.48 -0.75 -1.91 35.63 

kurtosis.5 Kurtosis of category 5 3.55 7.66 1.36 -2.75 146.24 

Table 17. HMM clustering features.  

Variable Name Variable Description Mean SD Median Min Max 

min.1 Minutes in category 1 735 245.76 702.5 126 4628 

min.2 Minutes in category 2 920.06 263.75 893.5 0 2175 

min.3 Minutes in category 3 1083.65 312.39 1057 0 2501 

min.4 Minutes in category 4 975.99 348.99 951.5 0 2800 

min.5 Minutes in category 5 347.21 230.47 295 0 1661 

trans_prob.1 Transition probability from category 1 to 1 0.49 0.09 0.48 0 0.84 

trans_prob.2 Transition probability from category 1 to 2 0.27 0.05 0.27 0 0.47 

trans_prob.3 Transition probability from category 1 to 3 0.14 0.05 0.14 0 0.42 

trans_prob.4 Transition probability from category 1 to 4 0.08 0.04 0.08 0 0.31 
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Table 17 (cont.)  

trans_prob.5 Transition probability from category 1 to 5 0.01 0.01 0.01 0 0.14 

trans_prob.6 Transition probability from category 2 to 1 0.2 0.05 0.2 0 0.42 

trans_prob.7 Transition probability from category 2 to 2 0.48 0.08 0.48 0 0.92 

trans_prob.8 Transition probability from category 2 to 3 0.21 0.05 0.21 0 0.44 

trans_prob.9 Transition probability from category 2 to 4 0.08 0.04 0.08 0 0.28 

trans_prob.10 Transition probability from category 2 to 5 0.02 0.02 0.01 0 0.22 

trans_prob.11 Transition probability from category 3 to 1 0.08 0.03 0.08 0 0.31 

trans_prob.12 Transition probability from category 3 to 2 0.18 0.05 0.18 0 0.38 

trans_prob.13 Transition probability from category 3 to 3 0.52 0.09 0.52 0 0.94 

trans_prob.14 Transition probability from category 3 to 4 0.19 0.05 0.19 0 0.4 

trans_prob.15 Transition probability from category 3 to 5 0.03 0.02 0.02 0 0.14 

trans_prob.16 Transition probability from category 4 to 1 0.05 0.02 0.05 0 0.21 

trans_prob.17 Transition probability from category 4 to 2 0.08 0.03 0.07 0 0.29 

trans_prob.18 Transition probability from category 4 to 3 0.21 0.06 0.2 0 0.46 

trans_prob.19 Transition probability from category 4 to 4 0.59 0.09 0.58 0 0.98 

trans_prob.20 Transition probability from category 4 to 5 0.08 0.05 0.08 0 0.32 

trans_prob.21 Transition probability from category 5 to 1 0.02 0.02 0.01 0 0.26 

trans_prob.22 Transition probability from category 5 to 2 0.03 0.03 0.03 0 0.28 

trans_prob.23 Transition probability from category 5 to 3 0.08 0.05 0.07 0 0.41 

trans_prob.24 Transition probability from category 5 to 4 0.22 0.1 0.22 0 0.78 

trans_prob.25 Transition probability from category 5 to 5 0.65 0.14 0.64 0 0.99 

center.1 Ceneter of category 1 7.72 5.26 6.47 0 119.86 

center.2 Ceneter of category 2 52.26 33.46 44.95 0 798.98 

center.3 Ceneter of category 3 210.08 117.18 182.63 0 1342.5 

center.4 Ceneter of category 4 651.38 330.67 585.54 0 3617.77 

center.5 Ceneter of category 5 1918.42 1353.81 1534.42 0 24706.97 

variance.1 Variance of category 1 52.13 201.77 22.14 0 9913.77 

variance.2 Variance of category 2 1287.84 3983.14 670.27 0 218373.75 

variance.3 Variance of category 3 15182.79 21054.2 8577.43 0 334599.18 

variance.4 Variance of category 4 124407.8 147885 78043.9 0 2023938.2 

variance.5 Variance of category 5 1255096 5073612 555482 0 123735091 

skewness.1 Skewness of category 1 0.64 0.3 0.63 0.14 13.89 

skewness.2 Skewness of category 2 0.58 0.12 0.59 0 1.1 

skewness.3 Skewness of category 3 0.5 0.14 0.51 -0.18 1.1 

skewness.4 Skewness of category 4 0.57 0.22 0.56 -0.51 2.21 

skewness.5 Skewness of category 5 1.17 0.97 1.05 -2.43 10.38 

kurtosis.1 Kurtosis of category 1 -0.45 6.93 -0.64 -1.22 381.05 

kurtosis.2 Kurtosis of category 2 -0.54 0.21 -0.56 -1.16 1.04 

kurtosis.3 Kurtosis of category 3 -0.48 0.22 -0.5 -1.11 0.9 

kurtosis.4 Kurtosis of category 4 -0.02 0.48 -0.11 -0.89 11.35 

kurtosis.5 Kurtosis of category 5 4.17 7.71 2.15 -2.33 181.66 
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Feature Selection 

 The results of applying several feature selection methods are presented here. The derived 

feature subsets are summarized for each of the feature sets, NCI, k-means and HMM.  

NCI features. For this feature set, the first subset was selected manually to be a basic set 

of PA activity descriptors, the average time spent in each of the five intensity categories. This 

subset is summarized in Tables 6-9 and represents the classic approach to aggregating 

accelerometer data using PA intensity thresholds.  

The matrix of all features was checked for full rank, and no linear combinations were 

found. Next, highly correlated features were identified and removed, creating a new subset of 

NCI features with low correlation. The correlation matrices of the full feature set and the low 

correlation subset are visually summarized in Figure 12 and Figure 13. 

Because the features describing the patterns of PA throughout the week were chosen to 

provide a more detailed description of time spent in PA categories, the basic features, 

particularly lifestyle and moderate minutes were highly correlated with the PA pattern features. 

The low correlation subset did not include lifestyle, moderate, and vigorous PA minutes, but 

instead included the average number of vigorous activity bouts, the difference in MVPA during 

the week and weekend, and the highest number of minutes spent in lifestyle activity during one 

day.  

Since the choice of low correlation set variables was automated, another subset of NCI 

features was chosen manually. The aim was also to reduce the correlation between variables. 

Figure 14 shows the resulting correlation plot. Like in Figure 13, the correlations of the features 

in the subset were under |0.7|. Table 18 summarizes the sets of NCI based features to be used for 

classification. 
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Figure 12. Correlation plot of all NCI features, with dark blue indicating strong positive correlation and dark red 

indicating strong negative correlation.  
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Figure 13. Correlation plot of NCI low correlation subset, with dark blue indicating strong positive correlation and dark 

red indicating strong negative correlation. 

 

Figure 14. Correlation plot of NCI manually chosen variables subset, with dark blue indicating strong positive correlation 

and dark red indicating strong negative correlation. 
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Table 18. Subsets of NCI features. 

NCI features 

Basic Set 

(N=7)  

Full Set 

(N=32) 

 Low Corr 

(N=10) 

Chosen 

(N=11) 

gender x x x x 

sed_min x x x x 

light_min x x x x 

life_min x x  

 
mod_min x x  

 
vig_min x x  x 

sed_bouted_60min  x x x 

num_mvpa_bouts  x  

 
num_vig_bouts  x x 

 
mvpa_bouted 

 

x  

 
vig_bouted 

 

x  

 
tot_mv_bouts 

 

x  

 
tot_mv_min 

 

x  

 
tot_li_min 

 

x  

 
wk_mv_dif_bout  x x x 

avg_wk_mv_dif_min  x  x 

avg_wk_li_dif_min  x  x 

tot_wk_mv_dif_min  x  

 
tot_wk_li_dif_min  x  

 
perc_wk_mv 

 

x  x 

perc_we_mv 

 

x x 

 
perc_wk_li 

 

x  x 

perc_we_li 

 

x x 

 
mv_wk2 

 

x x x 

top_mv.1 

 

x  

 
top_mv.2 

 

x  

 
top_mv.3 

 

x  

 
top_mv.4 

 

x  

 
top_li.1 

 

x x 

 
top_li.2 

 

x  

 
top_li.3 

 

x  

 
top_li.4 

 

x  

 

 K-means features. The features derived by clustering the accelerometer readings into 

five categories were produced using a purely data driven technique. The feature selection process 

also relied on a data driven method by applying an automated high correlation filter. Unlike the 

NCI features, no manual feature sets were chosen. Figure 15 and Figure 16 illustrate the 
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correlation plots of the all features and those chosen by the filter, respectively. The full set of 30 

features was reduced to 11. Table 19 summarizes the two feature sets.  

Figure 15. Correlation plot of k-means full set of features, with dark blue indicating strong positive correlation and dark 

red indicating strong negative correlation. 
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Figure 16. Correlation plot of k-means low correlation subset, with dark blue indicating strong positive correlation and 

dark red indicating strong negative correlation. 

 

Table 19. Subsets of k-means features. 

K-means 

Features Full Set (N=31) 

Low Corr 

(N=12) 

gender x x 

min.1 x 

 
min.2 x 

 
min.3 x 

 
min.4 x 

 
min.5 x x 

threshold.1 x 

 
threshold.2 x 

 
threshold.3 x 

 
threshold.4 x 

 
threshold.5 x x 

center.1 x 

 
center.2 x x 

center.3 x 

 
center.4 x 

 
center.5 x 

 
variance.1 x 
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Table 19 (cont.) 

variance.2 x 

 
variance.3 x x 

variance.4 x x 

variance.5 x x 

skewness.1 x x 

skewness.2 x x 

skewness.3 x 

 
skewness.4 x 

 
skewness.5 x x 

kurtosis.1 x 

 
kurtosis.2 x 

 
kurtosis.3 x x 

kurtosis.4 x x 

kurtosis.5 x 

 

HMM features. The matrix of all HMM features was not full rank and three variable 

were identified to be linear combinations of each other and were removed. Similar to the k-

means feature set, the HMM set was reduced using an automated high correlation filter. The 

correlation plots for the full set and the low correlation subsets are presented in Figure 17 and 

Figure 18, respectively. Unlike the NCI and k-means feature sets, the HMM set did not have as 

many highly correlated variables, hence many remained in the low correlation subset. The full 

set of 46 variables was reduced to 36. The summary of the two HMM feature sets is presented in 

Table 20.  
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Figure 17. Correlation plot of HMM full set of features, with dark blue indicating strong positive correlation and dark 

red indicating strong negative correlation. 
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Figure 18. Correlation plot of HMM low correlation subset, with dark blue indicating strong positive correlation and 

dark red indicating strong negative correlation. 

 

  



78 
 

Table 20. Subsets of HMM features. 

HMM features 

Full Set 

(N=47) 

Low 

Corr 

(N=37) 

gender x x 

min.1 x x 

min.2 x x 

min.3 x x 

min.4 x x 

min.5 x x 

trans_prob.1 x x 

trans_prob.2 x x 

trans_prob.3 x x 

trans_prob.4 x x 

trans_prob.5 x x 

trans_prob.6 x x 

trans_prob.7 x x 

trans_prob.8 x x 

trans_prob.9 x x 

trans_prob.10 

  
trans_prob.11 x x 

trans_prob.12 x x 

trans_prob.13 x x 

trans_prob.14 x x 

trans_prob.15 x x 

trans_prob.16 x x 

trans_prob.17 x x 

trans_prob.18 x x 

trans_prob.19 x x 

trans_prob.20 

  
trans_prob.21 x x 

trans_prob.22 x x 

trans_prob.23 x x 

trans_prob.24 x x 

trans_prob.25 

  
center.1 x 

 
center.2 x 

 
center.3 x 

 
center.4 x 

 
center.5 x x 

variance.1 x 

 
variance.2 x x 

variance.3 x 

 
variance.4 x 
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Table 20 (cont.) 

variance.5 x x 

skewness.1 x x 

skewness.2 x x 

skewness.3 x x 

skewness.4 x x 

skewness.5 x x 

kurtosis.1 x 

 
kurtosis.2 x 

 
kurtosis.3 x x 

kurtosis.4 x x 

kurtosis.5 x 

 

PCA. Finally, each full set of features was transformed using PCA. Because principal 

components are linear combinations of the variables in the original matrix that are uncorrelated 

with each other, the high correlation between the variables is resolved without the need to apply 

a filter or chose the variables manually. Figure 19, Figure 20, and Figure 21 show the scree plots 

for the NCI, k-means and HMM feature sets, and Table 21, Table 22, and Table 23 show the 

amount of variance explained by each principal component for the respective feature sets. Based 

on this information, 8 principal components were chosen for the NCI set, 8 for the k-means set 

and 19 for the HMM set to explain at least 90% of the variance in each feature set. The PCA 

loadings for the NCI, k-means and HMM feature sets are shown in the Appendix Table 25, Table 

26, and Table 27, respectively.  
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Figure 19. Scree plot of NCI principal components. 

 

Table 21. Variance explained by NCI principal components. 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Standard deviation 3.62 2.24 1.99 1.46 1.17 1.10 0.91 0.81 

Proportion of Variance 0.42 0.16 0.13 0.07 0.04 0.04 0.03 0.02 

Cumulative Proportion 0.42 0.59 0.71 0.78 0.83 0.86 0.89 0.91 

Figure 20. Scree plot of k-means principal components. 
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Table 22. Variance explained by k-means principal components. 

 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Standard deviation 3.30 2.42 1.79 1.58 1.34 1.19 0.95 0.85 

Proportion of Variance 0.36 0.20 0.11 0.08 0.06 0.05 0.03 0.02 

Cumulative Proportion 0.36 0.56 0.67 0.75 0.81 0.86 0.89 0.91 

Figure 21. Scree plot of HMM principal components. 

 

Table 23. Variance explained by HMM principal components. 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Standard deviation 3.26 2.12 1.85 1.65 1.62 1.54 1.49 1.38 1.34 1.26 

Proportion of Variance 0.23 0.10 0.07 0.06 0.06 0.05 0.05 0.04 0.04 0.03 

Cumulative Proportion 0.23 0.32 0.39 0.45 0.51 0.56 0.60 0.65 0.68 0.72 

  PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 

Standard deviation 1.17 1.13 1.07 1.04 0.96 0.92 0.87 0.84 0.79 0.77 

Proportion of Variance 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 

Cumulative Proportion 0.75 0.77 0.80 0.82 0.84 0.86 0.87 0.89 0.90 0.92 

Classification 

 The results of classifying participants by CVD risk based on the feature sets described 

above are presented in this section. The participants were classified altogether and separately by 

gender. The algorithms yielding high classification accuracies and interpretable results are 

discussed in more detail below.  
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 Model training. The models were trained using 10-fold cross-validation where 

appropriate. The lambda parameter for the lasso penalty (alpha = 1) was chosen to be 

0.00238332.  The number of units in the hidden layer of the neural network was chosen to be 5 

with a decay of 0.1. SVM with a radial basis kernel, decision tree and random forest classifiers 

were trained with the default parameters in the respective R packages, as these showed the best 

performance. Model performance using the training data is presented in APPENDIX B: 

CLASSIFICATION RESULTS 

Table 28 in the Appendix.  

Overview of results. Table 24 summarizes the classification accuracy of training the 

classification models on the various feature sets for the data overall. For the combined data set, 

the classification accuracy ranged from 70.99% to 83.25%. Kappa coefficients ranged from 0 to 

56.30% indicating that some classifiers were heavily biased, while others showed adequate 

performance. Similarly, AUC ranged from 50% to 76.19%. The feature set with the worst overall 

performance was the NCI features chosen by hand, followed by the NCI features derived with a 

high correlation filter. Surprisingly, the basic NCI features showed consistently high 

performance across the classifiers.  
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Table 24. Classification accuracy by feature set for combined data. 

  Classifier 

Accuracy 

(%) 

Kappa 

(%) 

AUC 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

False 

Negative 

(%) 

False 

Positive 

(%) 

Basic NCI 

  

  

  

  

Lasso 79.60 44.68 70.01 92.86 47.15 52.85 7.14 

Neural 

Network 83.25 56.30 76.19 93.02 59.35 40.65 6.98 

SVM 81.72 51.48 73.54 93.02 54.07 45.93 6.98 

Decision 

Tree 81.60 53.08 75.26 90.37 60.16 39.84 9.63 

Random 

Forest 81.13 51.88 74.28 90.03 59.35 40.65 9.97 

NCI 

complete 

  

  

  

  

Lasso 80.78 49.38 72.76 91.86 53.66 46.34 8.14 

Neural 

Network 78.42 40.85 68.09 92.69 43.50 56.50 7.31 

SVM 82.43 53.72 74.76 93.02 56.50 43.50 6.98 

Decision 

Tree 81.60 52.84 75.02 90.70 59.35 40.65 9.30 

Random 

Forest 81.37 51.12 75.04 92.03 55.28 44.72 7.97 

NCI Low 

Corr 

  

  

  

  

Lasso 78.30 41.25 68.49 91.86 45.12 54.88 8.14 

Neural 

Network 78.89 41.51 68.19 93.69 42.68 57.32 6.31 

SVM 78.77 40.94 67.86 93.85 41.87 58.13 6.15 

Decision 

Tree 78.66 39.02 66.58 95.35 37.80 62.20 4.65 

Random 

Forest 79.13 44.30 69.79 91.53 48.78 51.22 8.47 

NCI chosen 

  

  

  

  

Lasso 76.77 34.55 64.89 93.19 36.59 63.41 6.81 

Neural 

Network 72.88 14.39 55.54 96.84 14.23 85.77 3.16 

SVM 77.83 39.48 67.56 92.03 43.09 56.91 7.97 

Decision 

Tree 77.48 38.93 67.43 91.36 43.50 56.50 8.64 

Random 

Forest 79.36 44.79 70.49 91.86 48.78 51.22 8.14 

NCI Prcomp 

  

  

  

  

Lasso 79.13 44.30 70.15 91.53 48.78 51.22 8.47 

Neural 

Network 81.60 53.32 75.50 90.03 60.98 39.02 9.97 

SVM 80.90 48.82 72.12 93.02 51.22 48.78 6.98 

Decision 

Tree 80.54 46.81 70.79 94.02 47.56 52.44 5.98 

Random 

Forest 78.30 42.48 69.86 90.53 48.37 51.63 9.47 

Km 

complete 

  

  

  

  

Lasso 82.31 52.99 74.20 93.52 54.88 45.12 6.48 

Neural 

Network 76.53 41.40 70.13 85.38 54.88 45.12 14.62 

SVM 81.60 49.92 72.26 94.52 50.00 50.00 5.48 

Decision 

Tree 80.78 50.54 73.84 90.37 57.32 42.68 9.63 

Random 

Forest 81.84 52.85 75.27 91.69 57.72 42.28 8.31 

Km low corr 

  

Lasso 81.37 50.22 72.81 93.19 52.44 47.56 6.81 

Neural 

Network 71.11 0.58 50.00 100.00 0.41 99.59 0.00 
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Table 24 (cont.)  

 

SVM 82.19 51.19 72.67 95.35 50.00 50.00 4.65 

Decision 

Tree 80.42 50.32 74.07 89.20 58.94 41.06 10.80 

Random 

Forest 80.54 49.80 74.38 90.37 56.50 43.50 9.63 

Km prcomp 

  

  

  

  

Lasso 80.66 48.19 71.84 92.86 50.81 49.19 7.14 

Neural 

Network 82.90 55.66 73.36 92.36 59.76 40.24 7.64 

SVM 82.19 50.93 72.43 95.68 49.19 50.81 4.32 

Decision 

Tree 81.01 50.89 73.89 90.86 56.91 43.09 9.14 

Random 

Forest 81.49 52.11 73.40 91.20 57.72 42.28 8.80 

HMM all 

  

  

  

  

Lasso 81.96 51.73 73.47 93.69 53.25 46.75 6.31 

Neural 

Network 72.64 28.78 50.00 85.38 41.46 58.54 14.62 

SVM 81.01 49.20 72.32 93.02 51.63 48.37 6.98 

Decision 

Tree 78.66 40.03 67.30 94.35 40.24 59.76 5.65 

Random 

Forest 80.07 46.11 71.44 93.02 48.37 51.63 6.98 

HMM low 

corr 

  

  

  

  

Lasso 80.19 45.92 70.42 93.69 47.15 52.85 6.31 

Neural 

Network 70.99 0.00 59.87 100.00 0.00 100.00 0.00 

SVM 80.78 46.88 70.60 94.85 46.34 53.66 5.15 

Decision 

Tree 78.42 39.37 67.01 94.19 39.84 60.16 5.81 

Random 

Forest 80.78 48.02 71.03 93.52 49.59 50.41 6.48 

HMM 

prcomp 

  

  

  

  

Lasso 79.83 44.88 69.93 93.52 46.34 53.66 6.48 

Neural 

Network 80.19 48.56 72.76 90.53 54.88 45.12 9.47 

SVM 81.13 49.05 72.05 93.69 50.41 49.59 6.31 

Decision 

Tree 73.58 26.10 61.32 90.53 32.11 67.89 9.47 

Random 

Forest 77.71 35.22 65.85 95.68 33.74 66.26 4.32 

All 

  

  

  

  

Lasso 82.78 54.48 75.01 93.52 56.50 43.50 6.48 

Neural 

Network 74.17 38.55 50.73 80.40 58.94 41.06 19.60 

SVM 82.19 52.23 73.64 94.02 53.25 46.75 5.98 

Decision 

Tree 80.42 50.07 73.83 89.53 58.13 41.87 10.47 

Random 

Forest 82.19 53.10 74.03 92.86 56.10 43.90 7.14 

All Low corr 

  

  

  

  

Lasso 82.43 52.86 73.92 94.19 53.66 46.34 5.81 

Neural 

Network 70.99 0.34 54.31 99.83 0.41 99.59 0.17 

SVM 81.49 50.86 73.26 92.86 53.66 46.34 7.14 

Decision 

Tree 80.66 50.30 73.76 90.20 57.32 42.68 9.80 

Random 

Forest 81.25 50.10 73.35 92.86 52.85 47.15 7.14 
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Models by gender. Tables 20 and 21 in the appendix summarize the classification results 

for women and men separately. At first glance it appeared that models based on women’s data 

had higher classification accuracy (80.30%-85.35%) than men’s (67.04%-81.42%), however the 

kappa coefficients told a different story. Men’s kappa coefficients ranged from 17.56% to 

59.75% while women’s kappa ranged from 1.48% to 45.64%. As discussed earlier, there was a 

difference in the proportion of men and women with high CVD risk. This is where classification 

accuracy is misleading while the kappa coefficient and AUC account for bias.  

It appears that the combined data was able to achieve more consistent results when 

gender was added as a control variable to the models. No model for women was able to achieve 

greater than 46% kappa coefficient or greater than 70% AUC. Thus, it appears that modeling 

CVD risk separately by gender does not lead to a final model that is as accurate as one that may 

be achieved with the combined data set. 

Alternate outcomes. The results of individual CVD risk factors as outcomes are 

presented in the appendix Table 31 through Table 34. None of the classifiers were able to 

identify any patterns for the individual risk factors. Total cholesterol, HDL and cRP had false 

positive rates of 100% for all combinations of classifiers and feature sets. Blood pressure did 

have a few classifiers with nonzero kappa coefficients, however the highest kappa coefficient 

was 19.24% indicating very poor performance overall.  

Lasso regression. Overall the lasso regression performed well with classification 

accuracy as high as 82.78% and kappa coefficient of 54.48% for the full feature set combining 

NCI, k-means, and HMM derived variables (N = 108). The performance of the lasso regression 

seems to improve as number of features increases. The lasso regression provides additional 



86 
 

information for variable selection. Lasso coefficients are presented in the appendix APPENDIX 

C: FEATURE IMPORTANCE MEASURES 

Table 35 through Table 43 for each feature set the model was trained on. The variables 

whose coefficients are equal to zero are not used for classification, and thus may be interpreted 

as unimportant to the model. However, in the presence of correlation between variables, the lasso 

choses only one feature that is correlated with the others. Therefore, a zero coefficient may be 

misleading in the larger features sets where several variables are all important, but are highly 

correlated with each other. 

Neural Networks. In contrast to the lasso regression, neural networks performed worse 

on the full features sets and better on smaller subsets. In fact, the highest overall classification 

accuracy of 83.25% was achieved by a neural network using only the basic NCI features (N = 6). 

Interestingly, the lowest classification accuracy with a kappa coefficient of 0 was also achieved 

by a neural network using HMM low correlation subset (N = 38). That is, all cases were 

classified as low risk, resulting in a 100% false negative rate. This indicates that neural networks 

don’t perform well on highly dimensional data sets and tend to bias the classification against the 

underrepresented class.  

Figure 22 shows a visual representation of the neural network trained on the basic NCI 

features. Five hidden layers were created as combinations of the six input features. The hidden 

layers are labeled as H1 to H5 and the bias factors as B1 and B2.  While the classifier arrived at a 

high classification accuracy, kappa coefficient and AUC, the model yielded itself to little further 

interpretation.  
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Figure 22. Neural network using NCI basic features with the inputs indicated on the left, the hidden layers shown as H1 – 

H5, the bias terms B1 and B2, and the outcome measure on the right. The line thickness represents the weight of each 

feature contributing to each hidden layer. 

 

 SVM. SVM performed best for the full NCI feature set with classification accuracy of 

82.43% and kappa coefficient of 53.72%, though the classifier showed consistently good 

performance for all feature sets. However, similar to neural networks, the results from SVM 

were not straightforward to interpret. Figure 23 illustrates the SVM plot comparing two NCI 

features at a time. The support vectors are labeled “x” and the decision boundary for low and 

high CVD risk is shown in contrasting colors. It appears that the contrast between sedentary and 

vigorous, and sedentary and moderate minutes yielded to the clearest distinction between high 

and low risk participants.  
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Figure 23. SVM classification plots for pairs of the NCI basic features. The support vectors are labeled “x” and high risk 

observations are in red. The decision boundary for high CVD risk is shown in purple. 

 
    

Decision Trees. Decision trees performed consistently well for all feature sets, but the 

classification accuracy of 81.60% with a kappa coefficient of 53.10% and AUC of 75.42% was 

highest for the basic NCI feature set. The decision tree for the combined data using the basic NCI 

features is presented in Figure 24. Unlike the previously discussed models, in addition to 

yielding a classification by high and low CVD risk, decision trees provide additional insight into 

how the classifier arrived at the decision.  

The first partition was chosen at greater than or equal to 37 minutes spent in lifestyle PA 

category. The CVD risk scores resulting from this partition are illustrated in Figure 25 where the 

separation between the high and low risk participants becomes evident.  

Next, both branches were partitioned by gender. Two terminal nodes were reached at this 

point. If a participant got at least 37 minutes of lifestyle PA on average per day and was female, 
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she was classified as low risk of CVD. However, if the participant did not get the specified 

number of minutes and was a man, he was considered high risk.  

Women who did not get at least 37 minutes of lifestyle PA were partitioned by lifestyle 

minutes again, this time greater than or equal to 26. Thus, if a woman got at least 26 lifestyle 

minutes per day on average, she was classified as low risk. If not, the next partition used the 

threshold of less than 547 sedentary minutes per day. Thus, finally, women who got less than 

about 9 hours of sedentary time were considered low risk.  

Men who did get at least 37 minutes of lifestyle PA did not arrive at a terminal node. This 

group was partitioned by 12 minutes or greater of moderate PA per day on average. Those who 

met these criteria were classified as low risk. Those who did not have at least 12 minutes of 

moderate activity were partitioned further by at least 7.4 moderate minutes. Those who did not 

meet either requirement were considered high risk. In short, it appears that lifestyle minutes were 

sufficient for women to be considered at a low risk of CVD while a combination of lifestyle and 

moderate intensity minutes is required for men.  
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Figure 24. Decision tree with basic NCI features. 

 

Figure 25. Separation of CVD risk scores by first decision tree split. 
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Random Forests. Random forest classifiers performed well for the full feature sets, 

achieving the highest classification accuracy of 82.19% and kappa coefficient of 53.10% when 

trained on the set combining NCI, k-means, and HMM derived features. It appears that similar to 

the lasso regression and SVM, RF performs best on highly dimensional data.  

 In addition to classification, random forest classifiers provide information for feature 

selection. Figure 26 shows a visual representation of mean decrease in accuracy and Gini index 

for all features combined. APPENDIX C: FEATURE IMPORTANCE MEASURES 

Table 35 through Table 43 and Figure 27 through Figure 33 in the appendix show the mean 

decrease in accuracy and Gini index for the rest of the feature sets used to train the RF classifier. 

While gender appears to be the most important predictor of CVD risk, lifestyle minutes, followed 

by moderate PA minutes are still considered the most informative. 
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Figure 26. Mean decrease in accuracy and Gini index for all features based on the random forest classifier. 

 

 Summary of results.  All classifiers achieved at least 80% classification accuracy, at 

least a 50% kappa coefficient, and at least 70% AUC on different feature sets. However, some 

classifiers were more consistent than others. Neural networks did not perform well on larger 

feature sets and yielded a very high false negative rate when trained on k-means, HMM and 

combined low correlation feature subsets. The other classifiers provided consistently good results 

across the feature sets with only slight variations in accuracy.  
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CHAPTER 5 DISCUSSION 

 The results of the study are discussed in this chapter. First, the major findings are 

summarized in the context of the specific aims of this study. The appropriateness of the Reynolds 

risk score as and outcome measure and the interpretability of various machine learning 

algorithms are discussed. Next, findings are evaluated in terms of implications for PA 

recommendations. Finally, limitations and suggestions for further study are described.  

Major Findings  

 The main goal of this study was to explore the possibility of using accelerometer data as a 

proxy for the Reynolds risk score to predict CVD health status. Utilizing a variety of machine 

learning techniques to obtain relevant features from the data and train several classification 

algorithms, this study showed that accelerometer data alone may be used to classify individuals 

into high and low CVD risk status. Applying these techniques to accelerometer data can yield a 

better understanding of the relationship between PA and CVD patterns.  

 Accelerometer data as an input. This study attempted to connect intensity readings 

from accelerometer data recoded over the course of a week to a Reynolds risk score. Using 

accelerometer data in health research offers several benefits. First, the data is easy and 

inexpensive to collect using a variety of devices, including cell phones, hip and wrist monitors.  

Next, the data is a direct measure of PA that offers insights into the rich patterns of individual 

activity. This study attempted to assess several methods of processing accelerometer data to 

retaining maximum information necessary to predict CVD risk.  

 Several methods to extract and select appropriate features from accelerometer data were 

used. The NCI features focused on using already established PA thresholds to calculate various 

PA pattern measures. Additionally, two clustering approaches, k-means and HMM, attempted to 
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use data-driven techniques to identify relevant features. PCA was also applied to the feature sets 

for comparison.  

The basic set of NCI features consisting of time spent in five established PA categories 

proved surprisingly successful in terms of classification accuracy. This feature set consisted of 

the smallest number of variables, and all five classifiers trained on this feature set performed 

very well. At the same time, a manually chosen subset of NCI features that contained only a few 

more variables showed the worst performance across the classification algorithms. It appears that 

the basic NCI set of features avoided overfitting, yet contained the right amount of information 

to achieve good classification results. Furthermore, using the feature set yielded interpretable 

results that carry clinical significance as discussed below.  

 Data driven approaches also yielded good results for most classifiers. Both k-means and 

HMM clustered the accelerometer data into five categories individually, with features describing 

the distributions of each cluster for each participant. These techniques reinterpreted the PA 

activity thresholds, recognizing individual patterns in accelerometer data. These features 

provided a closer look at relative, rather than absolute PA levels and still led to good 

classification results.   

 K-means partitioned the data into clusters by minimizing the distance of the observations 

to the center (mean) of each cluster. This approach effectively established the PA thresholds for 

each individual. HMM relies on sequential temporal information to fit a distribution for each 

specified state. Thus, transition probabilities between each category in addition to the means and 

variances of each category were computed. This provided further information into the PA 

patterns of the individual.   
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 Reducing the feature sets using a high correlation filter did not appear to improve 

classification. Furthermore, deleting variables that are highly correlated with each other in an 

automated way may have lost some meaningful features along the way. Likewise, features 

obtained using PCA did not appear to yield better results than the original feature sets. Principal 

components are combinations of variables that are orthogonal (uncorrelated) to each other. These 

linear combinations of variables form a black box and the carefully chosen features lose meaning 

and interpretability. PCA is a good option for dimensionality reduction, however the 

interpretability of the model is lost and classification accuracy is not improved. 

 Reynolds risk score as an outcome. This study examined the Reynolds risk score as an 

outcome measure of cardiovascular health status. The Reynolds risk score was developed based 

on a large longitudinal study to predict 10-year CVD risk.  Therefore, in the likely event that a 

longitudinal study is not feasible, the Reynolds risk score may be used to study the effects of PA 

on CVD risk. The measure already accounts for various CVD risk factors and demographic 

variables. Using the Reynolds risk score as an outcome of a study that uses accelerometers to 

measure PA allows researchers to focus solely on identifying appropriate features from the 

accelerometer data.   

  It must be noted that since the Reynolds risk score was developed separately and is 

calculated differently for men and women, gender must be used as a control variable, or models 

should be trained separately by gender. Nevertheless, in this study, some models achieved 

classification accuracy of nearly 83% and a kappa coefficient of 56% using only accelerometer 

data as features. This finding is a good indicator that accelerometer data may be connected to the 

Reynolds risk score and may be interpreted as a proxy for CVD risk. 



96 
 

 Using the individual components of the Reynolds risk score as outcomes would 

significantly increase the number of participants in the study since not as many laboratory 

measures would be required. However, this study showed that individual CVD risk factors, 

including BP, TC, HDL, and cRP, are not sufficient to act as outcomes for classifying 

accelerometer determined PA. While none of the outcomes produced good classification results, 

BP showed the strongest relationship with the Reynolds risk score. However, the Reynolds risk 

score controls for a variety of factors including age and gender in addition to several CVD risk 

factors. Also, since some of the risk factors may be controlled by medication, the full picture of 

an individual’s cardiovascular health may not be captured by a single risk factor.  

  Machine learning algorithms. Several machine learning classifiers were trained and 

compared for classification of accelerometer-derived PA by Reynolds risk score. While all 

classifiers achieved good classification accuracy on different combinations of features, some 

appeared to have more consistent and interpretable results.  

 The penalized logistic regression performed very well, particularly on the larger feature 

sets, achieving 82% classification accuracy with a 53% kappa coefficient for all features 

combined.  During model training, the lasso regression also performed feature selection due to 

the lasso penalty. The coefficients of some features were shrunken to zero and not used by the 

model for classification. While this may be useful for feature selection, because the features are 

correlated, the choice of variables is not unique and should therefore be used with caution. 

Overall, this approach is useful for large feature sets to prevent overfitting and yields 

interpretable results.  

 Neural networks provided inconsistent and at times biased results across the feature sets. 

The highest classification accuracy of 83% and kappa coefficient of 56% was achieved on the 
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smallest feature set consisting of time spent in each PA category. The classifier performed 

similarly well using principal components of the feature sets. For larger, correlated feature sets, 

neural networks defaulted to classifying everyone as low risk and yielded a kappa coefficient 

equal or near zero. Furthermore, aside for classification, the algorithm did not provide an 

interpretable result. These findings indicate that neural networks may not be an appropriate 

choice when studying accelerometer PA data and its effects on CVD risk.  

 SVM performed well for most feature sets, yielding consistent results. However, similar 

to neural networks, much of the meaning and interpretability was lost in the model. Features 

could only be visualized in pairs to understand the derived decision boundaries. While this may 

work with small feature sets, this is not desirable when accelerometer data is being studied with 

the intension to identify meaningful variables.  

 The decision tree models, on the other hand, yielded the most interpretable results. When 

the decision tree was applied to just the basic NCI features, only one split was needed to yield 

high classification accuracy of 78%. The split indicated that those who spent at least 37 minutes 

in lifestyle activity on average throughout the week are likely at a low risk for CVD. Overall, the 

decision trees achieved high classification accuracy on par with the other algorithms while 

providing the exact path of how the classification was achieved along the way. This transparency 

may be very useful for better understanding PA patterns and how they affect CVD risk.  

 It must be noted that decision trees are weak learners and are easily influenced by 

changes in the sample data. Furthermore, the variable for each split is chosen based on maximum 

information and therefore may overlook some equally meaningful but slightly less informative 

features. Therefore, decision tree partitions are highly useful for understanding the path of 

classification, but should be interpreted with caution.  
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  Random forest classifiers, did not outperform decision trees when trained on the NCI 

feature sets, and only did slightly better for the data-driven methods. In addition to classifying 

the data, the algorithm does provide insight into the importance of features. However, as with the 

lasso regression, the ranking is influenced by highly correlated variables and should be 

interpreted with caution. Overall, the random forest classifier added a layer of unnecessary 

complexity without providing improved classification accuracy, at least for this sample. 

 Classification. The individuals in this study were classified as high or low risk based on 

their Reynolds risk score. All classifiers achieved good classification accuracy for some 

combination of features. However, the results show that very high classification accuracy is 

achieved when identifying low risk individuals, and much lower accuracy is achieved for those 

at high risk. In other words, low risk is identified with less than 10% error by most algorithms, 

while high risk is misclassifies at least 40% of the cases. This finding indicates that the PA 

patterns of high risk individuals are rather varied while those who are low risk have more in 

common.  

PA Recommendations 

 A major benefit of connecting accelerometer intensity readings to a Reynolds risk score is 

the opportunity to study the PA patterns that lead to high or low CVD risk. Better understanding 

of these patterns has direct implications for establishing appropriate PA recommendations to 

reduce CVD risk. This study attempted to assess a few different methods of processing and 

analyzing accelerometer data to achieve an interpretable result.  

 Interpretability of results. Neural networks and SVM trained on certain feature sets 

provided good results, however did not provide additional meaning that could be used to 

establish PA recommendations. Other models, the lasso regression, random forests, and decision 
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trees, provided further interpretation of the input features and their effect on classification. For 

example, random forests that were trained on feature sets that included lifestyle minutes as an 

input showed that it was one of the most important features for classifying individuals by CVD 

risk aside from gender. Further, the decision tree provided a completely transparent result that 

could eventually be used for establishing recommendations for lifestyle and moderate intensity 

PA meeting.  

 Feature selected as inputs for the various models also play a major role for 

interpretability. NCI features provide the most relatable results as time spent in PA intensity 

categories is often used in the field. For example, the decision tree suggests an average of 37 

daily minutes of lifestyle PA as a recommendation to reduce PA risk. The current PA guidelines 

also focus on time spent in the intensity categories and may be directly compared to the finding 

based on the NCI feature set (United States Department of Health and Human Services., 2008).   

 Data driven methods provide the benefit of capturing individual patterns and identifying 

novel representations of PA. The k-means and HMM based feature sets used in this study 

provided classification results on par with the NCI features, though did not outperform them. The 

data-driven features, however, did provide new insights into the relationship between PA and 

CVD risk. For example, measures of variance in the established intensity category clusters were 

ranked as highly important by the random forest classifier. This feature may be interpreted as the 

spread within the category, with more variability leading to lower CVD risk. Using unsupervised 

learning techniques to study accelerometer data may be useful to gain novel insights into setting 

future PA recommendations.  

 It must be noted that attempts to reduce the multicollinearity of the features using high 

correlation filters and PCA did not improve classification accuracy and instead lead to reduced 
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interpretability of the models. Principal components applied to large feature sets work well for 

dimensionality reduction, but lose the meaning of the features along the way. The three 

classifiers deemed most interpretable for this research have built in mechanisms that deal with 

highly correlated features. The lasso penalty shrinks the coefficients of unimportant features to 

zero, without being swayed by multicollinerity like the logistic regression. Decision trees and 

random forests are nonparametric and focus on maximum information of the feature being used.  

 The results of these classifiers must be interpreted with caution in the presence of highly 

correlated features; however, they do allow for a large number of features to be studied and 

evaluated without reduction in classification accuracy, as is the case with neural networks. For 

the purposes of establishing PA recommendations, unsupervised learning techniques show 

promise for identifying novel PA patterns, especially on an individual basis.    

 Gender differences. In recent years, studies have shown that there is a gender difference 

in the way CVD manifests itself (Galiuto & Locorotondo, 2015). Men’s risk of CVD increases 

linearly with age, while women’s CVD risk increases with menopause. These differences 

indicate that estrogen may have cardio-protective benefits (Barrett-Connor & Bush, 1991). Thus, 

the mechanism that affects men and women appears to be different and is reflected by the 

Reynold’s risk score, which was developed separately and contains different sets of predictors by 

gender.  

 In addition to physiological gender differences, studies show that women tend to engage 

in less PA than men and that the amount of PA decreases with age (Cooper et al., 2000; Evenson 

et al., 2002; Trost et al., 2002). The results of this study show that gender effects are indeed 

present in the accelerometer data with the Reynolds risk score as the outcome. Men and women 
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engage in different amounts of PA and have different levels of CVD risk. Specifically, women 

engage in less PA and exhibit less CVD risk than men.  

  As the analysis shows, gender appears to be the most important input for classification 

for all feature sets. The decision tree trained on NCI features shows that there is a different 

mechanism for classifying men and women into high and low CVD risk categories. Specifically, 

an average of at least 37 minutes of lifestyle activity a day appears to be sufficient to identify 

women who are at low risk of CVD and men who are at high risk. For men to be considered low 

risk in the sample, at least 12 minutes of moderate PA is also required. These findings suggest 

that the mechanism of CVD affects men and women differently, and it may be necessary to have 

gender specific recommendations (Cooper et al., 2000; Zisko et al., 2015). 

 PA thresholds. Several studies have described the importance of relative PA thresholds 

as individuals of different fitness levels exhibit very different PA patterns that effect 

accelerometer readings (Alhassan & Robinson, 2010; Ozemek, Cochran, Strath, Byun, & 

Kaminsky, 2013). Unlike the NCI features, data driven methods can help identify relative PA 

patterns and thresholds for the activity categories. K-means clustering established PA category 

thresholds separately for each participant. The thresholds for the first cluster, ones that 

correspond to the lowest intensity category ranged from 40 to 806. This finding alone indicates 

that the participants in the study ranged widely in terms of activity. The average thresholds for 

the five categories across the sample were as follows: <198; 198- 649; 650-1349; 1350-2745; 

≥2745.  

 Using a data driven approach to establish the PA intensity thresholds would significantly 

lower the moderate and vigorous cut offs, while increasing the one for light PA. While this 

finding is sample specific, it is in line with previous research suggesting the need to redefine the 
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PA intensity cut points (Matthews, 2005; Ozemek et al., 2013). Applying these clustering 

techniques may be used to obtain clinically significant results that will carry over into 

establishing new thresholds of PA intensity categories.  

 PA patterns. To evaluate the importance of how PA is spread throughout the day and 

week, several features measuring these patterns were included in the NCI feature set.  

When the basic NCI features were included as inputs, the other representations of PA patterns 

weren’t as important according to the random forest classifiers’ mean decrease in accuracy and 

Gini index. For data driven feature extraction methods, PA patterns are described by skewness 

and kurtosis, as well as transition probabilities between the states identified by HMM. These 

features did not appear to be more important for determining CVD risk when combined with 

lifestyle minutes.  

 These findings indicate that the amount of PA, not how and when it is performed is 

important for CVD risk classification. Other studies looking into PA patterns show similar 

results. Evenson et al. (2015) applied latent component analysis (LCA) to the NHANES 

accelerometer data from 2003-2006 identified some common PA patterns that include 

individuals who are generally sedentary or moderately active, those who are primarily active on 

the weekends, and those who are primarily active on the weekdays. However, Lee, Sesso, 

Oguma, and Paffenbarger (2004) showed that some amount of PA, whether performed on 

weekends or spread throughout the week carries cardio protective benefits that help reduce CVD 

mortality risk. Additionally,  J. Myers et al. (2004) showed that fitness level, not PA patterns 

were most important for predicting all-cause mortality in men. 
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Limitations 

 Some limitations that should be considered when interpreting the results of this study are 

outlined in this section. First, the NHANES accelerometer data used in this study was collected 

using a uniaxial ActiGraph AM-7164 monitor. This device is thought to have the most accurate 

representation of walking, running, and other activities with an up and down motion. Therefore, 

activities such as biking or rowing may not be accurately reflected in the data. It may be inferred 

that such activities would still be recorded by the accelerometer and would likely end up in the 

lifestyle intensity category.  

 Next, only aggregated rather than raw data was available and used in this study. The 

intensity was averaged over each minute and therefore some intense bouts of activity may have 

been averaged out. An example is climbing the stairs when an intense reading lasts only a few 

seconds followed by a moment of rest. Since the activity does not last an entire minute at a 

vigorous intensity, stair climbing may present as a lower intensity activity in the data. Therefore, 

this effort may not be accurately captured by the data used in this study. The readings for this 

type of activity likely end up in lifestyle minutes as well. Unsurprisingly, lifestyle minutes 

appear to be the best indicators of CVD risk.  

 Overall, the sample size used for this study was relatively small. The protocol allowed for 

nonwear time, so participants simply took the device of for sleep and forgot to put it back on, 

thus lowering the number of available data points. Using the Reynolds risk score further 

diminished the sample by excluding participants under the age of 30 and those with incomplete 

data. Machine learning techniques are data driven and therefore work better on larger data sets. 

To better study the nuances of daily PA patterns, a larger sample of participants and raw 

accelerometer data should be used. 
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Future Studies 

 The main benefit of machine learning algorithms is that the models are constantly 

updated and improved as more data becomes available. In other words, higher accuracy will be 

achieved with more data. Accelerometer data perfectly lends itself to be analyzed using these 

data driven techniques. Large volumes of data are easy to collect and provide detailed 

information about individual PA patterns.  

 Future studies should focus on large scale data collection, leveraging personal devices of 

the participants. An app can record the accelerometer data of participating individuals using their 

personal devices and provide large amounts of raw, objectively measured PA data for research.  

This data can be used to study the effects of PA patterns on CVD risk using the Reynolds risk 

score, eventually providing real time feedback to the participants regarding CVD risk status and 

PA recommendations. Additional devices that include a heart rate monitor and other relevant 

sensors may be included for more accuracy. 

 With the availability of detailed accelerometer PA measures and machine learning 

techniques for analysis, the approach to PA recommendations may shift toward individualized 

feedback. Research shows that activity thresholds for different fitness levels should be 

established separately, and difference in PA levels between men and women have long been 

observed (Alhassan & Robinson, 2010; Cooper et al., 2000; Ozemek et al., 2013). By using 

personal devices that are collecting data and training classification algorithms in real-time, each 

person may be provide a personal set of PA recommendations.  

Conclusion 

 Accelerometer data can be analyzed with machine learning techniques to act as a proxy 

for the Reynolds risk score to predict CVD health status. High classification accuracy was 
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achieved by all classifiers with some performing slightly better than others when using different 

features sets. In general, lasso regression, SVM and RF all performed well on large feature sets 

that included data-driven features, achieving greater than 82% classification accuracy when the 

NCI, k-means and HMM features were combined. Neural networks performed well on smaller 

uncorrelated feature sets, and decision trees produced consistent results with the most 

transparency. 

 Overall, PA recommendations that may be derived from this study indicate that at least 

37 minutes of daily lifestyle activity are key for reducing CVD risk. This finding is supported by 

the decision tree classifier whenever this input feature is included for classification. Furthermore, 

the random forest classifier indicates that lifestyle minutes are second only to the indicator of 

gender as the most important variable for determining CVD risk.  

 The approaches discussed in this study may be used to better understand the effects of PA 

patterns on CVD risk and can eventually lead to individualized PA recommendations. 

Ultimately, training machine learning algorithms on large volumes of accelerometer data 

collected by the study participants themselves will change the way PA is measured and analyzed 

in the field of Kinesiology and Public Health, with a greater focus on individualized feedback 

provided in real-time.   

  



106 
 

REFERENCES 

Ainsworth, B. E., & Coleman, K. (2006). Physical activity measurement. In A. McTiernan (Ed.), 

Cancer Prevention and Management Through Exercise and Weight Control (pp. 13–24). 

Boca Raton, FL: Taylor & Francis. 

Alhassan, S., & Robinson, T. N. (2010). Defining accelerometer thresholds for physical activity 

in girls using ROC analysis. Journal of Physical Activity & Health, 7(1), 45–53. 

doi:10.1016/j.biotechadv.2011.08.021.Secreted 

Ambrose, J. A., & Barua, R. S. (2004). The pathophysiology of cigarette smoking and 

cardiovascular disease: an update. Journal of the American College of Cardiology, 43(10), 

1731–7. doi:10.1016/j.jacc.2003.12.047 

American Diabetes Association. (2010). Standards of medical care in diabetes—2010. Diabetes 

care (Vol. 33). doi:10.2337/dc10-S004 

Atienza, A. a, Moser, R. P., Perna, F., Dodd, K., Ballard-Barbash, R., Troiano, R. P., & Berrigan, 

D. (2011). Self-reported and objectively measured activity related to biomarkers using 

NHANES. Medicine and Science in Sports and Exercise, 43(5), 815–21. 

doi:10.1249/MSS.0b013e3181fdfc32 

Baek, J., Lee, G., Park, W., & Yun, B. (2004). Accelerometer signal processing for user activity 

detection. In M. G. Negoita, R. J. Howlett, & L. C. Jain (Eds.), Knowledge-Based 

Intelligent Information and Engineering Systems (Vol. 3215, pp. 610–617). Springer Berlin 

Heidelberg. doi:10.1007/978-3-540-30134-9_82 

Bai, J., He, B., Shou, H., Zipunnikov, V., Glass, T. A., & Crainiceanu, C. M. (2014). 

Normalization and extraction of interpretable metrics from raw accelerometry data. 

Biostatistics (Oxford, England), 15(1), 102–16. doi:10.1093/biostatistics/kxt029 

Bao, L. (2003). Physical activity recognition from acceleration data under semi-naturalistic 

conditions. Massachusetts Institute of Technology. Retrieved from 

http://18.181.0.31/afs/athena/dept/cron/group/house_n/documents/Bao03.pdf 

Bao, L., & Intille, S. S. (2004). Activity recognition from user-annotated acceleration data . In A. 

Ferscha & F. Mattern (Eds.), Pervasive Computing: Second International Conference  (pp. 

1–17). Springer Berlin Heidelberg. doi:10.1007/b96922 

Barrett-Connor, E., & Bush, T. L. (1991). Estrogen and coronary heart disease in women. 

JAMA : The Journal of the American Medical Association, 265(14), 1861–7. 

doi:10.1001/jama.1991.03460140089033 

Belanger, C. F., Hennekens, C. H., Rosner, B., & Speizer, F. E. (1978). The nurses’ health study. 

The American Journal of Nursing, 78(6), 1039–40. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/248266 

Belcher, B. R., Berrigan, D., Dodd, K. W., Emken, B. A., Chou, C.-P., & Spruijt-Metz, D. 

(2010). Physical activity in US youth: effect of race/ethnicity, age, gender, and weight 

status. Medicine and Science in Sports and Exercise, 42(12), 2211–21. 

doi:10.1249/MSS.0b013e3181e1fba9 



107 
 

Blair, S. N., Kohl, H. W., Barlow, C. E., Paffenbarger, R. S., Gibbons, L. W., & Macera, C. A. 

(1995). Changes in physical fitness and all-cause mortality. A prospective study of healthy 

and unhealthy men. The Journal of the American Medical Association, 273(14), 1093–98. 

Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7707596 

Blair, S. N., Kohl, H. W., Paffenbarger, R. S., Clark, D. G., Cooper, K. H., & Gibbons, L. W. 

(1989). Physical Fitness and All-Cause Mortality. The Journal of the American Medical 

Association, 262(17), 2395. doi:10.1001/jama.1989.03430170057028 

Blair, S. N., LaMonte, M. J., & Nichaman, M. Z. (2004). The evolution of physical activity 

recommendations: how much is enough? The American Journal of Clinical Nutrition, 79(5), 

913S–920S. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15113739 

Blomqvist, C. G., & Saltin, B. (1983). Cardiovascular adaptations to physical training. Annual 

Review of Physiology, 45, 169–89. doi:10.1146/annurev.ph.45.030183.001125 

Bouten, C. V, Koekkoek, K. T., Verduin, M., Kodde, R., & Janssen, J. D. (1997). A triaxial 

accelerometer and portable data processing unit for the assessment of daily physical 

activity. IEEE Transactions on Bio-Medical Engineering, 44(3), 136–47. 

doi:10.1109/10.554760 

Bray, G. A. (1985). Complications of obesity. Annals of Internal Medicine, 103(6 ( Pt 2)), 1052–

62. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4062125 

Camhi, S. M., Sisson, S. B., Johnson, W. D., Katzmarzyk, P. T., & Tudor-Locke, C. (2011a). 

Accelerometer-determined lifestyle activities in US adults. Journal of Physical Activity & 

Health, 8(3), 382–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21487137 

Camhi, S. M., Sisson, S. B., Johnson, W. D., Katzmarzyk, P. T., & Tudor-Locke, C. (2011b). 

Accelerometer-determined moderate intensity lifestyle activity and cardiometabolic health. 

Preventive Medicine, 52(5), 358–60. doi:10.1016/j.ypmed.2011.01.030 

Caraballo, R. S., Giovino, G. A., Pechacek, T. F., & Mowery, P. D. (2001). Factors associated 

with discrepancies between self- reports on cigarette smoking and measured serum cotinine 

levels among persons aged 17 years or older. American Journal of Epidemiology, 153(8), 

807–814. Retrieved from http://aje.oxfordjournals.org/content/153/8/807.short 

Casale, P., Pujol, O., & Radeva, P. (2011). Human activity recognition from accelerometer data 

using a wearable device. In J. Vitrià, J. M. Sanches, & M. Hernández (Eds.), Pattern 

Recognition and Image Analysis: 5th Iberian Conference (pp. 289–296). Springer Berlin 

Heidelberg. doi:10.1007/978-3-642-21257-4 

Chamnan, P., Simmons, R. K., Sharp, S. J., Griffin, S. J., & Wareham, N. J. (2009). 

Cardiovascular risk assessment scores for people with diabetes: a systematic review. 

Diabetologia, 52(10), 2001–14. doi:10.1007/s00125-009-1454-0 

Chapman, A. L. (1958). Program of the United States Public Health Service in heart disease in 

industry. The American Journal of Cardiology, 1(3), 361–364. doi:10.1016/0002-

9149(58)90304-7 

Chasens, E. R., & Yang, K. (2012). Insomnia and physical activity in adults with prediabetes. 

Clinical Nursing Research, 21(3), 294–308. doi:10.1177/1054773811411295 



108 
 

Chave, S. P., Morris, J. N., Moss, S., & Semmence, A. M. (1978). Vigorous exercise in leisure 

time and the death rate: a study of male civil servants. Journal of Epidemiology & 

Community Health, 32(4), 239–243. doi:10.1136/jech.32.4.239 

Chen, K. Y., Janz, K. F., Zhu, W., & Brychta, R. J. (2012). Redefining the roles of sensors in 

objective physical activity monitoring. Medicine and Science in Sports and Exercise, 

44(SUPPL. 1), 13–23. doi:10.1249/MSS.0b013e3182399bc8 

Chobanian, A. V, Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., … 

Roccella, E. J. (2003). Seventh report of the Joint National Committee on Prevention, 

Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension, 42(6), 1206–

52. doi:10.1161/01.HYP.0000107251.49515.c2 

Choe, B., Min, J., & Cho, S. (2010). Online gesture recognition for user interface on 

accelerometer built-in mobile phones. Neural Information Processing. Models and 

Applications, 6444, 650–657. Retrieved from http://link.springer.com/chapter/10.1007/978-

3-642-17534-3_80 

Clark, B. K., Healy, G. N., Winkler, E. a H., Gardiner, P. a, Sugiyama, T., Dunstan, D. W., … 

Owen, N. (2011). Relationship of television time with accelerometer-derived sedentary 

time: NHANES. Medicine and Science in Sports and Exercise, 43(5), 822–8. 

doi:10.1249/MSS.0b013e3182019510 

Cleland, I., Kikhia, B., Nugent, C., Boytsov, A., Hallberg, J., Synnes, K., … Finlay, D. (2013). 

Optimal placement of accelerometers for the detection of everyday activities. Sensors 

(Basel, Switzerland), 13(7), 9183–200. doi:10.3390/s130709183 

Colditz, G. A., Manson, J. E., & Hankinson, S. E. (1997). The Nurses’ Health Study: 20-year 

contribution to the understanding of health among women. Journal of Women’s Health, 

6(1), 49–62. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9065374 

Conroy, R. M., Pyörälä, K., Fitzgerald, A. P., Sans, S., Menotti, A., Backer, G. De, … Graham, 

I. M. (2003). Estimation of ten-year risk of fatal cardiovascular disease in Europe: the 

SCORE project. European Heart Journal, 24(11), 987–1003. doi:10.1016/S0195-

668X(03)00114-3 

Cook, N. R., Paynter, N. P., Eaton, C. B., Manson, J. E., Martin, L. W., Robinson, J. G., … 

Ridker, P. M. (2012). Comparison of the Framingham and Reynolds Risk scores for global 

cardiovascular risk prediction in the multiethnic Women’s Health Initiative. Circulation, 

125(14), 1748–56, S1–11. doi:10.1161/CIRCULATIONAHA.111.075929 

Cooper, R., Cutler, J., Desvigne-Nickens, P., Fortmann, S. P., Friedman, L., Havlik, R., … 

Thom, T. (2000). Trends and Disparities in Coronary Heart Disease, Stroke, and Other 

Cardiovascular Diseases in the United States : Findings of the National Conference on 

Cardiovascular Disease Prevention. Circulation, 102(25), 3137–3147. 

doi:10.1161/01.CIR.102.25.3137 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. 

doi:10.1007/BF00994018 

Crouter, S. E., Clowers, K. G., & Bassett, D. R. (2006). A novel method for using accelerometer 

data to predict energy expenditure. Journal of Applied Physiology, 100(4), 1324–31. 



109 
 

doi:10.1152/japplphysiol.00818.2005 

D’Agostino, R. B., Vasan, R. S., Pencina, M. J., Wolf, P. a, Cobain, M., Massaro, J. M., & 

Kannel, W. B. (2008). General cardiovascular risk profile for use in primary care: the 

Framingham Heart Study. Circulation, 117(6), 743–53. 

doi:10.1161/CIRCULATIONAHA.107.699579 

Danesh, J. (2000). Low grade inflammation and coronary heart disease: prospective study and 

updated meta-analyses. BMJ, 321(7255), 199–204. doi:10.1136/bmj.321.7255.199 

Danesh, J., Erqou, S., Walker, M., Thompson, S. G., Tipping, R., Ford, C., … Wood, A. M. 

(2007). The Emerging Risk Factors Collaboration: analysis of individual data on lipid, 

inflammatory and other markers in over 1.1 million participants in 104 prospective studies 

of cardiovascular diseases. European Journal of Epidemiology, 22(12), 839–69. 

doi:10.1007/s10654-007-9165-7 

Dunn, A. L., Marcus, B. H., Kampert, J. B., Garcia, M. E., Kohl, H. W., & Blair, S. N. (1999). 

Comparison of lifestyle and structured interventions to increase physical activity and 

cardiorespiratory fitness: a randomized trial. The Journal of the American Medical 

Association. Retrieved from http://jama.jamanetwork.com/article.aspx?articleid=188405 

Elle, O. J., Halvorsen, S., Gulbrandsen, M. G., Aurdal, L., Bakken, A., Samset, E., … Fosse, E. 

(2005). Early recognition of regional cardiac ischemia using a 3-axis accelerometer sensor. 

Physiological Measurement, 26(4), 429–40. doi:10.1088/0967-3334/26/4/009 

Enos, W. F., Holmes, R. H., & Beyer, J. (1953). Coronary disease among United States soldiers 

killed in action in Korea; preliminary report. The Journal of the American Medical 

Association, 152(12), 1090–1093. doi:10.1001/jama.1986.03380200097028 

Ermes, M., Pärkka, J., Mantyjarvi, J., & Korhonen, I. (2008). Detection of daily activities and 

sports with wearable sensors in controlled and uncontrolled conditions. IEEE Transactions 

on Information Technology in Biomedicine, 12(1), 20–6. doi:10.1109/TITB.2007.899496 

Evenson, K. R., & Wen, F. (2011). Prevalence and correlates of objectively measured physical 

activity and sedentary behavior among US pregnant women. Preventive Medicine, 53(1-2), 

39–43. doi:10.1016/j.ypmed.2011.04.014 

Evenson, K. R., Wen, F., Metzger, J. S. J., & Herring, A. A. H. (2015). Physical activity and 

sedentary behavior patterns using accelerometry from a national sample of United States 

adults. International Journal of Behavioral Nutrition and Physical Activity, 12(20), 20. 

doi:10.1186/s12966-015-0183-7 

Evenson, K. R., Wilcox, S., Pettinger, M., Brunner, R., King, A. C., & McTiernan, A. (2002). 

Vigorous Leisure Activity through Women’s Adult Life: The Women's Health Initiative 

Observational Cohort Study. American Journal of Epidemiology, 156(10), 945–953. 

doi:10.1093/aje/kwf132 

Freedson, P. S., Bowles, H. R., Troiano, R. P., & Haskell, W. L. (2012). Assessment of physical 

activity using wearable monitors: recommendations for monitor calibration and use in the 

field. Medicine and Science in Sports and Exercise, 44(S1), S1–4. 

doi:10.1249/MSS.0b013e3182399b7e 



110 
 

Freedson, P. S., Lyden, K., Kozey-Keadle, S., & Staudenmayer, J. (2011). Evaluation of artificial 

neural network algorithms for predicting METs and activity type from accelerometer data: 

validation on an independent sample. Journal of Applied Physiology, 111(6), 1804–12. 

doi:10.1152/japplphysiol.00309.2011 

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear 

Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22. 

doi:10.18637/jss.v033.i01 

Galiuto, L., & Locorotondo, G. (2015). Gender differences in cardiovascular disease prevention. 

Journal of Integrative Cardiology, 14(1), 20–22. doi:10.15761/JIC.1000107 

Gaura, E. I., Rider, R. J., Steele, N., & Naguib, R. N. (2001). Neural-network compensation 

methods for capacitive micromachined accelerometers for use in telecare medicine. IEEE 

Transactions on Information Technology in Biomedicine, 5(3), 248–52. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/11550847 

Gaziano, T. A., Young, C. R., Fitzmaurice, G., Atwood, S., & Gaziano, J. M. (2008). 

Laboratory-based versus non-laboratory-based method for assessment of cardiovascular 

disease risk: the NHANES I Follow-up Study cohort. Lancet, 371(9616), 923–31. 

doi:10.1016/S0140-6736(08)60418-3 

Gerber, L., Otgonsuren, M., Mishra,  a, Escheik, C., Birerdinc,  a, Stepanova, M., & Younossi, Z. 

M. (2012). Non-alcoholic fatty liver disease (NAFLD) is associated with low level of 

physical activity: a population-based study. Alimentary Pharmacology & Therapeutics, 

36(8), 772–81. doi:10.1111/apt.12038 

Giansanti, D. (2006). Investigation of fall-risk using a wearable device with accelerometers and 

rate gyroscopes. Physiological Measurement, 27(11), 1081–90. doi:10.1088/0967-

3334/27/11/003 

Gillespie, C. D., & Hurvitz, K. A. (2013). Prevalence of hypertension and controlled 

hypertension - United States, 2007-2010. Morbidity and Mortality Weekly Report, 62(3), 

144–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24264505 

Gjoreski, H., Lustrek, M., & Gams, M. (2011). Accelerometer Placement for Posture 

Recognition and Fall Detection. In 2011 Seventh International Conference on Intelligent 

Environments (pp. 47–54). Ieee. doi:10.1109/IE.2011.11 

Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J., … Turner, 

M. B. (2014). Heart disease and stroke statistics - 2014 update: a report from the American 

Heart Association. Circulation, 129(3), e28–e292. doi:10.1161/01.cir.0000441139.02102.80 

Guo, Y., Poulton, G., Corke, P., Bishop-Hurley, G. J., Wark, T., & Swain, D. L. (2009). Using 

accelerometer, high sample rate GPS and magnetometer data to develop a cattle movement 

and behaviour model. Ecological Modelling, 220(17), 2068–2075. 

doi:10.1016/j.ecolmodel.2009.04.047 

Haskell, W. L., Lee, I.-M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. a, … Bauman, A. 

(2007). Physical activity and public health: updated recommendation for adults from the 

American College of Sports Medicine and the American Heart Association. Circulation, 

116(9), 1081–93. doi:10.1161/CIRCULATIONAHA.107.185649 



111 
 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data 

Mining, Inference, and Prediction. Springer. doi:10.1007/b94608 

Hauschild,  a-C., & Baumbach, J. I. (2012). Integrated statistical learning of metabolic ion 

mobility spectrometry profiles for pulmonary disease identification. Genetics and 

Molecular Research, 11(3), 2733–44. doi:10.4238/2012.July.10.17 

Hawkins, M. S., Sevick, M. A., Richardson, C. R., Fried, L. F., Arena, V. C., & Kriska, A. M. 

(2011). Association between physical activity and kidney function: National Health and 

Nutrition Examination Survey. Medicine and Science in Sports and Exercise, 43(8), 1457–

64. doi:10.1249/MSS.0b013e31820c0130 

Healy, G. N., Matthews, C. E., Dunstan, D. W., Winkler, E. a H., & Owen, N. (2011). Sedentary 

time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. European Heart 

Journal, 32(5), 590–7. doi:10.1093/eurheartj/ehq451 

Hebebrand, J., & Hinney, A. (2015). Obesity and overweight. World Health Organization. 

Retrieved from http://www.who.int/mediacentre/factsheets/fs311/en/ 

Heidenreich, P. a, Trogdon, J. G., Khavjou, O. a, Butler, J., Dracup, K., Ezekowitz, M. D., … 

Woo, Y. J. (2011). Forecasting the future of cardiovascular disease in the United States: a 

policy statement from the American Heart Association. Circulation, 123(8), 933–44. 

doi:10.1161/CIR.0b013e31820a55f5 

Hippisley-Cox, J., Coupland, C., Vinogradova, Y., Robson, J., Minhas, R., Sheikh, A., & 

Brindle, P. (2008). Predicting cardiovascular risk in England and Wales: prospective 

derivation and validation of QRISK2. BMJ (Clinical Research Ed.), 336(7659), 1475–82. 

doi:10.1136/bmj.39609.449676.25 

Holman, R. M., Carson, V., & Janssen, I. (2011). Does the fractionalization of daily physical 

activity (sporadic vs. bouts) impact cardiometabolic risk factors in children and youth? PloS 

One, 6(10), e25733. doi:10.1371/journal.pone.0025733 

Holmes, M. D., Chen, W. Y., Feskanich, D., Kroenke, C. H., & Colditz, G. A. (2005). Physical 

activity and survival after breast cancer diagnosis. The Journal of the American Medical 

Association, 293(20), 2479–86. doi:10.1001/jama.293.20.2479 

Hozawa, A., Folsom, A. R., Sharrett, A. R., & Chambless, L. E. (2007). Absolute and 

attributable risks of cardiovascular disease incidence in relation to optimal and borderline 

risk factors: comparison of African American with white subjects--Atherosclerosis Risk in 

Communities Study. Archives of Internal Medicine, 167(6), 573–9. 

doi:10.1001/archinte.167.6.573 

Kannel, W. B., & Dawber, T. R. (1972). Atherosclerosis as a pediatric problem. The Journal of 

Pediatrics, 80(4), 544–554. 

Kannel, W. B., Dawber, T. R., Kagan, A., Revotskie, J., & Stokes, J. (1961). Factors of Risk in 

the Development of Coronary Heart Disease—Six-Year Follow-up Experience. Annals of 

Internal Medicine, 55(1), 33. doi:10.7326/0003-4819-55-1-33 

Kannel, W. B., Neaton, J. D., Wentworth, D., Thomas, H. E., Stamler, J., Hulley, S. B., & 

Kjelsberg, M. O. (1986). Overall and coronary heart disease mortality rates in relation to 



112 
 

major risk factors in 325,348 men screened for the MRFIT. Multiple Risk Factor 

Intervention Trial. American Heart Journal, 112(4), 825–36. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/3532744 

Kannel, W. B., & Sorlie, P. (1979). Some Health Benefits of Physical Activity. Archives of 

Internal Medicine, 139(8), 857. doi:10.1001/archinte.1979.03630450011006 

Kaptoge, S., Di Angelantonio, E., Lowe, G., Pepys, M. B., Thompson, S. G., Collins, R., & 

Danesh, J. (2010). C-reactive protein concentration and risk of coronary heart disease, 

stroke, and mortality: an individual participant meta-analysis. Lancet, 375(9709), 132–40. 

doi:10.1016/S0140-6736(09)61717-7 

Keijsers, N. L. W., Horstink, M. W. I. M., & Gielen, S. C. (2003). Automatic assessment of 

levodopa-induced dyskinesias in daily life by neural networks. Movement Disorders, 18(1), 

70–80. doi:10.1002/mds.10310 

Keijsers, N. L. W., Horstink, M. W. I. M., van Hilten, J. J., Hoff, J. I., & Gielen, S. C. (2000). 

Detection and assessment of the severity of Levodopa-induced dyskinesia in patients with 

Parkinson’s disease by neural networks. Movement Disorders, 15(6), 1104–1111. 

doi:10.1002/1531-8257(200011)15:6<1104::AID-MDS1007>3.0.CO;2-E 

Kenney, W., Wilmore, J., & Costill, D. (2012). Cardiovascular disease and physical activity. In 

Physiology of sport and exercise (5th ed., pp. 521–543). Champaign, IL: Human Kinetics. 

Kesaniemi, Y. K., Danforth, E., Jensen, M. D., Kopelman, P. G., Lefèbvre, P., & Reeder, B. A. 

(2001). Dose-response issues concerning physical activity and health: an evidence-based 

symposium. Medicine and Science in Sports and Exercise, 33(6 Suppl), S351–8. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/11427759 

Keys, A., Fidanza, F., Karvonen, M. J., Kimura, N., & Taylor, H. L. (1972). Indices of relative 

weight and obesity. Journal of Chronic Diseases, 25(6), 329–343. Retrieved from 

http://www.sciencedirect.com/science/article/pii/0021968172900276 

Kozina, S., Lustrek, M., & Gams, M. (2011). Dynamic signal segmentation for activity 

recognition. In Proceedings of International Joint Conference on Artificial Intelligence (pp. 

1–12). Barcelona, Spain. 

Krause, A., Siewiorek, D., Smailagic, A., & Farringdon, J. (2003). Unsupervised, dynamic 

identification of physiological and activity context in wearable computing. In Seventh IEEE 

International Symposium on Wearable Computers (p. 88). Retrieved from 

http://www.computer.org/csdl/proceedings/iswc/2003/2034/00/20340088.pdf 

Kuhn, M. (2008). Caret package. Journal of Statistical Software. Retrieved from 

http://download.nextag.com/cran/web/packages/caret/caret.pdf 

Kwak, N. K., & Lee, C. (1997). A neural network application to classification of health status of 

HIV/AIDS patients. Journal of Medical Systems, 21(2), 87–97. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/9297617 

Laerhoven, K. Van. (2001). Combining the self-organizing map and k-means clustering for on-

line classification of sensor data. Artificial Neural Networks—ICANN. Retrieved from 

http://link.springer.com/chapter/10.1007/3-540-44668-0_65 



113 
 

Lee, I.-M., Sesso, H. D., Oguma, Y., & Paffenbarger, R. S. (2004). The “weekend warrior” and 

risk of mortality. American Journal of Epidemiology, 160(7), 636–41. 

doi:10.1093/aje/kwh274 

Lemon, S. C., Roy, J., Clark, M. A., Friedmann, P. D., & Rakowski, W. (2003). Classification 

and regression tree analysis in public health: Methodological review and comparison with 

logistic regression. Annals of Behavioral Medicine, 26(3), 172–181. 

doi:10.1207/S15324796ABM2603_02 

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News. 

Retrieved from ftp://131.252.97.79/Transfer/Treg/WFRE_Articles/Liaw_02_Classification 

and regression by randomForest.pdf 

Liu, J., Pan, Z., & Xiangcheng, L. (2010). An accelerometer-based gesture recognition algorithm 

and its application for 3D interaction. Computer Science and Information Systems, 7(1), 

177–188. doi:10.2298/CSIS1001177L 

Liu, S.-H., & Chang, Y.-J. (2009). Using accelerometers for physical actions recognition by a 

neural fuzzy network. Telemedicine Journal and E-Health : The Official Journal of the 

American Telemedicine Association, 15(9), 867–76. doi:10.1089/tmj.2009.0032 

Lloyd-Jones, D. M., Adams, R., & Brown, T. (2010). Heart disease and stroke statistics—2010 

update A report from the American Heart Association. Circulation. Retrieved from 

http://circ.ahajournals.org/content/121/7/e46.short 

Lloyd-Jones, D. M., Hong, Y., Labarthe, D., Mozaffarian, D., Appel, L. J., Van Horn, L., … 

Rosamond, W. D. (2010). Defining and setting national goals for cardiovascular health 

promotion and disease reduction: the American Heart Association’s strategic Impact Goal 

through 2020 and beyond. Circulation, 121(4), 586–613. 

doi:10.1161/CIRCULATIONAHA.109.192703 

Long, X., Yin, B., & Aarts, R. M. (2009). Single-accelerometer-based daily physical activity 

classification. In Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society (Vol. 2009, pp. 6107–10). doi:10.1109/IEMBS.2009.5334925 

Loprinzi, P. D., Lee, H., Cardinal, B. J., Crespo, C. J., Andersen, R. E., & Smit, E. (2012, 

September). The relationship of actigraph accelerometer cut-points for estimating physical 

activity with selected health outcomes: results from NHANES 2003-06. Research Quarterly 

for Exercise and Sport. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22978192 

Luke, A., Dugas, L. R., Durazo-Arvizu, R. a, Cao, G., & Cooper, R. S. (2011). Assessing 

physical activity and its relationship to cardiovascular risk factors: NHANES 2003-2006. 

BMC Public Health, 11(1), 387. doi:10.1186/1471-2458-11-387 

Luštrek, M., & Kaluža, B. (2008). Fall Detection and Activity Recognition with Machine 

Learning. Informatica, 33, 205–212. doi:10.1371/journal.pone.0036556 

Lynch, B. M., Dunstan, D. W., Healy, G. N., Winkler, E., Eakin, E., & Owen, N. (2010). 

Objectively measured physical activity and sedentary time of breast cancer survivors, and 

associations with adiposity: findings from NHANES (2003-2006). Cancer Causes & 

Control : CCC, 21(2), 283–8. doi:10.1007/s10552-009-9460-6 



114 
 

Lynch, B. M., Friedenreich, C. M., Winkler, E. a H., Healy, G. N., Vallance, J. K., Eakin, E. G., 

& Owen, N. (2011). Associations of objectively assessed physical activity and sedentary 

time with biomarkers of breast cancer risk in postmenopausal women: findings from 

NHANES (2003-2006). Breast Cancer Research and Treatment, 130(1), 183–94. 

doi:10.1007/s10549-011-1559-2 

Mahmood, S. S., Levy, D., Vasan, R. S., & Wang, T. J. (2014). The Framingham Heart Study 

and the epidemiology of cardiovascular disease: a historical perspective. Lancet, 383(9921), 

999–1008. doi:10.1016/S0140-6736(13)61752-3 

Mannini, A., & Sabatini, A. M. (2010). Machine learning methods for classifying human 

physical activity from on-body accelerometers. Sensors (Basel, Switzerland), 10(2), 1154–

75. doi:10.3390/s100201154 

Martiskainen, P., Järvinen, M., Skön, J.-P., Tiirikainen, J., Kolehmainen, M., & Mononen, J. 

(2009). Cow behaviour pattern recognition using a three-dimensional accelerometer and 

support vector machines. Applied Animal Behaviour Science, 119(1-2), 32–38. 

doi:10.1016/j.applanim.2009.03.005 

Masse, L. C., Fuemmeler, B. F., Anderson, C. B., Matthews, C. E., Trost, S. G., Catellier, D. J., 

& Treuth, M. (2005). Accelerometer Data Reduction: A Comparison of Four Reduction 

Algorithms on Select Outcome Variables. Medicine & Science in Sports & Exercise, 

37(Supplement), S544–S554. doi:10.1249/01.mss.0000185674.09066.8a 

Matthews, C. E. (2005). Calibration for Accelerometer Output for Adults. Medicine and Science 

in Sport and Exercise, S512(Supplement), S512–S522. 

doi:10.1249/01.mss.0000185659.11982.3d 

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–

35. doi:10.1038/nature07201 

Meyer, D., Dimitriadou, E., & Hornik, K. (2015). Package “e1071.” Retrieved from 

ftp://200.236.31.10/CRAN/web/packages/e1071/e1071.pdf 

Michel, K. E., & Brown, D. C. (2011). Determination and application of cut points for 

accelerometer-based activity counts of activities with differing intensity in pet dogs. 

American Journal of Veterinary Research, 72(7), 866–70. doi:10.2460/ajvr.72.7.866 

Mora, S., Cook, N., Buring, J. E., Ridker, P. M., & Lee, I.-M. (2007). Physical activity and 

reduced risk of cardiovascular events: potential mediating mechanisms. Circulation, 

116(19), 2110–8. doi:10.1161/CIRCULATIONAHA.107.729939 

Morris, J. N., Chave, S. P., Adam, C., Sirey, C., Epstein, L., & Sheehan, D. J. (1973). Vigorous 

exercise in leisure-time and the incidence of coronary heart-disease. The Lancet, 301(7799), 

333–339. doi:10.1016/S0140-6736(73)90128-1 

Morris, J. N., Heady, J. A., Raffle, P. A., Roberts, C. G., & Parks, J. W. (1953). Coronary heart 

disease and physical activity of work. Lancet, 265, 1053–1057. 

Myers, G. L., Rifai, N., Tracy, R. P., Roberts, W. L., Alexander, R. W., Biasucci, L. M., … 

Waymack, P. P. (2004). CDC/AHA Workshop on Markers of Inflammation and 

Cardiovascular Disease: Application to Clinical and Public Health Practice: report from the 



115 
 

laboratory science discussion group. Circulation, 110(25), e545–9. 

doi:10.1161/01.CIR.0000148980.87579.5E 

Myers, J., Kaykha, A., George, S., Abella, J., Zaheer, N., Lear, S., … Froelicher, V. (2004). 

Fitness versus physical activity patterns in predicting mortality in men. The American 

Journal of Medicine, 117(12), 912–8. doi:10.1016/j.amjmed.2004.06.047 

National Cholesterol Education Program (NCEP) Expert Panel. (2002). Third Report of the 

National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation 

and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Archives of 

Internal Medicine, (6), 284. doi:10.1001/archinte.1991.00400060019005 

NHANES - History. (2011). Centers for Disease Control and Prevention (CDC). Retrieved 

November 13, 2015, from http://www.cdc.gov/nchs/nhanes/history.htm 

NHANES 2003 - 2004: Physical Activity Monitor Data Documentation, Codebook, and 

Frequencies. (2007). Centers for Disease Control and Prevention (CDC). Retrieved 

November 28, 2015, from http://www.cdc.gov/nchs/nhanes/nhanes2003-

2004/PAXRAW_C.htm 

NHIS - About the National Health Interview Survey. (2015). Centers for Disease Control and 

Prevention (CDC). Retrieved November 28, 2015, from 

http://www.cdc.gov/nchs/nhis/about_nhis.htm 

O’Connell, J., Tøgersen, F. A., Friggens, N. C., Løvendahl, P., & Højsgaard, S. (2010). 

Combining Cattle Activity and Progesterone Measurements Using Hidden Semi-Markov 

Models. Journal of Agricultural, Biological, and Environmental Statistics, 16(1), 1–16. 

doi:10.1007/s13253-010-0033-7 

Ogden, C. L., Lamb, M. M., Carroll, M. D., & Flegal, K. M. (2010). Obesity and socioeconomic 

status in adults: United States, 2005-2008. NCHS Data Brief, (50), 1–8. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/21211165 

Ozemek, C., Cochran, H. L., Strath, S. J., Byun, W., & Kaminsky, L. A. (2013). Estimating 

relative intensity using individualized accelerometer cutpoints: the importance of fitness 

level. BMC Medical Research Methodology, 13, 53. doi:10.1186/1471-2288-13-53 

Paffenbarger, R. S., Blair, S. N., & Lee, I.-M. (2001). A history of physical activity, 

cardiovascular health and longevity: the scientific contributions of Jeremy N Morris, DSc, 

DPH, FRCP. International Journal of Epidemiology, 30(5), 1184–1192. 

doi:10.1093/ije/30.5.1184 

Paffenbarger, R. S., Wing, A. L., & Hyde, R. T. (1978). Physical activity as an index of heart 

attack risk in college alumni. American Journal of Epidemiology, 108(3), 161–75. Retrieved 

from http://www.ncbi.nlm.nih.gov/pubmed/707484 

Pärkkä, J., Cluitmans, L., & Ermes, M. (2010). Personalization algorithm for real-time activity 

recognition using PDA, wireless motion bands, and binary decision tree. IEEE Transactions 

on Information Technology in Biomedicine, 14(5), 1211–5. 

doi:10.1109/TITB.2010.2055060 

Pärkkä, J., Ermes, M., Korpipää, P., Mäntyjärvi, J., Peltola, J., & Korhonen, I. (2006). Activity 



116 
 

classification using realistic data from wearable sensors. IEEE Transactions on Information 

Technology in Biomedicine, 10(1), 119–128. doi:10.1109/TITB.2005.856863 

Pate, R. R., Pratt, M., Blair, S. N., Haskell, W. L., Macera, C. A., Bouchard, C., … Wilmore, J. 

H. (1995). Physical activity and public health. A recommendation from the Centers for 

Disease Control and Prevention and the American College of Sports Medicine. The Journal 

of the American Medical Association, 273(5), 402–407. 

Patel, S., Hughes, R., Hester, T., Stein, J., Akay, M., Dy, J. G., & Bonato, P. (2010). A Novel 

Approach to Monitor Rehabilitation Outcomes in Stroke Survivors Using Wearable 

Technology. In Proceedings of the IEEE (Vol. 98, pp. 450–461). 

doi:10.1109/JPROC.2009.2038727 

Patel, S., Mancinelli, C., Healey, J. A., Moy, M., & Bonato, P. (2009). Using Wearable Sensors 

to Monitor Physical Activities of Patients with COPD: A Comparison of Classifier 

Performance. In 2009 Sixth International Workshop on Wearable and Implantable Body 

Sensor Networks (pp. 234–239). doi:10.1109/BSN.2009.53 

Physical activity and cardiovascular health. NIH Consensus Development Panel on Physical 

Activity and Cardiovascular Health. (1996). Journal of the American Medical Association 

(Vol. 276). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8667571 

Pober, D. M., Staudenmayer, J., Raphael, C., & Freedson, P. S. (2006). Development of novel 

techniques to classify physical activity mode using accelerometers. Medicine and Science in 

Sports and Exercise, 38(9), 1626–34. doi:10.1249/01.mss.0000227542.43669.45 

Pylvänäinen, T. (2005). Accelerometer Based Gesture Recognition Using Continuous HMMs. 

Pattern Recognition and Image Analysis, 639–646. doi:10.1007/11492429_77 

R Core Team. (2014). R: A Language and Environment for Statistical Computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org/ 

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech 

recognition. In Proceedings of the IEEE (Vol. 77, pp. 257–286). doi:10.1109/5.18626 

Ravi, N., Dandekar, N., Mysore, P., & Littman, M. (2005). Activity recognition from 

accelerometer data. In Proceedings of the National Conference on Artificial Intelligence 

(pp. 1541–1546). doi:10.1007/978-3-642-02481-8_120 

Reddy, S., Burke, J., Estrin, D., Hansen, M., & Srivastava, M. (2008). Determining 

transportation mode on mobile phones. In 2008 12th IEEE International Symposium on 

Wearable Computers (pp. 25–28). Ieee. doi:10.1109/ISWC.2008.4911579 

Ridker, P. M., Buring, J. E., Rifai, N., & Cook, N. R. (2007). Development and validation of 

improved algorithms for the assessment of global cardiovascular risk in women: the 

Reynolds Risk Score. The Journal of the American Medical Association, 297(6), 611–9. 

doi:10.1001/jama.297.6.611 

Ridker, P. M., Paynter, N. P., Rifai, N., Gaziano, J. M., & Cook, N. R. (2008). C-reactive protein 

and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score 

for men. Circulation, 118(22), 2243–51, 4p following 2251. 

doi:10.1161/CIRCULATIONAHA.108.814251 



117 
 

Robert, B., White, B. J., Renter, D. G., & Larson, R. L. (2009). Evaluation of three-dimensional 

accelerometers to monitor and classify behavior patterns in cattle. Computers and 

Electronics in Agriculture, 67(1-2), 80–84. doi:10.1016/j.compag.2009.03.002 

Rothney, M. P., Neumann, M., Béziat, A., & Chen, K. Y. (2007). An artificial neural network 

model of energy expenditure using nonintegrated acceleration signals. Journal of Applied 

Physiology, 103(4), 1419–27. doi:10.1152/japplphysiol.00429.2007 

Rothney, M. P., Schaefer, E. V., Neumann, M. M., Choi, L., & Chen, K. Y. (2008). Validity of 

Physical Activity Intensity Predictions by ActiGraph, Actical, and RT3 Accelerometers. 

Obesity, 16(8), 1946–1952. doi:10.1038/oby.2008.279.Validity 

Sesso, H. D., Paffenbarger, R. S., & Lee, I.-M. (2000). Physical Activity and Coronary Heart 

Disease in Men : The Harvard Alumni Health Study. Circulation, 102(9), 975–980. 

doi:10.1161/01.CIR.102.9.975 

Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C. T., … Golub, T. 

R. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling 

and supervised machine learning. Nature Medicine, 8(1), 68–74. doi:10.1038/nm0102-68 

Singh, M., & Patterson, D. J. (2010). Involuntary gesture recognition for predicting cerebral 

palsy in high-risk infants. In International Symposium on Wearable Computers (pp. 1–8). 

IEEE. doi:10.1109/ISWC.2010.5665874 

Sisson, S. B., Camhi, S. M., Church, T. S., Tudor-Locke, C., Johnson, W. D., & Katzmarzyk, P. 

T. (2010). Accelerometer-determined steps/day and metabolic syndrome. American Journal 

of Preventive Medicine, 38(6), 575–82. doi:10.1016/j.amepre.2010.02.015 

Smith, W. a, Nolan, V. G., Robison, L. L., Hudson, M. M., & Ness, K. K. (2011). Physical 

activity among cancer survivors and those with no history of cancer- a report from the 

National Health and Nutrition Examination Survey 2003-2006. American Journal of 

Translational Research, 3(4), 342–50. 

Song, X., Mitnitski, A., Cox, J., & Rockwood, K. (2004). Comparison of machine learning 

techniques with classical statistical models in predicting health outcomes. Studies in Health 

Technology and Informatics, 107(Pt 1), 736–40. doi:10.3233/978-1-60750-949-3-736 

Sprager, S., & Zazula, D. (2009). A Cumulant-Based Method for Gait Identification Using 

Accelerometer Data with Principal Component Analysis and Support Vector Machine, 

5(11), 369–378. 

Staudenmayer, J., Pober, D. R., Crouter, S., Bassett, D., & Freedson, P. S. (2009). An artificial 

neural network to estimate physical activity energy expenditure and identify physical 

activity type from an accelerometer. Journal of Applied Physiology, 107(4), 1300–7. 

doi:10.1152/japplphysiol.00465.2009 

Strath, S. J., Kaminsky, L. A., Ainsworth, B. E., Ekelund, U., Freedson, P. S., Gary, R. A., … 

Swartz, A. M. (2013). Guide to the assessment of physical activity: Clinical and research 

applications: a scientific statement from the American Heart Association. Circulation, 

128(20), 2259–79. doi:10.1161/01.cir.0000435708.67487.da 

Tabata, I., Nishimura, K., Kouzaki, M., Hirai, Y., Ogita, F., Miyachi, M., & Yamamoto, K. 



118 
 

(1996). Effects of moderate-intensity endurance and high-intensity intermittent training on 

anaerobic capacity and VO2max. Medicine and Science in Sports and Exercise, 28(10), 

1327–30. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8897392 

Tapia, E. M. (2008). Using machine learning for real-time activity recognition and estimation of 

energy expenditure. Massachusetts Institute of Technology. Retrieved from 

http://dspace.mit.edu/handle/1721.1/44913 

Tapia, E. M., Intille, S. S., Haskell, W. L., Larson, K., Wright, J., King, A., & Friedman, R. 

(2007). Real-Time Recognition of Physical Activities and Their Intensities Using Wireless 

Accelerometers and a Heart Rate Monitor. In 2007 11th IEEE International Symposium on 

Wearable Computers (pp. 1–4). Ieee. doi:10.1109/ISWC.2007.4373774 

Tennekes, M., & Jonge, E. de. (2012). tabplot: Tableplot, a visualization of large datasets. R 

Package Version. 

Therneau, T., Atkinson, B., & Ripley, B. (2015). rpart: Recursive Partitioning and Regression 

Trees. R package version 4.1-10. 

Troiano, R. P. (2006). Translating accelerometer counts into energy expenditure: advancing the 

quest. Journal of Applied Physiology, 100(4), 1107–8. doi:10.1152/japplphysiol.01577.2005 

Troiano, R. P., Berrigan, D., Dodd, K. W., Mâsse, L. C., Tilert, T., & McDowell, M. (2008). 

Physical activity in the United States measured by accelerometer. Medicine and Science in 

Sports and Exercise, 40(1), 181–8. doi:10.1249/mss.0b013e31815a51b3 

Trost, S. G., Pate, R. R., Freedson, P. S., Sallis, J. F., & Taylor, W. C. (2000). Using objective 

physical activity measures with youth: how many days of monitoring are needed? Medicine 

and Science in Sports and Exercise, 32(2), 426–31. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/10694127 

Trost, S. G., Pate, R. R., Sallis, J. F., Freedson, P. S., Taylor, W. C., Dowda, M., & Sirard, J. 

(2002). Age and gender differences in objectively measured physical activity in youth. 

Medicine and Science in Sports and Exercise, 34(2), 350–5. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/11828247 

Trost, S. G., Wong, W.-K., Pfeiffer, K. a, & Zheng, Y. (2012). Artificial neural networks to 

predict activity type and energy expenditure in youth. Medicine and Science in Sports and 

Exercise, 44(9), 1801–9. doi:10.1249/MSS.0b013e318258ac11 

Trost, S. G., Zheng, Y., & Wong, W.-K. (2014). Machine learning for activity recognition: hip 

versus wrist data. Physiological Measurement, 35(11), 2183–9. doi:10.1088/0967-

3334/35/11/2183 

Tsipouras, M. G., Tzallas, A. T., Rigas, G., Bougia, P., Fotiadis, D. I., & Konitsiotis, S. (2010). 

Automated Levodopa-induced dyskinesia assessment. In Conference of the IEEE 

Engineering in Medicine and Biology Society. (pp. 2411–4). 

doi:10.1109/IEMBS.2010.5626130 

Tudor-Locke, C., Brashear, M. M., Johnson, W. D., & Katzmarzyk, P. T. (2010). Accelerometer 

profiles of physical activity and inactivity in normal weight, overweight, and obese U.S. 

men and women. The International Journal of Behavioral Nutrition and Physical Activity, 



119 
 

7, 60. doi:10.1186/1479-5868-7-60 

Tudor-Locke, C., Camhi, S. M., Leonardi, C., Johnson, W. D., Katzmarzyk, P. T., Earnest, C. P., 

& Church, T. S. (2011). Patterns of adult stepping cadence in the 2005-2006 NHANES. 

Preventive Medicine, 53(3), 178–81. doi:10.1016/j.ypmed.2011.06.004 

Tudor-Locke, C., Camhi, S. M., & Troiano, R. P. (2012). A catalog of rules, variables, and 

definitions applied to accelerometer data in the National Health and Nutrition Examination 

Survey, 2003-2006. Preventing Chronic Disease, 9, E113. doi:10.5888/pcd9.110332 

Tudor-Locke, C., Johnson, W. D., & Katzmarzyk, P. T. (2009). Accelerometer-determined steps 

per day in US adults. Medicine and Science in Sports and Exercise, 41(7), 1384–91. 

doi:10.1249/MSS.0b013e318199885c 

Tudor-Locke, C., Johnson, W. D., & Katzmarzyk, P. T. (2010). Accelerometer-determined steps 

per day in US children and youth. Medicine and Science in Sports and Exercise, 42(12), 

2244–50. doi:10.1249/MSS.0b013e3181e32d7f 

Tudor-Locke, C., Johnson, W. D., & Katzmarzyk, P. T. (2011). Relationship between 

accelerometer-determined steps/day and other accelerometer outputs in US adults. Journal 

of Physical Activity & Health, 8(3), 410–9. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/21487141 

United States Department of Health and Human Services. (2008). 2008 Physical Activity 

Guidelines for Americans. Washington DC: Department of Health and Human Services 

USA. Retrieved from http://www.health.gov/paguidelines/guidelines/ 

Vallance, J. K., Winkler, E. a H., Gardiner, P. a, Healy, G. N., Lynch, B. M., & Owen, N. 

(2011). Associations of objectively-assessed physical activity and sedentary time with 

depression: NHANES (2005-2006). Preventive Medicine, 53(4-5), 284–8. 

doi:10.1016/j.ypmed.2011.07.013 

Van Domelen, D. R., Koster, A., Caserotti, P., Brychta, R. J., Chen, K. Y., McClain, J. J., … 

Harris, T. B. (2011). Employment and physical activity in the U.S. American Journal of 

Preventive Medicine, 41(2), 136–45. doi:10.1016/j.amepre.2011.03.019 

Vanhelst, J., Béghin, L., Turck, D., & Gottrand, F. (2011). New validated thresholds for various 

intensities of physical activity in adolescents using the Actigraph accelerometer. 

International Journal of Rehabilitation Research. Internationale Zeitschrift Für 

Rehabilitationsforschung. Revue Internationale de Recherches de Réadaptation, 34(2), 

175–7. doi:10.1097/MRR.0b013e328340129e 

Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S. Springer. Retrieved 

from https://books.google.com/books?id=GeX9CYd_JTkC&pgis=1 

Wall, M., & Johnson, J. (1988). Cotinine in the serum, saliva, and urine of nonsmokers, passive 

smokers, and active smokers. American Journal of Public Health. Retrieved from 

http://ajph.aphapublications.org/doi/abs/10.2105/AJPH.78.6.699 

Wang, S. W. S., Yang, J. Y. J., Chen, N. C. N., Chen, X. C. X., & Zhang, Q. Z. Q. (2005). 

Human Activity Recognition with User-Free Accelerometers in the Sensor Networks. In 

2005 International Conference on Neural Networks and Brain (Vol. 2, pp. 1212–1217). 



120 
 

IEEE. doi:10.1109/ICNNB.2005.1614831 

Wang, Y., Huang, K., & Tan, T. (2007). Human Activity Recognition Based on R Transform. 

2007 IEEE Conference on Computer Vision and Pattern Recognition, 1–8. 

doi:10.1109/CVPR.2007.383505 

Wannamethee, S. G., Shaper,  a G., Lennon, L., & Morris, R. W. (2005). Metabolic syndrome vs 

Framingham Risk Score for prediction of coronary heart disease, stroke, and type 2 diabetes 

mellitus. Archives of Internal Medicine, 165(22), 2644–50. 

doi:10.1001/archinte.165.22.2644 

Wei, T., & Simko, V. (2016). corrplot: Visualization of a Correlation Matrix. R package version 

0.77. Retrieved from http://cran.r-project.org/package=corrplot 

Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer-Verlag New York. 

Wilson, P. W. F., D’Agostino, R. B., Levy, D., Belanger,  a. M., Silbershatz, H., & Kannel, W. 

B. (1998). Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation, 

97(18), 1837–1847. doi:10.1161/01.CIR.97.18.1837 

Wisløff, U., Støylen, A., Loennechen, J. P., Bruvold, M., Rognmo, Ø., Haram, P. M., … 

Skjærpe, T. (2007). Superior cardiovascular effect of aerobic interval training versus 

moderate continuous training in heart failure patients: A randomized study. Circulation, 

115(24), 3086–3094. doi:10.1161/CIRCULATIONAHA.106.675041 

Wolberg, W. H., Street, W. N., & Mangasarian, O. L. (1995). Image analysis and machine 

learning applied to breast cancer diagnosis and prognosis. Analytical and Quantitative 

Cytology and Histology / the International Academy of Cytology [and] American Society of 

Cytology, 17(2), 77–87. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7612134 

Wong, S. L., Colley, R., Connor Gorber, S., & Tremblay, M. (2011). Actical accelerometer 

sedentary activity thresholds for adults. Journal of Physical Activity & Health, 8(4), 587–

91. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21597132 

Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., … Zhao, H. (2003). 

Comparison of statistical methods for classification of ovarian cancer using mass 

spectrometry data. Bioinformatics, 19(13), 1636–1643. doi:10.1093/bioinformatics/btg210 

Yang, M., Zheng, H., Wang, H., McClean, S., Hall, J., & Harris, N. (2012). A machine learning 

approach to assessing gait patterns for Complex Regional Pain Syndrome. Medical 

Engineering & Physics, 34(6), 740–6. doi:10.1016/j.medengphy.2011.09.018 

Yang, Q., Cogswell, M. E., Flanders, W. D., Hong, Y., Zhang, Z., Loustalot, F., … Hu, F. B. 

(2012). Trends in cardiovascular health metrics and associations with all-cause and CVD 

mortality among US adults. The Journal of the American Medical Association, 307(12), 

1273–83. doi:10.1001/jama.2012.339 

Zhang, X., Chen, X., & Li, Y. (2011). A framework for hand gesture recognition based on 

accelerometer and EMG sensors. IEEE Transactions on Systems, Man, and Cybernetics 

Part A:Systems and Humans, 41(6), 1064 – 1076. doi:10.1109/TSMCA.2011.2116004 

Zheng, Y. (2012, August 17). Predicting activity type from accelerometer data. Retrieved from 

http://ir.library.oregonstate.edu/xmlui/handle/1957/33727 



121 
 

Zisko, N., Carlsen, T., Salvesen, Ø., Aspvik, N. P., Ingebrigtsen, J. E., Wisløff, U., & Stensvold, 

D. (2015). New relative intensity ambulatory accelerometer thresholds for elderly men and 

women: the Generation 100 study. BMC Geriatrics, 15(1), 97. doi:10.1186/s12877-015-

0093-1 

  



122 
 

APPENDIX A: PRINCIPAL COMPONENT LOADINGS 

Table 25. NCI principal components loadings 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

sed_min 0.13 -0.17 0.11 -0.05 0.17 -0.42 0.06 -0.23 

light_min -0.07 0.20 -0.15 0.11 -0.21 0.36 -0.10 -0.47 

life_min -0.22 0.21 -0.16 0.04 -0.01 -0.09 0.00 -0.05 

mod_min -0.26 -0.09 -0.01 -0.13 0.08 -0.01 0.07 0.16 

vig_min -0.10 -0.21 0.04 0.51 -0.09 -0.07 -0.01 0.06 

sed_bouted_60min 0.08 -0.10 0.09 -0.06 0.30 -0.59 -0.12 -0.39 

num_mvpa_bouts -0.20 -0.24 0.07 -0.12 0.05 0.17 -0.07 -0.23 

num_vig_bouts -0.08 -0.20 0.04 0.49 -0.09 -0.05 -0.04 -0.12 

mvpa_bouted -0.19 -0.26 0.07 -0.04 0.06 0.16 -0.01 -0.12 

vig_bouted -0.07 -0.18 0.03 0.55 -0.11 -0.10 -0.02 0.08 

tot_mv_bouts -0.20 -0.25 0.06 -0.12 0.05 0.16 -0.04 -0.25 

tot_mv_min -0.26 -0.13 -0.02 -0.06 0.07 -0.04 0.10 0.12 

tot_li_min -0.22 0.18 -0.19 0.03 -0.01 -0.14 0.04 -0.11 

wk_mv_dif_bout -0.07 -0.01 0.25 -0.16 -0.52 -0.14 -0.41 -0.10 

avg_wk_mv_dif_min -0.12 0.08 0.31 -0.12 -0.36 -0.18 -0.25 0.16 

avg_wk_li_dif_min -0.11 0.21 0.26 0.08 0.22 0.04 -0.37 0.11 

tot_wk_mv_dif_min -0.24 -0.03 0.16 -0.10 -0.12 -0.11 -0.03 0.17 

tot_wk_li_dif_min -0.20 0.26 0.05 0.08 0.15 -0.05 -0.12 -0.02 

perc_wk_mv -0.06 0.16 0.35 0.02 -0.19 0.00 0.53 -0.15 

perc_we_mv 0.05 -0.15 -0.37 -0.01 0.16 0.05 -0.49 0.15 

perc_wk_li -0.06 0.20 0.35 0.12 0.34 0.17 -0.08 0.00 

perc_we_li 0.06 -0.20 -0.35 -0.12 -0.34 -0.17 0.08 0.00 

mv_wk2 -0.18 -0.23 0.06 -0.11 0.04 0.19 -0.08 -0.36 

top_mv.1 -0.24 -0.12 -0.03 -0.06 0.08 -0.01 0.08 0.10 

top_mv.2 -0.25 -0.12 0.00 -0.06 0.05 -0.03 0.07 0.14 

top_mv.3 -0.25 -0.12 0.00 -0.06 0.05 -0.04 0.08 0.17 

top_mv.4 -0.25 -0.12 -0.01 -0.07 0.05 -0.04 0.08 0.16 

top_li.1 -0.21 0.19 -0.17 0.03 -0.01 -0.11 0.02 -0.12 

top_li.2 -0.22 0.20 -0.17 0.04 0.00 -0.12 0.00 -0.08 

top_li.3 -0.22 0.20 -0.16 0.04 0.00 -0.12 0.00 -0.07 

top_li.4 -0.22 0.20 -0.17 0.04 0.00 -0.12 0.01 -0.06 
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Table 26. K-means principal components loadings 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

min.1 0.00 0.37 0.19 -0.05 0.03 -0.10 0.19 -0.01 

min.2 -0.01 -0.28 -0.32 0.16 -0.01 0.08 -0.07 -0.09 

min.3 0.02 -0.36 -0.15 -0.09 -0.06 0.14 -0.20 -0.12 

min.4 0.01 -0.36 0.05 -0.07 0.00 0.00 -0.30 0.11 

min.5 -0.03 -0.23 0.19 0.12 -0.05 0.08 -0.26 0.69 

threshold.1 -0.27 -0.10 0.14 -0.09 -0.08 0.02 0.16 0.03 

threshold.2 -0.29 -0.05 0.15 -0.03 -0.05 -0.04 0.07 -0.01 

threshold.3 -0.29 0.03 0.09 0.05 -0.02 0.04 -0.03 -0.03 

threshold.4 -0.25 0.11 -0.16 -0.10 0.03 0.00 -0.07 0.10 

threshold.5 -0.25 0.04 -0.14 -0.14 0.29 0.01 0.07 0.05 

center.1 -0.24 -0.19 -0.06 0.09 -0.06 -0.05 0.25 0.00 

center.2 -0.27 -0.09 0.15 -0.10 -0.08 0.02 0.15 0.03 

center.3 -0.29 -0.03 0.15 0.00 -0.04 -0.06 0.04 -0.02 

center.4 -0.29 0.05 0.07 0.08 -0.01 0.08 -0.04 -0.03 

center.5 -0.26 0.11 -0.18 -0.11 0.03 -0.01 -0.05 0.10 

variance.1 -0.27 -0.13 0.02 0.00 -0.06 0.01 0.19 -0.02 

variance.2 -0.28 -0.01 0.14 -0.02 -0.04 -0.03 0.00 -0.10 

variance.3 -0.19 0.07 0.07 0.10 0.05 -0.04 -0.54 -0.43 

variance.4 -0.20 0.11 -0.10 0.03 0.06 0.24 -0.34 -0.17 

variance.5 -0.12 0.05 -0.22 -0.21 0.16 -0.08 -0.14 0.33 

skewness.1 0.07 0.23 0.28 -0.32 0.00 0.15 -0.19 0.07 

skewness.2 -0.06 0.21 -0.04 0.40 0.15 -0.36 -0.02 0.15 

skewness.3 -0.04 0.23 -0.22 0.21 -0.01 0.46 0.14 0.08 

skewness.4 -0.02 0.08 -0.38 -0.34 -0.01 -0.18 0.02 -0.14 

skewness.5 0.05 -0.16 0.11 -0.05 0.62 0.08 0.08 -0.11 

kurtosis.1 0.06 0.23 0.28 -0.31 0.00 0.15 -0.18 0.07 

kurtosis.2 -0.07 0.20 -0.02 0.38 0.16 -0.30 -0.24 0.09 

kurtosis.3 -0.05 0.20 -0.19 0.19 0.01 0.55 0.05 0.11 

kurtosis.4 -0.06 0.09 -0.35 -0.33 0.03 -0.20 -0.06 0.19 

kurtosis.5 0.00 -0.13 0.11 -0.03 0.64 0.10 0.12 0.01 
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Table 27. HMM principal components loadings. 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

min.1 0.10 0.13 -0.01 0.19 -0.23 0.15 -0.02 0.40 -0.05 0.20 

min.2 0.11 0.12 0.03 -0.10 -0.08 0.02 0.22 0.49 0.21 0.04 

min.3 0.11 0.01 0.01 -0.06 0.32 0.14 0.24 0.24 0.08 0.08 

min.4 0.00 -0.27 -0.11 -0.17 0.21 0.02 -0.06 0.35 -0.08 0.06 

min.5 -0.04 -0.24 -0.05 -0.19 0.00 0.03 -0.22 0.22 0.19 0.02 

trans_prob.1 0.21 -0.05 0.05 0.14 -0.08 -0.02 0.11 0.05 0.16 0.06 

trans_prob.2 -0.07 0.10 -0.19 -0.07 0.00 -0.23 0.07 0.04 -0.04 0.07 

trans_prob.3 -0.12 0.17 -0.02 -0.21 0.22 0.04 0.00 -0.20 -0.16 0.05 

trans_prob.4 -0.20 -0.12 0.08 -0.03 0.09 -0.04 -0.18 0.07 0.02 -0.19 

trans_prob.5 -0.13 -0.21 0.10 -0.09 -0.09 -0.05 -0.08 -0.03 0.13 -0.18 

trans_prob.6 -0.06 0.13 -0.18 0.23 -0.11 -0.29 -0.14 0.02 -0.16 0.28 

trans_prob.7 0.21 -0.09 -0.01 0.05 -0.04 -0.04 0.18 0.04 0.25 -0.11 

trans_prob.8 -0.11 0.15 0.03 -0.34 0.18 0.11 0.11 -0.13 -0.10 0.06 

trans_prob.9 -0.18 -0.07 0.14 -0.02 0.17 -0.04 -0.21 0.08 -0.04 -0.15 

trans_prob.11 -0.11 0.25 -0.02 0.01 -0.16 -0.14 -0.15 -0.02 -0.13 0.16 

trans_prob.12 -0.10 0.24 0.04 -0.27 -0.25 -0.05 0.05 0.16 0.03 0.05 

trans_prob.13 0.21 -0.12 -0.09 0.07 0.09 -0.03 0.23 -0.21 0.11 -0.08 

trans_prob.14 -0.15 -0.05 0.09 0.08 0.30 -0.02 -0.21 0.20 -0.06 0.05 

trans_prob.15 -0.14 -0.22 0.07 -0.06 -0.11 -0.08 -0.16 0.07 0.11 -0.11 

trans_prob.16 -0.16 0.10 0.14 0.16 -0.18 -0.12 -0.08 0.05 0.13 -0.08 

trans_prob.17 -0.11 0.21 0.24 0.07 -0.09 -0.06 0.00 0.07 0.15 -0.15 

trans_prob.18 -0.04 0.28 0.17 0.16 0.27 0.07 0.10 0.01 0.10 0.07 

trans_prob.19 0.18 -0.15 -0.25 -0.16 0.02 -0.09 0.06 -0.12 -0.13 0.03 

trans_prob.21 -0.08 -0.03 0.16 0.10 -0.15 -0.11 0.16 -0.15 0.03 -0.13 

trans_prob.22 -0.07 -0.07 0.20 0.07 -0.12 -0.08 0.16 -0.11 0.05 -0.12 

trans_prob.23 -0.12 -0.05 0.16 0.12 -0.04 -0.07 0.14 -0.07 0.01 -0.07 

trans_prob.24 -0.15 -0.09 0.06 0.08 0.00 -0.10 0.14 0.15 -0.16 0.04 

center.1 0.21 -0.07 0.30 -0.04 -0.03 -0.09 -0.02 0.04 -0.03 0.18 

center.2 0.24 -0.04 0.28 -0.08 0.01 -0.07 -0.04 -0.01 -0.05 0.07 

center.3 0.26 0.02 0.16 -0.06 0.08 -0.06 -0.10 -0.02 -0.08 -0.06 

center.4 0.26 0.08 0.06 -0.07 0.04 -0.09 -0.18 0.06 -0.08 -0.17 

center.5 0.21 0.20 -0.02 -0.04 0.03 -0.06 -0.15 0.06 -0.02 -0.30 

variance.1 0.13 -0.07 0.30 -0.03 -0.04 -0.15 -0.06 -0.05 -0.13 0.31 

variance.2 0.16 -0.05 0.27 -0.05 -0.02 -0.15 -0.09 -0.07 -0.15 0.23 

variance.3 0.24 0.05 0.10 -0.05 0.04 -0.10 -0.15 -0.01 -0.13 -0.13 

variance.4 0.23 0.14 0.01 -0.05 0.01 -0.09 -0.19 0.07 -0.07 -0.25 

variance.5 0.08 0.09 0.01 -0.01 0.00 -0.07 0.00 0.08 -0.10 -0.39 

skewness.1 0.08 -0.03 0.04 0.13 -0.18 0.51 -0.13 -0.03 -0.20 -0.08 

skewness.2 0.07 -0.02 -0.30 0.31 0.11 -0.24 -0.13 0.03 -0.02 0.00 

skewness.3 -0.03 0.18 -0.24 -0.29 -0.23 -0.12 -0.05 0.05 -0.07 -0.07 

skewness.4 -0.04 0.33 0.00 0.12 0.15 0.00 -0.03 0.05 0.11 -0.11 
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Table 27 (cont.) 

skewness.5 -0.10 -0.08 0.05 0.09 -0.01 -0.12 0.34 0.16 -0.43 -0.18 

kurtosis.1 0.01 -0.02 0.02 0.13 -0.20 0.49 -0.14 0.00 -0.25 -0.02 

kurtosis.2 0.14 -0.13 -0.21 0.34 0.07 -0.09 -0.09 0.02 0.02 -0.03 

kurtosis.3 0.14 -0.07 -0.17 -0.21 -0.32 -0.02 0.11 -0.04 0.00 -0.05 

kurtosis.4 0.12 0.26 -0.06 0.05 0.15 0.10 0.07 -0.12 0.06 -0.01 

kurtosis.5 -0.03 -0.05 0.03 0.06 0.03 -0.08 0.29 0.18 -0.45 -0.18 

Variable PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 

min.1 -0.11 0.04 -0.11 0.26 0.00 -0.08 0.06 0.00 -0.03 -0.03 

min.2 -0.13 0.07 -0.06 -0.10 0.03 -0.16 -0.11 -0.02 0.01 -0.04 

min.3 -0.23 0.21 -0.14 0.25 0.14 0.03 0.00 0.04 0.03 0.00 

min.4 0.01 0.00 -0.25 0.08 -0.10 -0.24 0.02 0.02 0.03 0.00 

min.5 -0.05 0.16 0.35 0.18 -0.06 0.11 -0.07 0.01 -0.15 -0.11 

trans_prob.1 0.20 -0.32 0.04 0.22 -0.10 0.15 0.18 0.05 0.03 0.09 

trans_prob.2 -0.30 0.29 0.08 -0.53 -0.06 -0.06 0.15 0.03 -0.03 -0.17 

trans_prob.3 -0.15 0.00 -0.02 0.17 0.19 -0.14 -0.46 -0.05 -0.12 -0.08 

trans_prob.4 0.24 0.15 -0.17 -0.03 0.13 -0.08 -0.02 0.03 0.10 0.08 

trans_prob.5 -0.19 0.20 0.16 0.18 -0.14 0.04 0.02 -0.30 0.00 0.07 

trans_prob.6 -0.11 0.05 -0.01 0.17 -0.08 0.07 0.32 0.04 -0.08 -0.09 

trans_prob.7 0.12 -0.15 0.09 -0.22 0.02 -0.09 -0.40 -0.08 0.00 -0.02 

trans_prob.8 -0.09 0.00 -0.04 0.18 -0.02 0.21 0.19 -0.03 0.12 0.19 

trans_prob.9 0.16 0.10 -0.15 0.02 0.15 -0.14 0.18 0.15 -0.01 -0.14 

trans_prob.11 -0.01 -0.20 0.00 0.26 0.06 -0.20 -0.32 -0.01 -0.17 -0.16 

trans_prob.12 0.02 -0.16 0.06 -0.20 -0.14 0.03 0.02 -0.05 0.10 0.10 

trans_prob.13 0.03 0.22 -0.06 0.11 0.24 0.08 0.13 0.08 -0.06 -0.09 

trans_prob.14 0.10 -0.20 -0.03 -0.17 -0.27 -0.07 0.01 -0.16 0.03 0.14 

trans_prob.15 -0.24 -0.03 0.21 0.12 -0.10 0.10 -0.09 0.19 0.16 0.05 

trans_prob.16 0.19 0.09 -0.06 0.14 0.20 0.02 -0.06 0.07 0.02 0.10 

trans_prob.17 0.07 0.11 0.00 -0.08 0.25 -0.08 0.10 0.11 -0.07 -0.31 

trans_prob.18 -0.13 -0.01 0.16 -0.02 -0.02 0.23 -0.03 -0.15 0.01 0.18 

trans_prob.19 0.08 -0.12 -0.17 0.02 -0.18 -0.27 0.05 0.09 0.05 -0.04 

trans_prob.21 -0.13 0.11 -0.18 0.18 -0.20 -0.24 0.05 -0.60 0.26 -0.23 

trans_prob.22 -0.24 0.03 -0.10 0.02 -0.12 -0.35 0.09 0.18 -0.54 0.53 

trans_prob.23 -0.35 -0.18 -0.13 0.04 -0.06 -0.04 -0.10 0.48 0.54 -0.04 

trans_prob.24 0.01 -0.11 -0.37 -0.16 0.24 0.26 -0.03 -0.26 -0.02 0.17 

center.1 0.09 0.03 -0.03 0.04 -0.06 0.00 0.00 -0.04 0.00 -0.07 

center.2 -0.01 0.00 0.02 -0.06 0.01 -0.04 0.04 0.00 -0.02 -0.05 

center.3 -0.13 -0.11 0.06 -0.01 0.08 -0.10 0.07 -0.03 -0.01 -0.04 

center.4 -0.10 -0.12 0.06 -0.02 0.13 -0.06 0.07 -0.06 0.05 0.05 

center.5 -0.03 0.03 -0.09 0.03 -0.09 0.10 0.00 0.00 0.01 0.03 

variance.1 0.12 0.29 -0.06 -0.02 -0.11 0.11 -0.19 0.05 0.07 0.06 

variance.2 0.03 0.27 -0.02 -0.09 -0.06 0.09 -0.17 0.09 0.05 0.12 

variance.3 -0.18 -0.09 0.06 0.02 0.15 -0.08 0.11 -0.07 0.03 0.03 
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Table 27 (cont.) 

variance.4 -0.07 -0.03 0.04 0.01 0.14 -0.03 0.10 -0.08 0.10 0.14 

variance.5 -0.06 0.01 -0.34 0.04 -0.42 0.43 -0.18 0.12 -0.31 -0.27 

skewness.1 -0.07 0.05 -0.01 -0.09 0.00 -0.03 -0.02 0.01 0.03 0.04 

skewness.2 -0.14 0.08 0.02 0.00 0.06 0.01 -0.16 -0.03 0.06 0.12 

skewness.3 0.05 0.11 -0.07 0.11 0.08 0.04 -0.08 0.00 0.15 0.28 

skewness.4 0.22 0.24 0.04 0.04 -0.21 -0.13 -0.04 0.06 0.18 0.20 

skewness.5 0.10 0.02 0.21 0.05 -0.01 0.00 -0.03 0.02 0.00 0.00 

kurtosis.1 -0.11 0.17 -0.04 -0.12 -0.02 -0.04 -0.05 -0.01 0.04 0.01 

kurtosis.2 -0.05 0.12 -0.02 0.00 0.05 0.03 -0.20 -0.08 0.08 0.18 

kurtosis.3 0.17 0.20 -0.11 0.02 0.06 0.06 0.01 0.00 0.08 0.12 

kurtosis.4 0.19 0.18 0.07 0.08 -0.32 -0.24 0.02 0.09 0.06 -0.04 

kurtosis.5 0.16 0.04 0.41 0.09 0.01 -0.05 0.00 0.04 0.02 -0.02 
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APPENDIX B: CLASSIFICATION RESULTS 

Table 28. Classification results with training data. 

  Classifier 

Accuracy 

(%) 

Kappa 

(%) 

AUC 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

False 

Negative 

(%) 

False 

Positive 

(%) 

Basic NCI 

  

  

  

  

Lasso 77.98 38.72 67.17 91.98 42.36 57.64 8.02 

Neural Network 79.99 46.45 71.43 91.08 51.78 48.22 8.92 

SVM 80.11 46.25 71.13 91.74 50.52 49.48 8.26 

Decision Tree 81.58 51.71 74.35 90.95 57.74 42.26 9.05 

Random Forest 80.25 48.42 72.88 89.80 55.96 44.04 10.20 

NCI 

complete 

  

  

  

  

Lasso 80.05 46.28 71.21 91.49 50.94 49.06 8.51 

Neural Network 76.03 32.33 64.13 91.45 36.82 63.18 8.55 

SVM 81.70 50.76 73.29 92.60 53.97 46.03 7.40 

Decision Tree 82.02 52.80 74.81 91.37 58.26 41.74 8.63 

Random Forest 80.84 49.35 73.04 90.95 55.13 44.87 9.05 

NCI Low 

Corr 

  

  

  

  

Lasso 77.10 35.43 65.51 92.11 38.91 61.09 7.89 

Neural Network 77.89 37.15 66.13 93.13 39.12 60.88 6.87 

SVM 78.93 39.35 66.88 94.53 39.23 60.77 5.47 

Decision Tree 77.57 33.38 63.87 95.31 32.43 67.57 4.69 

Random Forest 76.95 37.13 66.80 90.09 43.51 56.49 9.91 

NCI 

chosen 

  

  

  

  

Lasso 74.68 25.80 60.87 92.56 29.18 70.82 7.44 

Neural Network 73.44 13.29 55.02 97.29 12.76 87.24 2.71 

SVM 78.19 39.79 67.79 91.65 43.93 56.07 8.35 

Decision Tree 79.07 41.95 68.66 92.56 44.77 55.23 7.44 

Random Forest 78.51 42.46 69.57 90.09 49.06 50.94 9.91 

NCI 

Prcomp 

  

  

  

  

Lasso 78.07 39.55 67.71 91.49 43.93 56.07 8.51 

Neural Network 80.73 49.76 73.56 90.01 57.11 42.89 9.99 

SVM 79.16 42.21 68.79 92.60 44.98 55.02 7.40 

Decision Tree 79.69 43.16 69.03 93.50 44.56 55.44 6.50 

Random Forest 78.75 43.49 70.18 89.84 50.52 49.48 10.16 

Km 

complete 

  

  

  

  

Lasso 79.66 45.00 70.54 91.49 49.58 50.42 8.51 

Neural Network 74.09 34.95 67.19 83.02 51.36 48.64 16.98 

SVM 82.11 51.34 73.29 93.54 53.03 46.97 6.46 

Decision Tree 80.31 48.20 72.61 90.30 54.92 45.08 9.70 

Random Forest 79.75 47.34 72.47 89.19 55.75 44.25 10.81 

Km low 

corr 

  

  

  

  

Lasso 79.43 43.61 69.64 92.11 47.18 52.82 7.89 

Neural Network 71.78 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 81.64 49.31 72.04 94.08 50.00 50.00 5.92 

Decision Tree 80.58 50.36 74.31 88.69 59.94 40.06 11.31 

Random Forest 79.55 46.75 72.17 89.10 55.23 44.77 10.90 

Km 

prcomp 

  

 

Lasso 79.63 44.04 69.78 92.39 47.18 52.82 7.61 

Neural Network 80.96 49.84 73.34 90.83 55.86 44.14 9.17 

SVM 81.58 49.54 72.32 93.59 51.05 48.95 6.41 
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Table 28 (cont.)  

 

Decision Tree 79.81 46.31 71.49 90.58 52.41 47.59 9.42 

Random Forest 79.40 45.73 71.43 89.72 53.14 46.86 10.28 

HMM all 

  

  

  

  

Lasso 80.25 46.30 71.01 92.23 49.79 50.21 7.77 

Neural Network 71.81 0.24 50.08 99.96 0.21 99.79 0.04 

SVM 85.48 61.09 78.14 94.98 61.30 38.70 5.02 

Decision Tree 79.43 41.72 68.18 94.00 42.36 57.64 6.00 

Random Forest 79.87 45.31 70.58 91.90 49.27 50.73 8.10 

HMM low 

corr 

  

  

  

  

Lasso 79.40 43.11 69.27 92.52 46.03 53.97 7.48 

Neural Network 71.66 21.37 59.50 87.42 31.59 68.41 12.58 

SVM 85.42 59.82 76.80 96.59 57.01 42.99 3.41 

Decision Tree 78.93 39.98 67.32 93.96 40.69 59.31 6.04 

Random Forest 79.84 44.28 69.77 92.89 46.65 53.35 7.11 

HMM 

prcomp 

  

  

  

  

Lasso 79.34 42.62 68.94 92.80 45.08 54.92 7.20 

Neural Network 81.29 50.71 73.76 91.04 56.49 43.51 8.96 

SVM 84.77 58.68 76.69 95.23 58.16 41.84 4.77 

Decision Tree 77.30 35.80 65.62 92.43 38.81 61.19 7.57 

Random Forest 77.80 34.23 64.26 95.35 33.16 66.84 4.65 

All 

  

  

  

  

Lasso 81.97 52.06 74.17 92.06 56.28 43.72 7.94 

Neural Network 71.84 0.84 50.30 99.75 0.84 99.16 0.25 

SVM 86.13 63.33 79.58 94.61 64.54 35.46 5.39 

Decision Tree 82.02 53.14 75.16 90.91 59.41 40.59 9.09 

Random Forest 80.31 47.98 72.42 90.54 54.29 45.71 9.46 

All Low 

corr 

  

  

  

  

Lasso 80.61 47.33 71.51 92.39 50.63 49.37 7.61 

Neural Network 72.34 12.33 54.80 95.07 14.54 85.46 4.93 

SVM 86.42 63.97 79.75 95.07 64.44 35.56 4.93 

Decision Tree 82.29 54.40 76.08 90.34 61.82 38.18 9.66 

Random Forest 80.79 48.78 72.59 91.41 53.77 46.23 8.59 
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Table 29. Classification results by feature set for women’s data. 

  Classifier 

Accuracy 

(%) 

Kappa 

(%) 

AUC 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

False 

Negative 

(%) 

False 

Positive 

(%) 

Basic NCI 

  

  

  

  

Lasso 85.35 40.81 66.44 96.88 36.00 64.00 3.12 

Neural Network 85.35 45.63 70.02 94.70 45.33 54.67 5.30 

SVM 83.84 32.10 62.44 96.88 28.00 72.00 3.12 

Decision Tree 84.85 43.76 69.20 94.39 44.00 56.00 5.61 

Random Forest 83.08 36.08 65.55 93.77 37.33 62.67 6.23 

NCI 

complete 

  

  

  

  

Lasso 84.60 37.35 64.95 96.57 33.33 66.67 3.43 

Neural Network 85.10 45.64 70.37 94.08 46.67 53.33 5.92 

SVM 84.34 34.22 63.26 97.20 29.33 70.67 2.80 

Decision Tree 84.34 40.50 67.35 94.70 40.00 60.00 5.30 

Random Forest 85.10 43.71 68.84 95.02 42.67 57.33 4.98 

NCI Low 

Corr 

  

  

  

  

Lasso 84.09 30.88 61.58 97.82 25.33 74.67 2.18 

Neural Network 83.33 21.73 57.53 99.07 16.00 84.00 0.93 

SVM 83.59 26.69 59.73 98.13 21.33 78.67 1.87 

Decision Tree 84.09 39.17 66.69 94.70 38.67 61.33 5.30 

Random Forest 82.83 31.47 62.84 95.02 30.67 69.33 4.98 

NCI chosen 

  

  

  

  

Lasso 83.08 19.95 56.87 99.07 14.67 85.33 0.93 

Neural Network 82.58 21.07 57.58 97.82 17.33 82.67 2.18 

SVM 83.33 19.35 56.51 99.69 13.33 86.67 0.31 

Decision Tree 82.58 33.38 64.22 93.77 34.67 65.33 6.23 

Random Forest 83.33 32.64 63.15 95.64 30.67 69.33 4.36 

NCI Prcomp 

  

  

  

  

Lasso 83.59 30.58 61.78 96.88 26.67 73.33 3.12 

Neural Network 82.83 33.95 64.37 94.08 34.67 65.33 5.92 

SVM 83.33 22.86 58.04 98.75 17.33 82.67 1.25 

Decision Tree 82.07 35.33 65.95 91.90 40.00 60.00 8.10 

Random Forest 84.34 36.72 64.80 96.26 33.33 66.67 3.74 

Km 

complete 

  

  

  

  

Lasso 84.34 36.72 63.62 96.26 33.33 66.67 3.74 

Neural Network 81.06 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 83.59 26.69 59.73 98.13 21.33 78.67 1.87 

Decision Tree 84.60 39.66 66.49 95.64 37.33 62.67 4.36 

Random Forest 84.09 38.44 66.17 95.02 37.33 62.67 4.98 

Km low corr 

  

  

  

  

Lasso 84.09 34.46 63.62 96.57 30.67 69.33 3.43 

Neural Network 81.57 30.36 63.08 92.83 33.33 66.67 7.17 

SVM 83.33 23.97 58.55 98.44 18.67 81.33 1.56 

Decision Tree 82.83 23.84 58.75 97.51 20.00 80.00 2.49 

Random Forest 83.59 34.08 63.82 95.64 32.00 68.00 4.36 

Km prcomp 

  

  

  

  

Lasso 83.59 31.49 62.29 96.57 28.00 72.00 3.43 

Neural Network 84.85 39.53 66.13 96.26 36.00 64.00 3.74 

SVM 83.84 26.27 59.38 98.75 20.00 80.00 1.25 

Decision Tree 82.07 28.00 61.35 94.70 28.00 72.00 5.30 

Random Forest 84.09 37.68 65.66 95.33 36.00 64.00 4.67 
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Table 29 (cont.) 

HMM all 

  

  

  

  

Lasso 84.60 38.14 65.46 96.26 34.67 65.33 3.74 

Neural Network 82.32 41.84 70.70 89.41 52.00 48.00 10.59 

SVM 83.33 23.97 58.55 98.44 18.67 81.33 1.56 

Decision Tree 82.58 29.13 61.66 95.33 28.00 72.00 4.67 

Random Forest 83.84 33.84 63.46 96.26 30.67 69.33 3.74 

HMM low 

corr 

  

  

  

  

Lasso 84.34 35.08 63.78 96.88 30.67 69.33 3.12 

Neural Network 81.82 19.36 57.11 96.88 17.33 82.67 3.12 

SVM 82.07 12.57 54.20 99.07 9.33 90.67 0.93 

Decision Tree 83.08 32.05 63.00 95.33 30.67 69.33 4.67 

Random Forest 83.84 33.84 63.46 96.26 30.67 69.33 3.74 

HMM 

prcomp 

  

  

  

  

Lasso 85.10 38.62 65.26 97.20 33.33 66.67 2.80 

Neural Network 82.83 34.74 64.88 93.77 36.00 64.00 6.23 

SVM 81.82 14.61 55.07 98.13 12.00 88.00 1.87 

Decision Tree 81.06 20.95 58.17 95.02 21.33 78.67 4.98 

Random Forest 82.83 19.35 56.71 98.75 14.67 85.33 1.25 

All 

  

  

  

  

Lasso 84.85 40.28 66.64 95.95 37.33 62.67 4.05 

Neural Network 80.30 -1.48 49.53 99.07 0.00 100.00 0.93 

SVM 84.60 34.85 63.42 97.51 29.33 70.67 2.49 

Decision Tree 82.58 36.43 66.26 92.52 40.00 60.00 7.48 

Random Forest 84.85 39.53 66.13 96.26 36.00 64.00 3.74 

All Low corr 

  

  

  

  

Lasso 83.84 34.68 63.98 95.95 32.00 68.00 4.05 

Neural Network 81.06 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 82.58 21.07 57.58 97.82 17.33 82.67 2.18 

Decision Tree 81.31 28.98 62.42 92.83 32.00 68.00 7.17 

Random Forest 82.83 26.89 60.29 96.57 24.00 76.00 3.43 
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Table 30. Classification results by feature set for men’s data. 

  Classifier 

Accuracy 

(%) 

Kappa 

(%) 

AUC 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

False 

Negative 

(%) 

False 

Positive 

(%) 

Basic NCI 

  

  

  

  

Lasso 79.20 55.07 77.09 85.77 68.42 31.58 14.23 

Neural Network 80.75 58.27 78.57 87.54 69.59 30.41 12.46 

SVM 80.09 56.58 77.58 87.90 67.25 32.75 12.10 

Decision Tree 80.53 58.99 79.76 82.92 76.61 23.39 17.08 

Random Forest 76.99 50.52 74.97 83.27 66.67 33.33 16.73 

NCI 

complete 

  

  

  

  

Lasso 79.20 55.99 78.01 82.56 73.68 26.32 17.44 

Neural Network 75.22 49.74 76.07 72.60 79.53 20.47 27.40 

SVM 80.31 57.61 78.44 86.12 70.76 29.24 13.88 

Decision Tree 80.53 58.99 79.76 82.92 76.61 23.39 17.08 

Random Forest 80.53 57.24 77.70 89.32 66.08 33.92 10.68 

NCI Low 

Corr 

  

  

  

  

Lasso 75.44 46.13 72.35 85.05 59.65 40.35 14.95 

Neural Network 74.56 41.85 69.46 90.39 48.54 51.46 9.61 

SVM 74.56 42.97 70.38 87.54 53.22 46.78 12.46 

Decision Tree 74.78 44.74 71.70 84.34 59.06 40.94 15.66 

Random Forest 74.78 44.21 71.25 85.77 56.73 43.27 14.23 

NCI chosen 

  

  

  

  

Lasso 71.68 36.14 67.04 86.12 47.95 52.05 13.88 

Neural Network 73.23 41.96 70.57 81.49 59.65 40.35 18.51 

SVM 73.67 42.11 70.36 83.99 56.73 43.27 16.01 

Decision Tree 73.01 42.36 71.08 79.00 63.16 36.84 21.00 

Random Forest 75.88 46.97 72.71 85.77 59.65 40.35 14.23 

NCI 

Prcomp 

  

  

  

  

Lasso 76.55 49.45 74.39 83.27 65.50 34.50 16.73 

Neural Network 78.10 52.73 75.97 84.70 67.25 32.75 15.30 

SVM 77.21 49.89 74.12 86.83 61.40 38.60 13.17 

Decision Tree 76.77 48.18 72.96 88.61 57.31 42.69 11.39 

Random Forest 74.12 42.67 70.48 85.41 55.56 44.44 14.59 

Km 

complete 

  

  

  

  

Lasso 79.42 55.08 76.75 87.54 66.08 33.92 12.46 

Neural Network 79.20 56.58 78.81 80.43 77.19 22.81 19.57 

SVM 80.09 56.06 77.00 89.68 64.33 35.67 10.32 

Decision Tree 77.65 51.44 75.16 85.41 64.91 35.09 14.59 

Random Forest 80.09 57.08 78.15 86.12 70.18 29.82 13.88 

Km low 

corr 

  

  

  

  

Lasso 80.31 56.81 77.52 88.97 66.08 33.92 11.03 

Neural Network 74.78 45.76 72.62 81.49 63.74 36.26 18.51 

SVM 79.20 53.56 75.49 90.75 60.23 39.77 9.25 

Decision Tree 78.98 54.22 76.46 86.83 66.08 33.92 13.17 

Random Forest 79.87 56.65 77.97 85.77 70.18 29.82 14.23 

Km prcomp 

  

  

  

  

Lasso 79.42 55.08 76.81 87.54 66.08 33.92 12.46 

Neural Network 79.42 54.54 76.24 89.32 63.16 36.84 10.68 

SVM 80.97 57.41 77.26 92.53 61.99 38.01 7.47 

Decision Tree 77.21 52.80 77.09 77.58 76.61 23.39 22.42 

Random Forest 80.97 58.51 78.52 88.61 68.42 31.58 11.39 
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Table 30 (cont.)  

HMM all 

  

  

  

  

Lasso 79.42 54.65 76.36 88.97 63.74 36.26 11.03 

Neural Network 69.69 39.38 70.93 65.84 76.02 23.98 34.16 

SVM 78.98 54.00 76.23 87.54 64.91 35.09 12.46 

Decision Tree 75.88 48.32 73.97 81.85 66.08 33.92 18.15 

Random Forest 78.32 52.27 75.24 87.90 62.57 37.43 12.10 

HMM low 

corr 

  

  

  

  

Lasso 76.11 46.25 71.85 89.32 54.39 45.61 10.68 

Neural Network 67.48 30.46 65.14 74.73 55.56 44.44 25.27 

SVM 77.88 50.59 74.08 89.68 58.48 41.52 10.32 

Decision Tree 75.88 48.20 73.85 82.21 65.50 34.50 17.79 

Random Forest 78.54 53.36 76.10 86.12 66.08 33.92 13.88 

HMM 

prcomp 

  

  

  

  

Lasso 75.88 46.47 72.25 87.19 57.31 42.69 12.81 

Neural Network 77.43 50.55 74.52 86.48 62.57 37.43 13.52 

SVM 76.99 49.47 73.94 86.48 61.40 38.60 13.52 

Decision Tree 69.69 31.57 64.86 84.70 45.03 54.97 15.30 

Random Forest 76.33 45.76 71.23 92.17 50.29 49.71 7.83 

All 

  

  

  

  

Lasso 81.42 59.75 79.33 87.90 70.76 29.24 12.10 

Neural Network 76.11 49.55 74.95 79.72 70.18 29.82 20.28 

SVM 80.75 58.17 78.45 87.90 69.01 30.99 12.10 

Decision Tree 78.10 53.38 76.66 82.56 70.76 29.24 17.44 

Random Forest 81.19 59.42 79.27 87.19 71.35 28.65 12.81 

All Low 

corr 

  

  

  

  

Lasso 79.20 53.67 75.61 90.39 60.82 39.18 9.61 

Neural Network 67.92 26.68 62.41 85.05 39.77 60.23 14.95 

SVM 77.65 50.28 74.02 88.97 59.06 40.94 11.03 

Decision Tree 77.88 52.64 76.14 83.27 69.01 30.99 16.73 

Random Forest 80.31 57.11 77.87 87.90 67.84 32.16 12.10 
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Table 31. Classification results of alternative outcome – Blood Pressure. 

 

Classifier 

Accuracy 

(%) 

Kappa 

(%) 

AUC 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

False 

Negative 

(%) 

False 

Positive 

(%) 

Basic NCI 

Logistic Regression 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.47 10.37 54.98 97.40 10.30 89.70 2.60 

SVM 72.64 1.38 50.73 99.67 1.29 98.71 0.33 

Decision Tree 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.41 14.31 56.64 92.68 18.88 81.12 7.32 

NCI 

complete 

Lasso 72.52 0.77 50.53 99.67 0.86 99.14 0.33 

Neural Network 71.34 2.14 52.90 96.42 5.15 94.85 3.58 

SVM 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 73.23 12.40 55.78 95.77 13.73 86.27 4.23 

NCI Low 

Corr 

Logistic Regression 72.52 0.00 50.61 100.00 0.00 100.00 0.00 

Neural Network 72.17 13.30 60.53 92.68 18.03 81.97 7.32 

SVM 72.76 2.00 50.93 99.67 1.72 98.28 0.33 

Decision Tree 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 73.23 13.30 54.99 95.28 15.02 84.98 4.72 

NCI chosen 

Logistic Regression 72.64 0.62 50.53 100.00 0.43 99.57 0.00 

Neural Network 72.41 -0.24 49.92 99.84 0.00 100.00 0.16 

SVM 72.41 -0.24 50.20 99.84 0.00 100.00 0.16 

Decision Tree 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.17 7.80 52.64 95.61 10.30 89.70 4.39 

NCI 

Prcomp 

Logistic Regression 72.52 0.00 50.73 100.00 0.00 100.00 0.00 

Neural Network 73.11 12.17 56.27 95.61 13.73 86.27 4.39 

SVM 72.52 0.39 50.41 99.84 0.43 99.57 0.16 

Decision Tree 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.41 10.78 55.48 94.63 13.73 86.27 5.37 

Km 

complete 

Lasso 72.64 8.40 56.28 96.42 9.87 90.13 3.58 

Neural Network 72.52 0.39 50.41 99.84 0.43 99.57 0.16 

SVM 72.76 2.74 51.17 99.35 2.58 97.42 0.65 

Decision Tree 73.23 7.92 52.09 98.05 7.73 92.27 1.95 

Random Forest 71.46 10.50 57.42 92.52 15.88 84.12 7.48 

Km low 

corr 

Logistic Regression 72.52 1.15 54.75 99.51 1.29 98.71 0.49 

Neural Network 72.52 0.39 50.12 99.84 0.43 99.57 0.16 

SVM 73.47 6.33 51.82 99.35 5.15 94.85 0.65 

Decision Tree 72.64 10.62 55.69 95.28 12.88 87.12 4.72 

Random Forest 70.64 6.51 56.45 92.68 12.45 87.55 7.32 

Km prcomp 

Logistic Regression 72.52 1.52 54.34 99.35 1.72 98.28 0.65 

Neural Network 71.93 6.36 54.11 95.77 9.01 90.99 4.23 

SVM 72.41 0.53 50.44 99.51 0.86 99.14 0.49 

Decision Tree 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 71.82 9.34 54.95 93.98 13.30 86.70 6.02 
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Table 31 (cont.)  

HMM all 

Lasso 73.23 8.91 55.60 97.56 9.01 90.99 2.44 

Neural Network 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 72.52 0.77 50.81 99.67 0.86 99.14 0.33 

Decision Tree 73.82 19.24 60.03 93.33 22.32 77.68 6.67 

Random Forest 72.76 11.47 58.31 95.12 13.73 86.27 4.88 

HMM low 

corr 

Logistic Regression 72.29 -0.08 53.69 99.51 0.43 99.57 0.49 

Neural Network 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 72.64 1.38 51.02 99.67 1.29 98.71 0.33 

Decision Tree 72.88 7.88 53.23 97.24 8.58 91.42 2.76 

Random Forest 72.17 7.80 56.64 95.61 10.30 89.70 4.39 

HMM 

prcomp 

Logistic Regression 72.17 -0.70 53.97 99.51 0.00 100.00 0.49 

Neural Network 71.70 10.04 56.65 93.33 14.59 85.41 6.67 

SVM 72.41 0.15 50.61 99.67 0.43 99.57 0.33 

Decision Tree 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.76 5.95 53.97 97.89 6.44 93.56 2.11 

All 

Lasso 72.64 9.68 57.34 95.77 11.59 88.41 4.23 

Neural Network 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 72.29 1.43 51.87 98.86 2.15 97.85 1.14 

Decision Tree 71.93 16.70 62.61 90.08 24.03 75.97 9.92 

Random Forest 72.17 10.33 58.18 94.31 13.73 86.27 5.69 

All Low 

corr 

Logistic Regression 71.82 -0.63 55.31 98.70 0.86 99.14 1.30 

Neural Network 72.52 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 72.05 0.21 51.46 98.86 1.29 98.71 1.14 

Decision Tree 70.99 11.95 61.20 90.57 19.31 80.69 9.43 

Random Forest 72.05 8.86 57.90 94.80 12.02 87.98 5.20 
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Table 32. Classification results of alternative outcome – Total Cholesterol. 

 

Classifier 

Accuracy 

(%) 

Kappa 

(%) 

AUC 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

False 

Negative 

(%) 

False 

Positive 

(%) 

Basic NCI 

Logistic Regression 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.02 -0.70 50.04 99.59 0.00 100.00 0.41 

NCI 

complete 

Lasso 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.14 -0.47 50.12 99.72 0.00 100.00 0.28 

NCI Low 

Corr 

Logistic Regression 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

NCI 

chosen 

Logistic Regression 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.26 0.89 50.04 99.72 0.81 99.19 0.28 

NCI 

Prcomp 

Logistic Regression 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.26 -0.23 49.92 99.86 0.00 100.00 0.14 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.14 -0.47 50.41 99.72 0.00 100.00 0.28 

Km 

complete 

Lasso 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Km low 

corr 

Logistic Regression 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.26 -0.23 49.92 99.86 0.00 100.00 0.14 

Km 

prcomp 

Logistic Regression 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.14 -0.47 50.12 99.72 0.00 100.00 0.28 



136 
 

Table 32 (cont.)  

HMM all 

Lasso 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

HMM low 

corr 

Logistic Regression 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

HMM 

prcomp 

Logistic Regression 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 84.91 -0.92 49.95 99.45 0.00 100.00 0.55 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

All 

Lasso 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

All Low 

corr 

Logistic Regression 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 85.38 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 85.38 0.00 50.00 100.00 0.00 100.00 0.00 
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Table 33. Classification results of alternative outcome – HDL. 

 

Classifier 

Accuracy 

(%) 

Kappa 

(%) 

AUC 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

False 

Negative 

(%) 

False 

Positive 

(%) 

Basic NCI 

Logistic Regression 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.64 2.97 50.58 97.74 4.39 95.61 2.26 

NCI 

complete 

Lasso 72.88 -0.47 49.83 99.68 0.00 100.00 0.32 

Neural Network 72.76 -0.30 49.58 99.35 0.44 99.56 0.65 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.52 -0.76 49.99 99.03 0.44 99.56 0.97 

NCI Low 

Corr 

Logistic Regression 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.52 1.21 49.73 98.23 2.63 97.37 1.77 

NCI 

chosen 

Logistic Regression 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.11 0.80 49.67 99.68 0.88 99.12 0.32 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.76 0.50 49.54 99.03 1.32 98.68 0.97 

NCI 

Prcomp 

Logistic Regression 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.00 -0.24 49.92 99.84 0.00 100.00 0.16 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 71.93 0.46 50.30 97.26 3.07 96.93 2.74 

Km 

complete 

Lasso 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.64 -0.13 49.62 99.03 0.88 99.12 0.97 

Km low 

corr 

Logistic Regression 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 73.11 0.80 49.67 99.68 0.88 99.12 0.32 

Km 

prcomp 

Logistic Regression 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 72.88 0.73 50.77 99.19 1.32 98.68 0.81 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.05 -1.68 49.95 98.39 0.44 99.56 1.61 
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Table 33 (cont.)  

HMM all 

Lasso 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 73.00 -0.24 49.92 99.84 0.00 100.00 0.16 

HMM low 

corr 

Logistic Regression 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 73.00 -0.24 49.92 99.84 0.00 100.00 0.16 

HMM 

prcomp 

Logistic Regression 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 71.23 2.11 50.19 95.00 6.58 93.42 5.00 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.88 -0.47 50.12 99.68 0.00 100.00 0.32 

All 

Lasso 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 72.88 -0.47 49.83 99.68 0.00 100.00 0.32 

All Low 

corr 

Logistic Regression 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 73.11 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 73.11 0.00 50.00 100.00 0.00 100.00 0.00 
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Table 34. Classification results of alternative outcome – CRP. 

 

Classifier 

Accuracy 

(%) 

Kappa 

(%) 

AUC 

(%) 

Sensitivity 

(%) 

Specificit

y (%) 

False 

Negative 

(%) 

False 

Positive 

(%) 

Basic NCI 

Logistic Regression 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.15 -0.23 50.20 99.87 0.00 100.00 0.13 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.15 -0.23 50.20 99.87 0.00 100.00 0.13 

NCI 

complete 

Lasso 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

NCI Low 

Corr 

Logistic Regression 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.15 1.45 50.61 99.74 1.10 98.90 0.26 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

NCI chosen 

Logistic Regression 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.15 -0.23 50.20 99.87 0.00 100.00 0.13 

NCI 

Prcomp 

Logistic Regression 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.15 -0.23 49.92 99.87 0.00 100.00 0.13 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Km 

complete 

Lasso 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.03 -0.46 50.41 99.74 0.00 100.00 0.26 

Km low 

corr 

Logistic Regression 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Km prcomp 

Logistic Regression 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.15 -0.23 49.92 99.87 0.00 100.00 0.13 
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Table 34 (cont.)  

HMM all 

Lasso 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

HMM low 

corr 

Logistic Regression 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

HMM 

prcomp 

Logistic Regression 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 88.92 0.98 49.58 99.47 1.10 98.90 0.53 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

All 

Lasso 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.03 -0.46 50.41 99.74 0.00 100.00 0.26 

All Low 

corr 

Logistic Regression 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Neural Network 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

SVM 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Decision Tree 89.27 0.00 50.00 100.00 0.00 100.00 0.00 

Random Forest 89.27 0.00 50.00 100.00 0.00 100.00 0.00 
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APPENDIX C: FEATURE IMPORTANCE MEASURES 

Table 35. Lasso coefficients and RF importance measures of NCI features. 

Features Lasso Coefficients Mean Decrease in Accuracy Mean Decrease in Gini 

gender 1.86 64.41 98.36 

sed_min 0 18.83 58.18 

light_min 0 16.11 58.27 

life_min -0.04 28.77 85.52 

mod_min -0.12 28.48 80.18 

vig_min -0.17 17.16 14.62 

sed_bouted_60min 0.01 17.74 49.28 

num_mvpa_bouts -0.12 13.96 12.04 

num_vig_bouts -1.32 7.45 1.17 

mvpa_bouted 0.11 12.37 17.04 

vig_bouted -0.08 5.24 1.12 

tot_mv_bouts -0.01 10.56 9.19 

tot_mv_min 0 22.51 60.17 

tot_li_min 0 18.16 59.15 

wk_mv_dif_bout -0.1 11.18 12.8 

avg_wk_mv_dif_min 0.01 16.39 40.68 

avg_wk_li_dif_min 0 18.06 47.85 

tot_wk_mv_dif_min 0 17.19 42.32 

tot_wk_li_dif_min 0 16.91 41.79 

perc_wk_mv 0.11 17.3 35.03 

perc_we_mv 0.8 17.24 34.45 

perc_wk_li 0.08 18.42 39.45 

perc_we_li -0.02 15.37 40.2 

mv_wk2 0.04 4.9 3.59 

top_mv.1 0 20.08 42.59 

top_mv.2 0 22.86 52.46 

top_mv.3 0 23.21 53.39 

top_mv.4 0.02 21.28 42.66 

top_li.1 0.01 20.14 53.16 

top_li.2 0.01 18.18 62.02 

top_li.3 0.01 23.01 67.92 

top_li.4 0.01 20.19 54.26 
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Table 36. Lasso coefficients and RF importance measures of NCI basic features. 

Features Lasso Coefficients Mean Decrease in Accuracy Mean Decrease in Gini 

gender 1.7 84.42 112.86 

sed_min 0 17.98 223.69 

light_min 0 18.97 219.2 

life_min -0.02 56.71 331.23 

mod_min -0.04 72.02 329.42 

vig_min -0.13 20.17 60.57 

 
Table 37. Lasso coefficients and RF importance measures of NCI low correlation features. 

Features Lasso Coefficients Mean Decrease in Accuracy Mean Decrease in Gini 

gender 1.49 59.11 78.64 

sed_min 0 24.99 199.5 

light_min 0 10.69 185.44 

sed_bouted_60min 0.01 27.28 166.85 

num_vig_bouts -3.28 16.87 10.22 

wk_mv_dif_bout 0.03 18.97 68.58 

perc_we_mv 0.58 24.97 149.72 

perc_we_li 0 19.38 161.51 

mv_wk2 -0.18 10.58 25.63 

top_li.1 -0.01 66.3 297.09 

Table 38. Lasso coefficients and RF importance measures of NCI chosen features. 

Features Lasso Coefficients Mean Decrease in Accuracy Mean Decrease in Gini 

gender 1.12 68.28 82.07 

sed_min 0 26.34 178.08 

light_min 0 19.85 167.82 

vig_min -0.29 30.91 66.1 

sed_bouted_60min 0.01 30.4 150.63 

wk_mv_dif_bout 0.28 18.59 56.56 

avg_wk_mv_dif_min -0.01 54.16 218.13 

avg_wk_li_dif_min 0 31.21 155.75 

perc_wk_mv -0.28 28.63 131.79 

perc_wk_li 0.1 25.91 134.86 

mv_wk2 -0.25 9.41 19.53 
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Table 39. Lasso coefficients and RF importance measures of K-means features. 

Features Lasso Coefficients Mean Decrease in Accuracy Mean Decrease in Gini 

gender 2.04 67.68 108.38 

min.1 0 15.76 34.57 

min.2 0 14.62 33.86 

min.3 0 18.75 36.68 

min.4 0 19.74 39.17 

min.5 0 18.44 39.06 

threshold.1 0 18.57 42.83 

threshold.2 -0.01 19.36 53.14 

threshold.3 0 19.47 45.18 

threshold.4 0 18.16 37.21 

threshold.5 0 17.84 37.05 

center.1 -0.04 20.97 61.47 

center.2 0 19.52 46.77 

center.3 0 18.83 52.65 

center.4 0 19.91 45.5 

center.5 0 16.93 34.51 

variance.1 0 21.38 75.85 

variance.2 0 20.36 58.34 

variance.3 0 18.05 47.84 

variance.4 0 16.48 35.31 

variance.5 0 20.8 38.74 

skewness.1 -0.2 15.46 32.2 

skewness.2 -3.66 10.98 35.77 

skewness.3 -0.87 13.83 38.3 

skewness.4 0.27 18.96 44.16 

skewness.5 -0.05 11.08 33.68 

kurtosis.1 0 15.49 32.57 

kurtosis.2 2.16 11.45 36.43 

kurtosis.3 0.29 13.86 39.12 

kurtosis.4 0.08 20.01 42.64 

kurtosis.5 0.02 8.05 33.52 
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Table 40. Lasso coefficients and RF importance measures of K-means low correlation features. 

Features Lasso Coefficients Mean Decrease in Accuracy Mean Decrease in Gini 

gender 1.9 84.8 125.91 

min.5 0 23.5 99.03 

threshold.5 0 28.65 111.81 

center.2 -0.01 47.95 184.1 

variance.3 0 43.09 165.36 

variance.4 0 33.86 109.8 

variance.5 0 30.77 97.16 

skewness.1 0.3 6.25 95.15 

skewness.2 -0.67 13.19 90.88 

skewness.5 0 14.02 87.41 

kurtosis.3 0.44 19.93 100.46 

kurtosis.4 0.08 26.5 103.51 

Table 41. Lasso coefficients and RF importance measures of HMM features. 

Features Lasso Coefficients Mean Decrease in Accuracy Mean Decrease in Gini 

gender 1.82 42.19 64.49 

min.1 0 4.87 19.52 

min.2 0 7.76 23.33 

min.3 0 6.38 22.2 

min.4 0 12.65 33.81 

min.5 0 21.07 39.5 

trans_prob.1 0 9.52 21.28 

trans_prob.2 -2.33 4.5 21.19 

trans_prob.3 1.18 7.3 21.39 

trans_prob.4 -0.8 11.39 26.97 

trans_prob.5 -12.83 21.42 37.67 

trans_prob.6 0.43 5.01 20.97 

trans_prob.7 0.05 8.93 21.04 

trans_prob.8 0 5.7 20.25 

trans_prob.9 0 8.52 24.09 

trans_prob.11 1.16 7.72 20.49 

trans_prob.12 -0.29 6.16 19.85 

trans_prob.13 0 9.53 21.41 

trans_prob.14 0 6.76 23.44 

trans_prob.15 -8.99 22.63 42.24 

trans_prob.16 -5.33 11.04 23.04 

trans_prob.17 3.11 6.84 21.75 

trans_prob.18 2.18 5.47 20.76 

trans_prob.19 3.4 11.89 23.56 

trans_prob.21 -0.83 11.71 25.17 

trans_prob.22 -3.62 9.23 25.37 

trans_prob.23 -3.24 10.05 23.56 
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Table 41 (cont.) 

trans_prob.24 -0.49 14.38 25.97 

center.1 -0.09 18.7 28.89 

center.2 0 16.81 28.34 

center.3 0 15.14 29.31 

center.4 0 24.51 54.28 

center.5 0 26.7 61.7 

variance.1 0 18.6 30.04 

variance.2 0 15.5 29.25 

variance.3 0 16.18 28.8 

variance.4 0 29.21 65.42 

variance.5 0 29.84 59.53 

skewness.1 0 7.51 21.94 

skewness.2 0 6.73 21.24 

skewness.3 -0.42 6.66 20.61 

skewness.4 -0.63 10.96 22.3 

skewness.5 -0.05 9.06 23.13 

kurtosis.1 -0.01 8 20.83 

kurtosis.2 0 9.74 21.46 

kurtosis.3 0 7.13 20.02 

kurtosis.4 0.21 15.78 29.42 

kurtosis.5 0 5.44 20.34 
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Table 42. Lasso coefficients and RF importance measures of HMM low correlation features. 

Features Lasso Coefficients Mean Decrease in Accuracy Mean Decrease in Gini 

gender 1.68 46.19 71.01 

min.1 0 7.87 25.71 

min.2 0 11.69 35.09 

min.3 0 7.09 28.83 

min.4 0 15.22 40.25 

min.5 0 25.45 51.66 

trans_prob.1 0 10.79 25.95 

trans_prob.2 -0.56 3.52 26.95 

trans_prob.3 2.6 12.29 29.7 

trans_prob.4 0 10.32 29.04 

trans_prob.5 -8.88 19.78 40.72 

trans_prob.6 1.91 8.18 28.09 

trans_prob.7 0 9.41 25.33 

trans_prob.8 0 9.63 26.4 

trans_prob.9 0 10.8 27.66 

trans_prob.11 0.7 7.45 26.77 

trans_prob.12 0 4.36 23.69 

trans_prob.13 0.46 8.03 25.04 

trans_prob.14 0 7.9 26.89 

trans_prob.15 -5.73 24.41 44.51 

trans_prob.16 -3.68 10.09 26.32 

trans_prob.17 1.03 6.4 27.95 

trans_prob.18 0 6.98 24.34 

trans_prob.19 1.91 11.46 26.7 

trans_prob.21 -0.77 11.45 32.03 

trans_prob.22 -3.32 10.96 31.13 

trans_prob.23 -2.89 10.62 28.46 

trans_prob.24 0 12.68 30.44 

center.5 0 43.7 114.88 

variance.2 0 31.42 66.17 

variance.5 0 38.61 96.84 

skewness.1 -0.02 9 30.45 

skewness.2 0.4 7.63 27.71 

skewness.3 0.35 8.69 26.7 

skewness.4 0 10.32 28.26 

skewness.5 -0.09 10.56 33.78 

kurtosis.3 0 7.08 24.12 

kurtosis.4 0.74 19.51 36.1 
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Table 43. Lasso coefficients and RF importance measures of all features. 

 

Features Lasso Coefficients Mean Decrease in Accuracy Mean Decrease in Gini 

NCI 

gender 2.02 37.99 65.24 

sed_min 0 10.07 16.15 

light_min -0.01 13.29 15.33 

life_min -0.01 17.46 32.43 

mod_min -0.03 16.66 31.58 

vig_min 0 5.97 2.12 

sed_bouted_60min 0 11.72 13.44 

num_mvpa_bouts 0 6.43 2.38 

num_vig_bouts -0.47 2.58 0.16 

mvpa_bouted 0.04 6.8 3.48 

vig_bouted -0.05 1.92 0.2 

tot_mv_bouts 0 3.97 1.99 

tot_mv_min 0 11.33 15.59 

tot_li_min 0 10.62 16.17 

wk_mv_dif_bout 0 2.22 3.87 

avg_wk_mv_dif_min 0 6.6 9.43 

avg_wk_li_dif_min 0 8.45 11.35 

tot_wk_mv_dif_min 0 7.79 9.9 

tot_wk_li_dif_min 0 8.57 10.06 

perc_wk_mv 0 5.29 8.25 

perc_we_mv 0.24 5.82 8.46 

perc_wk_li 0.05 3.46 9.06 

perc_we_li 0 2.54 9 

mv_wk2 0 2.53 0.86 

top_mv.1 0 10.41 13.86 

top_mv.2 0 12.12 20.31 

top_mv.3 0 11.04 19.49 

top_mv.4 0 9.54 12.93 

top_li.1 0 13.52 18.16 

top_li.2 0 11.66 20.13 

top_li.3 0 12.4 22.12 

top_li.4 0 9.68 15.21 

K-means 

min.1 0 7.46 9.19 

min.2 0 5.97 9.57 

min.3 0 8.08 9.71 

min.4 0 8.4 10.58 

threshold.1 0 12.2 16.43 

threshold.2 0 11.85 22.02 

threshold.3 0 12.29 17.92 

threshold.4 0 10.89 11.99 

threshold.5 0 10.94 11.8 
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Table 43 (cont.) 

K-means 

center.1 0 13.31 20.01 

center.2 0 12.09 15.57 

center.3 0 13.5 21.66 

center.4 0 12.46 16.47 

center.5 0 11.48 10.94 

variance.1 0 13.4 28.16 

variance.2 0 13 20.02 

variance.3 0 13.27 19.04 

variance.4 0 10.89 10.75 

variance.5 0 8.51 11.26 

skewness.1 0 6.33 9.4 

skewness.2 -0.83 6.84 10.33 

skewness.3 0 7.5 10.6 

skewness.4 0.02 10.39 13.59 

skewness.5 0 5.35 10.36 

kurtosis.1 0 6.44 9.23 

kurtosis.2 0.33 5.05 10.46 

kurtosis.3 0 6.67 11.09 

kurtosis.4 0.02 9.59 13.03 

kurtosis.5 0 3.77 10.42 

HMM 

min.1.1 0 5.15 9.68 

min.2.1 0 6.86 10.37 

min.3.1 0 5.1 9.34 

min.4.1 0 7.44 10.2 

min.5.1 0 6.17 9.93 

trans_prob.1 0 6.41 10.19 

trans_prob.2 -1.28 1.09 11.35 

trans_prob.3 0.85 6.92 10.75 

trans_prob.4 -1.31 7.89 12.2 

trans_prob.5 -11.54 11.23 15.88 

trans_prob.6 0 4.55 11.26 

trans_prob.7 1.07 5.69 10.87 

trans_prob.8 -0.19 3.32 10.85 

trans_prob.9 0 5.06 12.19 

trans_prob.11 0 3.83 10.25 

trans_prob.12 0 3.4 10.8 

trans_prob.13 0 5.1 10.58 

trans_prob.14 0.1 4.53 10.96 

trans_prob.15 -5.64 11.75 15.97 

trans_prob.16 -7.2 7.7 12.77 

trans_prob.17 0 5.08 11.1 

trans_prob.18 0 3.6 11.28 
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Table 43 (cont.)  

HMM 

trans_prob.19 1.75 8.33 13.31 

trans_prob.21 -0.52 8.33 14.45 

trans_prob.22 -3.11 9.27 14.52 

trans_prob.23 -2.63 7.46 14.08 

trans_prob.24 -0.3 12.08 17.07 

center.1.1 -0.01 9.05 10.89 

center.2.1 0 8.9 8.99 

center.3.1 0 6.65 8.42 

center.4.1 0 9.05 10 

center.5.1 0 10.42 11.49 

variance.1.1 0 10.71 11.2 

variance.2.1 0 7.85 9.05 

variance.3.1 0 8.31 8.5 

variance.4.1 0 8.98 11.15 

variance.5.1 0 13.28 12.94 

skewness.1.1 0 5.11 11.03 

skewness.2.1 0 1.93 11.63 

skewness.3.1 -0.13 4.67 9.77 

skewness.4.1 -0.02 7.59 10.95 

skewness.5.1 0.1 5.34 10.74 

kurtosis.1.1 0 4.61 10.82 

kurtosis.2.1 0 7.19 12.07 

kurtosis.3.1 0 6.48 10.69 

kurtosis.4.1 0 8.62 11 

kurtosis.5.1 0 4.17 9.5 
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Figure 27. Mean decrease in accuracy and Gini coefficient for all NCI features based on the random forest classifier. 
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Figure 28. Mean decrease in accuracy and Gini coefficient for NCI low correlation features based on the random forest 

classifier. 
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Figure 29. Mean decrease in accuracy and Gini coefficient for all k-means features based on the random forest classifier. 
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Figure 30. Mean decrease in accuracy and Gini coefficient for k-means low correlation features based on the random 

forest classifier. 
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Figure 31. Mean decrease in accuracy and Gini coefficient for HMM features based on the random forest classifier. 
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Figure 32. Mean decrease in accuracy and Gini coefficient for HMM low correlation features based on the random forest 

classifier. 
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Figure 33. Mean decrease in accuracy and Gini coefficient for all low correlation features based on the random forest 

classifier. 

 

 


