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Abstract

Today’s state-of-the-art concurrent programming models either provide weak safety guarantees,

making it easy to write code with subtle errors, or are limited in the class of programs that they

can express. I believe that a concurrent programming model should offer strong safety guarantees

such as data race freedom, atomicity, and optional determinism, while being flexible enough to

express the wide range of uses for concurrency in realistic programs, and offering good performance

and scalability. In my thesis research, I have defined a new concurrent programming model called

tasks with effects (TWE) that is intended to fulfill these goals. The core unit of work in this model

is a dynamically-created task. The model’s key feature is that each task has programmer-specified

effects, and a run-time scheduler is used to ensure that two tasks are run concurrently only if they

have non-interfering effects. Through the combination of statically verifying the declared effects

of tasks and using an effect-aware run-time scheduler, the TWE model is able to guarantee strong

safety properties such as data race freedom and atomicity.

I have implemented this programming model in a language called TWEJava and its accompany-

ing runtime system. I have evaluated TWEJava’s expressiveness by implementing several programs

in it. This evaluation shows that it can express a variety of parallel and concurrent programs, in-

cluding programs that combine unstructured concurrency driven by user input with structured

parallelism for performance, a pattern that cannot be expressed by some more restrictive models

for safe parallel programming.

I describe the TWE programming model and provide a formal dynamic semantics for it. I

also formalize the data flow analysis used to statically check effects in TWEJava programs. This

analysis is used to ensure that the effect of each operation is included within the covering effect

at that point in the program. The combination of these static checks with the dynamic semantics
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provided by the run-time system gives rise to the TWE model’s strong safety guarantees.

To make the TWE model usable, particularly for programs with many fine-grain tasks, a scal-

able, high-performance scheduler is crucial. I have designed a highly scalable scheduling algorithm

for tasks with effects. It uses a tree structure corresponding to the hierarchical memory descriptions

used in effect specifications, allowing scheduling operations for effects on separate parts of the tree

to be performed concurrently and without explicitly checking such effects against each other. This

allows for high scalability while preserving the expressiveness afforded by the hierarchical effect

specifications. I describe the scalable scheduling algorithm in detail and prove that it correctly

guarantees task isolation.

I have evaluated this scheduler on six TWEJava programs, including programs using many

fine-grain tasks. The evaluation shows that it gives significant speedups on all the programs, often

comparable to versions of the programs with low-level synchronization and parallelism constructs

that provide no safety guarantees.

As originally defined, the TWE model could not express algorithms in which the side effects of

each task are dependent on dynamic data structures and cannot be expressed statically. Existing

systems that can handle such algorithms give substantially weaker safety guarantees than TWE. I

developed an extension of the TWE model that enables it to be used for such algorithms. A new

feature of the TWEJava language is defined to let programmers specify a set of object references

that define some of the effects of a task, which can be added to dynamically as the task executes.

The static covering effect checks used by TWE are extended to ensure they are still sound in the

presence of such dynamic effect sets, and the formal dynamic semantics for the TWE model are

extended to support these dynamic effects.

I describe and implement a run-time system for handling these dynamic effects, including mech-

anisms to detect conflicts between dynamic effects and to abort and retry tasks when such conflicts

arise. I show that this system can express parallel algorithms in which the effects of a task can

only be expressed dynamically. Preliminary performance experiments show that my dynamic effect

system can deliver self-relative speedups for certain benchmarks, but the current version of the sys-

tem imposes substantial performance overheads. I believe that these overheads can be significantly

iii



reduced, making TWE practical to use for programs that require dynamic effects; this is a focus of

my ongoing and future work.
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Chapter 1

Introduction

1.1 Motivation

Concurrency is used for many purposes in modern programs. To exploit the full capabilities of

today’s multicore processors, parallel algorithms must be used. But concurrency is also used for

other purposes. This is perhaps particularly true of interactive programs, both on end-user devices

and servers, where the behavior of the user or client is inherently concurrent with the program.

In GUI programs, long-running operations should be run concurrently with user interface event

processing in order to preserve responsiveness. Servers use concurrency to respond to multiple

client requests. It can also be convenient to express a full program as a set of of modules or

actors [6] that can operate concurrently and communicate with each other. This can be a natural

fit, for example, to the model-view-controller design of interactive programs.

Large programs often combine multiple types of concurrency. For example, an interactive

application may separate long computations from the UI thread or use multiple concurrent modules,

but also sometimes perform data-parallel computations. A server may also combine concurrency

used to handle multiple client requests with parallelism that may be needed to quickly process an

individual request. I believe a widely-applicable concurrent programming model should seek to

support all of these forms of concurrency, since they are all widely used and are often combined

within a single application.

Today, parallel and concurrent programs are commonly written using threads, with low-level

mechanisms such as locks used for synchronization (or with carefully designed lock-free data struc-

tures). Such a programming model is flexible enough to express many forms of concurrency, but it

does not guarantee any safety properties such as data race freedom, atomicity, deadlock-freedom, or
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determinism. It also provides little well-defined structure for the concurrent control flow and syn-

chronization in programs, making it difficult to reason about them manually or automatically. In

addition, complicated low-level details such as processor memory models [4] can affect the semantics

of programs written in this style, further complicating the task of reasoning about them.

These weaknesses of today’s widely-used concurrent programming models contribute greatly to

the difficulty of writing correct concurrent programs, acting as a drag on programmer productivity

and providing many opportunities for subtle errors. Programmers commonly have to reason man-

ually about whether memory accesses are correctly synchronized to avoid data races, and whether

the granularity of synchronization is appropriate to ensure that operations that are expected to

behave atomically actually do so. In designing this manual synchronization, programmers also

must be careful not to give rise to deadlocks.

A particularly important problem is that a program’s behavior may vary from run to run in

unexpected ways because the interleaving of operations may be different in every run, even in cases

where the programmer intends the behavior to be deterministic. This makes it much more difficult

to reason about the behavior of concurrent programs than about sequential ones. In combination

with the need for manual, error-prone concurrency and synchronization design described above,

it also provides ample opportunity for rare concurrency errors that may manifest themselves only

occasionally when the program is run. These errors can be very difficult to debug because they

cannot be consistently reproduced, and can easily escape into production code because they are

rarely or never triggered in test environments.

It today’s environment, where multi-core processors are ubiquitous and thus parallelism must be

used to exploit the full computational power even of mobile devices, these difficulties of concurrent

programming are an important source of errors and a limiting factor in programmer productivity. In

light of this, I believe that defining concurrent programming models with strong safety guarantees is

an important way to increase programmer productivity and reduce the risk of programming errors.

Many previous systems have attempted to address aspects of these problems, or offer more

restricted programming models that avoid them. Functional programming models like Concurrent

Haskell [74] and ML [76] avoid many classes of concurrency errors by using side-effect-free functions,
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and can elegantly express various parallel algorithms. However, the lack of side effects on mutable

data hinders them from efficiently expressing a wide range of computations, as a copy of a potentially

large data structure must be made whenever any changes to it are necessary. Dataflow languages

such as Sisal [37] have similar limitations, requiring computations to be expressed in terms of a

dataflow graph containing explicit dependences from the outputs of one node to the inputs of

another, with no notion of mutable shared memory.

Data-parallel language such as CMF [81], HPF [50], and C* [45] can express programs with

data-parallel loops while avoiding most of the safety problems discussed above (by giving generally

sequential-equivalent semantics). However, these languages are focused on structured parallel com-

putations with parallel loops, and are not suitable for expressing general, potentially unstructured

concurrent programs.

Some other languages offer more structured parallel control and synchronization constructs, but

sometimes with limitations that prevent them from expressing general, event-driven concurrency,

and often without strong safety guarantees. Cilk [20] and Thread Building Blocks (TBB) [52],

for example, provide structured parallelism constructs, but they do not offer checked guarantees

of strong safety properties such as data race freedom. Moreover, fork-join programming models

such as Cilk do not support the general, event-driven form of concurrency required by interactive

applications or actor-style programs.

Some other systems do seek to offer stronger guarantees. The Deterministic Parallel Java (DPJ)

language [22, 23] offers a strong set of guarantees for programs that can be expressed in it. These

include data race freedom, strong atomicity [1], deadlock freedom, and deterministic semantics

with full sequential equivalence for parallel computations that do not explicitly use nondeterministic

parallel constructs. These guarantees are very strong, but DPJ’s parallelism model does not provide

the flexibility that I seek. Most critically, DPJ is restricted to fork-join parallelism structures, which

are not suitable for many concurrent programs. Because it can only express fork-join parallelism, it

excludes cases like pipelined computations or algorithms with more general task graphs [5]. It also

is not suitable for expressing programs where potentially concurrent pieces of work are triggered

by external, asynchronous input (e.g. from the user or a client) while the program is running.
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In addition, DPJ relies on a purely static type system to enforce its correctness requirements,

and many algorithms cannot be checked with DPJ’s type system, e.g. graph-based algorithms, or

parallel algorithms that require array reshuffling or tree rebalancing.

I believe that concurrent programming models should offer strong safety guarantees similar to

DPJ, including data race freedom, atomicity, and optional determinism, but be flexible enough to

express the wide range of uses for concurrency in realistic programs, and be implementable with

low performance overheads and high scalability. In my thesis research, I have worked to define

and implement a new concurrent programming model called tasks with effects (TWE) that can

accomplish these goals.

1.2 The Tasks with Effects Programming Model

The tasks with effects programming model is designed to give strong safety guarantees while pro-

viding the flexibility needed to express a wide range of concurrent programs in it. It uses tasks that

can execute concurrently as the fundamental units of work. Tasks are lighter-weight constructs

than threads and support only limited operations for inter-task communication and synchroniza-

tion. Concurrent work is launched by creating a new task, and it is possible for one task to await

the completion of another. A scheduler is responsible for executing tasks in an efficient manner.

Tasks provide a valuable abstraction for concurrency, while still preserving the flexibility to express

a wide variety of concurrency patterns and parallel algorithms.

Several existing systems support task-based programming models, including Intel’s TBB, Ap-

ple’s Grand Central Dispatch and operation queues [10], Microsoft’s Task Parallel Library in

.NET [68], OpenMP [71], and the ForkJoinTask framework in Java 7 [72]. However, these systems

do not offer strong safety guarantees. It is possible for two concurrent tasks to perform conflicting

accesses that give rise to data races or violations of intended atomicity properties, and it is generally

the programmer’s responsibility to manually reason that such accesses do not occur or are benign,

or else to protect them using low-level synchronization mechanisms such as locks.

I propose instead to associate a checked effect specification with each task, describing (possibly

conservatively) the side effects of executing the task. The run-time system then schedules tasks so
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as to ensure that only tasks with non-interfering effects can run concurrently. Effect specifications

can take many forms, but in my work so far I have adopted the statically-checked effect system

developed for Deterministic Parallel Java [22]. In this system, the compiler statically verifies that

the memory accesses in each task or method are covered by its programmer-specified effects.

By combining these static checks with a dynamic effect-based task scheduler, my system can

guarantee the basic task isolation property that no two tasks with interfering effects may run

concurrently with each other. This guarantee leads to a guarantee of data race freedom, and to a

guarantee of atomicity for tasks or portions of tasks that do not create or wait for any other tasks.

The tasks with effects model also includes mechanisms that allow the compiler to give a static

guarantee that certain structured parallel computations are deterministic, which can help the pro-

grammer to more easily reason about those computations and ensure they do not contain any

unexpected sources of nondeterminism. This guarantee can apply to specific computations with a

larger program that is not completely deterministic (which is commonly the case for many inter-

active applications or servers). In this case, the whole program can be expressed with a unified

task-based programming model, and the other guarantees of the TWE model will apply to the

program as a whole.

The tasks with effects model provides strong safety guarantees while supporting the flexible

control flow needed to express general concurrent programs such as interactive applications and

actor-like programs. I am aware of no other concurrent programming model that can provide a

similar level of flexibility to express general concurrent programs while giving the strong safety

guarantees that TWE provides.

1.3 Contributions

My work has focused broadly on defining the tasks with effects programming model and building

a practical, efficient implementation of it. It has several major components:

• I have defined the tasks with effects (TWE) programming model, which provides the flexibility

to express a wide range of concurrent programs while giving strong safety guarantees. I have

given a formal dynamic semantics for the key run-time operations of the tasks with effects
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model, and also formalized the static data flow analysis that is used to verify that the effect

of each operation in a program will be covered by the effects of the task running it at the

point when it is executed. The combination of these static and dynamic components gives

rise to the TWE model’s strong safety properties.

• I have designed and implemented the TWEJava language as a practical implementation of

the TWE model, built as an extension of Java and incorporating a hierarchical region-based

effect system adapted from DPJ.

• I have designed a high-performance, scalable scheduling algorithm for tasks with effects. It

uses a scheduling tree designed to take advantage of the hierarchical structure of TWE effects.

I have implemented this algorithm in the TWEJava runtime system.

• I have evaluated the expressivity and performance of the TWEJava system using several

benchmark programs ported to or written in TWEJava. The evaluation shows that the TWE

model can express a variety of parallel and concurrent programs and (with the tree scheduler)

provide generally good performance and scalability for them.

• I have extended the TWE model to support programs where the effects of tasks can only

be computed dynamically, as the task is executing. This is an important class of programs

that the initial version of the TWE model could not support. To add support for them, I

define a mechanism that permits the effects of tasks to be dynamically modified in certain

ways. I have extended the TWE formalism to support this mechanism, and also produced

an initial implementation of it for TWEJava. This initial implementation gives self-relative

speedups for some programs, although it has significant overheads that I am currently working

to reduce.

My work on defining the TWE model and implementing the initial version of TWEJava (using

a relatively naive effect-based task scheduler, not my current high-performance design) is described

in a paper presented at PPoPP 2013 [48], with portions also described in two earlier workshop

papers [47, 46]. My work on the scalable, tree-based scheduling algorithm for TWE was presented
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at PACT 2015 [49].1

1.3.1 The Tasks with Effects programming model

The first major area of contributions is to define and formalize the tasks with effects programming

model, in which tasks with effect specifications are scheduled by an effect-aware run-time scheduler.

This model gives a guarantee of task isolation: that two tasks with conflicting effects will not be

run concurrently.

This model could potentially be implemented using a variety of different effect systems, and

effect specifications might be dynamically checked, statically checked, or unchecked. In my work

so far, I have focused on using effect specifications that are statically checked to ensure they cover

the actual memory effects of each task (possibly conservatively). When statically checked effect

specifications are used, the combination of these static checks and the guarantee of task isolation

given by the run-time task scheduler leads to a guarantee of data race freedom, and to a guarantee

that portions of tasks that do not wait for or create tasks are atomic.

In addition to the basic features of creating and waiting for tasks, the TWE model that I have

defined also includes mechanisms based on effect transfer between tasks. One mechanism is used to

avoid a class of deadlocks, and also enables certain useful programming paradigms. Another form

of effect transfer is used for nested parallel computations. It enables a system based on the TWE

model to provide a compile-time guarantee of determinism for a class of deterministic programs

and algorithms similar to those supported by DPJ, avoiding the need for run-time effect checking

in those cases.

In additional to informally describing the TWE mode, I have provided a formal dynamic seman-

tics of tasks with effects (expressed using the K semantic framework). I have also formalized the

data flow analysis used to statically compute a conservative approximation of the covering effect

at each point in the program. This is used to ensure that the effect of each operation will always

be covered by the effect of that task executes it at the point when it executes. I describe how

1 Portions of this dissertation are based on material that appeared in these PPoPP 2013 and PACT 2015 papers.
The PPoPP 2013 paper is copyright 2013 ACM (http://doi.acm.org/10.1145/2442516.2442540) [48]. The PACT
2015 paper is copyright 2015 IEEE (http://dx.doi.org/10.1109/PACT.2015.25) [49].
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the combination of these static and dynamic check guarantees the strong safety properties of the

TWE model, including task isolation, data race freedom, atomicity, and (for certain computations)

determinism.

The tasks with effects programming model and its dynamic semantics are described in chapter 3,

along with its implementation in the TWEJava language. Chapter 4 describes the data flow analysis

to compute covering effects.

1.3.2 The TWEJava language

I have designed the TWEJava language, which implements the TWE model using an extended ver-

sion of the Java language, and implemented it through a compiler and run-time system. TWEJava

uses a region-based effect system based on DPJ’s, and its compiler (based on the DPJ compiler)

statically verifies the effect specifications of methods and tasks, as well as recording information

about the effects of tasks for use at run time.

The TWEJava run-time system is responsible for running the tasks composing a TWEJava

program, ensuring that task isolation is maintained (i.e. no two tasks with conflicting effects are

run concurrently). My initial implementation of the run-time system used a relatively naive task

scheduler design to accomplish this; I have since replaced it with a much higher-performance task

scheduler, as described next.

1.3.3 An efficient scheduling algorithm for tasks with hierarchical effects

I have defined a high-performance, scalable algorithm for scheduling tasks with effects, and im-

plemented it in the TWEJava run-time system. It takes advantage of the hierarchical structure

of effects in TWEJava by using a tree structure to track the effects of running tasks. This tree

structure is used to limit the number of effect comparisons that need to be done to detect conflict-

ing effects. It also enables the use of fine-grained locking in scheduler operations, so operations on

different parts of the tree can proceed concurrently.

In addition to implementing this algorithm in the TWEJava run-time task scheduler, I have

also provided a formal definition of the algorithm with pseudocode for all its key operations. Based
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on this definition of the algorithm, I have proved that it enforces the task isolation property which

is key to TWE’s safety guarantees.

Chapter 5 describes this scheduling algorithm and its implementation.

1.3.4 Evaluation of performance and expressiveness

I have ported or written several programs in TWEJava, and used them to evaluate the expressive-

ness and performance of the TWEJava language and implementation. The evaluation shows that

TWEJava can be used to write a variety of concurrent and parallel programs, including interactive

applications that combine unstructured concurrency with structured parallelism.

My evaluation also shows that programs written in TWEJava can achieve good parallel speedups.

The initial TWEJava scheduler could give significant speedups for some programs with relatively

coarse-grain parallelism, but was limited in the speedups it could give for programs using finer-grain

parallelism. My newer tree-based scheduler, on the other hand, can give good speedups for such

programs. It gives significant speedups on all the programs tested, often comparable to versions

of the programs with low-level synchronization and parallelism constructs that provide no safety

guarantees.

Chapter 6 presents these evaluations, including the evaluation of expressiveness and performance

evaluations with both the old and new schedulers.

1.3.5 Support for tasks with dynamic effects

I have extended the TWE model and TWEJava to support tasks that can determine some of their

effects only dynamically as they are running. To do this, I define a feature that allows tasks to add

to their effects (with certain restrictions) while they are executing.

I have extended the formal dynamic semantics of the TWE model to support this sort of

dynamic addition of effects. In addition, I have added support for it in the static and run-time

implementation of the TWEJava language. This has involved extending the TWEJava run-time

system to support the dynamic addition of effects (restricted for efficiency to certain forms, in

particular those using object references). The system needs to detect if these dynamically-added
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effects conflict with the effects of other tasks in the system, and I have implemented a mechanism

to do this by tracking dynamic effect sets at each node of the scheduler tree. The system can also

abort and retry a task when there is a conflict. In addition to the new run-time implementation, I

have described and implemented a new static data flow analysis to conservatively track what effect

have been dynamically added at each point in the program, allowing the TWE system’s static effect

checker to be used even in the presence of dynamic effects.

I have completed an initial implementation of the dynamic effect system and evaluated it on

some relatively small programs. It can offer some self-relative speedups, but it currently has

significant run-time overheads. I believe those overheads can be reduced, which would make the

dynamic effect system practical to use with a wide range of programs. This is a subject of my

ongoing and future work.
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Chapter 2

Background: Effects, Regions, and
the DPJ Effect System

The Tasks With Effects model relies on effects for its basic operations, both during compile-time

effect checking and during run time with effect-based task scheduling. For this reason, before

presenting the TWE model in detail, I will first define and describe what effects are, as well as the

natural representation of memory effects in terms of regions. Since my implementation of the TWE

model in TWEJava adopts the hierarchical, region-based effect system from DPJ, I also provide

an overview of that effect system, which should be sufficient to understand this work. For a full

formalization of this effect system, see Robert Bocchino’s thesis [24].

2.1 Effects

The TWE model relies on being able to define the effect of each operation in a program. This is

meant to capture whatever side effects the operation may have. In practice, we focus on accesses to

shared memory, although accesses to other kinds of shared data or even other types of side effects

could potentially be captured.

Two effects A and B are non-interfering (denoted A#B) if any two operations with those

two effects could proceed concurrently, and any ordering (including any possible interleaving of

sub-operations) would produce the same results. In the case of accesses to shared memory, we can

generally say that two accesses are non-interfering if they are to different memory locations or are

both reads.

An effect A is included in another effect B (denoted A ⊆ B) if B #C =⇒ A#C for all

possible effects C. Equivalently, we also sometimes say that B covers A. We may think of this

as meaning that B can be used to conservatively summarize the effect A, perhaps together with
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other effects that are also covered by B. This is useful because it enables us to use a single effect

specification for a piece of code such as a method or task, so long as it covers all the effects of the

constituent individual operations.

The TWE model could potentially be used with various effect systems; the fundamental require-

ment is simply that the effect non-interference and inclusion relations can be defined and checked.

To use our combination of static and dynamic checks to ensure strong safety properties, it must be

possible to check these properties both at compile time and run time (although TWE’s effect-based

scheduling mechanism could potentially be used with run-time-only effect checks). It is acceptable

if the checks for these properties may be conservative in some cases (i.e. saying one effect may

interfere with another even if they do not according to the above definition, or saying one effect

may not be included in another when in fact it is); this will reduce the set of programs allowed or

the degree of parallelism achievable at run time, but will not compromise our safety properties.

2.2 Region-Based Effects

Although various representations of effects are possible, it is natural to represent effects on shared

memory in terms of reads or writes to memory regions. A region is simply a set of memory locations.

Given two read or write effects on regions, we may say they are non-interfering if both are reads

or if the two regions (sets of memory locations) are disjoint.

We may also specify the effect inclusion relation for such effects in terms of the set-wise inclusion

of regions. That is, given two regions R and S such that R ⊆ S, we may conclude that readsR ⊆

readsS and writesR ⊆ writesS. Given the above definition of non-interference, it is easy to see

that we may also say readsR ⊆ writesR, and by transitivity readsR ⊆ writesS.

It is also straightforward to extend region-based effects to consist of a set of reads and writes

on various regions. We may say that two such effects A and B are non-interfering if all the pairs of

individual read and write operations are non-interfering according to the definition above. Similarly,

we may say that A is included in B if every individual read or write effect in A is included in one

of the individual read or write effects in B. (This definition is conservative in that it excludes cases

where an individual effect in A could be covered only be the combination of multiple effects in B,
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but it is straightforward to check and sufficient for most purposes in practical programs.)

Numerous region-based effect systems have been designed, both for parallelism and for other

goals such as region-based memory management. FX [63] is a seminal work that defined a region-

based effect system for concurrency. Greenhouse and Boyland [41] defined a region-based effect

system for Java. Some more recent works using effect systems for parallelism, including Determin-

istic Parallel Java (DPJ) [22] and Legion [14], have more expressive effect systems, including features

like hierarchical regions, region wildcards or aliased subregions, and support for distinguishing the

regions of different array elements.

The ability to express the data partitionings needed to perform various different parallel com-

putations is a key factor in selecting a region-based effect system. Another major factor is how

burdensome it is to write the necessary region and effect annotations in a program. In the TWE-

Java language, we chose to adopt the hierarchical, region-based effect system originally designed

for DPJ. It is one of the most highly expressive effect systems we are aware of, and while there is

a burden associated with writing the annotations for it, there is work showing that many of them

can be inferred automatically [84, 83].

2.3 The DPJ Region and Effect System

In TWEJava, we use the effect system originally developed for the Deterministic Parallel Java

(DPJ) language [22, 24]. DPJ is an extended version of Java that uses type and effect annotations

to enable the compiler to statically prove strong safety properties for programs written using its

fork-join parallel constructs. In this work, however, we adopt its type and effect system for use in

combination with our effect-based task scheduling system.

The DPJ type and effect system is based on a partitioning of memory into regions. The program-

mer can declare each object field and array cell to be in a specified region. Region-parameterized

types and methods are also supported. This permits different instances of a class to have their

fields in different regions by giving different region arguments when instantiating the class. In

addition, nested hierarchies of regions are supported by using region path lists (RPLs), and index-

parameterized arrays allow each element of an array to be placed in a distinct region. A wildcard
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* can be used in RPLs to specify effects covering a set of regions. These features are described in

more detail in the below section. They combine to provide a highly expressive region system, which

can express the data partitioning needed to safely enable parallelism in a wide range of programs.

Using this partitioning of memory into regions, the effects of any operation in the program

can be specified in terms of read and write effects on memory regions expressed as RPLs. The

programmer declares the effects of each method as part of its method signature. The compiler can

then statically verify that the declared effects of each method actually cover the effects of every

operation in it. The DPJ type and effect system also defines formally under what circumstances

two effects can be proven to be non-interfering. In DPJ, this information is used purely statically

to verify that programs using simple fork-join parallelism constructs have no interference of effect

between portions of code that can run concurrently.

TWEJava adopts DPJ’s region-based type and effect system, but couples it with a runtime

representation of effects that is used by a run-time scheduler to guarantee noninterference of effect

between concurrent tasks. This allows it to support a much wider range of programs than DPJ

can handle, including those that are inherently nondeterministic and do not use a fork-join style of

concurrency.

2.3.1 Hierarchical Regions and Effects

In the DPJ effect system, a region is a (not necessarily contiguous) set of memory locations described

by a Region Path List (RPL), which is a colon-separated list of RPL elements. An RPL element may

be a simple name (a fixed string), a class region parameter, a method region parameter, an array

index expression ([expr]), or the predefined region name, Root. Root is implicitly prepended to

RPLs if it is not explicitly specified. The programmer may use RPLs to specify what regions object

fields and array elements are in, and also to provide effect specifications for tasks and methods in

terms of reads and writes on RPLs.

RPLs can be both static (in the program text) and dynamic (used at run time). In DPJ,

RPLs are used only statically (by the compiler), although the DPJ formalism also describes their

relation to dynamic RPLs. In TWEJava, dynamic RPLs are actually computed and used at run
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time; the scheduler sees only dynamic RPLs. Static RPLs may contain region parameters that are

substituted with a region argument provided at object allocation time, so region parameters do not

appear in dynamic RPLs. Similarly, index expression elements [expr] become run-time integers,

[i], where expr evaluates to i.

RPLs may contain the wildcard elements * or [?]. These are called partially specified RPLs, and

correspond to a set of fully specified RPLs (those without wildcard elements). An RPL containing

* denotes the set of all legal RPLs produced by replacing the * with an arbitrary sequence of zero

or more RPL elements. For example, P:* denotes the set of all RPLs beginning with the element

P. An RPL containing [?] denotes the set of all RPLs where the ‘?’ is replaced by an integer. We

define a wildcard-free prefix of an RPL as a prefix of RPL elements that does not include * or [?].

A maximal wildcard-free prefix is a wildcard-free prefix that is of maximum length.

Two effects conflict if at least one is a write effect and their regions (RPLs) overlap, i.e., are not

disjoint. Two fully specified dynamic RPLs are disjoint unless they are identical. Two RPLs that

may contain wildcards are disjoint if every fully specified RPL represented by the first is disjoint

from every such RPL represented by the second. For example, the following pairs are all disjoint:

A and A:B; A:[i] and A:B; A:*:X and A:B. The following are not disjoint: A:* and A; A:* and

A:B:C; A:* and A:[i].

In practice, our system checks if two RPLs are disjoint by comparing them element-by-element

first from the left until a * element is encountered in either RPL, and then (if necessary) from the

right, stopping if they are found to be disjoint. Note that effects on two RPLs can possibly conflict

only if the maximal wildcard-free prefix of one RPL is also a prefix of the other RPL.

DPJ and TWEJava require programmers to provide effect specifications for tasks and methods

that may be run concurrently with other operations, as well as region specifications for the data

that they access. This imposes a burden on programmers, but in our experience this burden is

manageable, and we believe it can be justified in light of the strong safety guarantees that TWEJava

provides. Moreover, Vakilian et al. [84] have shown that it is possible for a tool to automatically

infer most DPJ/TWEJava-style effect specifications, dramatically reducing the manual annotation

burden on programmers. Tzannes et al. [83] have also demonstrated that for some programs it is
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feasible to infer most or all region annotations, as well as effect annotations.
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Chapter 3

The Tasks with Effects Model and
TWEJava

3.1 The TWEJava language

As described in section 1.2, the core idea of the tasks with effects programming model is to associate

an effect specification with each task in a program, and then to schedule tasks at run time on the

basis of these effect specifications, ensuring that tasks with conflicting effect specifications do not

run concurrently. This system of run-time scheduling to ensure task isolation can be coupled

with static checks that ensure each task’s effect specification conservatively covers all the potential

memory side effects of the task. By doing this, a system based on tasks on effects can give the

programmer strong safety guarantees, including a guarantee of data race freedom and a guarantee

that portions of tasks that do not create or wait for other tasks will behave atomically.

I have implemented such a system in an extended version of Java, which I call TWEJava. In

this section, I will introduce the key features of the TWEJava language, and informally describe the

concepts of the TWE model that they implement. (In section 3.2, I will give a more formal treatment

of the dynamic semantics of tasks with effects.) TWEJava includes almost all Java language

features, but TWEJava programs should not use Java’s thread-based concurrency mechanisms or

lock-based synchronization, which TWEJava is designed to replace. Figure 3.1 shows the new

operations supported by TWEJava, which I will describe in this section.

Figure 3.2 shows how our task system can be used in an image editing program, which we will

use as as running example. It illustrates a simplified version of a programming pattern used in the

ImageEdit program that we have implemented in TWEJava (see section 6.1). The example code

shows a class Image representing an image, with the pixel values held in two arrays, topHalf and

bottomHalf. We would like to support operations in parallel on these two halves of the image. (We
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adopt this arrangement for simplicity. In the actual ImageEdit application, it is possible to use

finer-grained parallelism.) We also want to support a variety of operations to read and manipulate

the image, which may be invoked as asynchronous tasks. This is useful, for example, when the user

directs the program to perform a lengthy operation that should not block the user interface while

it runs.

We show the task increaseContrast (lines 6–16), which can be executed to increase the con-

trast of the image. It relies on the separate method increasePixelContrast (lines 18–26) to

actually update the pixel values in each array. This enables the increaseContrast operation to

work on the top and bottom halves of the image in parallel, by spawning a child task to work on

the top half while the parent task works on the bottom half.

Figure 3.3 shows the tasks created in this computation. The GUI system executes the increase-

Contrast task in response to user input. That task in turn spawns a child task so that the two

halves of the image can be processed in parallel, and then joins that child task after it completes.

Meanwhile, the GUI system might execute additional tasks in response to further user input. (In

this example, we show the GUI system as a task, responsible for processing low-level input data

and launching tasks in response to UI events. This architecture would be possible, but for ease of

implementation we have so far used Java’s Swing GUI framework, with wrappers to launch tasks

in response to Swing events.)

3.1.1 Tasks

In TWEJava, potentially concurrent work is made by creating a task, which will then be executed

at some point when execution resources are available. It is possible to check if a task is completed

or block awaiting its completion. A program written in TWEJava is started by invoking an initial

task, and creating new tasks is the sole means of performing concurrent work. Tasks can also take

parameters as input and return a result. (Wrapper classes support tasks with multiple parameters.)

Three fundamental operations implement this basic tasking model: executeLater adds a task to

the queue of tasks to be executed, getValue waits until a task is done and gives its return value,

and isDone checks whether a task is done, without blocking.
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1 public abstract class Task<type TRet, TArg, effect E> {
2 // Code to be run when task is executed.

3 public abstract TRet run(TArg arg) effect E;
4

5 // Execute a task at some point in the future

6 public final TaskFuture<TRet> executeLater(TArg arg);
7 // Spawn a subtask of the current task, with effect transfer

8 public final SpawnedTaskFuture<TRet, effect E> spawn(TArg arg);
9 }

10

11 public class TaskFuture<type TReturn> {
12 // Await completion and get return value (no effect transfer)

13 public TReturn getValue();
14 // Check if task is done

15 public boolean isDone();
16 }

17

18 public class SpawnedTaskFuture<type TReturn, effect E>
19 extends TaskFuture<TReturn> {

20 // Await completion and get return value, with effect transfer

21 public TReturn join();
22 }

Figure 3.1: Operations supported by TWEJava. The abstract method run must be implemented
in concrete subclasses of Task, giving the code to be run as a task. The other operations, although
using the syntax of Java methods, are in fact new task-related language operations supported by
our compiler and runtime system.

Each type of task is specified by a subclass of the Task class, which takes type parameters

giving its input and output types, and an effect parameter giving its effect (described below). An

executeLater operation performed on a Task instance returns a TaskFuture object, which repre-

sents an actual execution of the task; getValue and isDone operations can be performed on this

task future. In our example, the increaseContrast task is created by an executeLater operation

in the GUI. (The spawn and join operations used within it will be described in section 3.1.5.)

The structure described above is similar to other existing task systems, but TWEJava has a key

difference. In other systems, a task can generally be run at any time after it is queued for execution,

without regard to what other tasks are running concurrently. Because of this, the programmer must

take care to ensure that there are no data races between potentially concurrent tasks. This can

be done by using synchronization mechanisms such as locks within tasks to guard access to shared

data, or by carefully designing the pattern in which tasks are executed and joined in such a way

that no two tasks accessing the same data might be executed concurrently. Using these mechanisms

to guard against data races is often complex and error-prone, and traditional thread-based systems

for concurrent programming generally do not provide a mechanism to automatically check that
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1 class Image {

2 region Top, Bottom;

3 final int[]<Top> topHalf; // pixel values

4 final int[]<Bottom> bottomHalf;

5 ...

6 public final Task<Void, Void, writes Top,Bottom>

7 increaseContrast =
8 new Task<>() {

9 public Void run(Void _) {

10 SpawnedTaskFuture<Void, writes Top> f =

11 increasePixelContrast(topHalf).spawn(null);
12 increasePixelContrast(bottomHalf).run(null);

13 f.join();
14 return null;

15 }

16 };

17

18 private static <region runtime R> Task<Void, Void, writes R>

19 increasePixelContrast(final int[]<R> pixels) pure {
20 return new Task<>() {

21 public Void run(Void _) {

22 modify values in pixels array

23 return null;

24 }

25 };

26 }

27 }

Figure 3.2: Example computation.

they have been used correctly.

Our system solves this problem by using effects to control the scheduling of tasks. Each task has

an effect specification, which is checked at compile time to ensure that it accurately (conservatively)

reflects the task’s memory accesses. These effect specifications of tasks are in turn used at run time

by the task scheduler, which will ensure task isolation—that is, that no two tasks with interfering

effects can be running concurrently.

3.1.2 Effects and Regions

In order to perform effect-based scheduling of tasks, our system must know the effects of each task,

and be able to check whether the effects of two different tasks interfere with each other. Intuitively,

two tasks have interfering effects if they could both access the same memory location and at least

one of those accesses could be a write. Two tasks can only be run concurrently if their effects do

not interfere, which is the core property enforced by the scheduler in our system.

To specify effects in TWEJava, we adopt the region and effect system from Deterministic
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Figure 3.3: Tasks in example computation.

Parallel Java (DPJ) [22], which is described in Section 2.3. In our application of the effect system

to TWEJava, every task as well as every method has effects specified by the programmer in terms

of reads and writes to regions.

We also use an extension of the basic DPJ type system to support effect parameters to types

(in addition to region parameters). This is based on the support for effect parameters described by

Bocchino et al. [21], but it is modified to follow a more restrictive subtyping rule. Specifically, we

adopt the typing rule that an effect-parameterized type A is only treated as a subtype of another

effect-parameterized type B if either the corresponding effect parameters are exactly equivalent,

or the effect parameters in B are not fully-specified. (This rule is helpful for supporting the join

operation described later.)

The use of effect parameters allows us to define the abstract class Task as taking an effect

parameter E. This class will be extended by each actual task defined in the user’s code. The

definition of each actual type of task will instantiate this parameter with that task’s effects, and

the compiler will then be able to ensure statically that the effects of the supplied run method for

that task are actually covered by the effect parameter E. Thus, our runtime system can safely use

that effect parameter as a (possibly conservative) summary of the actual effects of the task.

In our example code, we declare two region names, Top and Bottom (line 2). We then declare

the cells of the topHalf and bottomHalf arrays to be in those two regions, respectively. The

increaseContrast task is declared with the effects writes Top, Bottom, meaning it can read

and write the pixel values in both halves of the image. The increasePixelContrast method has

a region parameter R corresponding to the region containing the cells of the array passed to it.
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Since the declared effect of the task it returns is writes R, increasePixelContrast(topHalf)

will produce a task with the effect writes Top.

Like DPJ, we use purely static checks to ensure that each method and task complies with its

effect declaration and that region- and effect-parameterized types are used soundly. TWEJava

never requires runtime checks associated with individual memory accesses, which avoids a major

source of overhead in some other systems such as STMs. However, our system does need to have

information on the effects of tasks available at run time so that it can be used by the scheduler.

We make this information available by introducing a set of internal runtime classes that represent

dynamic regions and effects, and internally adding extra fields to classes which hold the runtime

instantiation of their region and effect parameters, as well as extra arguments to constructors and

methods corresponding to the region and effect parameters passed to them.

The scheduler only directly needs information about the effect parameters of task objects, but

these may depend on other region and effect parameters in scope at the places where task classes

are declared and instantiated, making it necessary to also track those additional parameters at run

time. To minimize the overhead of this run-time tracking, we require programmers to annotate

region parameters that need to be tracked at run time. This allows us to avoid generating run-time

tracking code for the many region parameters that are used only in the compiler’s static analysis.

(Failing to provide such an annotation where needed will cause a compile-time error.)

3.1.3 Effect-Based Task Scheduling

The key property that our run-time task scheduler must enforce is that two tasks with interfering

effects will not be run concurrently. To do this, the scheduler will have to delay the execution of

tasks that are created while another task with interfering effects is already executing. It may also

delay tasks for other reasons, e.g. waiting until execution resources are available.

In Figure 3.3, the increaseContrast task with effects writes Top, Bottom is run while the

GUI task with effect writes GUIData continues to execute. To determine if the new task may

be run concurrently with the already-executing task, the scheduler will check if these two sets of

effects interfere with each other. In this case, the region GUIData is disjoint from Top and Bottom,
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so the two tasks have non-interfering effects and may be run concurrently.

If a third task is run with executeLater while these two tasks are executing, its effects will

be checked against those of both existing tasks. Thus, another task trying to access the image

data in the regions Top and Bottom would have to wait until the increaseContrast task is done,

but a task accessing different regions might be able to run concurrently. (The increasePixel-

Contrast(topHalf) task is run with the spawn operation, which uses effect transfer to avoid the

need for these run-time checks; see section 3.1.5.)

Considerable variation is possible in the design of an effect-aware task scheduler. Our initial

prototype implementation uses an approach based on a linear queue of tasks, which is described

in section 3.4.2. For greater performance and scalability, the effect checking could be structured

around regions, so that tasks accessing unrelated regions do not need to be explicitly checked against

each other. A scheduler may also provide additional properties related to fairness or task ordering,

in addition to the basic property of noninterference. For interactive programs, it is valuable to

preserve responsiveness through fairness properties that avoid delaying the execution of one task

excessively while other tasks execute ahead of it. But for efficiency in many parallel codes, it would

be desirable to use algorithms similar to Cilk’s work-stealing scheduler [20], which preferentially

execute recently-created tasks on each processor. We believe that the design of high-performance

effect-based task schedulers is a valuable area for future work.

3.1.4 Effect Transfer When Blocked

The model we have described so far envisions the effects of each task remaining unchanged while

it runs, and says that two tasks with interfering effects may not run concurrently. This will lead to

deadlock if one task blocks waiting for another task that has yet to run and which has effects that

interfere with those of the first task. For example, if task A creates task B using executeLater,

then blocks on B using getValue, and the effects of tasks A and B interfere, deadlock results

because B cannot begin execution until A is complete.

We wish to prevent this form of deadlock and enable certain useful programming patterns

involving this sort of blocking, so we introduce a mechanism for effect transfer from a blocked task
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to the task it is blocked on. The key idea is that a getValue or a join operation (described later)

“transfers” enough effects from the blocking task to the target task to allow the target task to begin

execution. For example, if a task A is blocked on another task B using getValue, we record this

fact and ignore any effect conflict between A and B in deciding whether B can be executed. We

also extend this to indirect blocking through chains of blocking operations. Note that a task that

blocks will always remain blocked until all the tasks it directly or indirectly blocks on are done.

Therefore, this mechanism does not enable two tasks with conflicting effects to be actively running

at the same time.

This form of effect transfer prevents the type of deadlock described above, and it also allows

some useful programming patterns. One of these is for one module of the program with effects on

a certain region to launch and block on a task in another module, which may “call back” to the

first module by launching and blocking on another task whose effects interfere with those of the

first task. Another useful programming pattern enabled by this mechanism is similar to a locked

or atomic block in other programming models. One task can launch a second task with a superset

of its effects, and then use a getValue operation to wait for the second task. This transfers the

first task’s effects to the second task (allowing it to access the same regions as the first task), and

leaves the second task to wait until it can acquire access to the regions covered by its other effects,

which may correspond to a shared resource.

3.1.5 Effect Transfer for Nested Parallelism

Our system supports an additional form of effect transfer which is particularly suitable for nested

parallelism, as used in fork-join style computations. It is a mechanism to transfer some of the

effects of a parent task to a newly-created child task, and later transfer those effects back to the

parent task when the child task completes. We call these operations spawn and join, respectively.

A child task created with spawn may run immediately, since “ownership” of its effects is transferred

directly from the parent to the child task, and thus no other tasks with conflicting effects may be

running concurrently.

In Figure 3.2, these mechanisms are used to operate in parallel on the two halves of the
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image. We use the spawn operation to run the increasePixelContrast(topHalf) task (line

11). This transfers the effect writes Top directly from the parent increaseContrast task to

the new child task, which means the new task can be enabled for execution immediately. The

parent task also continues executing concurrently, with its remaining effect writes Bottom. The

increasePixelContrast(bottomHalf) operation is run as a method within the parent task, which

is possible since its remaining effect writes Bottom covers the effect of the method call. After that

computation finishes, the parent task joins the spawned child task. This join operation also trans-

fers the child task’s effect writes Top back to the parent task. After this, both halves of the image

will have been updated, so any other task that waits for the increaseContrast task to finish will

know that the full operation is complete.

Spawning and joining child tasks

The spawn operation executes a new task, whose effects must be entirely covered by the effects of the

parent task calling spawn. It immediately transfers those effects to the spawned task, which allows

that task to be enabled for execution immediately, without going through the normal effect-based

scheduling process required when using executeLater. Since the effects are transferred directly

from the parent task to the child task, data in regions covered by those effects cannot be modified

by any other task in the interim, so the child task reading that data is guaranteed to see the values

last seen or written by the parent task.

The join operation permits effect transfer back to the parent task at the end of a child task.

Apart from effect transfer, join behaves like getValue: it will await the completion of the joined

task, and return the result value produced by it, if any. The difference is that join will transfer

effects directly from a completed task to the task that joins it. This permits the task that called

join to perform subsequent operations covered by the effects of the joined task. One application of

this is that data written by the completed child task can be read by its parent task after the child

task is done. We determine what effects are statically considered to be transferred on join by looking

at the effect parameter of the SpawnedTaskFuture object being joined. In our static analysis, we

treat effects as being transferred on join only if that effect parameter is fully-specified, which under

25



our typing rules is sufficient to ensure that it will match the actual effect of the task being joined.

Dynamically, we always consider the effects of a completed child task to be transferred when it is

joined. Accordingly, the static analysis may be conservative in the sense of not allowing the parent

task to perform certain operations in cases where the effects are not treated as being transferred,

but it is safe in the sense that any operation dynamically performed by a task is guaranteed to be

covered by the dynamic effect of the task at that point.

The restriction of not treating effects as being transferred on join when a non-fully-specified

effect parameter is used in the type of the SpawnedTaskFuture object does slightly reduce expres-

siveness, since in these cases shared data written by the child task cannot subsequently be accessed

by the parent. However, we have not found this to a problem in programs that we have written.

Moreover, this restriction could be worked around in various ways, e.g. by having the child return

a new object containing the results in final fields, which would be accessible to the parent. It

would be possible to avoid this restriction by adding new type system mechanisms, annotations,

or static analyses that could be used to ensure that the effect parameter of a SpawnedTaskFuture

object’s type matches the actual effect of the task being joined; we have not done this to date in

the interest of simplicity and because we have not encountered cases where it would be necessary.

Only tasks executed with spawn are joinable, and this is reflected by the fact that spawn returns

a SpawnedTaskFuture, which supports the join operation. Furthermore, only the parent task that

spawns a task may join it, and a task may only be joined once (violating these rules causes an

exception to be thrown). Also, the system implements an implicit join operation prior to returning

from each method for all the tasks spawned by that method that have not already been explicitly

joined. These measures ensure that all spawned tasks get joined, and that all the effects transferred

from a method with spawn are returned to it through join operations before the method returns.

This simplifies our static effect analysis, since a method never “gives up” effects from the perspective

of its callers. (We can treat a method as not “giving up” any effects even in the cases discussed

above where our conservative static analysis within the method does not treat effects as being

transferred on join, since we know that dynamically all the effects of tasks spawned within that

method will have been transferred back to it by join operations.)
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Covering Effect Analysis for Effect Transfer

Implementing effect transfer makes the static analysis of covering effects more complex, since a

spawn or join operation subtracts or adds effects to the task in which it is executed, thereby

changing the covering effects applicable to subsequent code in that task. This would be easy to

address if we used dynamic checks to determine whether the effect of each memory operation is

covered by the current effects of the task in which it appears, but we want to use a static analysis

to determine this in order to minimize runtime overheads and detect as many errors as possible at

compile time.

To do so, we added a dataflow analysis algorithm in the compiler to conservatively compute the

current covering effect applicable to each expression in the program. The current covering effect at

the beginning of a method is given by its declared method effect summary. When spawn operations

are encountered, the statically declared effects of the spawned task are subtracted from the current

covering effect, and a SpawnedTaskFuture parameterized by the effects of the spawned child task

is returned. (Intuitively, subtracting an effect means that operations whose effects conflict with

that effect will no longer be permitted below that point in the program, until and unless that

effect is subsequently added back.) At join operations, the effects given by the static type of the

joined SpawnedTaskFuture are added to the current covering effect. At control flow join points, a

minimum of the current covering effects from the different control flow paths is used (so an operation

is permitted only if its effect is covered by both of the covering effects from the different control

flow paths). Using an iterative dataflow analysis, we can thus conservatively compute the current

covering effect applicable to each expression in the program. The effects of each expression can

then be compared against the current covering effect at the program point before the expression, to

ensure the expression’s effects will be covered. In Chapter 4, I formalize this dataflow analysis and

provide formal definitions of the structures used to represent covering effects (known as compound

effects).

In our example the covering effect of the increaseContrast task is initially writes Top,

Bottom. When it spawns a child task (line 11), its covering effect then becomes writes Bottom,

since the writes Top effect has been transferred to the spawned child task. When that task is
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joined (line 13), the covering effect of the parent task once again becomes writes Top, Bottom.

One detail that must be accounted for in this analysis is that effect-parameterized types in the

static program code are in general only a conservative summary of the actual effects of tasks at

run time, and they may contain wildcard elements in their region specifiers. The actual effects

of the Task object used at run time may be smaller than the effects given in the static type,

e.g. by omitting some of the effects that are included in the static type or replacing effects on

RPLs containing wildcards (which can cover a set of regions) with effects on a fully-specified RPL

designating a single region in that set. We generally use a conservative static analysis: spawns are

treated as transferring away all the effects in the static type of the spawned task, including ones

with wildcards. Subsequent operations in the parent task may not interfere with those transferred-

away effects, which conservatively ensures that they cannot interfere with any of the actual effects

of the child task at run time.

As an exception in this conservative analysis, however, we statically disallow spawn operations

only in certain cases where we can determine by static analysis that the effects of the spawned task

definitely will not be covered by the covering effect at run time. We allow other spawn operations

even if we cannot be certain at compile time whether or not the effects of the spawned task will

actually be covered at run time. (This differs from the way we handle the effects of all other

operations in the program, where an error is reported unless our conservative static analysis can

determine that their effects definitely will be covered.) In this case of a spawn where we cannot

determine statically that its effects definitely will or will not be covered, we generate code to keep

track of the run-time covering effects in the method containing the spawn operation (updated only

when a spawn or join operation is performed). An exception will be thrown if the effects of the

spawned task are not actually covered at run time. This limited dynamic checking is useful for cases

where we do not have full information on the effects of spawned tasks at compile time. For example,

a loop may spawn tasks to operate on different elements of an index-parameterized array, but our

compiler cannot determine statically whether each of the elements is distinct, so this mechanism

effectively enables the check to be performed dynamically instead.

For joins, we need to be sure that the actual run-time effects of the task being joined are not
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less than those specified in the static type. To do this, we statically treat joins as performing effect

transfer only if the effect parameter of the joined task’s static type is fully-specified (i.e. contains

no wildcards). As mentioned above, we also adopt the typing rule that an effect-parameterized type

A is only treated as a subtype of another effect-parameterized type B if either the corresponding

effect parameters are exactly equivalent, or the effect parameters in B are not fully-specified. This

ensures that fully-specified effect parameters in the static types of SpawnedTaskFutures exactly

match the actual parameters used when instantiating the task object at run time, so we may safely

use those parameters in the static analysis of join operations.

3.2 Dynamic Semantics of Tasks with Effects

We have formalized the dynamic semantics for the core operations of the tasks with effects model

in the context of a basic imperative language. A program in this language consists of a set of

global variable declarations and task declarations (which are similar to function declarations in a

traditional language, but include an effect specification for each task). Here we present and describe

only those semantic rules related to tasks, which are shown in Figure 3.4.

These rules are written using the K semantic framework [78], which is based on rewriting logic

and operates on a configuration of nested cells which corresponds at any point to the current

state of the execution. (Although the K framework is less common than the standard approach

for operational semantics, it has significant advantages, especially in that it is more modular and

flexible.) Each rule may apply when it can match the configuration elements on the top of it, and

when it applies any elements with a horizontal line under them are replaced by what is below the

line. K supports lists, sets, and maps, and a rule may match a single element from these structures,

either anywhere in them or at the front of a list; in these cases, the remainder of the structure is

denoted by ellipses. A dot represents the identity element of these structures, and an underline is

a ‘don’t-care’ element that can match anything. K rules also obey a locality principle, saying that

a rule matching two subcells that appear within the same outer cell must match only two subcells

within the same instance of that outer cell.

At the top of Figure 4, we show the initial configuration of the program. It consists of a task
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Figure 3.4: Dynamic semantics of tasks with effects.

cell (of which there may later be more than one, indicated by the *); a running cell which will hold

a set containing information on running tasks; a waiting cell which will contain a set of IDs of tasks

waiting to execute; a genv cell holding the global environment (mapping identifiers to locations

in the store); a store cell which will map locations (integers) to various objects; and a nextLoc

cell giving the next available location in the store. Each task cell contains code to be executed

in its k subcell; an ID in its id subcell (corresponding to a location in the store); the current

environment in its env subcell; and a set of IDs of spawned child tasks in its spawned subcell. The

initial configuration will pass the program code to a special operation execute (not shown) which

initializes the store and global environment based on the declarations in the program and then runs
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the task named main.

Note that we present here only a dynamic semantics, which presupposes that the program has

passed all static checks, including type checking and checking that the current covering effects

at each point in each task correctly cover all the memory accesses it may perform. (Dynamic

computations of current covering effects are not needed in this formalism, because the effects of

each task are fully defined statically and there is no provision for dynamic instantiation of region or

effect parameters.) These semantics are agnostic to the specific effect system used, but a formalism

of the DPJ type and effect system used in TWEJava is presented in [22].

3.2.1 Starting Tasks

The first major class of rules in our semantics relates to starting tasks. The executelater rule

implements the executeLater operation. It will apply once the executeLater operation is the

next piece of code to execute, after a task name in the code has been evaluated to a lambda

expression (comparable to a Task object in TWEJava) and its arguments have been evaluated to

values (simple rules not shown). The executelater rule will allocate a new location L in the

store, and store a TF tuple (corresponding to a TaskFuture in TWEJava). This tuple contains

the effect of the task, the code to be executed when it is run, and the task’s return value (initially

⊥T , indicating it has not yet been set). The rule adds the ID (location) of this task to the set of

tasks waiting to run, and the result of the operation is a reference to that location.

The start-task rule is then responsible for actually starting one of the tasks in the waiting set.

When it applies, it will create a new task cell in the configuration, containing the code of the new

task to be run. (This cell may exist side-by-side with other task cells.) The rule also adds a tuple

(L, Eff, ∅) to the running cell. This indicates that the task L is now running, and holds its effects

and an initially-empty set of tasks that it is blocked on. Finally, the key element of this rule is

the condition relating to the existing contents R of the running cell. This will contain information

about all the other currently-running tasks, and we use it to ensure our model’s basic property of

task isolation. Specifically, the new task L cannot be started unless for every already-running task

L2, either the effects of L are non-interfering with those of L2 (denoted by #) or L is in the set of
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tasks on which L2 is blocked. This latter case implements our mechanism for effect transfer when

blocked.

The spawn rule is similar to a combination of the executelater and start-task rules, since

it allows a task to start immediately without the need for the effect checking in the start-task

rule. One addition, however, is that the ID of the spawned task is added to the spawned set of its

parent task, which keeps track of child tasks that have been spawned and not yet joined.

3.2.2 Awaiting Completed Tasks and Blocking

The next group of rules relates to the potentially blocking operations getValue and join. They

both can be applied to a reference to a location containing a TF tuple. The getvalue-succeeds

rule addresses the case where the task in question is complete, and as such has a return value V

stored in its TF tuple. In this case, the result of the operation is that value. Since the task that

executed the getValue operation (L1) will no longer be blocked, we empty the blocked-on set in

its running tuple. The join-succeeds rule is similar, but also requires that the task being joined

was in the current task’s spawned set, and removes it. This reflects the fact that a task can only

be joined once, and only by the task that spawned it. (If a join operation violates these rules, the

task that executes it will hang in our formalism. In TWEJava, an exception is thrown.)

The next two rules, getvalue-blocks and join-blocks, handle the case where the task L

may not yet be done. These rules put L in the blocked-on set for the task L1 that does a getValue

or join operation on L. This potentially allows L to be started based on effect transfer, using the

start-task rule. The indirect-blocking rule propagates entries in the blocked-on sets when

there is a chain of blocked tasks, allowing effect transfer to be applied in the case of indirect blocking.

(In the TWEJava implementation, this propagation is fully performed at the time a getValue or

join operation is evaluated.)

3.2.3 Finishing Tasks and Checking If Tasks are Done

The next group of rules relates to finishing a task. The return rule handles a return statement

(which may be in the program’s code, or the return nothing; that we insert at the end of each
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task when starting it, in case it does not explicitly return a value). The rule says to first await any

spawned children of the current task that have not yet been joined, then set the task’s return value

in its TF tuple (which will signal that the task may be considered done), and finally erase its task

cell and its entry in the running set. The next several rules implement these operations.

Finally, the last two rules implement the isDone operation. A task is considered done once its

return value has been set to a value. If it is still undefined (indicated by ⊥T ), then the task is not

done.

3.3 Safety Properties

Our model guarantees strong safety properties, including our basic task isolation property, plus

data race freedom and atomicity properties stemming from it. We also avoid a significant class of

deadlocks and can prove that many computations are deterministic.

3.3.1 Task isolation

The task isolation property of our system is that no two tasks may be actively running concurrently

with interfering covering effects. The basic check used to guarantee this is to record the effects of

each running task in the running set, and compare the effects of new tasks against the effects of

all existing tasks before allowing them to start in the start-task rule.

There are two cases where we can start tasks even though they might appear to have effects

interfering with those of another running task. One is that a task A may be allowed to start while

a task B with conflicting effects is in the running set if A is in the blocked-on set for B. In this

case, our rules guarantee that B cannot resume execution until A has completed, so we allow A to

run based on our first effect transfer mechanism.

The other case is the spawn operation. In this case, our covering effects analysis ensures that

the spawned task’s effects are subeffects of its parent task’s effects (so they may not conflict with

anything that the parent’s effects do not) and that the parent task will not execute any operations

that conflict with the effects of the spawned task between where it is spawned and where it is

joined.
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3.3.2 Data race freedom

Data race freedom follows from the combination of the task isolation property and the guarantee

provided by our static checks that the specified effects of each task cover all its memory accesses.

The formalism in section 3.2 implicitly uses a sequentially-consistent memory model, but in

fact the tasks with effects model requires memory updates to be visible only between operations

ordered by a limited set of happens-before edges. Our model imposes some order on any two tasks

with interfering effects. This gives rise to happens-before edges between the end of one task and

the start of any subsequent task with interfering effects, analogous to those between a lock release

and subsequent acquisition in other systems. A full happens-before relation for our model is given

by the transitive closure over these edges as well as edges for task creation, waiting or checking

for task completion, and the sequential program order within each task. Any two accesses to a

memory location where at least one is a write will be ordered by this happens-before relation.

3.3.3 Atomicity

A task or portion of a task that does not create or wait for any other tasks behaves atomically. It

has fixed effects that cover all the memory locations it can access, and the scheduler will ensure that

no other tasks performing conflicting accesses run concurrently with it, which ensures it is atomic.

This atomicity property also extends to portions of tasks that contain task creation operations, in

the sense that the semantics are equivalent to those given by creating the new tasks only at the

end of the parent task or just before the next getValue or join operation in it.

Atomicity does not always extend across getValue or join operations, as our mechanism for

effect transfer when blocked may allow other tasks with conflicting effects to run before the blocking

operation completes. However, this potential for non-atomicity is limited to running the task(s)

that are directly or indirectly blocked on, and it does not occur in cases where those tasks have

definitely finished prior to the getValue or join operation. Also, a deterministic computation

(discussed below) effectively executes atomically, as it is semantically equivalent to a sequential

execution with no task-related operations. As in languages with explicit atomic constructs, it

remains the programmer’s responsibility to identify sections of code that should behave atomically
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and write the code in a way that ensures they do so, e.g. by not using getValue or join operations

within such sections.

3.3.4 Deadlock avoidance

Our model avoids deadlocks in the case that a task A directly or indirectly blocks on another task B

whose effects conflict with A’s effects, using the effect transfer mechanism discussed in section 3.1.4.

While we do not prevent all deadlocks, we believe this class of deadlocks is significant, and we found

our effect transfer mechanism to be useful in practice, particularly in the interactive FourWins

program (see section 6.1).

3.3.5 Determinism

Many parallel algorithms are deterministic. That is, they always produce the same output given the

same input state. Since this is an expected property of many algorithms, detecting violations of it

is a useful way of finding bugs. Moreover, knowing that a program or an algorithm is deterministic

makes it much easier to reason about: the user of the program or algorithm knows that it will always

produce the same output given the same input, so they need not be concerned that different parallel

interleavings of operations may produce different results. Determinism also makes a program or

algorithm much simpler to debug, since one knows that the same result will be produced every

time it is run with a given input.

DPJ [22] can provide a compile-time guarantee of determinism using the combination of its

type and effect system and simple parallelism constructs supporting only fork-join patterns of

parallelism. We provide a similar static guarantee of determinism for deterministic algorithms or

programs written in TWEJava. All programming patterns for which DPJ can give a guarantee

of determinism can also be expressed and proven deterministic using the tasks with effects model.

Our model also allows us to give a static guarantee of determinism for certain computations in a

program while still allowing the rest of the program to use the full flexibility of TWEJava (including

non-fork-join concurrency structures), and guaranteeing our other safety properties for the whole

program. Thus, our feature for guaranteed determinism can be used within programs that could
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not be expressed with DPJ.

To request that the compiler check and enforce the determinism of a certain task or method, the

programmer can annotate it as @Deterministic. In code that has this annotation, the compiler will

enforce that the only task-related operations used in the code are the spawn and join operations

described in section 3.1.5. Also, code annotated as deterministic may only call other deterministic

methods and spawn other deterministic tasks.

These restrictions ensure that the code invoked from a deterministic task or method (including

through the creation of other tasks) accesses memory only as specified by its declared effects.

Moreover, there is a defined order by which control of each region covered by those effects is

transferred between tasks, as determined by spawn and join operations. (Note that the form of

effect described in section 3.1.4 will never be needed for join operations within a deterministic

computation, and thus will not occur.) Therefore, for a given input state of the memory in regions

covered by the effects of the deterministic task or method, there is a deterministic output state that

will not vary between executions of the code. This state is the same as the state produced if the

code were executed sequentially with each task’s code run at the point where the task is spawned.

These deterministic computations are also deadlock-free.

3.4 Compiler and Runtime System

Our implementation of TWEJava consists of a compiler and a runtime system, which we briefly

describe here.

3.4.1 Compiler

The compiler is based on the DPJ compiler, which checks that effect declarations are correct and

that types are used correctly. Our extended version also supports the new features of TWEJava

described in Section 3.1. These include generating code to record effect parameters and some region

parameters for use at run time; performing a data flow analysis to determine the covering effects

for each operation (accounting for operations that do effect transfer); and checking the use of the

@Deterministic annotation.
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Our compiler is responsible for generating the code that at run time will compute dynamic

RPLs based on the static RPLs appearing in the program text (specifically, dynamic RPLs must

be computed for those RPLs that may be used in the effect of a task, either directly or through

effect parameter instantiations). For RPLs consisting of simple region name elements, this is

straightforward, but we must also deal with other features including region parameters and index

expressions in RPLs. Our compiler generates code to actually pass region parameters at run time

(as extra parameters to constructors or methods in the generated Java code), as well as to evaluate

index expressions (which are restricted to simple side-effect-free expressions). This allows us to

compute the dynamic RPLs appearing in the effects of tasks at run time; these are the RPLs

that will actually be used within our run-time scheduler. This computation of dynamic RPLs is a

new feature not present in DPJ; although the DPJ formalism defines dynamic RPLs, they are not

actually computed in DPJ programs.

To enable interoperation with existing Java code and libraries that do not have region and

effect annotations (including the Java standard libraries), the compiler allows methods without

effect annotations to be called within methods that have effect annotations. This produces a

warning, but that warning can be suppressed for individual methods. Since we have not written an

extensive standard library for TWEJava, we take advantage of this capability to use Java standard

library features such as the Swing GUI system, I/O routines, and math functions. The compiler

cannot give a full guarantee about the correctness of code making such calls, so the programmer

has to manually reason about it, but that reasoning can be encapsulated by writing annotated

wrapper methods that internally call unannotated library routines.

3.4.2 Runtime System

Code generated by our compiler can be run using our runtime system, which implements the various

task-related operations in TWEJava. We use an effect-based scheduler to enforce our model’s key

property of task isolation. The effect-based scheduler enables a task for execution only once it is

safe to do so based on its effects. Once a task is enabled for execution by our scheduler, it is handed

off to a version of the Java ForkJoinPool framework, which is responsible for actually executing
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tasks using a thread pool.

Here I describe the initial näıve prototype implementation of the scheduler, which uses a queue

of tasks protected by a single lock to manage the effect-checking phase of task scheduling. This

implementation has since been replaced by the much more scalable tree-based implementation dis-

cussed in chapter 5, but I briefly describe it here so that the reader can understand the comparative

performance characteristics of the two implementations.

When attempting to execute a task, the näıve scheduler implementation generally works by

scanning from a task’s position forward toward the head of the queue (which includes both running

and waiting tasks), checking if the task’s effects conflict with those of each task ahead of it. If

a conflicting task is found when attempting to schedule a task, then the later task is marked as

waiting for the earlier one to complete. This approach will generally run conflicting tasks in the

order that they were enqueued, but there is also a mechanism for prioritizing tasks that a running

task is blocked on.

We show below that with this relatively simple scheduling approach we can achieve substantial

speedups on a range of benchmarks. However, the tasks with effects model could also be imple-

mented with other more scalable scheduling approaches. In particular, if we associated information

about enqueued tasks with regions, then tasks with effects on unrelated regions would not need to

have their effects explicitly compared against each other, and we could also avoid the need for a

single global task queue lock.
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Chapter 4

Covering Effect Analysis

Our compiler needs to statically ensure that the effect of any operation in the program is covered

by the static covering effect at that point in the program. As discussed informally in section 3.1.5,

this must take into account that the covering effect may be changed by spawn and join operations,

and we use a data flow analysis to do that. Our data flow analysis computes the current covering

effect at each point in the program. Our compiler then checks whether the effect of each individual

operation is included in the current covering effect at that point. If it is not, our compiler reports

an error.

4.1 Compound effects

We represent the current covering effect at each point in a method using a compound effect. A

compound effect is a set of effects, although it is often convenient to represent it using an alternate

notation that corresponds more directly to the operations that are used in our covering effect

analysis. Specifically, the compound effects that appear in our analysis can be represented by the

following simple grammar (where E is an effect):

E ::= E | E + E | E − E | E ∩ E

Each of these forms is shorthand for a certain set of effects. Apart from the standard set

intersection operation ∩, they are defined as follows:

1. E ≡ {E′ ∈ D : E′ ⊆ E}

2. E + E ≡ {E′ ∈ D : E′ ∈ E ∨ E′ ⊆ E}

3. E − E ≡ {E′ ∈ D : E′ ∈ E ∧ E′#E}

In these definitions, ⊆ is the effect inclusion relation and # is the noninterference relation for
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our effect system. Note that definition 1 gives the meaning of the compound effect E (which is a

set, and may contain multiple effects) based on the effect inclusion relation for the single effect E;

it is not a circular definition.

We use a region-based effect system adapted from DPJ, which is described informally and

explained in Chapter 2. The DPJ effect system is formalized in [24]. The concept of compound

effects and the covering effect analysis described in this chapter could potentially also be applied

to other effect systems that define inclusion and noninterference relations.

In these definitions, D is some set of effects. In the below formalism, we assume that the same

choice of D is adopted for all the compound effects under discussion, and do not show it explicitly.

In principle, D can be any set of effects (including the set of all effects). In practice, in our covering

effects data flow analysis D will be a set of effects that are relevant for the analysis of a particular

flow graph; we will discuss the choice of D for our data flow analysis in detail below.

We call a compound effect of the form E + E an additive compound effect and one of the form

E − E a subtractive compound effect. It is sometimes useful to consider in particular compound

effects where several operations of the form +E or −E may occur in sequence, e.g. E1 +E2−E3−

E4 + E5. We refer to a sequence of zero or more successive operations of the form +E or −E (e.g.

+E2 − E3 − E4 + E5 in the example given) as an additive-subtractive sequence. Note that the +

and − operators are left-associative.

4.1.1 Checking effect inclusion in additive and subtractive compound effects

Note that based on the above definitions, we can evaluate whether an effect E′ is in E + E using a

sequential procedure:

1. If E′ ⊆ E, then stop. We know that E′ ∈ E + E.

2. Otherwise, the result is the same as for checking if E′ ∈ E .

Similarly, we can check whether E′ ∈ E − E as follows:

1. If ¬E′#E, then stop. We know that E′ /∈ E − E.

2. Otherwise, the result is the same as for checking if E′ ∈ E .
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1 def effectIn(E, E t):
2 for each operation o in t, from right to left do
3 if o is of the form +E′ && E ⊆ E′ then
4 return true

5 if o is of the form −E′ && ¬E#E′ then
6 return false

7 if E ∈ E then
8 return true

9 else
10 return false

Figure 4.1: Procedure to determine if an effect E is in a compound effect E t, where t is an
additive-subtractive sequence

In either case, it is only necessary to proceed to evaluating whether E′ ∈ E if the condition checked

in step 1 of the respective procedures (based on E) is not true.

Based on these observations, we can define a straightforward iterative procedure for evaluating

whether an effect E is in a compound effect of the form E t, where t is an additive-subtractive

sequence. This procedure is shown in Figure 4.1. It will be useful when analyzing our data

flow analysis framework (described below), because the transfer functions in that framework yield

compound effects of this form.

4.1.2 Semilattice for compound effects

We can define a semilattice over the domain of compound effects, with ∩ as the meet operator.

The corresponding partial order is that given by ⊆. The top element > of the semilattice is a

compound effect consisting of the effect that covers all possible effects. For our effect system, this

is writes *. The bottom element ⊥ is the compound effect consisting of the effect pure, which

covers no read or write operations and is a subeffect of every possible effect.

4.2 Data flow analysis framework for covering effects

We now define a data flow analysis framework which can be used to compute the covering effect at

each point in a procedure. It is a forward analysis over the semilattice of compound effects with

the meet operator ∩, as defined above.
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The family F of transfer functions include the following, where E may be any effect:

• fid : E → E

• fE : E → E

• f+E : E → E + E

• f−E : E → E − E

• the composition f ◦ g, for any two functions f, g ∈ F .

The function f−E can be used when a subtask with static effect E is spawned, reflecting that

the effect E is being transferred to the spawned subtask, and is therefore subtracted from the

covering effect in the parent task. Conversely, the function f+E is used when a join operation

appears; it transfers the effect E of a completed subtask back to the parent task. (As mentioned in

Section 3.1.5, the effect to transfer is determined by the effect parameter in the static type of the

SpawnedTaskFuture object being joined; effect transfer is performed only if that effect parameter

is fully-specified.) The identity function fid is used for blocks that do not contain operations that

would change the current covering effect, and the constant function fE is used to initialize the

current covering effect to the declared effect of a task or method at the entry node to that task or

method’s control flow graph.

4.2.1 Properties of the data flow analysis framework

We will now show that the data flow analysis framework for covering effect analysis is monotone,

distributive, and rapid.

Lemma 1. Every function f ∈ F is of the form (i) E → E t or (ii) E → E t, where t is an

additive-subtractive sequence.

Proof. This can be seen by straightforward induction. The property obviously holds for the base

cases fid, fE , f+E , and f−E .

For the composition f ◦ g, assume the property holds for f and g. If f is of form (ii) then it is

a constant function independent of its input, so we simply have f ◦ g = f and property holds by

assumption. If f is of form (i) then we have f of the form E → E t and g of the form E → E t′ or
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E → E t′. So f ◦ g is of the form E → E t′ t (if g is of form (i)) or E → E t′ t (if g is of form (ii)).

In either case, it is clear that concatenation of sequences t′ and t is itself a sequence of the desired

form, so the property holds.

We now prove a key lemma that helps us to reason about the relationship between multiple

compound effects of the form E t, where E may differ but an additive-subtractive sequence t is the

same in all the effects. Informally, we may see it as showing that effects fall into two categories:

1. There are some effects E where deciding whether E is in E t depends only on t (and so gives

the same result for all En t sharing a common t).

2. For all other effects E, E ∈ E t iff E ∈ E .

We will use this lemma to help prove that our framework is distributive and rapid. (Note that ∧ in

the below lemma and the remainder of our formalism is the logical and operation, and ∨ is logical

or; the meet operator in our framework is ∩ and is always shown as such.)

Lemma 2. Given any effect E and any compound effects E1 t, ..., En t, where t is an additive-

subtractive sequence that is the same in all the compound effects, at least one of the following is

true:

1.
∧n

i=1E ∈ Ei t

2.
∧n

i=1E /∈ Ei t

3.
∧n

i=1((E ∈ Ei t ∧ E ∈ Ei) ∨ (E /∈ Ei t ∧ E /∈ Ei))

Proof. To see this, first observe that we can determine whether an effect E is in Ei t using the

sequential procedure shown in Figure 4.1. Note that the operations in the initial for loop (lines 2–

6) involve only E and t, not Ei. Accordingly, whether the procedure will return a value from within

that loop (i.e. from line 4 or line 6), and if so what value, depends only on E and t. So, for any

effect E, either effectIn(E, Ei t) will return the same value from within the loop for all values of i,

or it will not return a value from inside the loop for any value of i. The former case means that

either E ∈ Ei t for all values of i or E /∈ Ei t for all values of i, so condition 1 or condition 2 will

hold.
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In the latter case, the procedure will proceed to check whether E is in Ei. If it is, the procedure

will return from line 8, indicating that E is also in Ei t; if not, it will return from line 10, indicating

the reverse. So we will have either E ∈ Ei t and E ∈ Ei, or E /∈ Ei t and E /∈ Ei. This result, as

applied to E1 t, ..., En t (since, as mentioned, the procedure will proceed to this latter phase for all

Ei t if it does for any of them), is condition 3. So we may conclude that at least one of the three

conditions will apply in every case.

Theorem 1 (Distributivity). For any function f ∈ F and any two compound effects E1 and E2,

f(E1 ∩ E2) = f(E1) ∩ f(E2).

Proof. Lemma 1 gives the two possible forms of a function f ∈ F . If f is of form (ii) (E → E t,

where t is an additive-subtractive sequence) then the desired property follows immediately because

f is a constant function, independent of its inputs. So the remaining case to be considered below

is if f is of form (i) (E → E t, where t is an additive-subtractive sequence).

Since f(E) = E t, the equality we wish to prove is (E1∩E2) t = E1 t∩E2 t. By Lemma 2, we know

that for any effect E, at least one of the following holds (we break the third case from Lemma 2

into two possibilities, depending on which clause of its disjunction applies for (E1 ∩ E2) t):

1. E ∈ (E1 ∩ E2) t ∧ E ∈ E1 t ∧ E ∈ E2 t

2. E /∈ (E1 ∩ E2) t ∧ E /∈ E1 t ∧ E /∈ E2 t

3. E ∈ (E1 ∩ E2) t ∧ E ∈ E1 ∩ E2 ∧

((E ∈ E1 t ∧ E ∈ E1) ∨ (E /∈ E1 t ∧ E /∈ E1)) ∧

((E ∈ E2 t ∧ E ∈ E2) ∨ (E /∈ E2 t ∧ E /∈ E2))

4. E /∈ (E1 ∩ E2) t ∧ E /∈ E1 ∩ E2 ∧

((E ∈ E1 t ∧ E ∈ E1) ∨ (E /∈ E1 t ∧ E /∈ E1)) ∧

((E ∈ E2 t ∧ E ∈ E2) ∨ (E /∈ E2 t ∧ E /∈ E2))

In case 1, E ∈ E1 t ∧ E ∈ E2 t =⇒ E ∈ E1 t ∩ E2 t, so we have both E ∈ (E1 ∩ E2) t and

E ∈ E1 t ∩ E2 t. Similarly, in case 2, E /∈ E1 t ∧ E /∈ E2 t =⇒ E /∈ E1 t ∩ E2 t, so we have both

E /∈ (E1 ∩ E2) t and E /∈ E1 t ∩ E2 t.

In case 3, we know E ∈ E1 ∩ E2, so E ∈ E1 and E ∈ E2. Based on the latter two clauses of case
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3, we can therefore conclude that E ∈ E1 t and E ∈ E2 t. Therefore, we will have E ∈ E1 t∩E2 t and

also (immediately from case 3) E ∈ (E1 ∩ E2) t.

In case 4, we know E /∈ E1 ∩E2, which implies E /∈ E1 ∨E /∈ E2. Based on the latter two clauses

of case 4, this in turn implies E /∈ E1 t ∨ E /∈ E2 t, and therefore E /∈ E1 t ∩ E2 t. We also have

E /∈ (E1 ∩ E2) t immediately from case 4.

So in each possible case we have either E ∈ (E1∩E2) t and also E ∈ E1 t∩E2 t, or else E /∈ (E1∩E2) t

and also E /∈ E1 t ∩ E2 t. Since we know that at least one of these four cases will apply for every

possible effect E, this is sufficient to conclude that (E1∩E2) t = E1 t∩E2 t. This concludes the proof

that f(E1 ∩ E2) = f(E1) ∩ f(E2) for all f ∈ F , i.e. all functions f ∈ F are distributive.

Theorem 1 proves that the data flow analysis framework we have defined is a distributive frame-

work. From this distributivity property the weaker corollary of monotonicity also immediately

follows:

Corollary 1 (Monotonicity). For any function f ∈ F and any two compound effects E1 and E2,

f(E1 ∩ E2) ⊆ f(E1) ∩ f(E2), or equivalently E1 ⊆ E2 ⇐⇒ f(E1) ⊆ f(E2).

Theorem 2 (Rapidity). For any f ∈ F and any compound effect E, f(E) ⊇ E ∩ f(>).

Proof. If f is of form (ii) (E → E t, where t is an additive-subtractive sequence), it is a constant

function independent of its input, and therefore the desired property follows easily. So the remaining

case is if f is a function of form (i) (E → E t, where t is an additive-subtractive sequence).

With f(E) = E t, the desired property becomes E t ⊇ E ∩ > t (where > is the compound effect

writes *, as noted in Section 4.1.2). Applying Lemma 2 to E t and > t, we know at least one of

the following must hold for any effect E:

1. E ∈ E t ∧ E ∈ > t

2. E /∈ E t ∧ E /∈ > t

3. ((E ∈ E t ∧ E ∈ E) ∨ (E /∈ E t ∧ E /∈ E)) ∧ ((E ∈ > t ∧ E ∈ >) ∨ (E /∈ > t ∧ E /∈ >))

Moreover, we may simplify case 3 as follows, since we know E ∈ >:

((E ∈ E t ∧ E ∈ E) ∨ (E /∈ E t ∧ E /∈ E)) ∧ E ∈ > t ∧ E ∈ >
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This in turn can be split into two possible cases as follows:

3(a). E ∈ E t ∧ E ∈ E ∧ E ∈ > t ∧ E ∈ >

3(b). E /∈ E t ∧ E /∈ E ∧ E ∈ > t ∧ E ∈ >

If case 3(a) applies, then case 1 also applies. So we may conclude that one of cases 1, 2, and

3(b) (which are mutually contradictory, so only one can apply) will hold for any E.

If case 1 applies, we have E ∈ E t.

If case 2 applies, we have E /∈ E t but also E /∈ > t =⇒ E /∈ E ∩ > t.

If case 3(b) applies, we have E /∈ E t but also E /∈ E =⇒ E /∈ E ∩ > t.

So the only case where E may be in E ∩ > t is case 1, in which case we also know E ∈ E t.

Therefore we may conclude that for any E, if E ∈ E ∩ > t, then E ∈ E t, and so E t ⊇ E ∩ > t, or

equivalently f(E) ⊇ E ∩ f(>).

This suffices to prove that our monotone framework is rapid [55, 65]. This has implications for

the speed of convergence of the iterative data flow algorithm, which will be discussed below.

4.3 Iterative data flow analysis for covering effects

Since we have now established that our data flow analysis framework for covering effects is dis-

tributive (and monotone), we can define an iterative algorithm to compute covering effects and

discuss its properties. Given the control flow graph for a task or method in our system, we can

compute the covering effect for each operation in it using the algorithm in Figure 4.2. (This is a

straightforward adaptation of the general algorithm for an iterative data flow analysis, as given by

Aho et al. [7]. Note that we assume the flow graph has an empty entry block called ENTRY.)

To use this algorithm, we should restrict the domain D of effects to be considered to the effects

of individual operations actually appearing in the flow graph being analyzed. These include basic

read and write effects from accesses to shared memory locations, as well as the statically declared

effects of methods that are called. This approach restricts D to a finite set, while enabling all of

the effects actually of interest for effect checking to be analyzed. By restricting D to a finite set, we

ensure that the semilattice over compound effects has a finite size and thus a finite depth, which
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1 OUT[ENTRY] = declared effects of task or method
2 for each basic block B other than ENTRY do
3 OUT[B] = writes *

4 while any OUT is changed do
5 for each basic block B other than ENTRY do
6 IN[B] =

⋂
P a predecessor of B OUT[P]

7 OUT[B] = fB(IN[B])

Figure 4.2: Iterative algorithm for computing covering effects

(along with our framework’s monotonicity) serves to ensure the algorithm will converge. Moreover,

this makes it possible to represent compound effects with data structures like bit vectors, so it

becomes straightforward to determine when one has been changed. The algorithm in Figure 4.1

can be used to incrementally compute the changes in compound effects when a function fB ∈ F is

applied.

Because our data flow framework is monotone, we know that the solution found will be the

maximum fixedpoint (MFP) for our data flow equations [56]. Moreover, because our framework is

distributive, this will in fact be equal to the meet-over-paths solution [59], i.e. for each block B other

than ENTRY, the final computed value of IN[B] is equal to
⋂

all paths P from ENTRY to B fP (vENTRY),

where vENTRY is the initial value of the covering effect at the entry block (set equal to the declared

effects of the task or method) and fP is the full transfer function for the path P (a composition of

the transfer functions of the individual blocks on the path). This is a safe solution, in the sense

that it will necessarily be equal to or a subset of the compound effect that could be computed

dynamically based on whatever path is actually taken in an execution of the program.

As mentioned above, our framework is rapid (and has a > element), which gives a bound on

how quickly the iterative algorithm will converge if it processes blocks in depth-first order (reverse

postorder) [55, 65]. Specifically, the algorithm will halt after at most d + 2 iterations, where d is

the depth of the flow graph. In fact, the final values of the covering effects will have been computed

after at most d + 1 iterations, since the final iteration just serves to confirm they have converged.

(The depth d could in general depend on the depth-first spanning tree chosen for the CFG, but in

fact all CFGs for our language are reducible, so the depth of a given CFG is a single value, which

is no greater than the loop nesting depth that could be computed based on the code structure.)
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4.4 Structure-based data flow analysis algorithm

The iterative algorithm above could be used to compute the covering effects, and we believe it would

perform reasonably, but in our actual implementation we use a different, structure-based algorithm.

We chose to use this algorithm because the javac codebase on which our compiler is based provided

an existing infrastructure for structure-based data flow analyses that we could leverage to more

easily implement our new covering effects analysis. Note that since we are using a Java-based

language, our programs can include only structured code, so the CFG is always reducible, and

loops within it can arise only from explicit looping statements in the code.

Our analysis essentially proceeds over the structure of the AST in program order, maintaining

the data flow set (in this case, the covering effect) and updating it as appropriate based on each

operation encountered. Upon encountering control flow branching constructs other than loops (e.g.

if or switch statements), the analysis computes covering effects for each side of the branch, and

at the subsequent control flow merge point, it applies the meet operation (∩) to merge the covering

effects computed in the various branches.

When the analysis encounters a loop statement, it computes covering effects for the body of

the loop in one pass, and if the covering effect at the end of the loop differs from the one at the

beginning, it performs another pass to recompute the covering effects within the loop, taking the

intersection of the covering effect just before the loop and the one computed at the end of the

loop in the initial pass as the covering effect at the start of the loop body. (Note that this applies

at each level of loop nesting, so the covering effects for a loop body nested n levels deep may be

recomputed up to 2n times in total, although this maximum will apply only when an operation

that changes the covering effect appears within that loop.)

We informally argue that the traversal of any AST subtree in our analysis yields a result

corresponding to the meet over all paths within the CFG subgraph corresponding to that AST

subtree. This is obvious for straight-line code. It is also fairly easy to see for branching constructs

other than loops. In these cases, there will be paths corresponding to each possible side of the

branch, so we do the computation for each side, and then apply the meet operation (∩) at the

point where they merge.
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The more interestesting case is of a loop. The rapidity property informally means that a single

traversal of a loop will fully summarize the contributions of that loop to the data flow values being

computed, and those contributions are independent of the initial value at the beginning of the

loop [65]. So the initial pass over a loop will fully summarize its additions and subtractions to the

covering effects. If there are any changes, then a second iteration is needed simply to recompute

the covering effect at loop entry to take into account the contributions of the loop body, and then

propagate those contributions through the loop (reflecting paths where the loop runs two or more

iterations). But additional iterations would produce no further changes, so they are unnecessary.

Based on the above property, we can conclude that the full AST traversal for a task or method

produces the the meet-over-paths solution, the same as the iterative algorithm discussed above.

We chose this algorithm rather than the iterative algorithm chiefly for ease of implementation in

the codebase we were using, but we also observe that it may offer performance benefits over the

iterative algorithm, at least in some cases. In particular, with this algorithm, it is not necessary to

compute concretely what individual effects are included in the compound effects produced during

the computation. Instead, compound effects can be represented in an abstract form corresponding

directly to the simple grammar given in Section 4.1, and in fact that is what our implementation

does.

This approach has the advantage of avoiding the need to do numerous effect inclusion and

noninterference checks in the course of computing covering effects, which may well make it faster.

However, it does have the disadvantage that it is not easy in general to determine if two compound

effects in the abstract form are equal. To address this, we use some simple heuristics, but in some

cases we may not be able to determine that two compound effects are equal in cases where they

actually are. In these cases, we conservatively treat them as potentially unequal, which may lead

our algorithm to do a second iteration around a loop in cases where it is actually unnecessary. This

is harmless for correctness, although obviously there is a performance cost. (Another advantage

of keeping the covering effects we compute in the abstract form is that they can be printed in

error messages about operations with uncovered effects. Since the additions and subtractions in

the covering effect correspond to operations in the code, they are fairly easy to understand.)
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In general, our algorithm may be faster than the iterative algorithm for the reasons mentioned

above, but on the other hand it has the potential to perform more iterations for inner loops. As

mentioned, this is in the worst case exponential in the loop nesting depth. In practice, our algorithm

performs acceptably on all the codes we have used it on, and we believe it will do so in the vast

majority of cases. We expect spawn and join operations would rarely be written within very

deeply nested loops, so the exponential scaling would not pose a major problem in practice. We

believe both the iterative algorithm and the structure-based algorithm discussed here are practical

approaches to implementing covering effects analysis. It could also be fruitful to explore other

possible approaches such as region-based analysis, which might combine some of the advantages of

the two approaches, and potentially be faster than either.
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Chapter 5

Scalable Scheduling for Tasks with
Hierarchical Effects

5.1 Introduction

The Tasks With Effects (TWE) programming model described in Chapter 3 offers strong parallel

safety guarantees, including data race freedom, strong isolation, and determinism where desired,

while providing the expressiveness to support a wide variety of parallel and concurrent programs.

TWE is more flexible than any other system we are aware of with similarly strong guarantees,

because it can support nearly arbitrary unstructured as well as structured parallelism, using a

combination of static and dynamic techniques to enforce its guarantees. These properties make

TWE a highly attractive programming model, with the potential to program a wide range of

parallel programs while avoiding the numerous forms of concurrency errors that are possible in

traditional parallel programming models that give few safety guarantees.

These advantages, however, come at the cost of potentially high run-time overheads in the task

scheduler. In particular, TWE achieves its safety guarantees by using a side-effect-aware run-time

task scheduler, which schedules tasks so that no two tasks with conflicting side-effects can run

concurrently (these terms are made precise in Section 5.2). In TWE (following DPJ) the effect

specifications of tasks are declared in the source program, using a rich system of hierarchical effect

specifications based on memory regions. As in DPJ, the declared effects of a task are guaranteed to

be sound using modular static checking. The static checking and the run-time invariant of conflict-

freedom enforced by the TWE scheduler together give rise to the strong determinism-by-default

guarantees, and they do so in a far wider range of programs than DPJ.

To realize the benefits of this model, however, we require an efficient, scalable task scheduler

that not only dispatches tasks but also checks run-time conflicts between potentially hundreds of
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concurrent tasks. The initial TWEJava implementation [48] used a näıve scheduler design with a

single task queue protected by a global lock, which predictably provided poor scalability in many

cases.

In this chapter, I present a new, scalable algorithm for enforcing mutual exclusion between

concurrent operations, and describe how we use it to develop a scalable task scheduler for TWEJava.

For maximum scalability, the scheduler takes advantage of the special hierarchical structure of TWE

effect specifications to eliminate or minimize the need for run-time effect checks as much as possible.

The scheduler supports the full generality of TWE effect specifications, efficiently supports programs

that have many fine-grain tasks, and is designed not to introduce deadlock. The scheduler uses

a tree structure corresponding to the hierarchical structure of memory regions in TWE to track

effects. The scheduler is designed to have two key properties that ensure scalability. First, it is

necessary to compare an effect at one node only with other effects at the same node, its ancestor

nodes, and (in some cases) its descendants. We know that it will not conflict with effects at other

nodes, so we do not need to explicitly compare them. This feature can greatly reduce the number

of effect comparisons needed when running a set of tasks with largely independent effects. Second,

the algorithm is designed to minimize contention within the scheduler itself by generally locking

only individual tree nodes during scheduling operations, permitting operations on other parts of

the tree to proceed concurrently. The combination of these features allows the scheduler to remain

scalable even for codes that use quite fine-grain tasks.

We focus here on the region and effect system of TWEJava, but we believe our scheduler design

could also be adapted to work with other hierarchical region systems such as those in Legion [14]

and Joe [32]. These systems all support a similar basic hierarchical structure of regions, as well

as some mechanism that allows broader, potentially overlapping region specifications. Those latter

mechanisms could be handled similarly to our handling of wildcards in TWEJava (described below).

This chapter makes includes following contributions:

• We define an efficient, scalable algorithm for enforcing mutual exclusion of concurrent opera-

tions based on hierarchical effects, and describe its application to scheduling TWEJava tasks.

Our algorithm has two key properties that ensure scalability, even for fine-grain tasks: effect
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conflicts must be checked with only ancestor and perhaps descendant nodes in the scheduler

tree; and fine-grain locking of scheduler tree nodes is used to allow scheduling operations to

proceed concurrently. These properties enable it to provide scalability even with unstructured

concurrency in which the effects of any two tasks in the system could potentially conflict.

• We prove that our algorithm enforces the task isolation property (mutual exclusion of tasks

with conflicting effects), which yields TWE’s major safety guarantees.

• We describe some optimizations over our base implementation, including the use of read-

write locking to avoid contention at the root node of the tree and a mechanism to skip certain

unnecessary effect conflict checks.

• We evaluate our scheduler on six TWEJava programs, showing that it gives significant

speedups on all of them, often comparable to versions of the programs with low-level syn-

chronization and parallelism constructs that provide no safety guarantees.

5.2 Background

TWEJava uses the hierarchical, region-based effect system adapted from DPJ, which is described

in Chapter 2. In our scheduler design, we rely on the hierarchical structure of this effect system

(described in detail in Section 2.3.1), with Region Path Lists used to specify the memory regions

operated on by effects. We make use of that hierarchical structure in our scheduler design, and we

must account for other expressive features of the effect system, such as the use of wildcards.

5.2.1 TWE Model and TWEJava Language

Figure 5.1 shows an example TWEJava program that we use to explain the basic features of the

TWEJava language. A task is the basic unit of execution managed by the scheduler. Two basic

operations are used to create and wait for tasks. executeLater creates an asynchronous task and

returns a handle for it. The caller can continue executing immediately. getValue waits for a task

to complete and returns the value returned by that task, if any. The example uses executeLater

on line 22 to create multiple parallel tasks and getValue on line 23 to wait for them.
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1 region TF; // Declaring global region name TF

2 class WorkTask extends Task<Void, Void, reads Root> {
3 int ii;

4 WorkTask(int _ii) { ii = _ii; }

5 public Void run(Void _) {

6 int index = f(ii); accumulate(index, ii); return null;

7 }

8 }

9 void accumulate(final int clusterIdx, final int ptIdx) reads Root{
10 new Task<Void, Void, reads Root writes [clusterIdx]>() {

11 public Void run(Void _) {

12 // centers[clusterIdx][k] is in region Root:[clusterIdx]
13 for (int k = 0; k < nattributes; k++)

14 centers[clusterIdx][k] += attribute[ptIdx].getFeature(k);

15 return null;

16 }

17 }.executeLater().getValue();
18 }

19 void work (final float[][] clusters) reads Root writes TF {
20 TaskFuture[]<TF> tf = new TaskFuture[npoints]<TF>;

21 for (int i = 0; i < npoints; i++)

22 tf[i] = new WorkTask(i).executeLater();
23 for (int i = npoints-1; i >= 0; i--) tf[i].getValue();
24 }

Figure 5.1: Running example: KMeans clustering. f(ii) computes the cluster index into which features of
attributes[ii] are accumulated. Multiple attributes may go into the same cluster, requiring accumulate() to be
atomic. This is achieved by making its body a task.

Every task specifies input and output argument types and an effect summary, which must

describe a superset of the memory effects of executing an instance of the task, excluding any effects

of asynchronous tasks it may in turn create using executeLater. The TWEJava compiler statically

checks that all effect summaries are sound using a modular, conservative flow analysis. The example

in Figure 5.1 declares two kinds of tasks, WorkTask (with effect summary reads Root) and the

anonymous class on lines 10–17 (with effect summary reads Root writes [clusterIdx]).

A run-time scheduler uses the information about declared effects to ensure that two tasks are

allowed to run concurrently only if their effects do not conflict. One subtlety arises if task A calls

getValue to wait for task B, but B has an effect that conflicts with A, preventing it from running

until A completes. To avoid a resulting deadlock, the scheduler does effect transfer : it transfers

“ownership” of the conflicting effects from A to B, so that B may execute.

TWEJava also includes spawn and join operations, which are similar to executeLater and

getValue, but with stricter semantics enforced using static checking. Spawned tasks can be run

immediately without using the effect-based scheduler described in this work, because their effects
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are conceptually ‘transferred’ from an already-running parent task, and thus must be non-conflicting

with the effects of all other concurrently running tasks. These transferred effects must be accounted

for when checking effect conflicts (as shown in Figure 5.8), but for other purposes the scheduler

can ignore spawned child tasks.

5.2.2 The Näıve TWEJava Scheduler

The original prototype of TWEJava [48] uses a scheduler with a single queue of tasks protected by

a single global lock. It enables a task for execution only once it is safe to do so based on its effects,

then hands it off to the Java ForkJoinPool framework for execution. When attempting to execute

a task, the scheduler generally works by scanning from the task’s position forward toward the head

of the queue (which includes both running and waiting tasks), checking if the task’s effects conflict

with those of each task ahead of it.

The use of a single task queue of undifferentiated tasks causes high overhead because a task’s

effects are compared with those of all tasks ahead of it, taking no advantage of information that

could allow some comparisons to be skipped. The use of a single global lock means that there is

no concurrency in scheduling operations: only a single thread can insert, compare, or launch tasks

at a time. The new scheduler proposed in this work takes advantage of the hierarchical structure

of effect summaries to provide a much more scalable solution.

5.2.3 Safety Guarantees Provided by TWEJava

TWEJava gives strong safety guarantees to all conforming programs: (i) data race freedom; (ii)

atomicity for a task or portion thereof that does not create or wait for any other tasks; (iii) deter-

ministic, sequential-equivalent semantics for declared portions of an execution that follow certain

restrictions; and (iv) safe composition of deterministic and non-deterministic parallel computations,

without compromising any of the specified security guarantees. See [48] for a detailed discussion of

these properties and how the TWE model guarantees them.

The new scheduler we develop preserves all these guarantees. Section 5.4 provides a proof

that our scheduler ensures the fundamental property of task isolation (mutual exclusion of tasks
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with conflicting effects), which, in combination with the soundness of task and effect annotations

statically enforced by our compiler, is the foundation from which all the above properties are

derived.

5.3 Scheduling Tasks with Effects

In this work, we describe a new approach for scheduling tasks with effects which relies on the

hierarchical structure of the RPLs that we use to specify effects. In particular, we observe that the

dynamic regions can be represented by a tree we call the RPL tree, where each node corresponds

to some wildcard-free RPL. The tree is rooted at the RPL Root, and its nodes are labeled by RPL

elements. Each node in the tree represents the RPL identified by the node labels on the path from

the root. An RPL containing a wildcard corresponds to a set of nodes, e.g., Root:A:* corresponds

to the set of all nodes in the subtree rooted at the node for Root:A. The RPL tree for the example

is simple (we assume for convenience that all cluster indices in the range 0 . . . maxIndex occur at

run-time):

Root
����9

TF
?

[0]
@@R
[1]

HHHj
[2]. . .

XXXXXz
[maxIndex]

Since each effect in our system is on an RPL, the scheduler can maintain a scheduling tree

corresponding to the RPL tree, and insert each effect at a node corresponding to a wildcard-free

prefix of its RPL.

A key insight is that all effects potentially conflicting with a given effect will be at the same node

of the tree as that effect, or, in the case of RPLs with wildcards, at an ancestor or descendant of

that node. Effects in sibling subtrees cannot conflict with it, so they need not be explicitly checked

when looking for possible effect conflicts. This can greatly reduce the number of effects that need

to be explicitly checked against each other. For example, Figure 5.2 shows the scheduling tree at

a hypothetical point when a number of tasks have been inserted in it. Before a4 (an accumulate

task instance) can start executing, the scheduler only needs to compare the effect W a
4 against the

effect W a
1 and the effects in the parent node Root, but not against the effects W k

1 or W a
{2,3,5,6} in

sibling nodes.
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6	  

TF	   [0]	   [1]	   [n-‐2]	   [n-‐1]	  

Root	  

���	  

Figure 5.2: Scheduler tree during KMeans execution. RX
i represents a read effect for the ith

instance of task X, X = k for the task executing work(), X = w for a WorkTask , X = a for an
accumulate task. Similarly, WX

i is a write effect. Each effect is shown in the node for its RPL, e.g.,
the effect writes Root:[1] of accumulate task a2 is in the node for Root:[1].

Moreover, by using locks on individual tree nodes, we can allow scheduling operations on distinct

subtrees to proceed concurrently, which is essential to avoid the scheduler becoming a bottleneck

in programs that use many small tasks.

In our scheduler, we attempt to schedule a task by inserting each of its effects from the root of

the tree, checking each effect for conflicts at each node and if there are none moving down to the

next node in the tree as determined by its RPL. If this process reaches the node corresponding to

the maximal wildcard-free prefix of the RPL and finds no conflicts there, then, if the effect contains

a wildcard, we also check if the effect may conflict with any effects recorded at nodes below it in

the tree. If there are still no conflicts found, then we can conclude that no other effects conflict

with the new effect, so we may enable that effect. Once all the effects of a task are enabled, that

task can be run. If, on the other hand, an effect conflict is found at some point, then we record

this and do not enable the effect. In this case, we will re-check the effect once the task with the

conflicting effect finishes or blocks in a way that may allow the disabled effect to be enabled.

When a getValue operation is performed, we re-check the effects of the task that was blocked

on to see if it can now be run (possibly due to effect transfer, described in Section 5.2.1), and also

mark the task as prioritized, which prompts special handling to ensure that it will be run if it is

possible to do so.

5.3.1 Data structures for tree-based task scheduling

Figure 5.3 shows the main data structures our scheduler uses.

The Node class represents a node in the scheduler tree, which we use to hold effects. It contains
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1 class Node {
2 Set<Effect> effects;

3 Map<RPLElement, Node> children;

4 }

5 class Effect {
6 final boolean write;

7 final RPLElement[] rpl;

8 final TaskFuture task;

9 volatile Node node;

10 boolean enabled;

11 Set<Effect> waiters;

12 }

13 class TaskFuture {
14 final Set<Effect> effects;

15 volatile enum {WAITING, PRIORITIZED, ENABLED, DONE} status;

16 volatile boolean rechecking;

17 volatile TaskFuture blocker;

18 ...

19 }

Figure 5.3: Data structures used in tree scheduler

a set of effects held at the node, plus a map defining the edges to its child nodes, each identified

by an RPL element. Nodes may be locked and unlocked in our algorithm.

The Effect class represents one effect of a task. Its rpl field gives the RPL that the effect

is on (represented as an array of RPL elements, omitting the initial Root element). write is true

if it is a write effect, and task indicates what task it is an effect of. The other fields of Effect

are updated during the scheduling process. node gives the node currently holding this effect, and

enabled indicates if the effect is enabled. The waiters set contains any other effects that are

waiting and not currently enabled because they conflict with this effect.

The TaskFuture class represents a runnable instance of a task. It has a set of effects, plus three

fields updated by the scheduler. status indicates if the task is waiting to run, still waiting but

prioritized because another task is blocked on this one, enabled to run, or done. It also has a flag

set when the effects of this task are being rechecked (explained below), and a reference to the task

that this task is blocked on, if any.

We distinguish between waiting and blocked tasks. An effect is waiting if it is not enabled

because it conflicts with another effect. A task is waiting if it is not enabled because one of its

effects is waiting. An executing task is blocked if it performs a getValue or join operation on a task

that has not yet completed.
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5.3.2 Tree-based task scheduling algorithm

Here we present our task scheduling algorithm. In this section, we will refer to a version of the

example shown in Figure 5.1 that has been modified to illustrate more of the features of our

scheduler. In this modified example, the method work() (run by a task we also call work , with the

effect writes TF) creates and later blocks on another task scribble (with the effect writes Root:*),

as follows:

1 void work (final float[][] clusters) writes TF {
2 TaskFuture[]<TF> tf = new TaskFuture[npoints]<TF>;

3 //ScribbleTask has effect writes Root:*
4 TaskFuture scribble = new ScribbleTask().executeLater();
5 for (int i = 0; i < npoints; i++)

6 tf[i] = new WorkTask(i).executeLater();
7 for (int i = npoints-1; i >= 0; i--) tf[i].getValue();
8 scribble.getValue();
9 }

Inserting effects

Figure 5.4 shows the algorithm for inserting a set of effects in a node of the tree. Conceptually,

an insert(root, E, 0) operation can be used to try to schedule a new task with effect set E created

by an executeLater operation. insert will then be invoked recursively to move effects toward the

node corresponding to their maximal wildcard-free prefix. (Our actual implementation handles the

root node specially for improved performance. See Section 7.5.)

The node n is required to be locked on entry to insert . This permits a hand-over-hand locking

discipline: as the insert operation at one node identifies effects that should be inserted at its child

nodes, it locks those nodes. The parent node can then be unlocked before processing begins on the

child nodes.

The insert algorithm loops over the effects e in the set E and checks whether the node n

corresponds to the maximal wildcard-free prefix of their RPLs. If it does, then the effect will

definitely be placed at node n (using the addEffect helper operation shown in Figure 5.5). In this

case, we first check if e conflicts with any other enabled effects at n, and then (if it does not) if it

conflicts with any enabled effects at nodes below n. If not, we enable e.

If n does not correspond to the maximal wildcard-free prefix of e’s RPL, we only check if e

conflicts with other effects at node n. If so, it will be added at that node, but otherwise it should
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1 def insert(n : Node, E : Set<Effect>, depth : int):
// n must be locked on entry

2 effectsBelow ← ∅ // map: Node→Set<Effect>
3 for e in E do
4 if e.rpl.length = depth || isWildcard(e.rpl[depth]) then
5 addEffect(n, e)
6 conflictsHere ← checkAt(n, e, false)
7 if ¬conflictsHere then
8 conflictsBelow ← checkBelow(n, e, n, false)
9 if ¬conflictsBelow then

10 enable(e)

11 else
12 conflictsHere ← checkAt(n, e, false)
13 if conflictsHere then
14 addEffect(n, e)
15 else
16 nextElt ← e.rpl[depth]
17 n′ ← n.children.getOrCreate(nextElt)
18 childEffects ← effectsBelow.getOrCreate(n′)
19 effectsBelow.put(n′, childEffects ∪ {e})
20 for (n′,E′) in effectsBelow do
21 lock n′

22 unlock n
23 for (n′,E′) in effectsBelow do
24 insert(n′, E′, depth+1)

Figure 5.4: Algorithm to insert a set of effects at a tree node

be inserted at a child node of n. In that case, we look up the child node using getOrCreate()

(which atomically allocates a new node if it doesn’t exist yet), and record a mapping from that

node to e.

After all effects have been processed, we lock all child nodes in which effects need to be inserted

and then release the lock on n. Finally, we recursively call insert on each of these nodes with the

corresponding set of effects. Through this process, all the effects will ultimately be inserted at a

node.

Checking for conflicts

The insert algorithm uses the checkAt and checkBelow operations shown in Figures 5.6 and 5.7

to check whether an effect conflicts with existing effects at a node or in the subtrees below it,

respectively.
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1 def addEffect(n : Node, e : Effect):
// n must be locked on entry

2 n.effects ← n.effects ∪ {e}
3 e.node ← n

4 def removeEffect(n : Node, e : Effect):
// n must be locked on entry

5 n.effects ← n.effects \ {e}

Figure 5.5: Adding and removing effects at a node

1 def checkAt(n : Node, e : Effect, prio : bool) : bool :
// n must be locked on entry

2 for e′ in n.effects do
3 if e′.enabled && conflicts(e′, e) then
4 if prio && tryDisable(e′) then
5 e.waiters ← e.waiters ∪ {e′}
6 else
7 e′.waiters ← e′.waiters ∪ {e}
8 return true;

9 return false;

Figure 5.6: Checking for conflicts between a new effect and existing effects at a node

checkAt tests if the effect e conflicts with any enabled effect at node n. It takes a flag indicating

if e should be prioritized over other effects that have been enabled but whose tasks have not yet

been enabled. (A task and its effects are prioritized if it is still waiting to execute but a running

task is blocked on it.) In checkAt , we loop over all the enabled effects e′ at node n and check if e

conflicts with them. If it does, then either e is marked as waiting on e′ or vice versa. The latter

case occurs only if e is prioritized and we are able to disable e′ (i.e. mark it as no longer enabled).

This will be possible only if e′’s task has not yet been enabled. checkAt returns true if a conflict

was found and was not resolved by disabling e′.

In our modified example, the effect of scribble would be inserted at node Root when scribble is

created. It would not be enabled, however, because it conflicts with the effect of the executing task

work . scribble will be enabled only once work blocks on it on line 8. checkAt will return false for

all the WorkTask and accumulate tasks even though scribble is in the Root node because scribble

is not yet enabled.

The checkBelow operation checks whether effect e conflicts with any effects in the subtrees

below node n. It also takes a prioritization flag, and also uses the node ne, which gives the node
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1 def checkBelow(n : Node, e : Effect, ne : Node, prio : bool) : bool :
// n and ne must be locked on entry

2 if ¬hasWildcard(e.rpl) then
3 return false;

4 for n′ in n.children do
5 lock n′

6 conflictFound ← false
7 for e′ in n′.effects do
8 if conflicts(e′, e) then
9 if ¬ e′.enabled || (prio && tryDisable(e′)) then

10 e.waiters ← e.waiters ∪ {e′}
11 removeEffect(n′, e′)
12 addEffect(ne, e′)
13 else
14 e′.waiters ← e′.waiters ∪ {e}
15 conflictFound ← true
16 break

17 if ¬conflictFound then
18 conflictFound ← checkBelow(n′, e, ne, prio)

19 unlock n′

20 if conflictFound then
21 return true

22 return false

Figure 5.7: Checking for conflicts between a new effect and existing effects below a node

containing e. This will be the node corresponding to the maximal wildcard-free prefix of e’s RPL.

Because checkBelow is called only to check subtrees below ne, we can immediately rule out the

possibility of any conflicts if e does not contain any wildcards, because in that case its RPL will

be disjoint from any other RPL having a longer wildcard-free prefix.

If e’s RPL contains a wildcard, checkBelow recurses over the subtrees below n, checking for

any conflicting effects through a procedure similar to checkAt . For example, scribble’s effect

writes Root:* will find a conflict in node Root:TF with the effect writes TF of the work task.

checkBelow must check even effects that are not enabled, because if conflicts are found among those

effects, they must be moved up the tree to ne. This is needed so that when subsequently rechecking

those effects starting from their containing node, the conflicting effect e will be encountered.

checkAt and checkBelow call conflicts, shown in Figure 5.8, to check whether effects conflict.

Two effects normally conflict unless they are on disjoint RPLs or are both read effects, but conflicts

also implements the TWE effect transfer mechanism: two effects are treated as non-conflicting if
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1 def conflicts(e′ : Effect, e : Effect) : bool :
2 if e.task = e′.task then
3 return false

4 if (¬e.write && ¬e′.write) || e.rpl # e′.rpl then
5 return false

6 if blockedOn(e′.task, e.task) then
7 for t in spawnedChildTasks(e′.task) do
8 for e′′ in t.effects do
9 if conflicts(e′′, e) then

10 return true

11 return false

12 return true

Figure 5.8: Checking whether two effects conflict

1 def blockedOn(t′ : TaskFuture, t : TaskFuture) : bool :
2 blocker ← t′.blocker
3 while blocker 6= null do
4 if blocker = t then
5 return true

6 blocker ← blocker.blocker

7 return false

Figure 5.9: Checking whether task t′ is blocked on task t

one of their tasks is blocked on the other directly or indirectly. The blockedOn helper operation in

Figure 5.9 is used to check for this. A slight complication is that if the blocked task has previously

transferred some of its effects to a child task created using spawn, we must check for conflicts with

the child task’s effects too. We formally define when effects conflict in Section 5.4.

Enabling and disabling effects

The enable method, shown in Figure 5.10, is called to enable an effect. If all the effects of its task

are now enabled, then it also enables the task and submits it to a lower-level, non-effect-aware task

framework for execution. For clarity, we show the check of whether all the task’s effects are enabled

as occurring in an atomic block, so that there is no possibility of some of the effects being disabled

while the check is being done. Our actual implementation maintains a count of the disabled effects

of each task using a Java AtomicInteger, and the atomic blocks in enable and tryDisable are

implemented using atomic operations on it, so no run-time support for general atomic blocks is

required.
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1 def enable(e : Effect):
// e.node must be locked on entry

2 e.enabled ← true
3 atomic
4 allEnabled ← ∀ e′ ∈ e.task.effects, e′.enabled = true

5 if allEnabled then
6 e.task.status ← ENABLED
7 submit e.task to low-level task scheduler for execution

8 def tryDisable(e : Effect) : bool :
// e.node must be locked on entry

9 atomic
10 canDisable ← ∃ e′ ∈ e.task.effects s.t. e′.enabled = false
11 canDisable ← canDisable && ¬ e.task.rechecking
12 if canDisable then
13 e.enabled ← false

14 return canDisable

Figure 5.10: Enabling and disabling effects

tryDisable tries to disable an effect, potentially allowing a conflicting prioritized effect to be

enabled instead. This is possible only if not all of the task’s effects have been enabled (and thus

it has not yet been submitted to the low-level task scheduler). Also, we cannot disable effects of a

task that is being rechecked, a process we will describe later. In our implementation the rechecking

flag is represented by a special range of negative values for the task’s disabled-effects counter,

permitting the atomic block in tryDisable to be implemented in terms of operations on that single

AtomicInteger.

Waiting for tasks and rechecking tasks and effects

Figure 5.11 shows the await procedure used when awaiting the completion of a task t with getValue

or join. It first checks if t is already done and returns if so. Otherwise, if t is still in the WAITING

state, then it is updated to PRIORITIZED. t is then recorded as the blocker for the current task

t′, meaning that t′ will not resume until t has finished. In our modified example, the work task

calls await on scribble, marking scribble as prioritized and recording it as the blocker for work .

await then iterates over the chain of blockers starting from t and including any tasks it is

transitively blocked on, until a task that has not yet been enabled is encountered. At that point,

it will call the recheckTask operation to see if that task can now be enabled. (In our example,
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1 def await(t : TaskFuture):
2 if t.status = DONE then
3 return;

4 atomic
5 if t.status = WAITING then
6 t.status ← PRIORITIZED

7 t′ ← getCurrentTask()
8 t′.blocker ← t
9 tbl ← t

10 while tbl 6= null do
11 if tbl.status < ENABLED then
12 recheckTask(tbl)

13 tbl ← tbl.blocker

14 Call low-level task scheduler to await completion of t
15 t′.blocker ← null

Figure 5.11: Waiting until a task is done

recheckTask is called on scribble.) This is important because the fact that t′ is now blocked on

a task tbl may allow one or more of tbl’s effects to be enabled thanks to effect transfer from t′,

potentially allowing it to run when earlier it could not. (In fact, this will finally allow scribble to

run.) After the loop, a low-level task scheduler operation is used to await the completion of t .

Figure 5.12 shows recheckTask and recheckEffect , which are called when a task or effect could not

previously be enabled but now possibly can be. In addition to being called when a task is blocked

on, recheckTask can also be called when a conflicting task has ended. (We can also prioritize and

recheck an arbitrary task in the very rare case that there are waiting tasks remaining but no tasks

currently running. This serves to ensure that the scheduler does not give rise to deadlocks.)

recheckTask first takes a global lock, so only one task at a time can undergo rechecking. This

avoids a case where multiple tasks with conflicting effects could each have their effects rechecked,

but in different orders, possibly resulting in no task having all its effects enabled. The rechecking

flag for the task t is then set to true, which prevents its effects from being disabled, again preventing

cases that could result in no progress being made. recheckTask then loops over t ’s effects, locking

their containing nodes using the lockContainingNode operation in Figure 5.13 and then calling

recheckEffect on them. In the modified example, when recheckTask is called for scribble, it calls

recheckEffect for the effect writes Root:*.

recheckEffect re-checks a single effect that could not previously be enabled. It is broadly similar
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1 def recheckTask(t : TaskFuture):
2 lock recheckLock
3 t.rechecking ← true
4 for e in t.effects do
5 n ← lockContainingNode(e)
6 if ¬ e.enabled then
7 recheckEffect(e, true)
8 if t.status = ENABLED then
9 break

10 else
11 unlock n

12 t.rechecking ← false
13 unlock recheckLock

14 def recheckEffect(e : Effect, prio : bool):
// e.node must be locked on entry

15 n ← e.node
16 conflictsHere ← checkAt(n, e, prio)
17 if ¬conflictsHere then
18 d ← depthOf(n)
19 if e.rpl.length = d || isWildcard(e.rpl[d]) then
20 conflictsBelow ← checkBelow(n, e, n, prio)
21 if ¬conflictsBelow then
22 enable(e)

23 else
24 removeEffect(n, e)
25 n′ ← n.children.getOrCreate(e.rpl[d])
26 lock n′

27 addEffect(n′, e)
28 unlock n
29 goto 15

30 unlock n

Figure 5.12: Rechecking tasks and effects to see if they can now be enabled

in operation to insert except that it starts from the node currently containing the effect e and may

move e down toward lower nodes if e has no conflicts at its current node and is not at the node

corresponding to the maximal wildcard-free prefix of its RPL. recheckEffect also takes a priority

flag indicating if another task is blocked on e.task , in which case other tasks’ effects may be disabled

in favor of e.

In the modified example, writes Root:* is at the node corresponding to the maximal wildcard-

free prefix of its RPL and cannot be moved down. After work() calls getValue() on all WorkTask

tasks, all those tasks and their child accumulate tasks will have completed, leaving writes TF in

node Root:TF as the only enabled effect. When work blocks on scribble, conflicts will ignore the
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1 def lockContainingNode(e : Effect) : Node:
2 n ← e.node
3 if n = null then
4 goto 2

5 lock n
6 if e.node 6= n then
7 unlock n
8 goto 2

9 return n

Figure 5.13: Locking an effect’s containing node

1 def taskDone(t : taskFuture):
2 t.status ← DONE
3 for e in t.effects do
4 n ← lockContainingNode(e)
5 removeEffect(e.node, e)
6 unlock n
7 for e′ in e.waiters do
8 n ← lockContainingNode(e′)
9 if ¬e′.enabled then

10 prio ← e′.task.status = PRIORITIZED
11 recheckEffect(e′, prio)
12 if prio && e′.task.status = PRIORITIZED then
13 recheckTask(e′.task)

14 else
15 unlock n

Figure 5.14: Actions to perform when a task completes

conflict between the effects of scribble and work . Therefore, checkAt and checkBelow will find no

conflicts, and so recheckEffect will enable the effect of scribble. This will enable the task itself,

allowing it to execute.

Task completion

Figure 5.14 shows the steps done after a task t completes. It sets its status to DONE and removes its

effects from the tree. It also rechecks the effects that conflicted with effects of t . As an optimization,

it first tries to recheck only the conflicting effect. If that does not allow the task to be enabled,

then recheckTask is called to recheck all the effects of the task. This may be necessary in order to

enable the task if some of its effects have been disabled.
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5.4 Task Isolation

In this section, we will prove that our scheduling algorithm ensures task isolation, i.e. that tasks

with conflicting effects will not run concurrently. We first formally define some terms.

Definition 1. An effect e is enabled if e.enabled = true and e.task.status 6= DONE.

We regard the effects of completed tasks as no longer enabled, since their task is no longer running

(and will not resume running), even though their enabled field is still set.

Definition 2. A task t is enabled if it has been submitted to the low-level scheduler for execution

and t.status 6= DONE.

A task will not be run until it is submitted to the low-level task scheduler and is done executing

by the time taskDone sets t.status to DONE , so it may only execute while it is enabled.

Definition 3. Two effects e1 and e2 are non-conflicting, written e1 # e2, if at least one of the

following holds:

1. e1 and e2 are effects of the same task

2. e1 and e2 are both read effects

3. e1 and e2 are on disjoint RPLs

4. e1’s task is blocked on e2 and each effect of a spawned subtask of e1’s task is non-conflicting

with e2, or vice versa.

Otherwise, we say e1 and e2 conflict.

We now prove two lemmas about effects’ positions in the tree.

Lemma 3. If an effect e is contained at node n, e has the wildcard-free RPL prefix corresponding

to n.
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Proof. This follows from the structure of the insert , recheckEffect , and checkBelow operations (the

only ones which may add an effect at a node). insert starts from the root node and may subsequently

invoke itself recursively on child nodes corresponding to successive non-wildcard elements in the

RPLs of effects passed to it. This ensures that when insert is called with a given effect in the

effect set E, it is always with a node n that corresponds to a wildcard-free prefix of the RPL of

that effect. recheckEffect also similarly moves effects down the tree to deeper nodes corresponding

to successive non-wildcard elements of their RPLs, ensuring that this property holds. checkBelow

may move an effect only to an ancestor node of its current node, which preserves this property.

Lemma 4. If an effect e is enabled, it is contained at the node n corresponding to the maximal

wildcard-free prefix of its RPL.

Proof. This is the case because before any effect is enabled it must satisfy the condition in line 4

of insert or line 19 of recheckEffect . This condition states that the node depth is either equal to

the full length of the RPL, or the next RPL element is a wildcard element. By Lemma 1, the

wildcard-free prefix corresponding to n is a prefix of the RPL of e, and by the condition above, this

prefix must be maximal. Therefore, this condition will hold if and only if the node into which the

effect is about to be inserted (in the insert case) or is already inserted (in the recheckEffect case)

corresponds to the maximal wildcard-free prefix of its RPL. Because that node is locked when the

condition is checked and remains so until after the effect is enabled, no other concurrent operation

may remove the effect from that node in the interim.

The only operations that could subsequently remove the effect from that node are recheckEffect ,

checkBelow , and taskDone. But recheckEffect is only called for effects that are not enabled (and may

not be enabled by a separate concurrent operation because their node is locked). checkBelow will

not move effects while they are enabled. (If an effect is enabled when first checked in checkBelow ,

it may not be moved unless a tryDisable operation on it succeeds. As with recheckEffect , an effect

found to be disabled in checkBelow may not be enabled by a separate concurrent operation because

its node is locked.) taskDone will remove an effect from a node only once its task is done, at which

point the effect is no longer enabled. Thus, the claim is satisfied in all cases.
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We now prove two key invariants maintained by our scheduler, which allow us to conclude that

certain effects are non-conflicting based on their relative positions in the tree.

Lemma 5. If an effect e at node n is enabled, then for all effects e′ contained in the subtrees rooted

at the child nodes of n, e# e′.

Proof. This property holds when e is initially enabled, because this is done only after the checkBelow

operation concludes that there are no conflicts between e and any effects in the subtrees below the

one containing e (in line 8 of insert or line 20 of recheckEffect).

Because the insert , recheckEffect , and checkBelow operations use hand-over-hand locking, any

two insert or recheckEffect operations that access one or more of the same nodes (including through

recursive invocation of insert or checkBelow) will access all such nodes in the same order, so we

may think of those two operations as ordered with respect to each other even though the actual

timing of the operations may overlap. We can extend this to a total order by arbitrarily ordering

operations that access disjoint sets of nodes.

The effect e may be enabled only after a checkBelow operation (within the same insert or

recheckEffect operation that enables it) returns false. This indicates that there are no conflicts

between e and any effects in the subtrees below n. This is trivial if e has no wildcards, but otherwise

checkBelow will recurse over the subtrees below n and return false only if it has concluded they

contain no effects that conflict with e. (In some cases checkBelow will find conflicting effects and

move them up the tree to node n: those effects are no longer in the subtrees below n by the time

checkBelow returns.) Thus, e may have no conflicts with effects in those subtrees that were placed

there before the operation that enabled e in terms of the ordering discussed above.

Now we must consider operations that occur after e is enabled in terms of that ordering and that

may add new effects in the subtrees below n. These are in two categories. The first is recheckEffect

operations that start at nodes below n: these will not add new effects to those subtrees. The second

is insert or recheckEffect operations that start at n or an ancestor of n but eventually add effects

in subtrees below n. Before doing so, any such operation would perform a checkAt operation at n,

checking for conflicts with enabled effects at n. Thus, they will be checked against e (which must

remain at n as long as it is continuously enabled, by Lemma 4). If they conflict with e they will
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be placed at n rather than at a node below it, so the desired property will be preserved.

We may also restate this lemma as the following corollary:

Corollary 2. If an effect e is at node n, then for all enabled effects e′ at ancestor nodes of n,

e# e′.

Lemma 6. If an effect e at node n is enabled, then for all other enabled effects e′ contained at the

same node as e, e# e′.

Proof. This property holds when e is initially marked enabled by an insert or recheckEffect op-

eration, because that is done only after a checkAt operation verifies that e does not conflict with

any other enabled effect at n. Since n is locked from before the start of the checkAt operation

until after e is enabled, no other effects at n may be enabled in the interim. The property remains

true as long as e is enabled, because any other effect at n could only be enabled after a checkAt

operation concludes that it does not conflict with e.

Now we are ready to show that all enabled effects are mutually non-conflicting, and therefore task

isolation is maintained.

Lemma 7. If an effect e at node n is enabled, then for all other enabled effects e′, e# e′.

Proof. By Lemmas 6 and 5, and Corollary 2, respectively, e has no conflicts with other enabled

effects (a) at node n, (b) at nodes below n, and (c) at ancestors of n.

What remain are enabled effects at nodes other than the ancestors of n or the subtree rooted at

n. By Lemma 2, any such effect e′ will be contained at the node n′ corresponding to the maximal

wildcard-free prefix of its RPL. By the tree structure of RPLs, that node corresponds to a wildcard-

free RPL prefix p′ that is different from the prefix p corresponding to n, with neither being a prefix

of the other. So we can identify some position at which p and p′ have differing non-wildcard RPL

elements. Under the rules described in Section 5.2 [48], this means that any two RPLs having p

and p′ as prefixes are disjoint from each other. From this we can conclude that for any effect e′ at

such a node, e# e′.
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Lemma 8. If task t is enabled, then all effects of t are enabled.

Proof. enable and tryDisable ensure this. enable submits a task to the low-level scheduler only once

all its effects are enabled. Once all its effects are enabled, they cannot be disabled in tryDisable,

so they will remain enabled until t is done.

Theorem 3 (Task isolation). If tasks t1 and t1 are concurrently enabled, then for all pairs of effects

e1 of t1 and e2 of t2, e1 # e2.

Proof. This follows from Lemmas 8 and 7. By Lemma 8, all the effects of t1 and t2 are enabled.

Therefore, by Lemma 7, e1 # e2 for all pairs of effects e1 of t1 and e2 of t2.

5.5 Implementation for TWEJava

We implemented our tree-based scheduler for the TWEJava language. Once tasks are enabled in

the scheduler, we normally submit them to Java’s ForkJoinPool, which executes tasks using work-

stealing. However, where possible our scheduler will run tasks in the same thread that blocks on

them. Our implementation includes several additional optimizations beyond the basic algorithm

described in Section 5.3.

5.5.1 Optimizing critical sections

We support an operation called execute, which is semantically equivalent to an executeLater

immediately followed by a getValue. This is useful for tasks that act as a critical section within

a larger task: the scheduler treats the executed task as prioritized when it is first inserted in the

tree, and tries to run it in the same thread as the task that calls execute.

5.5.2 Avoiding contention at the root node

We handle insert operations at the root node specially to improve scalability. The basic insert

algorithm would require taking an exclusive lock on the root node every time a task is scheduled,

which can become a bottleneck. Instead, we use a read-write lock for the root node, allowing
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concurrent readers or a single writer. The write lock needs to be acquired only if an effect is being

inserted whose maximal wilcard-free RPL prefix is Root, or if an effect with a wildcard is already

present at the root node. Otherwise, only the read lock is taken. Adding new child nodes of the

root node only needs the read lock, because we use a concurrent hash map operation to atomically

implement getOrCreate.

We ensure that locks for child nodes of the root node are acquired in a consistent order and use

the ordinary insert operation for all other nodes in the tree. This ensures that any two insert or

recheckEffect operations still access all nodes in the same order, except that read-only accesses to

the root node may be in a different order (which has no observable effects).

This approach could potentially be applied at some or all other nodes as well, but we have not

done this because the read-write locking scheme involves higher time and space overheads, so we

believe it would only be beneficial at nodes with significant contention. As a simple heuristic, we

expect the root node to be more highly contended than most other nodes, since all effects must be

inserted starting from the root. Moreover, it is often possible to restructure the effects used in a

program so that most contention occurs at the root node (e.g. by using RPLs that differ in the

first position after Root).

5.5.3 Avoiding unnecessary effect conflict checks

While our scheduler design as presented in Section 5.3 avoids many unnecessary effect conflict

checks because of the tree structure it uses, it still examines effects for potential conflicts in some

cases where simple logic could show that those checks are unnecessary. In particular, these include

the following situations:

• Two read effects may not interfere with each other, so when the effect e being checked is a

read effect, checkAt and checkBelow need not check against other read effects.

• Effects e′ that are contained at the node n but are not enabled will not be identified as

conflicting in checkAt (Figure 5.6).

• The checkAt call on line 12 of insert (Figure 5.4) needs to check only against effects at n
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that are enabled (as mentioned above) and have a ‘tail’ of one or more RPL elements beyond

the wildcard-free RPL prefix corresponding to n. This is the case because the effect e being

checked has at least one more non-wildcard element beyond that prefix, so it cannot conflict

with effects whose RPL consists just of that prefix.

In our implementation, we avoid all these unnecessary checks by storing the effects at a node

in six separate sets, as follows:

1. Enabled read effects with a tail

2. Enabled read effects with no tail

3. Enabled write effects with a tail

4. Enabled write effects with no tail

5. Disabled read effects

6. Disabled write effects

Whenever conflict checks are done, our implementation will check only against the sets that

could potentially contain a conflicting effect, completely avoiding checks against those that are

known to be non-conflicting based on the conditions given above.

5.5.4 Interoperation with Java atomics

The TWE model is designed to preclude the need for lower-level concurrency mechanisms, such as

Java’s synchronized, which lack TWE’s strong guarantees. Java’s atomic classes, however, can

be used safely in TWE, and we exploit this in our TSP benchmark (described later) for improved

performance. Those classes encapsulate a value which may only be accessed using the class’s atomic

operations. We may think of each such value as being in its own unique region, distinct from the

regions in the RPL tree. Each operation on it is semantically equivalent to using execute to run

a task with a read or write effect on that region alone. Thus, these operations can be used while

preserving the safety guarantees of the TWE model.
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Chapter 6

Evaluation

I have carried out evaluations of the tasks with effects model and the TWEJava language by

writing or porting several concurrent programs in TWEJava and evaluating their performance.

One key result is this evaluation is to demonstrate that TWEJava and the tasks with effects model

can express a variety of concurrent programming styles used in real-world applications. Another

result is to show that TWEJava can achieve good performance with substantial parallel speedups,

often comparable to versions of the programs written using other concurrency and synchronization

constructs that do not give strong safety guarantees.

I evaluate the performance of both my initial näıve scheduler and the current, much more

scalable tree-based scheduler below. The näıve scheduler could give substantial speedups for some

programs with relatively coarse-grain parallelism, but was limited in its scalability and its ability to

efficiently support fine-grain parallelism. The tree-based scheduler, which is the focus of my ongoing

work, offers much better scalability for programs with fine-grain parallelism, as demonstrated in

the results below.

6.1 Expressiveness

In our initial evaluation of the TWE model’s expressiveness, we ported four existing concurrent

programs to TWEJava and wrote one new application in it. The first two programs are interactive

applications which use a combination of event-driven concurrency and structured parallelism for

performance.

FourWins: The first ported program is an interactive Connect Four game implementation called

FourWins, which was ported from an original code that used JCoBox [79], an actor-like con-
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current programming system for Java. The FourWins code is structured in terms of modules

that behave similarly to actors, including the game state, board state, game controller, GUI

view, and human and computer players. These modules communicate by sending messages

between each other, sometimes, but not always, blocking until the message is processed. Our

general approach in most parts of this code was to introduce a region holding the data for

each module, and to define a number of types of tasks corresponding to each message that

may be sent to that module. Those tasks have either read or write effects on the module’s

region, as needed. This code also includes a parallel computation in the computer player’s

AI, to explore the tree of possible future moves. That recursive parallel computation con-

sumes most of the execution time, and it is the portion for which we report performance

results below. We note that the complex concurrency structure of this program, with code

from multiple actors running concurrently and sending messages between each other, cannot

be expressed in many more restrictive parallelism models that require structured parallelism

(e.g. fork-join) or involve a single conceptual flow of control.

ImageEdit: The other interactive GUI application we implemented is an image editing application

called ImageEdit, which we wrote from scratch in TWEJava. It allows the user to open one or

more images and apply various image editing filters to them. Each of the images is displayed in

a separate window and updated as filters are applied to it. Each image has a region associated

with it, and the actual pixel data for the image is broken up into a 2-D grid of blocks, with

the data for each block placed in a separate region using index-parameterized arrays. (By

default, and in our benchmarks, a block is simply a group of adjacent lines totaling about

100,000 pixels, but the user may specify other block dimensions.) Concurrency is possible

both by doing concurrent operations on different images and by operating in parallel on

one image at the level of blocks. ImageEdit currently includes filters for Gaussian blur,

sharpening (unsharp mask), detecting edges in the image (based on the Canny edge detection

algorithm [30]), darkening or brightening the image, and converting it to grayscale. All of

the filters can use parallelism at the level of blocks, sometimes using several computation

steps in sequence with parallelism in each step. The only non-parallel step in any of them is
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a short final step in the edge detection filter to identify edges in the input image that cross

between two different blocks. Computation in this program is driven by user input events, so

the program as a whole does not follow the fork-join computation model required by systems

like DPJ. It could be written in other task-based concurrency models that do not use effects,

but these would not provide the strong safety guarantees of TWEJava and would require the

programmer to manually ensure that tasks performing conflicting memory operations cannot

run concurrently.

The other three benchmarks were previously written in DPJ [22], and we ported our versions

from the DPJ versions, following a similar pattern of regions and effects. These are the force

computation from a Barnes-Hut n-body simulation; a k-means clustering algorithm (originally

adapted from the STAMP benchmarks [69]); and a Monte Carlo financial simulation, originally

from the Java Grande parallel benchmarks [26]. These three benchmarks allow us to evaluate the

impact of the run-time scheduling overheads in our system by comparing against the original DPJ

versions, which do not have any overheads related to effect-based scheduling at run time.

Barnes-Hut: The Barnes-Hut force computation involves a parallel loop over a set of bodies,

computing and adding up the forces on each body due to the other bodies. We create one

task per thread using the spawn operation, each operating on a portion of the total set of

bodies, which is divided using an index-parameterized array. The resulting computation is

deterministic and has good parallelism.

Monte Carlo: The Monte Carlo simulation includes a deterministic parallel loop to compute an

array of results, followed by a reduction step that updates globally shared data. In the

DPJ version, this reduction step used DPJ’s commutative annotation, which represents an

unchecked assertion from the programmer that two invocations of a certain method are com-

mutative and that it internally uses the necessary locking to correctly synchronize concurrent

invocations. In the TWEJava version, this commutative method is replaced by a task, and our

system automatically guarantees that this task behaves atomically. Thus, TWEJava offers a

stronger safety guarantee than DPJ, since it does not require the programmer to correctly
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Figure 6.1: Parallel speedups of benchmarks ported from DPJ, showing performance of TWEJava
and DPJ versions. These speedups are for the parallel portion of each code and are relative to the
DPJ code compiled and run in sequential mode, in which the DPJ parallelism constructs are erased
by the compiler, creating a sequential program with no run-time overheads related to parallelism
constructs.

insert manual locking operations. As with Barnes-Hut, we create one task per thread in the

parallel loop.

K-Means: The k-means computation involves a parallel loop with a reduction step. In the orig-

inal STAMP code, this reduction step is an atomic block, but in the DPJ version it is a

commutative method with internal locking. In TWEJava, it is a task. As in Monte Carlo,

the DPJ version relied on unchecked, manual locking, so TWEJava offers a stronger safety

guarantee than DPJ. The structure of the reduction computation in k-means requires that

we create many reduction tasks, independent of the number of threads.

We were able to express all the parallelism that was present in the original codes that we ported.

Both the executeLater/getValue operations and structured parallelism with spawn are used in

our benchmarks. The former are necessary for unstructured parallelism such as messaging between

actors or modules, and for defining tasks that behave like atomic or synchronized blocks, while the

latter can be used in parallel loops or recursive parallel computations.

6.2 Performance with initial näıve scheduler

In this section, we evaluate the TWEJava system with the initial näıve scheduler design described

in Section 3.4.2, which uses only a single queue protected by a single lock to manage all scheduling
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Figure 6.2: Speedups for the FourWins AI computation and two filters in the ImageEdit application.
We did not have pure sequential versions of these programs available for comparison, so we give
speedups relative to the TWEJava codes run using one worker thread and configured so that the
major potentially-parallel computations in the codes each run as a single task, thereby minimizing
task-related overheads.

operations. We measured the performance of our benchmark codes on a machine with four Intel

Xeon E7-4860 processors (40 total cores, 80 hardware threads using Hyper-Threading) and 128 GB

of memory, running Scientific Linux 6.3 with kernel 2.6.32 and 64-bit Oracle JDK 7u9. Figures 6.1

and 6.2 report the speedups achieved in the parallel portion of each code, relative to the sequential

running time. For ImageEdit, we report speedups for both the edge detection filter and the sharp-

ening filter. For the three DPJ codes, we could use the DPJ sequential versions with no parallelism

overhead as a sequential baseline, because the DPJ compiler erases all parallelism constructs and

has no run-time overhead associated with them. For FourWins and ImageEdit, no such equivalent

sequential version exists, so we ran the TWEJava version using a single thread and with configura-

tion parameters that minimize the number of tasks used for the main parallel computation phase

of each benchmark (which should reduce per-task overheads relative to the default configuration

used for the parallel runs of each benchmark). The performance results use an average over 11 runs

for each configuration. We also compared the parallel running times to DPJ for the codes where

there is a DPJ version. The multi-threaded DPJ version internally executes tasks on a thread pool,

but it does not have the overhead of run-time effect-based task scheduling, and previous work has

shown it is generally quite efficient [22].

Each of our TWEJava benchmarks achieves significant speedups, with maximum speedups on

the various benchmarks ranging from 7.5x to 23.6x. The Barnes-Hut and FourWins benchmarks

79



continue scaling substantially up to 80 threads (with the gains going from 40 to 80 threads at-

tributable to Hyper-Threading). The other benchmarks show good scaling at lower numbers of

threads, but do not continue scaling above 24 to 32 threads.

The benchmarks for which we have DPJ versions perform very similarly to the DPJ versions

up to at least eight threads, but show worse scaling at high numbers of threads. Several types

of overhead in the TWEJava system may be responsible for these performance differences. The

overheads of our effect-based run-time task scheduling system include the need to check the effects of

tasks against each other to see whether they conflict, and the need to track some region parameters

and all effect parameters at run time, rather than erasing them during compilation. These overheads

can become larger with larger numbers of threads, because there will generally be more tasks active

at once in such configurations. Another important factor limiting the scalability of our initial näıve

scheduler implementation is that it uses a single queue protected by a single lock, so all the effect-

based scheduling operations in the system are essentially serialized. Also, the DPJ runtime system

can use recursive subdivision to split the iterations of parallel loops into tasks, while in TWEJava

we converted these constructs to loops that sequentially spawn off child tasks. This may also

contribute to the inferior scalability of the TWEJava codes. It would be possible to implement this

sort of recursive subdivision in the tasks with effects model, but TWEJava currently does not have

convenient language constructs for it.

We believe the overheads of effect-based task scheduling are particularly important factors in

explaining the inferior scaling of our version of KMeans compared to the DPJ version on large

numbers of threads, because the TWEJava version uses a task rather than a locked block for the

reduction step. This is called a large number of times, regardless of the number of threads (550,000

times in our benchmark configuration). Since task scheduling is a heavier-weight procedure than

simple locking around a short block, and particularly since (as noted above) the scheduling of each

task is effectively sequentialized in our single-queue scheduler implementation, this leads to poorer

scalability for the TWEJava version of the code.

In the case on ImageEdit, one factor limiting the speedups achieved is that each time the

image is updated, some sequential operations are necessary to actually change the image displayed
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in the GUI, which is implemented with Java’s Swing framework and therefore needs to do GUI

operations on a single thread, in accordance with Swing’s architecture. This is a larger factor for

the sharpening operation than for the edge detection operation, since the core parallel computation

for sharpening is faster than for edge detection. We believe this at least partially accounts for the

poorer scalability of sharpening compared to edge detection, as well as the overall scalability limits

of the ImageEdit computations.

While this evaluation showed that our initial single-queue scheduler could provide significant

speedup in some cases, it also could become a bottleneck for many computations, particularly those

using many fine-grained tasks. This motivated us to develop the more scalable tree-based scheduler;

we evaluate its performance in the next section.

6.3 Performance with tree-based scheduler

We evaluated the performance and scalability of our tree scheduler using six benchmarks. For three

of the benchmarks, we compared against versions that used native Java concurrency mechanisms

that give no safety guarantees. We also compared our tree scheduler against the previous single-

queue TWEJava scheduler, which is known to have fairly poor scalability on benchmarks with fine-

grained parallelism due to its design. Providing a scheduler with better performance characteristics

is important for making the TWE model usable in practice.

The k-means clustering algorithm (originally adapted from the STAMP benchmarks) groups a

set of points into K clusters. The computation consists of a parallel loop with a reduction step. We

used an input of 50,000 points, and ran it with K=25000, 5000, and 1000. Short reduction tasks

are used to update data related to each cluster during the computation. The lower the value of

K, the more objects are in the same cluster, resulting in increased contention. (This is the same

k-means code evaluated with our single-queue scheduler above, but in that case we only considered

K=25000.)

SSCA2 (also adapted from STAMP) uses parallel tasks to add nodes to a large, directed multi-

graph. It uses many short transaction-like tasks to protect accesses to adjacency arrays.

TSP computes a minimum-weight Hamiltonian cycle in a weighted graph using a recursively
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Figure 6.3: Performance scaling of the k-means benchmark. We compare the TWEJava version
run with our tree scheduler and with the existing single-queue TWE scheduler, and also compare
against a version using Java synchronized blocks instead of TWE tasks for fine-grained reductions
(labeled ‘k-means Sync’). We show results for K=25000, K=5000, and K=1000. Dots indicate
outliers. Boxes and whiskers show quartiles (min, 25%, median, 75%, max).

parallel algorithm. Each time a solution is found, we atomically update a globally shared best

tour, which is used to prune the search. We used Java’s AtomicLong to read and update this

value, avoiding the overhead of using TWE tasks for such a fine-grained operation. (As explained

in Section 7.5, TWE programs may safely use Java’s atomics.) We also used a parallelism cut-off,

whereby after a predefined recursive depth we switch to a sequential version of the algorithm in

order to avoid excessive scheduling overheads.

The other three benchmarks are Barnes-Hut, Monte Carlo, and FourWins. Barnes-Hut mea-

sures the force computation in an n-body simulation. Monte Carlo (originally from the Java

Grande benchmarks) performs a financial simulation. FourWins measures the AI computation for

a Connect Four game. These benchmarks were previously used to evaluate TWEJava’s existing

single-queue scheduler. The single-queue scheduler was not a major performance bottleneck for

these benchmarks because they use smaller numbers of parallel tasks than the above ones, but we

want to ensure their performance remains similar with our tree scheduler.

We ran our measurements on a machine with four Intel Xeon E7-4860 processors (with a total

of 40 cores and 80 hardware threads) and 128GB of memory. It runs 64-bit Scientific Linux 6 with

kernel version 2.6.32-504 and 64-bit Oracle JDK 7u40. Figures 6.3 and 6.4 plots the benchmark

running times. We used log2 scales on both axes to easily see if performance scales linearly with

thread count. We performed 11 runs for each configuration; the lines show median running times,
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Figure 6.4: Performance scaling of the other benchmarks. We compare the TWE version of SSCA
using our tree scheduler with a version using Java synchronized blocks instead of TWE tasks for
fine-grained reductions. We compare TSP with a ForkJoinTask version. Both are also compared
against the TWEJava version run with the existing single-queue scheduler, which provides inferior
scalability. We show results for FourWins, Barnes-Hut, and Monte Carlo using our tree scheduler
(solid lines) and the single-queue scheduler (dotted lines).

and box-plots show their variability.

For k-means and SSCA2, we compared against versions of our TWE codes using Java synchro-

nized blocks instead of TWE tasks for the fine-grained critical sections. (These versions, labeled

as ‘sync’, used the tree scheduler for the small number of remaining TWE tasks. There are too few

tasks for the scheduler to have a significant performance impact, so these versions act as proxies

for pure Java versions using synchronized.) For TSP, we also compared against a version using

Java’s ForkJoinTask framework instead of TWE. Java synchronized blocks and ForkJoinTask

are lower-level mechanisms that have been carefully tuned for performance by the JDK developers,

and do not provide parallel safety guarantees like ours, leaving the user responsible for any neces-

sary checks. The comparison against these versions of the codes therefore serves to compare the

performance of the TWE programming model as implemented with our tree scheduler against a

simpler programming model offering no safety guarantees.

In k-means, the tree scheduler scaled well for all K values tested, and was generally only

marginally slower than the synchronized version. There was a somewhat larger performance

gap in the K=1000 case with high thread counts, but the tree scheduler still showed substantial

scalability. With the single-queue scheduler, for comparison, speedups degraded severely as we

reduced K (increasing contention).

For SSCA2, the tree scheduler is about 40% slower than the Java synchronized version, though
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the scalability is very similar in both versions. The improvement compared to the single-queue

scheduler is dramatic: the tree scheduler gives useful speedups where the single-queue scheduler

slows down substantially.

For TSP, the tree scheduler scales similarly to the ForkJoinTask version, with only marginally

slower performance at high thread counts. The single-queue scheduler is comparable until about

12 threads, but the tree scheduler outperforms it at higher thread counts, and the single-queue

scheduler’s performance degrades above 32 threads while the tree scheduler continues scaling.

The remaining three benchmarks all showed significant performance scaling, generally similar

to what they achieved with the previous single-queue scheduler. On FourWins, our tree scheduler

provides inferior scaling to the single-queue scheduler on 12–40 threads, but very similar scaling at

higher and lower thread counts. Monte Carlo slows down beyond 12 threads, but the performance is

similar using both schedulers, with the tree scheduler sometimes a bit faster. Barnes-Hut performs

very similarly with both schedulers.

In summary, these results demonstrate that our tree scheduler achieves good speedups, even for

codes that use fairly fine-grain tasks. In many cases, the performance of TWE codes is competitive

with codes that provide no safety guarantees. Most importantly, the tree scheduler enables users

to achieve strong safety guarantees with only a small or no sacrifice of performance in many cases,

which is essential for a safe parallel language to be widely accepted.

6.4 Summary

My evaluation has shown that the TWE model as implemented in TWEJava is able to express a

wide variety of programs, including ones that more restrictive models cannot express, and deliver

good performance and scalability for them. The major outcomes of this evaluation are as follows:

• The TWE model, and in particular TWEJava, can be used to express a wide variety of

concurrent and parallel programs, including event-driven concurrent programs that cannot

be expressed by structured parallelism models like DPJ’s. It gives strong safety guarantees

including task isolation and data race freedom for all these programs.
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• TWEJava can express programs that combine structured concurrency for parallelism with

other forms of concurrency, expressing all the concurrency in the program using a single

unified model and giving strong safety guarantees for the program as a whole. In many cases

where the parallel computation or a portion of it is deterministic, TWEJava can give a static

guarantee of determinism for that part, while allowing it to be combined with other parts of

the program that may not be deterministic.

• The TWEJava system can deliver substantial parallel speedups for a variety of programs. In

many cases performance is similar to DPJ codes or codes using unsafe, lower-level parallelism

mechanisms, which do not have any runtime overheads from effect-based task scheduling.

Even the naive single-queue scheduler can deliver substantial speedups on a variety of codes,

although its scalability is limited, particularly in codes using many fine-grain tasks.

• Codes using fine-grain tasks can achieve good performance and scalability when run with

TWEJava’s tree-based task scheduler. In many cases, the performance of TWE codes is

competitive with codes that use lower-level parallelism mechanisms without any safety guar-

antees.
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Chapter 7

Enabling Dynamic Effects Without
Sacrificing Safety

7.1 Introduction

The TWE model as described in the previous chapters of my thesis offers very strong parallel safety

guarantees while also being able to express a wide range of parallel and concurrent programs. It

can guarantee task isolation, data race freedom, and atomicity for all programs, and determinism

for certain programs or portions of programs where the programmer desires it. The basic TWE

model as already described is more expressive that any other parallel programming model we are

aware of that provides such strong safety guarantees.

Nonetheless, the basic TWE model still has a limitation in its expressivity. It requires the

programmer to write a static specification of the effects of a task, which can be statically verified

to cover all its possible run-time effects. This is possible for many programs, but it is difficult or

impossible in cases where the total set of data operated on by a task at run time is determined by

the dynamic data itself. For example, an operation on a node in an irregular graph may affect that

node and all its neighbors. That set of neighbors, or even the number of them, is not generally

known statically. (It may be possible to give a highly conservative static summary of the effects

of such operations, e.g. saying that they may access any data in a large data structure, but this

would force all such operations to be serialized, which is contrary to our desire for parallelism.)

Some algorithms use even more complicated dynamic criteria to determine the set of data to

be operated on. For example, the Delaunay mesh refinement algorithm [31, 60] works by ‘refining’

certain triangles in a mesh. When it does such a refinement step, it computes a ‘cavity’ consisting of

the ‘bad’ triangle in need of refinement and other nearby triangles meeting certain criteria, which

will all be replaced by new triangles in the refinement process. This cavity computation is an
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iterative process that may add new triangles to the cavity based on the ones already identified, so

the only way to determine and specify the full cavity is to do this dynamic computation. Such an

algorithm cannot be supported in the existing TWE model in a way that allows for parallelism,

because the effects of the refinement task cannot be specified statically.

Some other programming models can handle algorithms like this, in which the effects of a

certain operation are only known as it is executing. However, none of these models give the strong

safety guarantees that TWE does. Blelloch et al. [19] propose a mechanism called ‘deterministic

reservations’ which can support algorithms with dynamic effects (although it is limited to those

that can be stated as parallel loops) and can be shown to provide determinism if used correctly, but

it requires custom code to be written for the reservations in each parallel computation. This code

may be fairly complicated and rely on algorithm-specific properties, and the system provides no

automatic mechanism for checking that it is correct. Galois [60, 66, 75] also can support algorithms

with dynamic effects, and provides guarantees such as data race freedom if used correctly (e.g. only

accessing shared data through certain APIs, and correctly specifying if accesses are commutative),

but it provides no static or dynamic mechanism for enforcing these correctness requirements.

In this work, we present an extension to the TWE model to handle dynamic effects, allowing

tasks to add certain effects to themselves while they are executing. This extension permits the

TWE model to support many parallel computations where the effects of a task are only known

dynamically. To do this, we extend the TWEJava language to allow object references to be used

as memory region specifications. We then extend the effect system to allow the effects of a task

to be statically specified in terms of accesses to a set of regions specified by object references, but

without statically defining what those object references will be. Instead, we allow references to be

added to these dynamic reference sets at run time, as the task executes.

We still need to ensure that the run-time effects of two tasks cannot conflict. We augment the

TWE system’s existing combination of static and dynamic checks with additional checks to handle

these dynamic reference sets. As in the original TWE system, we statically check that the actual

memory effects of each operation in the program will be covered by the covering effects, i.e. the

effects of the task that the operation is running in, as defined by the combination of static and
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dynamic effect specifications. To support dynamic effects in this analysis, we add a new dataflow

analysis that will identify the set of variables known to be in each dynamic reference set at each

point in the program. Based on this, we can employ a conservative static check to ensure that the

effects of all operations in the program will be covered, even when using dynamic effects.

We also introduced new run-time mechanisms to manage dynamic reference sets, and detect

and handle conflicts between the dynamic effects of tasks. In particular, when a task attempts

to dynamically add an effect, our run-time system must be able to detect if that effect conflicts

with an effect of any other running task, and prevent the two tasks from running concurrently

if so. We chose to do this using a run-time mechanism that tracks the set of references added

to all potentially conflicting dynamic reference sets. When a task attempts to add a reference

to a dynamic reference set, our runtime system will attempt to add it to the corresponding set,

atomically checking whether it is already present. If our system detects no possible conflict with

another reference already in the set, then the new reference is added and execution of the task may

proceed. On the other hand, if a possible conflict is detected, the task will be aborted and retried

later, once the existing conflicting task is done.

We currently choose to only support tasks that add effects during an initial phase in which

their access to shared data is read-only, and do not add effects once they begin performing writes.

These correspond to the cautious operators described by Pingali et al [75]. This restriction means

it is trivial to simply stop execution of an aborted task and re-run it later, since it cannot have

modified any shared state. While our approach could be extended to non-cautious tasks, this would

require support for rolling back the writes done by an aborted task, which would add overhead to

our runtime system.

This work makes the following contributions:

• We define an extension to the TWE model to handle dynamically-specified effects, and im-

plement this extension for the TWEJava language.

• We formalize the dynamic semantics of our extended TWE model, and prove that they

preserve the key safety property of task isolation.
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• We define a static dataflow analysis that allows us to statically check the soundness of effect

specifications even in the presence of dynamic effects.

• We describe our runtime system for supporting dynamic effects in TWEJava, which is built

on top of the tree scheduler described in Chapter 5.

• We evaluate our system on the Spanning Forest and Maximal Independent Set graph algo-

rithms, showing that it can express parallel computations in which the effects of tasks can

only be specified dynamically. Our evaluation shows that our system can provide self-relative

parallel speedups for these algorithms, but with our current run-time system they perform

worse than sequential versions of the algorithms. This is due to the overheads of the run-time

system, which we are working to reduce in ongoing and future work. We also show results

from a synthetic benchmark that suggests that even our current run-time system could pro-

vide speedups for algorithms in which the overheads of our run-time operations are amortized

by larger amounts of computation per dynamic effect added.

7.2 Dynamic Effects

The existing TWE model and TWEJava language can handle tasks whose effects can be expressed

statically. Effects may be specified in terms of run-time effect parameters, but the values of those

parameters must be fully specified before the task starts running. Therefore, they cannot support

tasks whose effects are based on run-time data structures and become known only as the tasks

execute. These include various important algorithms, such as computations that act on a neigh-

borhood in an irregular graph. (Note that the existing TWEJava language cannot express these

sorts of algorithms while providing parallelism, because there is no general mechanism for saying

that some piece of code may run with the effects of the current task plus some additional ones.

Thus, even if one were to start a new task with executeLater whenever a dynamic computation

encounters a new piece of data that it needs to access, there would be no general way to express

that that new task can access both the new data and also whatever data the parent task had access

to. It might be possible to support something like this using a different effect system, but I believe
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it would be difficult to do so while using only static effect checking. Moreover, starting a new

task every time a new piece of data that needs to be accessed is encountered would likely impose

excessive run-time overheads in many cases.)

In this work, we seek to remove the TWE model’s restriction to static effect specifications. To

do this, we extend the TWE model and the TWEJava language to support tasks that can add

certain effects dynamically as they are executing. To prevent the dynamic checks required by this

mechanism from becoming overly complex, we do not allow adding completely arbitrary effects at

run time. Instead, we require each task to statically specify a ‘template’ for the effects that will

be added at run time, and we allow only effects matching that template to be added as the task

executes. Specifically, the ‘template’ will specify a read or write effect on an RPL in which one

element is a dynamic reference set, and the task may then dynamically add object references to

that set.

7.2.1 References as regions

To support the use of dynamic reference sets, we first need to allow object references to be used

in region specifications. To do this, we introduce a new type of RPL element called an object

reference RPL element. This RPL element consists of an object reference variable name that is in

scope wherever the RPL containing it occurs. To simplify our static analysis, we permit only final

local variables and the special reference this to be used as static object reference RPL elements,

so the corresponding reference may not change in the scope where the RPL is in use.

Object reference RPL elements may be used, for example, to place the fields of an object in the

region this, as shown in the Node class in Figure 7.1. This means that each instance of the Node

class will have its fields in a distinct region corresponding to that specific Node object. Like other

RPLs, RPLs containing object reference RPL elements can also be passed as region parameters,

as is done when declaring the neighbors array on line 2 of Figure 7.1. (That declaration has the

effect of placing the cells for each Node object’s neighbors array in that Node object’s this region.)

By passing such an RPL as an RPL parameter, fields of other objects may be placed in the region

named after a given object. For example, a data structure internally consisting of several objects
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may have all its data placed within the region named by the root object of that data structure.

In general, object reference RPL elements can often be used in place of the region names used in

existing TWE code.

DPJ also had a feature that permitted using object references as RPL elements in certain cases,

but it worked differently from the mechanism described here, which was designed specifically for

TWEJava. In particular, DPJ allowed a reference only as the first element in an RPL, and it

was considered to be nested under the region given by the first region parameter of the reference’s

type. This mechanism was provided in DPJ to support a feature known as subarrays, but these

restrictions and special semantics would not be appropriate for the way we wish to use references

as regions in TWEJava. In our approach, references work more similarly to named RPL elements,

with the main difference being simply that their disjointness is determined based on the run-time

values of the references.

7.2.2 Dynamic reference sets

By using references as regions, we can support dynamic effects in which the only elements that

can be added dynamically are object references. This is desirable, because it makes the checks

we will need to perform when effects are added dynamically considerably simpler and faster than

they would be if we allowed the full range of TWE effects to be added while a task is running.

Essentially, it reduces the dynamic check we will need to do to testing whether an object reference

is already in a set and (atomically) adding it if it is not.

We allow the effect specifications for our tasks to contain a new kind of element in their RPLs,

which we call a dynamic reference set element. These will play the role of the template effects

discussed above. Like other effects in TWE, a dynamic reference set effect can be specified as

either a read or write effect. In either case, it does not have a fixed static definition. Instead, the

RPL that the effect operates on is specified as a template in which one element corresponds to an

initially-empty set of object references that can be added to as the task runs. These special RPL

elements are specified with the syntax ...name. After an element is added to the set at run time,

the task may subsequently access data in the region specified by substituting that reference into
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1 static class Node {

2 Node[]<this> neighbors in this;

3 boolean inMIS in this = false;

4 ...

5 }

6

7 class Check extends Msg1Arg<Node,

8 reads ...rdNodes writes ...wrNodes> {

9 public void process(Node v) {

10 rdNodes.addAccess(v);

11 for (Node u : v.neighbors) {

12 rdNodes.addAccess(u);

13 if (u.inMIS) return;

14 }

15 wrNodes.addAccess(v);

16 // Writes used below here

17 // No more effect additions allowed

18 v.inMIS = true;

19 }

20 }

Figure 7.1: Task for computing a maximal independent set of a graph, using tasks with dynamic
effects. This task will be invoked once for each node in the graph.

the corresponding position in the RPL.

Figure 7.1 shows an example of using our system to compute a maximal independent set of

a graph. The task shown can be run in parallel on all the nodes of the graph to compute the

MIS. The task for each node is shown as having effects reads ...rdNodes writes ...wrNodes.

This specifies that it will have dynamic effects on two sets, a set of object reference regions that

may be read or written (wrNodes), and a separate set of those that can only be read (rdNodes).

These extend the existing syntax of read and write effects in TWEJava, with the ...name syntax

declaring them as effects on dynamic reference sets.

7.2.3 Adding elements to dynamic reference sets

In a task whose statically-declared effects contain dynamic reference sets, references may be added

to those sets dynamically to enable new effects as the task executes. To do this, the programmer uses

the addAccess operation, with syntax name.addAccess(reference) to add a new object reference
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to the set. If the task successfully continues executing beyond the addAccess operation, then it was

successful, and in the remainder of the task it may perform operations that have effects covered

by substituting the object reference reference for the dynamic reference set name in the effect

containing it.

In our example, the Check task performs addAccess operations on lines 10, 12, and 15. The first

will permit read access to the node v which is being processed. This allows v.neighbors, which is

in the region v, to be read in the following line. The second will permit read accesses to a node u

which is a neighbor of the node v. This is taken advantage of in the following line to read u.inMIS,

which is in the region u. Since in each of these cases the addAccess operation is a control-flow

dominator of the subsequent read, our compiler can statically verify that the effect of that read is

covered by the effects of the task at the point where it occurs. Similarly, the write to v.inMIS in

line 18 can be verified to be safe based on the addAccess operation on line 15. We discuss the full

details of the static analysis used for these checks in Section 7.2.6.

7.2.4 Aborting and retrying tasks

An addAccess operation may fail if another running task already has a conflicting dynamic effect.

In this case, it is generally necessary to abort the task performing the operation and retry it later.

Our runtime system will do this, waiting until the conflicting task has completed before retrying

the aborted task. (In some cases it would be possible to simply pause the task, but in general that

could lead to deadlock; we do not currently implement this.)

To simplify this abort and retry process and reduce overheads, we adopt the rule that a task

must consist of an initial phase in which it performs no writes to shared state (and launches no

other tasks) but may perform addAccess operations, and a later phase in which it may perform

writes but its effects remain fixed. Since a task may be aborted only during the first phase (when it

attempts an addAccess operation), this rule means it may simply be stopped and later retried; it is

not necessary to roll back any writes it may have performed when aborting it. This is a significant

restriction, but many useful computations are naturally expressed in this form, which corresponds

to the cautious operators discussed by Pingali et al [75]. Our system could be extended to remove
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this restriction, but it would come at the cost of higher overheads to maintain data to support

rollback. Note that the example in Figure 7.1 follows this restriction, with the only write to shared

data on line 18 following the last addAccess operation on line 15.

7.2.5 Integration with the TWE region and effect system

For simplicity, the example in Figure 7.1 shows a case in which the only effects of a task are dynamic,

and the dynamic reference set element is the only element of the RPLs used for those effects. In

reality, however, the support for dynamic effects in this work fully integrates with the TWE system’s

existing support for highly-expressive region and effect specifications, including effects on regions

that form a hierarchical structure and may contain wildcards. The only restrictions we impose

are that only one dynamic reference set element may appear in a single effect specification, and

it must appear to the left of any wildcard elements in its RPL. (These restrictions simplify our

implementation, as discussed in Section 7.5).

7.2.6 Dataflow analysis

Like in the original TWE system, we rely on a static analysis to determine whether the current

covering effect applicable to any operation in the program will in fact cover the effects of that

operation. If it cannot be statically determined to do so, the compiler will flag a compile-time

error. With the addition of dynamic effects, this analysis becomes more complex, because the

covering effect can change at run time as elements are added to dynamic reference sets. However,

we still rely on a conservative static analysis of covering effects to determine this.

To support dynamic effects in this analysis, we augment it with an intraprocedural dataflow

analysis which will compute for each dynamic reference set S a set of variables inSetS whose values

are definitely known to be in that dynamic reference set at each point in the program.

At the point of an addAccess operation S.addAccess(v), our dataflow analysis will add the

variable v to inSetS . A variable is also added to inSetS if it is assigned from a variable that is

already in the set; it is removed from inSetS if assigned from any other expression. At control flow

join points, inSetS is computed as the intersection of the inSetS sets on the incoming edges.

94



These rules ensure that inSetS will always be a conservative approximation of the set of variables

whose run-time reference values will be in the dynamic reference set S at each program point. Thus,

if v ∈ inSetS at the point of an operation whose effect would be covered by the effect on S if v

were substituted for S in that effect, then our static effect analysis may safely conclude that effect

is covered, and will not flag it as an error.

This dataflow analysis (conceptually conducted separately for each dynamic reference set S,

although it is possible to analyze them together in the actual implementation) is a forwards analysis

with ∩ as the meet operator. Like many other dataflow analyses, it has transfer functions of the

general form fB(x) = genB ∪ (x− killB). It is fairly straightforward to see that this is a monotone

dataflow framework, and as such could be solved by an iterative algorithm. In practice, however,

we solve it with a structure-based algorithm similar to the one discussed in Section 4.4; as in that

case, we chose this algorithm because of its ease of implementation within the compiler framework

we are using.

7.2.7 Asserting that a reference is in a set

The dataflow analysis described above can be used in many cases to determine that a variable’s

value would be in a dynamic reference set S, but in some cases the conservative analysis may not

be able to determine this, even though it will actually always be the case. Most importantly, since

the dataflow analysis described above is purely intraprocedural, it cannot be used to check that a

variable is in a dynamic reference set if its reference value was added to that set in another method.

To address this shortcoming, we add operation assertContains, which can be used by the pro-

grammer to assert that the value of a specified reference value is in fact in a certain dynamic

reference set. This assertion will be discharged at run time by verifying that the actual run-time

value of the variable is in fact in the set. If it is not, it will throw an exception.

Our dataflow analysis is augmented so that following an assertContains operation S.assert-

Contains(v), the variable v will be added to inSet(S), allowing it to then check that subsequent

operations whose effects involve v may be covered by the dynamic effect on S.

This mechanism provides a way to handle and check cases where our basic dataflow analysis
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alone cannot verify that such effects are safe, e.g. because of complex control or data flow, or

because effects on the reference occur in a different method from the one that adds it to the set.

The use of these assertions involves a run-time overhead, but the cost of each check is fairly small,

and it is usually sufficient to use only one assertion for a variable v in each major computation

phase or method where effects on it are used.

7.3 Dynamic Semantics and Safety Properties

configuration:⌦⌦⌦
$PGM y execute

↵
k

⌦
0
↵

id

⌦·↵ env

⌦·↵ spawned

↵
task⇤

⌦·↵ running

⌦·↵ waiting

⌦·↵ genv

⌦·↵ store

⌦
1
↵

nextLoc

↵
T

rule executelater*
(�XTs .S ) : (Tt -> T )E↵ .executeLater(Vs)

loc(L)
···
+

k

*
L

L +Int 1

+
nextLoc

*
···

·
L 7! TF(E↵ , bindto(XTs ,Vs) y S ,?T )

···
+

store

*
···

·
L

···
+

waiting

rule start-task*
···

L

· ···
+

waiting

⌦
··· L 7! TF(E↵ ,K , _) ···

↵
store

*
R ·

(L,E↵ ,?)

+
running ·

⌦
···
⌦
K y return nothing;

↵
k

⌦
GEnv

↵
env

⌦
L
↵

id ···
↵

task

⌦
GEnv

↵
genv

when 8(L2,Eff2, B) 2 R : E↵ #Eff2 _ L 2 B

rule getvalue-succeeds*
loc(L).getValue()

V
···
+

k

⌦
L1

↵
id

⌦
··· L 7! TF(_, _,V ) ···

↵
store

*
···

(L1 , _, _

?
)

···
+

running

rule getvalue-blocks
⌦
loc(L).getValue() ···

↵
k

⌦
L1

↵
id

*
···

(L1 , _, ?
{L}

)
···
+

running

rule indirect-blocking*
···

(L, _, ts2 ) (_, _, ts1

ts2 [ ts1

)
···
+

running

when (L 2 ts1 ) ^Bool (ts2 * ts1 )

rule return*
return V ; y _

awaitSpawned y (setRetVal V ) y done

+
k

rule set-return-value*
setRetVal V

· ···
+

k

⌦
L
↵

id

*
···

L 7! TF(_, _, _

V

)
···
+

store

rule done
⌦
···
⌦
done

↵
k

⌦
L
↵

id ···
↵

task

·

*
···

(L, _, _)

· ···
+

running

rule addeffect-succeeds*
addEffect(E );

· ···
+

k

⌦
L
↵

id

*
R (L, E↵

E↵ [ E

, _)
+

running

when 8(L2,Eff2, B) 2 R : E#Eff2 _ L 2 B

rule addeffect-aborts
⌦
···
⌦
addEffect(E ); ···

↵
k

⌦
L
↵

id ···
↵

task

·

*
R (L,E↵ , _)

·

+
running

*
···

·
L

···
+

waiting

when ¬Bool 8(L2,Eff2, B) 2 R : E#Eff2 _ L 2 B

rule addeffect-aborts-maybe-spuriously
⌦
···
⌦
addEffect(E ); ···

↵
k

⌦
L
↵

id ···
↵

task

·

*
···

(L1 , _, _) (L,E↵ , _)

· ···
+

running

*
···

·
L

···
+

waiting

1

Figure 7.2: Dynamic semantics for key TWE operations. For simplicity, we omit rules related to the
spawn and join operations for statically-checkable safe parallelism, which are largely orthogonal
to our work on dynamic effects. The rules above the horizontal line are taken without modification
from the original dynamic semantics of TWE (without dynamic effects) as given in Chapter 3. The
rules below the line are added in this work to support dynamic effects.

In this section, we present the dynamic semantics of tasks with effects, including our extensions
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to support dynamic effects, and discuss how these semantics guarantee the key safety properties of

tasks with effects.

7.3.1 Dynamic semantics

Figure 7.2 shows the dynamic semantics, which are written using the K semantic framework [78].

These semantics are based on the original semantics for tasks with effects presented in Chapter 3,

but are extended with additional rules to support our addition of dynamic effects. For simplicity,

we omit this rules related to TWE’s spawn and join mechanisms for statically-checkable safe

parallelism, which are largely orthogonal to the dynamic effects mechanism presented in this work

(although the two can be safely used together in one program). We also omit all non-TWE-related

rules (e.g. for arithmetic operations).

These rules are based on rewriting logic. Each rule may be applied when it can match the

configuration elements shown at the top of it, and when it is applied any elements with a horizontal

line under them will be replaced by what is below the line. The top of the figure shows the format

for the configuration that is operated on, which consists of several nested cells. This includes the

task cell (with several subcells), which captures the state of a running task, as well as the running

cell which contains a set of tuples corresponding to running tasks and containing the information

necessary to check for effect conflicts between tasks. Each of these tuples consists of a unique

location value that identifies a task, as well as its current effect set and the set of tasks that it is

blocked on (if any). The waiting cell contains a set of location values for tasks that are waiting to

begin executing; they may or may not have effects that conflict with another running task. For full

details about the remaining configuration cells, see Section 3.2.

The new rules we added to support dynamic effects are those below the horizontal line. They

all relate to the addEffect operation, which is used to dynamically add a new effect to a running

task. While our actual language design and implementation discussed in Section 7.2 allow only

effects following certain templates to be added at run time, the semantics presented here are more

general and can support the dynamic addition of arbitrary effects.

The addeffect-succeeds rule covers the case where no conflict with another running task

97



is found when doing an addEffect operation, and thus that operation succeeds. In this case, the

new effect E is added to the task L’s entry in running , and the task continues to execute. This

condition on when this rule may execute ensures it can be run only if the task L with the new effect

added will in fact be non-conflicting with all other running tasks.

The addeffect-aborts covers aborting a task L when it tries to do an addEffect operation

that would cause an effect conflict between L and some other running task. In this case, the current

execution of task L is aborted (deleting the task cell for it), and L is returned to the set of waiting

tasks, where it may be retried later. This rule does not show any rollback of state updated by L,

because we assume that addEffect operations are performed only in an initial read-only portion

of a task. This property can be statically checked, ensuring that tasks do not violate it.

The addeffect-aborts-maybe-spuriously rule also covers aborting a task, but unlike the

addeffect-aborts rule, it may also abort a task trying to do an addEffect operation even if

that operation would not actually create a conflict with any other task. This reflects the semantics

of some possible implementations of dynamic effects which may spuriously detect a possible conflict

when there really is none, and abort based on that. (Our actual implementation, as discussed in

Section 7.5, may do this because of simplifications in how it represents dynamic effects and checks

for conflicts between them.) This rule does require that there be at least one other running task in

addition to the task that will be aborted; this ensures that we do not abort the only running task,

which could prevent the system from making progress.

7.3.2 Safety properties

Our semantics guarantee the core safety properties of TWE, including task isolation, data race

freedom and strong atomicity for portions of tasks that do not perform TWE operations. These

properties all stem from the fundamental property of task isolation, i.e. that two concurrently

executing tasks may not have conflicting effects. In the following section, we state this property

formally and prove that our semantics guarantee it.
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7.4 Proof of Task Isolation

In this section, we prove that the dynamic semantics of tasks with effects given in this chapter (Fig-

ure 7.2), including our additions to support dynamic effects, guarantee the fundamental property

of task isolation, i.e. that two conflicting tasks may not be executing concurrently. (We define this

property formally below.)

7.4.1 Effect system properties

We require the effect system to obey the following simple property, that the union of two effect sets

is disjoint from any effect set that is disjoint with both of the constituent sets. Our actual effect

system obeys this property, as do many others.

Property 1. E1#E3 ∧ E2#E3 =⇒ E1 ∪ E2#E3.

Note that # is used to denote that two effect sets are non-interfering.

7.4.2 Proof of Task Isolation

We first define what it means for two tasks to be non-conflicting. In general, this is the case if their

effects are non-conflicting, but it can also be the case because of effect transfer in cases where one

task is blocked on the other.

Definition 4 (Non-conflicting tasks). We say two tasks denoted by tuples (L1, E1, B1) and

(L2, E2, B2) are non-conflicting, denoted (L1, E1, B1)#(L2, E2, B2), iff E1#E2 ∨ L1 ∈ B2 ∨

L2 ∈ B1.

For simplicity, we sometimes simply write L1#L2, meaning that the tuples in running with

location values L1 and L2 are non-conflicting. Our rules ensure that at any point running may

contain at most one tuple with any given location value L, so this is unambiguous.

We now prove that the TWE semantics guarantee task isolation, that is, that no two concur-

rently executing tasks may be conflicting. Specifically, we show that each operation in the dynamic

semantics preserves the following invariant:
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Invariant 1 (Task isolation). ∀(L1, E1, B1), (L2, E2, B2) ∈ running, where L1 6= L2 :

(L1, E1, B1)#(L2, E2, B2).

The task isolation invariant trivially holds at the beginning of a program, because only one

main task is initially running. We will proceed to show that all the operations in the TWE system

maintain this invariant.

Lemma 9. Rules that do not change running preserve Invariant 1.

Proof. This is clearly true, because Invariant 1 concerns only the contents of running , which will

not be changed by such operations.

This covers the executelater, return, and set-return-value rules in Figure 7.2, as well

as the rules for all non-TWE-related operations in the program (e.g. arithmetic operations), which

are omitted from Figure 7.2.

Lemma 10. The getvalue-blocks and indirect-blocking rules preserve Invariant 1.

Proof. These rules only expand the set of tasks that some task is recorded as being blocked on,

and make no other changes to running . If Invariant 1 holds before the application of one of these

rules, it will still hold afterward, because the only change possibly relevant to the invariant would

be to expand B1 or B2, which will not invalidate the invariant when it was previously true.

Lemma 11. The done, addeffect-aborts, and addeffect-aborts-maybe-spuriously rules

preserve Invariant 1.

Proof. These rules remove the tuple for a task from running , but make no other changes to it. If

the invariant held for every pair of task tuples in running prior to applying one of these rules, it

will still hold afterward.

Lemma 12. The start-task rule preserves Invariant 1.

Proof. This is the case because of the condition on when the start-task rule can execute. Specif-

ically, it can only execute (adding a new tuple (L,Eff ,∅) to running) if ∀(L2,Eff2, B) ∈ R :

Eff #Eff2 ∨ L ∈ B, where R is the value of running immediately before the rule executes. This
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condition ensures that the newly added task tuple will be non-conflicting with any existing task

tuple in running . If Invariant 1 held prior to the application of the start-task rule, this will

ensure that it still holds afterward.

Lemma 13. The addeffect-succeeds rule preserves Invariant 1.

Proof. This rule also preserves the invariant because of the condition on when it executes. Specif-

ically, it changes the effect specified in running for an existing task L from Eff to Eff ∪ E, with

the required condition that ∀(L2,Eff2, B) ∈ R : E#Eff2 ∨ L ∈ B, where R consists of the existing

contents of running with the tuple for L removed. That is, for all (L2,Eff2, B) ∈ running where

L2 6= L, either L ∈ B or E#Eff2 . For values of L2 where the former case applies, we will have

L#L2 regardless of what the effects of L are set to. For values of L2 where only the latter case

applies, we know that E#Eff2 , but in order to have L#L2 we will need to show that Eff ∪E#Eff2 .

By assumption, Invariant 1 held prior to the application of the addeffect-succeeds rule, and

since in this case we know L /∈ B, we must have Eff #Eff2 . By Property 1, we therefore must have

Eff ∪ E#Eff2 , and so (L,Eff ∪ E,−)#L2. Thus, (L,Eff ∪ E,−) is non-conflicting with the task

tuples for all other tasks L2 in running . Since we know those other task tuples are all mutually

non-conflicting based on the assumption that Invariant 1 holds initially, we may conclude that after

the application of the addeffect-succeeds rule the invariant will continue to hold.

Theorem 4. Invariant 1 holds throughout the execution of a TWE program according to the se-

mantics in Figure 7.2.

Proof. The invariant holds initially at the start of the program because only the initial main task is

running, and therefore Invariant 1 is trivially satisfied. By Lemmas 9–13, each of the rules shown in

Figure 7.2 preserves the invariant, as do other rules (not shown) for non-TWE-related operations.

Thus, any TWE program containing only these operations will preserve the invariant.

While we do not show them here because they are orthogonal to our new rules for dynamic

effects, the semantic rules related to TWE’s spawn and join operations for statically checkable

safe parallelism can be formulated to preserve the task isolation invariant as well, so in fact it is

preserved in all TWE programs.
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7.5 Runtime Implementation

To support our dynamic effect system, we must augment the TWE runtime system with new func-

tionality to handle dynamic effects, while preserving TWE’s fundamental guarantee that tasks with

conflicting effects will not be allowed to execute concurrently. The first type of new functionality

is to ensure that dynamic effects will not conflict with the statically-specified effects of other tasks.

This can be done as a straightforward extension of the scalable, tree-based scheduling algorithm

already used for TWEJava [49].

The second, more significant type of new functionality is to actually support the dynamic

addition of effects to tasks. The runtime system must record those effects, check whether they

conflict with other dynamic effects, and abort and later retry tasks if a conflict is found. We take

advantage of TWE’s hierarchical effect system in combination with the restrictions that we place

on dynamic effects to minimize the cost of these run-time conflict checks.

In particular, it is possible to implement them such that the runtime conflict check needs to

consist only of checking if the reference to be added is in a certain set data structure, held at a

certain node of the RPL tree, and either adding it if it was not already present or aborting the

task if it was. Several variations of this basic approach are possible, generally trading off speed

and perhaps storage space against the ability to accurately detect that dynamic effects are non-

conflicting in as many cases as possible. For example, one simple approach would simply maintain

one set of references, adding to it whenever a dynamic effect is added and conservatively detecting a

conflict whenever the reference to be added duplicates one already in the set. This is straightforward

and fairly quick, but it may detect a possible conflict in cases where there really isn’t one, either

because both effects are reads or because the two effects could be determined to be disjoint based

on the portions of their RPLs beyond the dynamic reference set element.

A slightly more refined approach is to distinguish reads and writes but still not take into account

the RPL tail beyond the dynamic reference set element. This is what our implementation currently

does, and this approach is described in detail below. Another possibility is to use a probabilistic

data structure such as a Bloom filter, which uses a fixed amount of space but may detect a conflict

when there really isn’t one because of its probabilistic approach to representing a set. Although
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we only describe our current method in detail below, we have designed our runtime system so that

different conflict checking methods can be ‘plugged in’ in to. We believe that experimenting with

data structures and approaches for the runtime conflict checks can be a fruitful area of research,

and different choices might be best for different types of programs.

7.5.1 Integration with the tree-based TWE scheduler

The first major area of functionality we added to our run-time system involves integrating with

the existing tree-based scheduler used for effect-based scheduling of TWEJava tasks [49]. This

scheduler uses a tree data structure that corresponds to the hierarchical structure of RPLs. Each

node in the tree is labeled by a non-wildcard RPL element, and the path from the root of the tree

to that node corresponds to a wildcard-free RPL prefix. All effects which begin with that prefix

will be checked against the other effects of running tasks at that node, and the effects of executing

tasks will be held at the node corresponding to the maximal wildcard-free prefix of their RPLs.

(Some effects containing wildcards are also checked against other effects in other nodes below the

node they are held at.)

Dynamic effect templates can be straightforwardly integrated into the tree-based scheduler.

They are like other effects except that one of their RPL elements is a dynamic reference set element.

We conservatively treat this as conflicting with all non-dynamic object reference RPL elements

(and with wildcards that could cover such an element). While this may spuriously prevent parallel

execution in cases where it would actually be safe, this approach allows us to ensure that dynamic

effects will not conflict with non-dynamic effects without introducing major additional complexity

in our scheduler, and without introducing extra overheads each time a reference is added to a

dynamic reference set.

Similar to non-dynamic effects, our scheduler will move dynamic effect templates down until

they reach the node corresponding to the RPL prefix preceding the dynamic reference set element

(which is required to be wildcard-free). Also like other effects, dynamic effect templates will be

enabled once they are found not to conflict with any other non-dynamic effects of running tasks,

and a task will be enabled only once all its effects and dynamic effect templates are enabled.
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The key new feature that we added to the tree-based scheduler to support dynamic effects is

that at each node it maintains a data structure to manage the dynamic effects at that node. By the

time a task with dynamic effects has been enabled, its dynamic effect templates will all have been

placed at the nodes in the scheduler tree corresponding to the RPL prefix preceding the dynamic

reference set element in their RPLs.

Note that a conflict between the dynamic effects of two concurrently-executing tasks can arise

only between two effects whose templates have the same RPL prefix and are therefore at the same

node. This is the case because two dynamic effects with different prefixes either can be statically

proven to be non-conflicting based on their prefixes, without regard to the actual dynamic compo-

nent, or else will be conservatively treated as always conflicting without examining their dynamic

component. The latter case can arise only when at least one of the effects has a wildcard after the

dynamic component in its RPL. In this case, since the wildcard is statically present in its effect

template, we apply the conservative analysis described above and treat the two effect templates as

always conflicting, so the corresponding tasks will not be permitted to run concurrently.

Because of the above property, it will suffice when checking dynamic effects to do so only using a

data structure associated with the scheduling tree node where the dynamic effect template resides.

7.5.2 Recording and checking individual dynamic effects

When a task performs an addEffect operation, it must attempt to add the specified object reference

to the specified dynamic effect set, and check whether it conflicts with any other dynamic effects

of concurrently-executing tasks. As discussed above, it is only necessary to do this check among

dynamic effects whose templates are located at the same node of the scheduler tree, so we can use

a data structure associated with an individual node of the scheduler tree to manage it. We say

that those dynamic effects are ‘at’ the corresponding scheduler node.

As discussed above, several approaches are possible, but we currently use one where dynamic

effects at a given scheduler node are distinguished based on whether they are reads or writes:

multiple read effects using the same reference at the same node can be allowed, but only one write

effect for each reference is possible, and it will exclude any simultaneous reads. As mentioned, for
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simplicity and speed, we do not take into account the ‘tails’ of effects, i.e. the portions beyond the

dynamic reference element. In general, this will result in some effects being detected as conflicting

when they need not be, but in the algorithms we have examined so far, it is possible (and in fact

natural) to structure them so that this is not the case, e.g. by not using any additional RPL

elements beyond the dynamic reference element.

To support differentiating read and write effects, we maintain separate maps from object refer-

ences to tasks, one for reads and one for writes. The map for reads is a multi-map, in which one

reference can map to multiple tasks.

When a task attempts to add a new reference to a dynamic reference set associated with a write

effect, we first perform an atomic putIfAbsent operation to attempt to add it to the write map. If

this fails, it indicates that another task has a conflicting write effect. We can check if that task

is done, in which case we can remove its entry in the map and retry; otherwise, the task adding

the new effect must be aborted. If the addition of a new mapping to the write map succeeds, we

then look up the mapping for the corresponding task in the read mapping and see if there are any

currently-executing tasks with conflicting read effects. (Once again, we may encounter mappings

for completed tasks, which can be discarded.) If there are, we must abort the task adding the new

effect.

When adding a new reference to a dynamic reference set associated with a read effect, we

perform a similar procedure, but in this case we first add its mapping to the read set. We will

not identify any conflicts at this stage, since it is legal to have multiple read effects using the same

dynamic reference. After inserting the reference in the read set, we proceed to check if there is an

entry in the write set for the same reference, and if so whether it is associated with a still-running

task. If so, we must abort the task adding the new effect; otherwise, it may proceed.

This procedure requires synchronization at the level of individual entries in the mappings, but

operations involving different object references can proceed concurrently. This relatively fine-grain

synchronization, in combination with our ordering of operations for writes and reads, ensures that

any conflict with an effect of another concurrently-running task will be detected. Our approach to

recording dynamic effects and checking for conflicts does impose overheads which must be amortized
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in order to achieve reasonable performance. As discussed in the evaluation section, the benchmarks

we currently have do not perform sufficient computation to amortize these overheads, so they

perform poorly with our system. We believe our system could perform better on some other

programs, but in general its overheads are a serious limitation. We are currently exploring lower-

overhead approaches for performing these checks, which we discuss briefly later.

7.6 Evaluation

We performed an initial evaluation of our implementation using programs that implement two basic

graph algorithms, Maximal Independent Set (MIS) and Spanning Forest (SF). In both cases, the

basic parallel algorithm we adopted for computing these properties is the same one used in the

versions of these programs in the PBBS benchmarks [19].

7.6.1 Expressiveness

We were able to express both MIS and Spanning Forest using our system, structuring each of them

using tasks with dynamic effects only on the portion of the graph that the individual task needs to

access.

For MIS, we use a straightforward adjacency graph representation with a separate object for

each node, and maintains a flag for each node indicating whether it has been assigned to the MIS

(initially false for all nodes.) Our algorithm involves a parallel loop over all the nodes of a graph.

For each node v, it checks whether any of its neighbors are already assigned to the MIS, and if

not it flags that node as belonging to the MIS. The step for each node must behave atomically;

it would be an error if any of the neighbor nodes were placed in the MIS after they were checked

when considering v but before the flag for v is set. The step for each node could conceptually be a

task, but in our actual implementation we coarsen this to operate on several nodes in each task in

order to reduce overheads.

This algorithmic structure could not be specified in the original version of TWE without dy-

namic effects, because both the number and the identities of the neighbor nodes are only known

at run time. Because of this, it would not be possible to statically specify the effects of the task
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operating on each node, unless the data for all the nodes were simply placed in a single region

(which would destroy the opportunity for parallelism.)

Our extension to support dynamic effects lets us express this algorithm, with parallelism. As

the task actually runs, it can access the run-time data structures specifying the neighbors of a node,

and add a read effect for each neighboring node, which will enable it to read that node’s in-MIS

flag. Similarly, it adds a write effect for v before writing its in-MIS flag. This ensures that there

can be no data race on the in-MIS flags, and so the algorithm works properly.

For Spanning Forest, we use an edge graph representation in which both nodes and edges

in the graph are represented by edges. Each node has a unique index number (assigned when

constructing the graph) as well as an ancestor reference (to a lower-numbered node in the same

connected component, initially null). Each node has a flag indicating if it is in the spanning forest.

Our algorithm involves a parallel loop over the edges of a graph. For each edge e, we examine

the two nodes u and v incident on that edge, and follow the chain of ancestor links to find the

lowest-numbered node in the same connected component. If they are not the same (indicating that

u and v are not already in the same connected component), then we flag e as being in the spanning

forest and update the ancestor link of the lowest-numbered node in one of the components to point

to the other one. Once this process has been done for all the edges, the spanning forest will have

been constructed.

To run this algorithm in parallel, we must provide synchronization for the ancestor references

accessed during the operation for each node; the ancestor references it accesses may not be updated

by a concurrent operation while it is in process. As with MIS, our implementation coarsens the

tasks, processing several edges together in one task, but conceptually the operation for each edge

could be its own task. The task will first do a read-only traversal of the ancestor links of u and v,

always adding a read effect for each node before reading its ancestor link. Once it has determined

what link needs to be updated (if any), it will add a write effect for that node. In the subsequent

read-write portion of the task, it will actually perform that update.

The data access pattern of Spanning Forest tasks is even more complicated than that of MIS,

and it also could not be specified by static effects in the original TWE system (while preserving
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parallelism). Our support for dynamic effects, however, allows us to support this algorithm, because

as the task runs and discovers what data it needs to access based on the run-time graph data

structures, it can add appropriate effects dynamically before doing the corresponding memory

accesses. Thus, our system enables this parallel algorithm to be expressed, while the original TWE

system or others with only static effect specifications would not.

7.6.2 Performance

We performed an initial evaluation of the performance of these algorithms using our current runtime

implementation. They were evaluated on a 40-core (80-thread) system using four Intel Xeon E7-

4860 processors, using Oracle JDK 8u74. Figures 7.3 and 7.4 show the performance of these two

benchmarks in our tests.

Both benchmarks show at least some level of self-relative scalability. MIS shows a maximum

self-relative speedup of 6.95x on 60 threads, although scaling is poor beyond 8 threads. (Due to a

known interaction between the code and our current runtime system, one thread is not effectively

utilized in multi-threaded configurations, explaining the lack of scaling from one to two threads.)

Spanning Forest has poorer self-relative speedups, showing very little improvement beyond three

threads and having a maximum self-relative speedup of about 2x.

Unfortunately, even the fastest times we observed with both of these codes are significantly

slower than the performance of an alternative sequential implementation. Accordingly, with our

current implementation, our system does not represent a viable approach to obtaining parallel

performance improvements for these codes.

There are several types of performance overhead that impact these codes. A major one, and

probably the most fundamental one for our system, is simply that MIS and SF tasks do very little

computational work other than traversing the portion of the graph accessed in the task. Since we

need to do an additional run-time check for each node accessed (which in our current implementation

involves operations on two hash map data structures, and some auxiliary operations), the cost of

these run-time checks can easily become a dominant performance factor. While the individual

checks are not terribly expensive, they still consume more time than anything else the tasks are

108



doing.

Another factor contributing to performance overheads is the cost of setting up tasks, involving

creating the task object and scheduling it using our tree scheduler. We try to ameliorate this by

coarsening, with one TWE-level task aggregating the basic operations on a number of nodes or

edges, but it is still a factor in performance overheads. Another factor, which is exacerbated by

coarsening, is that tasks may be aborted, causing work to be lost and subsequently redone. There

are generally few aborts for MIS, but there are more for SF. This relates to the fact that the nodes

accessed in SF are not generally highly localized, and particularly in the middle and later stages of

the algorithm, a number of nodes may share the same ancestors, leading to contention and resultant

aborts.

Another factor in performance is the data representation. Because our system for dynamic

effects is based on object references, it is necessary to have a Java object for each node. But

without that requirement, it would be possible to represent the graph data using arrays and refer

to nodes by their integer index numbers in the arrays, which could avoid many of the overheads of

creating and managing Java objects. This is what the sequential versions of the computations do.

As a preliminary experiment to illuminate how our system might perform on other programs

that do significant computation beyond simply traversing a graph, we also tried creating a modified

version of MIS that performs extra synthetic work in addition to the actual MIS computation.

(When computing whether each node is in the MIS, it also does 10,000 steps of a loop whose body

just performs an integer multiplication and subtraction.) The results for this benchmark are shown

in Figure 7.5. The difference between the times in this figure and corresponding times in Figure 7.3

can be seen as reflecting the extra work performed. This synthetic benchmark gives much better

self-relative speedups, up to 17x on 80 threads. While this is a synthetic benchmark, we do believe

it reflects that even the current version of our system can perform better, and maybe offer useful

speedups, on programs that do more computation to amortize the costs of our checks.
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Figure 7.3: MIS benchmark performance, using a random 10,000,000-node graph
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Figure 7.4: Spanning Forest benchmark performance, using a random 1,000,000-node graph
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Figure 7.5: Performance of MIS benchmark, modified to do extra work in each step (10,000 steps
of a loop whose body just performs an integer multiplication and subtraction) in addition to the
actual MIS computation.
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7.7 Ongoing and Future Work

Improving the performance of the dynamic effects system is a subject of ongoing work. I have several

ideas about how to do this. One is to use very low-overhead data structures and computations for

the run-time dynamic effect checks. This could involve using a field of each object to track if

it is being used as a reference for a dynamic effect, or using alternative data structures such as

Bloom filters (with a small and fast hash function, e.g. the native one provided by Java). Another

possibility is to allow the use of integers in dynamic effects in addition to or instead of object

references, which could permit more efficient array-based graph representations to be used.

Another fruitful direction for future work would be to automatically aggregate small tasks

specified by the programmer into larger tasks to be processed by our run-time system. This could

make programs easier to write while also reducing task creation overheads. In addition, it would

be possible to abort only the current programmer-specified task, rather than the full aggregated

task, when an effect conflict is detected.

I believe that by pursuing these directions, it will be possible to produce a system that can

support programs using dynamic effects while providing useful parallel speedups.
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Chapter 8

Related Work

8.1 Structured parallel programming models

Traditional multithreaded systems such as Java or Posix threads are more flexible than TWEJava

in the sense that they allow almost any desired concurrency and synchronization structure to

be expressed, but they provide no guarantees about the absence of concurrency errors, and also

have few or no facilities that simplify reasoning about such errors. Several parallel programming

systems have been developed that are more structured and easier to reason about than traditional

threads. These include OpenMP [71], Cilk [20], Threading Building Blocks (TBB) [52] (except for

the “lower-level” task interfaces), and Java’s ForkJoinTask [72]. OpenMP is commonly used for

computations based on parallel loops, but recent versions also support task-based parallelism. Cilk

uses structured parallelism based on nested fork and join operations. TBB offers both parallel loops

and task-based mechanisms. ForkJoinTask is focused on nested fork-join computations, although

it also supports other task invocation and dependence structures. Similar mechanisms are also

employed in commercial systems such as Microsoft’s Task Parallel Library [68] and Apple’s Grand

Central Dispatch [10].

These systems provide a somewhat higher-level structure for parallel computations than directly

using threads and low-level synchronization operations, and that can certainly make it easier to

program using them. However, they still do not provide any checked correctness guarantees such

as data race freedom or determinism. The programmer still has to reason manually to ensure that

data sharing patterns are correct and synchronization is present when needed. Systems that limit

programs to use a particular parallelism structure (e.g. fork-join) can simplify this reasoning, but in

doing so, they make it impossible to express the forms of concurrency required by many programs
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such as interactive applications, servers, and actor-style programs. TWEJava is able to express all

these kinds of programs and yet provides strong correctness guarantees.

8.2 Programming models with parallel safety guarantees

Many parallel and concurrent programming systems provide various correctness guarantees but

have weaker expressive power than TWEJava. Several of these systems, including Jade [77],

Prometheus [8], OoOJava [54], Dynamic Out-of-Order Java (DOJ) [36], Regent [80], Pān̄ini[61],

and Ke et al.’s system for parallelization with dependence hints [58], guarantee deterministic se-

mantics (often with equivalence to a unique sequential program), but these systems are unable to

express inherently nondeterministic algorithms, or programs where concurrency is due to external

requests or user input and the input and its timing may affect the program’s results. SMPSs [73] is

also designed to provide sequential-equivalent semantics and uses a form of effect annotations for

task scheduling, but these annotations are not verified, so the programmer is responsible for ensur-

ing that the annotations are correct in order to ensure proper program behavior. Several systems,

including (at least) Jade, DOJ, SMPSs, SvS [18], Legion [14, 82], and Aida [62], have used effects

in some form to guide run-time scheduling decisions, but TWEJava provides the ability to express

programs not supported by any of these other languages and gives stronger safety guarantees than

some of them. (We compare effect-based run-time scheduling systems to ours in Section 8.4; here

we focus on the expressiveness and parallel safety properties of these languages.)

DPJ [22, 23], Legion and SvS can express deterministic and nondeterministic programs, but not

programs requiring flexible concurrency structures, identified above. DPJ supports programs with

both deterministic and nondeterministic algorithms, and provides the strongest parallel correctness

guarantees we know of, but because it is limited to fork-join parallel structures, it is not suitable

for many concurrent programs. TWEJava supports a much broader class of programs than DPJ,

and provides almost as strong correctness guarantees: its primary weakness compared to DPJ is

that it only provides limited protection from deadlocks.

Like DPJ, Legion cannot express programs with general concurrency and synchronization pat-

terns, because there are no mechanisms for explicit “join” synchronization between tasks (tasks
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block for other tasks only due to interfering effects, enforced by the scheduler) and the effects of

a parent task must be a superset of the effects of its child tasks. Also, Legion can provide strong

correctness guarantees only for programs that essentially have sequential-equivalent semantics, ex-

cept that certain operations may be commutative. This is a more restrictive programming model

that TWEJava or even DPJ. (Legion also provides modes which are more flexible but provide few

guarantees about access to shared data, so the programmer is responsible for managing it correctly,

as in traditional multi-threaded programs.) Legion has a hierarchical region system with some

valuable features, including allowing more dynamic assignment of data to regions, and supporting

explicit program management of locality via region maps. Legion’s run-time scheduling approach

is discussed below, in Section 8.4.

SvS executes tasks according to a statically-defined task graph, which limits the language to

a narrower range of concurrent applications than TWEJava. SvS allows both deterministic and

nondeterministic algorithms, and guarantees data race freedom to such programs. One key dif-

ference is that SvS infers potential conflicts due to implicit sharing of data between tasks, and

uses an approximate run-time analysis of the memory possibly accessed by a task. While these

features reduce the annotation burden on the programmer, they increase the likelihood of spurious

dependences (“false positives”) that prevent two tasks from executing in parallel. TWEJava does

not suffer from such false positives when checking for effect interference between tasks.

JOE [32] and MOJO [29] define sophisticated ownership-based effect systems with hierarchical

regions. These can be used to provide deterministic semantics for object-oriented programs with

hierarchical data structures, although these works do not define a full parallel programming model.

They are designed for use in static type checking, in which case the use of purely static checks would

impose expressiveness limitations similar to DPJ. Also, these systems have limited expressiveness

for parallelism over arrays, which is crucial for many parallel algorithms.

CoreDet [16], Kendo [70], Grace [17], and DMP [33] allow multithreaded programs to be exe-

cuted with a deterministic execution order that does not vary from run to run, but they do not

provide structured parallelism constructs, and the deterministic execution order they provide is not

related in an obvious way to the program code and may change if the code or input changes, which
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limits their utility as tools for reasoning about program behavior.

Aviram et al. [13], Burckhardt et al. [27], and Hower and Hill [51] propose models for determin-

istic parallelism in which concurrent threads of execution essentially have private copies of shared

data which may be updated independently, but these are merged deterministically at join points.

These models are restricted to fork-join computations, and cannot support the more general paral-

lelism patterns that TWE can. Moreover, the data duplication and copying that they require may

involve significant overheads.

A number of systems provide safety guarantees such as data race freedom, but do not address

stronger properties such as determinism. Several papers [25, 2, 53, 9] provide language mechanisms

for enforcing a locking discipline in nondeterministic programs, to prevent data races and deadlocks.

These systems generally support an expressive range of programs but they do not aim to guarantee

stronger, e.g., deterministic, semantics. RCCJava [38] can ensure data race freedom, but it does not

provide structured concurrency constructs or guarantee other safety properties such as determinism.

SharC [9] allows flexible concurrent control flow while providing a guarantee of data race freedom,

but it also does not provide structured concurrency constructs and cannot guarantee stronger

properties like determinism.

8.3 Actors

One significant style of concurrent programming is actors [6]. In the basic actor model, a concurrent

system is composed of several actors, each potentially having local state, but no shared state

between the actors. Actors communicate by sending messages to other actors, and computation is

done at each actor in response to the messages received. Each actor processes only one message

at a time, so all concurrency is due to the simultaneous execution of different actors. Actor-style

programs are natural to express using our system: a region can be defined to correspond to each

actor, and tasks with effects on that region can be thought of as equivalent to messages sent to and

processed by that actor.

Several actor-like programming models for shared memory systems [79, 57, 67] broaden the basic

actor model to include some form of shared state between actors, but these systems are generally
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less flexible than our effect system, and in some cases do not guarantee data race freedom. The

TWE model, when used to write actor-style programs, can express both shared state between

actors and internal concurrency within actors, while guaranteeing data race freedom as well as,

where desired, deterministic, sequential-equivalent semantics for parallel algorithms used within an

actor.

8.4 Systems using effect-related run-time task scheduling

Several systems use some type of effects for run-time task scheduling. Many are limited to some

form of structured parallelism, and most do not support a rich effect system like ours. Jade [77],

Pān̄ini [61], and Dynamic Out-of-Order Java [36] all express effects of tasks directly in terms of

accesses to memory objects or locations. Concurrent Collections [28], CellSS [15], SMPSs [73],

StarPU [12], and the system of Vandierendonck et al. [85] use a task dataflow model and express

the dependencies of tasks in terms of memory objects, or with explicit task-to-task dependencies.

SMPSs [73] allows parallelization of sequential codes by having the programmer specify tasks with

input and output parameters (variables or array slices) and scheduling based on the dependencies

between them. Jade [77] schedules tasks based on their effects, but its effect specifications are

less expressive than ours. They are based on shared objects and do not include any hierarchical

structure or wildcards. Pān̄ini [61] dynamically schedules tasks based on effects in terms of reads

or writes on fields of classes.

Dynamic Out-of-Order Java [36] uses a combination of static and dynamic pointer analysis of

heap data to allow parallelization of programs with sequential-equivalent semantics. Synchroniza-

tion via Scheduling [18] uses a static task graph and analyzes effects based on a hash of accessed

memory object signatures, which may give rise to false conflicts. In Prometheus [8], programmers

put each task in a serialization set, and a scheduler serializes tasks in the same set. Aida [62]

detects conflicts by analyzing dynamically-observed effects at the level of shared objects. It imple-

ments ‘delegated isolation’, where when two tasks conflict, one is rolled back and ‘delegated’ to be

performed by the other.

None of the systems mentioned above support a rich effect system like ours. They generally
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express effects in terms of accessed objects or simple identifiers, with no notion of hierarchy or

wildcards. Our effect system, adapted from DPJ, offers a major advantage over them in its ability

to express parallel access patterns on hierarchical or modular data structures. This rich effect

system, in which various effect specifications can refer to different but overlapping sets of memory

locations, creates a challenge for the scheduler in identifying when effects conflict. Our work on

TWEJava, and in particular its scheduler, seeks to solve this problem while maintaining good

performance.

Legion [14, 82] is similar to our system in that it does use effects on hierarchical regions for

run-time task scheduling, but it supports only structured parallelism and is designed so that only

the effects of child tasks of the same parent need to be compared against each other. Because of

this, Legion does not need to employ a global data structure keeping track of effects, instead using a

separate tree structure for scheduling the child tasks of each parent task. Legion does not describe a

way to access these individual tree data structures in parallel. Unlike Legion, we define a scheduling

algorithm that efficiently and scalably supports the less restrained TWE programming model, in

which the effects of any two tasks might conflict. Our scheduling algorithm uses a single global tree

structure and defines synchronization patterns that permit safe parallel access to that tree, which

is critical for scalable scheduling. Unlike Legion, the TWE model also supports explicitly waiting

for a task, and to support this while not introducing the possibility of deadlock, we define methods

for prioritizing a task and rechecking its effects, which are not present in Legion. We believe our

scheduling algorithm could be adapted to work with Legion’s region system if it were used in an

implementation of the TWE model.

Myrmics [64] also schedules tasks based on hierarchical region-based effects, but it too uses

a structured parallelism model that is much more constrained than TWE. It is designed for a

custom many-core architecture and supports parallelism in scheduling operations only by parti-

tioning the region tree between several dedicated scheduler cores. This parallelization strategy is

not appropriate for the general-purpose multi-core systems we target.

Functional programming systems like Sisal [37] and I-structures [11] support efficient parallel

execution of functional programs, via run-time schedulers. These systems do not have to control
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concurrent access to mutable data in an imperative programming model, which is the core problem

addressed by our use of effects.

8.5 Multi-granularity locking in databases

My work on the tree-based scheduler is also related to other work that uses hierarchical structures for

synchronization, in particular multiple-granularity locking [40] in databases. There is a significant

body of work in this area, aiming to define efficient locking schemes that allow concurrent access

where possible for data in databases. This is a different problem domain from my work on scheduling

tasks with effects, and differences in the locking approach include that we always proceed from the

root of the tree rather than upwards, and do not use intention locks. In future work, some of

the techniques from this body of work could potentially be applied to our tree-based scheduling

approach, e.g. supporting dynamic adjustment of the granularity at which the tree is locked [39].

8.6 Run-time checks used for speculative parallelization

Systems which use some form of speculative parallelism are another important class of related

work. They are particularly related to my system for supporting dynamic effects, which itself uses

speculative parallelism with run-time checks, but they are also related to the basic TWE system

in that they reflect alternative approaches for providing some of the safety properties that it does.

Transactional memory (TM) systems [42, 43, 44, 34, 3] are one major category of this work.

TM systems use hardware and/or software mechanisms to monitor the memory accesses of atomic

blocks as they are executing, and detect if two atomic blocks try to perform conflicting accesses.

If this happens, one of the blocks will be aborted and rolled back, and retried later. Our system

to support dynamic effects is similar in that it also involves speculative parallelism and detects

conflicts between tasks based on their memory effects. However, we rely on programmer-specified

and statically-checked effect annotations, which allow us to summarize a potentially large number

of memory accesses using a single effect. This contrasts with TM systems that typically need checks

at the level of individual memory accesses. Because of this, software-based TM systems often have
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high overheads; hardware TM systems can have lower overheads but are generally limited in the

size of transactions they support.

TM systems enforce atomicity between atomic blocks, but they do not provide a programming

model that can give stronger safety properties. The TWE model guarantees task isolation, data-race

freedom, and a form of atomicity for all operations in a program. TM provides only atomicity, and

to avoid exorbitantly high overheads many TM systems only guarantee isolation between atomic

blocks and not with respect to other operations (weak isolation). Moreover, the TWE model

provides a mechanism for guaranteed-deterministic computations, which can be used alongside

nondeterministic computations within one program; TM systems do not provide this.

Non-deterministic algorithms in DPJ also use atomic blocks implemented via an STM sys-

tem [23]. This mechanism allows non-deterministic computations to be expressed in DPJ, but

as noted in Chapter 1, DPJ is limited to structured fork-join computations and cannot express

other forms of concurrency. Due to overheads of the STM, this mechanism has fairly poor absolute

performance.

Another class of related work involves systems that can speculatively parallelize programs or

run parallel programs while providing a guarantee of determinism, using checks based on memory

accesses to detect conflicts. Behavior oriented parallelization [35] speculatively parallelizes programs

and uses checks based on the pages of memory accessed by parallel tasks. Grace [17] takes a similar

approach to guarantee determinism for fork-join parallel programs. CoreDet [16] does the same for

general threaded programs by either tracking ownership for memory chunks or buffering stores for

later commit. In general, these systems require monitoring of memory accesses similar to that used

by TM systems, which can cause significant overheads.

Galois [60] and Aida [62] also use speculative parallelism. They detect conflicts at the level of

shared objects and must be able to roll back operations on a conflict. Neither has an equivalent to

the hierarchical structure and wildcards in our effects, and both are limited to structured, fork-join

concurrency. Galois provides guarantees such as data race freedom if used correctly (e.g. only

accessing shared data through certain framework methods, and correctly specifying if accesses are

commutative), but it provides no static or dynamic mechanism for enforcing these correctness
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requirements. Aida implements ‘delegated isolation’, where when two tasks conflict, one is rolled

back and ‘delegated’ to be performed by the other. It detects conflicts by analyzing dynamically-

observed effects at the level of shared objects, making it easier than in our system to detect when

the effects of two tasks conflict.

Blelloch et al. [19] use a system of deterministic reservations in which an operation within a

parallel computation can be specified as a combination of a reserve step that is responsible for

checking for conflicts and a commit step that performs updates if no conflicts are found. This

is similar to our mechanism for dynamic effects in that it does checks for conflicts at run time

and uses speculative parallelization. If used correctly, this system can provide a strong safety

guarantee (determinism). However, this system requires the programmer to write custom code

for the reservations in each parallel computation (which may be fairly complicated and rely on

algorithm-specific properties), and it provides no automatic mechanism for checking that this code

is correct. Also, the deterministic reservation mechanism is used only for parallel loops, so is less

flexible than the general task-based parallelism of TWE.

120



Chapter 9

Conclusion and Future Work

In this thesis, I have presented the Tasks With Effects (TWE) model for parallel programming

and its implementation in the TWEJava language. The TWE model can provide very strong

safety guarantees while still having the expressiveness to support a wide range of parallel and

concurrent programs. These safety guarantees include task isolation, data race freedom, atomicity,

and (optionally) determinism. No other programming model I am aware of combines such strong

parallel safety guarantees with the level of expressiveness provided by TWE.

To make the TWE model practical, it is necessary to produce an actual implementation of it

and show that it can provide good performance. I have done this through the TWEJava language

and the effect-based scheduler design described in this thesis. I have shown that TWEJava can both

express a wide variety of parallel programs and give good performance on most of the programs I

have benchmarked, including some with fine-grained parallelism.

To enhance the expressiveness of the TWE model and TWEJava to an even larger class of

programs, I have also defined extensions to the TWE model that enable it to support programs

where the effects of a task can only be determined dynamically while the task is executing. I have

produced an initial implementation of this extension for TWEJava, which does provide the desired

expressivity benefit, although it currently comes at the cost of significant performance overheads.

I believe that those overheads can be substantially reduced, making it practical to use the TWE

model for many programs that require the use of dynamic effects. This will be one fruitful direction

for future work.

I believe the TWE model also presents several broader directions for possible future research.

One of these is to implement it with different effect systems. These could provide different trade-

offs between the burden of writing effect annotations, the expressiveness needed to express the
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parallelism patterns of various programs, and the run-time overheads of effect checks. Another way

of reducing the annotation burden would be to infer some or all of the annotations; some work has

been done in this area for our current effect system [84, 83], but opportunities for more extensive

annotation inference still remain.

Perhaps even more broadly, I believe it could be fruitful to extend the Tasks With Effects model

beyond shared-memory multicore systems. While this has been the focus of my work to date, the

basic concepts of tasks with effects could also be applied to other systems, potentially including

large-scale HPC systems, systems with various kinds of compute units (CPUs, GPUs, etc.), and

other distributed systems. I believe the safety benefits of the TWE model would be valuable in

all these types of systems, and applying it effectively in all these domains could provide numerous

opportunities for future research.
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