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ABSTRACT

This dissertation consists of three essays in microeconomic theory. The first

two focus on how to elicit information about the state of the world from strate-

gic agents, either to make a decision or for its own sake. The third studies a

model of decentralized two-sided matching markets.

In “Mechanisms for making accurate decisions in biased crowds”, I study de-

cision rules for finding the true answer to a binary question using the opinions

of biased agents. Taking majority rule as a baseline, I study peer-prediction de-

cision rules, which ask agents to predict the opinions of others in addition to

providing their own. Incorporating first-order beliefs into the decision rule has

the potential to recognize the correct answer even when the majority is wrong.

However, I show the majority rule is essentially the only deterministic, neutral,

anonymous, and interim dominance solvable mechanism. I then characterize

all randomized peer-prediction mechanisms with these properties, using this

result to show majority rule is the optimal mechanism in this class. Finally, I

consider a simple, non-incentive-compatible decision rule based on the me-

dian prediction that implements majority rule when all agents are strategic and

improves on majority rule when an unknown subpopulation is honest.

In “Minimum truth serums with optional predictions”, I introduce a class of

mechanisms for eliciting private correlated signals from a group of expected

score maximizers without external verification or knowledge about the agents’

belief structure. Built on proper scoring rules, these minimum truth serums ask

agents to report a signal and a prediction of the signals of others. If two agents

with the same signal have the same expectations about the signals of others,

the Bayesian incentive compatibility of these mechanisms follows with no fur-

ther assumptions on the agents’ belief structure. With a slight modification,

the mechanism is still feasible and incentive compatible when the prediction

portion of the report is optional.

In “Uncoordinated two-sided matching markets”, I study a decentralized pro-
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posal model in joint work with Juan Fung. The study of two-sided matching

markets is now a major subfield of market design, focused primarily on the

variants of the deferred acceptance algorithm. As a centralized mechanism, de-

ferred acceptance is guaranteed to return a stable match. However, there is little

definite work on whether uncoordinated agents find a stable matching on their

own and the consequences if not. We show that small to moderately large un-

coordinated markets reach a stable match within n2 proposals from each agent

when the proposal strategy isn’t completely naive. We also show that stopping

the proposal process early before stabilizing results in a more egalitarian and

higher welfare match, particular when the two sides of the market are unbal-

anced. This suggests uncoordinated markets wouldn’t benefit from centraliza-

tion unless there is an obvious failing like market unraveling.
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To anyone curious.
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CHAPTER 1

MECHANISMS FOR MAKING ACCURATE
DECISIONS IN BIASED CROWDS

In October 2015, a team of inmates from Eastern New York Correctional Facility

debated a three-time national champion team from Harvard. After hearing ar-

guments, the panel of judges decided by majority vote in favor of the inmates1.

Majority rule is a natural way to make group decisions like this one for multi-

ple reasons. First, it is simple and transparent. Second, the procedure does not

favor one side over the other or make distinctions between judges. Finally, it

is strategically robust, making honest revelation a dominant strategy if agents

want the final decision to match their personal opinion.

Although judges might vote to favor their opinion, the point of the competi-

tion is to decide which team is most skilled, not to aggregate the judges’ pref-

erences. The choice of winner should accurately reflect which team did better

(according to some criteria) for the debate to be legitimate. However, the only

way to identify which team is most skilled is through the judges’ subjective as-

sessments, and a judge’s opinion could be correct or mistaken relative to the

underlying truth. Since individual judges can be mistaken, the goal when aggre-

gating opinions is to maximize the probability of choosing the most deserving

team.

Information aggregation through voting is a long-studied question initiated

by the Marquis de Condorcet in 1785 in his essay on majority decisions. The

standard model following Condorcet assumes agents have noisy signals about

the true state that are correct more often than not. An example would be debate

judges who are 70% likely to vote for Harvard when the Harvard team is in fact

better and 30% likely to vote for Harvard when the inmates are actually better.

Under Condorcet’s model, majority rule is more accurate than any given judge,

smoothing out noise in opinions to identify the “wisdom of crowds.” However,

1Leslie Brody, “Prison vs. Harvard in an Unlikely Debate,” The
Wall Street Journal, Oct. 8, 2015. <http://www.wsj.com/articles/
an-unlikely-debate-prison-vs-harvard-1442616928>

1
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aggregating noisy signals through majority rule can make matters worse when

bias is present. Given the associations that come with Harvard undergradu-

ates versus inmates convicted of violent crimes, a fair assessment is a lot to

ask of a judge. Bias wouldn’t be surprising and could go in either direction—

discounting inmates because of their background or favoring them as under-

dogs.

Some degree of bias isn’t fatal to the performance of majority rule. For in-

stance, suppose each judge is 60% likely to favor Harvard in the state of the

world where they are best and 90% likely to favor the inmates when they are

best. This is a scenario where the judges are more impressed by a “good” team

of inmates than a “good” team from Harvard. Nevertheless, when these opin-

ions are aggregated, the group decision still favors the best team in each state

of the world, with the only difference being Harvard wins by a smaller margin.

In contrast, suppose the bias is stronger and judges are 40% likely to correctly

favor Harvard and 90% likely to correctly favor Eastern Correctional. The opin-

ions are still correlated with the truth—comparatively more judges favor Har-

vard when they are best. Nonetheless, the Harvard supporters will be in the

minority on average in each state. Majority rule will choose the inmates regard-

less of the truth.

Debate organizers concerned about potential bias could pick a decision pro-

cedure other than majority rule. However, doing so would require insight into

the precise nature of the bias. For instance, a unanimity rule where the Harvard

team wins only if all judges support them would counteract a bias towards Har-

vard, but would also exacerbate a bias towards the inmates. Debate organizers

might not trust themselves to adjust the decision rule in the right direction, and

the teams would be understandably upset at the asymmetric standard even if

they did. A satifactory alternative to majority rule needs to be neutral, treating

each option symmetrically.

Furthermore, groups like corporations, unions, or homeowners’ associations

need a single rule that can be applied consistently across different contexts.

Achieving this can be difficult given that the degree of bias may change how we

should interpret a particular level of support for one team over another. For in-

stance, if judges are biased towards Harvard, Harvard may deserve to lose even

with a two-thirds majority. A single rule responsive to different circumstances

has to collect additional information from agents beyond their opinions. In par-

ticular, a decision rule could ask agents to predict the opinions of other group
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members. By comparing the actual level of support with the predicted level

of support, a “peer-prediction” decision rule can potentially make more accu-

rate decisions than majority rule without knowing the likelihoods of opinions

in each state.

Consider the following example: three judges are independently and identi-

cally 40% likely to correctly favor the Harvard team and 90% likely to correctly

favor the inmates. Each judge puts equal prior probability on either team be-

ing best and updates their beliefs after observing their own opinion using Bayes’

rule. Let the opinion of judge i be xi and the best team be ω. Under majority

rule, the Harvard team wins with probability

Pr[Majority for Harvard |ω= H] = Pr[Three Harvard supporters |ω= H]

+Pr[Two Harvard supporters |ω= H]

=
(

4

10

)3

+3

(
4

10

)2 6

10
= 0.35

when they’re best, and the inmate team wins with probability 0.97 when they

are best.

Rather than use majority rule, let’s say Harvard wins if the percentage in sup-

port of Harvard is greater than the average predicted support for the team. For

example, if the average predicted support for Harvard is 70%, then Harvard

would win with 80% support and lose with 60%, despite still being favored by

the majority. Framing the rule in terms of Eastern Correctional would produce

identical decisions, so this rule is neutral. Conditional on their opinion, a Har-

vard supporter expects another judge to support Harvard with probability

Pr[x j = H |xi = H] = Pr[x j = H |ω= H] ·Pr[ω= H |xi = H]

+Pr[x j = H |ω= EC] ·Pr[ω= EC |xi = H]

= 4
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1
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10

1
2 + 1

10
1
2

= 0.34

Similarly, an Eastern Correctional supporter expects others to support Harvard

with probability 0.22. Assume all judges reveal their beliefs honestly. Since the

average predictions for Harvard are 34% with three supporters, 30% with two,

26% with one, and 22% with zero, Harvard wins unless the judges unanimously

support the inmates. Under this rule, the probability of Harvard winning con-
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ditional on being best is

Pr[Harvard support > predicted |ω= H] = Pr[100% support > 34% predicted |ω= H]

+Pr[66% support > 30% predicted |ω= H]

+Pr[33% support > 26% predicted |ω= H]

=
(

4

10

)3

+3

(
4

10

)2 6

10
+3

4

10

(
6

10

)2

= 0.78

and 0.73 for the inmates. The prior probability of this peer-prediction rule mak-

ing the correct decision is then

Pr[ω= H] ·Pr[Harvard support > predicted |ω= H]

+Pr[ω= ENYCF] ·Pr[ENYCF support > predicted |ω= EC]

= 1

2
0.78+ 1

2
0.73 = 0.75

compared to 0.66 for majority rule, producing more accurate decisions on aver-

age in addition to being fairer between states.

While promising, a problem remains with this particular peer-prediction rule:

it’s not incentive compatible if judges want the decision to match their own

opinion. Incentive compatibility guarantees participants will report honestly

even if they’re willing to misreport. A judge would benefit from strategically

claiming all others will have the opposite opinion. If a Harvard supporter pre-

dicts no other judges will favor Harvard, the average prediction will be lower,

making it possible to secure a win with fewer supporters. Analogously, an in-

mate supporter maximizes the chances of an inmate win by predicting unan-

imous support of Harvard from the others. Under this strategy, the averaged

predictions of how many other judges favor Harvard are:

Harvard support Inmate support Average predictions % Harvard support
0 3 100% 0%
1 2 66% 33%
2 1 33% 66%
3 0 0% 100%

The percentage of Harvard supporters is greater than the average “predic-

tion”(i.e. the condition for a Harvard win under this proposed peer-prediction

rule) if and only if a majority favors Harvard. Because of strategic reporting, the

outcome becomes identical to majority rule, and the potential benefits of using

peer-prediction evaporate.
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In this paper, I investigate whether incentive-compatible peer-prediction de-

cision rules exist that are more accurate than majority rule. I require candidate

peer-prediction rules to be neutral—symmetric between the two choices—and

anonymous—symmetric between group members—like majority rule.

Different types of incentive compatibility constraints provide different guar-

antees for when a participant will truthfully reveal their information. Bayesian

incentive compatibility is a standard requirement but is acknowledged to carry

strong assumptions. A more robust alternative is dominant-strategy incentive

compatibility. Majority rule, for instance, is dominant-strategy incentive com-

patible because voting for one team always makes it more likely they’ll win.

However, requring dominant-strategy incentive compatibility makes it impos-

sible for the decision to incorporate predictions. Instead, I rely on an inter-

mediate form of incentive compatibility based on iterated deletion of weakly

interim-dominated strategies. A decision rule is robustly implementable if hon-

est relevation survives this process of iterated deletion.

The paper proceeds as follows. Section 1.1 provides related literature. Sec-

tion 3.2 describes the model and design objective. In section 1.3, I show pre-

dictions can play almost no role in deterministic, neutral, anonymous, and ro-

bustly implementable decision rules. As long as every agent thinks it’s possi-

ble another agent holds the opposite opinion, the decision matches majority

rule. Section 1.4 provides a characterization of randomized, neutral, anony-

mous, and robustly implementable decision rules in terms of a common func-

tional form that varies only with the choice of two non-decreasing functions

and two real numbers. In section 1.5, I numerically search for the optimal ran-

domized mechanism using the analytical characterization of the previous sec-

tion. Although randomized decision rules can non-trivially depend on agents’

predictions, majority rule outperforms all rules that incorporate predictions.

Despite the promise of peer-prediction rules for identifying the true state more

frequently, these results show majority rule can’t be beaten subject to incentive

constraints.

However, since it is plausible some agents are willing to give sincere predic-

tions, section 1.6 considers non-incentive-compatible rules that make more ac-

curate decisions than majority rule when some agents are unconditionally hon-

est and become equivalent to majority rule when all agents are strategic. For

instance, one simple rule based on a weighted combination of the percentage

in support and the median prediction makes 25-50% fewer mistakes than ma-

5



jority rule when half of the participants report honestly and half report strategi-

cally. Finally, section 3.4 concludes.

1.1 Related literature

Extensive work has been done to answer when groups can make correct deci-

sions through voting procedures and when information can be elicited from

strategic agents. Research on the accuracy of collective decisions dates to the

Marquis de Condorcet’s essay on majority rule. Condorcet’s jury theorem now

has many different forms (Grofman et al. 1983). In its standard version, it says

majority rule is almost certain to choose the correct state as the number of

agents voting grows large. Furthermore, simple majority rule is the optimal

decision rule when each state has equal prior probability and agent’s opinions

are distributed identically and independently conditional on the state (Nitzan

and Paroush 1982).

Across various extensions, the critical assumptions of the Condorcet jury the-

orem are that the average voter is more likely to favor the correct state than not

and preferences do not change conditional on being the pivotal voter. Austen-

Smith and Banks (1996) reconsider the second assumption, showing that sin-

cere voting is typically not equilibrium behavior when agents have aligned pref-

erences for the decision to match the true state. Following work on strategic vot-

ing has primarily focused on comparing particular voting rules, often reaching

the conclusion that requiring unanimity is worse than simple majority or any

supermajority (Feddersen and Pesendorfer 1998; Gerardi 2000; Duggan and

Martinelli 2001). In this paper, I take a mechanism design approach to address

violations of the first assumption while retaining the second.

A parallel line of research on eliciting information from strategic agents

with differing preferences was initiated by Crawford and Sobel (1982). Many

papers have considered elicitation from groups of experts, including Austen-

Smith (1993); Feddersen and Pesendorfer (1997); Krishna and Morgan (2001);

Battaglini (2004). Of particular relevance, Li et al. (2001); Wolinsky (2002);

Glazer and Rubinstein (2004); Gerardi et al. (2009); Chwe (2010) take a mech-

anism design approach. Each of these considers implementation in Bayes-

Nash equilibrium in contrast to my approach based on interim dominance-

solvability and a lack of common knowledge about preferences or the informa-

6



tion structure.

Peer-prediction mechanisms have been studied in the context of eliciting cor-

related private signals from groups of payment maximizers without preferences

over the conclusions drawn from the collected information. Prelec (2004)’s

Bayesian truth serum elicits signals in Bayes-Nash equilibrium even when the

principal has no knowledge of the common prior or signal likelihoods, though

the result holds only for a sufficiently large number of participants that depends

on the unknown prior. Witkowski and Parkes (2012a) construct a variant of Pr-

elec’s mechanism that is incentive compatible for finite participants in the case

of binary questions. Zhang and Chen (2014) and Riley (2014) provide detail-

free mechanisms that are Bayesian incentive compatible for finite participants

and any number of signals with arbitrary correlation structure. To my knowl-

edge, this is the first paper to consider a peer-prediction mechanism without

transfers.

The Bayesian truth serum scores also function as an anonymous and neu-

tral decision rule that asymptotically chooses the correct state when agents are

Bayesians with conditionally IID signals and a common prior, even in the pres-

ence of statistical bias (Prelec et al. 2014). However, this decision rule is not

incentive compatible if agents have preferences over the result. Since the mech-

anism chooses the answer with the highest average score and scores can be un-

boundedly negative, a single agent can unilaterally force one answer off the ta-

ble even if all others are honest. Although I consider non-incentive-compatible

decision rules in this paper, my mechanisms dampen the influence of strategic

behavior.

1.2 Model

A group of n agents face a decision between two choices A and B . The state

ω ∈ {A,B} denotes the “correct” decision according to some standard, such as

the most skilled of two competitors, the action that will maximize profits, or the

true answer to a question. Where convenient, let the states have values A = 1

and B = 0. From the mechanism designer’s perspective, the two states have

equal prior probability.

Each individual i has an opinion xi ∈ {a,b} about the state and a prediction

pi ∈ (0,1) about the proportion of other agents who hold opinion a. In a slight

7



abuse of notation, let xi also be an indicator variable with values xi = 1 if i holds

the a opinion and xi = 0 if i holds the b opinion. Let na =∑
i xi be the number

of participants stating opinion a, nb = n −na be the number of participants

stating opinion b, and x̄ = na/n be the proportion of respondents with opinion

a. Let x̄−i =∑
j 6=i x j /(n−1) be the proportion of agents other than i with opinion

a.

Opinions are distributed independently conditional on the state with likeli-

hoods qA = Pr(xi = a |ω= A) and qB = Pr(xi = a |ω= B). The likelihoods satisfy

qA > qB , so opinions are positively correlated with the corresponding state but

are otherwise unknown to the mechanism designer.

The prediction pi = Ei [x̄−i |xi ] summarizes agent i ’s subjective beliefs about

the opinions of others, and will be treated as a random variable distributed in-

dependently conditional on xi from the perspective of the mechanism designer.

Although I view agents symmetrically, the agents themselves can have arbitrary

beliefs consistent with their predictions, seeing correlations between individu-

als or thinking particular agents are more likely to hold a position. For example,

pi = 0.5 is consistent with believing all other agents are equally and indepen-

dently likely to hold either opinion, with others being perfectly correlated and

equally likely to hold each opinion, or with half of the agents holding one opin-

ion with certainty and half holding the other with certainty. I make no assump-

tions about higher-order beliefs.

Since agents can see correlations or distinctions between others, predictions

aren’t required to be consistent with Bayesian updating based on my specifi-

cation. However, for predictions to retain some connection to the underlying

state, I assume agents treat their opinions as IID signals on average, holding

a “prior prediction” between the two likelihoods that is then updated upward

upon observing xi = a or downward for xi = b plus some noise. In particular, I

model predictions as normally distributed on a logistic scale:

ln
(

pi
1−pi

)
∼ Normal

(
µxi ,σ2) s.t. (1.1)

µa =µ+γ, µb =µ−γ
µ=α ln

(
qA

1−qA

)
+ (1−α) ln

(
qB

1−qB

)
for some parameters α ∈ [0,1] and γ ∈ R++, which can be interpreted as the

prior belief that ω = A and the amount of evidence participants consider their

8



own opinion to be, respectively. The distribution of agent predictions comes

into play when numerically evaluating the accuracy of mechanisms, so the

choice of distribution can change the level of performance but doesn’t substan-

tively affect results.

1.2.1 Peer-prediction decision rules

A peer-prediction decision rule T for n agents takes opinions and predictions

as inputs to produce a choice between the two states. Decision rules can be

deterministic or randomized. A deterministic decision rule has output T (x, p) ∈
{A,B ,∅}, where∅ is a “null choice” that can be used in situations with exact ties.

A randomized decision rule has output T (x, p) ∈ [0,1] denoting the probability

A is chosen.

I focus on neutral and anonymous decision rules, retaining the properties of

majority rule that no bias is built in towards either state or the opinion of any

individual:

Definition 1.1 (Neutrality). A mechanism T (x, p) is neutral if relabeling states

A and B results in the complement of T , i.e. T (x, p) = 1−T (1− x,1−p) for all x

and p.

Definition 1.2 (Anonymity). A mechanism T (x, p) is anonymous if relabeling

agents does not change T , i.e. T (x, p) = T (σ(x),σ(p)) for all permutations σ.

The mechanism designer’s objective is to maximize the probability the deci-

sion matches the true state:

max
T

Pr[T (x, p) =ω] (1.2)

or equivalently

min
T

E[ |ω−T (x, p)| ]. (1.3)

Each agent prefers the decision to match their own opinion. In particular, an

agent with xi = a chooses a report (x ′
i , p ′

i ) to solve

max
(x ′

i ,p ′
i )

Pr[T ((x ′
i , x ′

−i ), (p ′
i , p ′

−i )) = A] (1.4)

9



based on their conjecture about the reports (x ′
−i , p ′

−i ) of others. Agents with

xi = b then minimize the above objective.

1.2.2 Robustly implementable mechanisms

Mechanism design involves finding a procedure for collecting messages from

agents and aggregating the reports into the desired outcome for each type pro-

file while respecting the incentives of each participant. In general, a mecha-

nism M = (M , g ) consists of a space of message profiles M and an outcome

function g : M → A, where A is the set of possible outcomes. A mechanism

implements T when the outcome of the induced game under some solution

concept matches T .

Peer-prediction mechanisms have a message space where agents report an

opinion and a probability distribution over the opinions of others. A peer-

prediction mechanism can be seen as a “semi-direct” mechanism, asking

agents to report a portion of their type rather than their full type, including

a hierarchy of higher-order beliefs. The Bayesian truth serum (Prelec 2004)

is a leading example of a peer-prediction mechanism. This mechanism has

truth-telling as a Bayes-Nash equilibrium for sufficiently large groups of pay-

ment maximizers with an unknown common prior. The average difference in

group scores can distinguish the true answer asymptotically, even with in the

presence of false consensus (Prelec and Seung 2007). However, existing peer-

prediction mechanisms assume agents care only about payments, not about

influence. If agents have preferences over the aggregate score used to estimate

the state, the Bayesian truth serum becomes highly manipulable.

Additionally, existing peer-prediction mechanisms depend on agents sharing

a common prior 2. While common priors are often singled-out as unrealistic,

a possibly more concerning feature is that agents receive a single signal with

agreed-upon conditional likelihoods. Realistically, each expert has seen evi-

dence of various levels of strength that he may or may not have updated on

properly, which points toward some form of robust implementation beyond

Bayes-Nash equilibrium.

Standard notions of robust implementation include implementation in

dominant-strategy or ex-post Nash equilibrium. However, any mechanism that

2Unless priors and posteriors can be elicited separately, as in Witkowski and Parkes (2012b).
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makes one strategy a best response regardless of the types of others can’t be

sensitive to predictions in equilibrium. Two agents with the same opinion and

different predictions have the same preferences ex-post, so the same outcome

will be assigned when the two behave identically. Independence from higher-

order beliefs is usually seen as a benefit, but comes at the cost of ruling out

peer-prediction mechanisms before we even begin. Instead, I’ll consider a peer-

prediction mechanism to be robustly implementable if honest reporting is the

dominance solvable outcome of the mechanism, surviving iterated deletion of

weakly interim dominated strategies. Throughout the paper, I will rely on only

two stages of strategy deletion.

Definition 1.3 (Weak interim dominance). A strategy mi weakly interim domi-

nates m′
i for an agent of type (xi , pi ) if∫ ∫

ui (xi , g (mi ,m−i ))dφ(m−i |x−i , p−i )dπ(x−i , p−i ) ≥ (1.5)∫ ∫
ui (xi , g (m′

i ,m−i ))dφ(m−i |x−i , p−i )dπ(x−i , p−i ) (1.6)

for all beliefs π (a distribution over type profiles of others) and φ (a distribution

over strategy profiles conditional on type profiles) such that Eπ[x̄−i ] = pi to be

consistent with i ’s type, with strict inequality for some beliefs.

Definition 1.4 (Dominance solvability). Given a mechanism M = (M , g ), let

DM
i (xi , pi ) be the set of strategies mi that survive iterated deletion of all weakly

interim dominated strategies at each stage for agent i of type (xi , pi ). A mecha-

nism is interim dominance solvable if g (m) = g (m′) for all profiles with mi ,m′
i ∈

DM
i (xi , pi ).

Definition 1.5 (Robust implementation). A mechanism M = (M , g ) robustly

implements a peer-prediction mechanism T if the unique dominance solvable

outcome when agents have types (x, p) is T (x, p).

Definition 1.6 (Robust incentive compatibility). A peer-prediction mechanism

T (x, p) is robustly incentive compatible if honesty is an interim best response for

all conjectures about others’ types consistent with the agent’s prediction:∫
T ((a, x−i ), (pi , p−i ))dπ(x−i , p−i ) ≥

∫
T ((x ′

i , x−i ), (p ′
i , p−i ))dπ(x−i , p−i )

≥
∫

T ((b, x−i ), (pi , p−i ))dπ(x−i , p−i )
(1.7)
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for all x ′
i , pi , p ′

i , and beliefs π such that

Eπ[x̄−i ] =
∫ #{x j = a | j 6= i }

n −1
dπ(x−i , p−i ) = pi .

The following proposition provides a version of the revelation principle for

this setting:

Proposition 1.1. A mechanism M = (M , g ) can robustly implement T only if T

is robustly incentive compatible.

Proof of Proposition 1.1 (Robust incentive compatibility). Suppose mechanism M =
(M , g ) robustly implements T , assigning outcome g (m) = T (x, p) for each strategy pro-

file m ∈∏
i DM

i (xi , pi ). Hence, given any mi ∈ DM
i (a, pi ) and m′

i ∈ DM
j (x ′

j , p ′
j ), we must

have∫
T ((a, x−i ), (pi , p−i ))dπ(x−i , p−i ) =

∫ ∫
g (mi ,m−i )dφ(m−i |x−i , p−i )dπ(x−i , p−i )

≥
∫ ∫

g (m′
i ,m−i )dφ(m−i |x−i , p−i )dπ(x−i , p−i )

=
∫

T ((x ′
i , x−i ), (p ′

i , p−i ))dπ(x−i , p−i )

for all beliefs π (a distribution over type profiles of others) and φ (a distribution over

strategy profiles conditional on type profiles) such that

Eπ[x̄−i ] = pi and

Prφ[m−i |x−i , p−i ] > 0 =⇒ m−i ∈
∏

j 6=−i
DM (x j , p j )

since mi either weakly dominates m′
i or is equivalent to it when agent i is type (a, pi )

and other agents play their dominance solvable strategies. This follows similarly for

types (x ′
i , p ′

i ) and (b, pi ), yielding the condition of robust incentive compatibility in line

1.7.

Although the revelation principle provides some justification for restricting

attention to incentive-compatible mechanisms, I will explore non-incentive-

compatible decision rules that implement majority rule when all agents are

strategic and outperform majority rule when some agents are honest later in

the paper.
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1.3 Deterministic decision rules

Consider decision rules which deterministically output a single state for any

given profile. Even if first-order beliefs are included in reports, these turn out

to play no functional role in the mechanism since the output is too coarse to

respond to predictions. A robustly implementable, neutral, and anonymous

decision rule can deviate from majority rule only when some agent mistakenly

claims the realized profile was impossible:

Proposition 1.2. If T : {a,b}n × [0,1]n → {A,B ,∅} is a neutral, anonymous, and

robustly implementable decision rule with T (x) =∅ only if x̄ = 1
2 , then it agrees

with majority rule on all profiles with interior predictions p ∈ (0,1)n .

The proof proceeds by showing profiles where agents correctly predict a bare

majority must agree with majority rule and then expanding the set of profiles

in agreement via incentive compatibility.

For an example of a deterministic decision rule where predictions do mat-

ter, consider a rule for three agents that maps all type profiles to the majority

opinion except for

T ((a,0), (a,0), (a,0)) = B ,

T ((a,0), (a,0), (b, p3)) = B ∀p3 ∈ (0,1],

T ((b,1), (b,1), (b,1)) = A, and

T ((b,1), (b,1), (a, p3)) = A ∀p3 ∈ [0,1),

as well as similar profiles for anonymity. This rule is neutral, anonymous, and

robustly incentive compatible, so agreement with majority rule isn’t required to

extend to all profiles with extreme beliefs.

If decisions between the two states are randomized, the probability of choos-

ing the A state in a neutral, anonymous, and robustly implementable mecha-

nism is characterized in the next section.

1.4 Randomized decision rules

Randomized decision rules map report profiles into probabilities. Unlike de-

terministic rules, this set of decision rules can non-trivially incorporate predic-

tions since there is more fine-grained control over the output.
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As shown in the following theorem, all neutral, anonymous, and robustly im-

plementable randomized rules for given n have a specific functional form that

differ only by reference types φ1,φ2 ∈ [ 1
2 ,1] and nondecreasing functions τ and

ξ. In this characterization, T can be decomposed into a base score (line 1.8)

that depends solely on the proportion of agents endorsing a. The base score is

adjusted by the mean prediction scores (line 1.9) of each agent, signed accord-

ing to their opinion. The base score provides sufficient incentive for reports

with a false opinion to be interim dominated. Conditioning on each player al-

ways wanting to honestly reveal their true opinions, agents will want to give

their true prediction as long as their marginal influence is a proper scoring rule

for the proportion of a endorsements. The parameters φ1 and φ2 describe pre-

diction types where incentive constraints bind exactly. The function ξ weights

prediction scores, controlling the magnitudes of rewards and punishments for

prediction accuracy in each region of the unit interval.

This representation embeds the design constraints into the functional form,

reducing the optimal mechanism design problem to a mildly-constrained

search across φ1, φ2, τ, and ξ.

Proposition 1.3. A neutral and anonymous peer-prediction randomized deci-

sion rule T is robustly implementable for n participants only if T can be repre-

sented as

T (x, p) = 1

2
+ sign

(na
n − 1

2

)(
τ
(∣∣na

n − 1
2

∣∣)+ 1(n odd)
δ

(n−1
2

)
2n

+ 1

n

max{na ,nb }−1∑
m=dn/2e

δ(m)

)
(1.8)

+ 1

n

∑
i : xi=a

Rξ

(
pi , na−1

n−1

)− 1

n

∑
i xi=b

Rξ

(
1−pi ,1− na

n−1

)
(1.9)

s.t. δ(m) = max
{−Rξ

(
φ1, m

n−1

)−Rξ

(
1,1− m

n−1

)
, −Rξ

(
1−φ2,1− m

n−1

)}
Rξ(pi , x̄) =

∫ pi

0
(x̄ − t )dξ(t )

for φ1,φ2 ∈ [ 1
2 ,1] and non-decreasing functions ξ : [0,1] →R+ and τ : [0, 1

2 ] →R+.

This representation is sufficient for robust implementation if τ is strictly increas-

ing and the maximal output satisfies T ((a,1), . . . , (a,1)) ≤ 1.

The requirement for sufficiency that τ be strictly increasing ensures incen-

tives are strict, while the requirement that T ((a,1), . . . , (a,1)) ≤ 1 ensures the

output of T is always a proper probability contained in the unit interval.
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1.5 Determining the optimal randomized
mechanism

Using the representation stated in the previous section, I now investigate the

optimal randomized decision rule. The mechanism design problem is to solve

min
T

E[ |ω−T (x, p)| ]

s.t. T is neutral, anonymous, and robustly incentive compatible,

which is equivalent to

min
φ1,φ2,τ,ξ

E[ |ω−T (x, p)| ] =

Pr(ω= A)E[1−T (x, p) |ω= A]+Pr(ω= B)E[T (x, p) |ω= B ]

s.t. φ1,φ2 ∈ [ 1
2 ,1] and ξ : [0,1] →R+,τ : [0, 1

2 ] →R+ are non-decreasing.

Unfortunately, this problem isn’t amenable to typical first-order solution meth-

ods. Corner solutions are likely since the objective function is linear in T and

T is affine in τ and possibly ξ. When the objective is locally affine, first-order

conditions at the boundary become trivial.

Since the conditional opinion likelihoods aren’t known to the mechanism op-

erator, a prior distribution over likelihoods must be specified. Some natural

distributions of likelihoods include:

1. Uniform over all likelihood pairs (qA, qB ) with positive correlation, satis-

fying qA > qB

2. Those concentrated around the diagonal or in a band offset from the di-

agonal

3. Uniform over all unbiased likelihood pairs, satisfying qB ≤ 0.5 ≤ qA

4. Uniform over all biased likelihood pairs, satisfying qB < qA ≤ 0.5 or 0.5 ≤
qB < qA

The first and second possibility can be interpreted as each agent independently

knowing the true state with probability λ and otherwise having opinion a with

probability (1−λ)γ and opinion b with probability (1−λ)(1−γ), with both prob-

abilities unknown. The first corresponds to a uniform prior over both λ and γ.
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The second corresponds to a normal distribution (restricted to the unit interval)

overλ and a uniform distribution over γ, allowing for more precise information

about the expertise of participants.

As noted earlier, I model predictions as normally distributed on a logistic

scale for parameters α ∈ [0,1] and γ ∈ R++ corresponding to a prior predic-

tion and an degree of adjustment, respectively. In particular, I assume α,γ ∼
Unif[0,1]. Then, taking expectations across parameters θ = (qA, qB ,α,γ) ∈
[0,1]4, the likelihood of types in a given state is

Eθ[Pr(x, p |ω,θ)] =
∫
θ

qna
ω (1−qω)n−na

( n∏
i=1

fxi (pi |θ)

)
g (qA, qB )dθ (1.10)

s.t. fxi (pi |θ) = 1
pi (1−pi )

p
2πσ2

exp

(
− 1
σ2

(
µxi(θ)− ln

(
pi

1−pi

))2
)

µxi(θ) =α ln
(

qA
1−qA

)
+ (1−α) ln

(
qB

1−qB

)
+ (21(xi = a)−1)γ.

I set σ2 = 1 to produce a realistic amount of dispersion without the distribution

bunching around 0 and 1, which tends to occur when the variance grows larger.

Figure 1.1 shows typical prediction distributions.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

fb(pi ) and fa(pi )

Figure 1.1: Prediction densities for agents with opinions a and b when
qA = 0.8, qB = 0.4, σ2 = 1, α= 0.5, and γ= 0.5.
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1.5.1 Representing decision rules numerically

As shown in Proposition 1.3, optimization over the class of robustly imple-

mentable mechanisms involves a search over three components: the scoring

rule weighting function ξ(t ), the reference typesφ1,φ2, and the extra base score

τ(t ). For a numerical solution, I approximate this infinite-dimensional problem

with a finite-dimensional representation.

In full generality, the weighting function ξ used to parameterize the scoring

rule Rξ(pi , x̄−i ) can be any non-decreasing function with a domain of [0,1]. I

approximate a general ξ by decomposing it into a continuously differentiable

function and a step function, producing a scoring rule

Rξ(pi , x̄i ) =
∫ pi

0
(x̄−i − t )ξ′(t )dt +

Kξ∑
k=1

λk1(pi ≥ tk )(x̄−i − tk ). (1.11)

On the discrete portion, ξ has Kξ atoms at points tk ∈ [0,1] with weights λk ∈R+.

On the continuously differentiable portion, I assume ξ′ is piecewise linear with

Hξ − 1 segments at regular intervals, giving the integral a manageable closed

form. The contribution to the total score on an interval [t1, t2] where ξ′(t ) is

linear is∫ t2

t1

(x̄−i − t )
(
ξ′(t2)−ξ′(t1)

t2−t1
(t − t1)+ξ′(t1)

)
dt =

t2 − t1

6

(
3(x̄−i − t1 − t2)(ξ′(t1)+ξ′(t2))− t1ξ

′(t1)− t2ξ
′(t2)

)
.

(1.12)

The score Rξ(pi , x̄−i ) is the sum of this amount on each linear segment inside

[0, pi ], so ξ′ can be parameterized by Hξ values ξ′h ∈ R+ at 0,1/(Hξ−1),2/(Hξ−
1), . . . , (Hξ−2)/(Hξ−1),1.

I also represent τ
(∣∣na

n − 1
2

∣∣) using a continuous τ′ with Hτ−1 linear segments

and Kτ weighted atoms. Between densities parameters, atom locations, and

atom weights for ξ and τ and the two reference types φ1,φ2 ∈ [ 1
2 ,1], the total

parameter space is Hξ+2Kξ+Hτ+2Kτ+2 dimensional.

1.5.2 Optimization methods

Using this finite-dimensional approximation, the scoring rule Rξ is linear in the

vectors of density values and atoms weights. The estimator T (x, p) is then con-
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vex in these parameters when x̄ > 1
2 and concave when x̄ < 1

2 due to the chang-

ing sign on the maximum taken in δ(m). Since the estimator is neutral, we are

always free to reassign labels to make a the majority opinion and x̄ ≥ 1/2 so

that the overall objective is convex in these parameters. The domain for each of

these parameters is the entire positive real line, but since the objective diverges

as any parameter diverges, the minimizer will be in some bounded interval.

The estimator is less well-behaved in terms of the reference types and atom

position. A scoring rule is quasiconcave withφ as the prediction, and an atomic

scoring rule R(pi , x̄−i ) =λk1(pi ≥ tk )(x̄−i −tk ) is quasiconvex in tk , but this won’t

necessarily aggregate up into quasiconvexity of the estimator or objective. The

estimator is also discontinuous in these parameters, though the discontinuities

will be smoothed out in expectation in the objective. Consequently, a global

optimization procedure may be necessary to thoroughly search the parameter

space.

The optimization problem is unconstrained aside from bounds on each pa-

rameter and possibly a constraint that the output is contained in the unit in-

terval. For the output to be inside the unit interval, it is sufficient that the

outcome when agents are unanimous and know they are unanimous satisfies

T ((a, . . . , a), (1, . . . ,1)) ≤ 1. Values outside the unit interval are nonsensical for

randomized decision rules. Values outside the unit interval are still undesirable

for an estimator but might be acceptable if they occur only for nearly unani-

mous inputs, which we expect to be rare. After all, there is little reason to con-

duct a survey if an answer is obvious and everyone thinks it’s obvious.

Optimization is done through the Multi-level Single-linkage global optimiza-

tion algorithm, a multistart method that uses a clustering heuristic to avoid

repeatedly returning to the same local minima on each local optimization. For

local optimizations, I used Rowan (1990)’s Subplex algorithm, a variant of the

Nelder-Mead simplex method done through a sequence of subspaces.

1.5.3 Optimal randomized decision rules don’t use predictions

Unlike deterministic decision rules, randomized decision rules are able to in-

corporate predictions while remaining robustly implementable. However, ran-

domized output typically hurts when maximizing the probability of a correct

decision or minimizing the absolute deviation, so it’s unclear whether the po-
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tential benefit is worth the cost.

Optimization over the class of robustly implementable peer-prediction deci-

sion rules returns a mechanism that depends only on opinions, using a τ with

a single step and zeroing out ξ. This finding holds varying n and the prior on

opinion likelihoods. Note the optimal randomized mechanism isn’t necessarily

majority rule. For some priors on opinion likelihoods (such as a uniform prior

over all biased likelihood pairs), the optimal mechanism chooses A when x̄ is

sufficiently high, B when x̄ is sufficiently low, and randomizes between them

with equal probability when x̄ is in an interval around 1
2 . If majority rule is the

optimal randomized mechanism that uses only opinions, then it is also optimal

in the class of peer-prediction mechanisms.

1.6 Simple peer-prediction rules with some sincere
agents

The preceding results show majority rule is either the only robustly imple-

mentable decision rule or the only one worth considering, modified at most by

randomizing in some interval around x̄ = 1
2 . Nevertheless, like most incentive-

compatible direct mechanisms, the direct mechanism for majority rule takes

strategic behavior for granted. Unlike an allocation setting, it is plausible that

some agents are willing to unconditionally tell the truth and don’t have pref-

erences over the outcome. A non-incentive-compatible decision rule could im-

plement majority rule when all agents are strategic and outperform it whenever

some agents are sincere.

If all agents are Bayesians who think opinions are IID based on underlying

likelihoods, all predictions will be inside the interval [qB , qA]. Without knowing

the likelihoods themselves, a third party could easily conclude the state is likely

to be A if the proportion of a opinions is higher than most predictions.

Although I allowed agent predictions as more dispersed, a similar identifica-

tion of the state is possible in this setting. I model predictions as satisfying

ln
( qB

1−qB

)< E
[

ln
( pi

1−pi

) ∣∣ xi = a
]

and E
[

ln
( pi

1−pi

) ∣∣ xi = a
]< ln

( qA
1−qA

)
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which implies

qB < median(pi |xi = a) and median(pi |xi = b) < qA.

All else equal, we expect the state is more likely to be A when x̄ is higher and

when the proportion of a opinions is higher than the median group predictions,

so one simple decision rule takes a linear combination of these magnitudes 3:

T (x, p) = 1(λ1(x̄ − 1
2 )

+λ2(x̄ −median(pi |xi = a))

+λ3(x̄ −median(pi |xi = b)) > 0
)

.

For neutrality, we must have λ2 = λ3. For some partial incentive compatibility,

the expression should have λ1 +λ2 +λ3 > 0 to be increasing in x̄. Under these

constraints, the decision rule above is equivalent to

T (x, p) = 1
(
x̄ + λ

2 (1−median(pi |xi = a)−median(pi |xi = b)) > 1
2

)
.

This decision rule has majority rule as the unique dominance solvable out-

come. Assuming λ > 0, all reports for an agent with xi = a are weakly domi-

nated by either (a,0) or (b,0), depending on which group median the agent has

the most influence over. Once all reports with interior predictions are elimi-

nated, reporting one’s true opinion becomes the unique weakly dominant strat-

egy for each agent. The group medians cancel out, leaving only a comparison

of x̄ to 1
2 .

When all agents are sincere, this decision rule does quite well. For instance,

when n = 50 and there is a uniform prior over opinion likelihoods, this rule

for λ= 0.9 misclassifies the state approximately 13.5% of the time compared to

25% of time for majority rule.

The median is well-known as a robust location estimator, able to withstand

up to 50% of the inputs being adversarially altered before becoming invalid.

Suppose each agent is strategic with identical probability ρ and sincere oth-

erwise. Since there are two weakly dominant strategies, it’s not obvious what

an agent will do when it expects only some agent to be strategic. If all strate-

3To avoid taking the median of an empty group, assume the output matches the unanimous
opinion if all agents agree.
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gic agents report their true opinion and a prediction pi ∈ {0,1}, then the group

medians quickly degrade to the extremes when ρ > 1
2 , reducing the decision to

majority rule.

In contrast, consider the following even simpler decision rule:

T (x, p) = 1(x̄ +λ(1
2 −median(p)

)> 1
2

)
Call this the median prediction rule. Notice the decision is simply majority rule

when λ= 0. When λ> 0, the unique weakly dominant strategy for the median

prediction rule is for an agent with xi = a to report (a,0) and an agent with

xi = b to report (b,1). Again assuming that agents have an IID chance of being

strategic, the median of all predictions isn’t influenced by strategic behavior

until ρ > 1− x̄
2 since the inputs are being manipulated by two opposing groups

of agents rather than a single-minded adversary.

Figures 1.2 and 1.3 depicts how the percentage of misclassified states for n =
15 and n = 100 respectively varies for different weights λ in the decision rule.

This is shown for varying percentages of strategic agents. The optimal weight

λ depends on the number of strategic agents, starting around λ = 0.7–0.8 for

completely honest agents and increasing as agents become more strategic. The

plots show the median prediction rule being more accurate on average for every

choice of λ (except λ < 1/n, which is too small to change the decision from

majority rule).

Figure 1.4 depicts the percentage of misclassified states as the percentage of

strategic agents varies, with λ' 0.8 optimized for ρ = 0 and λ' 0.95 optimized

for ρ = 0.5. As agents become more strategic and ρ increases to one, the median

prediction rule agrees with majority rule more and more frequently.

While there is little reason to think the median prediction rule is optimal, it is

simple and robust. Adding predictions to the group decision reduces the errors

of majority rule due to bias and, at worst, becomes equivalent to majority rule

when agents act strategically. Majority rule is still a useful means of aggregat-

ing preferences, but whenever the underlying goal is to aggregate information

and it’s conceivable that the majority can make the wrong choice, the median

prediction rule is a strong alternative.
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Figure 1.2: Effect of varying weight λ in the median prediction rule for
percentage of strategic agents ρ in {0.0,0.25,0.5,0.9} in solid to dotted lines,
respectively.

0 0.2 0.4 0.6 0.8 1

0.15

0.20

0.25

λ for n = 100

%
M

is
cl

as
si

fi
ed

Figure 1.3: Effect of varying weight λ in the median prediction rule for
percentage of strategic agents ρ in {0.0,0.25,0.5,0.9} in solid to dotted lines,
respectively.
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Figure 1.4: Percentage of incorrect decisions by the median prediction rule for
n = 50 as the percentage of strategic agents ρ varies with λ= 0.8 solid and
λ= 0.95 dashed.

1.7 Conclusion

My model takes a broad view of potential sources of bias, capturing two

sources usually considered in isolation: preference-based bias and statistical

bias. Agents with a preference-based bias have some stake in the conclusions

drawn from their information. Agents are willing to distort or garble informa-

tion themselves in order to influence the final results. This form of bias has

been thoroughly investigated in the literature under the assumption of com-

monly known information and structure in order to facilitate analysis under

Bayes-Nash equilibrium.

Alternatively, statistical bias is a systematic tendency for participants to hold

a particular opinion besides the true state of the world, even if agents are sin-

cere or have a common interest. Under this notion, opinions are biased in the

sense that their likelihoods aren’t symmetric across states of the world. In a

mild form, 80% of the population might hold one opinion when it’s correct,

while only 60% of the population hold the opposite opinion when it’s correct.

In an extreme form, an opinion might be held by 90% of the population when

it’s correct and 75% of the population when it’s incorrect, putting it in the ma-

jority regardless of the true state.

These two categories of bias are logically separate but are not easily separated

in practice. Psychological notions of cognitive bias—defined as systematic de-
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viations from some standard of judgment—can often be interpreted as a pref-

erence, and common usage conflates the two. The success of peer-prediction

mechanisms can be seen as exploiting the false consensus effect identified in

social and cognitive psychology (Marks and Miller 1987). Debate exists whether

the false consensus effect is a cognitive bias or the rational consequence of up-

dating beliefs about others conditional on one’s own attributes (Dawes 1989),

but either is compatible with my model.

I assume agents’ preferences over conclusions do not change conditional on

the reports of others, in contrast to the strategic voting literature where prefer-

ences can change dramatically after updating on others’ information. Reality

is somewhere in between, with people updating on the information of others

at a discount relative to their own information (Yaniv and Kleinberger 2000). In

the canonical example of a jury voting whether to convict a defendant, it’s very

plausible an agent would revise their opinion upon learning others are unani-

mous since a juror (ideally) doesn’t have a personal connection to the question

of guilt. Experimental work by Guarnaschelli et al. (2000) roughly supports the

strategic voting model of Feddersen and Pesendorfer (1998), though the exper-

iment sensibly asked participants to make the bland decision of which jar they

drew colored balls from. In a more emotionally-charged situation like a com-

mittee decision wrapped up in office politics, I expect agents to stick to their

opinions regardless of how others might report.

Possible future directions include experimental work testing the accuracy of

these mechanisms, expanding the scope of the model beyond binary questions,

and characterizing the equivalence class of peer-prediction decision rules that

implement majority rule in a way amenable to optimizing accuracy in partially-

strategic “equilibrium.”

1.8 Computational details

The numerical results were computed in Julia, v0.4.0 using the MLSL and SB-

PLX optimization algorithms of NLopt.jl and the h-adaptive integration algo-

rithm of Cubature.jl, both implemented by Steven G. Johnson.
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CHAPTER 2

MINIMUM TRUTH SERUMS WITH
OPTIONAL PREDICTIONS

A central concern of mechanism design is how to collect private information

from individuals while acknowledging their incentives. The prototypical mech-

anism design problem in economics involves eliciting preferences in order to

allocate goods. However, individuals can have relevant private information be-

sides preferences. For example, consider university officials interested in the

prevalence of drinking among freshmen. Students might be inclined to misre-

port when asked about their drinking habits even if the survey is purely infor-

mational. Unlike the prototypical problem, honesty is important for its own

sake rather than as a means to acheiving efficiency or maximum revenue, and

a well-designed mechanism could provide positive rewards for honesty.

The Bayesian truth serum, introduced by Prelec (2004), was one of the

first mechanisms for eliciting private information from a group of agents to

any subjective, hypothetical, or unverifiable question. The mechanism oper-

ates by asking agents for an information report from a finite set of answers—

corresponding to the agent’s private signal—and a prediction report of the dis-

tribution of signals of other agents—corresponding to the agent’s first-order

posterior beliefs—and assigning scores to agents based on the collective re-

ports. The original truth serum has many desirable properties, such as being

• detail free, requiring zero knowledge of the agents’ common prior to de-

termine scores,

• interim individually rational, giving each agent a non-negative expected

payment conditional on their private information, and

• collusion resistant, with the truth-telling equilibrium being interim

Pareto-dominant among all Bayes-Nash equilibria.

The mechanism can also be ex-post budget balanced, with total payments sum-

ming to zero for every possible realization of reports, though at the cost of indi-

25



vidual rationality.

Many potential concerns about the robustness of the Bayesian truth serum

remain. First, incentive compatibility holds only for a sufficiently large popula-

tion, with the necessary size depending on the agents’ unknown prior. Second,

the mechanism could require arbitrarily large payments from the agents. Third,

the assumption of common priors might be overly strong. Finally, requiring a

prediction report in addition to an information report could make the mecha-

nism too complex and unwieldy for some agents. Since Prelec’s original work,

multiple papers have sought to alleviate these concerns.

Contemporaneously with Prelec, the peer-prediction mechanism of Miller

et al. (2005) depends only on an information report but is not detail-free, as-

suming precise knowledge of the posterior beliefs of agents for each signal. Ju-

rca and Faltings (2011) investigate detail-free mechanisms that depend only on

an information report, showing incentive compatibility is not possible in gen-

eral, and develop instead a notion of helpful reporting. Jurca and Faltings (2007)

and Carvalho and Larson (2012) discuss various forms of collusion resistance in

peer-prediction mechanism.

Addressing Prelec directly, Witkowski and Parkes (2012a) introduce the robust

Bayesian truth serum for the special case of binary signals, which is incentive

compatible for n ≥ 3 agents and has bounded payments. Under the additional

assumption that agents’ beliefs could be elicited both before and after receipt of

their private signal1, Witkowski and Parkes (2012b) provide a mechanism that

is incentive compatible for n ≥ 2 agents while eliminating the common prior

assumption, again for binary signals. In both papers, Witkowski and Parkes

favor ex-post individual rationality over ex-post budget-balance, a reasonable

choice since the two properties are incompatible in all non-trivial mechanisms

for this setting.

The approaches of Radanovic and Faltings (2013) and Zhang and Chen (2014)

are the most similar to this paper. Each introduce mechanisms that are incen-

tive compatible for small groups agents for any finite number of signals, extend-

ing the binary truth serum of Witkowski and Parkes (2012a). Furthermore, they

consider correlated signals in general, not conditionally independent signals as

in Prelec or Witkowski and Parkes.

Radanovic and Faltings prove no mechanism can be incentive compatible for

1For instance, before and after receiving an item purchased online.
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all belief structures if it uses only information reports or is decomposable (i.e.

additively separable in the information and prediction reports). They give suf-

ficient conditions for each respective type of mechanism to be incentive com-

patible, which can be roughly interpreted as each signal being sufficiently pos-

itively correlated with itself across agents. Radanovic and Faltings then intro-

duce mechanisms that meet these necessary conditions for n ≥ 2 agents.

The mechanism of Zhang and Chen on the other hand puts no constraints on

the correlation between signals, requiring instead a second-order stochastic rel-

evance condition in addition to common priors for n ≥ 3 agents. They achieve

this by operating the mechanism sequentially, first collecting signals and then

collecting predictions after passing one signal report to each agent.

In this paper, I introduce a class of non-decomposable truth serums where as-

suming common predictions is sufficient for weak incentive compatibility. The

common predictions assumption is similar in spirit to common priors, but is

neither weaker nor stronger. Under additional mild assumptions—stochastic

relevance of signals, full support of agent beliefs, and the use of a strictly proper

scoring rule—the mechanism is strictly incentive compatible when the number

of agents is one more than the number of possible signals. I make no assump-

tions about the degree or direction of correlation between signals. Furthermore,

with minor modifications, the mechanism is still feasible if prediction reports

are optional. Agents will have a strict incentive to make a prediction even if

others might omit theirs. I also address some potential concerns about the ro-

bustness of the mechanism, like how to eliminate Pareto-dominating uninfor-

mative equilibria and how to weaken the assumption of risk neutrality.

2.1 Model

The respondent pool contains n rational, risk-neutral, and self-interested

agents. Let a typical agent have index i . Each agent receives a signal xi drawn

from a shared finite set T . The vector x = (x1, . . . , xi , . . . , xn) ∈ T n is the sig-

nal profile of the participants. Signals are private, with each agent knowing

their own with certainty and having probabilistic beliefs about the signals of

others. Signals can represent an attribute of the agent or observations about

an external state of the world, depending on the question of interest to the

mechanism operator. For instance, college freshmen could be asked to re-
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port the number of drinks of alcohol they’ve had in the past week from the set

T = {0 drinks, 1-2 drinks, 3-6 drinks, 7+ drinks}. Alternatively, crowdsourced re-

viewers could be asked to evaluate a writing sample according to some task

guidlines, reporting a rating from the set T = {1, 2, 3, 4, 5}. In this last example,

a signal of xi = 4 reflects i ’s judgement that the writing sample fits into the 4 cat-

egory given their observations, although i could still be uncertain about what

rating the writing “truly” deserves.

Signals are correlated across agents. Conditional on their private signal, each

agent has a posterior prediction pi = p(xi ) = Ei [x̄−i |xi ] ∈∆T of the distribution

of others’ signals, where x̄ t
−i =

∑
j 6=i 1(x j = t )/(n −1) is the sample proportion of

the agents except for i receiving signal t and x̄−i = (. . . , x̄ t
−i , . . .) ∈ ∆T is the vec-

tor of sample proportions. I will use pi = p(xi ) to refer to i ’s actual prediction

and p(x̂i ) to refer to i ’s prediction conditional on a hypothetical signal x̂i . The

vector p= (p1, . . . , pn) ∈ (∆T )n is the prediction profile of agents. Note that I con-

sider any correlated signals similarly to Zhang and Chen (2014), generalizing

the conditionally-independent signals of Prelec or Witkowski and Parkes.

To be meaningful, different signals should convey some distinct information,

as expressed in the following assumption:

Definition 2.1 (Stochastic relevance). Signals are stochastically relevant if dif-

ferent signals induce different predictions:

∀i , j : xi 6= x j =⇒ p(xi ) 6= p(x j )

Furthermore, private signals are the only source of differences in beliefs:

Definition 2.2 (Common predictions). Agents have common predictions if

agents with the same signal have the same posterior predictions:

∀i , j : xi = x j =⇒ p(xi ) = p(x j )

Common predictions is the converse of stochastic relevance, and together

they imply a bijection between signals and predictions across agents.

For incentives to be strict, agents should think every profile of signals is pos-

sible:
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Definition 2.3 (Full support). Agents’ beliefs have full support if

∀i , ∀(. . . , ti−1, ti+1, . . .) ∈ T n−1 : Pri [x−i = (. . . , ti−1, ti+1, . . .) |xi ] > 0

The variable δi = mint∈T |{x j = t | j 6= i }| denotes the minimum number of

agents except for i in each signal group. The agents will frequently condition on

at least one other agent reporting each signal, so let pi |δi≥1 = E[x̄−i |xi and δi ≥
1] and pi |δi=0 = E[x̄−i |xi and δi = 0]. Then, the agent’s prediction pi satisfies

pi = Pri [δi = 0 |xi ] pi |δi=0 +Pri [δi ≥ 1 |xi ] pi |δi≥1

The mechanism collects signals and predictions from all agents simultane-

ously, assigning agents a score Si (x,p) based on the vectors of reports x and p.

Agents are risk-neutral and maximize their expected score from the mechanism

conditional on their private information. The score can be interpreted as a pay-

ment from the mechanism to the agent—with negative scores being payments

from the agent to the mechanism—or an abstract reputation score.

2.1.1 Common predictions vs common priors

The common predictions assumption is distinct from the common prior as-

sumption used extensively in this literature. The two are still similar in spirit,

both saying that differences in beliefs come only from differences in observa-

tions. Although I will not assume common priors in this paper, I define it here

for comparison:

Definition 2.4 (Common priors). Agents have common priors if all assign the

same prior probability to each signal profile:

∀i , j ,∀(t1, . . . , tn) ∈ T n : Pri [x= (t1, . . . , tn)] = Pr j [x= (t1, . . . , tn)]

Common priors is neither necessary nor sufficient for common predictions.

A common prior where agents have different marginal distributions will not

satisfy common predictions in general, though it could if some agents have zero

probability of receiving some signals due to the ambiguity of conditioning on a

zero probability event. Agents can have common predictions and uncommon

priors if an agent disagrees with others about the prior marginal distribution of
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his own signal.

When agents have common predictions and common priors, beliefs will

have some degree of symmetry across agents, though an exact characteriza-

tion is beyond the scope of this paper. An exchangeable common prior—with

Pri [x] = Pri [σ(x)] for every signal profile x and every permutation σ(·)—is

clearly sufficient for common predictions. For a simple example of a non-

exchangeable common prior with common predictions, consider three agents

with T = {a,b,c} where a profile with three identical signals has probability

15/102, three profiles satisfy Pr[(a,b,c)] = Pr[(c, a,b)] = Pr[(b,c, a)] = 12/102,

and the remaining 21 profiles have probability 1/102 for each. An agent receiv-

ing xi = a has the prediction p(a) = (1/2,1/4,1/4). However, Pr[x2 = b |x1 =
a] = 42/102 6= 9/102 = Pr[x3 = b |x1 = a], so agents 2 and 3 are not identical

from agent 1’s perspective.

2.2 Proper scoring rules

Truth serums have their foundations in scoring rules. Proper scoring rules are

incentive schemes for eliciting a rational, risk-neutral payment-maximizer’s

honest probabilities of some event. For an overview of the theory of scoring

rules and their applications, see Gneiting and Raftery (2007). The event in ques-

tion is usually assumed to be publicly observed or externally verified, such as

the weather tomorrow or the winner of an election. In this paper, however, the

agents will be scored on their predictions of the reported signals of other agents.

A scoring rule R assigns payments R(t , p̂i ) for a realized outcome t of a ran-

dom variable x and a reported probability distribution p̂i . If the agent’s ex-

pected score E [R(x, p̂i )] is maximized when they report their honest subjective

probabilities of each event, the scoring rule is proper. Scoring rules are strictly

proper if the honest prediction is the unique maximizer of the expected score

and weakly proper if other reports can also be maximizers.

Well-known examples of strictly proper scoring rules for discrete random

variables include the logarithmic rule (Good 1952)

Rlog(t , pi ) = ln(p t
i )
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and the quadratic scoring rule (Brier 1950)

Rquad(t , pi ) = 1− 1

2

∑
s∈T

(1(t = s)−p s
i )2

where p t
i is the probability assigned to realization t .

If R1 and R2 are proper scoring rules, then the affine combination

R(t , pi ) = a1R1(t , pi )+a2R2(t , pi )+b

is also a proper scoring rule for all a1, a2 ≥ 0 and b ∈ R. Using this property, a

scoring rule for the probability of a multinomial event can be easily extended to

a scoring rule for the expected proportion of outcomes by averaging over scores

for each individual event. For instance, the extended logarithmic scoring rule

is

Rlog(x̄, pi ) = ∑
t∈T

x̄ t ln(p t
i )

and the extended quadratic scoring rule is

Rquad(x̄, pi ) = 1

2
+ ∑

t∈T
p t

i x̄ t − 1

2
(p t

i )2

where x̄ t is the proportion of t outcomes in the sample. Extended scoring rules

are affine in their first argument and are proper when

∀pi , p̂i ∈∆T , R(pi , pi ) ≥ R(pi , p̂i )

All extended proper scoring rules for discrete events can be represented using

some convex function F :∆T →R (Savage 1971) as

R(x̄, pi ) = F (pi )+〈F ′(pi ), x̄ −pi 〉

where F ′(p) is a subgradient of F (supporting F from below analogous to the

gradient of a differentiable function) and 〈·, ·〉 is the standard inner product.

The function F (p) can be interpreted as the score an agent with belief p expects
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to receive when reporting honestly. For instance, we have

Rlog(x̄, p) = ∑
t∈T

p t ln(p t )+〈
(. . . , ln(p t )+1, . . .), x̄ −p

〉
, for F (p) = ∑

t∈T
p t ln(p t )

and

Rquad(x̄, p) = 1

2
+ 1

2

∑
t∈T

(p t )2 +〈p, x̄ −p〉, for F (p) = 1

2
+ 1

2

∑
t∈T

(p t )2.

2.3 Minimum truth serums

A truth serum is a detail-free mechanism for collecting private signals from a

group of agents without external verification. The mechanism operates by so-

liciting from each agent i their signal xi and prediction pi of the distribution

of signals of other agents. Given some proper scoring rule R, the agents’ pre-

dictions will be scored as R(x̄−i , pi ) based on the actual distribution of other

signals x̄−i . Since R is proper, this score will be maximized in expectation when

the agent reports pi honestly. For the agent to honestly reveal their signal xi as

well, the final score will be bounded above by the score for the “average” pre-

diction of others reporting the same signal. The predictions of others with the

same signal will be aggregated so that if all the inputs are identical, then that

same value is the output, as expressed in the following definition:

Definition 2.5 (Unanimous aggregator). A function g : ∪k∈N(∆T )k → ∆T that

maps profiles of predictions back into predictions is a unanimous or idempotent

aggregator if g ({p j , . . . , p j }) = p j for all p j ∈∆T .

Common averaging functions such as the arithmetic mean or the normalized

geometric mean are unanimous. Alternatively, the aggregator could select one

input according to some criterion, such as an element in the set with minimum

Euclidean norm breaking ties lexicographically.

The precise definition of the minimum truth serum class is as follows:

Definition 2.6 (Class of minimum truth serums). Given a proper scoring rule R

and a unanimous aggregator g , a minimum truth serum is defined by the fol-

lowing procedure:

1. Collect the vectors of signals x and predictions p from agents simultane-

ously, with elements xi and pi being the reports of agent i .
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2. Define the variables

δi = min
t∈T

|{x j = t | j 6= i }|

for each agent denoting the minimum number of other agents that can be

found in each signal group.

3. If δi ≥ 1, compute the proxy prediction

qi (xi ) = g ({p j ∈ p−i |x j = xi })

4. Assign scores to each agent as

Si (x,p) =
R(x̄−i , pi ) if δi = 0

min
{
R(x̄−i , pi ),R(x̄−i , qi (xi ))

}
if δi ≥ 1

When there are no other agents besides i reporting xi , the proxy prediction

clearly isn’t well defined. However, due to the definition of δi , the mechanism

will sometimes avoid comparing i to the others with the same signal even when

proxy prediction can be computed. This is so that i cannot purposefully report

a rare signal to avoid the proxy upper bound. Since δi depends only on the

reports of others, i cannot directly manipulate it.

Definition 2.7 (Bayesian incentive compatibility). A truth serum is Bayesian in-

centive compatible if, for all i ,

E[Si ((xi , x−i ), (pi , p−i )) |xi , pi ] ≥ E[Si ((x̂i , x−i ), (p̂i , p−i )) |xi , pi ]

for all xi , x̂i , pi , p̂i and is strictly incentive compatible if the inequality is always

strict when xi 6= x̂i or pi 6= p̂i .

Proposition 2.1. All minimum truth serums are Bayesian incentive compatible

if agents have common predictions. If n ≥ |T | + 1, R is strictly proper, beliefs

have full support, and signals are stochastically relevant, then the truth serum is

strictly incentive compatible.

Proof. Suppose all agents except i report their signals and predictions honestly.

Then, the expected score of agent i when giving report (x̂i , p̂i ) (with all proba-
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bilities conditional on xi ) satisfies

E[Si ((x̂i , x−i ), (p̂i , p−i ))] =
Pri [δi = 0]

∑
x−i :δi=0

R(x̄−i , p̂i )Pri [x−i |δi = 0]

+Pri [δi ≥ 1]
∑

x−i :δi≥1
min

{
R(x̄−i , pi ),R(x̄−i , qi (x̂i )

}
Pri [x−i |δi ≥ 1]

≤ Pri [δi = 0]
∑

x−i :δi=0
R(x̄−i , p̂i )Pri [x−i |δi = 0]

+Pri [δi ≥ 1]
∑

x−i :δi≥1
R(x̄−i , p̂i )Pri [x−i |δi ≥ 1]

=∑
x−i

R(x̄−i , p̂i )Pri [x−i ]

= R(pi , p̂i ) ≤ R(pi , pi )

where the last line follows from pi being i ’s expectation of x̄−i and R being affine

and maximized at p̂i = pi as a proper scoring rule. Since p j = pi when x j = xi

by common predictions, we have qi (xi ) = g ({p j ∈ p−i |x j = xi }) = pi because

g is unanimous. Hence, the expected score when reporting truthfully achieves

the upper bound above, and the honest report is a best response for i . There-

fore, the minimum truth serum is (weakly) Bayesian incentive compatible. No-

tice that if n < |T | + 1, then δi is always zero and the agent will be indifferent

between all information reports since there aren’t enough other agents to fill

each category.

Now assume n ≥ |T | + 1, R is strictly proper, beliefs have full support, and

signals are stochastically relevant. Beliefs having full support and n ≥ |T | + 1

imply Pri [δi ≥ 1] > 0, meaning there is some chance agent i will face the proxy

upper bound. There are two cases to consider besides the honest report. First,

any report with p̂i 6= pi will result in a strictly lower score since R is strictly

proper. Second, reporting a dishonest signal x̂i 6= xi and an honest predic-

tion pi will lead to a strictly lower score since i will occasionally be matched

with qi (x̂i ) = p j 6= pi (by stochastic relevance), and we must occasionally have

R(x̄−i , qi (x̂i )) < R(x̄−i , pi ) since R is strictly proper. Therefore, honesty is the

unique best response under these assumptions.

Although I’ve considered the number of agents n to be fixed, this could be

a random variable from i ’s perspective. In this case, the assumption that n ≥
|T |+1 can be replaced with Pi [n ≥ |T |+1] > 0 for strict incentive compatiblity.
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This mechanism is one of two known truth serums that can be used when a

signal is negatively correlated with itself across agents2. Negative correlation

can occur if there are a limited number of certain signals, where an observation

by one agent “blocks” another agent’s observation.

Consider the following example: A group of eleven birdwatching enthusiasts

will attempt to sight the Lesser Jubjub, with each stationing themselves in a

different area of a valley. Since the enthusiasts are prone to boasting in the

absence of incentives for honesty, the president of their society will ask each

whether they saw the bird (corresponding to a set of answers T = {Yes,No}) and

give payments according to the minimum truth serum using the log scoring

rule and some aggregator. Since the Lesser Jubjub is known to maintain a very

small territory, if one watcher catches sight of it, she’ll conclude it’s less likely

that others have seen it. In particular, assume beliefs are:

pYes
i pNo

i

xi = Yes .05 .95

xi = No .10 .90

Suppose the honestly reported signals are x1 = Yes and xi = No for all other

i . Then, δ1 = 0 since all other ten reported No, and δi = 1 for i > 1 since each

answer was given by someone besides i . Finally, the score of agent 1 is S1(x, p) =
R(x̄−1, p1) = R((0.0,1.0), (0.05,0.95)) = ln(0.95) ' −0.051, and the scores of all

other agents are

Si (x, p) = min{R(x̄−i , pi ),R(x̄−i , g (xi ))}

= min{R((0.1,0.9), (0.1,0.9)),R((0.1,0.9), (0.1,0.9))}

= 0.1ln(0.1)+0.9ln(0.9) '−0.325.

2.4 Optional prediction reports

Asking agents to provide an information report is straightforward since every-

one has experience with surveys and ratings. However, requiring all agents

to submit a prediction report could be a practical barrier to deploying a truth

serum, especially for a moderately large set of answers. Impossibility results

2The other being the knowledge-free peer prediction mechanism of Zhang and Chen (2014).
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have been given (Radanovic and Faltings 2013) about mechanisms that depend

only on information reports, which I skirt by including predictions, but making

them optional. Because the minimum truth serum allows for the possibility of

an agent being the only one in their signal group, the mechanism can be easily

modified to operate when some predictions are missing. Rather than defining

scores conditional on all signals being reported by some other agent, scores will

be conditional on all signals being given by an agent who also made a predic-

tion.

Definition 2.8 (Minimum truth serum with optional predictions). Given a

bounded proper scoring rule R and a unanimous aggregator g , a minimum

truth serum with optional predictions is defined by the following procedure:

1. Collect the vectors of signals x and predictions p from agents simultane-

ously, where each agent has the option of selecting pi =∅.

2. Define the variables

δi = min
t∈T

|{x j = t | j 6= i and p j 6=∅}|

for each agent denoting the minimum number of other agents with predic-

tions that can be found in each signal group.

3. If δi ≥ 1, compute the proxy prediction

qi (xi ) = g ({p j ∈ p−i |x j = xi and p j 6=∅})

4. Assign scores to each agent with pi 6=∅ as

Si (x,p) =
R(x̄−i , pi ) if δi = 0

min
{
R(x̄−i , pi ),R(x̄−i , qi (xi ))

}
if δi ≥ 1

5. Assign scores to each agent with pi =∅ as

Si (x,p) =
minq∈∆T {R(x̄−i , q)} if δi = 0

R(x̄−i , qi (xi )) if δi ≥ 1

giving the agent the minimum possible score according to R when δi = 0.
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Proposition 2.2. All minimum truth serums with optional predictions are

Bayesian incentive compatible if agents have common predictions. If n ≥ |T |+1,

R is strictly proper, beliefs have full support, and signals are stochastically rele-

vant, then the truth serum is strictly incentive compatible.

Proof. In addition to the argument of the previous proof, we need to establish

that each agent prefers giving a prediction to reporting p̂i = ∅. If all other

agents report truthfully—but possibly with some giving the null prediction—

the expected score for reporting (x̂i ,∅) conditional on xi is

E[Si ((x̂i , x−i ), (∅, p−i ))] = Pri [δi = 0]
∑

x−i :δi=0
min
q∈∆T

{R(x̄−i , q)}Pri [x−i |δi = 0]

+Pri [δi ≥ 1]
∑

x−i :δi≥1
R(x̄−i , p(x̂i ))Pri [x−i |δi ≥ 1]

≤ Pri [δi = 0]
∑

x−i :δi=0
R(x̄−i , p(x̂i ))Pri [x−i |δi = 0]

+Pri [δi ≥ 1]
∑

x−i :δi≥1
R(x̄−i , p(x̂i ))Pri [x−i |δi ≥ 1]

=∑
x−i

R(x̄−i , p(x̂i ))Pri [x−i ] = R(pi , p(x̂i )) ≤ R(pi , pi )

= ESi (xi , pi )

since qi (x̂i ) = p(x̂i ) by common predictions, so the agent is never better off

when omitting the prediction. When beliefs have full support, the first inequal-

ity will be strict and providing a full, honest report is a strict best response.

Notice that the proof concludes something slightly stronger than Bayesian

incentive compatibility, showing a full and honest report is an interim best re-

sponse even if others fail to best respond and omit their prediction.

While making a full report is preferable, the point of optional predictions

is that we expect agents to occasionally omit them in practice. Let’s consider

the incentives of an agent conditional on reporting p̂i = ∅. Ideally, such an

agent would still prefer reporting their true signal, but this won’t always be the

case. The reported signal only affects payoffs when δi ≥ 1, so the agent should

choose their report x̂i conditional on this event to maximize the expected score

R(pi |δi≥1, qi (x̂i )). Since pi 6= pi |δi≥1 in general, this opens up the possibility that

the agent would want to misreport their signal if another prediction p(x̂i ) ap-

proximates pi |δi≥1 better than pi = p(xi ) does under R3.

3The notion of how close one probability vector is to another under a proper scoring rule

37



For instance, suppose the posterior predictions are pa(a) = E[x̄a
−i |a] =

0.99 and pa(b) = 0.45 given two possible signals a and b, with pa
i |δi≥1(a) =

E[x̄a
−i |a and δi ≥ 1] = 0.5. While an agent with xi = a thinks B signals are

rare, agents with the b signal are relatively better predictors when they are

present. Since R(pi |δi≥1(a), p(b)) = R((.5, .5), (.45, .55)) > R((.5, .5), (.99, .01)) =
R(pi |δi≥1(a), p(a)) for typical scoring rules, an agent with xi = A would prefer

report (b,∅) over (a,∅).

Despite this possibility, these “failures” of incentive compatibility out of equi-

librium are unconcerning. If an agent is sophisticated enough to notice an im-

provement from misreporting their signal conditional on omitting their predic-

tion, they would be sophisticated enough to best respond by giving a full re-

port. Furthermore, these gains can exist only when pi |δi≥1 is sufficiently dif-

ferent from pi for a fixed set of posterior predictions. Since pi |δi≥1 → pi as

Pri [δi ≥ 1 |xi ] → 1, this possibility goes away completely for large enough n

if agents become increasingly certain that every signal will be given by at least

one person along with a prediction.

2.5 Further considerations for robust mechanisms

2.5.1 Individual rationality and budget balance

In the honest Bayes-Nash equilibrium, each agent receives a score of R(x̄−i , pi ).

Depending on the scoring rule R used, these scores could be negative, positive,

or sum to any amount. If agents have the option to sit out from the mecha-

nism, then participation shouldn’t leave them worse off. Whether agents can’t

be worse off in every case or on average leads to the following two notions of

individual rationality:

Definition 2.9. A truth serum is ex-post individually rational (EPIR) if the real-

ized score satisfies Si (x,p) ≥ 0 for all i and for all profiles of reports x and p.

Definition 2.10. A truth serum is interim individually rational (IIR) if

the expected score over the types of others conditional on xi satisfies

E[Si ((xi , x−i ), (pi , p−i )) |xi ] ≥ 0 for all i .

R can be formalized as its corresponding Bregman divergence DR (p, q) = R(p, p)−R(p, q). For
example, the Bregman divergence of the quadratic scoring rule is squared Euclidean distance,
and the Bregman divergence of the log scoring rule is the Kullback-Leibler divergence.

38



Similarly, we can consider two forms of budget-balance depending on

whether the total scores for all agents sum to zero for all realizations or on aver-

age:

Definition 2.11. A truth serum is ex-post budget balanced ( EPBB) if the total

scores satisfy
∑

i Si (x,p) = 0 for all profiles of reports x and p.

Definition 2.12. A truth serum is ex-ante budget balanced (EABB) if the total

scores satisfy E[
∑

i Si (x,p)] = 0 in expectation over all profiles (x,p)

Since a primary advantage of the truth serum is that it is detail-free, the no-

tion of ex-ante budget balance isn’t applicable. Unfortunately, ex-post budget

balance can be a strong condition. EPBB and EPIR are incompatible for any non-

trivial mechanism in this setting. IIR will also tend to be violated under EPBB

mechanisms. When agents have common priors, EPBB and IIR will be mutu-

ally be satisfied only if the iterim expected scores are exactly zero for each type

since there are no gains from interaction. Individual rationality also becomes a

more complex goal if agents have some unknown costs of participation, reflect-

ing either effort to acquire a signal (Dasgupta and Ghosh 2013; Witkowski et al.

2013) or concern over privacy (Ghosh and Roth 2015).

2.5.2 Collusion resistance and balanced truth serums

As the minimum truth serum is defined, honesty is a Bayes-Nash equilibrium,

but it is not the only one. In fact, untruthful equilibria might Pareto-dominate

honest revelation. Notice that any strategy profile where the agents draw x̂i

according to a common fixed distribution p̂ and report (x̂i , p̂) is a Bayes-Nash

equilibrium. Since the expected score is ESi (x̂i , p̂) = R(p̂, p̂) = F (p̂) for some

convex F by the Savage representation, the total scores will be maximized when

the agents can coordinate on a degenerate distribution and report some signal

t∗ with probability one. One benefit of ex-post budget balance is that it guaran-

tees agents cannot coordinate to increase their total score, and hence provides

a means of reducing the tempation of any untruthful equilibria.

Define the balanced minimum truth serum as follows:

Definition 2.13 (Balanced minimum truth serum). Given a proper scoring rule

R and a unanimous aggregator g , the balanced minimum truth serum scores
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(with or without optional predictions) are

Sb
i (x,p) = 1

n −1

∑
j 6=i

(
Si (x− j , p− j )−S j (x−i , p−i )

)
Since each term Si (x− j , p− j ) is individually incentive compatible and the

terms S j (x−i , p−i ) don’t depend on i ’s report, these scores are still Bayesian in-

centive compatible with the caveat that we now require Pri [n ≥ |T |+2] > 0 for

strict incentive compatibility. Ex-post budget balance follows from each term

Si (x− j , p− j ) appearing in the total scores exactly once with a positive sign—in

the score of agent i —and exactly once with a negative sign—in the score of

agent j . The uninformative coordination equilibria still exist, but no longer

Pareto-dominate the honest equilibrium since the total scores are fixed at zero.

As noted earlier, these mechanisms will not be interim individually rational

in general. For example, suppose T = {a,b} and n = 4. Agents believe signals

are conditionally independent based on two states, A and B , with Pr[A] = 0.1,

Pr[B ] = 0.9, Pr[x j = a | A] = 0.9, and Pr[x j = b |B ] = 0.1. Under the minimum

truth serum with the log scoring rule, an agent with xi = a expects Si (x− j , p− j )

to be −0.693 and S j (x−i , p−i ) to be −0.593, leading to the expected balanced

score to be approximately −0.1. Thus, agents with xi = a would prefer a score

of zero from not participating if possible.

If the scoring rule R is bounded by the interval [M1, M2], then the balanced

truth serum scores are always greater than M1 −M2. Subtracting this negative

constant from each agent’s balanced score guarantees ex-post individual ratio-

nality while making total scores always sum to n(M2 −M1).

2.5.3 Risk aversion and probabilistic rewards

Another point of concern for robustness is the assumption of risk-neutral

agents. If agents are risk-averse as we might typically expect, Bayesian incen-

tive compatiblity or interim individual rationality could be violated. When the

Bernoulli utility function ui (·) of an agent is known, assigned scores can be

transformed to u−1
i (Si (x,p)) to counteract the agent’s risk preference. When

the agent’s risk preference is unknown, another trick is available: payment in

lottery shares. An expected utility maximizer can be risk-averse across varying

rewards, but will always have risk-neutral preferences over a varying probabil-
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ity of a fixed reward. Reinterpreting scores as the probability of winning a prize

means risk neutrality holds without loss of generality. Now, ex-post individual

rationality has a dual role of ensuring scores are proper probabilities. Hossain

and Okui (2013) and Schlag and van der Weele (2009) explore this trick theo-

retically and experimentally in the case of eliciting judgements from a single

agent.

There are two ways of incorporating probablistic rewards into a truth serum.

First, the mechanism could give each agent the opportunity to win their own

prize. Using a scoring rule R bounded in the interval [0, M ], the mechanism

assigns scores Si (x,p) and draws thresholds Ki ∼ Unif[0, M ]. Agent i wins their

prize if and only if Ki < Si (x,p). Alternatively, the mechanism could award a

single prize, splitting shares in the prize lottery according to scores. This en-

tails using a balanced truth serum adjusted so that total scores sum to one and

scores are always non-negative:

Definition 2.14 (Lottery minimum truth serum). Given a proper scoring rule

R bounded between [0,1] and a unanimous aggregator g , the lottery minimum

truth serum scores (with or without optional predictions) are

S`i (x,p) = 1

n
+ 1

n(n −1)

∑
j 6=i

(
Si (x− j , p− j )−S j (x−i , p−i )

)
,

denoting the probability that agent i wins the prize.

2.6 Conclusion

This paper gives a new class of detail-free mechanisms for eliciting correlated

signals. The only restrictive assumption for incentive compatibility is that all

agents with the same signal have the same posterior expectations. The obvious

next question is whether the common predictions assumption can be weak-

ened, possibly at the cost of different conditions on belief structures. The idea

underlying this paper is that under common predictions, another agent with

the same signal can act as a perfect proxy for an agent’s belief. This suggests

incentive compatibility should be feasible when agents think others with the

same signal are better proxies on average, if not exactly.

In this paper, I’ve assumed agents have no direct preferences over how their

reports are used, which is plausible for many surveys and ratings. In more gen-
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eral settings, the incentives for honesty provided by a truth serum could be

used to counteract other incentives for dishonesty. One direction to explore is

when it’s possible to layer truth serum transfers on top of another mechanism

to provide incentive compatibility. This broad idea has an established history in

mechanism design. For instance, Crémer and McLean (1988) employ a similar

transfer scheme to prove their full surplus extraction result for correlated types.

Though presented more as a paradox than a practical result, their mechanism

assumes precise knowledge of the agents’ common prior. The question of when

detail-free transfers like the minimum truth serum could fill an analogous role

in general implementation problems remains open.
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CHAPTER 3

UNCOORDINATED TWO-SIDED
MATCHING MARKETS

(Joint with Juan Fung)

3.1 Introduction

Suppose you are tasked with pairing a group of men and a group of women to-

gether when each person has preferences over potential partners. Can you ac-

complish this task such that, once your matching is in place, no man or woman

can obtain a better partner on their own? In a seminal paper, Gale and Shapley

(1962) model this situation as a marriage market and present an elegant solu-

tion: the deferred acceptance algorithm. Gale and Shapley (1962) use their al-

gorithm to prove that such stable matchings exist in two-sided markets. While

Gale and Shapley (1962) did not aim to provide guidance on applied market

design, their algorithm has come to play a key role in the design of centralized

markets.1 The question we address in this paper is: how well can agents do

without centralization?

Gale and Shapley (1962)’s algorithm has been independently discovered by

practitioners many times. As Roth (1984) showed, the National Resident Match-

ing Program (NRMP) for new doctors had been using a version of deferred

acceptance since 1951. Several other instances of the algorithm in the field

were later documented, including the job market for clinical psychologists and

dorm room assignment at MIT (Roth 2008). Such observations renewed inter-

est in Gale and Shapley (1962)’s stylized model of matching, with stability as

the principal objective and deferred acceptance as the foundation for practical

market design. Eventually, deferred acceptance became fundamental to the

intentional reorganization of existing markets as centralized clearinghouses,

1Gale and Shapley (1962) do state their hope “that some of the ideas introduced here might
usefully be applied to certain phases of the admissions problem.”
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most notably in the redesign of the assignment mechanisms for Boston Pub-

lic Schools (Abdulkadiroğlu et al. 2005b) and New York City High Schools (Ab-

dulkadiroğlu et al. 2005a).

The deferred acceptance algorithm is practical in applications since it can

find a stable matching in polynomial time. With n men and m women in a

marriage market, deferred acceptance computes a stable matching in at most

n ·m steps. Its speed and simplicity make it a natural candidate for centralized

design, but there is nothing inherently centralized about deferred acceptance.

The standard interpretation of the algorithm as one side of the market mak-

ing successive proposals has a decentralized flavor to it since proposing agents

don’t need information beyond their own preferences. However, agents have

to be coordinated in two ways to properly execute deferred acceptance. First,

only one side of the market can make proposals. Second, proposals must be

grouped into rounds where agents propose at most once (though the order of

proposals within rounds can be arbitrary). We argue that coordination is the

distinguishing feature between centralized and decentralized markets.

In particular, we consider a class of decentralized matching markets intro-

duced by Roth and Vande Vate (1990). Their idea, roughly, is to let agents take

turns making proposals to a more preferred partner. Two agents that prefer

each other to their current respective partners are said to form a blocking pair.

Roth and Vande Vate (1990) show that, starting from an arbitrary matching,

such random proposal processes eventually converge to a stable matching if

each blocking pair has positive probability of being selected.

While these results suggest agents can attain stability without a centralized

authority, Ackermann et al. (2011) show some markets almost certainly require

exponentially many proposals to reach stability when blocking pairs are re-

matched uniformly at random. One is tempted to conclude that, in practice, de-

centralized markets cannot be ensured of reaching a stable matching. However,

the process described above portrays market participants as naive. In particu-

lar, agents will accept any proposal when they are single. We introduce slightly

more sophisticated behavior into the process and show that the process con-

verges to stability in polynomial time. Moreover, since centralization by way of

deferred acceptance requires at most a quadratic number rounds, we compare

welfare under our process after a comparable number of rounds to the outcome

of deferred acceptance.

In section 3.2, we introduce the matching environment and the model for
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proposal processes. Computational results are presented in section 3.3. In sec-

tion 3.3.1, we explore convergence to stable matching in terms of number of

proposals, while in section 3.3.2, we compare welfare of our proposal processes

before convergence to welfare under stable matching.

3.2 Model

3.2.1 Environment

We consider a standard one-to-one matching environment with strict prefer-

ences. In particular, a matching market of size n is a triple θ = (M ,W,Â) consist-

ing of a set of n men M , a set of n+m women W , and preferences Â= {Âi }i∈M∪W

for each agent i over potential partners on the other side of the market.

Preferences are strict linear orders over the set of potential partners for that

agent and the option to remain unmatched, denoted by ;. Agent i finds agent

j acceptable if j Âi ;. We will consider environments θ where every man finds

every woman acceptable and vice-versa. Let Θn denote the set of all such mar-

kets of size n. An environment θ is balanced for some n if m = 0, and otherwise

it is unbalanced.

A matching is a function µ : M ∪W → M ∪W ∪ {;} describing how agents are

paired. Let X (θ) denote the set of all matchings for θ. The partner of agent i

under matching µ is µ(i ). The agent is single if µ(i ) =;. Valid matchings satisfy

the following properties:

1. If µ(i ) 6= ;, then µ(µ(i )) = i , i.e. if an agent i has a partner, µ(i ), then µ(i )’s

partner is i .

2. µ(M) ⊆W ∪ {;} and µ(W ) ⊆ M ∪ {;}, i.e. all agents are either matched to

an agent from the other side or single.

A matchingµ is stable in θ if there is no pair of agents m, w such that m Âw µ(w)

and w Âm µ(w) and no agent i such that ;Âi µ(i ). Since we consider only en-

vironments where all agents are mutually acceptable, the second requirement

that all agents prefer their partners to being single is satisfied in every matching.

Let S (θ) denote the set of stable matchings for market θ.
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3.2.2 Proposal processes as models of matching

Given a matching market θ, agents begin at some initial matchingµ0 with distri-

bution f0(µ) = Pr (µ0 =µ). We will primarily consider µ0 as the empty matching

where µ0(i ) =; for all i ∈ M ∪W . Matchings evolve according to a sequence of

proposals between agents, with one proposal being made at discrete time steps,

t = 1,2, . . ..

A proposal process, P , describes who makes a proposal at each step, who the

proposer proposes to, and the conditions for whether a proposal is accepted.

Given matching µt at step t , if agent i proposes to agent j and the proposal is

accepted, then µt is updated as follows:

1. i and j are paired together: µt+1(i ) = j and µt+1( j ) = i ,

2. i and j ’s previous partners (if any) are now single: µt+1(µt (i )) =
µt+1(µt ( j )) =;,

3. and µt+1(k) =µt (k) for all other agents k.

If the proposal is not accepted, then no change occurs, and µt+1 =µt .

3.2.3 Deferred acceptance as a proposal process

In general, a proposal process may be random, inducing a random walk over

the set of matchings, although deterministic proposal processes can also be

considered. For instance, two versions of the deferred acceptance algorithm—

with either men proposing or women proposing—are important examples of

deterministic proposal processes.

Deferred acceptance can also be implemented semi-randomly by picking a

fixed permutation of the proposing side and having the agents cycle through

proposals according to this schedule. Supposing men are proposing, each man

knows every other man has acted exactly once since his last proposal. This fixed

schedule provides a monotonicity guarantee that underlie deferred acceptance.

If an agent is unsure whether or not someone else has acted since their last pro-

posal, the same monotonicity guarantee is no longer present and proposers

are unable to work down their preference lists in the same way. Someone who

once rejected me might now accept me, so the set of possible partners to con-

sider making proposals doesn’t shrink. Of course, it wouldn’t be worthwhile to
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only always propose to my first choice, so a lack of knowledge about when oth-

ers have acted necessitates some randomness in how proposals are made. The

continued need to explore all possible partners particularly holds if both men

and women make proposals.

3.2.4 Uncoordinated proposal processes

To represent agents being unable to fully coordinate or observe the actions of

others, we consider proposal processes where at each point in time, one agent

is selected at random to act. The probability that a man makes a proposal might

differ from the probability a woman makes a proposal, but within each side, all

agents have an equal chance of acting.

With no knowledge about the actions of others, how should an agent choose

who to propose to? A simple answer is to randomly propose to someone better

than that agent’s current match. A woman who has repeatedly rejected a man

might still potentially accept him now, so the man might plausibly think it’s

worth another shot. If the man can keep track of all the partners of the women

he is proposing to, the best he can do is never propose to a women who is with

the same partner as a time when she rejected him.

Definition 3.1 (Random better (best) reply). Begin at random matchingµ0 with

some probability p(µ0). Given µt−1 at time t :

1. Pick a proposing agent it ∈ M ∪W at random

2. Better (best) reply: Agent it proposes to an agent (the best agent) jt such

that

jt Âit µt−1(it )

choosing uniformly at random if multiple such jt exist.

3. Agent jt accepts if it Â jt µt−1( jt )

(a) If jt accepts, update µt

(b) Else, set µt =µt−1

Set t = t +1, and return to step 1.
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Ackermann et al. (2011) show that these processes may take exponentially

many rounds to reach stability. On some level, naive behavior by both pro-

posers and responders causes unnecessary delay. We now introduce two pro-

posal processes that model plausible behavior for both proposers and respon-

ders without requiring a high level of sophistication.

To address naive behavior by responders, we introduce aspirations as a way

for responders to keep from settling for inferior matches early on in the pro-

cess. An agent’s aspiration level is simply the minimum partner rank the agent

is willing to accept. A responder will accept a proposal subject to their current

aspiration level, which evolves over time.

Let ρ(i , j ) denote agent i ’s ranking of agent j wrt Âi :

ρ(i , j ) ≡ |{k : k ºi j }|

We say that agent i has aspiration level αt (i ) at µt if i accepts a proposal from

any agent j ∈ { j : ρ(i , j ) ≤ αt (i )} and rejects a proposal otherwise. Aspiration

levels are set and updated as follows:

Definition 3.2 (Updating aspiration levels). Given an environment θ and a pro-

posal process P with aspiration adjustment an ∈R+:

• At t = 0, initial aspiration is α0( j ) = 1,∀ j

• At t > 0, if j receives a proposal from i , then

αt ( j ) =
ρ( j , i ), µt ( j ) = i

αt ( j )+an , µt ( j ) =;

otherwise, αt ( j ) =αt−1( j )

In other words, a responder j who accepts a proposal from a proposer i sets

their aspiration to their current partner’s rank. If instead j rejects i ’s proposal,

then j must adjust αt ( j ) to become less picky if j remains single, or else j ’s

aspiration remains set to their current partner, µt ( j ).

To address naive behavior by proposers, we allow agents to learn who is bet-

ter than them. In particular, if a man i is rejected by a woman j when she is

partnered with some other man k, then man i should not waste another pro-

posal on woman j if she remains partnered with k. That is, man i learns by
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revealed preference that k Â j i . Let λ(i ) denote i ’s unattainable set. This is the

set of all pairs of agents in which the woman’s partner is preferred to man i ,

λ(i ) = {( j ,k) ∈W ×M : k Â j i },

with a symmetric definition for a woman i . Since agent preferences are private

information, this set is empty at t = 0 and updated by agent i whenever he is

rejected in favor of another man. We thus define learning as follows:

Definition 3.3 (Learning). Given an environment θ, a proposal process P admits

learning if each agent i ’s unattainable set λt (i ) is updated at t > 0 as

λt (i ) =
λt−1(i )∪ ( j ,µt ( j )), j rejects i at t

λt−1(i ), else

with λ0(i ) =;,∀i ∈ M ∪W .

An agent j is attainable at µt for agent i if

( j ,µt ( j )) 6∈λt (i ),

that is, if j is not partnered with an agent µt ( j ) for whom i has been rejected

before. It is natural, for example, for a man making a proposal to propose to

an attainable woman, rather than proposing to a woman who will surely reject

him.

We are now ready to define our first proposal process.

Definition 3.4 (Random best attainable). Begin at random matching µ0 with

some probability p(µ0). Given µt−1 at time t :

1. Pick a proposing agent it ∈ M ∪W at random

2. Best attainable proposal: Agent i t proposes to the best agent jt such that

jt Âit µt−1(it ) and ( jt ,µt−1( jt )) 6∈λt (it )

(a) If no such jt exists, set µt =µt−1, set t = t +1, and return to step 1.

(b) Else, go to step 3.

3. Agent jt accepts if ρ( jt , it ) Â jt αt−1( jt )
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(a) If jt accepts, update αt ,µt

(b) Else, update αt and set µt =µt−1

Set t = t +1, and return to step 1.

Together, learning and aspirations guide pairs of men and women into “good”

matches early on, so that only small adjustments are necessary in order to get

to a stable match. In contrast, better and best reply dynamics are character-

ized by an inordinate amount of matching, breaking up, and re-matching, with

adjustments toward stability fairly random.

Learning allows proposers to use their proposals more wisely. In principle,

proposing agents can learn the preferences of agents on the other side, given

sufficient proposals. Beyond learning all of the men preferred to himself, a man

can learn which other men do not represent “competition.” Thus, learning can

facilitate earlier pairwise matching.

On the other side, aspirations ensure responders do not settle into inferior

matches too quickly. The danger from doing so, e.g., in the best reply dynamics,

is that a lot of time is spent re-matching.

One potential problem with this process is that a man may cycle through a

long list of attainable women before actually securing a match. Indeed, once

a man learns which other men are preferred he has no proposal to make if the

women remain matched to such men.

An alternative is for a proposing man to pursue single women first. If a man

does not have a best attainable woman available, but there are unmatched

women waiting around, then it seems reasonable to go after a single woman

rather than losing the opportunity to propose. If it is desirable for agents to se-

cure early matches, then it is natural that men propose to single women first.

Of course, if no single woman is available, the best a man can do is to pursue

his best attainable woman, if one is available.

We are now ready to define our second proposal process.

Definition 3.5 (Random singles first). Modify the random best attainable pro-

posal process as follows:

2. Best singles proposal: Agent i t proposes to the best agent jt such that

µt−1( jt ) =;
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(a) Best attainable proposal: If no best single jt exists, it proposes to the

best attainable jt

(b) If no such jt exists, set µt =µt−1, set t = t +1, and return to step 1.

(c) Else, go to step 3.

The random singles first process is even more biased toward early matching

than the random best attainable process. It represents a more risk-averse ap-

proach, in the sense that being matched is more important than finding the

best match. Combined with learning and aspirations, the process should set-

tle more quickly into “good” matches so that the path toward stability is less

volatile in terms of re-matching.

3.3 Computational results

In this section, we present computational results on convergence to stability

and welfare for our two proposal processes, in both balanced and unbalanced

markets.

In what follows, the aspiration adjustment for an environment θ of size n is

set to decrease with the inverse of n as:

an ≡ 10

n
,

where n = 10 is the smallest market we consider.

3.3.1 Convergence to stability in uncoordinated matching
markets

The most natural way to simulate random sampling of a matching market θ ∈
Θn is to sample a preference list for each agent. Since we only consider markets

in which every agent prefers being matched to being unmatched, this amounts

to sampling a permutation of a {1,2, . . . ,n}. Sampling is carried out uniformly at

random, independently for each agent. Sufficient random sampling in this way

should capture most typical instances, but convergence of a proposal process

is best characterized by convergence in the worst cases.2

2A natural question is what effect correlated preferences would have on finding a stable
matching. It turns out that correlation makes finding a stable matching much easier, because
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How much random sampling is needed to credibly capture the worst cases is

unclear in general. In the balanced case, however, we actually know what the

worst case instances look like. Consider the class of markets θ, represented as a

weighted graph, in Table 3.1. A market can be represented as a weighted graph

as follows: let ω(m, w) ∈ {1, . . . ,n} denote the weight of edge (m, w). Then

m Âw m′ ⇔ω(m, w) <ω(m′, w)

w Âm w ′ ⇔ω(m, w) >ω(m, w ′)

Thus, the instances represented in Table 3.1 are such that a woman’s favorite

man ranks that woman last in his preferences, while a woman’s least favorite

man ranks her first; a woman’s second favorite man ranks that woman second

to last, and so on.

In such markets, any matching such that every woman is matched to their k th

ranked man is stable. To see this, suppose k = 2. Then the weight for each pair

(m, w) must be 2, in which case a man m can only improve his partner’s rank by

matching with a woman for whom m is worse than her current partner. Thus,

there are no blocking pairs. Ensuring that each woman is matched to a man

just so is what prevents random better and best reply processes from finding

stability.

m1 m2 m3 . . . mn−2 mn−1 mn

w1 1 2 3 . . . n −2 n −1 n
w2 n 1 2 3 . . . n −2 n −1
w3 n −1 n 1 2 3 . . . n −2

...
...

...
...

...
...

...
...

wn−1 3 4 5 . . . n 1 2
wn 2 3 4 . . . n −1 n 1

Table 3.1: An instance of hard preferences in balanced markets, reproduced
from Ackermann et al. (2011).

The class of preferences shown in Table 3.1 are presented by Ackermann et al.

(2011) as instances in which random better and best reply proposal processes

can take 2Ω(n) steps to converge on a stable matching. Ackermann et al. (2011)

do not claim that this class uniquely represents the worst case scenario. How-

ever, Hoffman et al. (2013)’s characterization of the time to reach a given stable

in some sense the correlation coordinates agent behavior.
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matching in terms of the size and depth of its jealousy graph shows that such in-

stances indeed are the most problematic for random better (and, by extension,

best) reply processes.

The number of proposals needed to reach a stable matching, as a multiple of

n3, is shown in Figures 3.1-3.5. We consider the random best attainable process

first.

In random balanced markets, the best attainable process appears to consis-

tently find a stable matching at a small fraction of n3 steps, especially as n grows

large. This is illustrated in Figure 3.1 for 200 simulations from n = 10, . . . ,500.

However, as shown in Figure 3.2, the hard instances prove challenging. Over

150 simulations for n = 10, . . . ,300, the number of proposals needed to find a

stable matching is growing in n. Note that while the larger instances appear

to converge at a reasonable multiple of n3, we cap the simulations at 25n3. In

other words, the random best attainable process appears to be exploding with

n.

We now turn to the random singles first process. Figure 3.3 shows results of

500 simulations of random balanced environments for n = 10, . . . ,500. Once

again, the rate of convergence is a fraction of n3, which is unsurprising as this

process is an improvement over the best attainable process. Moreover, the ad-

dition of another agent on one side of the market has a negligible impact on

convergence, as seen in Figure 3.4. With an additional woman in the market,

the singles first proposal process still finds a stable matching at a rate less than

n3, based again on 500 simulations for n = 10, . . . ,500.

In Figure 3.5, we plot convergence for hard instances of a balanced market,

for n = 10, . . . ,500, based on 300 simulations. Note that the time to reach stabil-

ity is still bounded by a small multiple of n3 below approximately n = 400. Be-

yond this amount, potentially exponential growth starts to take over. Still, this

is stark improvement over the naive random better and best reply processes

where exponential growth is immediately apparent. This is encouraging if we

hope moderately large uncoordinated markets reach stability.
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Figure 3.1: Number of proposals to reach stability in Random Best Attainable
process in balanced random environment
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Figure 3.2: Number of proposals to reach stability in Random Best Attainable
process in hard environment
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Figure 3.3: Number of proposals to reach stability in Random Singles First
process in balanced random environment
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Figure 3.4: Number of proposals to reach stability in Random Singles First
process in almost balanced random environment
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Figure 3.5: Number of proposals to reach stability in Random Singles First
process in hard environment, decreasing aspiration adjustment exponentially

3.3.2 Welfare of uncoordinated markets prior to reaching
stability

While a polynomial number of proposals is much more feasible than an expo-

nential number of proposals, it can still be unrealistic for growth at rates faster

than O(n2). Since the deferred acceptance algorithm can require O(n) propos-

als from each agent to find a stable match, we should expect a randomized pro-

posal process to take at least as long. If we interpret a proposal as an indication

of interest rather than a formal proposal, a person in a market with n = 500 peo-

ple on each side could plausibly make 1,000 or 2,000 proposals, corresponding

to O(n2) proposals total. On the other hand, 250,000 or 500,000 proposals per

agent—corresponding to O(n3) proposals total—pushes the bounds of believ-

ability even with a loose interpretation what counts as a proposal. Is there a

downside to agents stopping their search early before reaching stability? In this

section, we investigate the welfare of matches found by random proposal pro-

cesses after a small multiple of n2 proposals.

The biggest potential cost of uncoordinated matching is that too many agents

are single at a given point in time. The Random Singles First process attempts

to address this problem in a greedy fashion by having agents break up an ex-

isting couple only when unavoidable. Figures 3.7 and 3.6 show the proportion

of single agents at multiples of n2 for balanced and almost balanced markets

respectively at n = 50. Nearly every agent is matched with some partner within
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the first n2 proposals. Figure 3.8 of the proportion of single agents in an almost

balanced market of n = 1000 shows this isn’t simply a feature of small markets.

Once again, most agents are partnered within the first n2 proposals and, after

the initial matching, about 5% of agents are single at any one time. Since most

agents are matched, it is now reasonable to focus on the welfare of matched

agents.
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Figure 3.6: Proportion single after multiple of proposal in almost balanced
environment for n = 50.
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Figure 3.7: Proportion of single agents after multiple of proposal in balanced
environment for n = 50.
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Figure 3.8: Proportion of single agents after multiple of proposal in almost
balanced environment for n = 1000.

A natural measure of welfare in environments characterized by rank-order

preferences is the average rank of agents at a given match. Consider an environ-

ment θn with n men and n +m women. Let ρt (i ) ≡ ρ(i ,µt (i )) = |{ j : j ºi µt (i )}|
denote the rank of i ’s partner at matching µt . Then the average rank of men’s

partners at µt is RM
t ≡ 1

nt

∑
i∈M ρt (i ), where nt = |{i ∈ M : µt (i ) ∈ W | is the num-

ber of men matched to women under µt . If µMOSM is the man-optimal stable

matching, the average rank of men at µMOSM is RM
MOSM.

For a given environment θ, we can easily compute the optimal stable matches

µMOSM and µWOSM in order to compare average rank at the current matching

of a proposal process. In particular, we will focus on the average improvement

in rank at µt relative to woman-optimal stable matching:

QM
t ≡ 1

nt

∑
i∈M

(
ρWOSM(i )−ρt (i )

)
(Men)

QW
t ≡ 1

nt

∑
i∈W

(
ρWOSM(i )−ρt (i )

)
(Women)

QT
t ≡ (

QM
t +QW

t

)
/2 (Total)

The literature has developed a good idea of what the average ranks of opti-

mal matches look like in terms of market size n when preferences are drawn

uniformly at random. For balanced θ with n men and n women, Pittel (1989)

has shown that RM
MOSM

p−→ logn and RM
WOSM

p−→ n
logn . Ashlagi et al. (ming) ex-
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plore unbalanced markets and find that the difference in welfare between the

man-optimal and woman-optimal matches collapses rapidly with the addition

of even a single person. In a market with n men and n +1 women, the average

rank of the men’s partners is logn and the average rank of the women’s partners

is m
logn with high probability in every stable match. In other words, being on the

short side of the market provides the same advantage as being on the proposing

side in a balanced market. Because the addition of a single person drastically

changes the set of stable matches, we should view balanced markets as a spe-

cial case. Without loss of generality, we assume men are on the short side when

considering unbalanced markets.

In 500 simulated almost balanced markets with n men and n +1 women, all

but one match found by the Random Singles First process after 5n2 proposals

had a better average rank among all matched agents relative to the MOSM. In

the sole simulation that didn’t have strictly better average welfare, the process

found the unique stable match within the given number of proposals. Relative

to the WOSM, 485 simulations had strictly better average ranks, 12 were equal

to the WOSM, and 3 were worse. Every time the total average rank was better

than the WOSM average rank, men did relatively worse and women did rela-

tively better.

As shown in figure 3.9, the short side of the market still has a better average

rank than the long side in almost every instance despite doing worse than in any

stable match. The short side is unable to fully use its advantage when matching

is uncoordinated. Figure 3.10 shows how the average rank of men compares

to the WOSM as n changes. Figure 3.11 shows the average rank across both

men and women relative to the WOSM. Not only is the uncoordinated match

is more egalitarian between the two sides relative to stability, it results in an

overall better average ranks.

The situation is even more striking when the imbalance between sides grows.

We now consider markets with n men on the short side and 1.5n women on the

long side of the market. Figure 3.12 shows the short side of the market is roughly

logarithmically worse in the uncoordinated match relative to the WOSM. With

500 men and 750 women, this means the short side is matched with their 2nd

or 3rd rank partner rather than their 1st or 2nd rank partner on average. In

contrast, a person on the the long side of the market is paired with their 140th

best partner rather than their 220th best partner.

These results suggest that decentralized matching can be better for agents
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Figure 3.9: Average ranks for n men and n +1 women after 5n2 proposals.
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Figure 3.10: Men’s average rank relative to the WOSM with n men and n +1
women after 5n2 proposals.
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Figure 3.11: Total average rank relative to the WOSM with n men and n +1
women after 5n2 proposals.
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Figure 3.12: Men’s average rank relative to the WOSM with n men and 1.5n
women after 5n2 proposals.
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Figure 3.13: Total average rank relative to the WOSM with n men and 1.5n
women after 5n2 proposals.

overall, particularly if an agent is unsure a priori whether they will be on the

long or short side of the market. The evident hardness of finding stability in

large coordinated markets ends up being an advantage rather than a failing.

Unless a market is obviously failing due to instability or there is a reason all

matches should happen quickly and simultaneously, this is a reason to avoid

centralization.

3.4 Conclusion

We present two proposal processes that suggest uncoordinated two-sided

matching markets perform well when agents aren’t completely naive. While our

results don’t fully resolve the question of whether uncoordinated markets tend

to reach stable matches, either answer turns out to be encouraging. Simula-

tions show the random singles first proposal process reaches stability in small

to medium sized markets within a small multiple of n3 proposals. This holds

even for the hardest-to-match set of preferences. On the other hand, if the pro-

cess is cut-off before reaching stability, the resulting matches are more egalitar-

ian and have better average welfare. Either way, our results suggest centraliza-

tion has no advantage unless the market is unraveling or suffers another clear

market failure.

Substantial work remains in the study of decentalized matching markets. The
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asymptotic behavior of uncoordinated matching for random preferences or

more realistic correlated preferences remains an open question. Another open

question is whether a more sophisticated proposal process reaches stability

with high probability in polynomial time for all possible preferences.
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APPENDIX

PROOFS

Proof of Proposition 1.2. Let T by any deterministic, neutral, anonymous, and

robustly implementable decision rule. At least one such decision rule exists

since majority rule satisfies these properties.

Suppose n is odd. I will establish the following facts about T in turn:

1. T
(

(a, 1
2 ), . . . , (a, 1

2 )︸ ︷︷ ︸
n+1

2

, (b, p n+3
2

), . . . , (b, pn)
)= A, ∀p n+3

2
, . . . , pn ∈ [0,1]

2. T
(
(a,1), . . . , (a,1)

)= A

3. T
(
(a, p1), (b, 1

n−1 ), . . . , (b, 1
n−1 )

)= B , ∀p1 ∈ [0,1]

4. T
(
(a, p1), (a,1), . . . , (a,1)

)= A, ∀p1 ∈ (0,1]

5. T
(

(a, p1), . . . , (a, p n+1
2

)︸ ︷︷ ︸
n+1

2

, (b, p n+3
2

), . . . , (b, pn)
)= A, ∀pi ∈ (0,1)

6. T
(
(a, p1), . . . , (a, pm), (b, pm+1), . . . , (b, pn)

)= A, ∀pi ∈ (0,1),∀m ≥ n+1
2

The first three facts say that majorities of various sizes map to the majority opin-

ion when those supporters have correct beliefs. The fourth says that one mem-

ber of a full majority can have an arbitrary prediction without disturbing the

outcome. The fifth says that all members of a bare majority can have arbitrary

interior beliefs without changing the outcome. Finally, the sixth is the conclu-

sion of the theorem.

I prove the first fact by contradiction. Suppose there are some predictions

p ′
n+3

2
, . . . , p ′

n such that

T
(

(a, 1
2 ), . . . , (a, 1

2 )︸ ︷︷ ︸
n+1

2

, (b, p ′
n+3

2
), . . . , (b, p ′

n)
)= B.
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We must then also have

T
(
(a, p1), (a, 1

2 ), . . . , (a, 1
2 )︸ ︷︷ ︸

n−1
2

, (b, p ′
n+3

2
), . . . , (b, p ′

n)
)= B , ∀p1 ∈ [0,1]

for agent one with type (a, 1
2 ) to report truthfully, since the agent could be cer-

tain this profile will occur (consistent with the prediction of p1 = 1
2 that half of

the other agents have opinion a) and thus can’t expect to switch the outcome

to A by reporting some other prediction. In particular,

T
(
(a, n−3

2(n−1) ), (a, 1
2 ), . . . , (a, 1

2 )︸ ︷︷ ︸
n−1

2

, (b, p ′
n+3

2
), . . . , (b, p ′

n)
)= B.

Successively applying the same reasoning to all agents with opinion a yields

T
(

(a, n−3
2(n−1) ), . . . , (a, n−3

2(n−1)) )︸ ︷︷ ︸
n+1

2

, (b, p ′
n+3

2
), . . . , (b, p ′

n)
)= B.

For an agent with type (b, 1
2 ) to report truthfully, we must have

T
(

(a, n−3
2(n−1) ), . . . , (a, n−3

2(n−1)) )︸ ︷︷ ︸
n−1

2

, (b, 1
2 ), (b, p ′

n+3
2

), . . . , (b, p ′
n)

)= B

and then

T
(

(a, n−3
2(n−1) ), . . . , (a, n−3

2(n−1) )︸ ︷︷ ︸
n−1

2

, (b, 1
2 ), . . . , (b, 1

2 )︸ ︷︷ ︸
n+1

2

)= B

by successively applying incentive compatibility for the remaining agents with

opinion b. Applying neutrality and anonymity yields

T
(

(a, 1
2 ), . . . , (a, 1

2 )︸ ︷︷ ︸
n+1

2

, (b, n+1
2(n−1) ), . . . , (b, n+1

2n−2 )︸ ︷︷ ︸
n−1

2

)= A.

For the agents with type (b, n+1
2(n−1) ) who think the previous profile is certain (con-

sistent with their prediction) to report truthfully, the outcome cannot switch to

B for any other prediction report. Changing the predictions of agents with opin-
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ion b in turn yields

T
(

(a, 1
2 ), . . . , (a, 1

2 )︸ ︷︷ ︸
n+1

2

, (b, p ′
n+3

2
), . . . , (b, p ′

n)
)= A,

which is the original profile assumed to map to B , resulting in a contradiction.

The second fact follows from the first. Changing an agent from opinion b and

an arbitrary prediction to opinion a and an accurate prediction for that profile

must leave the outcome unchanged at A for incentive compatibility. This can

be repeated until all agents have opinion a. Notice that as the types of other

agents change, what was once an accurate prediction might become inaccu-

rate. Updating the prediction of an agent with opinion a to be accurate for the

profile must also leave the outcome unchanged, so the prediction for each can

be changed to pi = 1, resulting in T
(
(a,1), . . . , (a,1)

)= A.

The third fact follows from the first similarly to the second. All but one agent

with opinion b can be replaced by an agent with opinion a and an accurate

opinion for that profile. By anonymity, this yields

T
(
(b, p1), (a, n−2

n−1 ), . . . , (a, n−2
n−1 )

)= A, ∀p1 ∈ [0,1]

and finally by neutrality,

T
(
(a, p1), (b, 1

n−1 ), . . . , (b, 1
n−1 )

)= B , ∀p1 ∈ [0,1].

To establish the fourth fact, suppose agent one has type (a, p1) with p1 ∈ (0,1]

based on a belief that all other agents share type (a,1) with probability p1 and

type (b, 1
n−1 ) with probability 1−p1. If T ((a, p1), (a,1), . . . , (a,1)) = B , then agent

one expects the outcome from reporting truthfully to always be B by fact 3. If

the agent misreported as type (a,1), then the outcome would occasionally be

A, producing a strictly better deviation. Therefore, we must have

T
(
(a, p1), (a,1), . . . , (a,1)

)= A, ∀p1 ∈ (0,1]

The fifth fact follows similarly to the fourth. Suppose agent one has type

(a, p1). If p1 ∈ (0, 1
2 ), consider an agent who is sure either fact 1 or 3 would apply

if he reported (a, 1
2 ). Since the choice of prediction won’t change the outcome

when fact 3 applies, the outcome for being honest must match the outcome
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when fact 1 would apply. Alternatively, if p ∈ ( 1
2 ,1), consider an agent who is

certain either fact 1 or 4 would apply when reporting (a, 1
2 ). Since this report al-

ways results in outcome A, the honest report must also result in A for the same

profile of others. Taking these observations together with fact 1, we have

T
(
(a, p1), (a, 1

2 ) . . . , (a, 1
2 )︸ ︷︷ ︸

n−1
2

, (b, p n+3
2

), . . . , (b, pn)
)= A, ∀p1, p n+3

2
. . . , pn ∈ (0,1)

Repeating this reasoning for the remaining agents with opinion a yields

T
(

(a, p1), . . . , (a, p n+1
2

)︸ ︷︷ ︸
n+1

2

, (b, p n+3
2

), . . . , (b, pn)
)= A, ∀p1, . . . , pn ∈ (0,1)

For the sixth fact, notice that replacing an agent with opinion b with an agent

type (a, n+1
2(n−1) ) in fact 5 must preserve the outcome of A. Applying the same

argument as in the proof of fact 5 says any prediction pi ∈ (0,1), not just n+1
2(n−1) ,

must produce an outcome of A. This process can be repeated, adding further

a supporters inductively. Therefore, any number of agents with opinion a and

interior beliefs can be added, resulting in

T
(
(a, p1), . . . , (a, pm), (b, pm+1), . . . , (b, pn)

)= A, ∀p1, . . . , pn ∈ (0,1),∀m ≥ n +1

2
,

which concludes the proof that any neutral, anonymous, and robustly incentive

compatible decision rule must be equivalent to majority rule when agents have

interior predictions for odd n.

For even n, the first step is to establish that

T
(

(a, n
2n−2 ), . . . , (a, n

2n−2 )︸ ︷︷ ︸
n
2 +1

, (b, p n
2 +2), . . . , (b, pn)

)= A, ∀p n
2 +2, . . . , pn ∈ [0,1]

analogously to the first fact when n is odd. From this, the remaining facts follow,

concluding with agreement with majority rule for all interior predictions when

a majority exists. Furthermore,

T
(

(a, n−2
2n−2 ), . . . , (a, n−2

2n−2 )︸ ︷︷ ︸
n
2

, (b, n
2n−2 ), . . . , (b, n

2n−2 )︸ ︷︷ ︸
n
2

)=∅
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for neutrality because this profile with correct predictions is complementary

to itself. Changing the prediction of an agent with opinion a can’t switch the

outcome to A without giving an agent in this profile an incentive to misreport.

The outcome also cannot switch to B without making a report of (a, n−2
2n−2 ) dom-

inate an honest report of (a, pi ) for an agent that puts positive probability on

this profile since the prediction doesn’t matter for any non-balanced profile. By

induction, all profiles with x̄ = 1
2 and interior predictions must have T (x, p) =∅

in agreement with majority rule.

Necessity of Proposition 1.3. Suppose agent i believes p−i is fixed conditional

on x−i , reducing beliefs over the types of others to π(x−i ). Incentive compatibil-

ity implies

∑
x−i

π(x−i )T ((a, x−i ), (pi , p−i )) ≥ ∑
x−i

π(x−i )T ((a, x−i ), (p ′
i , p−i ))

for all pi , p ′
i , p−i , and π such that Eπ[x̄−i ] = pi , so that agent i does not want

to misreport her prediction pi . Hence, T is a proper scoring rule for the mean

of x−i from the perspective of agent i holding xi = a fixed. By the McCarthy-

Savage representation of proper scoring rules, T must be representable from

the perspective of agent i as

T ((a, x−i ), p) = κi (x, p−i )+Gi (pi ; p−i )+ (x̄−i −pi )G ′
i (pi ; p−i ) (1)

using some Gi convex in pi , where G ′
i is a subderivative in pi . Without loss of

generality, we can suppose Gi (0; p−i ) = 0 and G ′
i (0; p−i ) = 0 by folding Gi (0; p−i )

and x̄−i G ′
i (0; p−i ) into κi if necessary. Since G ′

i (pi ; p−i ) must be non-decreasing

as a subderivative of a convex function, it has bounded variation on [0,1] and

we are free to write it as a Lebesgue-Stieltjes integral:

G ′
i (pi ; p−i ) =

∫ pi

0
dξi (t ; p−i ). (2)

Then, we have

Gi (pi ; p−i ) =
∫ pi

0

∫ t

0
dξi (s; p−i )dt =

∫ pi

0
(pi − t )dξi (t ; p−i ) (3)
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after a change of variables. Plugging the last two lines into line 1 yields

T ((a, x−i ), p) = κi (x, p−i )+
∫ pi

0
(x̄−i − t )dξi (t ; p−i ), (4)

which is closely related to the Schervish (1989) representation (see also Lam-

bert (2011)). This representation prescribes the specific way that pi and the

proportion x̄−i must interact for incentive compatibility, up to a weighting by

ξi . For T to be neutral between A and B , we must have

T ((b, x−i ), p) = κi (x, p−i )−
∫ 1−pi

0
(1− x̄−i − t )dξi (t ;1−p−i )

so T (x, p) + T (1 − x,1 − p) = 1. With this form for each agent, it follows by

anonymity that

T (x, p) = κ(x̄)+ ∑
i : xi=a

∫ pi

0
(x̄−i − t )dξ(t )− ∑

i : xi=b

∫ 1−pi

0
(1− x̄−i − t )dξ(t ),

since x̄ contains all information preserved under permutations of x and ξ can’t

depend on the identity of the agent. Although ξi could have depended on the

predictions of other agents to be a proper scoring rule for agent i , those predic-

tions can only appear in their respective integrals to be proper for the remain-

ing agents.

Again taking p−i to be known conditional on x−i , incentive compatibility im-

plies T is higher in expectation when agent i reports her true type (a, pi ) than

when reporting any (b, p ′
i ). Since the mechanism is anonymous, an agent’s

beliefs can be reduced to a distribution over the number of other agents m =∑
j 6=−i x j with the a opinion rather than on x−i directly, even if the underlying
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belief treats other agents asymmetrically. We have

n−1∑
m=0

π(m)

(
κ

(m+1
n

)+∫ pi

0

( m
n−1 − t

)
dξ(t )

+ ∑
j : x j=a

∫ p j

0

( m
n−1 − t

)
dξ(t )− ∑

j : x j=b

∫ 1−p j

0

(
1− m+1

n−1 − t
)

dξ(t )

)

≥
n−1∑
m=0

π(m)

(
κ

(m
n

)−∫ 1−p ′

0

(
1− m

n−1 − t
)

dξ(t )

+ ∑
j : x j=a

∫ p j

0

(
na−1
n−1 − t

)
dξ(t )− ∑

j : x j=b

∫ 1−p j

0

(
1− m

n−1 − t
)

dξ(t )

) (5)

⇐⇒
n−1∑
m=0

π(m)

(
κ

(m+1
n

)−κ(m
n

)+ ∑
j : x j=a

∫ p j

0

1
n−1 dξ(t )+ ∑

j : x j=b

∫ 1−p j

0

1
n−1 dξ(t )

)

≥−
∫ pi

0

(
pi − t

)
dξ(t )−

∫ 1−p ′

0

(
1−pi − t

)
dξ(t ) (6)

for all pi , p ′
i , p j (x−i ), and beliefs π such that Eπ[m/(n −1)] = pi . The last state-

ment is true only if

n−1∑
na=0

π(m)
(
κ

(m+1
n

)−κ(m
n

))≥−
∫ pi

0

(
pi − t

)
dξ(t )−

∫ 1−p ′

0

(
1−pi − t

)
dξ(t ), (7)

taking p j (a) = 0 and p j (b) = 1. This inequality says that the expectation of κ’s

first differences must be greater than a function of the mean of the distribution.

Following a similar argument for agents with opinion b yields the differences in

κ having the lower bound

n−1∑
m=0

π(m)
(
κ

(m+1
n

)−κ(m
n

))≥−
∫ p ′

0

(
pi − t

)
dξ(t )−

∫ 1−pi

0

(
1−pi − t

)
dξ(t ) (8)

Since the right-hand side of each lower bound is quasi-convex in p ′ (non-

increasing at p ′ < pi and non-decreasing at p ′ > pi ), each inequality is satisfied

for all p ′ if and only if it holds for p ′ ∈ {0,1}. Combined, these yields

n−1∑
m=0

π(m)
(
κ

(m+1
n

)−κ(m
n

))≥ max

{
−

∫ pi

0

(
pi − t

)
dξ(t ),

−
∫ pi

0

(
pi − t

)
dξ(t )−

∫ 1

0

(
1−pi − t

)
dξ(t ),

−
∫ 1−pi

0

(
1−pi − t

)
dξ(t ),

−
∫ 1

0

(
pi − t

)
dξ(t )−

∫ 1−pi

0

(
1−pi − t

)
dξ(t )

}
(9)
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for all pi ∈ [0,1] and all π such that Eπ[m/(n −1)] = pi .

A lower bound on the expectations of κ’s differences for all distributions is

equivalent to the differences being separated from the right-hand side by some

convex function of pi . The four quantities in the lower bound are each concave

in pi . The first and fourth are maximized at zero while the second and third

are maximized at one, as can be seen by taking first-order conditions via Leib-

niz’s rule. Since the first and fourth are symmetric around 1
2 with the third and

second respectively, attention can be restricted to the second and third terms

when considering pi ≥ 1
2 .

Since the terms of the lower bound are concave in pi , the least restrictive

convex upper bound for each term is a supporting line at some point in [ 1
2 ,1].

The supporting line of the second term at φ1 is

(pi −φ1)

(
−

∫ φ1

0
dξ(t )+

∫ 1

0
dξ(t )

)
−

∫ φ1

0

(
φ1 − t

)
dξ(t )−

∫ 1

0

(
1−φ1 − t

)
dξ(t ) =

−
∫ φ1

0

(
pi − t

)
dξ(t )−

∫ 1

0

(
1−pi − t

)
dξ(t )

(10)

and the supporting line of the third term at φ2 is

(pi −φ2)

(∫ 1−φ2

0
dξ(t )

)
−

∫ 1−φ2

0

(
1−φ2 − t

)
dξ(t ) =−

∫ 1−φ2

0

(
1−pi − t

)
dξ(t ) (11)

The pointwise maximum of the supporting lines is convex and increasing, so

this provides a minimal bound of the differences in κ above 1
2 . Define δ(m) for

m +1 ≥ dn
2 e as

δ(m) = max

{
−

∫ φ1

0

( m
n−1 − t

)
dξ(t )−

∫ 1

0

(
1− m

n−1 − t
)

dξ(t ),

−
∫ 1−φ2

0

(
1− m

n−1 − t
)

dξ(t )

} (12)

Then, we have κ
(m+1

n

) ≥ κ
(m

n

)+δ(m) for m +1 ≥ dn
2 e when the expectation in

line (9) is evaluated at degenerate distributions. Neutrality implies κ
(1

2

) = 1
2

and κ(x̄)+κ(1− x̄) = 1, so without loss of generality

κ
(na

n

)= 1

2
+τ(na

n − 1
2

)+ 1(n odd)
δ

(n−1
2

)
2

+
na−1∑

m=dn/2e
δ(m) (13)
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for na ≥ dn
2 e with non-decreasing τ : [0, 1

2 ] → R+ to account for excess differ-

ences in κ above δ(m). Since the base score κ must be negatively symmetric

around 1
2 , we then have

κ
(na

n

)= 1

2
+ sign

(na
n − 1

2

)(
τ
(∣∣na

n − 1
2

∣∣)+ 1(n odd)
δ

(n−1
2

)
2

+
max{na ,nb }−1∑

m=dn/2e
δ(m)

)
(14)

for all na . Without loss of generality, a scaling factor of 1
n could have been ap-

plied to each scoring rule originally and carried through, resulting in the state-

ment of the theorem.

Sufficiency of Proposition 1.3. The sufficiency of this representation follows

from iterated deletion of interim dominated strategies in the direct mechanism.

Consider an agent of type (a, pi ) who conjectures the average proportion of re-

ported opinions is p̂i . By the conditions on the base score, a report of (a, p̂i )

weakly prefers good as all reports (b, p ′). A comparison of lines (5) and (6) above

shows the agent will strictly prefer (a, p̂i ) to (b, p ′) as long as the agent thinks

there is some chance that p j and 1−p j (when x j = a and x j = b, respectively)

are outside a neighborhood of zero where ξ(t ) is uniformly zero. Otherwise,

a strict incentive from a strictly increasing τ or partial honesty is necessary to

guarantee dominance. An analogous argument for agents of type (b, pi ) rules

out all (a, p ′). Since each agent prefers submitting their true opinion, it follows

that each agent weakly prefers submitting their true prediction of the opinions

of other agents since T is a proper scoring rule for each agent. Consequently,

honest reporting always survives iterated deletion of weakly interim dominated

strategies. Other strategies might also survive if agents are indifferent between

these reports and honesty, but all will result in the same outcome as honest

reporting indifference occurs only when T is constant, with ξ uniformly zero

in some interval containing those reports. Therefore, the unique dominance

solvable outcome for type profile (x, p) conincides with T (x, p).
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