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Abstract

Recent years have seen a renewed interest in the area of deductive program verifi-
cation, with focus on verifying real-world software components. Success stories
include the verification of operating system kernels and of compilers.

This dissertation describes techniques for automatically building e�cient
correct-by-construction program verifiers for real-world languages from operational
semantics. In particular, reachability logic is proposed as a foundation for achieving
language-independent program verification. Reachability logic can express both
operational semantics and program correctness properties, and has a sound and
(relatively) complete proof systems that derives the program correctness properties
from the operational semantics. These techniques have been implemented in the K
verification infrastructure, which in turn yielded automatic program verifiers for C,
Java, and JavaScript. These verifiers are evaluated by checking the full functional
correctness of challenging heap manipulation programs implementing the same
data-structures in these languages (e.g. AVL trees). This dissertation also describes
the natural proof methodology for automated reasoning about heap properties.
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Chapter 1

Introduction

Poor software quality can lead to financial loses and loss of life as demonstrated
by numerous recent incidents. To achieve the high level of quality desired for
critical software components, we need to formally verify these components. In
particular, we need techniques that allow for easy construction of verification tools,
and automatic reasoning about program correctness properties.

In this thesis, we present techniques for automatically building e�cient correct-
by-construction program verifiers from operational semantics. We have imple-
mented these techniques in the K verification infrastructure (KVI), which in turn
has yielded automatic program verifiers for C, Java, and JavaScript. We also
present techniques for automated reasoning with a focus on proving data-structure
properties. This work has resulted in the first automatic proofs of full functional cor-
rectness for a wide variety of data-structures (red-black trees, AVL trees, binomial
heaps, B-trees, etc).

Building program verification tools for real-world languages is hard. Arguably
the most popular theoretical foundation for program verification is axiomatic
semantics, introduced by Floyd [36] and Hoare [45]. Intuitively, an axiomatic
semantics defines a programming language as a proof system that derives Hoare
triples of the form {precondition} code {postcondition}. The semantics of each
program construct is given by one or more proof rules deriving such Hoare triples.
For example, the proof rule below gives semantics to that while loop in a simple
imperative language:

H ` { ^ e , 0} s { }
H ` { } while(e) s { ^ e = 0}

Here we assume a C-like language, where zero means false and non-zero means
true. This is the standard “loop invariant” proof rule associated with an axiomatic
semantics. However, this rule assumes an idealized imperative language. In the
case of real-world languages, concepts such as control flow, side e↵ects, types, etc,
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complicate such a rule. A more realistic proof rule, from a separation logic [85]
based axiomatic semantics for JavaScript [37], is shown here:

{P} e1 {S ⇤ r = V1} S = R ⇤ �(Ls,V1,V2)
{S ⇤ True(V2)} e2 {P}
Q = S ⇤ False(V2) ⇤ r = undefined r < fv(R)

{P} while(e1){e2} {Q}
This is one of the several proof rules for while, and is considerably more complex
then the idealized one above. More importantly, we would argue that it is hard to
correlate this rule with the English semantics of while as described in the o�cial
ECMAScript 5.1 standard. Moreover, such a proof rule cannot be turned easily
into an interpreter, and thus it cannot be easily tested on existing benchmarks of
programs. For this reason, an axiomatics semantics is not considered a very trusted
model of the programming language it defines.

Operational semantics are an alternative style of formal semantics. They are
easy to define and understand, similarly to implementing an interpreter. They
require little formal training, scale up well, and, being executable, can be tested
against existing implementations for faithfulness. Thus, operational semantics
typically serve as the trusted models of programming languages, acting both as
documentation and reference implementations for the defined languages.

Despite these advantages, they are rarely used directly for program verification,
because proofs tend to be low-level and tedious, as they involve formalizing and
working directly with the corresponding transition system. The state-of-the-art
in mechanical program verification is to develop both an operational semantics
(as a trusted model of the programming language) and axiomatic semantics (as a
foundation for program verification) and to prove such axiomatic semantics sound
with respect to the operational semantics [69, 47, 3]. Unfortunately, this needs to
be done for each language separately and is very labor intensive. Such a semantics
(either operational or axiomatic) typically consists of tens of thousands of lines
of code and take several man-years to complete. Moreover, the soundness proofs
need to be updated as the languages evolve.

For these reasons, many program verification tools forgo defining an operational
semantics or an axiomatic semantics altogether, and instead they implement ad-hoc
strongest-postcondition/weakest-precondition generation. For example, tools for C
like VCC [22] and Frama-C [35], and for Java like jStar [28] take this approach.
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Sometimes this is a two step process: first translate the high-level source code
to a low-level intermediate verification language (IVL), and then perform the
verification condition (VC) generation for the IVL. This leads to some re-usability:
implementing a new program verifier for a language reduces to implementing a
translator to the IVL, and then reusing the VC generation already implemented for
the IVL. For example, VCC translates to Boogie [8] and Frama-C to Why3 [35].

However, defining correct language translations is not easy. Consider VCC.
The translator consists of 5000 lines of F# [1] and has to be correct with respect to
the 650 page ISO C11 Standard. There is the added di�culty that the translation
cannot be easily tested. Due to limitations in the translation to Boogie, VCC both
misses behaviors and verifies incorrect programs. Consider the following snippet:

1 unsigned x = UINT_MAX;

2 unsigned y = x + 1;

3 _(assert y == 0)

VCC fails to verify it, reporting an overflow in line 2. However, according to the
C11 standard, the result of operations on unsigned integers does not overflow, it is
reduced modulo UINT_MAX + 1, and thus the assertion in line 3 holds. Due to this
bug in the translation to Boogie, VCC reports a false positive. Consider another
snippet:

1 int foo(int *p, int x)

2 _(ensures *p == x)

3 _(writes p)

4 { return (*p = x); }

5
6 void main() {

7 int r;

8 foo(&r, 0) == foo(&r, 1);

9 _(assert r == 1)

10 }

According to the C11 Standard, this program is well-defined but non-deterministic:
the arguments of == can evaluate in any order, so r could be either 0 or 1 on line 9.
We have witnessed both behaviors by using di↵erent compilation options of the
GCC compiler. However, VCC reports no error for the assertion on line 9. These
issues are caused solely by limitations in the translation from C to Boogie.

The purpose of these examples is not to bash VCC, but to illustrate a less
glamorous aspects of program verification, namely handling the semantics of real-
world languages. VCC is a state-of-the-art program verifier, able to e�ciently
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reason about very complex aspects of C programs, like threads, and has been used
to verify software components like the Microsoft Hyper-V hypervisor [53]. In
particular, it should have no problem handling the examples above. Moreover, what
makes VCC an e↵ective program verifier are its reasoning capabilities (support for
modular reasoning about concurrency, axiomatizations of di↵erent mathematical
domains, integration with SMT solvers, etc) and its conventions for writing the
correctness properties, both of which are orthogonal to the tricky language features.
Unfortunately, in general, with the current state-of-the-art, the only way to ensure
the absence of such false positives and false negatives is to prove the underlying
axiomatic semantics, or VC generation, or IVL translation sound with respect to a
trusted reference model of the language, typically an operational semantics. This
is a very tedious task for real-world languages.

In this work we propose to go back to the ideal approach of leveraging existing
operation semantics for program verification. We build correct-by-construction
program verifiers directly from operational semantics, without defining any other
semantics or verification condition generator or translator. We view operational
semantics as a mathematical models of programming languages which should
exist independently of any program analysis. Thus, we aim to use the semantics
unchanged, and do not count the e↵ort of defining the operational semantics
towards the total e↵ort of building the program verifiers.

Our insight is that many of the tricky language-specific details (like type
systems, scoping, implicit conversions, etc) are orthogonal to features that make
program verification hard (reasoning about heap-allocated mutable data structures,
integers/bit-vectors/floating-points, etc). As such, we propose a methodology to
separate the two:

• define an operational semantics, and

• implement reasoning in a language-independent infrastructure.

Our approach has two advantages over the traditional approaches:

• it provides a way to obtain semantics-based verifiers without a need for
multiple semantics, equivalence proofs, or translators, and

• it separates reasoning from language-specific operational details.

On the theoretical side We introduce reachability logic as a foundation for
achieving language-independent program verification. Specifically, we introduce
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Figure 1.1: Architecture of Semantic-Based Verification

one-path reachability rules ' )9 '0, which generalize operational semantics
reduction rules, and all-path reachability rules ')8 '0, which generalize Hoare
triples. A reachability rule is a pair of formulae capturing the partial correctness
intuition: for every pair (code, state) � satisfying ', one path (9), respectively
each path (8) derived using the operational semantics from � either diverges or
otherwise reaches a pair �0 satisfying '0. The formulae ' and '0 are expressed
using matching logic [94]. Intuitively, matching logic specifies structural properties
of the program configuration by means of special predicates, namely configuration
terms with variables, whose satisfaction is given by “matching”.

Then, we give a language-independent proof system that derives new reachabil-
ity rules (program properties) from a set of given reachability rules (the language
operational semantics), at the same proof granularity and compositionality as a
language-specific axiomatic semantics. The proof system consists of only 8 proof
rules. We prove that the proof system is sound and relatively complete. In e↵ect,
the proof system subsumes all the language specific proof rules for loop invariants,
recursive functions, etc from Hoare logic.

On the practical side We have implemented the K verification infrastructure
(KVI) based on the language-independent proof system we propose here. We
developed it as part of the open-source K semantic framework [89] (http://
kframework.org). The framework takes an operational semantics defined in K
as a parameter and uses it to automatically derive program correctness properties.
In other words, the verification infrastructure automatically generates a program
verifier from the semantics, which is correct-by-construction with respect to the
semantics.

5
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Figure 1.1 describes the architecture of our verification framework. Internally,
the verifier uses the operational semantics to perform symbolic execution. Also,
it has an internal matching logic prover for reasoning about implication between
patterns (states) that generates queries to external theorem provers (for example,
Z3 [26]). The most complex part of matching logic prover is handling heap
abstractions. The program correctness properties are given as reachability rules
between matching logic patterns.

A major di�culty in a language-independent setting is that standard language
features relevant to verification, like control flow or memory access, are not explicit,
but rather implicit (defined through the semantics). Thus, we adapt existing
techniques to a language-independent setting. In particular, we notice that symbolic
execution is captured by narrowing (instead of rewriting which captures concrete
execution). For reasoning about heap-manipulating data-structures, we adapted our
own work on natural proofs. The generated program verifiers are fully automated.
The user only provides the program correctness specifications. KVI is implemented
in Java. It consists of approximately 30,000 non-blank lines of code, and it took
about 3 man-years to complete.

Prior, we have build MatchC, a preliminary program verifier based on the
language-independent proof system, which is a prototype hand-crafted for Ker-
nelC, a toy language. MatchC mixes the language-independent reasoning with
the operational semantics of KernelC, e.g., it hardcodes when to perform Case
Analysis (for constructs like if), and when to perform heap abstractions fold-
ing/unfolding.

To ascertain the practicality of our approach, we have instantiated the KVI
with the operational semantics of C [30, 43], Java [14], and JavaScript [75] (all
developed independently from this project), thus obtaining program verifiers for
these complex real-world languages. Then, we have evaluated these verifiers by
checking the full functional correctness of challenging heap manipulation programs
implementing the same data-structures in these languages (e.g. AVL trees). These
programs have been used before to evaluate verification approaches. The verifica-
tion time is competitive with other state-of-the-art verifiers. The time is dominated
by symbolic execution, which reflects the complexity of the operational semantics
and the languages themselves. Reasoning about the mathematical properties of
the data-structures is similar in all three languages. Regarding the number of user
annotations, our approach is comparable to the state-of-the-art language-specific
approaches that do not infer invariants. Thus, our approach is e↵ective both in
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terms of verification capabilities and user e↵ort. Our works has resulted in the
first time that verifiers for C, Java, and JavaScript are sharing the same core infras-
tructure. We believe these experiments validate our hypothesis that separating the
tricky language details from the main verification process is practical.

Next, we turn our attention to the question of automated reasoning about
state properties, especially in the case of heaps. Entirely decidable logics are
too restrictive to support the verification of the complex specifications of heap
manipulating programs implementing data-structures. On the other hand, logics
requiring manual/semi-automatic reasoning put too much burden on the user (in
the form of proof tactics and lemmas).

To address these limitations, we have developed the natural proofs approach,
which combines the two methodologies above. It

• identifies a class of simple proofs for verifying heap manipulating programs,
founded on how people prove these conditions manually, and

• builds terminating procedures that e�ciently and thoroughly search this class
of proofs.

This results in a sound, incomplete, but terminating procedure that finds natural
proofs automatically and e�ciently.

Specifically, the program specifications are expressed using recursively defined
predicates/functions. During the symbolic execution of the code, the recursive defi-
nitions are unfolded precisely across the memory footprint (the memory locations
accessed by the code). Thus, the verification reduces to checking the satisfiability
of a quantifier-free formula depending only on the values of predicates/functions
on the frontier of the footprint. The recursive definitions are abstracted as uninter-
preted functions and the resultant formula is sent to an automatic logic solver.

We have evaluated our approach by verifying the full functional correctness
of data-structures ranging from sorted linked lists, binary search trees, max-heaps,
treaps, AVL trees, red-black trees, B-trees, and binomial heaps. These benchmarks
are an almost exhaustive list of algorithms on tree-based data-structures covered in
a first undergraduate course on data-structures.

Contributions. This thesis makes the following contributions:

• Reachability logic as a unifying formalism for both operational semantics
and axiomatic semantics. Its sentences consist of the reachability rules with
one-path semantics and with all-path semantics.
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• A language-independent proof system for reachability logic that can derive
program correctness properties (specified as reachability rules) directly from
the operational semantics of a programming language (also specified as
reachability rules). The proof system comes with proofs of soundness and
relative completeness.

• KVI, a language-independent verification infrastructure, which can be in-
stantiated with a K semantics to obtain a program verifier for the respective
language.

• Program verifiers for C, Java, and JavaScript generated from their existing
K semantics, and an evaluation of the development cost of building these
verifiers from the operational semantics.

• Empirical evaluation of these verifiers on challenging heap manipulation
programs implementing data-structure.

• The natural proofs methodology for automated reasoning about heap proper-
ties.

• Empirical evaluation of the natural proofs methodology on a large number
of algorithms on tree-based data-structures.

8



Chapter 2

Background

In this chapter we recall basic notions of operational semantics, and then we focus
more on the K framework. The theoretical results presented in this thesis work with
any operational semantics style, while the implementation works with K semantics.
Then we present matching logic, as the foundation of our language-independent
verification approach.

2.1 Operational Semantics

In this section we give a brief overview of operational semantics, using a simple
imperative language IMP as a running example. We first cover operational seman-
tics styles that use unconditional reduction rules, and then we move on to styles
that use conditional reduction rules.

2.1.1 Operational Semantics with Unconditional Rules

Here we recall basic notions of operational semantics, reduction rules, and tran-
sition systems, and introduce our notation and terminology for these. We do so
by means of a simple parallel imperative language, IMP. Figure 2.1 shows its
syntax and an operational semantics based on evaluation contexts. IMP has only
integer expressions. When used as conditions of if and while, zero means false
and any non-zero integer means true (like in C). Expressions are formed with
integer constants, program variables, and conventional arithmetic constructs. For
simplicity, we only assume a generic binary operation, op. IMP statements are
assignment, if, while, sequential composition and parallel composition. IMP
has shared memory parallelism without explicit synchronization.

Various operational semantics styles define programming languages (or calculi,
or systems, etc.) as sets of rewrite or reduction rules of the form “l) r if b”,
where l and r are program configurations with variables constrained by the boolean

9



IMP language syntax
PVar F program variables
Exp F PVar | Int | Exp op Exp

| --PVar
Stmt F skip | PVar := Exp

| Stmt ; Stmt | Stmt || Stmt
| if(Exp) Stmt else Stmt
| while(Exp) Stmt

IMP evaluation contexts syntax
Context F ⌅

| hContext, Statei
| Context op Exp | Int op Context
| PVar := Context | Context; Stmt
| Context || Stmt | Stmt || Context
| if(Context) Stmt else Stmt

IMP operational semantics
lookup hC, �i[X]) hC, �i[�(X)]
op I1 op I2) I1 opInt I2

dec hC, �i[--X]) hC, �[X  (�(X) �Int 1)]i[�(X) �Int 1]
asgn hC, �i[X := I]) hC, �[X  I]i[skip]
seq skip ; S ) S
cond1 if(I) S 1 else S 2) S 1 if I , 0
cond2 if(0) S 1 else S 2) S 2

while while(E) S ) if(E) S; while(E) S else skip
finish skip || skip) skip

Figure 2.1: IMP language syntax and operational semantics based on evaluation
contexts.

condition b. One of the most popular such operational approaches is reduction
semantics with evaluation contexts [32], with rules “C[t])C0[t0] if b”, where C
is the evaluation context that reduces to C0 (typically C = C0), t is the redex that
reduces to t0, and b is a side condition. Another approach is the chemical abstract
machine [12], where l is a chemical solution that reacts into r under condition b.
The K framework [89] is another, based on plain (no evaluation contexts) rewrite
rules. Several large languages have been given such semantics, including C [30].

Here we chose to define IMP using reduction semantics with evaluation con-
texts. Note, however, that our subsequent results work with any of the afore-
mentioned operational approaches. The program configurations of IMP are pairs
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hcode, �i, where code is a program fragment and � is a state term mapping
program variables into integers. As usual, we assume appropriate definitions for
the integer and map domains available, together with associated operations like
arithmetic operations (i1 opInt i2, etc.) on the integers and lookup (�(x)) or update
(�[x i]) on the maps. We also assume a context domain that can both decom-
pose a configuration into a context and a redex (“C[t]”), and compose it back. A
configuration context consists of a code context and a state.

The IMP definition in Figure 2.1 consists of nine reduction rules between
program configurations, which make use of first-order variables: X is a variable of
sort PVar; E is a variable of sort Exp; S , S 1, S 2 are variables of sort Stmt; I, I1, I2

are variables of sort Int; � is a variable of sort State; C is a variable of sort Context.
A rule reduces a configuration by splitting it into a context and a redex, rewriting
the redex and possibly the context, and then plugging the resulting term into the
resulting context. As an abbreviation, a context is not mentioned if not used;
e.g., the rule op is in full hC, �i[I1 op I2]) hC, �i[I1 opInt I2]. For example,
configuration hx := (2 + 5) - 4, �0i reduces to hx := 7 - 4, �i by applying
the op+ rule with C ⌘ x := ⌅ - 4, � ⌘ �0, I1 ⌘ 2 and I2 ⌘ 5. We can therefore
regard the operational semantics of IMP above as a set of reduction rules of the
form “l) r if b”, where l and r are configurations with variables constrained by the
boolean condition b. The subsequent results presented in this thesis work with such
sets of reduction rules and are agnostic to the particular underlying operational
semantics style.

Let S (for “semantics”) be a set of reduction rules like above, and let ⌃ be the
underlying signature; also, let Cfg be a distinguished sort of ⌃ (for “configurations”).
S yields a transition system on any ⌃-algebra/model T , no matter whether T is
a term model or not. Let us fix an arbitrary model T , which we may call a
configuration model; as usual, TCfg denotes the elements of T of sort Cfg, which
we call configurations:

Definition 1. S induces a transition system (T ,)TS ) as follows: � )TS �0 for any
�, �0 2 TCfg i↵ there is some rule “l) r if b” in S and some ⇢ : Var ! T such
that ⇢(l) = �, ⇢(r) = �0 and ⇢(b) holds (Var is the set of variables appearing in
rules in S and we used the same ⇢ for its homomorphic extension to terms l, r and
predicates b).

(T ,)TS ) is a conventional transition system, i.e., a set together with a binary
relation on it (in fact,)TS✓ TCfg ⇥ TCfg), and captures precisely how the language
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defined by S operates. We use it in Section 3.2 to define and prove the soundness
of our proof system.

2.1.2 Operational Semantics with Conditional Rules

A common denominator of typical syntaxes for big-step, small-step, and reduction
semantics is conditional term rewriting. The general form of a rewrite rule is

p) p0 if b
V

p1) p01
V

b1
V
...

V
pn) p0n

V
bn

where each pi is a pattern and each bi is a boolean expression over variables bound
in earlier patterns. A set of rules generates a transition system which includes a
step between a pair of configurations if there is some rule and some environment
mapping variables to subterms so that the first term matches p, the second term
matches p0, all of the bi are true, and for each 1  i  n the term obtained by
instantiating pi can take zero or more steps in the transition system to reach p0i . A
rule is called unconditional if n = 0, whether or not b is trivial. For example,

hif(E) S 1 then S 2, �i ) h�0i if hE, �i ) hIiV I , 0
V hS 1, �i ) h�0i

handles the semantics of the positive case of if in a big-step style. Here con-
figurations are pairs hcode, �i of a statement or expression code to evaluate,
and a state/store �, as well as singleton stores h�i or integers hii for the result
of executing statements and expressions, respectively. This rule says that an if
statement executed under store � transitions in one step to the result �0, provided
the expression S evaluates in zero or more steps to an integer result I, the result is
nonzero, and �0 is the result of executing the statement from the then-branch of the
if statement. In this particular rule, n = 2 and b and b2 are true, so not written.

Conditional term rewriting is su�cient to express every style of operational
semantics, perhaps through a translation adding some auxiliary configurations and
rules (e.g., to capture the one-step reduction)1). This is covered in detail in [97]
for small-step and big-step semantics, reduction semantics [105], the chemical
abstract machine [12], and continuation-based semantics [31]. The representations
are strongly faithful in the sense that two configurations are related by a single
step in the original system i↵ appropriate injections into the domain of the term
rewriting system are related by a single step.

Figure 2.2 shows a small-step and a big-step semantics of a simple imperative
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IMP language syntax
PVar F program variables
Exp F PVar | Int | Exp op Exp
Stmt F skip | PVar := Exp | Stmt ; Stmt

| if(Exp) Stmt else Stmt | while(Exp) Stmt

IMP small-step semantics
op1 hE1 op E2, �i )1 hE01 op E2, �i if hE1, �i )1 hE01, �i
op2 hE1 op E2, �i )1 hE1 op E02, �i if hE2, �i )1 hE02, �i
op3 hI1 op I2, �i )1 hI1 opInt I2, �i
lookup hX, �i )1 h�(X), �i
asgn1 hX := E, �i )1 hX := E0, �i if he, �i )1 he0, �i
asgn2 hX := I, �i )1 hskip, �[X  I]i
seq1 hS 1 ; S 2, �i )1 hS 01 ; S 2, �0i if hS 1, �i )1 hS 01, �0i
seq2 hskip ; S 2, �i )1 hS 2, �i
cond1 hif(E) S 1 else S 2, �i )1 hif(E0) S 1 else S 2, �i

if hE, �i )1 hE0, �i
cond2 hif(I) S 1 else S 2, �i )1 hS 1, �i if I , 0
cond3 hif(0) S 1 else S 2, �i )1 hS 2, �i
while while(E) S )1 if(E) S; while(E) S else skip
IMP big-step semantics
op hE1 op E2, �i ) hI1opIntI2i if hE1, �i ) hI1i, hE2, �i ) hI2i
int hI, �i ) hIi
lookup hX, �i ) h�(X)i
skip hskip, �i ) h�i
asgn hX := E, �i ) h�[X  I]i if hE, �i ) hIi
seq hS 1 ; S 2, �i ) h�2i if hS 1, �i ) h�1i , hS 2, �1i ) h�2i
cond1 hif(E) S 1 else S 2, �i ) h�0i

if hE, �i ) hIi, I , 0, hS 1, �i ) h�0i
cond2 hif(E) S 1 else S 2, �i ) h�0i if hE, �i ) h0i , hS 2, �i ) h�0i
while1 hwhile(E) S , �i ) h�i if hE, �i ) h0i
while2 hwhile(E) S , �i ) h�0i

if hE, �i ) hIi , I , 0 , hS; while(E) S , �i ) h�0i

Figure 2.2: The IMP language: syntax, a small-step and a big-step operational
semantics.

language, called IMP, using rewrite rules. The operational semantics contain
rewrite rules making use of ordinary first-order variables: E, E0, E1, E01, E2, E02 are
variables of sort Exp; �,�0 are variables of sort State; I, I1, I2 are variables of
sort Int; X is a variable of sort PVar; S , S 1, S 01, S 2 are variables of sort Stmt. The
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underlying mathematical domain is assumed to provide all the needed operations,
for example +Int, ⇤Int, <Int, etc., for integers, and �(x), �[x  i], x 2 Dom(�),
etc., for maps. Note that IMP here does not include the decrement --X and
parallel composition || features of IMP in the previous section, in part to keep the
definitions simple and in part because our results for semantics with conditional
rules in Section 3.3 do not support non-determinism.

In what follows, we will refer to three IMP programs:

SUM ⌘ s := 0; while (n > 0) (s := s+n; n := n-1)

SUM’ ⌘ s := 0; while (n > 0) s := s+n

SUM1 ⌘ n := 1; while (n > 0) s := s+n

SUM always terminates, SUM’ only terminates when n  0, and SUM1 never
terminates. Nontermination occurs in small-step semantics by infinite “horizontal”
computation: each rule application terminates, but there are infinitely many rule
applications, and in big-step by infinite “vertical” computation: a rule application
does not terminate as it requires another rule application to solve one of its premises,
which requires another rule application to solve one of its premises, and so on.

In conclusion, rewrite rules can be used to formally and uniformly define
operational semantics.

2.2 K Semantics

We illustrate how to write K definitions by means of defining IMP++, a simple
concurrent imperative language (also part of the K distribution and tutorial). Fig-
ure 2.3 shows the IMP++ syntax and Figure 2.4 the semantics. K definitions are
structured using modules, which can contain imports statements to include other
modules (line 31), syntax definitions (e.g., lines 2–27), configuration declarations
(lines 33–44), and K rules.

Syntax definitions describe a CFG in a BNF-style extended with priorities and
associativity filters used for disambiguation. Terminals are enclosed in quotes,
> separates priority levels, and | separates productions with the same priority.
Productions can have comma-separated tags; e.g., bracket on line 14 says that
parentheses are to be used only for grouping purposes, and left on line 6 that
addition is left associative. K generates parsers from syntax definitions, which
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1 module IMP�SYNTAX
2 syntax AExp ::= Int | String | Id
3 | "++" Id
4 | "read" "(" ")"
5 > AExp "/" AExp [ left , strict ]
6 > AExp "+" AExp [ left , strict ]
7 > "spawn" Block
8 > Id "=" AExp [ strict (2)]
9 | "(" AExp ")" [bracket]

10 syntax BExp ::= Bool
11 | AExp "" AExp [ strict ]
12 | "!" BExp [ strict ]
13 > BExp "&&" BExp [ left , strict (1)]
14 | "(" BExp ")" [bracket]
15 syntax Block ::= "{" Stmts "}"
16 syntax Stmt ::= Block
17 | AExp ";" [ strict ]
18 | "if " "(" BExp ")" Block "else " Block [ strict (1)]
19 | "while" "(" BExp ")" Block
20 | "int " Ids ";"
21 | "print " "(" AExps ")" ";" [ strict ]
22 | "halt " ";"
23 > "join " AExp ";" [ strict ]
24
25 syntax Ids ::= List {Id,","} [ strict ]
26 syntax AExps ::= List {AExp,","} [ strict ]
27 syntax Stmts ::= List {Stmt,""}
28 endmodule

Figure 2.3: IMP++ language syntax

are used to parse both programs and rules. IMP++ has arithmetic (AExp) and
boolean (BExp) expressions, statements (Stmt), and blocks (Block). The builtin
List construct (lines 25–27) specifies lists of elements of certain types (here Id,
AExp, or Stmt) separated by a certain terminal (comma, for lines 25 and 26) or just
whitespace (the empty terminal on line 27).

Computations extend syntax with a task sequentialization operation, “y” (hav-
ing unit ·). A task can be either a fragment of syntax to be processed or a semantic
task, such as the recovery of an environment. Most of the manipulation of the
computation is abstracted away from the language designer via intuitive syntax
annotations.
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30 module IMP
31 imports IMP�SYNTAX
32 syntax KResult ::= Int | Bool | String
33 configuration <T color="yellow">
34 <threads color ="orange">
35 <thread multiplicity ="*" color ="blue">
36 <k color="green"> $PGM:Stmts </k>
37 <env color="LightSkyBlue"> .Map </env>
38 <id color ="black"> 0 </id>
39 </thread>
40 </threads>
41 <store color ="red"> . Map </store>
42 <in color ="magenta" stream="stdin">.List</in>
43 <out color ="Orchid" stream="stdout">.List</out>
44 </T>
45 rule <k> X:Id => I ...</k> <env>... X 7!N ...</env> <store>... N 7!I ...</store>
46 rule <k> ++X => I +Int 1 ...</k>
47 <env>... X 7!N ...</env> <store>... N 7!(I => I +Int 1) ...</store>
48 rule <k> read() => I ...</k> <in> ListItem(I: Int ) => . ...</in>
49 rule I1: Int / I2: Int => I1 /Int I2 when I2 =/=Int 0
50 rule I1: Int + I2: Int => I1 +Int I2
51 rule Str1 : String + Str2 : String => Str1 +String Str2
52 rule I1: Int  I2: Int => I1 Int I2
53 rule ! T:Bool => notBool T
54 rule true && B => B
55 rule false && _ => false
56 rule <k> {Ss} => SsyRho ...</k> <env> Rho </env>
57 rule <k> Rho => . ...</k> <env> _ => Rho </env>
58 rule _: Int ; => .
59 rule <k> X = I:Int => I ...</k>
60 <env>... X 7!N ...</env> <store>... N 7!(_ => I) ...</store>
61 rule if ( true ) S else _ => S
62 rule if ( false ) _ else S => S
63 rule while(B) S => if (B) {S while(B) S} else {}
64 rule <k> int (X:Id, Xs => Xs); ...</k>
65 <env> Rho => Rho[!N/X] </env> <store>... . => N 7!0 ...</store>
66 rule int . Ids ; => .
67 syntax Printable ::= Int | String
68 syntax AExp ::= Printable
69 rule <k> print (P:Printable , AEs => AEs); ...</k> <out>... . => ListItem(P) </out>
70 rule print (. AExps); => .
71 rule <k> halt; y_ => . </k>
72 rule <k> spawn S => T ...</k> <env> Rho </env>
73 (. => <thread>... <id> T </id> <k> S </k> <env> Rho </env> ...</thread>)
74 rule <k> join(T); => . ...</k> <thread>... <k>.</k> <id>T</id> ...</thread>
75 rule . Stmts => .
76 rule S Ss => SySs
77 endmodule

Figure 2.4: IMP++ language semantics
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Strictness annotations. The strict tag specifies the evaluation strategy of the
corresponding construct. E.g., strict on line 6 says that the arguments of + must
be evaluated before + itself is evaluated, and strict (2) on line 8 says that only the
second argument of the assignment is to be evaluated. K generates rules from these
strictness annotations transforming the syntax into tasks (and back) to ensure the
proper order of evaluation.

Configuration declarations describe the initial state of the execution environ-
ment as a nested multiset/bag of cells. The nested nature of cells resembles that
of molecules and membranes in the CHAM soup [12], albeit our cells are named.
Cells are written using an XML-like notation and can contain list/sets/maps/bags
as well as computations.

The IMP++ configuration consists of a top cell T (lines 33–44), which contains
a cell holding the execution threads (lines 34–40), the shared store (line 41), and cells
for I/O (lines 42–43). The threads cell holds multiple thread cells, each containing
a computation cell k (line 36), an environment (line 37) mapping local variables
to store locations, and a thread identifier cell id. The k cell usually appears in
all definitions and has a special status among cells, holding the computation and
e↵ectively directing the execution. Variables in the configuration declaration (e.g.,
$PGM:Exp on line 36) must be set by the K tool when initializing the execution
environment (e.g., $PGM is initialized with the AST of the program to be executed).
The cell attribute color is used for displaying purposes, the stream attribute links the
contents of the cell to the specified bu↵er for interactive I/O, and the multiplicity

attribute specifies that multiple instances of that cell can coexist. The IMP++
configuration is relatively simple, containing only 9 cells and three nesting levels.
The configuration of C has 100 cells and 5 nesting levels [30].

K rules use configuration patterns with variables to describe transitions between
configurations, together with an aggressive configuration abstraction mechanism
to minimize the size of rules and to increase their modularity. First, rules not
mentioning any cell are assumed to take place at the top of the k cell, modeling
that evaluation takes place only at the current redex. Second, to account for the
fact that most rules collect data from several cells but only make small changes, K
rules specify the change in-place by defining the matching pattern and using the
rewrite symbol => inside that pattern to locally specify what rewrites into what.
This also enables a comprehension mechanism for cells: non-changing parts of
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cells are abstracted away using ellipses. For example, the rule on line 45 specifies
the lookup of an identifier in the store: if X is the first task in the computation cell
(... says there might be other subsequent tasks), and if X is mapped to a location N

in the environment (the other mappings are abstracted by ...), and if N is mapped to
a value I in the store, then X changes to I, leaving the rest unchanged. Finally, K
allows users to only mention the relevant cells in each rule, the missing cells and
cell fragments being automatically inferred from the fixed configuration structure.
Hence, configuration abstraction allows existing rules to stay unchanged when the
configuration is extended or reorganized to accommodate new language features.

The lookup rule was explained above, but now note that it makes full use of
configuration abstraction: the k, env, and store cells reside at di↵erent levels in
the configuration. Variable increment (lines 46–47) and assignment (lines 59–
60) are similar, but note that each performs two local rewrites. The read rule on
line 48 consumes one integer from the input stream and uses it as a value for
the read. Rules on lines 49-55 define the semantics for arithmetic and boolean
expressions. Note that + is defined for both integers and strings, and that && is
short-circuited. The block rule (line 56) saves the environment on the computation
stack, to be recovered upon executing the block statements by the rule on line
57. An expression statement is discarded once the expression was evaluated (line
58). Lines 61–62 define the conditional statement, and line 63 the semantics of
while through loop unrolling. The semantics of variable declarations (lines 64–66)
adds a new location (N) to the store for each variable, and the variable is to that
location in the environment. Note that the N variable is unbound on the left-hand
side of the rule, which means that a symbolic value of the specified type will be
introduced. print (lines 67–70) appends printable items to the output stream cell
(lines 69–70). Halt (line 71) simply voids the computation cell. Spawn creates a
new thread holding the spawned statement, the parent’s environment, and a fresh
(integer) identifier which is also returned to the parent thread (lines 72–73). The
join rule (line 74) dissolves the join (T) statement when the thread identified by T

has an empty computation. Finally, the rules on lines 75–76 desugar statement
sequences into task sequences.
K rules can introduce symbolic variables in the configuration to rewrite, and

are unconditional, i.e., there are no premises that need to be recursively reduced to
apply a rule. Boolean side conditions are allowed, like in the rule for division, but
those are moved into constraints on the rule left and right patterns when regarding
the K rule as a reachability logic rule (see Section 3.1) and are handled by the
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underlying SMT solver.

2.3 Matching Logic

Traditionally, program logics are deliberately not concerned with low-level details
about program configurations, those details being almost entirely deferred to op-
erational semantics. This is a lost opportunity, since configurations contain very
precious information about the structure of the various data in a program’s state,
such as the heap, the stack, the input, the output, etc. Without direct access to this
information, program logics end up having to either encode it by means of some-
times hard to define predicates, or extend themselves in non-conventional ways, or
sometimes both. In contrast, matching logic [94] takes program configurations at
its core.

We first recall general matching logic notions and notations (Section 2.3.1)
with emphasis on its patterns, and then give an instance of it for configurations
corresponding to a fragment of the C language (Section 2.3.2).

2.3.1 Patterns and General Notions

Matching logic is a logic suitable for specifying and reasoning about program or
system configurations. Although originally framed as a methodological fragment
of first-order logic (FOL), a setting that also su�ces for this thesis, matching
logic can be easily extended to second- or higher-order settings. Matching logic is
parametric in a syntax and a model for configurations. Some configurations can be
as simple as pairs hcode,�i with code a fragment of aprogram and � a “state” map
from program variables to integers, e.g. when one wants to reason about simple
imperative languages. Other configurations can be even simpler, for example just
“heap” singletons holding a map from locations to integers (e.g., when one wants to
exclusively reason about heap structures like in separation logic; see Section 3.5)
or even just “code” singletons (e.g., when one wants to reason about programs
based purely on their syntax). Yet, other configurations can be as complex as that
of the C language [30], which contains more than 100 semantic components. No
matter how simple or complex the configurations under consideration are, the same
machinery described below works for all.

We assume the reader is familiar with basic concepts of algebraic specification
and first-order logic. Given an algebraic signature ⌃, we let T⌃ denote the initial
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⌃-algebra of ground terms (i.e., terms without variables) and let T⌃(Var) denote
the free ⌃-algebra of terms with variables in Var. T⌃,s(Var) is the set of ⌃-terms of
sort s. Maps ⇢ : Var! T with T a ⌃-algebra extend uniquely to (homonymous)
⌃-algebra morphisms ⇢ : T⌃(Var) ! T . These notions extend to algebraic
specifications. Many mathematical structures needed for language semantics
have been defined as initial ⌃-algebras: boolean algebras, natural/integer/rational
numbers, lists, sets, bags (or multisets), maps (e.g., for states, heaps), trees, queues,
stacks, etc. We refer the reader to the CASL [66] and Maude [21] manuals for
examples.

Let us fix the following: (1) an algebraic signature ⌃, associated to some desired
configuration syntax, with distinguished sort Cfg, (2) a sort-wise infinite set of
variables Var, and (3) a ⌃-algebra T , the configuration model, which may but needs
not necessarily be the initial or free ⌃-algebra. As usual, TCfg denotes the elements
of T of sort Cfg, which we call configurations.

Definition 2. A matching logic formula, or a pattern, is a first-order logic (FOL)
formula which allows terms in T⌃,Cfg(Var), called basic patterns, as predicates.
We define the satisfaction (�, ⇢) |= ' over configurations � 2 TCfg, valuations
⇢ : Var ! T and patterns ' as follows (among the FOL constructs, we only
show 9):

(�, ⇢) |= 9X ' i↵ (�, ⇢0) |= ' for some ⇢0 : Var! T with
⇢0(y) = ⇢(y) for all y 2 Var\X

(�, ⇢) |= ⇡ i↵ � = ⇢(⇡) , where ⇡ 2 T⌃,Cfg(Var)

A pattern ' is valid, written |= ', when (�, ⇢) |= ' for all � 2 TCfg and all
⇢ : Var! T .

A basic pattern ⇡ is satisfied by all the configurations � that match it; the
⇢ in (�, ⇢) |= ⇡ can be thought of as the “witness” of the matching, and can
be further constrained in a pattern. In the simple imperative language IMP
with configurations hcode, �i, described in Section 2.1, let SUM be the code
“s:=0; while(n>0)(s:=s+n; n:=n-1)”. Then the following pattern

9s (h SUM, (s 7! s, n 7! n) i ^ n �Int 0)

matches the configurations with code SUM and state binding program variables s
and n to integers s and respectively n �Int 0. We typically use typewriter for
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program variables and italic for mathematical variables in Var. Pattern reasoning
reduces to FOL reasoning in the configuration model T :

Definition 3. Let ⇤ be a special fresh Cfg variable, which is not in Var, and let
Var⇤ be the extended set of variables Var [ {⇤}. For a pattern ', let '⇤ be the FOL
formula obtained by replacing basic patterns ⇡ 2 T⌃,Cfg(Var) with equalities ⇤ = ⇡.
If � 2TCfg and ⇢ : Var!T , then let ⇢� : Var⇤!T be the valuation which extends
⇢ by mapping ⇤ into �: ⇢�(⇤) = � and ⇢�(x) = ⇢(x) for all x 2 Var. To highlight
the semantic indistinguishability between matching logic patterns with variables
in Var and the corresponding fragment of FOL with variables in Var⇤, we take
the freedom to write (�, ⇢) |= '⇤ in the FOL fragment, too, instead of ⇢� |= '⇤. A
matching logic (respectively FOL) formula  is patternless i↵ it contains no basic
pattern (respectively no ⇤ variable), that is,  =  ⇤.

The following proposition states that the notation in Definition 3 is consistent:

Proposition 1. If ' is a matching logic pattern, � 2 TCfg and ⇢ : Var! T , then
(�, ⇢) |= ' (notation in Definition 2) i↵ (�, ⇢) |= '⇤ (notation in Definition 3). Also
|= ' i↵ T |= '⇤.

Therefore, patterns form a methodological fragment of the FOL theory of T , so
we can use conventional theorem provers or proof assistants for pattern reasoning.
It is often technically convenient to eliminate the special ⇤ variable from a FOL
formula '⇤ corresponding to a matching logic pattern '. This can be done by
replacing ⇤ with a Cfg variable c 2 Var (possibly which does not occur free in '):
indeed, '⇤[c/⇤] is patternless.

Lemma 1. If ' is a pattern, c 2 Var is a Cfg variable, and ⇢ :Var!T a valuation,
then (⇢(c), ⇢) |= '⇤ i↵ ⇢ |= '⇤[c/⇤].

Proof. We have that (⇢(c), ⇢) |= '⇤ i↵ ⇢⇢(c) |= '⇤. Notice that if a valuation
agrees on two variables, then it satisfies a formula i↵ it satisfies the formula
obtained by substituting one of the two variables for the other. In particular, since
⇢⇢(c)(⇤) = ⇢⇢(c)(c), it follows that ⇢⇢(c) |= '⇤ i↵ ⇢⇢(c) |= '⇤[c/⇤]. We notice that
⇤ does not occur in '⇤[c/⇤], thus ⇢⇢(c) |= '⇤[c/⇤] i↵ ⇢ |= '⇤[c/⇤], and we are
done. ⇤

Not all patterns are equally meaningful. For example, the pattern true is
matched by all configurations, the pattern false is matched by no configurations,
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some patterns are always matched by precisely one configuration � regardless of
the valuation ⇢, others are sometimes by matched by some configurations for some
valuations, etc. For our subsequent results, we are interested in well-definedness of
patterns:

Definition 4. A pattern ' is weakly well-defined i↵ for any valuation ⇢ : Var! T
there is some configuration � 2 TCfg such that (�, ⇢) |= ', and it is well-defined i↵
� is unique.

For example, all basic patterns ⇡ are well-defined, while patterns of the form
⇡1 _ ⇡2 are weakly well-defined. Well-defined patterns have the following property,
which we use extensively in Section 3.7:

Lemma 2. If ' is well-defined, then |= '⇤ ^ '⇤[c/⇤]! ⇤ = c.

Proof. Let � 2 TCfg and ⇢ : Var ! T . It su�ces to prove that if (�, ⇢) |= '⇤ and
(�, ⇢) |= '⇤[c/⇤] then (�, ⇢) |= ⇤ = c. Since '⇤[c/⇤] is structureless, we have
that (�, ⇢) |= '⇤[c/⇤] i↵ ⇢ |= '⇤[c/⇤]. By Lemma 1 that is i↵ (⇢(c), ⇢) |= '⇤.
Further, since ' is well-defined, by Definition 4 there exists precisely one � such
that (�, ⇢) |= '⇤, thus � = ⇢(c). Then we can conclude that (�, ⇢) |= ⇤ = c, and we
are done. ⇤

2.3.2 An Instance

Here we discuss a simple but non-trivial instance of matching logic for an idealized
fragment of the C language. The reason we do not choose a trivial language
is because we want to reiterate that matching logic, as well as all the notions
and results presented in this thesis, are totally agnostic to the language under
consideration and to its complexity.

To obtain a matching logic instance, one needs to provide a syntax (as a
signature ⌃) and a model (as a ⌃-algebra) for that language’s configurations. We
make use of common algebraic structures like lists, sets, bags, and maps over
any sorts, including other lists, sets, etc., by simply mentioning their sorts as
subscripts. For example, MapBagNat ,Int⇥Int is the sort corresponding to maps taking
bags of naturals to pairs of integers. For notational simplicity, we (ambiguously)
use a central dot “·” (read “nothing”) for the units of all lists, sets, bags, maps,
etc., a comma “,” or a whitespace “⌫” for their concatenation, and an infix “ 7!” for
building map terms.
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Id F C identifiers
Nat F domain of natural numbers (including operations)
Int F domain of integer numbers (including operations)

Type F int | struct Id | Type *
Code F the entire remaining syntax of the C fragment

Env F MapId,Int
TEnv F MapId,Type
Cell F hMapId,ListType⇥Id

istruct

| hMapId,ListType⇥Id⇥Kifuns

| hCodeik
| hEnvienv

| hTEnvitenv

| hIdifname

| hListId⇥K⇥Env⇥TEnvistack

| hMapNat,Intiheap

| hListIntiin
| hListIntiout

Cfg F hBagCellicfg

Figure 2.5: Sample configuration

Figure 2.5 shows the configuration syntax of our chosen language. We only
consider integer, structure and pointer types. The sort Code is a generic sort
for “code” and comprises the entire language syntax; thus, terms of sort Code
correspond to fragments of program. Environments are terms of sort Env and are
maps from identifiers to integers. Type environments in TEnv map identifiers to
types. A configuration is a term h...icfg of sort Cfg containing a bag of cells. In
addition to h...ik, h...ienv and h...itenv holding a program fragment, an environment
and a type environment, h...icfg also includes the following cells: h...istruct holds
the available structures as a map from data structure names to lists of typed
fields; h...ifuns holds the available functions as a map from function names to their
arguments and body; h...ifname holds the name of the current function; h...istack

holds the function stack as a list of frames, each containing a function name and its
execution context (the remaining code, the environment and the type environment);
h...iheap holds the heap as a map from natural numbers (pointers) to integers (values);
h...iin holds the input bu↵er as a list of integers; and h...iout holds the output bu↵er.

Let ⌃ be the algebraic signature associated to the configuration syntax discussed
above (it is well-known that an algebraic signature can be associated to any context-
free grammar, by associating one sort to each non-terminal and one operation
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symbol to each production). A ⌃-algebra then gives a configuration model, namely
a universe of concrete language configurations. Let us assume that T is such a
configuration model. We do not bother to define T concretely, because its details
are irrelevant. Note, however, that T must include submodels of natural and
integer numbers, of maps, lists, etc. Moreover, to state properties like those in
Section 4.1.2, ⌃ needs to contain operator symbols corresponding to lists of integer
numbers and append and reverse on them, for membership testing of integers to
such lists, etc. Also, to meaningfully reason about programs in our language, T
needs to satisfy certain expected properties of these operation symbols, e.g.:

rev(nil) = nil

rev([a]) = [a]
rev(A1@A2) = rev(A2)@rev(A1)

in(a, nil) = false

in(a, [b]) = (a = b)
in(a,A1@A2) = in(a,A1) _ in(a,A2)

hn1 7! i1, n2 7! i2,�iheap ! n1 , n2

We next give some examples of patterns for our ⌃. Given program variable x
(i.e., a constant of sort Id), the pattern

9c :BagCell, e :Env hhx 7! 5, eienv cicfg

specifies those program configurations in which x is bound to 5 in the environment.
Similarly, the pattern

9c :BagCell, e :Env, i : Int (hhx 7! i, eienv cicfg ^ i � 0)

specifies the configurations where x is bound to a positive integer. The next says
that x is bound to an allocated location

9c :BagCell, e :Env, p :Nat, i : Int, � :MapNat,Int

hhx 7! p, eienv hp 7! i, �iheap cicfg

while the pattern
9c :BagCell, e :Env, p :Nat, i : Int
hhx 7! p, eienv hp 7! iiheap cicfg

says that the location x is bound to is the only one allocated.
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Matching logic allows us to write specifications referring to data located arbi-
trarily deep in the configuration, at the same time allowing us to use existential
variables to abstract away irrelevant parts of the configuration. To simplify writing,
we adopt the following notational conventions:

Notation 1. Variables starting with a “?” are assumed existentially quantified
over the entire pattern and thus need not be declared. The sorts of variables are
inferred from their use context. Existentially quantified variables which appear
only once in the pattern are replaced by an underscore (anonymous variable) “_”
or by “...”. Cells mentioned only for structural matching can be omitted when their
presence is understood; e.g., if e is an environment and  a FOL formula, we may
write heienv ^  instead of hheienv ...icfg ^  .

With these notational conventions, the patterns above become:

hx 7! 5 ...ienv

hx 7!?i ...ienv ^ ?i � 0
hx 7!?p ...ienv h?p 7! _ ...iheap

hx 7!?p ...ienv h?p 7! _iheap

We further illustrate the expressiveness of matching logic with a few more
pattern examples. The next says that program variables x and y are aliased and
point to an existing location:

hx 7!?p, y 7!?p ...ienv h?p 7! _ ...iheap

The following patterns specify configurations where program variable x is bound
to the last integer that has been output (located to the right of the output cell), and
configurations in which only one integer has been output and no program variable
is bound to that integer, respectively:

hx 7!?i ...ienv h... ?iioutheienv h?iiout ^ ?i < Codom(e)

The following pattern says that the current function is f and it has been called
directly by g (stack’s top is to the left):

hfifname h(g, _, _, _) ...istack
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The following pattern is more complex:

hx 7!?p ...ienv hfifname h... (g, _,x 7!?p ...,x 7! _* ...) ...istack

It says that the current function is f, that it has been called directly or indirectly by
g, and that when g was called the program variable x had a pointer type and was
bound to the same location (?p) it is also bound now in f’s environment.

Assuming that � is a configuration of T of the form

hhx 7! 5, y 7! 5ienv h5 7! 7iheap h3, 5iout ...icfg

then � matches all the following patterns:

⇡1 ⌘ hx 7! 5 ...ienv

⇡2 ⌘ hx 7!?i ...ienv ^ ?i � 0
⇡3 ⌘ hx 7!?p ...ienv h?p 7! _ ...iheap

⇡4 ⌘ hx 7!?p ...ienv h?p 7! _iheap

⇡5 ⌘ hx 7!?p, y 7!?p ...ienv h?p 7! _ ...iheap

⇡6 ⌘ hx 7!?i ...ienv h... ?iiout

Moreover, |= ⇡1 ! ⇡2, |= ⇡3 ! ⇡2, |= ⇡4 ! ⇡3, |= ⇡5 ! ⇡3, and, assuming that T
correctly defines the claimed maps, lists, etc.,

|= ⇡1 ^ ⇡5 ^ ⇡6 ! hy 7! 5 ...ienv h5 7! _ ...iheap h... 5iout

In addition to usual FOL abstractions, matching logic also allows us to introduce
and axiomatize situations of interest as operations (instead of predicates). For
example, we next show the list heap abstraction (part of the MatchC library)
which was used, together with other similar abstractions, to verify the programs
in Section 4.1.2. It abstracts heap subterms into list terms and captures two cases,
one in which the list is empty and the other in which it has at least one element.

hhlist(p)(↵),�iheap cicfg

$ hh�iheap cicfg ^ p = 0 ^ ↵ = nil

_ 9a, q, � (hhp 7! [a, q], list(q)(�),�iheap cicfg ^ ↵= [a]@�)
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One can now use this axiom to perform reasoning like below:

hh1 7! 5, 2 7! 0, 7 7! 9, 8 7! 1, �iheap cicfg

$ hh1 7! 5, 2 7! 0, list(0)([]), 7 7! 9, 8 7! 1, �iheap cicfg

$ hhlist(1)([5]), 7 7! 9, 8 7! 1, �iheap cicfg

! hhlist(7)([9, 5]), �iheap cicfg

$ 9q hh7 7! 9, 8 7! q, q 7! 5, q+1 7! 0, �iheap cicfg
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Chapter 3

Reachability Logic

In this chapter we present reachability logic (Section 3.1) as a unifying framework
for specifying operational semantics defined with unconditional rules (as one-path
reachability rules) and program correctness properties (as all-path or one-path
reachability rules), and then we give a language-independent proof system (Sec-
tion 3.2) for deriving the program correctness properties from the operational
semantics. We extend our results to operational semantics defined with conditional
rules for one-path program correctness properties (Section 3.3). We discuss Hoare
logic (Section 3.4) and separation logic (Section 3.5) in the context of the work pre-
sented in this dissertation. We prove that our proof systems are sound (Section 3.6)
and relatively complete in the sense of Cook (Section 3.7).

Much of the work in this chapter comes from Ros, u and S, tefănescu [90],
Ros, u and S, tefănescu [92], Ros, u and S, tefănescu [91], Ros, u and S, tefănescu [93],
Ros, u et al. [88], and S, tefănescu et al. [99].

3.1 Specifying Reachability

In this section we define the notion of a one-path reachability rule and an all-path
reachability rule. These are pairs of matching logic patterns, written ' )9 '0
and, respectively, ' )8 '0 to distinguish them, capturing the partial correctness
intuition: for any program configuration � that matches ', one path (9), respectively
each path (8), derived using the operational semantics from � either diverges or
otherwise reaches a configuration �0 that matches '0.

We begin by introducing some basic notions that we need for specifying
reachability. Let us fix the following: (1) an algebraic signature ⌃, associated to
some desired configuration syntax, with a distinguished sort Cfg, (2) a sort-wise
infinite set Var of variables, and (3) a ⌃-algebra T , the configuration model, which
may but need not be a term algebra. As usual, TCfg denotes the elements of T of
sort Cfg,
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Definition 5. A (one-path) reachability rule is a pair ' )9 '0, where ' and '0

are patterns (which can have free variables). Rule ')9 '0 is weakly well-defined
i↵ for any � 2 TCfg and ⇢ : Var ! T with (�, ⇢) |= ', there exists �0 2 TCfg with
(�0, ⇢) |= '0. A reachability system is a set of reachability rules. Reachability
system S is weakly well-defined i↵ each rule is weakly well-defined. S induces a
transition system (T ,)TS ) on the configuration model: � )TS �0 for �, �0 2 TCfg i↵
there is some rule ')9 '0 in S and some valuation ⇢ : Var! T with (�, ⇢) |= '
and (�0, ⇢) |= '0. A )TS -path is a finite sequence �0 )TS �1 )TS ...)TS �n with
�0,...,�n 2 TCfg. A )TS -path is complete i↵ it is not a strict prefix of any other
)TS -path.

We assume an operational semantics is a set of (unconditional) reduction rules
“l) r if b”, where l, r 2 T⌃,Cfg(Var) are program configurations with variables and
b 2 T⌃,Bool(Var) is a condition constraining the variables of l, r. Styles of operational
semantics using only such (unconditional) rules include evaluation contexts [32],
the chemical abstract machine [12] and K [89] (see Section 2.1.1 for an evaluation
contexts semantics). Several large languages have been given semantics in such
styles, including C [30] (about 2500 rules) and R5RS Scheme [64]. The reachability
proof system works with any set of rules of this form, being agnostic to the
particular style of semantics.

Such a rule “l) r if b” states that a ground configuration � which is an instance
of l and satisfies the condition b reduces to an instance �0 of r. Matching logic can
express terms with constraints: l ^ b is satisfied by exactly the � above. Thus, we
can regard such a semantics as a particular weakly well-defined reachability system
S with rules of the form “l ^ b )9 r”. The weakly well-defined condition on S
guarantees that if � matches the left-hand-side of a rule in S, then the respective
rule induces an outgoing transition from �. The transition system induced by
S describes precisely the behavior of any program in any given state. Such
reachability rules capture one-path reachability properties and Hoare triples for
deterministic languages.

Figure 2.1 shows a reduction-style executable semantics of a simple imperative
language. With the notation explained in Section 2.1, the semantics consists of
reduction rules between configuration terms. Each of these rules can be regarded
as a one-path reachability rule, with side conditions as constraints on the left-hand-
side pattern of the rule. For example, the second rule for the conditional statement
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becomes the following one-path reachability rule:

hC, �i[if(I) S 1 else S 2] ^ I ,Int 0)9 hC, �i[S 1]

Mathematical domain operations (+Int, etc.) are subscripted with Int to distinguish
them from the language constructs.

A generic, language-independent notion of termination is needed for the partial
correctness

Definition 6. Configuration � 2 TCfg terminates in (T ,)TS ) i↵ there is no infinite
)TS -sequence starting with �.

We also introduce the following notion

Definition 7. A reachability rule ' )9 '0 is well-defined, i↵ '0 is well-defined
(recall Definition 4). well-defined.

Operational semantics defined with rules “l) r if b” are particular well-defined
reachability systems with rules of the form l ^ b)9 r, because r is a basic pattern
and basic patterns are well-defined. One example of a properly weakly well-defined
rule is one of the form ' )9 '1 _ '2, where (�1, ⇢) |= '1 and (�2, ⇢) |= '2 for
two di↵erent configurations �1 and �2. However, note that such disjunctive rules
can be replaced with two rules. An example of a rule ' )9 '0 which is not
weakly well-defined is one where '0 is not satisfiable, for example '0 ⌘ false.
Such non-well-defined rules are unlikely to appear in any meaningful operational
semantics, but nevertheless, we do not want to impose any particular style or
methodology to define operational semantics in this thesis and instead prefer to
prove our generic soundness and completeness results as generally as possible.
Weak well-definedness will be required for the soundness of our proof system and
well-definedness for our completeness result.

Reachability rules can specify not only operational semantics of languages, but
also program properties. Semantic validity in matching logic reachability captures
the same intuition of partial correctness as Hoare logic, but in more general terms
of reachability. Formally, let us fix an operational semantics given as a reachability
system S. Then, we can specify reachability in the transition system induced by S
Definition 8. An all-path reachability rule is a pair ')8 '0 of patterns ' and '0.

An all-path reachability rule ' )8 '0 is satisfied, S |= ')8 '0, i↵ for all
complete )TS -paths ⌧ starting with � 2 TCfg and for all ⇢ : Var ! T such that
(�, ⇢) |= ', there exists some �0 2 ⌧ such that (�0, ⇢) |= '0.
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A one-path reachability rule ' )9 '0 is satisfied, S |= ')9 '0, i↵ for all
� 2 TCfg and ⇢ : Var ! T such that (�, ⇢) |= ', there is either a )TS -path
from � to some �0 such that (�0, ⇢) |= '0, or there is a non-terminating execution
� )TS �1 )TS �2 )TS · · · from �.

The correctness property of a racing increment program in the context of a
simple imperative language with configurations of the form hcode, �i can be
specified by

hx :=x+1 || x :=x+1, x 7!mi )8 9n (hskip, x 7!ni^(n = m+Int 1_n = m+Int 2)

which states that every terminating execution reaches a state where execution of
both threads is complete and the value of x has increased by 1 or 2 (this code
has a race). For deterministic programs, the one-path and the all-path reachability
coincide. For example, the property of the SUM program mentioned in Section 2.3.1
in the context of the same language would be

9s (hSUM, (s 7! s, n 7! n)i ^ n �Int 0)
)9 hskip, (s 7! n ⇤Int (n +Int 1)/Int2, n 7! 0)i

A Hoare triple describes the resulting state after execution finishes, so it cor-
responds to a reachability rule where the right side contains no remaining code.
However, reachability rules are strictly more expressive than Hoare triples, as
they can also specify intermediate configurations (the code in the right-hand-side
need not be empty) Reachability rules provide a unified representation for both
language semantics and program specifications: ')9 '0 for semantics or one-path
reachability, and ')8 '0 for all-path reachability specifications. This makes them
perfectly suitable for our goal to obtain program verifiers from operational seman-
tics. Note that, like Hoare triples, reachability rules can only specify properties
of complete paths (that is, terminating execution paths). One can use existing
Hoare logic techniques to break reasoning about a non-terminating program into
reasoning about its terminating components.

We would like to point out that in Definition 5 we used one-path reachability
rules ' )9 '0 to define the (one-step) transition relation (T ,)TS ), while in Def-
inition 8 we give a (more general) multi-step semantics for one-path rules. We
decided to use)9 for both one-step and multi-step because, as we discuss next in
Section 3.2, we do not use further the fact that a rule is one-step or multi-step, other
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than to notice that, with the definitions above, S |= ')9 '0, for each ')9 '0 2 S.
We would also like to point a subtle di↵erence between the semantics of the

all-path rules ' )8 '0 and one-path rules ' )9 '0, namely that ' )8 '0 is
semantically valid i↵ all terminating execution paths starting at any configuration
� satisfying ' respect the property, while ' )9 '0 is semantically valid i↵ all
terminating configurations � satisfying ' respect the property. One might expect
')9 '0 to be semantically valid i↵ for all � satisfying ', one terminating execution
path starting at � respects the property. For deterministic transition systems, the
two definitions are equivalent, since a configuration � is terminating i↵ the unique
path starting at � is terminating. However, for non-deterministic systems, the
second definition would be stronger, and it would need a more complicated proof
system. Thus, we do not explore this possible alternative definition in this thesis.

3.2 Reachability Proof System

Figure 3.1 shows our proof system for both one-path and all-path reachability,
which we refer to as reachability logic. The target language is given as a weakly
well-defined reachability system S. The soundness result (Theorem 3) guarantees
that S |= ' )Q '0 if S ` ' )Q '0 is derivable, where Q 2 {8,9}. The
proof system derives more general sequents “S,A `C ' )Q '0”, where A and
C are sets of reachability rules. The rules in A are called axioms and rules in
C are called circularities. If A or C does not appear in a sequent, it is empty:
S `C ' )Q '0 is shorthand for S, ; `C ' )Q '0, and S,A ` ' )Q '0 is
shorthand for S,A `; ' )Q '0. Initially, A and C are empty. Note that “!” in
Step and Consequence denotes implication.

We assume the free variables of 'l )9 'r in the Step proof rule are disjoint
from those of ' )8 '0. This can be achieved by renaming all the free variables
in the rules in S before beginning a proof, and by noticing that the free variables
in the rules in S do not spill into any sequent during the proof (Axiom applies a
renaming substitution).

The intuition is that the reachability rules in A can be assumed valid, while
those in C have been postulated but not yet justified. After making progress from '

(at least one derivation by Step or by Axiom), the rules in C become (coinductively)
valid and can be used in derivations by Axiom. During the proof, circularities
can be added to C via Circularity, flushed into A by Transitivity, and used
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Step :
|= '! W

'l)9'r 2 S 9FreeVars('l).'l

|= (9c ('⇤[c/⇤] ^ '⇤l [c/⇤]) ^ 'r)! '0 for each 'l )9 'r 2 S
S,A `C ')8 '0

Axiom :
')Q '0 2 S [A  is FOL formula (logical frame) � : Var! Var

S,A `C '� ^  )Q '0� ^  
Reflexivity :·
S,A ` ')Q '

Transitivity :
S,A `C '1 )Q '2 S,A [ C ` '2 )Q '3

S,A `C '1 )Q '3
Consequence :
|= '1 ! '01 S,A `C '01 )Q '02 |= '02 ! '2

S,A `C '1 )Q '2
Case Analysis :
S,A `C '1 )Q ' S,A `C '2 )Q '

S,A `C '1 _ '2 )Q '

Abstraction :
S,A `C ')Q '0 X \ FreeVars('0) = ;

S,A `C (9X '))Q '0

Circularity :
S,A `C[{')Q'0} ')Q '0

S,A `C ')Q '0

Figure 3.1: Proof system for reachability. Here Q 2 {8,9}.

via Axiom. The semantics of sequent S,A `C ' )Q '0 (read “S with axioms
A and circularities C proves ' )Q '0”) is: ' )Q '0 holds if the rules in A
hold and those in C hold after taking at least one step from ' in the transition
system ()TS ,T ). Moreover, if C , ; then ' reaches '0 after at least one step
on all complete paths when Q = 8 and on at least one path when Q = 9. As
a consequence of this definition, any rule ' )Q '0 derived by Circularity has
the property that ' reaches '0 after at least one step, due to Circularity having a
prerequisite S,A `C[{')Q'0} ')Q '0 (with a non-empty set of circularities). We
next discuss the proof rules.

Step derives a sequent where ' reaches '0 in one step on all paths. The first
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premise ensures any configuration matching ' matches the left-hand-side 'l of
some rule in S and thus, as S is weakly well-defined, can take a step: if (�, ⇢) |= '
then there is a 'l )9 'r 2 S and a valuation ⇢0 of the free variables of 'l s.t.
(�, ⇢0) |= 'l, and thus � has at least one)TS -successor generated by 'l )9 'r. The
second premise ensures that each )TS -successor of a configuration matching '
matches '0: if � )TS �0 and � matches ' then there is some rule 'l )9 'r 2 S
and ⇢ : Var ! T such that (�, ⇢) |= ' ^ 'l and (�0, ⇢) |= 'r; then the second part
implies �0 matches '0.

Designing a proof rule for deriving an execution step along all paths is non-
trivial. For instance, one might expect Step to require as many premises as there
are transitions going out of ', as is the case for the examples presented later
in this section. However, that is not possible, as the number of successors of a
configuration matching ' may be unbounded even if each matching configuration
has a finite branching factor in the transition system. Step avoids this issue by
requiring only one premise for each rule by which some configuration ' can take
a step, even if that rule can be used to derive multiple transitions. To illustrate
this situation, consider a language defined by S ⌘ {hn1i ^ n1 >Int n2 )9 hn2i},
with n1 and n2 non-negative integer variables. A configuration in this language is a
singleton with a non-negative integer. Intuitively, a positive integer transits into a
strictly smaller non-negative integer, in a non-deterministic way. The branching
factor of a non-negative integer is its value. Then it follows that S |= hmi )8 h0i.
Deriving this rule reduces (by Circularity and other proof rules) to deriving
hm1i^m1 >Int 0)8 9m2 (hm2i^m1 >Int m2). The left-hand-side is matched by any
positive integer, and thus its branching factor is infinity. Deriving this rule with Step
requires only two premises, |= (hm1i ^ m1 >Int 0)! 9n1n2 (hn1i ^ n1 >Int n2) and
|= 9c (c = hm1i^m1 >Int 0^c = hn1i^n1 >Int n2)^hn2i ! 9m2 (hm2i^m1 >Int m2).
A similar situation arises in the case of real-world languages with thread pools of
arbitrary size.

Axiom applies a trusted one-path or all-path rule. It also derives a one-path
sequent where ' reaches '0 in one step on some path. Notice that while a variable
x cannot be instantiated with a term t by �, one can simply add x = t to  , and use
Consequence to get the same e↵ect.

The logical frame  is formalized as a patternless formula, as it is meant
to only add logical but no structural constraints. Since reachability logic keeps
a clear separation between program variables and logical variables the logical
constraints are persistent, that is, they do not interfere with the dynamic nature of
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the operational rules and can therefore be safely used for framing. This is not the
case for structural constraints.

Reflexivity and Transitivity capture the closure properties of the reachability
relation. Reflexivity requires C empty to ensure that rules derived with non-empty
C take at least one step. Transitivity enables the circularities as axioms for the
second premise, since if C is not empty, the first premise is guaranteed to take
a step. Consequence, Case Analysis and Abstraction are adapted from Hoare
logic. Ignoring circularities, these seven proof rules are the formal infrastructure
for symbolic execution.

Circularity has a coinductive nature, allowing us to make new circularity
claims. We typically make such claims for code with repetitive behaviors, such as
loops, recursive functions, jumps, etc. If there is a derivation of the claim using
itself as a circularity, then the claim holds. This would obviously be unsound if the
new assumption was available immediately, but requiring progress (taking at least
on step before circularities can be used) ensures that only diverging executions
correspond to endless invocation of a circularity.

One important aspect of concurrent program verification, which we do not
address in this dissertation, is proof compositionality. Our focus here is limited to
establishing a sound and complete language-independent proof system for all-path
reachability rules, to serve as a foundation for further results and applications, and
to discuss our current implementation of it.

From here on, we make the following convention: we can use S[A `C ')9 '
as a shortcut for S,A `C ')9 '0. Essentially, we merge the one-path reachability
rules in S andA, since the one-path part of the proof system only uses the rules in
these sets in the Axiom proof rule. The union set is sometimes refered as S or as
A.

3.2.1 Example Reachability Logic Proofs

Sum Example

Consider the following snippet in a simple imperative language IMP (Section 2.1),
say SUM, summing up the natural numbers smaller than n:

s = 0;

while(--n)

s = s + n;
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Let us now verify the SUM program using the generic reachability logic instantiated
with the executable semantics of the language. Let S be the reachability logic
system in Figure 2.1, where each rule is regarded as a one-path rule as explained in
Section 3.1. We first make some notations:

'pre ⌘ hSUM, n 7! n, s 7! si ^ n �Int 1
'post ⌘ hskip, n 7! 0, s 7! n ⇤Int (n �Int 1) /Int2i
LOOP ⌘ while(--n) (s = s + n;)

'1 ⌘ hLOOP, n 7! n, s 7! 0i ^ n �Int 1
'inv ⌘ hLOOP, n 7! n0, s 7! ⌃n�Int1

n0 i ^ n0 �Int 1
IF ⌘ if(--n) (s = s + n; LOOP) else skip

'2 ⌘ hIF, n 7! n0, s 7! ⌃n�Int1
n0 i ^ n0 �Int 1

'3 ⌘ hLOOP, n 7!n0�Int 1,s 7!⌃n�Int1
n0�Int1i ^ n0 >Int 1

The reachability logic rule stating the correctness of SUM is

'pre )9 'post

which can be derived as follows:

1. S, ; `; 'pre )9 'post Trans(2, 3)
2. S, ; `; 'pre )9 9n0.'inv Consequence(4)
3. S, ; `; 9n0.'inv )9 'post Abstraction(5)
4. S, ; `; 'pre )9 '1 Axiom
5. S, ; `; 'inv )9 'post Circularity(6)
6. S, ; `{'inv)9'post} 'inv )9 'post Trans(7, 8)
7. S, ; `{'inv)9'post} 'inv )9 '2 Axiom
8. S, {'inv)9'post} `; '2 )9 'post Case(9, 10)
9. S, {'inv)9'post} `; '2 ^ n0>Int 1)9 'post Trans(11, 12)

10. S, {'inv)9'post} `; '2 ^ n0 Int 1)9 'post Axiom+

11. S, {'inv)9'post} `; '2 ^ n0>Int 1)9 '3 Axiom+

12. S, {'inv)9'post} `; '3 )9 'post Axiom(µ)

Step (1) factors the proof using the loop invariant existentially quantified in
all its new (mathematical) variables. To show that the invariant holds when the
loop is reached (2), we “execute” the initial pattern 'pre with the operational
semantics rule of assignment (4), reaching pattern '1, which implies (in matching
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* x := x + 1
||x := x + 1,
x 7! m

+ * x := x + 1
||x := m + 1,
x 7! m

+ * x := x + 1
||x := m +Int 1,

x 7! m

+ * x := x + 1
||skip,

x 7! m +Int 1

+

* x := m + 1
||x := x + 1,
x 7! m

+ * x := m + 1
||x := m + 1,
x 7! m

+ * x := m + 1
||x := m +Int 1,

x 7! m

+ * x := m + 1
||skip,

x 7! m +Int 1

+ * x := m +Int 1 + 1
||skip,

x 7! m +Int 1

+

* x := m +Int 1
||x := x + 1,
x 7! m

+ * x := m +Int 1
||x := m + 1,
x 7! m

+ * x := m +Int 1
||x := m +Int 1,

x 7! m

+ * x := m +Int 1
||skip,

x 7! m +Int 1

+ * x := m +Int 2
||skip,

x 7! m +Int 1

+

* skip
||x := x + 1,
x 7! m +Int 1

+ * skip
||x := m + 1,
x 7! m +Int 1

+ * skip
||x := m +Int 1,
x 7! m +Int 1

+ * skip
||skip,

x 7! m +Int 1

+

* skip
||x := m +Int 1 + 1,
x 7! m +Int 1

+ * skip
||x := m +Int 2,
x 7! m +Int 1

+ * skip
||skip,

x 7! m +Int 2

+

Figure 3.2: State space of the racing increment example

logic) the existentially quantified invariant. To prove the existentially quantified
invariant, thanks to Abstraction we first eliminate the existential quantifier (3)
and then, expecting a circular behavior of the loop, we add the proof obligation
as a circularity (5). The rest is just symbolic execution of the loop body using
the executable semantics and giving priority to the circularity when it matches.
Specifically, the loop is unrolled using the executable semantics of while (2),
then a case analysis is initiated on whether the value held by n is larger than 1 or
not (8), and 'post is indeed reached on both paths (9,10). The circularity is used on
the positive branch only, as expected. For brevity, we do not mention the use of
Consequence when changing a formula into an equivalent formula. For example,
when deriving step (8) by Case Analysis from (9, 10), '2 implicitly becomes
'2 ^ n0 >Int 1 _ '2 ^ n0 Int 1.

Parallel Increment

The first example shows that our proof system enables exhaustive state exploration,
similar to symbolic model-checking but based on the operational semantics. Al-
though humans prefer to avoid such explicit proofs and instead methodologically
use abstraction or compositional reasoning whenever possible (and such method-
ologies are not excluded by our proof system), a complete proof system must
nevertheless support them. Thus, model-checking techniques for reducing the
space size (like partial order reduction or abstraction) should apply in our setting
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as well. The code x :=x+1 || x :=x+1 exhibits a race on x: the value of x increases
by 1 when both reads happen before either write, and by 2 otherwise. The all-path
rule that captures this behavior is

hx :=x+1 || x :=x+1, x 7!mi )8 9n (hskip, x 7!ni^ (n = m+Int 1_n = m+Int 2)

We show that the program has exactly these behaviors by deriving this rule in the
proof system. Call the right-hand-side pattern G. The proof contains subproofs of
c)8 G for every reachable configuration c, tabulated in Figure 3.2. The subproofs
for c matching G use Reflexivity and Consequence, while the rest use Transitivity,
Step, and Case Analysis to reduce to the proofs for the next configurations. For
example, the following sequent

hx := m + 1 || x := x + 1, x 7! mi )8 G

can be inferred from the following two sequents

hx := m +Int 1 || x := x+1, x 7! mi )8 G
hx := m+1 || x := m+1, x 7! mi )8 G

as shown by the proof fragment below

Step
...

* x := m + 1
||x := x + 1,
x 7! m

+
)8

* x := m +Int 1
||x := x + 1,
x 7! m

+

_
* x := m + 1
||x := m + 1,
x 7! m

+

...

* x := m +Int 1
||x := x + 1,
x 7! m

+
)8 G

...

* x := m + 1
||x := m + 1,
x 7! m

+
)8 G

* x := m +Int 1
||x := x + 1,
x 7! m

+
_

* x := m + 1
||x := m + 1,
x 7! m

+
)8 G

CA

hx := m + 1 || x := x + 1, x 7! mi )8 G
Trans

For the rule hypotheses of Step above, note that all rules but lookup and op+

make the overlap condition 9c

0
BBBBBBBBBBB@

* x := m + 1
||x := x + 1,
x 7! m

+
[c/⇤] ^ 'l[c/⇤]

1
CCCCCCCCCCCA

unsatisfiable,

and only one choice of free variables works for the lookup and op+ rules. For
lookup, 'l is hC,�i[x] and the overlap condition is only satisfiable if the logical
variables C, � and x are equal to (x := m + 1 || x := ⌅ + 1), (x 7! m), and
x, resp. Under this assignment, the pattern 'r = hC,�i[�(x)] is equivalent to
hx := m + 1 || x := m + 1, x 7! mi, the right branch of the disjunction. The op+ rule
is handled similarly. The assignment for lookup can also witness the existential in
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the progress hypothesis of Step. Subproofs for other states in Figure 3.2 can be
constructed similarly.

3.3 Conditional One-Path Reachability Logic

In this section, we extend the results from the previous two sections to work with
semantics formalized with conditional rewrite rules. Specifically, we introduce
conditional one-path reachability rules, and a one-path proof system that derives
program correctness properties expressed as unconditional one-path reachability
rules. Unfortunately, we do not have a similar result for program correctness
properties expressed as unconditional all-path reachability rules.

3.3.1 Conditional Reachability Rules

As discussed before, unconditional reachability rules can express particular opera-
tional semantics that do not require rule premises. Here we introduce conditional
one-path reachability rules, a generalization capturing as special instances the rules
used in conventional operational semantics with rule premises.

Definition 9. A conditional one-path reachability rule is a sentence

')9 '0 if '1 )9 '01
V
...

V
'n )9 '0n

with n � 0 and with ', '0, '1, '01, ..., 'n, '0n matching logic patterns. We call '
the left-hand side (LHS) and '0 the right-hand side (RHS) of the rule. A rule is
unconditional when n = 0. A reachability system is a set of reachability rules.

As discussed in Section 2.1.2, in here we assume that operational semantics
are defined with rewrite rules of the form

cfg) cfg0 if b
V

cfg1) cfg01
V

b1
V
...

V
cfgn) cfg0n

V
bn

which can now be seen as syntactic sugar for reachability rules

cfg ^ b ^ b1 ^ . . . ^ bn )9 cfg0 if cfg1 )9 cfg01
V
...

V
cfgn )9 cfg0n

Here the boolean side conditions have been all conjuncted with the LHS pattern.
The above is a correct reachability rule, where ' is cfg ^ b ^ b1 ^ . . . ^ bn. For
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example, the rule cond1 in the big-step semantics of IMP in Figure 2.2 is syntactic
sugar for the reachability rule

hif e s1 s2, �i ^ i , 0)9 h�0i if he, �i )9 hiiV hs1, �i )9 h�0i

In this section, we assume that a language/calculus/system is defined as a
reachability system and, unless otherwise specified, fix an arbitrary reachability
system S. It is irrelevant for the subsequent developments whether such rules
represent a small-step, a big-step, or any other particular operational semantics.

An operational semantics typically describes program behaviors by generating
a transition system over program configurations, which can associate a behavior to
any given program in any given state. In some cases, e.g., small-step semantics, the
transition system comprises all the atomic computational steps; in other cases, e.g.,
big-step semantics, the transition system consists of a binary relationship mapping
configurations holding (fragments of) programs to their resulting configurations
after evaluation. Recall (Definition 2) that matching logic comes equipped with a
model of configurations, T . We next show how S yields a transition system over
the configurations of T .

Definition 10. The transition relation induced by S, )TS ✓ TCfg ⇥ TCfg (written
infix), is the least fixpoint of the following condition: � )TS �0 if there exists a
reachability rule

')9 '0 if '1 )9 '01
V
...

V
'n )9 '0n

in S and some valuation ⇢ :Var! T such that:

1. (�, ⇢) |= ' and (�0, ⇢) |= '0; and

2. for all �1, ..., �n 2 TCfg with (�i , ⇢) |= 'i for all 1  i  n there exist �01, ..., �
0
n

with (�0i , ⇢) |= '0i and �i )?TS �0i for all 1 in ()?TS is the transitive/reflexive
closure of)TS ).

Then (TCfg,)TS ) is the transition system induced by S.

Intuitively,)TS is the least relation compatible with all the rules in S, with all
rule conditions interpreted as)TS -reachability. The existence of a least fixpoint is
guaranteed by the Knaster-Tarski theorem: the set of binary relations on TCfg with
inclusion forms a complete lattice, and the condition is monotonic.
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If S contains only rewrite rules, that is, rules whose patterns are all basic, then
all the configurations �, �0, �1, �01, . . . , �n, �0n in Definition 10 are uniquely deter-
mined by ⇢, since (�, ⇢) |= ⇡ i↵ � = ⇢(⇡) for any basic pattern ⇡ (by Definition 2).
In this case,)TS becomes the usual transition relation induced by a (top-most) term
rewrite system (S) on a ⌃-algebra (T ). For example, if S is the IMP small-step
semantics in Figure 2.2 then the following are valid transitions (LOOP is the loop
of SUM in Section 2.1.2; for notational simplicity, we make no distinction between
ground terms and their interpretation in T ):

hSUM, (s 7! 7,n 7!10)i )TS hLOOP, (s 7! 0,n 7!10)i )TS
hif (n>0) (s:=s+n;n:=n-1;LOOP) skip, (s 7! 0,n 7!10)i )TS
hif(10>0) (s:=s+n;n:=n-1;LOOP) skip, (s 7! 0,n 7!10)i )TS

. . . )TS hLOOP, (s 7! 10,n 7!9)i )TS . . . )TS
hLOOP, (s 7! 55,n 7!0)i )TS . . . )TS hskip, (s 7! 55,n 7!0)i

In computing the transitions above, we need to go up to 3 nested conditional rules
in Definition 10. On the other hand, if S is the big-step semantics in Figure 2.2,
then we have

hSUM, (s 7! 7,n 7!10)i )TS hs 7! 55,n 7!0i

in one transition step, but in order to compute that we need to apply more than 40
nested conditional rules.

To define rule validity with the sense of partial correctness we need to say which
configurations terminate. In some cases, e.g., small-step semantics, nontermination
is captured by the ability to take an infinite sequence of transitions starting with
the given configuration; in other cases, e.g., big-step semantics, nontermination is
captured by the ability to make an infinite sequence of nested attempts to fulfill
conditions of rules while trying to take a step—which is not the same as a stuck
configuration which cannot take a step because no rules apply.

We define a novel notion of termination of configurations with respect to S,
which captures both cases above. Our definition is based on a preorder on configu-
rations, which will be well-founded under terminating configurations. This order
is inspired by quasi-decreasing orders for conditional term rewriting systems [39].
Our definition is also somewhat related to operational termination of conditional
term rewrite systems [59], although the latter is a property of a rewrite system
as whole, while our notion of termination refers to a particular configuration in a
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particular model.

Definition 11. Let (TCfg,�) be the termination dependence relation defined as
follows:

• � � �0 if � )TS �0; and

• � � �0 if there is a rule ')9 '0 if'1 )9 '01
V
...

V
'n )9 '0n in S, valuation

⇢ :Var! T , and index 1  i  n so that:

1. (�, ⇢) |= '
2. (�0, ⇢) |= 'i

3. For each 1  j < i, ' j )9 '0j is “strongly ⇢-valid”: for any � j such
that (� j, ⇢) |= ' j there exists �0j such that � j )?TS �0j and (�0i , ⇢) |= '0j

� 2 TCfg terminates i↵ there are no infinite decreasing � chains starting at �; �
diverges otherwise. We let ⌫ denote the partial order associated to �, i.e., its
reflexive and transitive closure.

Our definition of termination above mimics the application of conditional
rules in the configuration model, in that conditions are solved in order and a
condition is considered only if all the previous conditions are successfully solved.
Taking into account the order of conditions is essential to get the correct notion
of termination. If condition 3 were dropped, then any while loop could be said to
diverge in the big-step semantics by using the while2 rule and recursing into the
second condition which executes the body again, without first checking that the
test of the loop actually passes. Termination dependence is essential in the proof
of soundness, which justifies circularity by well-founded induction on � under
terminating configurations.

Let us consider IMP again. In Section 2.1.2 we informally claimed that SUM
always terminates, SUM’ only terminates when n  0, and SUM1 never terminates.
We can now make these claims formal. For SUM, we can show that any configura-
tion � of the form hSUM, �i terminates with any of the two semantics in Figure 2.2,
for any state � (including such � which lacks s or n). For SUM’, any configuration
hSUM’, (n 7!n, �)i with n  0 terminates in both semantics, whether or not �
binds s. However, our informal claim “SUM’ only terminates when n  0” in
Section 2.1.2 was (purposely) imprecise. Indeed, configurations hSUM’, �i with
n or s undefined in � also terminate. Finally, our informal claim “SUM1 never
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terminates” was also imprecise for similar reasons. Stated precisely, configurations
of the form hSUM1, (n 7!n, s 7! s, �)i diverge. Interestingly, such configurations
diverge for di↵erent reasons in the two semantics, descending by the first bullet of
Definition 11 in small-step semantics, and by the second in big-step semantics.

Definition 12. A pattern ' terminates (resp. diverges), written S |= '# (resp.
S |= '"), i↵ for all � 2 TCfg and for all ⇢ :Var! T , if (�, ⇢) |= ' then � terminates
(resp. diverges).

In the case of IMP with S either its small-step or its big-step semantics, from
the discussion above we can conclude

S |= hSUM, �i#
S |= (hSUM’, (n 7!n,�)i^nInt0 _hSUM’, �i^(n<Dom(�)_s<Dom(�))#
S |= (hSUM’, (n 7!n,s 7! s,�)i ^ n >Int 0)"
S |= hSUM1, (n 7!n,s 7! s,�)i"

3.3.2 Validity and Well-Definedness

In Hoare logic, {pre} code {post} is (semantically) valid, in the sense of partial
correctness, i↵ for any state satisfying pre, if code terminates then the resulting
state satisfies post. This elegant definition has the luxury of relying on another
formal semantics of the target language which provides the language-specific
notions of “state”, “satisfaction”, and “termination”. Since here everything happens
in a single language-independent framework, we generalize the notion of validity
as follows:

Definition 13. Given valuation ⇢ : Var ! T , an unconditional reachability rule
')9 '0 is ⇢-valid, written S, ⇢ |= ')9 '0, i↵ for any � 2 TCfg with (�, ⇢) |= ', if
� terminates then there is a �0 2 TCfg such that (�0, ⇢) |= '0 and � )?TS �0. Rule
')9 '0 is valid, written S |= ')9 '0, i↵ it is ⇢-valid for each ⇢ :Var! T .

Intuitively, S |= ')9 '0 specifies reachability: any terminating configuration
matching ' transits, on some execution path, to a configuration matching '0. This
notion of validity becomes the usual Hoare logic validity when the reachability
rule ' )9 '0 corresponds to a Hoare triple and S is deterministic. Both IMP
definitions in Figure 2.2 are deterministic. A major di↵erence between our validity
and Hoare validity is that the language-specific “state” and “code” are replaced by
the language-independent “configuration”.
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Recall that S is an arbitrary reachability system, thought of as a “semantics”.
However, not all reachability systems are meaningful as semantics in all situations.
Consider a reachability system containing a rule of the form ')9 false. Such a
rule is semantically useless (because it generates no transitions), but also makes
reachability reasoning unsound, because there are no transitions in the generated
transition system which would validate ')9 false. Some of the subsequent results
require that S |= µ for any unconditional µ 2 S, which can be ensured by simple
conditions on S such as:

Definition 14. Rule ')9 '0 if'1 )9 '01
V
...

V
'n )9 '0n is (weakly) well-defined

i↵ '0, '1, ..., 'n are (weakly) well-defined. S is (weakly) well-defined i↵ all its
rules are.

Rules of the form ')9 false are not (weakly) well-defined. Since operational
semantics rules contain only configuration terms except possibly for their LHSs
(see discussion at beginning of Section 3.3.1), and since configuration terms are
basic patterns, which are always well-defined, it is safe to say that the reachability
systems of interest are expected to be well-defined. Nevertheless, weak well-
definedness su�ces for the soundness of conditional one-path reachability logic,
although we need full well-definedness for completeness.

3.3.3 Proof System

Figure 3.3 shows the reachability logic proof system. The target language is given
as a weakly well-defined reachability system S. The soundness result (Theorem 4)
guarantees that S |= ')9 '0 if S,A ` ')9 '0 is derivable. Note that the proof
system derives more general sequents of the form S,A `C ')9 '0, whereA and
C are sets of reachability rules, like the proof system in Figure 3.1 (Section 3.2).

The proof system generalizes the one-path part (Q = 9) of the proof system
in Figure 3.1 to work with a reachability system S given with conditional rules.
Specifically, it generalizes the Axiom proof rule to the following form

Axiom :

(')9 '0 if '1 )9 '01
V · · ·V 'n )9 '0n) 2 A [ S

 is a structureless pattern � : Var! Var

S,A [ C ` 'i� ^  )9 '0i� for i 2 1, ..., n

S,A `C '� ^  )9 '0� ^  
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Axiom :

(')9 '0 if '1 )9 '01
V · · ·V 'n )9 '0n) 2 A [ S

 is a structureless pattern � : Var! Var

S,A [ C ` 'i� ^  )9 '0i� for i 2 1, ..., n

S,A `C '� ^  )9 '0� ^  

Reflexivity :
·

S,A ` ')9 '

Transitivity :
S,A `C '1 )9 '2 S,A [ C ` '2 )9 '3

S,A `C '1 )9 '3

Consequence :
|= '1 ! '01 S,A `C '01 )9 '02 |= '02 ! '2

S,A `C '1 )9 '2

Case Analysis :
S,A `C '1 )9 ' S,A `C '2 )9 '

S,A `C '1 _ '2 )9 '

Abstraction :
S,A `C ')9 '0 where X \ FV('0) = ;

S,A `C 9X ')9 '0

Circularity :
S,A `C[{')'0} ')9 '0
S,A `C ')9 '0

Figure 3.3: Proof system for (one-path) reachability using conditional rules.

and it keeps the rest of the proof rules unchanged. Notice that this proof rule has
one premise for each condition of the conditional reachability rule, and in each
premise the circularities from C are enabled. Incorporating framing into the axiom
rule is necessary to make logical constraints available while proving the conditions
of the axiom hold.

Figure 3.4 shows detailed formal proofs that the SUM program (Section 2.1.2)
indeed calculates the sum of the first n natural numbers in s, for the small-step and
big-step semantics of IMP from Figure 2.2. In the small-step case (left column)
the circularity corresponding to the loop is used via the Transitivity rule, while in
the big-step case (right column) the circularity is used via the Axiom rule. Below
we discuss these proofs informally.

In small-step, the specification 'SUM )9 ' (sequent 14) is

hSUM, (s 7! s,n 7!n)i ^ n�Int 0)9 hskip, (s 7!n⇤Int(n+Int1)/Int2,n 7!0)i
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We begin by Transitivity (12,13) through 9n0 'INV, with 'INV

hLOOP, (s 7! (n �Int n0) ⇤Int (n +Int n0 +Int 1)/Int2, n 7! n0)i ^ n0 �Int 0.

'SUM )9 9n0 'INV (13) holds by running the operational semantics on SUM (1),
and abstracting this as 9n0 'INV by Consequence. The property µ ⌘ 9n0 'INV )9 '
(12) is proved by Circularity (from 11). Sequent 11 is proven by using Abstraction
to remove the quantifier and fix an arbitrary n0, and using Transitivity between
2 and 10. Sequent 2 holds by applying the while rule to unroll the loop into a
conditional. This progress releases the circularity µ in 10. We continue by Case
Analysis on n0 =Int 0_ n0 >Int 0, running the operational semantics in each case (the
two cases are described by sequents 8 and 9). When n0 =Int 0 the goal is reached
directly (sequent 9), and when n0 >Int 0 we reach a configuration implying 9n0 'INV

and finish by applying the recently-added axiom µ (sequent 7).
In the big-step case the specification (11) 'SUM )9 ' is now

hSUM, (s 7! s,n 7!n)i ^ n�Int 0 )9 h(s 7!n ⇤Int (n +Int 1)/Int2,n 7!0)i

As before, we prove µ ⌘ 9n0 'INV )9 ', with the same 'INV as before. We
reach 9n0 'INV from 'SUM by applying the big-step semantics of assignment and
sequential composition (10) and then Consequence (9). The di↵erence is that this
is reached in a premise of applications of conditional axioms, rather than a premise
of Transitivity. Property 9n0 'INV )9 ' is also proved by Circularity (8), but this
time the circularity is released (in 1) by applying the while2 axiom, and used in
one of its conditions.

3.3.4 Nontermination and !-Closure

In Hoare logic divergence can be indirectly specified using Hoare triples with
postcondition false. We can similarly reduce proving divergence to proving a
reachability rule whose RHS is false, provided our arbitrary matching logic L has
a pattern false matched by no configurations (in first-order matching logic we have
the FOL false formula): S |= '" i↵ S |= ' )9 false. Therefore, any complete
proof system for reachability can also prove divergence. It turns out, however, that
it is necessary (for the completeness theorem) and convenient to refer to divergence
directly.
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Definition 15. We let S!, called the !-closure of S, be the reachability system
extending S as follows:

• Add to ⌃ a new constant ! of sort Cfg;

• Add to TCfg a new element T!;

• Add to S a new rule, !)9 !;

• For each rule ')9 '0if'1 )9 '01
V
...

V
'n )9 '0n in S and each 1  i  n,

add to S a conditional reachability rule

')9 ! if '1 )9 '01
V
...

V
'i�1 )9 '0i�1

V
'i )9 !.

By convention (S!)! = S! and we call S !-closed i↵ S = S!.

The !-closure operation is algorithmic and easy to implement. Since T! is the
only configuration that matches !, we conclude that ! is well-defined. In fact, the
!-closure operation does not a↵ect well-definedness: S is (weakly) well-defined
i↵ S! is (weakly) well-defined. Moreover, the additional rules are semantically
irrelevant:

Proposition 2. The following equivalences hold for all configurations �, �0 2 TCfg

and for all patterns ','0:

• � )TS �0 i↵ � !S! �0;

• � terminates for S i↵ � terminates for S!;

• S |= ')9 '0 i↵ S! |= ')9 '0.

Therefore, the !-closure has no semantic e↵ect. It only has proof-theoretical
merit, ensuring we can prove divergence as follows:

Proposition 3. If S is !-closed, then S |= '" i↵ S |= ')9 !.

For an !-closed system of rules, our proof system can prove divergence:

Corollary 1. If S is also !-closed, then S ` ')9 ! implies S |= '".
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3.4 Relationship with Hoare Logic

Here we briefly compare reachability logic with Hoare logic, aiming to convey
the message that verification using reachability logic is not harder than using
Hoare logic, even when done manually. First we look at the Hoare logic proof
of correctness for the SUM example, the same example that we verified earlier
using reachability logic. Then, we show that how we can mechanically translate
any Hoare logic proof tree for IMP into a reachability logic proof tree, which has
size linear in the size of the Hoare logic proof tree. Thus, we would argue that
reachability logic is a practical alternative for Hoare logic.

We assume the reader is familiar with Hoare logic. For a detailed survey of
Hoare logic, we recommend Apt [4, 5].

3.4.1 Example Hoare Logic Proof

The Hoare logic precondition  pre is n =Int n ^ n �Int 1, and the postcondition
 post is n =Int 0 ^ s =Int n ⇤Int (n �Int 1) /Int2. The variable n using italic font is
introduced to capture the original value of the program variable n, so that we can
use it to express the value of s in the post-condition (the loop changes the value of
n). A typical (over-)simplification in hand proofs using Hoare logic is to collapse
expression constructs in the language with operations in the underlying domain,
e.g., + with +Int. Tools, however, distinguish the two and implement translations
from the former to the latter; e.g., + may be 32-bit while +Int may be arbitrary
precision, or + may have a concurrent semantics allowing all the interleavings of
its arguments’ behaviors, etc. Since our language is simple, we do this translation
by hand on the fly, but for clarity we use mathematical operations in formulae.

To derive the Hoare triple { pre} SUM { post}, we need to find a loop invariant
 inv and then use the invariant proof rule:

{ inv ^ E ,Int 0} S { inv}
{ inv} while(E)S { inv ^ E =Int 0} (HL-While)

The loop condition is inserted within formulae. Thus, when verifying programs
using Hoare logic, expressions cannot have side e↵ects; programs need to be
modified to isolate side e↵ects from computed values of expressions, which is an
inherently language-specific operation.

For example, VCC [22] expands the loop above into one having more than a
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dozen statements in its translation to Boogie [8]. To keep it human readable, we
manually modify SUM in a minimal (but adhoc) way to the equivalent SUM’ below,
which can be verified using conventional Hoare logic:

s = 0;

n = n - 1;

while(n) {

s = s + n;

n = n - 1;

}

Recall the remaining Hoare logic rules required for this proof:

{ [E/X]} X = E; { } (HL-Asgn)

{ 1} S 1 { 2} { 2} S 2 { 3}
{ 1} S 1 S 2 { 3} (HL-Seq)

|=  01 !  1 { 1} S { 2} |=  2 !  02
{ 01} S { 02}

(HL-Cnsq)

Using the following notations,

 pre ⌘ n =Int n ^ n �Int 1
 post ⌘ n =Int 0 ^ s =Int n ⇤Int (n �Int 1) /Int2
 1 ⌘ n =Int n �Int 1 ^ n �Int 1 ^ s =Int 0
⌃

j
i ⌘ ( j +Int i) ⇤Int ( j �Int i +Int 1) /Int2
 inv ⌘ n �Int 0 ^ s =Int ⌃

n�Int1
n+Int1

LOOP’ ⌘ while(n){s = s + n; n = n - 1;}

 2 ⌘ n >Int 0 ^ s =Int ⌃
n�Int1
n+Int1

 3 ⌘ n >Int 0 ^ s =Int ⌃
n�Int1
n
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the proof proceeds as follows (we follow the program order):

1. { pre} SUM’ { post} HL-Seq(2, 6)
2. { pre} s=0;n=n-1; { inv} HL-Cnsq(3)
3. { pre} s=0;n=n-1; { 1} HL-Seq(4, 5)
4. { pre} s=0; { pre ^ s =Int 0} HL-Asgn
5. { pre ^ s =Int 0} n=n-1; { 1} HL-Asgn
6. { inv} LOOP’ { post} HL-While(7),HL-Cnsq
7. { 2} s=s+n;n=n-1; { inv} HL-Seq(8,9)
8. { 2} s=s+n; { 3} HL-Asgn
9. { 3} n=n-1; { inv} HL-Asgn, HL-Cnsq

Therefore, step (1) factors the proof using the loop invariant  inv. First we show
using HL-Asgn twice (4,5) followed by HL-Seq (4) that  1 is reachable before the
loop (3), which implies the invariant holds when the loop is reached (2). To prove
the invariant, we use HL-While at (6), which generates the proof obligation (7) for
the loop body, noticing that  2 is logically equivalent to  inv ^ n ,Int 0. The rest
follows by two applications of HL-Asgn at (8,9), followed by an HL-Seq which
concludes the proof.

3.4.2 From Hoare Logic Proofs to Reachability Logic Proofs

Here we show how proof derivations using the IMP-specific Hoare logic proof
system in Figure 3.5 can be translated into proof derivations using the language-
independent matching logic reachability proof system in Figure 3.1 with the IMP
operational semantics in Figure 2.1 as axioms. The sizes of the two proof deriva-
tions are within a linear factor.

Translating Hoare Triples into Reachability Rules

Without restricting the generality, we make the following simplifying assumptions
about the Hoare triples { } code { 0} that appear in the Hoare logic proof deriva-
tion that we translate into a matching logic reachability proof: (1) the variables
appearing in code belong to an arbitrary but fixed finite set X ⇢ PVar; (2) the
additional variables appearing in  and  0 but not in code belong to an arbitrary
but fixed finite set Y ⇢ PVar such that X \ Y = ;. In other words, we fix the finite
disjoint sets X,Y ⇢ PVar, and they have the properties above for all Hoare triples
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Generic

HL-csq |=  1 !  3 { 3} s { 4} |=  4 !  2

{ 1} s { 2}
IMP axiomatic semantics

HL-skip ·
{ } skip { }

HL-asgn ·
{ [e/x]} x := e { }

HL-seq { 1} s1 { 2} { 2} s2 { 3}
{ 1} s1; s2 { 3}

HL-cond

{ 1 ^ e , 0} s1 { 2}
{ 1 ^ e = 0} s2 { 2}

{ 1} if(e) s1 else s2 { 2}

HL-while { ^ e , 0} s { }
{ } while(e) s { ^ e = 0}

Figure 3.5: IMP axiomatic semantics

that we consider in this section. Note that we used a typewriter font to write
these sets, which is consistent with our notation for variables in PVar. We need
these disjointness restrictions because, Hoare logic makes no theoretical distinction
between program and mathematical variables, while matching logic does. These
restrictions do not limit the capability of Hoare logic, since we can always pick X
to be the union of all the variables appearing in the program about which we want
to reason and Y to be the union of all the remaining variables occurring in all the
state specifications in any triple anywhere in the Hoare logic proof, making sure
that the names of the variables used for stating mathematical properties of the state
are always chosen di↵erent from those of the variables used in programs.

Definition 16. Given a Hoare triple { } code { 0}, we define

H2M({ } code { 0}) def⌘ 9X (hcode, �Xi ^ X,Y) )9 9X (hskip, �Xi ^ 0X,Y)

where:

1. X,Y ⇢ Var (written using italic font) are finite sets of variables corresponding
to the sets X, Y ⇢ PVar fixed above, one variable x or y in Var (written using
italic font) for each variable x or y in PVar (written using typewriter font);
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2. �X is the state mapping each x 2 X to its corresponding x 2 X; and

3.  X,Y and  0X,Y are  and respectively  0 with x 2 X or y 2 Y replaced by its
corresponding x 2 X or y 2 Y, respectively, and each expression construct
op replaced by its mathematical correspondent opInt.

The H2M mapping in Definition 16 is quite simple and mechanical, and
can be implemented by a linear traversal of the Hoare triple. In fact, we have
implemented it as part of the MatchC program verifier, to allow users to write
program specifications in a Hoare style when possible (see Section 4.1.2).

It is important to note that, like X,Y ⇢ PVar, the sets of variables X,Y ⇢ Var
in Definition 16 are also fixed and thus the same for all Hoare triples considered
in this section. For example, suppose that X = {s, n} and Y = {oldn, z}. Then the
Hoare triple

{n = oldn ^ n � 0}SUM {s = oldn*(oldn+1)/2 ^ n = 0}

from Section 3.4.1 is translated into the following reachability rule:

9s, n (hSUM, (s 7! s, n 7! n)i ^ n = oldn ^ n �Int 0)
)9 9s, n (hskip, (s 7! s, n 7! n)i ^ s = oldn ⇤Int (oldn +Int 1)/Int2 ^ n = 0)

We also show an (artificial) example where the original Hoare triple contains a
quantifier. Consider the same X = {s, n} and Y = {oldn, z} as above. Then

H2M({true}n:=4*n+3 {9z (n = 2*z+1)})

is the reachability rule

9s, n (hn:=4*n+3, (s 7! s,n 7! n)i ^ true)
)9 9s, n (hskip, (s 7! s,n 7! n)i ^ 9z (n = 2 ⇤Int z +Int 1))

Using FOL reasoning and Consequence, this rule is equivalent to

9s, n hn:=4*n+3, (s 7! s,n 7! n)i)99s, z hskip, (s 7! s,n 7! 2 ⇤Int z +Int 1)i

Helping Lemmas

The following holds for matching logic in general:
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Lemma 3. If S ` ')9 '0 is derivable then S ` 9X ')9 9X '0 is also derivable.

Proof. We have |= '0 ! 9X '0. By Consequence, we derive S ` ' )9 9X '0.
Since X \ FreeVars(9X '0) = ;, by Abstraction we get that S ` 9X ')9 9X '0 is
also derivable. ⇤

The following lemma states that symbolic evaluation of IMP expressions is
actually formally derivable using the matching logic reachability proof system:

Lemma 4. If e 2 Exp is an expression, C 2 Context an appropriate context, and
� 2 State a state term binding each program variable in PVar of e to a term of sort
Int (possibly containing variables in Var), then the following sequent is derivable:

SIMP ` hC, �i[e])9 hC, �i[�(e)]

where �(e) replaces each x 2 PVar in e by �(x) (i.e., a term of sort Int) and each
operation symbol op by its mathematical correspondent in the Int domain, opInt.

Proof. By induction on the structure of e. If e is a variable x 2 PVar, then the
result follows by Axiom with lookup in Figure 2.1. If e is of the form e1 op e2,
then let C1,C2 be the contexts obtained from C by replacing ⇤ with “⇤ op e2” and
respectively “�(e1) op⇤”. Then, by the induction hypothesis, the following are
derivable

SIMP ` hC1, �i[e1])9 hC1, �i[�(e1)]
SIMP ` hC2, �i[e2])9 hC2, �i[�(e2)]

We also have the following pattern identities

hC, �i[e] = hC1, �i[e1]
hC1, �i[�(e1)] = hC2, �i[e2]
hC2, �i[�(e2)] = hC, �i[�(e1) op�(e2)]

Thus, by Transitivity, we derive

SIMP ` hC, �i[e])9 hC, �i[�(e1) op�(e2)]

and then the result follows by Axiom with op and by noticing the fact that
�(e) = �(e1) opInt �(e2). ⇤

Intuitively, the following lemma states that if we append some extra statement
to the code of ', then the execution of the original code is still possible, making ab-
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straction of the appended statement. This holds because of the specific (simplistic)
nature of IMP and may not hold in more complex languages (for example in ones
with support for reflection or self-generation of code). A direct consequence is that
we can (symbolically) execute a compound statement s1; s2 by first executing s1
until we reach skip and then continuing from there with s2.

Lemma 5. If SIMP ` ')9 '0 is derivable and s 2 Stmt then

SIMP ` append(', s))9 append('0, s)

is also derivable, where append(', s) is the pattern obtained from ' by replacing
each basic pattern hcode, �i with the basic pattern h(code; s), �i.

Proof. (sketch) Let append(A, s) be the set of rules obtained fromA by replacing
each rule 'l )9 'r 2 A \ SIMP by the rule append('l, s))9 append('r, s), that is

append(A, s)
= (A \ SIMP) [ {append('l, s))9 append('r, s) | 'l )9 'r 2 A \ SIMP}

Recall that A \ SIMP contains all the rules added by Circularity. Let P be
a proof tree deriving SIMP ` ' )9 '0. We prove the more general result
that for each sequent A ` 'l )9 'r in P, we can also derive the sequent
append(A, s) ` append('l, s) )9 append('r, s). The lemma follows as partic-
ular case. The proof goes by induction on the structure of P. If the last step is
Reflexivity, the result trivially holds. If the last step is one of Substitution, Tran-
sitivity, Case Analysis, Logic Framing, Consequence, Abstraction or Circularity,
then the result holds by applying the induction hypothesis, and by noticing that
since s does not have any logical variables, then append(✓('), s) = ✓(append(', s))
(Substitution), |= '1 ! '01 i↵ |= append('1, s) ! append('01, s) (Consequence)
and FreeVars(append(', s)) = FreeVars(') (Abstraction). If the last step is Axiom
with a rule inA\SIMP, again the result trivially holds. If the last step is Axiom with
a rule in SIMP, then the redex always goes to the left of “;”, and we can conclude
that ')9 '0 2 SIMP implies that append(', s))9 append('0, s) 2 SIMP. ⇤

The Main Result

Theorem 1 below states that, for the IMP language, any Hoare logic proof deriva-
tion of a Hoare triple { } code { 0} yields a matching logic reachability proof
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derivation of the corresponding reachability rule H2M({ } code { 0}). This proof
correspondence is constructive and the resulting proof derivation is linear in the
size of the original proof derivation. For example, to generate the matching logic
reachability proof corresponding to a proof step using the Hoare logic proof rule
for while loop, HL-while, we do the following:

1. We inductively assume a proof for the reachability rule corresponding to the
Hoare triple for the while loop body;

2. We apply the Axiom step with while (Figure 2.1), followed by Substitution,
Logic Framing, and Lemma 3, and this way we “unroll” the while loop
into its corresponding conditional statement (in the logical context set by the
Hoare triple);

3. Since the conditional statement contains the original while loop in its true
branch and since 2. above does not use Reflexivity, we issue a Circularity
proof obligation and thus add the claimed reachability rule for while to the
set of axioms;

4. We “evaluate” symbolically the condition, by virtue of Lemma 4;

5. We apply a Case Analysis for the conditional, splitting the proof task in
two subtasks, the one corresponding to the false condition being trivial to
discharge;

6. To discharge the care corresponding to the true condition, we use the proof
given by 1. by virtue of Lemma 5, then the Axiom for seq, and then the
reachability rule added by Circularity and we are done.

Theorem 1. Let SIMP be the operational semantics of IMP in Figure 2.1 viewed as
a matching logic reachability system, and let { } code { 0} be a triple derivable
with the IMP-specific Hoare logic proof system in Figure 3.5. Then we have that
SIMP ` H2M({ } code { 0}) is derivable with the language-independent matching
logic proof system in Figure 3.1.

Proof. We prove that for any Hoare logic proof of { } code { 0} one can construct a
matching logic proof of SIMP ` H2M({ } code { 0})). The proof goes by structural
induction on the formal proof derived using the Hoare logic proof system in
Figure 3.5. We consider each proof rule in Figure 3.5 and show how corresponding
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matching logic proofs for the hypotheses can be composed into a matching logic
proof for the conclusion.

HL-skip ·
{ } skip { }

Reflexivity (Figure 3.1) derives

SIMP ` 9X (hskip, �Xi ^  X,Y) )9 9X (hskip, �Xi ^  X,Y)

and we are done.

HL-asgn ·
{ [e/x]} x := e { }

We have to derive SIMP ` 9X (hx := e, �Xi ^  [e/x]X,Y) )9 9X (hskip, �Xi ^
 X,Y). By using Lemma 4, Logical Framing and Lemma 3, we derive

SIMP ` 9X (hx := e, �Xi ^  [e/x]X,Y) )9 9X (hx := �X(e), �Xi ^  [e/x]X,Y)

Further, by using Axiom with asgn in Figure 2.1, Substitution and Logic Framing,
followed by Lemma 3, we derive

SIMP `
9X (hx := �X(e), �Xi^  [e/x]X,Y))9 9X (hskip, �X[x �X(e)]i^  [e/x]X,Y)

Then, the result follows by Transitivity with the rules above and by Consequence
with

|= 9X (hskip, �X[x �X(e)]i ^  [e/x]X,Y)! 9X (hskip, �Xi ^  X,Y),

which holds because �X[x �X(e)] and  [e/x]X,Y are nothing but �X and respec-
tively  X,Y with x 2 X replaced by �X(e).

HL-seq { 1} s1 { 2} { 2} s2 { 3}
{ 1} s1; s2 { 3}

We have to derive SIMP ` 9X (hs1; s2, �Xi^ 1X,Y) )9 9X (hskip, �Xi^ 3X,Y).
By the induction hypothesis, the following sequents are derivable

SIMP ` 9X (hs1, �Xi ^  1X,Y) )9 9X (hskip, �Xi ^  2X,Y)
SIMP ` 9X (hs2, �Xi ^  2X,Y) )9 9X (hskip, �Xi ^  3X,Y)
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By applying Lemma 5 with the former rule, we derive

SIMP ` 9X (hs1; s2, �Xi ^  1X,Y) )9 9X (hskip; s2, �Xi ^  2X,Y)

Further, Axiom with seq (Figure 2.1), Substitution and Logic Framing, followed
by Lemma 3, imply SIMP ` 9X (hs1; s2, �Xi ^ 1X,Y) )9 9X (hs2, �Xi ^ 2X,Y).
Then, the result follows by Transitivity with the rule above and the second induction
hypothesis.

HL-cond
{ 1 ^ e , 0} s1 { 2} { 1 ^ e = 0} s2 { 2}

{ 1} if(e) s1 else s2 { 2}
We have to derive

SIMP ` 9X (hif(e) s1 else s2, �Xi ^  1X,Y) )9 9X (hskip, �Xi ^  2X,Y)

By the induction hypothesis, the following sequents are derivable

SIMP ` 9X (hs1, �Xi ^ ( 1 ^ e , 0)X,Y) )9 9X (hskip, �Xi ^  2X,Y)
SIMP ` 9X (hs2, �Xi ^ ( 1 ^ e = 0)X,Y) )9 9X (hskip, �Xi ^  2X,Y)

By using Lemma 4, Logical Framing, and Lemma 3, we derive

SIMP ` 9X (hif(e) s1 else s2, �Xi ^  1X,Y)
)9 9X (hif(�X(e)) s1 else s2, �Xi ^  1X,Y)

By using Axiom with cond1 and cond2 in Figure 2.1, each followed by Substitution,
Logic Framing and by Lemma 3, we also derive

SIMP ` 9X (hif(�X(e)) s1 else s2, �Xi ^ ( 1 ^ e , 0)X,Y)
)9 9X (hs1, �Xi ^ ( 1 ^ e , 0)X,Y)

SIMP ` 9X (hif(�X(e)) s1 else s2, �Xi ^ ( 1 ^ e = 0)X,Y)
)9 9X (hs2, �Xi ^ ( 1 ^ e = 0)X,Y)

Further, by Transitivity with the rules above and the induction hypotheses, we
derive

SIMP ` 9X (hif(�X(e)) s1 else s2, �Xi ^ ( 1 ^ e , 0)X,Y)
)9 9X (hskip, �Xi ^  2X,Y)

SIMP ` 9X (hif(�X(e)) s1 else s2, �Xi ^ ( 1 ^ e = 0)X,Y)
)9 9X (hskip, �Xi ^  2X,Y)
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Then the result follows by Case Analysis, Consequence and Transitivity.

HL-while { ^ e , 0} s { }
{ } while(e) s { ^ e = 0}

Let µ be the matching logic rule that we have to derive, namely

SIMP ` 9X (hwhile(e) s, �Xi ^  X,Y) )9 9X (hskip, �Xi ^ ( ^ e = 0)X,Y)

By the induction hypothesis, the following sequent is derivable

SIMP ` 9X (hs, �Xi ^ ( ^ e , 0)X,Y) )9 9X (hskip, �Xi ^  X,Y)

We derive µ by Circularity. First, by Axiom with while (Figure 2.1), Substitution,
Logic Framing, and Lemma 3, we derive (note the)+, as this derivation does not
use Reflexivity)

SIMP ` 9X (hwhile(e) s, �Xi ^  X,Y)
)+ 9X (hif(e) s; while(e) s else skip, �Xi ^  X,Y)

Therefore, all we need to do now is to derive

SIMP [ {µ} ` 9X (hif(e) s; while(e) s else skip, �Xi ^  X,Y)
)9 9X (hskip, �Xi ^ ( ^ e = 0)X,Y)

Further, by Lemma 4, Logical Framing, Lemma 3 and Transitivity, we are left with

SIMP [ {µ} ` 9X (hif(�X(e)) s; while(e) s else skip, �Xi ^  X,Y)
)9 9X (hskip, �Xi ^ ( ^ e = 0)X,Y)

We apply Case Analysis with �X(e) = 0 _ �X(e) , 0. The case �X(e) = 0 follows
by Axiom with cond2, Substitution, Logic Framing and Lemma 3. By Axiom
with cond1, Substitution, Logic Framing, Lemma 3 and Transitivity, the other case
reduces to

SIMP [ {µ} ` 9X (hs; while(e) s, �Xi ^ ( ^ e , 0)X,Y)
)9 9X (hskip, �Xi ^ ( ^ e = 0)X,Y)

By using the induction hypothesis and Lemma 5 with s and while(e) s followed
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by Axiom with skip, Substitution, Logic Framing and Lemma 3 we derive

SIMP [ {µ} ` 9X (hs; while(e) s, �Xi ^ ( ^ e , 0)X,Y)
)9 9X (hwhile(e) s, �Xi ^  X,Y)

Then the result follows by using Axiom with µ and Transitivity with the rule
above. ⇤

Theorem 1 thus tells us that anything that can be proved using Hoare logic can
also be proved using the matching logic reachability proof system. Furthermore, it
gives us a novel way to prove soundness of Hoare logic proof systems, where the
low-level details of the transition system corresponding to the target programming
language, including induction on path length, are totally avoided and replaced by
an abstract, small and fixed proof system, which is sound for all languages.

3.4.3 Adding Recursion

In this section we add procedures to IMP, which can be mutually recursive, and
show that proof derivations done with the corresponding Hoare logic proof rule
can also be done using the generic matching logic proof system, with the straight-
forward operational semantics rule as an axiom. We consider the following syntax
for procedures:

ProcedureName ::= proc | ...
Procedure ::= ProcedureName() Stmt
Stmt ::= ... | ProcedureName()

Our procedures therefore have the syntax “proc() body”, where proc is the
name of the procedure and body the body statement. Procedure invocations are
statements of the form “proc()”. For simplicity, and to capture the essence of
the relationship between recursion and the Circularity rule of matching logic, we
assume only no-argument procedures.

The operational semantics of procedure calls is trivial:

call proc() )9 body where “proc() body” is a procedure

The Hoare logic proof rule needs to take into account that procedures may be
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recursive:

H [ { } proc() { 0} ` { } body { 0}
H ` { } proc() { 0} where “proc()body” is a procedure

This rule states that if the body of a procedure is proved to satisfy its contract while
assuming that the procedure itself satisfies it, then the procedure’s contract is indeed
valid. If one has more mutually recursive procedures, then one needs to apply
this rule several times until all procedure contracts are added to the hypothesis
H , and then each procedure body proved. The rule above needs to be added to
the Hoare logic proof system in Figure 3.5, but in order for that to make sense
we need to first replace each Hoare triple { } code { 0} in Figure 3.5 by a sequent
“H ` { } code { 0}”.

Theorem 2. Let SIMP be the operational semantics of IMP in Figure 2.1 extended
with the rule call for procedure calls above, and let H ` { } code { 0} be a
sequent derivable with the extended Hoare logic proof system. Then we have
that SIMP [ H2M(H) ` H2M({ } code { 0}) is derivable with the matching logic
reachability proof system in Figure 3.1.

Proof. Like in Theorem 1, we prove by structural induction that for any Hoare
logic proof of H ` { } code { 0} one can construct a matching logic proof of
SIMP [ H2M(H) ` H2M({ } code { 0})), by showing for each Hoare logic proof
rule how corresponding matching logic proofs for the hypotheses can be composed
into a matching logic proof for the conclusion. The proofs for the (extended) Hoare
rules in Figure 3.5 are similar to those in Theorem 1, so we only discuss the new
Hoare rule for procedure calls:

H [ { } proc() { 0} ` { } body { 0}
H ` { } proc() { 0}

Let µ be the matching logic reachability rule H2M({ } proc() { 0}), that is,

9X (hproc(), �Xi ^  X,Y) )9 9X (hskip, �Xi ^  0X,Y).

The induction hypothesis gives us that the matching logic sequent

SIMP [ H2M(H) [ {µ} ` 9X (hbody, �Xi ^  X,Y) )9 9X (hskip, �Xi ^  0X,Y)

is derivable with the generic proof system in Figure 3.1. Using Axiom with call,
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Logic Framing with  X,Y , and then Lemma 3, we derive (note the )+, as this
derivation does not use Reflexivity):

SIMP [ H2M(H) ` 9X (hproc(), �Xi ^  X,Y))+ 9X (hbody, �Xi ^  X,Y)

Circularity with the two rules above now derives SIMP [ H2M(H) ` µ. ⇤

3.5 Relationship with Separation Logic

Separation logic [73, 85] is a popular choice for specifying heap properties. Its
main strength is the separation conjunction “⇤”, which allows for modular reason-
ing. Although matching logic is not particularly concerned with specifying heap
properties, the in Chapter 4 we show many such properties and thus we investigate
here the formal relationship between separation logic and matching logic. Here we
present an instance of matching logic, for a particular heap-centric configuration
signature and model, together with a mechanical translation of separation logic for-
mulae into semantically equivalent patterns in the matching logic instance. There
are many variations of separation logic. Here we consider first-order separation
logic over integers, as presented in [73], but we believe that similar embeddings
can be obtained for other variants. Formally, separation logic extends the first-order
theory of integers with the following constructs:

• emp, the atomic predicate specifying the empty heap.

• t1 7! t2, the atomic predicate specifying the singleton heap mapping the
natural number (thought of as a memory location) represented by t1 into the
integer number represented by t2.

• P1 ⇤ P2, the formula specifying the separation conjunction of two formulae,
that is, that the heap can be split into two disjoint heaps satisfying P1 and
respectively P2.

For simplicity, we do not consider the separation implication P1 �⇤P2 here. The
satisfaction of a separation logic formula P is given over a valuation s of the
variables in P and a heap h, i.e., a partial function from naturals to integers.
Specifically, as in [73, 85], the satisfaction of “spatial” formulae depends on both s
and h, while that of “pure” formulae depends only on s (that is, is independent of
h).
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To establish the relation between separation logic and matching logic, for the
remaining of this subsection we fix the following signature ⌃ with five sorts and
only one cell:

NatF domain of natural numbers (including operations)
IntF domain of integer numbers (including operations)

BoolF domain of Booleans
HeapF MapNat,Int (domain of heaps represented as finite mappings from

naturals into integers)
CfgF hHeapiheap

As in the previous section, we use “,” for the map concatenation and “.” for the
map unit. To ⌃ we associate a model T consisting of a model of natural numbers,
a model of the integer numbers, a model of heaps, and a model of configurations
(which are just heaps wrapped into a cell). We assume there is a special element
? in T standing for “error”. All operations with at least one argument ? evaluate
to ?. Equality between ? and any other element does not hold. Valuations do not
take any variables into ?. The model of heaps has the important property that the
concatenation of two maps with non-disjoint domains is ?. Since separation logic
cannot quantify over heap variables, if ⇢ : Var! T is a valuation then we let ⇢ be
the restriction of ⇢ to natural and integer variables.

Let �, �0, �1, �2, ...be Heap variables in Var which do not occur in P. Given
a separation logic formula P, we construct an equivalent matching logic formula
over ⌃

S2M(P) ⌘ 9�(h�iheap ^  )

where  is a patternless formula. Intuitively, � stands for the heap which  

constrains. The construction is based on the syntactic structure of P, and somewhat
mimics the definition of satisfaction for separation logic formulae:

• S2M(8xP): let S2M(P) be 9�(h�iheap ^  ). Then

S2M(8xP) ⌘ 9�(h�iheap ^ 8x  )

• S2M(P1 ! P2): let S2M(P1) be 9�1(h�1iheap^ 1) and similarly let S2M(P2)
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be 9�2(h�2iheap ^  2). Then we define

S2M(P1 ! P2)
⌘ 9�(h�iheap ^ 9�19�2(� = �1 ^ � = �2 ^ ( 1 !  2)))

Notice that the equalities � = �1 and � = �2 ensure that  1 and  2 constrain
the same heap.

• S2M(p(t1, ..., tn)), where p is a “pure” predicate (one which is not interpreted
over the heap, like “=” or “”):

S2M(p(t1, ..., tn)) ⌘ 9�(h�iheap ^ p(t1, ..., tn))

We used the same notation for the pure predicate and the corresponding
Boolean algebraic operator.

• S2M(false): we define

S2M(false) ⌘ 9�(h�iheap ^ false)

• S2M(P1 ⇤ P2): let S2M(P1) be 9�1(h�1iheap ^  1) and similarly let S2M(P2)
be 9�2(h�2iheap ^  2). Then we define

S2M(P1 ⇤ P2)
⌘ 9�(h�iheap ^ 9�19�2(� = (�1,�2) ^  1 ^  2))

Note that the equality � = (�1,�2) holds in T under some valuation ⇢ only
if (⇢(�1), ⇢(�2)) is a proper heap, that is, only if the domains of ⇢(�1) and
⇢(�2) are disjoint.

• S2M(x 7! y): we define

S2M(t1 7! t2) ⌘ 9�(h�iheap ^ � = (t1 7! t2))

We use the same notation for the separation logic predicate t1 7! t2 and the
algebraic map constructor t1 7! t2.

• S2M(emp): we define (recall that · is the map unit)

S2M(emp) ⌘ 9�(h�iheap ^ � = ·)
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To illustrate the transformation, consider the separation logic formula P = x 7!
a ⇤ y 7! b ^ a , b. By applying the transformation we have S2M(P) to be

9�(h�iheap ^ 9�19�2(� = �1 ^ � = �2 ^ a , b
^9�39�4(�1 = (�3,�4) ^ �3 = (x 7! a) ^ �4 = (y 7! b))))

However, after eliminating the existential quantifiers via substitution, we obtain
the equivalent matching logic formula

hx 7! a, y 7! biheap ^ a , b

For this reason, in practice we do not encourage the use of the transformation for
generating matching logic formulae, but rather directly writing the matching logic
formulae.

The following proposition formally captures the relationship between the ver-
sion of separation logic considered here and the matching logic over ⌃ and T .

Proposition 4. If P is a separation logic formula, h 2 THeap is a heap and ⇢ :
Var ! T is a valuation, then (⇢, h) |= P (in separation logic) i↵ (hhiheap, ⇢) |=
S2M(P) (in matching logic). Consequently, |= P (in separation logic) i↵ |= S2M(P)
(in matching logic).

Proof. Let ⇢[� h] be the valuation which agrees with ⇢ on Var \ {�} and with
⇢[�  h](�) = h. We begin by noticing that (hhiheap, ⇢) |= 9�(h�iheap ^  ) i↵
⇢[� h] |=  . Indeed, (hhiheap, ⇢) |= 9�(h�iheap ^  ) i↵ there exists a ⇢0 agreeing
with ⇢ on Var \ {�} such that (hhiheap, ⇢0) |= h�iheap and (hhiheap, ⇢0) |=  . By the
satisfaction of matching logic formulae, (hhiheap, ⇢0) |= h�iheap i↵ ⇢0(�) = h, that
is, i↵ ⇢0 = ⇢[� h]. Further, since  is a patternless formula, (hhiheap, ⇢0) |=  i↵
⇢0 |=  . We conclude that such a ⇢0 exists i↵ ⇢[�  h] |=  . Thus, to prove the
proposition, it su�ces to show that (⇢, h) |= P i↵ ⇢[�  h] |=  , where  is the
patternless formula in S2M(P). The proof goes by induction on the structure of P.
We distinguish the following cases:

• 8xP: let ⇢0 be a valuation which agrees with ⇢ on Var \ {x}. Then, by the
satisfaction of separation logic formulae, (⇢, h) |= 8xP i↵ (⇢0, h) |= P. By
the induction hypothesis, (⇢0, h) |= P i↵ ⇢0[� h] |=  . Since � is di↵erent
from x, ⇢0[� h] |=  i↵ ⇢[� h] |= 8x  , and we are done.

• P1 ! P2: by the satisfaction of separation logic formulae, (⇢, h) |= P1 ! P2
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i↵ (⇢, h) |= P1 implies (⇢, h) |= P2. By the induction hypothesis, (⇢, h) |= P1

i↵ ⇢[�1  h] |=  1 and (⇢, h) |= P2 i↵ ⇢[�2  h] |=  2. Since � does
not occur in  1 or  2, �1 does not occur in  2 and �2 does not occur in  1,
we have that ⇢[�1  h] |=  1 i↵ ⇢[� h][�1  h][�2  h] |=  1 and
⇢[�2  h] |=  2 i↵ ⇢[� h][�1  h][�2  h] |=  2. Thus, we conclude
that ⇢[�1  h] |=  1 implies ⇢[�2  h] |=  2 i↵ ⇢[� h] |= 9�19�2(� =
�1 ^ � = �2 ^  1 ^  2), and we are done.

• p(t1, ..., tn): since p is pure and � does not occur in p(t1, ..., tn), we have that
(⇢, h) |= p(t1, ..., tn) i↵ ⇢ |= p(t1, ..., tn) i↵ ⇢ |= p(t1, ..., tn) i↵ ⇢[�  h] |=
p(t1, ..., tn) and we are done.

• false: we notice that (⇢, h) 6|= false and ⇢[� h] 6|= false, and we are done.

• P1 ⇤ P2: by the satisfaction of separation logic formulae, (⇢, h) |= P1 ⇤ P2 i↵
there exist mapping h1, h2 with disjoint domains such that h is the disjoint
union of h1 and h2, (⇢, h1) |= P1 and (⇢, h2) |= P1. By the induction hypothe-
sis, (⇢, h1) |= P1 i↵ ⇢[�1  h1] |=  1 and (⇢, h2) |= P2 i↵ ⇢[�2  h2] |=  2.
Since � does not occur in  1 or  2, �1 does not occur in  2 and �2 does not
occur in  1, we have that ⇢[�1  h1] |=  1 i↵ ⇢[� h][�1  h1][�2  
h2] |=  1 and ⇢[�2  h2] |=  2 i↵ ⇢[� h][�1  h1][�2  h2] |=  2.
Notice that ⇢[� h][�1  h1][�2  h2] |= � = (�1,�2) i↵ h is the con-
catenation of h1 and h2 and the concatenation is di↵erent from ?, that is, if
h1 and h2 have disjoint domains. Thus, we conclude that (⇢, h) |= P1 ⇤ P2 i↵
⇢[� h] |= 9�19�2(� = (�1,�2) ^  1 ^  2), and we are done.

• t1 7! t2: by the satisfaction of separation logic formulae, (⇢, h) |= t1 7! t2

i↵ h is the singleton heap mapping ⇢(t1) into ⇢(t2). On the other hand,
⇢[�  h] |= � = t1 7! t2 i↵ h consists of exactly one entry mapping ⇢(t1)
into ⇢(t2), and we are done.

• emp: by the satisfaction of separation logic formulae, (⇢, h) |= emp i↵
h is the empty heap, or equivalently, the map unit. On the other hand,
⇢[� h] |= � = · i↵ h is the map unit, and we are done.

⇤

Although insightful, the result above is not surprising. Indeed, matching logic
has the luxury of instantiating itself with any configuration signature and any
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model of configurations, in particular with ones that capture the precise syntax
and semantics of heaps, while separation logic and its variations come with fixed
such signatures and models. Therefore, the main conceptual di↵erence between
separation logic and matching logic is that the former achieves separation by means
of special logical connectives and appropriate mathematical domains to interpret
those, while the latter achieves separation by structural means, at the level of terms
instead of modifying the logic, but with the help of an appropriately defined model
of configurations. Matching logic thus has the advantage that we do not need
to modify the underlying logic with each language extension that requires new
semantic components to be added to the configuration, but that does not come for
free: one still has to carefully construct one’s configuration model with the desired
properties.

3.6 Soundness

Soundness states that a syntactically derivable sequent holds semantically. First we
prove the soundness the proof system in Figure 3.1 and then the soundness of the
proof system in Figure 3.3. Note that, unlike the soundness of Hoare logic which is
shown for each language separately, the soundness of reachability logic is proved
only once, for all languages. Because of the utmost importance of the result below,
we have also mechanized its proof in Coq http://fsl.cs.uiuc.edu/RL.

3.6.1 All-Path and One-Path Reachability Logic

Here we prove the soundness of the proof system in Figure 3.1.

Theorem 3 (Soundness). If S ` ')Q '0 then S |= ')Q '0 (for Q 2 {9,8}).

Proof. Follows from Lemma 6 and Proposition 5. ⇤

Definition 17. Let S be a reachability system, ' )Q '0 (with Q 2 {8,9}) a
reachability rule and n 2 N a natural number.

• We write S |=⇤n ' )9 '0 (respectively S |=+n ' )9 '0) when for any � and
⇢ such that (�, ⇢) |= ' and � terminates in strictly less than n steps in)TS ,
we have that there exists �0 such that � )?TS �0 (respectively � )+TS �0) and
(�0, ⇢) |= '0.
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• We write S |=⇤n ')8 '0 (respectively S |=+n ')8 '0) when for any complete
path ⌧ = �1...�k of length k  n and for any ⇢ : Var ! T such that
(�1, ⇢) |= ' there exists i 2 {1, ..., n} (resp. i 2 {2, ..., n}) such that (�i, ⇢) |= '.

We extend the previous notations to sets of formulae: for any � 2 {0+0,0 ⇤0}, we
write S |=�n D to mean S |=�n ')Q '0 for all ')Q '0 2 D.

If C is a set of reachability rules, we write “�C” for “+” when C is not empty
and for “⇤” when C is empty. Therefore, the relation |=�Cn should be understood as
|=⇤n when C is empty and |=+n when C is not empty.

Proposition 5. We have that S |= ')Q '0 i↵ for all n, S |=⇤n ')Q '0.

Proof. By case analysis. ⇤

Lemma 6. For any derivation tree, for any setsA and C of reachability rules, if
the sequent S,A `C ' )Q '0 is the last sequent in the tree then for any natural
number n 2 N \ {0}, if S |=+n A and S |=+n�1 C, then S |=�Cn ')Q '0.

Proof. By induction on the proof tree for S,A `C ')Q '0:

1. Step.

If the last rule in the proof tree is Step, then Q must be 8.

Let n 2 N 2 {0} be an arbitrary positive natural number such that S |=+n A
and S |=+n�1 C. We assume that |= '! W

'l)9'r 2 S 9FreeVars('l)'l, that
|= 9c ('[c/⇤] ^ 'l[c/⇤]) ^ 'r ! '0 for each 'l )9 'r 2 S and we show
that S |=�Cn ')8 '0.
Let ⌧ = �1...�k be a complete path of length k  n and let ⇢ : Var! T be a
valuation such that (�1, ⇢) |= '. We show that there exists i 2 {1, ..., n} such
that (�i, ⇢) |= '.

As we have |= '! W
'l)9'r 2 S 9FreeVars('l)'l it follows that ⌧ = �1 is not

a complete (T ,)TS )-path and therefore n , 1. Therefore i = 2 2 {1, ..., n}
and �2 2 ⌧. We will show that (�2, ⇢) |= '0.
By the definition of ⌧, we have that �1 )TS �2. By the definition of)TS , there
exists 'l )9 'r 2 S and a valuation ⇢0 : Var! T such that (�1, ⇢0) |= 'l and
(�2, ⇢0) |= 'r.

We have that (�1, ⇢) |= ', (�1, ⇢0) |= 'l and (�2, ⇢0) |= 'r. Let X =
FreeVars(','0) and Y = FreeVars('l,'r). We assume without loss of gen-
erality that X \ Y = ;. We have that (�1, ⇢[X]) |= ', (�1, ⇢0[Y]) |= 'l.
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Therefore (�1, ⇢[X] ] ⇢0[Y]) |= ' ^ 'l. Therefore we have that for all �0,
(�0, ⇢[X] ] ⇢0[Y]) |= 9c.('[c/⇤] ^ 'l[x/⇤]). But (�2, ⇢[X] ] ⇢0[Y]) |= 'r

and therefore (�2, ⇢[X] ] ⇢0[Y]) |= 9c.('[c/⇤] ^ 'l[x/⇤]) ^ 'r. But |=
9c ('[c/⇤] ^ 'l[c/⇤]) ^ 'r ! '0 and therefore (�2, ⇢[X] ] ⇢0[Y]) |= '0.
But FreeVars('0) ✓ X and therefore (�2, ⇢) |= '0. But this is exactly what we
had to prove.

2. Axiom.

We have that ')Q '0 2 A. Let n 2 N \ {0} be an arbitrary positive natural
number such that S |=+n A and S |=+n�1 C. We prove that S |=�Cn ')Q '0.

As ' )Q '0 2 A, it follows that S |=+n ' )Q '0. But S |=+n ' )Q '0

implies S |=�Cn ' )Q '0 independently of whether �C is + or ⇤. Therefore
S |=�Cn ')Q '0, which is what we had to prove.

3. Reflexivity.

Note that C is empty here. We trivially have that S |=⇤n ')Q '.

4. Transitivity.

Let n 2 N \ {0} be an arbitrary positive natural number such that S |=+n A and
that S |=+n�1 C. We prove that S |=�Cn '1 )Q '3. We distinguish on whether
C is empty or not:

• when C is empty, we have that �C =0 ⇤0.
By the induction hypothesis, we have that S |=⇤n '1 )Q '2 and that
S |=⇤n '2 )Q '3. This trivially implies that S |=⇤n '1 )Q '3.

• when C is not empty, we have that �C =0 +0.

By the induction hypothesis (for the first condition in the proof rule),
we have that

S |=+n '1 )Q '2. (3.1)

By the hypothesis, we have that S |=+n�1 A [ C. By the induction
hypothesis (for the second condition in the proof rule) we have that

S |=⇤n�1 '2 )Q '3. (3.2)

From Equation (3.1) and Equation (3.2), we immediately obtain that
S |=+n '1 )Q '3.
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In either case, we have obtained that S |=�Cn '1 )Q '3, which is what we had
to prove.

5. Consequence.

Let n 2 N\{0} be an arbitrary configuration such that S |=+n A, that S |=+n�1 C,
that |= '1 ! '01, that |= '02 ! '2 and that S |=�Cn '01 )Q '02. We prove that
S |=�Cn '1 )Q '2.

We distinguish on Q:

(a) Q = 8.

Let ⌧ = �1...�k be an arbitrary complete path of length k  n and let
⇢ : Var ! T be an arbitrary valuation such that (�1, ⇢) |= '1. We
will show that there exists i 2 {1, ..., k} when C = ; (respectively
i 2 {2, ..., k} when C , ;) such that (�i, ⇢) |= '2.

As (�1, ⇢) |= '1 and |= '1 ! '01, it follows that (�1, ⇢) |= '01. But we
have that S |=�Cn '01 )8 '02 and therefore, there exists i 2 {1, ..., k} when
C = ; (respectively i 2 {2, ..., k} when C , ;) such that (�i, ⇢) |= '02.
But '02 ! '2 and therefore(�i, ⇢) |= '2, which is exactly what we had
to prove.

(b) Q = 9.

We will show that S |=�Cn '1 )9 '2. Let � 2 TCfg be an arbitrary
configuration that terminates in strictly less than n steps and let ⇢ :
Var ! T be a valuation such that (�, ⇢) |= '1. As |= '1 ! '01, it
follows that (�, ⇢) |= '01. But S |=�Cn '01 )9 '02 and therefore there
exists �0 2 TCfg such that � )?TS �0 when C = ; (respectively � )+TS �0

when C , emptyset) and (�0, ⇢) |= '02. But |= '02 ! '2 and therefore
(�0, ⇢) |= '2. But this is exactly what we had to prove.

We have shown in any case that S |=�Cn '1 )Q '2, which is what we had to
prove.

6. Case Analysis.

Let n 2 N\{0} be an arbitrary configuration such that S |=+n A, that S |=+n�1 C,
that S |=�Cn '1 )Q ' and that S |=�Cn '2 )Q '. We show that S |=�Cn

'1 _ '2 )Q '.

We distinguish two cases:
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(a) Q = 8. Let ⌧ = �1...�k be an arbitrary complete path of length k  n
and let ⇢ : Var ! T be an arbitrary valuation such that (�1, ⇢) |=
'1 _ '2. We will show that there exists some i 2 {1, ..., k} when C = ;
(respectively i 2 {2, ..., k} when C , ;) such that (�i, ⇢) |= '.

As (�1, ⇢) |= '1 _ '2, there exists j 2 {1, 2} such that (�1, ⇢) |= ' j. But
by hypothesis we have that S |=�Cn ' j )8 '. Therefore there exists
i 2 {1, ..., k} when C = ; (respectively i 2 {2, ..., k} when C , ;) such
that (�2, ⇢) |= ', which is what we had to prove.

(b) Q = 9. Let � 2 TCfg be a configuration that terminates in strictly less
than n steps and ⇢ : Var ! T a valuation such that (�, ⇢) |= '1 _ '2.
We will show that there exists some �0 2 TCfg such that � )?TS �0 when
C = ; (respectively � )+TS �0 when C , ;) such that (�0, ⇢) |= '.

As (�, ⇢) |= '1 _ '2, there exists j 2 {1, 2} such that (�, ⇢) |= ' j. But
S |=�Cn ' j )9 ' and therefore there exists �0 2 TCfg such that � )?TS �0

when C = ; (respectively � )+TS �0 when C , ;) and (�0, ⇢) |= '. But
this is what we had to prove.

In both cases, we have shown that S |=�Cn '1 _ '2 )Q ', which is what we
had to prove.

7. Abstraction.

Let n 2 N be an arbitrary positive natural number such that S |=+n A, that
S |=⇤n�1 C, that S |=�Cn ' )Q '0 and that X is a set of variables such that
X \ FreeVars('0) = ;. We show that S |=�Cn 9X.')Q '0.

We distinguish two cases:

(a) Q = 8. Let ⌧ = �1...�k be an arbitrary complete path of length k  n
and let ⇢ : Var! T be an arbitrary valuation such that (�1, ⇢) |= 9X.'.
We will show that there exists i 2 {1, ..., k} when C = ; (respectively
i 2 {2, ..., k} when C , ;) such that (�i, ⇢) |= '0.
Because (�1, ⇢) |= 9X.', we have that there exists ⇢0 : Var ! T such
that ⇢ and ⇢0 agree on Var \ X and (�1, ⇢0) |= '. But S |=�Cn ')8 '0 and
therefore there exists i 2 {1, ..., k} when C = ; (respectively i 2 {2, ..., k}
when C , ;) such that (�0i , ⇢

0) |= '0. As ⇢ and ⇢0 agree on Var \ X and
X \ FreeVars('0) = ;, we obtain (�i, ⇢) |= '0, which is what we had to
prove.
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(b) Q = 9. Let � 2 TCfg be a configuration that terminates in strictly less
than n steps and ⇢ : Var! T a valuation such that (�, ⇢) |= 9X.'. We
will show that there exists some �0 2 TCfg such that � )?TS �0 when
C = ; (respectively � )+TS �0 when C , ;) such that (�0, ⇢) |= '0.
Because (�, ⇢) |= 9X.', we have that there exists ⇢0 : Var ! T such
that ⇢ and ⇢0 agree on Var \ X and (�, ⇢0) |= '. But S |=�Cn ' )8 '0
and therefore there exists �0 2 TCfg such that � )?TS �0 when C = ;
(respectively � )+TS �0 when C , ;) and (�0, ⇢0) |= '0. As ⇢ and ⇢0

agree on Var \ X and X \ FreeVars('0) = ;, we obtain (�0, ⇢) |= '0,
which is what we had to prove.

In both cases, we have shown that S |=�Cn 9X.' )Q '0, which is what we
had to prove.

8. Circularity.

By the induction hypothesis we know that for all positive naturals m 2 N\{0},

if S |=+m A and S |=+m�1 C [ {')Q '0} then S |=+m ')Q '0. (3.3)

We prove that for all positive naturals n 2 N \ {0}, S |=+n A and S |=+n�1 C
implies S |=�Cn ')Q '0, by induction on n.

(a) if n = 1, we trivially have that S |=�Cn�1 ' )Q '0. Therefore S |=�Cn�1

C [ {' )Q '0}. Applying Equation (3.3) with m = n = 1, we obtain
that S |=�Cn ')Q '0, what we had to show.

(b) if n > 1, we have that S |=�Cn�1 ')Q '0 by the inner induction hypothe-
sis. We also have that S |=�Cn�1 C and therefore S |=�Cn�1 C [ {')Q '0}.
Let m = n in Equation (3.3). We obtain that S |=�Cn ')Q '0, what we
had to show.

We have shown in any of the cases that for any natural number n 2 N \ {0}, if
S |=+n A and S |=+n�1 C, then S |=�Cn ')Q '0, which concludes our proof.

⇤

3.6.2 Conditional One-Path Reachability Logic

Here we prove the soundness of the proof system in Figure 3.3.
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Theorem 4 (Soundness). If S is a weakly well-defined reachability system, then
S ` ')9 '0 implies S |= ')9 '0.

Proof. By Proposition 6 and Lemma 7. ⇤

In order to prove soundness, we need the following helper definition, which
will allow us to make the proof by induction on the termination proof of g.

Definition 18. Let g 2 TCfg be an arbitrary configuration. We say that the uncon-
ditional reachability rule ' )9 '0 is (g,⌫)-strongly-valid (resp. (g,⌫)-strictly-
strongly-valid) if for all � such that g ⌫ � and for all valuations ⇢ such that
(�, ⇢) |= ', there exists �0 such that � )?TS �0 (resp. � )+TS �0) and (�0, ⇢) |= '0.

We write S |=⇤g⌫ ' )9 '0 when ' )9 '0 is (g,⌫)-strongly-valid and S |=+g⌫
')9 '0 if ')9 '0 is (g,⌫)-strictly-strongly-valid.

Intuitively, “(g,⌫)-strongly-valid" is similar to “strongly valid”, but only con-
cerns configurations less than g, according to the termination dependence relation.
If g terminates, then “(g,⌫)-strongly-valid” is similar to “valid”. The following
lemma captures the link between the two notions:

Proposition 6. S |= ' )9 '0 if and only if, for all terminating configurations
g 2 TCfg, S |=⇤g⌫ ')9 '0.

Proof. We prove each implication separately.

“!” Assume S |= ')9 '0. We show that for all terminating g 2 TCfg, ')9 '0
is (g,⌫)-strongly-valid. Let g be an arbitrary terminating configuration, let � be
an arbitrary configuration smaller or equal according to ⌫ than g (i.e. g ⌫ �) and
let ⇢ be a valuation such that (�, ⇢) |= '. As g terminates, it follows that � also
terminates. As S |= ')9 '0, we have that there exists �0 such that � )?TS �0 and
(�0, ⇢) |= '0. As � was chosen arbitrarily such that g ⌫ �, it follows that ' )9 '0
is (g,⌫)-strongly-valid. As g was chosen arbitrarily such that it is terminating, it
follows that for all terminating g, ')9 '0 is (g,⌫)-strongly-valid, which is what
we had to show.

“ ” Assume that for all terminating g 2 TCfg, ' )9 '0 is (g,⌫)-strongly-valid.
We show that S |= ' )9 '0. Let � be an arbitrary terminating configuration and
let ⇢ be an arbitrary valuation such that (�, ⇢) |= '. Let g = �. We have that g ⌫ �
and that g is terminating. Therefore, by the assumption that for all terminating g,
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')9 '0 is (g,⌫)-strongly-valid, we obtain that there exists �0 such that � )?TS �0

and (�0, ⇢) |= '0. As the terminating configuration � and the valuation ⇢ were
chosen arbitrarily, it follows that S |= ')9 '0.

⇤

The following helper lemma is the core of the soundness proof. It shows that
each proof in our proof system is (g,⌫)-strongly-valid by induction on the proof
tree and on g.

Lemma 7. For any proof tree concluding S,C ` A)8 ''0, for all terminating
configurations g 2 TCfg, if the conditional rules in A are weakly well-defined, if
the unconditional rules in A are (g,⌫)-strictly-strongly-valid and if C is (g0,⌫)-
strictly-strongly-valid for all g0 such that g � g0, we have that:

1. if C is empty, then ')9 '0 is (g,⌫)-strongly-valid and

2. if C is not empty, then ')9 '0 is (g,⌫)-strictly-strongly-valid.

Proof. By induction on the proof tree and case analysis on the last rule in the proof
tree:

1. If the last rule is Axiom, let g be an arbitrary configuration and assume that
the conditional rules inA are weakly well-defined, that the unconditial rules
inA are (g,⌫)-strictly-strongly-valid and that C is (g0,⌫)-strictly-strongly-
valid for all configurations g � g0. We show that ' ^  )9 '0 ^  is
(g,⌫)-strictly-strongly-valid (this is the stronger conclusion of the two cases;
(g,⌫)-strictly-strongly-valid implies (g,⌫)-strongly-valid for the case where
C is empty). We distinguish two cases:

(a) If n > 0, let � be an arbitrary configuration such that g ⌫ � and let ⇢
be an arbitrary valuation such that (�, ⇢) |= ' ^  . We show that there
exists �0 such that � )+TS �0 and (�0, ⇢) |= '0 ^  . We first show that
'i )9 '0i is ⇢-strongly-valid for all 1  i  n.

Let �1, ..., �n be arbitrary configurations such that (�i, ⇢) |= 'i for all
1  i  n. As the rule is weakly well-defined, �1, ..., �n exist. As  is
stateless, it follows that (�i, ⇢) |= 'i ^  for all 1  i  n.

By induction on 1  i  n, we show that � � �i and that ' j )9 '0j is
⇢-strongly-valid for all 1  j < i.

Let 1  i  n be fixed. By choice of �i, we have that (�i, ⇢) |= 'i ^  .
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By the induction hypothesis, we have that ' j )9 '0j is ⇢-strongly-valid
for all 1  j < i. Therefore, by the o.t. hypothesis, we have that � � �i.

As the unconditional rules inA are (g,⌫)-strictly-strongly-valid and C
is (g0,⌫)-strictly-strongly-valid for any configuration g � g0, it follows
that the unconditional rules inA [ C are (g0,⌫)-strictly-strongly-valid
for any configuration � � g0. In particular, the unconditional rules in
A [ C are (�i,⌫)-strictly-strongly-valid. By the (outer) induction hy-
pothesis, we obtain that 'i^ )9 '0i is (�i,⌫)-strongly-valid; therefore
there exists �0i such that �i )?TS �0i and (�0i , ⇢) |= '0i . As �i was chosen
arbitrarily, it follows that 'i )9 '0i is ⇢-strongly-valid, which is what
we had to prove.

We have shown by induction on i that 'i )9 '0i is ⇢-strongly-valid for
all 1  i  n. Therefore, by the well-definedness of the conditional
rule, we obtain that there exists �0 such that � )+TS �0 and (�0, ⇢) |= '0.
As (�, ⇢) |= ' ^  , it follows that (�, ⇢) |=  ; as  is stateless, it follows
that (�0, ⇢) |=  . As (�0, ⇢) |= '0 and (�0, ⇢) |=  , it follows that
(�0, ⇢) |= '0 ^  . We have shown that there exists �0 such that � )+TS �0

and (�0, ⇢) |= '0 ^  , which is what we had to show.

(b) If n = 0, let � be an arbitrary configuration such that g ⌫ � and let ⇢
be an arbitrary valuation such that (�, ⇢) |= ' ^  . We show that there
exists �0 such that � )+TS �0 and (�0, ⇢) |= '0 ^  .

From (�, ⇢) |= ' ^  we immediately obtain (�, ⇢) |= '. As ')9 '0 is
inA, it must be, by hypothesis, (g,⌫)-strictly-strongly-valid. Therefore
there exists �0 such that � )+TS �0 and (�0, ⇢) |= '0. As (�0, ⇢) |= '0 ^  ,
we have (�, ⇢) |=  ; as  is stateless, it follows that (�0, ⇢) |=  . We
already have that (�0, ⇢) |= '0 and therefore (�0, ⇢) |= '0 ^  , which is
what we had to show.

2. If the last rule is Reflexivity, let g be an arbitrary configuration. We show
that ')9 ' is (g,⌫)-strongly-valid. Let g ⌫ � be an arbitrary configuration
and let ⇢ be an arbitrary valuation such that (�, ⇢) |= '. We show that there
exists �0 such that � )?TS �0 and (�0, ⇢) |= '. Indeed, it is su�cient to choose
�0 = � and the conclusion trivially follows. As C is empty, this is the only
case to consider.
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3. If the last rule is Transitivity, we distinguish two cases:

(a) If C is empty, let g be an arbitrary configuration. We show that '1 )9
'3 is (g,⌫)-strongly-valid. By the induction hypothesis we have that
'1 )9 '2 and '2 )9 '3 are (g,⌫)-strongly-valid.

Let g ⌫ �1 be an arbitrary configuration and let ⇢ be an arbitrary
valuation such that (�1, ⇢) |= '1. We show that there exists �3 such that
�1 )?TS �3 and (�3, ⇢) |= '3.

As '1 )9 '2 is (g,⌫)-strongly-valid, it follows that there exists �2 such
that �1 )?TS �2 and (�2, ⇢) |= '2. As '2 )9 '3 is (g,⌫)-strongly-valid,
it follows that there exists �3 such that �2 )?TS �3 and (�3, ⇢) |= '3. In
conclusion �1 )?TS �3 and (�3, ⇢) |= '3, which is what we had to show.

(b) If C is not empty, let g be an arbitrary configuration. We show that
'1 )9 '3 is (g,⌫)-strictly-strongly-valid.

Let g ⌫ �1 be an arbitrary configuration and let ⇢ be an arbitrary
valuation such that (�1, ⇢) |= '1. We show that there exists �3 such that
�1 )+TS �3 and (�3, ⇢) |= '3.

By the induction hypothesis, we have that '1 )9 '2 is (g,⌫)-strictly-
strongly-valid. Therefore, there exists �2 such that �1 )+TS �2 and
(�2, ⇢) |= '2.

Also by the induction hypothesis, as the unconditional rules inA[C are
(g0,⌫)-strictly-strongly-valid for any g � g0, it follows that '2 )9 '3

is (g0,⌫)-strongly-valid for any g � g0. In particular '2 )9 '3 is
(�2,⌫)-strongly-valid. Therefore, there exists �3 such that �2 )?TS �3

and (�3, ⇢) |= '3. In conclusion, �1 )+TS �2 )?TS �3 and (�3, ⇢) |= '3,
which is what we had to show.

4. If the last rule is Consequence, let g be an arbitrary configuration. We show
that '1 )9 '2 is (g,⌫)-strongly-valid (resp. (g,⌫)-strictly-strongly-valid).

Let g ⌫ �1 be an arbitrary configuration and let ⇢ be an arbitrary valuation
such that (�1, ⇢) |= '1. We show that there exists �2 such that �1 )?TS �2
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(resp. �1 )+TS �2) and (�2, ⇢) |= '2.

As |= '1 ! '2, we have that (�1, ⇢) |= '01. By the induction hypothesis,
'01 )9 '02 is (g,⌫)-strongly-valid (resp. (g,⌫)-strictly-strongly-valid) and
therefore there exists �2 such that �1 )?TS �2 (resp. �1 )+TS �2) and (�2, ⇢) |=
'02. As |= '02 ! '2, it follows that (�2, ⇢) |= '2, which is what we had to
show.

5. If the last rule is Case analysis, let g be an arbitrary configuration. We show
that '1 _ '2 )9 ' is (g,⌫)-strongly-valid (resp. (g,⌫)-strictly-strongly-
valid).

Let g ⌫ �1 be an arbitrary configuration and let ⇢ be an arbitrary valuation
such that (�1, ⇢) |= '1 _ '2. We show that there exists �2 such that �1 )?TS �2

(resp. �1 )+TS �2) and (�2, ⇢) |= '.

As (�1, ⇢) |= '1 _ '2 it follows that there exists i 2 {1, 2} such that (�1, ⇢) |= 'i.
By the induction hypothesis, we have that 'i )9 ' is (g,⌫)-strongly-valid
(resp. (g,⌫)-strictly-strongly-valid). Therefore, there exists �2 such that
�1 )?TS �2 (resp. �1 )+TS �2) and (�2, ⇢) |= '. But this is exactly what we had
to show.

6. If the last rule is Abstraction, let g be an arbitrary configuration. We show
that 9X.')9 '0 is (g,⌫)-strongly-valid (resp. (g,⌫)-strictly-strongly-valid).

Let g ⌫ � be an arbitrary configuration and let ⇢ be an arbitrary configuration
such that (�, ⇢) |= 9X.'. We show that there exists �0 such that � )?TS �0

(resp. � )+TS �0) and (�0, ⇢) |= '0.

As (�, ⇢) |= 9X.', it follows that there exists a valuation ⇢0 which di↵ers
from ⇢ only in X such that (�, ⇢0) |= '. By the induction hypothesis (')9 '0
is (g,⌫)-strongly-valid (resp. (g,⌫)-strictly-strongly-valid)), it follows that
there exists �0 such that � )?TS �0 (resp. � )+TS �0) and (�0, ⇢0) |= '0. As X
contains no free variable of '0 and ⇢ di↵ers from ⇢0 only in X, it follows that
(�0, ⇢) |= '0, which is what we had to show.

7. If the last rule is Circularity, we show by (an inner) induction on g that:
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If the unconditional rules in A are (g,⌫)-strictly-strongly-valid
and if C is strictly (g0,⌫)-strictly-strongly-validfor all g � g0,
then ')9 '0 is (g,⌫)-strictly-strongly-valid.

Assume that the unconditional rules inA are (g,⌫)-strongly-valid and that
C is (g0,⌫)-strictly-strongly-validfor any g � g0. By the (inner) induction
hypothesis, we know that ')9 '0 is (g0,⌫)-strictly-strongly-valid for any
g � g0. Therefore C [ {' )9 '0} is (g0,⌫)-strictly-strongly-validfor any
g � g0. Therefore, by the (outer) induction hypothesis, we obtain that
')9 '0 is (g,⌫)-strictly-strongly-valid, which is what we had to show.

⇤

3.7 Relative Completeness

In this section we show that our language-independent proof systems in Figure 3.1
(for all-path reachability) and Figure 3.3 (for one-path reachability) are relatively
complete, in the sense of Cook [23]. Note that the relative completeness of the one-
path part of the proof system in Figure 3.1 follows from the relative completeness
of the proof system in Figure 3.3, hence the proof system in Figure 3.1 is relatively
complete for both all-path and one-path reachability when the operational semantics
is defined with unconditional rules. This means that any valid reachability property
of any programming language (or calculus, system, etc.) is formally derivable
with our proof systems using the operational semantics rules of the language as
axioms. Note that this is a stronger result than the relative completeness of Hoare
logics, since the latter needs to be proved for each language separately, taking
into account its particularities. We prove our relative completeness result once
and for all languages, similarly to our soundness proof. Relativity here refers to
the configuration model: since a matching logic includes a configuration model
and since that model can comprise arbitrarily complex mathematical domains, we
assume an oracle capable of answering FOL validity questions on that model.

Before we proceed, let us note that our proof system cannot be complete
without some additional constraints on the original reachability system S. First,
in order to formulate the FOL questions that the configuration model needs to be
asked during the completeness proof, we also need some minimal support from
the signature and the model of configurations. Specifically, in order to Gödelize
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over sequences of configurations, we need to express Gödel’s � predicate in our
FOL, so the configuration signature ⌃ needs to have a distinct sort N with constant
symbols 0 and 1 and with binary operation symbols + and ⇥, which are interpreted
in the configuration model T as the domain of natural numbers with corresponding
constants and binary operations. We also need to assume that T can enumerate its
own configurations. The weakest condition we were able to find in order to achieve
that is to assume that ⌃ has an operation ↵ : Cfg! N which is interpreted in T as
an injective (one to one) function. To simplify writing, we deliberately make no
distinction between operations in ⌃ and their interpretation in T .

More restrictions on S are needed for the case of one-path reachability. First,
we assume that calS is well-defined. To see why this is necessary, consider a
system consisting only of a rule ⇡ )9 ⇡1 _ ⇡2, where ⇡, ⇡1, ⇡2 are distinct and
ground basic patterns, and whose model of configurations contains precisely these
three configurations. Then it is easy to see that S |= ⇡ )9 ⇡1, since ⇡1 matches
the pattern ⇡1 _ ⇡2, but there is no way to derive S ` ⇡)9 ⇡1. However, the rule
⇡ )9 ⇡1 _ ⇡2 is not well-defined. Next, the finite branching of the termination
dependence relation � is critical for proving the relative completeness of our
proof system, since it allows us to encode non-termination as a FOL predicate:
a configuration � does not terminate i↵ for any n there exists of path of length n
starting with �. An example of an infinite-branching rule is one defining a random

expression construct with a reduction rule of the form hrandomi )9 hni (assume
a trivial language whose configuration holds only an expression) where n is a
variable ranging over an idealistic (infinite) domain of natural numbers. One could
devise criteria that guarantee finite-branching, such as allowing fresh variables in
the right-hand sides (RHS) of rules (i.e., ones which do not appear in the rule’s
LHS) only if they range over finite domains, etc., but these are beyond the scope
of this paper. Finally, S is assumed !-closed in order to derive the divergence of
configurations with computations with infinite nesting of conditions (like in the
case of a big-step semantics). As discussed in Section 3.3.4, it is easy to construct
the !-closure S!, which yields the same transition system as S.

Table 3.1 summarizes all the discussion above, which we assume in the remain-
der of this section.

We would like to point our that our condition that T includes natural numbers
with addition and multiplication in order to support Gödelization amounts to
satisfying the expressivity hypothesis in Cook’s completeness result [23]. This is a
very strong condition, but one we believe all operational semantics of real-world
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Assumptions for both All-Path and One-Path
The reachability system S is
— finite.
The configuration signature ⌃ has
— a sort N;
— constant symbols 0 and 1 of N;
— binary operation symbols + and ⇥ on N;
— an operation symbol ↵ : Cfg! N.
The configuration model T interprets
— N as the natural numbers;
— operation symbols on N as corresponding operations;
— ↵ : Cfg! N as an injective function.
Assumptions only for One-Path
The reachability system S is
— non-empty;
— well-defined;
— !-closed; and
— its termination dependence relation � is finitely branching:

for each � 2 TCfg there are finitely many �0 2 TCfg with � � �0.

Table 3.1: Relative completeness assumptions

programming languages satisfy.
We would also like to discuss our result in the context of Clark’s incomplete-

ness result [20]. It states that if a programming language includes five features
(procedures as parameters in procedures calls, recursion, static scope, global vari-
ables in procedure bodies, and local procedure declarations), there is no sound and
relatively complete Hoare logic proof system, regardless of what assertion logic
is used. However, our result does not contradict it, because we have a slightly
di↵erent definition of relative completeness. Hoare logic makes a fundamental
distinction between programs and states. Intuitively, the Clark’s result states that
the complexity of the programming language is su�cient to force incompleteness,
even if the state is simple (as simple as a mapping from variables to boolean values).
Our setting is di↵erent in that we do not distinguish between programs and states,
and instead we combine them in a configuration. Then, it does not matter where
the complexity comes from (the program or the state): by assuming we have an
oracle for the matching logic over the model of configuration, we e↵ectively push
any complexity inside the matching logic reasoning. Also, rather than assuming
the expressivity hypothesis, we directly include natural numbers with addition and
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multiplication in T in order to guarantee it.
Formally, we have the following

Theorem 5. If S |= ')Q '0 then S ` ')Q '0, for any semantics S satisfying the
assumptions in Table 3.1.

Our proof proceeds as follows: first we encode transition system operations in
FOL, making use of Gödel’s � predicate to eliminate quantifications over sequences
of configurations (needed for expressing reachability); then we show that semantic
validity of all-path reachability rules can also be expressed in FOL; finally, we
prove our completeness result. Recall that, by Proposition 1, matching logic is
a methodological fragment of the FOL theory of the model T . For technical
convenience, in this section we work with the FOL translations '⇤ instead of the
matching logic formulae '. Moreover, since there is no possibility for confusion,
we drop the ⇤ from '⇤, and we use ' to denote the FOL translation. We mention
that in all the formulae used in this section, ⇤ only occurs in the context ⇤ = t,
thus we stay inside the methodological fragment. For the duration of the proof,
we let c, c0, c0, ..., cn be distinct variables of sort Cfg which do not appear free in
the rules in S). We also let �, �0, �0, ..., �n range over (not necessarily distinct)
configurations in the model T , that is, over elements in TCfg, and let ⇢, ⇢0 range
over valuations Var! T .

First we prove the relative completeness for all-path rules, and then we prove
the relative completeness for conditional one-path rules.

3.7.1 All-Path Reachability Logic

Here we prove the relative completeness of the 8 part of the proof system in
Figure 3.1, which derives all-path rules.

Encoding Transition System Operations in FOL

Figure 3.6 shows the definition of the one step transition relation ()TS ) and of the
configurations that reach ' on all and complete paths. The former is a (proper) FOL
formula, while the later is not, as it quantifies over a sequence of configuration.
In Section 3.7.1 we use Gödel’s � predicate to define coreach('), a FOL formula
equivalent to coreach(').

The following lemma states that step(c, c0) actually has the semantic properties
its name suggests.
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step(c, c0) ⌘
_

µ⌘'l)9'r2S
9FreeVars(µ) ('l[c/⇤] ^ 'r[c0/⇤])

coreach(') ⌘ 8n8c0...cn

 
⇤ = c0 !

^

0i<n

step(ci, ci+1)! ¬9cn+1 step(cn, cn+1)

! W
0in

'[ci/⇤]
!

Figure 3.6: FOL encoding of one step transition relation and all-path reachability.

Lemma 8. ⇢ |= step(c, c0) i↵ ⇢(c))TS ⇢(c0).

Proof. Assume ⇢ |= step(c, c0). Then, by the definition of step(c, c0), there exists
some rule µ ⌘ 'l )9 'r 2 S such that ⇢ |= 9FreeVars(µ) ('l[c/⇤] ^ 'r[c0/⇤]).
Further, since c and c0 do not occur in µ, there exists some ⇢0 which agrees with ⇢
on c and c0 such that ⇢0 |= 'l[c/⇤] and ⇢0 |= 'r[c0/⇤]. By Lemma 1, ⇢0 |= 'l[c/⇤]
i↵ (⇢0(c), ⇢0) |= 'l and ⇢0 |= 'r[c0/⇤] i↵ (⇢0(c0), ⇢0) |= 'r, so (⇢0(c), ⇢0) |= 'l and
(⇢0(c0), ⇢0) |= 'r. Since ⇢ and ⇢0 agree on c and c0, it follows that (⇢(c), ⇢0) |= 'l and
(⇢(c0), ⇢0) |= 'r. By definition, we conclude ⇢(c))TS ⇢(c0).

Conversely, assume ⇢(c) )TS ⇢(c0). Then, by definition, there exist some
rule µ ⌘ 'l )9 'r 2 S and some ⇢0 for which (⇢(c), ⇢0) |= 'l and (⇢(c0), ⇢0) |= 'r.
Further, since c and c0 do not occur in µ, we can choose ⇢0 to agree with ⇢ on c and c0.
Hence, (⇢0(c), ⇢0) |= 'l and (⇢0(c0), ⇢0) |= 'r. By Lemma 1, (⇢0(c), ⇢0) |= 'l i↵ ⇢0 |=
'l[c/⇤] and (⇢0(c0), ⇢0) |= 'r i↵ ⇢0 |= 'r[c0/⇤], so ⇢0 |= 'l[c/⇤] and ⇢0 |= 'r[c0/⇤].
Since the free variables occurring in 'l[c/⇤]^'r[c0/⇤] are FreeVars(µ)[{c, c0} and
⇢ and ⇢0 agree on c and c0, it follows that ⇢ |= 9FreeVars(µ) ('l[c/⇤] ^ 'r[c0/⇤]).
By the definition of step(c, c0), we conclude ⇢ |= step(c, c0). ⇤

The following lemma introduces a formula encoding a complete path of fixed
length.

Lemma 9. ⇢ |= V
0i<n

step(ci, ci+1) ^ @cn+1 step(cn, cn+1) i↵ ⇢(c0), ..., ⇢(cn+1) is a

complete)TS -path.

Proof. By Lemma 8, we have that ⇢(ci))TS ⇢(ci+1) i↵ ⇢0 |= step(ci, ci+1), for each
0  i < n. Further, ⇢(c0), ..., ⇢(cn+1) is complete, i↵ there does not exist � such that
⇢(cn))TS �. Again, by Lemma 8, that is i↵ ⇢ |= @cn+1 step(cn, cn+1). We conclude
that ⇢ |= V

0i<n
step(ci, ci+1) ^ @cn+1 step(cn, cn+1) i↵ ⇢(c0), ..., ⇢(cn+1) is a complete

)TS -path, and we are done. ⇤
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The following lemma states that coreach(') actually has the semantic properties
its name suggests.

Lemma 10. (�, ⇢) |= coreach(') i↵ for all complete)TS -paths ⌧ starting with � it
is the case that (�0, ⇢) |= ' for some �0 2 ⌧.

Proof. First we prove the direct implication. Assume (�, ⇢) |= coreach('), and let
⌧ ⌘ �0, ..., �n be a complete)TS -path starting with �. Then let ⇢0 agree with ⇢ on
FreeVars(') such that ⇢0(n) = n and ⇢0(ci) = �i for each 0  i  n. According to
the definition of coreach('), we have that

(�, ⇢0) |= ⇤ = c0 ^
^

0i<n

step(ci, ci+1) ^ @cn+1 step(cn, cn+1)!
_

0in

'[ci/⇤]

Since, � = �0 and ⇢0(c0) = �0, it follows that ⇢0 |= ⇤ = c0. Further, by Lemma 9,
since ⇢0(c0), ..., ⇢0(cn) is a complete)TS -path, it must be the case that

⇢0 |=
^

0i<n

step(ci, ci+1) ^ @cn+1 step(cn, cn+1)

Thus, as ⇤ does not occur in any '[ci/⇤], we conclude that ⇢0 |= W
0in

'[ci/⇤], that

is, ⇢0 |= '[ci/⇤] for some 0  i  n. By Lemma 1, ⇢0 |= '[ci/⇤] i↵ (�i, ⇢0) |= '.
Since ⇢ agrees with ⇢0 on FreeVars('), we conclude that (�i, ⇢) |= '.

Conversely, assume that if ⌧ is a finite and complete)TS -path starting with �.
Then (�0, ⇢) |= ' for some �0 2 ⌧. Let ⇢0 agree with ⇢ on FreeVars('). Then we
prove that

(�, ⇢0) |= ⇤ = c0 ^
^

0i<n

step(ci, ci+1) ^ @cn+1 step(cn, cn+1)!
_

0in

'[ci/⇤]

Specifically, assume (�, ⇢0) |= ⇤ = c0 ^ V
0i<n

step(ci, ci+1) ^ @cn+1 step(cn, cn+1).

As ⇤ does not occur in any ccici+1, by Lemma 9, it follows that ⇢0(c0), ..., ⇢0(cn) is
a complete)TS -path. Further, (�, ⇢0) |= ⇤ = c, implies that ⇢0(c0), ..., ⇢0(cn) starts
with �. Thus, there exists some 0  i  n such that (⇢0(ci), ⇢) |= ', or equivalently,
since ⇢ and ⇢0 agree on FreeVars('), such that (⇢0(ci), ⇢0) |= '. By Lemma 1,
(⇢0(ci), ⇢0) |= ' i↵ ⇢0 |= '[ci/⇤]. Therefore, we have that (�, ⇢0) |= W

0in
'[ci/⇤].

Finally, since ⇢0 is an arbitrary valuation which agrees with ⇢ on FreeVars('), by
the definition of coreach(') we can conclude that (�, ⇢) |= coreach('), and we are
done. ⇤
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coreach(') ⌘ 8n8a8b (9c (�(a, b, 0,↵(c)) ^ ⇤ = c)
^8i (0  i ^ i < n! 9c9c0 (�(a, b, i,↵(c))
^ �(a, b, i + 1,↵(c0)) ^ step(c, c0)))

^9c (�(a, b, n,↵(c)) ^ @c0 step(c, c0))
! 9i (0  i ^ i  n ^ 9c (�(a, b, i,↵(c)) ^ '[c/⇤])))

Figure 3.7: FOL definition of coreach(')

The following lemma established a useful property of coreach(').

Lemma 11.

|= coreach(')! ' _ (9c0 step(c, c0) ^ 8c0 (step(c, c0)! coreach(')[c0/⇤]))

Proof. We prove that if (�, ⇢) |= coreach(') then

(�, ⇢) |= ' _ (9c0 step(c, c0) ^ 8c0 (step(c, c0)! coreach(')[c0/⇤]))

By Lemma 10, we have that for all complete)TS -paths ⌧ starting with � it is the
case that (�00, ⇢) |= ' for some �00 2 ⌧. We distinguish two cases

• (�, ⇢) |= '. We are trivially done.

• (�, ⇢) 6|= '. Then � must have)TS -successors. Indeed, assume the contrary.
Then ⌧ ⌘ � is a complete )TS -path. It follows that (�, ⇢) |= ', which is a
contradiction. Thus, there exists some �0 such that � )TS �0. By Lemma 8,
that is i↵ ⇢ |= 9c0 step(c, c0). Further, let �0 be a )TS -successor of � and
⌧0 a complete )TS -path starting with �0. Then, �⌧ is a complete )TS -path
starting with �. Thus, there exists some �00 2 �⌧0 such that (�00, ⇢) |= '. Since
(�, ⇢) 6|= ', it follows that �00 2 ⌧0. Notice that �0 is an arbitrary configuration
and ⌧0 an arbitrary)TS -path, therefore by Lemma 10 and Lemma 1, we can
conclude that ⇢ |= 8c0 (step(c, c0)! coreach(')[c0/⇤])).

⇤

Formula Gödelization

Figure 3.7 defines coreach('), the FOL equivalent of coreach(') using Gödel’s �
predicate. Formally, we have the following
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Lemma 12. |= coreach(')$ coreach(').

Proof. Let us choose some arbitrary but fixed values for n, a and b, and let ⇢0 such
that ⇢ and ⇢0 agree on Var \ {n, a, b} and ⇢0(n) = n and ⇢0(a) = a and ⇢0(b) = b.
According to the definition of the � predicate, there exists a unique integer sequence
j0, ..., jn such that �(a, b, i, ji) holds for each 0  i  n. Since ↵ is injective, we
distinguish two cases

• there exists some 0  i  n such that there is not any �i with ↵(�i) = ji

• there exists a unique sequence �0, ..., �n such that ↵(�i) = ji for each 0  i 
n.

In the former case, if i = n we get that ⇢0 6|= 9c (�(a, b, n,↵(c)) ^ @c0 step(c, c0)
while if 0  i < n we get that ⇢0 6|= 9c9c0 (�(a, b, i,↵(c)) ^ �(a, b, i + 1,↵(c0)) ^
step(c, c0)) as in both cases we can not pick a value for c. Thus, (�, ⇢0) does not
satisfy left-hand-side of the implication in coreach('), and we conclude that (�, ⇢0)
satisfies the implication.

In the later case, we have that there is a unique way of instantiating the existen-
tially quantified variables c and c0 in each sub-formula in which they appear, as
they are always arguments of the � predicate. Thus,

(�, ⇢0) |= 9c (�(a, b, 0,↵(c)) ^ ⇤ = c)

i↵ � = �0. By Lemma 9, we have that

⇢0 |= 8i (0  i ^ i < n! 9c9c0 (�(a, b, i,↵(c)) ^ �(a, b, i + 1,↵(c0)) ^ step(c, c0)))
^9c (�(a, b, n,↵(c)) ^ @c0 step(c, c0))

i↵ �0...�n is a complete)TS -path. Finally, by Lemma 1

⇢0 |= 9i (0  i ^ i  n ^ 9c (�(a, b, i,↵(c)) ^ '[c/⇤]))

i↵ (�i, ⇢0) |= ' for some 0  i  n.
We conclude that (�, ⇢0) satisfies the implication in coreach(') i↵

• there is no sequence �0, ..., �n such that ↵(�i) = ji for each 0  i  n

• the unique sequence �0, ..., �n such that ↵(�i) = ji for each 0  i  n is
either not starting at �, not a complete)TS -path or contains some �0 such
that (�0, ⇢) |= ', as ⇢ and ⇢0 agree on Var \ {n, a, b}.
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According to the property of �, for each sequence j0, ..., jn there exist some
values for a and b. Since n, a and b are chosen arbitrary, we conclude that
(�, ⇢) |= coreach(') i↵ for all complete )TS -paths ⌧ starting at �, there exists
some �0 2 ⌧ such that (�0, ⇢) |= '. By Lemma 10, we have that the above i↵
(�, ⇢) |= coreach('), and we are done. ⇤

Encoding Semantic Validity in FOL

Lemma 13. If S |= ')8 '0 then |= '! coreach('0).

Proof. Follows from the definition of semantic validity of ')8 '0 and Lemma 10.
⇤

Relative Completeness

A matching logic formula  is patternless i↵ ⇤ does not occur in  . Then we have
the following lemma stating that we can derive on step on all paths

Lemma 14. Sequent

S,A `C ⇤ = c ^ 9c0 step(c, c0) ^  )8 9c0 (⇤ = c0 ^ step(c, c0)) ^  

is derivable, where  is a patternless formula.

Proof. We derive the rule by applying the Step proof rule with the following
prerequisites

|= ⇤ = c ^ 9c0 step(c, c0) ^  !
_

'l)9'r2S
9FreeVars('l) 'l

and for each 'l )9 'r 2 S (since ⇤ does not occur in  )

|= 9c00 (c00 = c^9c0 step(c, c0)^'l[c00/⇤])^'r^ ! 9c0 (⇤ = c0^step(c, c0))^ 
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For the first prerequisite, we have the following (using the definition of step(c, c0))

⇤ = c ^ 9c0 step(c, c0) ^  
! ⇤ = c ^ 9c0 step(c, c0)
$ ⇤ = c ^ 9c0

_

µ⌘'l)9'r2S
9FreeVars(µ) ('l[c/⇤] ^ 'r[c0/⇤])

! ⇤ = c ^ 9c0
_

µ⌘'l)9'r2S
9FreeVars(µ) 'l[c/⇤]

! ⇤ = c ^
_

µ⌘'l)9'r2S
9FreeVars('l) 'l[c/⇤]

!
_

µ⌘'l)9'r2S
9FreeVars('l) 'l

For the second prerequisite, let 'l )9 'r 2 S. Then we have that

9c00 (c00 = c ^ 9c0 step(c, c0) ^ 'l[c00/⇤]) ^ 'r ^  
! 'l[c/⇤] ^ 'r ^  
! 9c0 (⇤ = c0 ^ 'l[c/⇤] ^ 'r[c0/⇤]) ^  
! 9c0 (⇤ = c0 ^

_

µ⌘'l)9'r2S
('l[c/⇤] ^ 'r[c0/⇤])) ^  

! 9c0 (⇤ = c0 ^
_

µ⌘'l)9'r2S
9FreeVars(µ) ('l[c/⇤] ^ 'r[c0/⇤]) ^  

! 9c0 (⇤ = c0 ^ step(c, c0)) ^  

and we are done. ⇤

The following three lemmas show that we can derive a rule stating that all the
configurations reaching ' in the transition system actually reach '.

Lemma 15. If

S,A ` ⇤ = c ^ 9c0 step(c, c0) ^ 8c0 (step(c, c0)! coreach(')[c0/⇤]))8 '

then S,A ` coreach('))8 '.

Proof. By Lemma 11

|= coreach(')$ ' _ (9c0 step(c, c0) ^ 8c0 (step(c, c0)! coreach(')[c0/⇤]))
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Thus, by Consequence and Case Analysis, it su�ces to derive

S,A ` ')8 '
S,A ` ⇤ = c ^ 9c0 step(c, c0) ^ 8c0 (step(c, c0)! coreach(')[c0/⇤]))8 '

The first sequent follows by Reflexivity. The second sequent is part of the hypoth-
esis, and we are done. ⇤

Lemma 16.

S,A ` ⇤ = c ^ 9c0 step(c, c0) ^ 8c0 (step(c, c0)! coreach(')[c0/⇤]))8 '

Proof. Let µ be the rule we want to derive, namely

⇤ = c ^ 9c0 step(c, c0) ^ 8c0 (step(c, c0)! coreach(')[c0/⇤]))8 '

Then S,A ` µ follows by Circularity from S,A `{µ} µ. Hence, by Transitivity,
it su�ces to derive the two sequents below

S,A `{µ} ⇤ = c ^ 9c0 step(c, c0) ^ 8c0 (step(c, c0)! coreach(')[c0/⇤]))8 '0
S,A [ {µ} ` '0 )8 '

where '0 ⌘ 9c0 (⇤ = c0 ^ step(c, c0)) ^ 8c0 (step(c, c0)! coreach(')[c0/⇤]). The
first sequent follows by Lemma 14 with  ⌘ 8c0 (step(c, c0)! coreach(')[c0/⇤]).
For the second sequent, by Abstraction with {c0} and Consequence with

|= ⇤ = c0 ^ step(c, c0) ^ 8c0 (step(c, c0)! coreach(')[c0/⇤])! coreach(')

it su�ces to derive S,A [ {µ} ` coreach('))8 '. Then, by Lemma 15, we are
left to derive

S,A[{µ} `⇤ = c ^ 9c0step(c, c0) ^ 8c0(step(c, c0)! coreach(')[c0/⇤]))8 '

that is, S,A [ {µ} ` µ, which trivially follows by Axiom and we are done. ⇤

Lemma 17. S,A ` coreach('))8 '.

Proof. By Lemma 15, it su�ces to derive

S,A ` ⇤ = c ^ 9c0 step(c, c0) ^ 8c0 (step(c, c0)! coreach(')))8 '
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which follows by Lemma 16. ⇤

Finally, we can prove our main theorem

Proof. By Lemma 13, we have that |= '! coreach('0). Further, by Lemma 17, we
have that S ` coreach('0))8 '0. Then the theorem follows by Consequence. ⇤

3.7.2 Conditional One-Path Reachability Logic

Here we show that the conditional one-path reachability logic proof system in
Figure 3.3 is relatively complete. This subsumes the relative completeness of the
unconditional one-path reachability logic proof system in Figure 3.1.

Encoding Transition System Operations in FOL

Recall that one of the assumption of relative completeness is that S is well-defined
(see Definition 14). For the purposes of this proof, we give an equivalent and
finer-grained definition of the transition relation )TS induced by a well-defined
reachability system S. Let k,m 2 N. Recall from Definition 10 that Rk is the
transition relation obtained by applying at most k � 1 “nested” conditional rules.
We introduce Rk,m with Rk,m ✓ Rk ✓ TCfg ⇥ TCfg to denote the transition relation
obtained by applying at most k � 1 “nested” conditional rules, and by taking at
most m steps in each condition. Formally,

• R0,m = ;

• Rk+1,m = { (�, �0) | there exists some reachability rule

')9 '0 if '1 )9 '01
V
...

V
'n )9 '0n

in S and some valuation ⇢ :Var! T such that:

1. (�, ⇢) |= ' and (�0, ⇢) |= '0; and

2. there exist �1, ...�n, �01, ..., �
0
n 2 TCfg with (�i , ⇢) |= 'i and (�0i , ⇢) |= '0i

and such that (�i, �0i ) 2
S

0m0m Rm0
k,m for all 1  i  n, where Rm0

k,m is the
transitive composition of Rk,m with itself m0 times (R0

k,m is the identity)}

Notice that Rk,m existentially quantifies �1, ..., �n (“there exist �01, ..., �
0
n”), unlike

Rk, which universally quantifies �1, ..., �n (“for all �1, ..., �n”). However, the well-
definedness of S implies that for a given ⇢ the said �1, ..., �n always exist and
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are unique. Thus, we can replace universal with existential quantification. The
following formally states that the relations Rk,m give an equivalent definition to the
relations Rk and)TS :

Lemma 18. Rk =
S

m�0 Rk,m and)TS=
S

k�0,m�0 Rk,m.

Proof. First, we prove Rk =
S

m�0 Rk,m by induction on k. The base case (k = 0) is
trivial, as Rk = ; and Rk,m = ; for each m � 0. For the induction case, we assume
the result for k and prove it for k + 1 by double inclusion.

To show Rk+1 ✓ S
m�0 Rk+1,m, we assume (�, �0) 2 Rk+1 and we show (�, �0) 2

Rk+1,m for some m. By Definition 10, it follows that there exists some rule

')9 '0 if '1 )9 '01
V
...

V
'n )9 '0n

in S and some ⇢ such that

1. (�, ⇢) |= ' and (�0, ⇢) |= '0; and

2. for all �1, ...�n with (�i , ⇢) |= 'i for each 1  i  n there exist �01, ..., �
0
n with

(�0i , ⇢) |= '0i such that (�i, �0i ) 2 R⇤k for each 1  i  n.

Since S is well-defined, it follows that there exist and are unique �1, ...�n with
(�i , ⇢) |= 'i for each 1  i  n, thus condition 2. above becomes: there exist
�1, ...�n, �01, ..., �

0
n with (�i , ⇢) |= 'i and (�0i , ⇢) |= '0i and such that (�i, �0i) 2 R⇤k

for all 1  i  n. Hence, there exist mi and �i,0, ..., �i,mi with �i,0 = �i and
�i,mi = �0i such that (�i, j, �i, j+1) 2 Rk for each 1  i  n and 0  j < mi. By
the induction hypothesis, Rk =

S
m�0 Rk,m. Thus, there exist some mi,0, ...,mi,mi�1

such that (�i, j, �i, j+1) 2 Rk,mi, j for each 1  i  n and 0  j < mi. It is easy to
prove by induction on k that Rk,m0 ✓ Rk,m00 if m0  m00. Let m be the maximum
of {mi | 1  i  n} [ {mi, j | 1  i  n, 0  j  mi}. Then, it follows that
(�i, j, �i, j+1) 2 Rk,m for each 1  i  n and 0  j < mi, and consequently, that
(�i, �0i) 2

S
0m0m Rm0

k,m. We can conclude that both conditions 1. and 2. in the
definition of Rk+1,m are satisfied, that is, (�, �0) 2 Rk+1,m for some m. Therefore,
Rk+1 ✓ S

m�0 Rk+1,m.
To show

S
m�0 Rk+1,m ✓ Rk+1, we assume (�, �0) 2 Rk+1,m for some m and we

show (�, �0) 2 Rk+1. By the definition of Rk+1,m, it follows that there exists some
rule

')9 '0 if '1 )9 '01
V
...

V
'n )9 '0n

in S and some ⇢ such that:
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1. (�, ⇢) |= ' and (�0, ⇢) |= '0; and

2. there exist �1, ...�n, �01, ..., �
0
n with (�i, ⇢) |= 'i and (�0i , ⇢) |= '0i and such that

(�i, �0i ) 2
S

0m0m Rm0
k,m for all 1  i  n.

Since S is well-defined, it follows that there are unique �1, ...�n with (�i , ⇢) |= 'i

for each 1  i  n, thus condition 2. above becomes: for all �1, ...�n with
(�i , ⇢) |= 'i for each 1  i  n there exist �01, ..., �

0
n with (�0i , ⇢) |= '0i such

that (�i, �0i) 2
S

0m0m Rm0
k,m for each 1  i  n. By the induction hypothesis,

Rk =
S

m�0 Rk,m. Thus, Rk,m ✓ Rk, and consequently,
S

0m0m Rm0
k,m ✓ R⇤k. We

can conclude that both conditions 1. and 2. in Definition 10 are satisfied, that is,
(�, �0) 2 Rk+1. Therefore,

S
m�0 Rk+1,m ✓ Rk+1.

The second part of the lemma follows from the first part, as)TS is defined to
be

S
k�0 Rk. ⇤

Since our objective is to encode properties of the transition system (TCfg,)TS )
in FOL making use of the relations Rk,m, we next discuss these relations in a bit
more detail. Unless otherwise specified, we fix some arbitrary k,m 2 N and assume
that each rule in S has at most nc conditions. Then (�, �0) 2 S

0m0m Rm0
k,m i↵

there exist some �0, ..., �m0 2 TCfg with 0  m0  m, �0 = � and �m0 = �0 such
that (�i1 , �i1+1) 2 Rk,m for each 0  i1 < m0. We can reformulate it as there exist
some �0, ..., �m 2 TCfg with �0 = � and �m = �0 such that (�i1 , �i1+1) 2 Rk,m or
�i1 = �i1+1 for each 0  i1 < m. A pair (�i1 , �i1+1) belongs to Rk,m i↵ there exist
some rule µ ⌘ (' )9 '0 if '1 )9 '01

V
...

V
'n )9 '0n) in S and valuation ⇢i1

such that for each 1  i2  n there exist some �i1,i2,0 and �i1,i2,m with (�i1,i2,0, ⇢i1) |=
'i2 and (�i1,i2,m, ⇢i1) |= '0i2 such that (�i1,i2,0, �i1,i2,m) 2 S

0m0m Rm0
k�1,m. As before,

that happens i↵ there exist some �i1,i2,1, ..., �i1,i2,m�1 2 TCfg (we already introduced
�i1,i2,0 and �i1,i2,m) such that (�i1,i2,i3 , �i1,i2,i3+1) 2 Rk�1,m or �i1,i2,i3 = �i1,i2,i3+1 for each
0  i3 < m. This procedure continues until k reaches 0, when no rules can be used,
and thus only identical configuration pairs belong to

S
0m0m Rm0

0,m (as R0
0,m is the

identity).
During this process, the occurring configurations have indexes of the form

�i1,i2,...,i2 j+1 for some 0  j  k, with i1, i3, ..., i2 j�1 between 0 and m � 1, with
i2, i4, ..., i2 j between 1 and nc, and with 0  i2 j+1  m. The intuition for such a
configuration �i1,...,i2 j+1 is that it occurs when establishing a transition from position
i1 to i1 + 1 on the path from � to �0, and then when establishing a path for the
ith
2 condition of the used rule for the said transition, and then when establishing
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a transition from position i3 to position i3 + 1 on the said path, and so on. Only
the last index, i2 j+1 can be m, as it can be either the source of a transition or
the final configuration on a path. It is always the case that (�i1,...,i2 j,0, �i1,...,i2 j,m) 2
S

0m0m Rm0
k� j,m.

With the above in mind, we introduce an indexing schema for configura-
tion variables. For some 0  j  k, we use s to denote a sequence of indices
i1, i2, ..., i2 j�1, i2 j with each index i on an odd position in s ranging from 0 to m � 1
and each i on an even position ranging from 1 to nc. Let 0  i  m. Then we use
cs,i to denote a (fresh) variable of sort Cfg indexed by the sequence s, i. Intuitively,
cs,i is interpreted as the configuration �i1,...,i2 j,i2 j+1 mentioned above (with i2 j+1 = i).
Notice that c0 and cm (indexed by the sequences 0 and m, as s is empty) stand for
� and �0, the given configurations. Let I j be the set of all such sequences s of
length 2 j. Then we define the set of configuration variables associated with k and
m as follows: Ck,m = {cs,i | s 2 I j for some 0  j  k and 0  i  m}. Note that
Ck,m is finite. We quantify over finite sets of variables, like 9Ck,m, as shorthand for
quantifying over each variable in the set.

Let x̄ = x1, ..., xnx be the free variables occurring in the rules in S. Let µ ⌘
(')9 '0 if '1 )9 '01

V
...

V
'n )9 '0n) be a rule in S and let s be a sequence of

indices (as above) and 0  i  nc be an index. Then we define the following FOL
formula:

ruleµs,i ⌘ 9x̄ ('[cs,i/⇤] ^ '0[cs,i+1/⇤] ^
^

1i0n

('i0[cs,i,i0,0/⇤] ^ '0i0[cs,i,i0,m/⇤])

Intuitively, ruleµs,i encodes the matching part of the definition of the transition
relation)TS . It states that there exists some valuation of the free variables x1, ..., xnx

for which cs,i and cs,i+1 match the LHS and RHS of µ, and cs,i,i0,0 and cs,i,i0,m match
the LHS and RHS of i0th condition of µ. Configuration variables are indexed by
sequence s, i to avoid name conflicts. If µ is unconditional, then the big conjunction
is empty. Now we can encode the existence of a path

pathk,m ⌘
^

s2Ik
0i<m

cs,i = cs,i+1 ^
^

0 j<k
s2I j

0i<m

(
_

µ2S
ruleµs,i _ cs,i = cs,i+1)

path(c, c0) ⌘ 9k9m9Ck,m (pathk,m ^ c0 = c ^ cm = c0)

The definition of path(c, c0) encodes )?TS by encoding
S

0m0m Rm0
k,m, and thus

resembles the informal process above of establishing that (�, �0) 2 S
0m0m Rm0

k,m.
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The variables cs,i stand for the configurations �s,i. For each appropriate s and i,
there is either a transition from cs,i to cs,i+1 or cs,i is equal to cs,i+1, unless s has
length 2k when cs,i must be equal to cs,i+1. Thus, there is some path from cs,0 to cs,m

of length at most m.
Using path(c, c0) we can encode the following: (1) the one step transition rela-

tion ()TS ), (2) the termination dependence relation (�), (3) the divergence predicate
("), and (4) the configurations reaching some formula '. For the definitions below,
a rule µ is assumed of the form ')9 '0 if '1 )9 '01

V
...

V
'n )9 '0n

step(c, c0) ⌘ 9c1...cnc 9c01...c
0
nc9x̄ (

_

µ2S
('[c/⇤] ^ '0[c0/⇤]

^
^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i))))

succ(c, c0) ⌘ step(c, c0)
_ 9c1...cnc 9c01...c

0
nc9x̄ (

_

µ2S
('[c/⇤] ^

_

1in

('i[c0/⇤]

^
^

1 j<i

(' j[c j/⇤] ^ '0j[c0j/⇤] ^ path(c j, c0j)))))

diverge(c) ⌘ 8m9c0...cm(
^

0i<m

succ(ci, ci+1) ^ c0 = c)

coreach(') ⌘ 9c9c0 (c = ⇤ ^ '[c0/⇤] ^ path(c, c0))

These definitions are not (yet) proper FOL formulae: they quantify over sets and
sequences of variables. The definitions of path(c, c0) and diverge(c) in Figure 3.8
are proper FOL formulae equivalent to path(c, c) and diverge(c) (Lemma 31). Then
the remaining predicates can also be expressed in FOL.

The following lemmas state various properties of the transition system, leading
to the conclusion that the above definitions have the semantic properties their names
suggest. First, we establish a FOL relation between Rk+1,m and

S
0m0m Rm0

k,m:

Lemma 19. Let k,m 2 N and c, c0, c1, c01, ..., cnc, c0nc 2 VarCfg and �, �0 2 TCfg.
Then (�, �0) 2 Rk+1,m i↵ there exists some ⇢ : Var ! T such that (µ ⌘ ' )9
'0 if '1 )9 '01

V
...

V
'n )9 '0n)

⇢ |=
_

µ2S
('[c/⇤] ^ '0[c0/⇤] ^

^

1in

('i[ci/⇤] ^ '0i[c0i/⇤]))

and (⇢(ci), ⇢(c0i)) 2
S

0m0m Rm0
k,m for each 1  i  nc and ⇢(c) = � and ⇢(c0) = �0.

Moreover, � )TS �0 i↵ ⇢(ci))?TS ⇢(c0i) for each i.

Proof. For the direct implication, assume that (�, �0) 2 Rk+1,m. Then there must
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be some rule µ 2 S and some ⇢ such that (�, ⇢) |= ' and (�0, ⇢) |= '0 and for
each 1  i  n there exist �i, �0i with (�i, ⇢) |= 'i and (�0i , ⇢) |= '0i such that
(�i, �0i) 2

S
0m0m Rm0

k,m. Since c, c0, c1, c01, ..., cnc, c0nc do not occur in µ, we can
assume that ⇢ is such that: ⇢(c) = � and ⇢(c0) = �0; and ⇢(ci) = �i and ⇢(c0i) = �

0
i

for each 1  i  n; and ⇢(ci) = ⇢(c0i) for each n + 1  i  nc. Then we can
conclude that (⇢(ci), ⇢(c0i)) 2

S
0m0m Rm0

k,m for each 1  i  nc. By Lemma 1 we
have that (⇢(c), ⇢) |= ' i↵ ⇢ |= '[c/⇤] and (⇢(c0), ⇢) |= '0 i↵ ⇢ |= '0[c0/⇤] and for
each 1  i  n, (⇢(ci), ⇢) |= 'i i↵ ⇢ |= 'i[ci/⇤] and (⇢(c0i), ⇢) |= '0i i↵ ⇢ |= '0i[c0i/⇤].
We can conclude that

⇢ |= '[c/⇤] ^ '0[c0/⇤] ^
^

1in

('i[ci/⇤] ^ '0i[c0i/⇤])

and we are done.
For the reverse implication, we have that there must be some rule µ 2 S such

that
⇢ |= '[c/⇤] ^ '0[c0/⇤] ^

^

1in

('i[ci/⇤] ^ '0i[c0i/⇤])

Again, by Lemma 1 we have that (⇢(c), ⇢) |= ' i↵ ⇢ |= '[c/⇤] and (⇢(c0), ⇢) |= '0
i↵ ⇢ |= '0[c0/⇤] and for each 1  i  n, (⇢(ci), ⇢) |= 'i i↵ ⇢ |= 'i[ci/⇤] and
(⇢(c0i), ⇢) |= '0i . Thus, it follows that (�, ⇢) |= ' and (�0, ⇢) |= '0 and for each
1  i  n, (⇢(ci), ⇢) |= 'i and (⇢(ci0), ⇢) |= '0i . Therefore, (�, �0) 2 Rk+1,m, and we
are done.

We reduce the second part of the lemma to the first. For the direct implication,
by Lemma 18, we have that � )TS �0 implies that there exist some k,m such
that (�, �0) 2 Rk+1,m. By the first part of the lemma, for each 1  i  nc, we
have that (⇢(ci), ⇢(c0i)) 2

S
0m0m Rm0

k,m. Then, for each 1  i  nc, by Lemma 18,
(⇢(ci), ⇢(c0i)) 2

S
0m0m Rm0

k,m implies that ⇢(ci) )?TS ⇢(c0i). For the converse impli-
cation, for each 1  i  nc, by Lemma 18, ⇢(ci) )?TS ⇢(c0i) implies that there
exist some ki,mi such that (⇢(ci), ⇢(c0i)) 2

S
0mi0mi Rmi

0
ki,mi

. Let k be the maximum
of ki and m the maximum of mi. By the first part of the lemma, we have that that
(�, �0) 2 Rk+1,m. By Lemma 18, we have that (�, �0) 2 Rk+1,m implies � )TS �0, and
we are done. ⇤

The following formally states the property encoded by pathk,m:

Lemma 20. Let k,m 2 N. Then (�, �0) 2 S
0m0m Rm0

k,m i↵ there exists a ⇢ :Var! T
such that ⇢ |= pathk,m and ⇢(c0) = �, ⇢(cm) = �0.
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Proof. We proceed by induction on k.

Base case If k = 0, then Ik only contains the empty sequence and path0,m becomes
V

0i<m ci = ci+1. Thus, ⇢ |= path0,m i↵ ⇢(c0) = ... = ⇢(cm). Such a ⇢ exists i↵ � = �0.
On the other hand, since R0,m = ;, it follows that

S
0m0m Rm0

0,m = R0
0,m, the reflexive

closure of R0,m. Hence, we can conclude that (�, �0) 2 S
0m0m Rm0

0,m i↵ � = �0, and
we are done.

Induction case We assume the lemma for k and we prove it for k + 1. For
0  i1 < m and 1  i2  nc we define

pathi1,i2
k,m ⌘

^

s2ik
0i<m

ci1,i2,s,i = ci1,i2,s,i+1

^
^

0 j<k
s2I j

0i<m

(
_

µ2S
ruleµi1,i2,s,i _ ci1,i2,s,i = ci1,i2,s,i+1)

Intuitively, pathi1,i2
k,m is pathk,m with all the indexing sequences prefixed with i1 and

i2. Then we can rearrange pathk+1,m as follows

pathk+1,m $
^

0i<m

(
_

µ2S
ruleµi _ ci = ci+1)

^
^

0i1<m
1i2nc

(
^

s2ik
0i<m

ci1,i2,s,i = ci1,i2,s,i+1

^
^

0 j<k
s2I j

0i<m

(
_

µ2S
ruleµi1,i2,s,i _ ci1,i2,s,i = ci1,i2,s,i+1))

Essentially, we split the conjuncts over s from pathk+1,m based on whether s is
empty (first line) or the first two elements are some i1 and i2 (second and third
lines). Notice that for some fixed i1 and i2, the last two lines are in fact pathi1,i2

k,m .
Thus we can write pathk+1,m as

pathk+1,m $
^

0i<m

(
_

µ2S
ruleµi _ ci = ci+1) ^

^

0i1<m
1i2nc

pathi1,i2
k,m

Notice that, for given i1 and i2, the only variables (possibly) shared by pathi1,i2
k,m

with the rest of the formula are ci1,i2,0 and ci1,i2,m. Thus, the existence of ⇢ with
⇢ |= pathk+1,m becomes equivalent to the existence of ⇢0 and ⇢i1,i2 for each 0  i1 < m
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and 1  i2  nc with the following properties:

(1) ⇢0 |= V
0i<m(

W
µ2S ruleµi _ ci = ci+1) and ⇢0(c0) = � and ⇢0(cm) = �0; and

(2) ⇢i1,i2 |= pathk,m and ⇢i1,i2(c0) = ⇢0(ci1,i2,0) and ⇢i1,i2(cm) = ⇢0(ci1,i2,m) for each
0  i1 < m and 1  i2  nc.

By the induction hypothesis, the existence of ⇢i1,i2 satisfying condition (2) is
equivalent to (⇢0(ci1,i2,0), ⇢0(ci1,i2,m)) 2 S

0m0m Rm0
k,m. Thus, it su�ces to prove that

(�, �0) 2 S
0m0m Rm0

k+1,m i↵ there exists some ⇢0 with ⇢0 |= V
0i<m(

W
µ2S ruleµi _ ci =

ci+1) such that (⇢0(ci1,i2,0), ⇢0(ci1,i2,m)) 2 S
0m0m Rm0

k,m for each 0  i1 < m and
1  i2  nc.

Further, notice that for a given 0  i < m, the only variables shared by
W
µ2S ruleµi _ ci = ci+1 with the rest of the formula are ci and ci+1. Thus, there

existence of ⇢0 with the above properties is equivalent to the existence of some
�0, ..., �m 2 TCfg and some ⇢0, ..., ⇢m�1 such that for each 0  i < m it is the case
that: ⇢i(ci) = �i and ⇢i(ci+1) = �i+1; (⇢i(ci,i0,0), ⇢i(ci,i0,m)) 2 S

0m0m Rm0
k,m, for each

1  i0  nc; and ⇢i |= W
µ2S ruleµi _ci = ci+1. By Lemma 19, we have that there exist

some ⇢i with the first two properties such that ⇢i |= W
µ2S ruleµi i↵ (�i, �i+1) 2 Rk+1,m.

Thus, ⇢i exists i↵ (�i, �i+1) 2 Rk+1,m or �i = �i+1. Therefore, it su�ces to prove that
(�, �0) 2 S

0m0m Rm0
k+1,m i↵ there exist �0, ..., �m such that for each 0  i < m, either

(�i, �i+1) 2 Rk+1,m or �i = �i+1, which is trivial, and we are done. ⇤

The following states that path(c, c0) encodes)?TS , the reflexive and transitive
closure of the transition relation)TS :

Lemma 21. Let ⇢ :Var! T . Then ⇢(c))?TS ⇢(c0) i↵ ⇢ |= path(c, c0).

Proof. We have that ⇢(c))?TS ⇢(c0) i↵ there exist some m0 2 N and some sequence
�0, ..., �m0 2 TCfg with �0 = ⇢(c) and �m0 = ⇢(c0) and �i )TS �i+1 for each 0  i < m0.
By Definition 10, �i )TS �i+1 i↵ for each 0  i  m0, there exists some ki such that
(�i, �i+1) 2 Rki . Further, by Lemma 18, that is i↵ for each 0  i  m0, there also
exists some mi such that (�i, �i+1) 2 Rki,mi . Let k denote the maximum of k0, ..., km�1

and m the maximum of m0,m1, ...,mm0�1. Since Rki,mi ✓ Rk,m, we can conclude that
⇢(c) )?TS ⇢(c0) i↵ there exist some k and m such that (⇢(c), ⇢(c0)) 2 S

0m0m Rm0
k,m.

By Lemma 20, that is i↵ there exists some ⇢0 with ⇢0(c0) = ⇢(c) and ⇢0(cm) = ⇢(c0)
such that ⇢0 |= pathk,m. Since c, c0 do not occur in pathk,m, that is i↵ there exists
some ⇢0 with ⇢0(c) = ⇢(c) and ⇢0(c0) = ⇢(c0) such that ⇢0 |= pathk,m^c0 = c^cm = c0.
But since c, c0 are the only free variables in path(c, c0), that holds i↵ ⇢ |= path(c, c0),
and we are done. ⇤
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The following states that step(c, c0) encodes the transition relation)TS :

Lemma 22. Let ⇢ : Var! T . Then ⇢(c))TS ⇢(c0) i↵ ⇢ |= step(c, c0).

Proof. By Lemma 19, second part, we have that ⇢(c))TS ⇢(c0) i↵ there exists some
⇢0 with ⇢0(c) = ⇢(c) and ⇢0(c0) = ⇢(c0) and ⇢0(ci) )?TS ⇢0(c0i) for each 1  i  nc
such that

⇢0 |=
_

µ2S
('[c/⇤] ^ '0[c0/⇤] ^

^

1in

('i[ci/⇤] ^ '0i[c0i/⇤]))

By Lemma 21, we have that ⇢0(ci))?TS ⇢0(c0i) i↵ ⇢0 |= path(ci, c0i), for each 1  i 
nc. Hence, we can combine the properties of ⇢0 into

⇢0 |=
_

µ2S
('[c/⇤] ^ '0[c0/⇤] ^

^

1in

('i[ci/⇤] ^ '0i[c0i/⇤]))

^
^

1inc

path(ci, c0i)

Then, by rearranging the above, we can conclude that ⇢(c))TS ⇢(c0) i↵ there exist
some ⇢0 with ⇢0(c) = ⇢(c) and ⇢0(c0) = ⇢(c0) such that

⇢0 |=
_

µ2S
('[c/⇤] ^ '0[c0/⇤] ^

^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i))

^
^

n+1inc

path(ci, c0i)) (1)

Therefore, to prove the Lemma, it su�ces to prove that there exists some ⇢0 with
⇢0(c) = ⇢(c) and ⇢0(c0) = ⇢(c0) satisfying (1) i↵ ⇢ |= step(c, c0).

For the direct implication, assume ⇢0 satisfy (1). Then, it follows that ⇢0 satisfies
the first line in (1)

⇢0 |=
_

µ2S
('[c/⇤] ^ '0[c0/⇤] ^

^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i)))

Since the free variables occurring in the formula above are among c, c0, c1, c01, ...,
cnc, c0nc, then the existence of such a ⇢0 implies that

⇢ |= 9c1...cnc 9c01...c
0
nc9x̄ (

_

µ2S
('[c/⇤] ^ '0[c0/⇤]

^
^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i))))
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which is exactly the definition of step(c, c0). Thus ⇢ |= step(c, c0), and we are done.
For the reverse implication, assume ⇢ |= step(c, c0). Then, by the definition of

step(c, c0) and since c, c0 are the only free variables step(c, c0), we have that there
exists some ⇢0 with ⇢0(c) = ⇢(c) and ⇢0(c) = ⇢(c) such that

⇢0 |=
_

µ2S
('[c/⇤] ^ '0[c0/⇤] ^

^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i)))

Then, there must be some µ ⌘ ')9 '0 if '1 )9 '01
V
...

V
'n )9 '0n such that

⇢0 |= '[c/⇤] ^ '0[c0/⇤] ^
^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i))

Since the variables cn+1, c0n+1, ..., cnc, c0nc do not occur in the formula above, we
can assume that ⇢0(cn+1) = ⇢0(c0n+1), ..., ⇢0(cnc) = ⇢0(c0nc). Trivially, ⇢0(cn+1) )?TS
⇢0(c0n+1), ..., ⇢0(cnc))?TS ⇢0(c0nc). By Lemma 21, it follows that ⇢0 |= path(cn+1, c0n+1),
..., ⇢0 |= path(cnc, c0nc). Thus, we can conclude that

⇢0 |= '[c/⇤] ^ '0[c0/⇤] ^
^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i))

^
^

n+1inc

path(ci, c0i)

and therefore that ⇢0 satisfies (1), and we are done. ⇤

The following establishes a relation between path(c, c0) and step(c, c0) which
we use later on in Section 3.7.2:

Lemma 23. |= path(c, c0)$ c=c0 _ 9c00 (step(c, c00) ^ path(c00, c0)).

Proof. We prove that ⇢ |= c = c0_9c00 (step(c, c00)^path(c00, c0)) i↵ ⇢ |= path(c, c0).
By Lemma 21, ⇢ |= path(c, c0) i↵ ⇢(c) )?TS ⇢(c0), that is, i↵ there exist some
�0, ..., �n with ⇢(c) = �0 and ⇢(c) = �n and �i )TS �i+1 for each 0  i < n.
Equivalently, we can state it as either ⇢(c) = ⇢(c0) or there exist some �0, �1, �n

with ⇢(c) = �0 and ⇢(c) = �n such that �0 )TS �1 and �1 )?TS �n. Further,
that is i↵ there exists some ⇢0 with ⇢0(c) = ⇢(c) and ⇢0(c0) = ⇢(c0) such that
⇢0(c) )TS ⇢0(c00) and ⇢0(c00) )?TS ⇢0(c0). By Lemma 22 and Lemma 21, that is i↵
⇢0 |= step(c, c00) ^ path(c00, c0), and we are done. ⇤

The following states that succ(c, c0) encodes the termination dependence rela-
tion �:

98



Lemma 24. Let ⇢ : Var! T . Then ⇢(c0) � ⇢(c) i↵ ⇢ |= succ(c, c0).

Proof. Recall from Definition 11 that � � �0 i↵

• � )TS �0; or

• there exists some rule

')9 '0 if '1 )9 '01
V
...

V
'n )9 '0n

in S, valuation ⇢0 :Var! T , and index 1  i  n such that:

(1) (�, ⇢0) |= ';

(2) for each 1  j < i and each � j 2 TCfg with (� j, ⇢0) |= ' j, there is some
�0j 2 TCfg such that (�0j, ⇢

0) |= '0j and � j )?TS �0j; and

(3) (�0, ⇢0) |= 'i.

For each 1  j < i, since ' j is well-defined (see Definition 14), there exists a
unique � j with (� j, ⇢0) |= ' j. Hence, condition (2) is equivalent to: “for each
1  j < i there exist some � j 2 TCfg with (� j, ⇢0) |= ' j and some �0j 2 TCfg such that
(�0j, ⇢

0) |= '0j and � j )?TS �0j”. By Lemma 22, ⇢(c) )TS ⇢(c0) i↵ step(c, c0). Thus,
the first line in the definition of succ(c, c0) captures the first bullet in the definition
of �. Therefore, it su�ce to show that the second and third lines of the definition
of succ(c, c0), namely

⇢ |= 9c1...cnc 9c01...c
0
nc9x̄ (

_

µ2S
('[c/⇤] ^

_

1in

('i[c0/⇤]

^
^

1 j<i

(' j[c j/⇤] ^ '0j[c0j/⇤] ^ path(c j, c0j)))))

capture the second bullet. Since c, c0 are the only free variables in the formula
above, it follows that ⇢ satisfies it i↵ there exists some ⇢0 with ⇢0(c) = ⇢(c) and
⇢0(c0) = ⇢(c0) such that

⇢0 |=
_

µ2S
('[c/⇤] ^

_

1in

('i[c0/⇤]

^
^

1 j<i

(' j[c j/⇤] ^ '0j[c0j/⇤] ^ path(c j, c0j))))
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or, equivalently, i↵ there exist some rule µ and 1  i  n such that

⇢0 |= '[c/⇤] ^ 'i[c0/⇤]
^

1 j<i

(' j[c j/⇤] ^ '0j[c0j/⇤] ^ path(c j, c0j))

By Lemma 1, we have that ⇢0 |= '[c/⇤] i↵ (⇢0(c), ⇢0) |= ' and ⇢0 |= 'i[c0/⇤] i↵
(⇢0(c0), ⇢0) |= 'i, which are condition (1) and (3). Also by Lemma 1, for each
1  j < i, we have that ⇢0 |= ' j[c j/⇤] i↵ (⇢0(c j), ⇢0) |= ' j and ⇢0 |= '0j[c0j/⇤] i↵
(⇢0(c0j), ⇢

0) |= '0j, and, by Lemma 21, that ⇢0 |= path(c j, c0j) i↵ ⇢0(c j) )?TS ⇢0(c0j),
which is condition (2). We can conclude that the existence of some ⇢0 satisfying
the formula above is equivalent to the existence of some ⇢0 satisfying the second
bullet, and we are done. ⇤

The following states that diverge(c) encodes the divergence predicate ":

Lemma 25. Let ⇢ : Var! T . Then ⇢ |= diverge(c) i↵ ⇢(c) does not terminate.

Proof. For an arbitrary �, we let Prop(�) be the property stating that there exists
an infinite set P� of finite �-sequences starting at �. First we prove that Prop(�)
holds i↵ � does not terminate. For the direct implication, we inductively construct
an infinite �-sequence �0, ..., �n, ...such that �0 = � and Prop(�n) holds for all n.
Prop(�0) holds because �0 = �. Now, let us inductively assume Prop(�n) holds and
let �(�n) = {� | �n � �} be the set of successors of �n. For each � 2�(�n), let P0� be
the set {⌧ | ⌧ 2 P�n and �n� is a prefix of ⌧}. Clearly, the sets P0� form a partition of
P�n . One of the assumption of relative completeness is that each configuration has a
finite number of �-successors, that is, �(�n) is finite. Since P�n is infinite (because
we assumed Prop(�n)), there is at least one � 2�(�n) with P0� infinite. Then we
choose �n+1 to be �. Note that �n � �n+1 and P�n+1 = {⌧ | �n⌧ 2 P0�n+1

} is infinite,
thus Prop(�n+1) holds. We can conclude that � does not terminate. For the converse
implication, it su�ces to notice that if there is an infinite �-sequence starting at
�, then the set of finite prefixes of that sequence is infinite. A direct consequence
of this result is that � does not terminate i↵ for each n, there exists a �-sequence
of length n starting at �. Indeed, if � does not terminate, then for each n we can
take the prefix of length n of the infinite sequence starting at �. Conversely, if there
exists some �-sequence starting at � for each n, then the set of such sequences if
infinite, and thus � does not terminate.

Using the result above, it su�ces to prove that ⇢ |= diverge(c) i↵ for each m
there exists some �-sequence starting at ⇢(c). By Lemma 24, we have that for each
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m there exists some ⇢0 with ⇢0(c) = ⇢(c) such that ⇢0 |= V
0i<m succ(ci, ci+1)^c0 = c

i↵ ⇢0(c0) = ⇢0(c) = ⇢(c) and ⇢0(c0) � ... � ⇢0(cm), that is, i↵ there is some
�-sequence of length m starting at ⇢(c), and we are done. ⇤

The following establishes a relation between diverge(c) and succ(c, c0) which
we use later on in Section 3.7.2:

Lemma 26. |= diverge(c)$ 9c0 (succ(c, c0) ^ diverge(c0)).

Proof. We prove that ⇢ |= diverge(c) i↵ ⇢ |= 9c0 (succ(c, c0) ^ diverge(c0)). By
Lemma 25, ⇢ |= diverge(c) i↵ ⇢(c) does not terminate, that is, i↵ there exist
some �0, ..., �n, ... with ⇢(c) = �0 and �i � �i+1 for each i � 0. Equivalently,
we can state it as there exist some �0, �1 with ⇢(c) = �0 such that �0 � �1 and
�1 does not terminate. Further, that is i↵ there exists some ⇢0 with ⇢0(c) = ⇢(c)
such that ⇢0(c) � ⇢0(c0) and ⇢0(c0) does not terminate. By Lemma 25, that is i↵
⇢0 |= succ(c, c0) ^ diverge(c), and we are done. ⇤

The following summarises the main properties of step(c, c0), of path(c, c0), of
succ(c, c0), and of diverge(c):

Lemma 27. Let ⇢ : Var ! T . Then ⇢(c) )TS ⇢(c0) i↵ ⇢ |= step(c, c0); ⇢(c) )?TS
⇢(c0) i↵ ⇢ |= path(c, c0); ⇢(c0) � ⇢(c) i↵ ⇢ |= succ(c, c0); and ⇢(c) does not terminate
i↵ ⇢ |= diverge(c).

Proof. Follows by Lemmas 22 , 21 , 24 and 25. ⇤

Finally, the following establishes the property of coreach('):

Lemma 28. Let � 2 TCfg and ⇢ :Var! T . Then (�, ⇢) |= coreach(') i↵ there exists
some �0 2 TCfg with (�0, ⇢) |= ' and � )?TS �0.

Proof. We have that (�, ⇢) |= coreach(') i↵ there exists some ⇢0 which agrees
with ⇢ on Var \ {c, c0} with ⇢0(c) = � such that ⇢0 |= '[c0/⇤] ^ path(c, c0). By
Lemma 21, that is i↵ there exists some ⇢0 which agrees with ⇢ on Var \ {c, c0} with
⇢0(c) = � such that ⇢0 |= '[c0/⇤] and � )?TS ⇢0(c0). Let us denote ⇢(c0) by �0. Then
(�, ⇢) |= coreach(') i↵ there exist some �0 and some ⇢0 which agrees with ⇢ on
Var \ {c, c0} with ⇢0(c) = � and ⇢0(c0) = �0 such that ⇢0 |= '[c0/⇤] and � )?TS �0.
We have that (⇢0(c0), ⇢0) |= ' i↵ ⇢0 |= '[c0/⇤]. Since c, c0 do not occur in ', and ⇢
and ⇢0 agree on Var \ {c0 , c0}, it follows that ⇢0 |= '[c0/⇤] i↵ (�0, ⇢) |= '. Thus, we
can conclude that (�, ⇢) |= coreach(') i↵ there exists some �0 with (�0, ⇢) |= ' and
� )?TS �0, and we are done. ⇤
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ruleµ(s̄, j, i) ⌘ 9c9c09c1...cn9c01...c
0
n (9x̄ ('[c/⇤] ^ '0[c0/⇤] ^

^

1i0n

'i0[ci0/⇤] ^ '0i0[c0i0/⇤])

^ �(a, b, add(s̄, j, i),↵(c)) ^ �(a, b, add(s̄, j, i + 1),↵(c0))
^

^

1i0n

(�(a, b, add(s̄, j, i, i0, 0),↵(ci0)) ^ �(a, b, add(s̄, j, i, i0,m),↵(c0i0))))

id(s̄, j, i) ⌘ 9c9c0 (�(a, b, add(s̄, j, i),↵(c)) ^ �(a, b, add(s̄, j, i + 1),↵(c0)) ^ c = c0)
path(c, c0) ⌘ 9k9m (k � 0 ^ m � 0 ^ 9a9b (9c0 (�(a, b, 0,↵(c0)) ^ c = c0)

^9cm (�(a, b,m,↵(cm)) ^ c0 = cm)
^8s̄8 j8i (seq(s̄, j) ^ j = k ^ 0  i < m! id(s̄, j, i))
^8s̄8 j8i (seq(s̄, j) ^ j < k ^ 0  i < m!

_

µ2S
ruleµ(s̄, j, i) _ id(s̄, j, i))))

diverge(c) ⌘ 8m9a9b (9c0 (�(a, b, 0,↵(c0)) ^ c = c0) ^ 8i (0  i < m
! 9ci9ci+1 (�(a, b, i,↵(ci)) ^ �(a, b, i + 1,↵(ci+1)) ^ succ(ci, ci+1))))

Figure 3.8: FOL definitions of a finite )TS -sequence (path) and an infinite �-
sequence (diverge)

Formulae Gödelization

We use Gödel’s � predicate to encode quantification over sequences of configura-
tions in FOL (see [104] for an accessible introduction to Gödelization and the �
predicate). The predicate � relies on the reminder of a when divided by b, written
a mod b and defined as

r = a mod b ⌘ 9d (b ⇥ d  a ^ b ⇥ (d + 1) > a ^ a = b ⇥ d + r)

Gödel’s �(a, b, i, x) predicate over natural numbers is defined as

�(a, b, i, x) ⌘ x = a mod (1 + (1 + i) ⇥ b)

The assumptions on the model T allow us to express �. If u0, ..., un is a sequence of
natural numbers, then there exist natural numbers a and b such that �(a, b, i, x) holds
i↵ x = ui, for each 0  i  n and x. Thus, for any given n, we can systematically
translate sentences 9u0, ..., un ' into equivalent sentences 9a, b'. As part of this
translation, each atomic formula pred of ' is translated into

9ui1 , ..., uik (�(a, b, i1, ui1) ^ · · · ^ �(a, b, ik, uik) ^ pred)
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where ui1 , ..., uik are all the variables among u0, ..., un occurring in pred. Even if n
itself is quantified, only a fixed (independent of n) subset of the variables u0, ..., un

can occur in pred, making ' a proper FOL formula. Thus, � enables quantification
over sequences.

Using the injective function ↵ : TCfg ! N we can extend the result above to se-
quences of configurations. Sentences of the form 9c0, ..., cn ' can be systematically
translated into equivalent sentences of the form 9a, b', where ' is a FOL formula
replacing each atomic formula pred of ' containing variables ci1 , ..., cik with

9ci1 , ..., cik (�(a, b, i1, ↵(ci1)) ^ · · · ^ �(a, b, ik, ↵(cik)) ^ pred)

The injectivity of ↵ guarantees that di↵erent free occurrences of the same variable
ci in ' are correctly related in '.

Thus far, we can encode quantification over finite sequences of configurations.
A finite sequences is (syntactically) represented as a finite set of variables indexed
by natural numbers. However, path(c, c0) quantifies over the set Ck,m, which contain
variables indexed by sequences s, i. To encode a such a sequence s, i into a natural
number, we need division (a ÷ b) and power (ab), which can be defined as follows.

a÷b=d ⌘ b ⇥ d  a ^ b ⇥ (d + 1) > a
ab=d ⌘ 9x0...xb (x0=1 ^ xb=d ^ 8i (1 i b! xi= xi�1⇥a))

Equivalently, we can define ab using � and only four quantifiers.

ab=d ⌘ b�0 ^ 9a09b0 (�(a0, b0, 0, 1) ^ �(a0, b0, b, d) ^ 8i (1 ib
! 9x9x0 (�(a0,b0,i, x)) ^ �(a0,b0,i�1, x0) ^ x= x0⇥a)))

For notational simplicity, we write division, reminder, and power as functions rather
than as relations. Also, to save space, we write abd instead of ab^bd. Let
p be the maximum of m and nc + 1, and let s = i1, ..., i2 j be a sequence of indices.
Recall that i1, i3, ...i2 j�1 are between 0 and m � 1, and i2, i4, ..., i2 j between 1 and nc.
Then, we can view s as a number s̄ in base p, namely s̄ = ⌃2 j

t=1it ⇥ pt�1. Conversely,
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we encode the fact that s̄ is indeed representing some sequence s as follows

seq(s̄, j) ⌘ s̄ = 0 ^ j = 0
_ j > 0 ^ p2⇥ j�1  s̄ < p2⇥ j

^ 8t (1 t j! 9d (d= (s̄÷p2⇥t�2) mod p ^ 0d<m))
^ 8t (1 t j! 9d (d= (s̄÷p2⇥t�1) mod p ^ 1dnc))

Intuitively, the first line covers the case of the empty sequence ( j = 0). For the case
of non-empty sequences, the second line states that s̄ has exactly 2 j digits, the third
that the digits on even positions (corresponding to i1, ..., i2 j�1) are between 0 and
m � 1, and the fourth that the digits on odd positions (corresponding to i2, ..., i2 j)
are between 1 and nc. Similarly, to the sequence s, i we associate the number
⌃

2 j
t=1it ⇥ pt�1 + i ⇥ p2⇥ j. For convenience, we define

add(s̄, j, a) ⌘ s̄ + a ⇥ p2⇥ j

add(s̄, j, a, b, d) ⌘ s̄ + a ⇥ p2⇥ j + b ⇥ p2⇥ j+1 + d ⇥ p2⇥ j+2

For some s̄ associated to some s of length 2 j, these functions give the numbers
associated to the sequences s, a and s, a, b, d.

Figure 3.8 presents the encoding of a finite)TS -sequence (path(c, c0)) and an
infinite �-sequence (diverge(c)) using only a fixed number of quantifiers. Recall
that path(c, c0) existentially quantifies over the finite set of variables Ck,m. Using
the encoding of sequences s, i into numbers in base p with at most 2k + 1 digits,
we can instead quantify over a sequence of configurations of length at most p2k+1.
Further, using the � predicate and the injective function ↵ : TCfg ! N, we can
instead quantify over two natural numbers, namely a, b. Then, we can replace
the big conjunctions in path(c, c0) with universal quantification over s̄, j, i and the
appropriate restrictions like seq(s̄, j), 0  i < m, etc. We introduce ruleµ(s̄, j, i)
as the encoding of ruleµs,i. It replaces the configuration variables indexed by se-
quences with locally quantified variables c, c0, c1, c01, ..., cn, c0n (n is the number of
conditions of µ), and it existentially quantifies x̄, the variables occurring free in
the rules. It also ensures that these local configuration variables are instantiated
consistently across the formula. For example, for the variable cs,i, the predicate
�(a, b, add(s̄, j, i), ↵(c)) ensures that the variable c is instantiated with the value
intended for cs,i, that is, the configuration mapped by ↵ into the number on the
position s̄ + i ⇥ p2⇥ j of the sequence of natural numbers Gödelized by a and b.
Similarly, id(s̄, j, i) encodes cs,i = cs,i+1. Formally, we have the following result:
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Lemma 29. |= path(c, c0)$ path(c, c0).

Proof. Let ⇢, ⇢̄ : Var! T . We call ⇢, ⇢̄ a Gödel pair i↵

(1) ⇢ and ⇢̄ agree on c, c0, k,m

(2) for each indexing sequence s of length 2 j with 0  j  ⇢(k) and for each
0  i  ⇢(m) it is the case that

�(⇢̄(a), ⇢̄(b), s̄ + i ⇥ p2⇥ j, ↵(⇢(cs,i)))

holds, where p is the maximum of ⇢(m) and nc. Intuitively, this states that
the number associated to the configuration ⇢(cs,i) by the injective function ↵
is on the position s̄ + i ⇥ p2⇥ j (the position associated to the sequence s, i) in
the sequence of natural numbers Gödelized by the pair ⇢̄(a), ⇢̄(b).

We intend to use ⇢ to interpret the top-level existential quantifiers in path(c, c0)
and ⇢̄ to interpret the top-level existential quantifiers in path(c, c0). To simplify the
notation, for variables a of sort N, like k, m, a, b, i, j, etc, we use its syntactic name,
e.g. k, to also refer to its interpretation, e.g. ⇢(k). Condition (1) above ensures that
variables common to both path(c, c0) and path(c, c0) are interpreted consistently by
⇢ and ⇢̄, and by valuations which agree with ⇢ or ⇢̄ on these common variables.
With this convention, the instance of the � predicate above becomes

�(a, b, s̄ + i ⇥ p2⇥ j, ↵(⇢(cs,i)))

We prove that for each Gödel pair ⇢, ⇢̄, the following two statements are
equivalent

⇢ |= c = c0 ^ c0 = cm ^ pathk,m (3)

⇢̄ |= 9c0 (�(a, b, 0,↵(c0)) ^ c = c0)

^ 9cm (�(a, b,m,↵(cm)) ^ c = cm)

^ 8s̄8 j8i (seq(s̄, j) ^ j = k ^ 0  i < m! id(s̄, j, i))

^ 8s̄8 j8i (seq(s̄, j) ^ j < k ^ 0  i < m

!
_

µ2S
ruleµ(s̄, j, i) _ id(s̄, j, i)) (4)

First, we prove that ⇢ |= ruleµs,i i↵ ⇢̄ |= ruleµ(s̄, j, i) for each indexing sequence s of
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length 2 j with 0  j < k and each 0  i  m and each s̄ such that s̄ is the number
associated to the sequence s, i. Recall that ruleµ(s̄, j, i) is obtained from ruleµs,i by

• substituting cs,i, cs,i+1 with c, c0 and cs,i,i0,0, cs,i,i0,m with c j, c0j for each 1  i0 
n;

• by adding constrains on c, c0, c1, c01, ..., cn, cn using the � predicate and the ↵
function; and

• existentially quantifying c, c0, c1, c01, ..., cn, c0n.

Let ⇢̄µ :Var!T which agrees with ⇢̄ on Var \ {c, c0, c1, c01, ..., cn, c0n}. Then we have
that ⇢̄µ satisfies the constrains on the configuration variables in the definition of
ruleµ(s̄, j, i), namely

⇢µ |= �(a, b, add(s̄, j, i),↵(c)) ^ �(a, b, add(s̄, j, i + 1),↵(c0))

^
^

1i0n

(�(a, b, add(s̄, j, i, i0, 0),↵(ci0))

^ �(a, b, add(s̄, j, i, i0,m),↵(c0i0)))

i↵ �(a, b, add(s̄, j, i),↵(⇢̄µ(c))) and �(a, b, add(s̄, j, i + 1),↵(⇢̄µ(c0))) hold, and for
each 1  i0  n, it is the case that both �(a, b, add(s̄, j, i, i0, 0),↵(⇢̄µ(ci0))) and
�(a, b, add(s̄, j, i, i0,m),↵(⇢̄µ(c0i0))) hold. Since ⇢ and ⇢̄ are a Gödel pair, condition
(2) implies that �(a, b, add(s̄, j, i),↵(⇢(cs,i))) and �(a, b, add(s̄, j, i + 1),↵(⇢(cs,i+1)))
hold, and also that for each 1  i0  n, both �(a, b, add(s̄, j, i, i0, 0),↵(⇢(cs,i,i0,0)))
and �(a, b, add(s̄, j, i, i0,m),↵(⇢(c0s,i,i0,m))) hold. Further, since ↵ is injective, and
the first three arguments of � uniquely determine the fourth argument, we can
conclude there exists a unique ⇢̄µ which satisfies the constrains above, namely
the one with ⇢̄µ(c) = ⇢(cs,i) and ⇢̄µ(c0) = ⇢(cs,i+1), and with ⇢̄µ(ci0) = ⇢(cs,i,i0,0) and
⇢̄µ(c0i0) = ⇢(cs,i,i0,m) for each 1  i0  n. Then, it follows that ⇢ |= ruleµs,i i↵ ⇢̄µ satisfies
ruleµs,i with the configuration variables substituted, that is, i↵ ⇢̄ |= ruleµ(s̄, j, i).

Similarly, we prove that ⇢ |= cs,i = cs,i+1 i↵ ⇢̄ |= id(s, j, i) for each indexing
sequence s of length 2 j with 0  j  k and each 0  i  m and each s̄ such that s̄ is
the number associated to the sequence s, i. Let ⇢̄id : Var! T which agrees with ⇢̄
on Var \ {c, c0}. Then we have that

⇢̄id |= �(a, b, add(s̄, j, i),↵(c)) ^ �(a, b, add(s̄, j, i + 1),↵(c0))
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i↵ �(a, b, add(s̄, j, i),↵(⇢̄id(c))) and �(a, b, add(s̄, j, i + 1),↵(⇢̄id(c0))) hold. Since
⇢ and ⇢̄ are a Gödel pair, condition (2) implies that �(a, b, add(s̄, j, i),↵(⇢(cs,i)))
and �(a, b, add(s̄, j, i + 1),↵(⇢(cs,i+1))) hold. Then, we can conclude there exists a
unique ⇢̄id which satisfies the constrains above, namely the one with ⇢̄id(c) = ⇢(cs,i)
and ⇢̄id(c0) = ⇢(cs,i+1). It follows trivially that ⇢ |= cs,i = cs,i+1 i↵ ⇢̄id |= c = c0, that
is, i↵ ⇢̄ |= id(s, j, i).

Based on the above, and on the fact that seq(s̄, j) holds i↵ s̄ is a number
associated to a sequence s of length 2 j, we conclude that

⇢ |= pathk,m

⇢̄ |= 8s̄8 j8i (seq(s̄, j) ^ j = k ^ 0  i < m! id(s̄, j, i))

^ 8s̄8 j8i (seq(s̄, j) ^ j < k ^ 0  i < m

!
_

µ2S
ruleµ(s̄, j, i) _ id(s̄, j, i))

Finally, notice that by condition (2), �(a, b, 0,↵(⇢(c0))) and �(a, b,m,↵(⇢(cm)))
hold. Thus, we have that

⇢̄ |= 9c0 (�(a, b, 0,↵(c0)) ^ c = c0)

^ 9cm (�(a, b,m,↵(cm)) ^ c0 = cm)

i↵ ⇢(c0) = ⇢̄(c) and ⇢(cm) = ⇢̄(c0), that is, i↵ ⇢ |= c = c0 ^ c0 = cm. Therefore, we
conclude that statements (3) and (4) are equivalent.

To complete the proof of the lemma, we show for each ⇢0 that ⇢0 |= path(c, c0)
i↵ ⇢0 |= path(c, c0). We have that ⇢0 |= path(c, c0) i↵ there exist some k,m 2 N and
some ⇢ : Var ! T which agrees with ⇢0 on c, c0 such that statement (3) holds.
We also have that ⇢0 |= path(c, c0) i↵ there exist some k,m, a, b 2 N and some
⇢̄ : Var! T which agrees with ⇢0 on c, c0 such that statement (4) holds. We know
that (3) and (4) are equivalent for Gödel pairs, hence it su�ces to construct for
each ⇢ satisfying (3) a ⇢̄ such that ⇢, ⇢̄ are a Gödel pair, and conversely, to construct
for each ⇢̄ satisfying (4) a ⇢ such that ⇢, ⇢̄ are a Gödel pair. For both directions,
we choose such that ⇢ and ⇢̄ agree on c, c0, k,m, thus we satisfy (1). From ⇢, we
construct ⇢̄ by choosing a, b to be the Gödel numbers associated to the sequence
(↵(cs,i)), where each indexing sequence s is of length 2 j with 0  j  k and for
each i is such that 0  i  m (the numbers are ordered in a sequence according to
the numbers associated to the sequences s, i). Conversely, from ⇢̄, (4) implies that
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⇢̄ |= 9c00 (�(a, b, s̄ + i ⇥ p2⇥ j, ↵(c00))) for each number s̄ associated to an indexing
sequence s of length 2 j with 0  j  k and for each 0  i  m. Then we choose
⇢ such that ⇢(cs,i) is the unique configurations in which c00 is instantiated in the
formula above. In both cases, the pair ⇢, ⇢̄ satisfies (2), and we are done. ⇤

The encoding of diverge(c) follows the same pattern as that of path(c, c0): it
replaces the quantification over a sequence of configurations with the quantification
over a and b, it replaces the big conjunction with the universal quantification over
i and the restriction 0  i < m, and uses � and ↵ to ensure the locally quantified
variables ci and ci+1 are instantiated consistently. Formally, we have the following
result:

Lemma 30. |= diverge(c)$ diverge(c).

Proof. The proof takes a similar approach to the previous one. Let ⇢, ⇢̄ : Var! T .
We call ⇢, ⇢̄ a Gödel pair i↵

(1) ⇢ and ⇢̄ agree on c,m

(2) for each 0  i  ⇢(m) it is the case that

�(⇢̄(a), ⇢̄(b), i, ↵(⇢(ci)))

holds. Intuitively, this states that the number associated to the configuration
⇢(ci) by the injective function ↵ is on the position i in the sequence of natural
numbers Gödelized by the pair ⇢̄(a), ⇢̄(b).

We intend to use ⇢ to interpret the top-level quantifiers in diverge(c) and ⇢̄ to
interpret the top-level quantifiers in diverge(c). To simplify the notation, for
variables a of sort N, like, m, a, b, i, etc, we use its syntactic name, e.g. m, to also
refer to its interpretation, e.g. ⇢(k). Condition (1) above ensures that variables
common to both diverge(c) and diverge(c) are interpreted consistently by ⇢ and ⇢̄,
and by valuations which agree with ⇢ or ⇢̄ on these common variables. With this
convention, the instance of the � predicate above becomes

�(a, b, i, ↵(⇢(ci)))

We prove that for each Gödel pair ⇢, ⇢̄, the following two statements are
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equivalent

⇢ |= c = c0 ^
^

0i<m

succ(ci, ci+1) (3)

⇢̄ |= 9c0 (�(a, b, 0,↵(c0)) ^ c = c0)

^ 8i (0  i < m! 9ci9ci+1 (�(a, b, i,↵(ci))

^ �(a, b, i + 1,↵(ci+1)) ^ succ(ci, ci+1))) (4)

First, we prove that ⇢ |= succ(ci, ci+1) i↵

⇢̄ |= 9ci9ci+1 (�(a, b, i,↵(ci)) ^ �(a, b, i + 1,↵(ci+1))

^ succ(ci, ci+1)) (5)

for each 0  i < m. Let ⇢̄0 :Var!T which agrees with ⇢̄ on Var \ {ci, ci+1}. Then
we have that ⇢̄0 satisfies the constrains on the configuration variables namely

⇢̄0 |= �(a, b, i,↵(ci)) ^ �(a, b, i + 1,↵(ci+1))

i↵ �(a, b, i,↵(⇢̄0(ci))) and �(a, b, i + 1,↵(⇢̄0(ci+1))) hold. Since ⇢ and ⇢̄ are a Gödel
pair, condition (2) implies that �(a, b, i,↵(⇢(ci))) and �(a, b, i + 1,↵(⇢(ci+1))) hold.
Further, since ↵ is injective, and the first three arguments of � uniquely determine
the fourth argument, we can conclude there exists a unique ⇢̄0 which satisfies the
constrains above, namely the one with ⇢̄0(ci) = ⇢(ci) and ⇢̄0(ci+1) = ⇢(ci+1). Then, it
follows that ⇢ |= succ(ci, ci+1) i↵ ⇢̄0 satisfies

⇢̄0 |= �(a, b, i,↵(ci))^�(a, b, i + 1,↵(ci+1))^succ(ci, ci+1)

that is, i↵ ⇢̄ satisfies (5).
Based on the above, we can conclude that

⇢ |=
^

0i<m

succ(ci, ci+1)

⇢̄ |= 8i (0  i < m! 9ci9ci+1 (�(a, b, i,↵(ci))

^ �(a, b, i + 1,↵(ci+1)) ^ succ(ci, ci+1)))

Finally, notice that by condition (2), the predicates �(a, b, 0,↵(⇢(c0))) holds. Thus,
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we have that
⇢̄ |= 9c0 (�(a, b, 0,↵(c0)) ^ c = c0)

i↵ ⇢(c0) = ⇢̄(c), that is, i↵ ⇢ |= c = c0. Therefore, we conclude that statements (3)
and (4) are equivalent.

To complete the proof of the lemma, we show for each ⇢0 that ⇢0 |= diverge(c)
i↵ ⇢0 |= diverge(c). We have that ⇢0 |= diverge(c) i↵ for each m 2 N there exists
some ⇢ : Var ! T which agrees with ⇢0 on c such that statement (3) holds. We
also have that ⇢0 |= diverge(c) i↵ for each m 2 N there exist some a, b 2 N and
some ⇢̄ : Var ! T which agrees with ⇢0 on c such that statement (4) holds. We
know that (3) and (4) are equivalent for Gödel pairs, hence it su�ces to construct
for each ⇢ satisfying (3) a ⇢̄ such that ⇢, ⇢̄ are a Gödel pair and agree on m, and
conversely, to construct for each ⇢̄ satisfying (4) a ⇢ such that ⇢, ⇢̄ are a Gödel pair
and agree m. For both directions, we choose such that ⇢ and ⇢̄ agree on c,m, thus
we satisfy (1). From ⇢, we construct ⇢̄ by choosing a, b to be the Gödel numbers
associated to the sequence ↵(c0), ...,↵(cm). Conversely, from ⇢̄, (4) implies that
⇢̄ |= 9c0 (�(a, b, i, ↵(c0))) for each number 0  i  m. Then we choose ⇢ such that
⇢(ci) is the unique configurations in which c00 is instantiated in the formula above.
In both cases, the pair ⇢, ⇢̄ satisfies (2), and we are done. ⇤

The following summarises the two results above:

Lemma 31.|=path(c, c0)$path(c, c0) and |=diverge(c)$diverge(c).

Proof. Follows by Lemma 29 and Lemma 30. ⇤

Consequently, we can use path(c, c0), to express step(c, c0), succ(c, c0) and
coreach(') in FOL. Then, diverge(c), which uses succ(c, c0), is a FOL formula.
Since our relative completeness proof only uses these predicates besides other FOL
formulae over the signature ⌃, we can conclude that all the formulae used in our
proof are FOL formulae. For notational simplicity, we continue working with path
and diverge instead of path and diverge.

Semantic Validity and Relative Completeness

We derive a proof for a valid rule ' )9 '0 with the proof system in Figure 3.1,
using the FOL predicates encoding the transition system to express intermediate
formulae. First, we show that the semantic validity of reachability rules can be
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framed as FOL validity. This does not give us relative completeness directly, but it
enables us to begin the derivation process.

Lemma 32.S|=')9'0 i↵ |='!9c (⇤=c^diverge(c))_coreach('0).

Proof. Let � 2 TCfg and ⇢ : Var ! T . We establish the necessary and su�cient
conditions such that

(�, ⇢) |= '! 9c (⇤ = c ^ diverge(c)) _ coreach('0)

According to the semantics of implications, the above happens i↵ (�, ⇢) |= ' implies
either (�, ⇢) |= 9c (⇤ = c ^ diverge(c)) or (�, ⇢) |= coreach('0). By Lemma 25,
the former holds i↵ � does not terminate, while by Lemma 28 the latter holds i↵
there exists some �0 2 TCfg such that (�0, ⇢) |= '0 and � )?TS �0. Thus, we can
conclude that |= ' ! 9c (⇤ = c ^ diverge(c)) _ coreach('0) i↵ for each � and ⇢
we have that (�, ⇢) |= ' implies that either � does not terminate or there exists
some �0 2 TCfg such that (�0, ⇢) |= '0 and � )?TS �0. According to the definition of
semantic validity for reachability rules (see Definition 13), the above conditions
hold i↵ S |= ')9 '0, and we are done. ⇤

The following three lemmas are useful in proving our relative completeness
result.

Lemma 33. IfA ` ⇤=c ^ path(c, c0)) ⇤=c0 is derivable and ' is well-defined,
thenA ` ' ^ '[c/⇤] ^ '0[c0/⇤] ^ path(c, c0)) '0 is derivable.

Proof. Since ' is well-defined, we have that |= ' ^ '[c/⇤] ! ⇤ = c, by
Lemma 2. Also, it is easy to see that |= ⇤ = c0 ^ '0[c0/⇤] ! '0. Thus,
A ` ' ^ '[c/⇤] ^ '0[c0/⇤] ^ path(c, c0)) '0 is derivable by Consequence with
the two implications above from the sequent

A ` ⇤ = c ^ '0[c0/⇤] ^ path(c, c0)) ⇤ = c0 ^ '0[c0/⇤]

which follows by Logical Framing with '0[c0/⇤] from

A ` ⇤ = c ^ path(c, c0)) ⇤ = c0

The last sequent is derivable according to the hypothesis, and we are done. ⇤

Lemma 34. IfA ` ⇤ = c ^ step(c, c00) ^ path(c00, c0)) ⇤ = c0 is derivable, then
A ` ⇤ = c ^ path(c, c0)) ⇤ = c0 is derivable.
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Proof. By Lemma 23, we have that

|= path(c, c0)! c = c0 _ 9c00 (step(c, c00) ^ path(c00, c0))

Then, A ` ⇤ = c ^ path(c, c0) ) ⇤ = c0 is derivable by Consequence with the
implication above, Abstraction with c00, and Case Analysis from

A ` ⇤ = c ^ c = c0 ) ⇤ = c0

A ` ⇤ = c ^ step(c, c00) ^ path(c00, c0)) ⇤ = c0

The former follows by Consequence and Reflexivity, while the latter is derivable
according to the hypothesis, and we are done. ⇤

Lemma 35. If S [C ` ⇤ = c ^ path(c, c0) ) ⇤ = c0 is derivable, then S `C
⇤ = c ^ step(c, c0)) ⇤ = c0 is derivable.

Proof. The sequent S `C ⇤ = c ^ step(c, c0) ) ⇤ = c0 follows by Abstraction
with c1, c01, ..., cnc, c0nc, x̄ (the top existentially quantified variables in the definition
of step(c, c0)) from

S `C
_

µ2S
('[c/⇤] ^ '0[c0/⇤] ^

^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i)))

^ ⇤ = c

)9 ⇤ = c

Then, by Consequence, we can drop ⇤ = c and substitute c by ⇤, and it su�ces to
derive

S `C
_

µ2S
(' ^ '0[c0/⇤] ^

^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i)))

)9 ⇤ = c

Recall that one of the assumptions of relative completeness is that S is not empty.
Then, by |S| � 1 applications of Case Analysis, it su�ces to derive for each µ 2 S

S `C ' ^ '0[c0/⇤] ^
^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i)))⇤=c

Recall that one of the assumptions of relative completeness is that '0 is well-defined.
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By Lemma 2, |= '0 ^ '0[c0/⇤]! ⇤ = c0, thus by Consequence it su�ces to derive

S `C ' ^ '0[c0/⇤] ^
^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i))

)9 '0 ^ '0[c0/⇤]

The last sequent follows by Logical Framing with '0[c0/⇤] and Axiom with µ 2 S
from the prerequisites

S [C ` ' j ^
^

1in

('i[ci/⇤] ^ '0i[c0i/⇤] ^ path(ci, c0i))) '0j

for each 1  j  n. By Consequence, it su�ces to derive

S [C ` ' j ^ ' j[c j/⇤] ^ '0j[c0j/⇤] ^ path(c j, c0j)) '0j

According to the hypothesis, S [C ` ⇤ = c ^ path(c, c0)) ⇤ = c0

is derivable. Recall that one of the assumptions of relative completeness is that ' j

is well-defined. Then the last sequent follows by Lemma 33 with ↵-renaming c, c0

into c j, c0j, and we are done. ⇤

The following lemma states that if there is a path in the transition system from
c to c0 (expressed by path(c, c0)) then we can derive it.

Lemma 36. S ` ⇤ = c ^ path(c, c0)) ⇤ = c0.

Proof. By Lemma 34, it su�ces to derive

S ` ⇤ = c ^ step(c, c00) ^ path(c00, c0)) ⇤ = c0

Let C ⌘ {⇤ = c ^ step(c, c00) ^ path(c00, c0) )9 ⇤ = c0}. Then, by Circularity, it
su�ces to derive

S `C ⇤ = c ^ step(c, c00) ^ path(c00, c0)) ⇤ = c0

which in turn follows by Transitivity from

S `C ⇤=c^step(c, c00)^path(c00, c0)) ⇤=c00^path(c00, c0) (1)

S [C ` ⇤=c00^path(c00, c0)) ⇤=c0 (2)
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Sequent (1) follows by Logic Framing with path(c00, c0) from

S `C ⇤ = c ^ step(c, c00)) ⇤ = c00

By Lemma 35 (with ↵-renaming c00 into c0), it su�ces to derive

S [C ` ⇤ = c ^ path(c, c0)) ⇤ = c0

Further, by Lemma 34, it su�ces to derive

S [C ` ⇤ = c ^ step(c, c00) ^ path(c00, c0)) ⇤ = c0

which follows by Axiom with the rule in C. By Lemma 34 (with ↵-renaming c00

into c), sequent (2) follows from

S [C ` ⇤ = c ^ step(c, c00) ^ path(c00, c0)) ⇤ = c0

which follows by Axiom with the rule in C, and we are done. ⇤

The result above has the following consequence:

Lemma 37. S `C ⇤ = c ^ step(c, c0)) ⇤ = c0.

Proof. By Lemma 35, it su�ces to derive

S [C ` ⇤ = c ^ path(c, c0)) ⇤ = c0

which follows form Lemma 36 and weakening with S ✓ S [C. ⇤

The next lemma states that if c diverges in the transition system then we can
derive it.

Lemma 38. S ` ⇤ = c ^ diverge(c)) !.

Proof. Let C ⌘ {⇤ = c ^ diverge(c))9 !}. Then the sequent

S ` ⇤ = c ^ diverge(c)) !

follows by Circularity from

S `C ⇤ = c ^ diverge(c)) !
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By Lemma 26, we have that

|= diverge(c)! 9c0 (succ(c, c0) ^ diverge(c0))

Thus, by Consequence, and Abstraction with c0, it su�ces to derive

S `C ⇤ = c ^ succ(c, c0) ^ diverge(c0)) !

Let  cond be defined as

 cond ⌘
_

µ2S
('[c/⇤] ^

_

1in

('i[c0/⇤]

^
^

1 j<i

(' j[c j/⇤] ^ '0j[c0j/⇤] ^ path(c j, c0j))))

Then, according to the definition of succ(c, c0), by Case Analysis and Abstraction
with c1, c01, ..., cnc, c0nc, x̄ (the top existentially quantified variables), it su�ce to
derive

S `C ⇤ = c ^ step(c, c0) ^ diverge(c0)) ! (1)

S `C ⇤ = c ^  cond ^ diverge(c0)) ! (2)

By Lemma 37 and Logic Framing with diverge(c0), we derive

S `C ⇤ = c ^ step(c, c0) ^ diverge(c0)) ⇤ = c0 ^ diverge(c0)

By Axiom with the rule in C and ↵-renaming of c0 into c, we derive

S [C ` ⇤ = c0 ^ diverge(c0)) !

Then, sequent (1) follows by Transitivity with the two sequents above. Therefore,
we are left to derive sequent (2). Let 'cond be defined as

'cond ⌘
_

µ2S
(' ^

_

1in

('i[c0/⇤]

^
^

1 j<i

(' j[c j/⇤] ^ '0j[c0j/⇤] ^ path(c j, c0j))))

Then, by Consequence, we can drop ⇤ = c and substitute c by ⇤ in sequent (2),
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and it su�ces to derive

S `C 'cond ^ diverge(c0)) !

Recall that one of the assumptions of relative completeness is that S is not empty.
Then, by |S| � 1 applications of Case Analysis, each followed by n applications
of Case Analysis, it su�ces to derive for each µ 2 S and each 1  i  n (n is the
number of conditions of µ)

S `C ' ^ 'i[c0/⇤] ^
^

1 j<i

(' j[c j/⇤] ^ '0j[c0j/⇤] ^ path(c j, c0j))

^ diverge(c0)

)9 !

Recall that one of the assumption of relative completeness is that S is !-closed
(see Definition 15). Thus, for µ and i there must be some rule µ! 2 S of the form

')9 ! if '1 )9 '01
V
...

V
'i�1 )9 '0i�1

V
'i )9 !

Then the sequent above follows by Axiom with µ! and with the prerequisites

S [C ` 'k ^ 'i[c0/⇤] ^
^

1 j<i

(' j[c j/⇤] ^ '0j[c0j/⇤] ^ path(c j, c0j))

^ diverge(c0)

)9 '0k (3)

S [C ` 'i ^ 'i[c0/⇤] ^
^

1 j<i

(' j[c j/⇤] ^ '0j[c0j/⇤] ^ path(c j, c0j))

^ diverge(c0)

)9 ! (4)

for each 1  k < i. By Consequence, to derive each sequent (3), it su�ces to derive

S [C ` 'k ^ 'k[ck/⇤] ^ '0k[c0k/⇤] ^ path(ck, c0k)) '0k

for each 1  k < i. By Lemma 36, we have that

S ` ⇤ = c ^ path(c, c0)) ⇤ = c0
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is derivable. Recall that one of the assumption of relative completeness is that 'k is
well-defined. Then, the sequents above follow by Lemma 33 with ↵-renaming c, c
into ck, c0k. By Consequence, to derive sequent (4), it su�ces to derive

S [C ` 'i ^ 'i[c0/⇤] ^ diverge(c0)) !

Recall that one of the assumption of relative completeness is that 'i is well-defined.
By Lemma 2, we have that |= 'i ^ 'i[c0/⇤]! ⇤ = c0. Thus, by Consequence the
last sequent follows from

S [C ` ⇤ = c0 ^ diverge(c0)) !

which follows by Axiom with the rule in C and ↵-renaming c into c0, and we are
done. ⇤

Lemma 39. S ` coreach(')) '.

Proof. According to the definition of coreach('), by Abstraction with c, c0, it
su�ces to derive

S ` ⇤ = c ^ '[c0/⇤] ^ path(c, c0)) '

We have that |= ⇤ = c0 ^ '[c0/⇤] ! '0, thus the last sequent follows by Conse-
quence from

S ` ⇤ = c ^ '[c0/⇤] ^ path(c, c0)) ⇤ = c0 ^ '[c0/⇤]

which in turn follows by Logic Framing with '[c0/⇤] from

S ` ⇤ = c ^ path(c, c0)) ⇤ = c0

which is derivable by Lemma 36, and we are done. ⇤

Using the lemmas above, we derive the following rule between the formula
specifying the configurations reaching ' and the divergent configurations, on one
hand, and ' itself, on the other hand.

Lemma 40. S ` 9c (⇤ = c ^ diverge(c)) _ coreach(')) '.
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Proof. By Case Analysis and Abstraction with c, it su�ces to derive

S ` ⇤ = c ^ diverge(c))) '

S ` coreach(')) '

The latter follows by Lemma 39. For former follows by Transitivity from

S ` ⇤ = c ^ diverge(c))) !

S ` !) '

The first sequent is derivable by Lemma 38. To derive the second, Circularity and
Transitivity, it su�ces to derive

S `{!)9'} !) !

S [ {!)9 '} ` !) '

Recall that one of the assumption of relative completeness is that S is !-closed.
Then the first sequent follows by Axiom with !)9 !, while the second sequent
follows by Axiom with !)9 ', and we are done. ⇤

Finally, the relative completeness follows from all the lemmas above. Note
how the configuration model is being used, via Lemma 32, as an oracle to answer
the semantic reachability question formulated as a FOL sentence.

Proof. Suppose that S |= ')9 '0. Then Lemma 32 implies that |= '! (9c (⇤ =
c ^ diverge(c)) _ coreach('0)). By Lemma 40 it follows that S ` 9c (⇤ =
c ^ diverge(c)) _ coreach('0) )9 '0 is derivable. Then the theorem follows
by Consequence. ⇤

A direct consequence of the theorem above is the following (recall that for
relative completeness S is assumed !-closed)

Corollary 2. If S |= '" then S ` ')9 !.
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Chapter 4

Implementation and Evaluation

In this chapter we discuss our implementation of reachability logic. We im-
plemented the K verification infrastructure (KVI) based on the proof system in
Figure 3.1 and K semantics (Section 2.2). The infrastructure takes a K seman-
tics and turns it into a correct-by-construction program verifier. To evaluate out
infrastructure, we instantiate it with the semantics of three real-world languages,
C, Java, and JavaScript. Then we evaluate the generated verifiers on challenging
heap-manipulating programs implementing complex data-structures. The same
data-structures are implemented in the three languages, and verified by our infras-
tructure, based only on the K semantics of the languages, without any language-
specific support. Thus, we argue that our approach is truly language-independent
and separates the language specific features from the mathematical reasoning. We
detail this work in Section 4.2.

Prior to the KVI, we build MatchC, a program verification prototype for Ker-
nelC, a deterministic fragment of C (Section 4.1). MatchC is also based on the
proof-system in Figure 3.1; it specializes the proof system for the K semantics of
KernelC, thus mixing the language-independent reasoning with the operational se-
mantics. For example, it hardcodes when to perform Case Analysis (for constructs
like if), and when to perform heap abstractions folding/unfolding. Since KernelC
is deterministic, MatchC verifies program correctness properties given as one-path
reachability rules ')9 '0. KVI subsumes MatchC; nevertheless, MatchC was a
useful prototype for early experimentation.

Much of the work in this chapter comes from Ros, u and S, tefănescu [90],
S, tefănescu [98], Ros, u and S, tefănescu [93], S, tefănescu et al. [99], Park et al. [75],
and S, tefănescu et al. [100].
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struct listNode { int val; struct listNode *next; };

int main()
{
struct listNode *x;
x = (struct listNode*) malloc(sizeof(struct listNode));
printf("%p\n", x->next);

}

Figure 4.1: C program exhibiting undefined behaviour.

4.1 MatchC

In this section we discuss MatchC, our first prototype verifier based on reachability
logic. First we show some motivating examples (Section 4.1.1), and then we
present the implementation and evaluation of the tool (Section 4.1.2).

4.1.1 Examples using MatchC

Here we discuss a few C examples that illustrate the expressiveness and practicality
of our approach. Figure 4.1 shows an undefined program; Figure 4.2 a function
that reverses a singly linked list; Figure 4.3 a function that reads a sequence of
integers from the standard input into a singly-linked list; Figure 4.4 a program
that respects a stack inspection property, where some functions can only be called
directly or indirectly by certain other functions, and only under certain conditions;
Figure 4.5 shows a function that flattens a tree into a list, traversing the tree in infix
order and in the process printing the list to the standard output in reverse order.
MatchC automatically verifies all these programs w.r.t. their specifications (given
in the grey boxes) in ⇠1s in total (Section 4.1.2).

The unannotated/unspecified program in Figure 4.1 is undefined according to
the C standard: it attempts to print the value of the uninitialized list member next.
Our operational semantics correctly captures undefinedness, in that undefined
programs get stuck during their execution using the semantics. MatchC verifies
programs by executing them according to the semantics. If a fragment of code is
given a specification, then that specification is verified and subsequently used as a
replacement for the corresponding fragment. This is possible in matching logic
because both the language semantics and the specifications are uniformly given as
reachability rules. Since this program is unannotated, its verification reduces to
executing it according to the semantics, so it gets stuck when reading x->next. C
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struct listNode { int val; struct listNode *next; };

struct listNode* reverseList(struct listNode *x)

rule h$)9 return ?p; ···ik h··· list(x)(A))9 list(?p)(rev(A)) ···iheap

{
struct listNode *p;
p = NULL;

inv h··· list(p)(?B), list(x)(?C) ···iheap ^ A = rev(?B)@?C
while(x != NULL) {
struct listNode *y;
y = x->next;
x->next = p;
p = x;
x = y;

}
return p;

}

Figure 4.2: C function reversing a singly-linked list.

compilers happily compile this program and the generated code even does what
one (wrongly) expects it to do, namely prints the residual value of x->next.

Some MatchC notations. Each user-supplied rule or invariant annotation
(grayed area in the figures in this section) corresponds to a reachability rule, also
called a specification, that needs to be derived with the proof system in Figure 3.1.
For the next specifications, we discuss some MatchC notations that help avoid
verbosity. (1) While all specifications are reachability rules ')9 '0, often ' and
'0 share configuration context; we only mention the context once and distribute
“)9” through the context where the changes take place. (2) To avoid writing
existential quantifiers, logical variables starting with “?” are assumed existentially
quantified over the current pattern. (3) To avoid writing environment cells with only
bindings of the form x 7! ?x, we automatically assume them when not explicitly
mentioned and allow users to write the identifier x (i.e., a syntactic constant) instead
of the logical variable ?x. (4) MatchC desugars invariants inv ' loop into rules
'[loop...] )9 '[...] ^ ¬cond(loop), with '[code] the pattern obtained from '

setting the contents of h...ik to code.
Function reverseList in Figure 4.2 reverses a singly-linked list. The matching

logic rule specifying its behavior says that it returns a pointer ?p (here and in the
rest of the thesis, $ stands for the body of the function). The rule also says that,
when the function is called, the heap contains a list starting at x with contents the
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sequence A. When the function returns, the initial list is replaced by a list starting
at ?p with contents the reversed sequence, rev(A). The ··· in the heap cell stands for
the rest of the heap content (the heap frame) which is not touched by the function
and thus stays unchanged. Similarly, all the parts of the configuration that are not
explicitly mentioned (the configuration frame) do not change. The loop invariant
asserts that the heap contains two lists, one starting at p and containing the part
of the sequence that is already reversed, ?B, and one starting at x and containing
the part of the sequence that is yet to be reversed, ?C. The initial sequence A

equals rev(?B) followed by ?C. Again, the rest of the heap and configuration stay
unchanged. Here list, rev, etc., are ordinary operation symbols in the signature
and constrained through axioms (Section 2.3.2). Like in OCaml, @ concatenates
sequences. Variables without ?, like A, are free. Hence, A refers to the same
sequence in the function rule and in the loop invariant, while ?B can refer to
di↵erent sequences in di↵erent loop iterations.

One might, at this early stage, argue that separation logic allows writing more
compact specifications. For example, with the same convention about ? vari-
ables, i.e., they are existentially quantified over the entire formula, the invariant in
Figure 4.2 would be specified in separation logic as

(list(p, ?B) ⇤ list(x, ?C)) ^ A = rev(?B)@?C,

where list(p, ?B) is a predicate capturing the same intuition as our term list(p)(?B).
While this separation logic formula is indeed slightly more compact than our
matching logic pattern, we would like to make two observations.

First, separation logic is heap-centric in its semantics, so “⇤” automatically
refers to the heap, while matching logic makes no such assumptions. If the
heap were the only cell in the configuration, then we could easily adopt the
assumption that heap terms are automatically wrapped within the heap cell, in
which case our notation would be just as compact. However, as seen shortly,
we introduce input/output bu↵ers and a call stack to the configuration. Then the
uniform notation which explicitly mentions the cells becomes quite natural and
useful; separation logic would require syntactic and semantic extensions to deal
with such additional components. As shown in Section 3.5, any separation logic
formula can be mechanically translated into an equivalent matching logic pattern.

Second, the compactness of separation logic formulae is also due to an implicit
heap framing rule in Hoare logics based on separation logic. In matching logic ver-
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struct listNode { int val; struct listNode *next; };

struct listNode *readList(int n)

rule h$)9 return ?x; ···ikhA)9 · ···iinh··· ·)9 list(?x)(A) ···iheap

if n = len(A)
{
int i; struct listNode *x, *p;
if (n == 0) return NULL;
x = (struct listNode*) malloc(sizeof(struct listNode));
scanf("%d", &(x->val));
x->next = NULL;
i = 1; p = x;

inv h?C ···iin h··· lseg(x, p)(?B), p 7! [?v, NULL] ···iheap

^ i  n ^ len(?C) = n � i ^ A = ?B@[?v]@?C
while (i < n) {
p->next = (struct listNode*)

malloc(sizeof(struct listNode));
p = p->next;
scanf("%d", &(p->val));
p->next = NULL;
i += 1;

}
return x;

}

Figure 4.3: C function reading a sequence of integers from the standard input into
a singly-linked list.

ification we deliberately avoid adding any automatic framing rules, simply because
those are not necessary. For example, the “...” symbols in the specifications in
Figure 4.2 are anonymous (first-order) variables that match the corresponding cell
“frames”. Removing all the “...” from the heap cells would state that reverseList
can only be called in contexts where the heap contains nothing but a list that x

points to. This would be hard to specify using separation logic with implicit heap
framing.

Function readList in Figure 4.3 reads n integers from standard input and
stores them in a singly-linked list. The specification says that the function: (1)
returns a pointer ?x; (2) reads from the standard input a sequence of integers A of
length n (matches A and replaces it by the empty sequence ·); (3) allocates a list
starting at ?x with contents A (replaces the empty heap ·). The rest of the input
bu↵er, the heap, and the configuration stay unchanged. The loop invariant states
that the sequence ?C is yet to be read, x points to a list segment ending at p with
contents ?B, p points to a nodeList structure with the value field ?v and the next
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void trusted(int n);
void untrusted(int n);
void any(int n);

void trusted(int n)

rule h$)9 return; ···ik hSistack

if n � 10 _ in(hd(ids(S)), [main, trusted])
{
untrusted(n); any(n);
if (n) trusted(n - 1);

}

void untrusted(int n)

rule h$)9 return; ···ikhSistack

if in(trusted, ids(S))
{ if (n) any(n - 1); }

void any(int n)
{
// possible security policy violation

// (when any is called) if n <= 10

if(n > 10) trusted(n - 1);
}

int main() { trusted(5); any(5); }

Figure 4.4: C program respecting a stack inspection policy.

field NULL, the loop index i is not greater than n, the size of ?C is n � i, and the
initial sequence A equals the concatenation of ?B, ?v, and ?C. The list segment
lseg(x, p) includes x but excludes p. The notation p 7! [?v, NULL] stands for the
term (and not formula) “p 7! ?v, p + 1 7! NULL”.

Figure 4.4 shows a C program that respects the following security policy:
trusted must always be called directly with n’s value less than 10 only from main,
or from trusted (suppose that n represents some priority or clearance level), while
untrusted must always be called directly or indirectly from trusted (suppose
that trusted is the only function whose code is completely trusted, so in particular
it is even allowed to call untrusted functions). The reachability rule of trusted
matches the call stack, and requires that either the value of n is at least 10, or that
the function id of the head of the call stack is one of main or trusted. The rest of
the configuration stays unchanged. The rule for untrusted matches the same parts
of the configuration as the rule for trusted, but requires instead that somewhere
in the call stack there exists a frame for trusted. In particular, both trusted and
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struct treeNode { int val; struct treeNode *left, *right; };
struct listNode { int val; struct listNode *next; };
struct stackNode { struct treeNode *val;
struct stackNode *next; };

struct listNode *treeToList(struct treeNode *t)

rule h$)9 return ?l; ···ik h··· tree(x)(T))9 list(?l)(tree2list(T)) ···iheap

h··· ·)9 rev(tree2list(T))iout

{
struct listNode *l; struct stackNode *s;
if (t == NULL) return NULL;
l = NULL;
s = (struct stackNode *) malloc(sizeof(struct stackNode));
s->val = t; s->next = NULL;

inv h··· tree(s)(?TS), list(l)(?A) ···iheap h··· rev(?A)iout

^ tree2list(T) = treeList2list(rev(?TS))@?A
while (s != NULL) {
struct treeNode *tn; struct listNode *ln;
struct stackNode *sn;
sn = s; s = s->next; tn = sn->val;
free(sn);
if (tn->left != NULL) {
sn = (struct stackNode *) malloc(sizeof(struct stackNode));
sn->val = tn->left; sn->next = s; s = sn;

}
if (tn->right != NULL) {
sn = (struct stackNode *) malloc(sizeof(struct stackNode));
sn->val = tn; sn->next = s; s = sn;
sn = (struct stackNode *) malloc(sizeof(struct stackNode));
sn->val = tn->right; sn->next = s; s = sn;
tn->left = tn->right = NULL;

}
else {
ln = (struct listNode *) malloc(sizeof(struct listNode));
ln->val = tn->val; ln->next = l; l = ln;
printf("%d ", ln->val);
free(tn);

}
}
return l;

}

Figure 4.5: Iterative C program flattening a tree into a list and printing its values
in the process.

untrusted require the heap to stay unchanged. We can prove that, as neither of the
three functions allocates or deallocates heap memory. Function any does not have
a rule, so its body is executed at each call. If the call to trusted in any were not
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guarded by the if statement, the line any(5); in main would violate the security
policy. Note that just constructing the call graph and performing value analysis is
not enough to verify these stack properties.

Function treeToList in Figure 4.5 flattens a binary tree into a list, by traversing
the tree in infix order, and in the process prints the list to the standard output in
reverse order. Each node of the initial tree (structure treeNode) has three fields:
the value, and two pointers, for the left and the right subtrees. Each node of the
final list (structure listNode) has two fields: the value and a pointer to the next
node of the list. The program makes use of an auxiliary structure (stackNode)
to represent a stack of trees. For demonstration purposes, we prefer an iterative
version of this program. We need a stack to keep track of our position in the tree.
Initially, that stack contains the tree passed as argument (as a pointer). The loop
repeatedly pops a tree from the stack, and it either pushes back the left tree, the
root, and the right tree onto the stack, or if the right tree is empty it pushes back
the left subtree, appends the value in the root node at the beginning of the list of
tree elements, and prints the respective value to the standard output. As the loop
processes the tree, it frees the tree nodes and it allocates the corresponding list
nodes. Because the values are printed when they are popped from the stack, they
appear in the output in reverse infix order.

The treeToList rule says that it returns pointer ?l. The rule matches in the
heap a tree rooted at t with contents T and replaces it with a list starting at ?l with
contents tree2list(T) (the infix traversal sequence of T). Finally, it specifies that
the function outputs the traversal sequence in reverse order. The rest of the heap,
output bu↵er and the configuration stay unchanged. The invariant says that the
heap contains a stack of trees (represented as a list of trees) with contents ?TS and
a list with contents ?A, the loop has printed so far the sequence rev(?A), and that
the infix traversal sequence of T, tree2list(T), equals the concatenation in reverse
order of the infix traversal sequences of the trees in the stack concatenated with the
contents of the list. Nothing else changes.

4.1.2 Implementation and Evaluation

Here we discuss our MatchC implementation of the one-path proof system in
Figure 3.1. While the proof system can be easily implemented in most theorem
proving environments, we preferred an implementation that emphasizes automated
reasoning. Our results demonstrate that matching logic reachability is practical in
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a more common sense, that is, that it can be used for relatively e�cient and highly
automated verification of expressive properties about challenging programs (like
AVL trees and Schorr-Waite). MatchC takes as inputs code fragments written in a
C fragment and (user provided) specifications for functions and loops, and auto-
matically checks that the code respect the specifications (without user interaction
or additional annotations, like ghost variables or hints).

As discussed in Section 3.1, general matching logic specifications are reachabil-
ity rules between formulae. As seen in Section 4.1.1, our tool handles specifications
of the form:

9X(⇡ ^  ))9 9X0(⇡0 ^  0)
where: ⇡ and ⇡0 are basic patterns;  and  0 are patternless FOL formulae; X and
X0 are sets of first-order variables; ⇡ contains the cell hcode ···ik and ⇡0 contains
the cell hcode0 ···ik; and code’ is either “·” or the return statement. For now,
MatchC only supports (partial correctness) rules summarizing the behavior of
functions or loops. An invariant 9X(⇡ ^  ) for while(C)S is just syntactic sugar
for a reachability rule. For clarity, we consider the case when the condition C

checks if a program variable x is non-zero (the general case is similar). Then, if the
environment of ⇡ maps x into vx, we associate with the loop the following rule:

9X(⇡ ^  ))9 9X(⇡0 ^  ^ vx = 0)

where ⇡0 is obtained from ⇡ by replacing hwhile(x)S ···ik with h· ···ik, i.e., drop-
ping the loop. The above rule summarizes the loop.

We define the operational semantics of the C fragment in the K framework [89]
as a set of reachability rules S over the configuration in Figure 2.5.

Let C be the set of reachability rules specifying all the user provided program
properties. C contains one candidate rule for each function and one candidate
rule for each loop. MatchC derives the rules in C by applying the proof rules
in Figure 3.1 according to certain heuristics. It begins by applying Circularity
followed by Transitivity for each rule in C and reduces the tasks to deriving
individual sequents of the form A [ C ` 9X(⇡ ^  ) ) 9X0(⇡0 ^  0). To prove
each such rule, the tool symbolically executes the code in the left-hand-side formula
using axioms from A [ C (like in the example above), and then checks that the
formulae obtained after the execution imply the right-hand-side formula. Recall
that the code of the right-hand-side is either “·” or return, so we know how the
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symbolic execution should terminate.
For each left-hand-side there may be multiple execution paths, generated by

splits via Case Analysis on constructors like if or on disjunctions existent in the
specifications or introduced by abstraction axioms or domain reasoning. Similarly,
when the configuration is too abstract for any rule inA [ C to apply, the tool uses
abstraction axioms to obtain a more concrete configuration if certain triggers are
met; in the example above, the memory access on the head of the list triggered the
unrolling. As an optimisation, when a formula can be reduced with rules from both
S and C, the verifier only uses the rules from C. In particular, only a loop without
a specified invariant is unrolled, and only the body of a function without a rule
specification is executed. Another heuristic is that if the current formula implies
that application of an abstraction axiom would result into a more concrete formula,
the verifier applies the respective axiom (for instance, knowing the head of a list
is not null results in an automatic list unrolling). MatchC is therefore sound but
incomplete w.r.t. the reachability proof system.

The symbolic execution is also implemented in K, as a set of rules which
are added to the original set of semantic rules. Checking of matching logic
formulae implication (required for Consequence) is implemented in Maude [21].
Proving such an implication consists of two parts: matching the structure of the
configuration, and checking the constraints. The structure matching is done modulo
both abstraction axioms and mathematical domain axioms. If all the structure is
successfully matched, and the remaining constraint does not simplify to true, it
is passed to CVC3 [10] and Z3 [26]. MatchC comes with a library of ⇠ 100
mathematical domain operators (like rev, in) and pattern abstractions (like list),
together with their axioms and useful lemmas (see Section 2.3.2). It currently
provides support for reasoning about lists, trees, queues and graphs.

Table 4.1 and 4.2 summarise the results of our experiments (# paths column
gives the number of symbolic execution paths analysed). Two factors guided us:
proving functional correctness (as opposed to just memory safety) and doing so
automatically (the user only provides the specifications). The undefined behav-
ior is detected by execution based on the semantics. The functional behavior
of the programs manipulating lists and trees and performing arithmetic and I/O
operations is algebraically defined, and is similar to that of the examples in Fig-
ures 4.2 , 4.3 and 4.5. For the sorting algorithms, MatchC checks that the sequence
is sorted and has the expected multiset of elements, and for the search trees, it
checks that the tree respects the data structure invariant and has the expected
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Program Cells Time (s) # paths SMT?
Example programs
undefined — 0.01 1 no
list reverse heap 0.06 2 no
list read in, heap 0.14 7 no
stack inspection call stack 0.24 8 no
tree to list (iterative) heap, out 0.24 11 no
Undefined programs
division by zero — 0.01 1 no
uninitialized variable — 0.01 1 no
unallocated location — 0.01 1 no
Simple programs that need only the environment cell
average — 0.02 1 no
min — 0.04 2 no
max — 0.04 2 no
mul by add — 0.13 3 yes
sum (recursive) — 0.06 2 yes
sum (iterative) — 0.08 2 yes
assoc comm — 0.03 1 no
Lists
list head heap 0.02 2 no
list tail heap 0.02 1 no
list add heap 0.02 1 no
list swap heap 0.03 3 no
list deallocate heap 0.04 2 no
list length (recursive) heap 0.05 2 no
list length (iterative) heap 0.07 2 no
list sum (recursive) heap 0.05 2 no
list sum (iterative) heap 0.07 2 no
list append heap 0.1 3 no
list copy heap 0.13 3 no
list filter heap 0.22 5 no
Input and output
read write in, out 0.12 4 no
list write heap, out 0.06 2 no
list read write heap, in, out 0.15 5 no

Table 4.1: Results of MatchC program verification (part 1)
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Program Cells Time (s) # paths SMT?
Trees
tree height heap 0.1 4 no
tree size heap 0.07 3 no
tree find heap 0.12 5 no
tree mirror heap 0.7 3 no
tree in-order heap 0.7 3 no
tree pre-order heap 0.7 3 no
tree post-order heap 0.7 3 no
tree deallocate heap 0.14 7 no
tree to list (recursive) heap, out 0.1 4 no
Call stack
only g calls f call stack 0.04 2 no
h in stack when f call stack 0.04 2 no
Sorting algorithms
insert heap 0.35 5 no
insertion sort heap 0.41 6 no
bubble sort heap 0.30 6 no
quicksort heap 0.47 8 no
merge sort heap 1.97 16 yes
Search trees
BST find heap 0.15 5 yes
BST insert heap 0.13 4 yes
BST delete heap 0.38 10 yes
AVL find heap 0.15 5 yes
AVL insert heap 43.5 23 yes
AVL delete heap 133.58 36 yes
Schorr-Waite
tree Schorr Waite heap 0.28 6 no
graph Schorr Waite heap 1.73 8 no

Table 4.2: Results of MatchC program verification (part 2)
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multiset of elements.
The Schorr-Waite graph marking algorithm [96] computes all the nodes in a

graph that are reachable from a set of starting nodes. To achieve that, it visits the
graph nodes in depth-first search order, by reversing pointers on the way down, and
then restoring them on the way up. Its main application is in garbage collection.
The Schorr-Waite algorithm presents considerable verification challenges [46, 58].
We formally verified the algorithm itself, and a simplified version in which the
graph is a tree. For both cases we proved that a node is marked if and only if it is
reachable from the set of initial nodes, and that the graph does not change.

Most of these examples are proved in milliseconds and do not require SMT
support. We mention that the AVL insert and delete programs take approximately
3 minutes together because some of the auxiliary functions (like balance) are not
given specifications and thus their bodies are being executed, resulting in a larger
number of paths to analyze. Given the complexity of the specifications and the
level of automation, the average time per program (below one second) is low and
not a matter of concern. The experiments were conducted on a quad-core, 2.2GHz,
4GB machine running Linux.

4.2 KVI

In this section we discuss our language independent verification infrastructure
based the proof system in Figure 3.1 and operational semantics defined in the K
framework. First we look at a few motivating examples (Section 4.2.1), and then we
present the implementation (Section 4.2.2) and the evaluation of the infrastructure
(Section 4.2.3).

4.2.1 Motivating Example

Here we illustrate our approach by checking the correctness of binary search tree
(BST) insertion implemented in C, Java, and JavaScript. A BST is a tree where the
value stored in each node is greater than any value in the left subtree and less than
any value in the right subtree. Insert recursively traverses the tree and adds a new
leaf with the value, if the value is not already in the tree. We use the operational
semantics of these languages for symbolic execution, and delegate reasoning about
trees in the heap and BST invariants to the verification infrastructure. Although
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1 struct node {
2 int value;
3 struct node *left, *right;
4 };
5
6 struct node* new_node(int v) {
7 struct node *node;
8 node = (struct node *)
9 malloc(sizeof(struct node));

10 node->value = v;
11 node->left = NULL;
12 node->right = NULL;
13 return node;
14 }
15
16 struct node* insert(int v, struct node *t) {
17 if (t == NULL)
18 return new_node(v);
19 if (v < t->value)
20 t->left = insert(v, t->left);
21 else if (v > t->value)
22 t->right = insert(v, t->right);
23 return t;
24 }

Figure 4.6: Binary search tree code in C

1 class Node {
2 int value;
3 Node left, right;
4
5 public Node(int value) {
6 this.value = value;
7 left = right = null;
8 }
9

10 public static Node insert(int v, Node t) {
11 if (t == null)
12 return new Node(v);
13 if (v < t.value)
14 t.left = insert(v, t.left);
15 else if (v > t.value)
16 t.right = insert(v, t.right);
17 return t;
18 }
19 }

Figure 4.7: Binary search tree code in Java
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1 function make_node(v) {
2 var node = {
3 value : v,
4 left : null,
5 right : null
6 };
7 return node;
8 }
9

10 function insert(v, t) {
11 if (t === null)
12 return make_node(v);
13 if (v < t.value)
14 t.left = insert(v, t.left);
15 else if (v > t.value)
16 t.right = insert(v, t.right);
17 return t;
18 }

Figure 4.8: Binary search tree code in JavaScript

the three definitions feature di↵erent language constructs and memory models, the
operational semantics successfully abstracts these details.

Figure 4.6 shows the implementation in C, Figure 4.7 in Java, and Figure 4.8
in JavaScript. C uses “struct node” to represent a tree node, while Java uses
“class Node”. JavaScript is a class-free, prototypal language, where objects
dynamically inherit from other objects. In C, dynamically allocated memory (the
“heap”) is untyped; malloc allocates a block of bytes, which is then associated the
e↵ective type struct node. In Java all memory is typed; new creates an instance of
class Node. In JavaScript, objects are modeled in memory as maps from property
names (strings) to values (of any type). Each language has di↵erent memory
access mechanisms. The C and Java trees store integers, while the JavaScript tree
stores floats Other language-specific aspects are automatic type conversions and
function/method calls.

Before we discuss the correctness specifications, we recall some useful K
conventions. Specifications are reachability rules ')8 '0, with ' and '0 matching
logic patterns (i.e. (symbolic) program configurations with constraints). If '
and '0 share program configuration context, we only mention the context once
and distribute “)8” through the context where the changes take place. Logical
variables starting with “?” are existentially quantified. Rules only mention the
parts of the configuration they read or write; the rest stays unchanged. The
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“requires” clause is implicitly conjuncted with the left-hand-side configuration,
and “ensures” with the right-hand-side. It is common for operational semantics
to have a preprocessing/initializing phase. C computes structure and function
tables, Java a class table, while JavaScript creates objects and environments for
all functions. A variable with the same name as a cell but with capital letters is a
placeholder for the initial value of that cell after the preprocessing phase, which
we statically compute using the semantics.

Figure 4.9 shows the correctness specifications. We discuss the C one first. The
rule states that the call to insert with value V and pointer L1 returns pointer ?L2.
Since C is typed, each value is tagged with its type, in this case int or pointer to
struct node. When the function is called, the memory contains a binary tree with
root L1 storing the algebraic tree T1. When the function returns, the initial tree
is replaced by another tree with root ?L2 storing ?T2. The requires clause states
that T1 is a BST and V is in the appropriate range for signed 32-bit integers. The
ensures clause states that T2 is also a BST, and the value set of ?T2 is the value set
of T1 union with V. The “···” in the mem cell stands for a variable matching the rest
of the memory (the heap frame), which stays unchanged. The threads cell contains
only one thread and no “···”, which means this program is verified in a single-
threaded environment (the program is not thread-safe). Variables FUNCTIONS,
STRUCTS, and MEM are placeholders for the tables of function declarations and
structure declarations, and the initial memory layout.

The Java specification is in many ways similar to the C one, reflecting the
similarities between C and Java. The call to insert uses the fully qualified method
name, which includes the class name Node. The type of R1 and ?R2 mentioned in
the rule is the static type of these references, class Node. The dynamic type can
be any sublcass of class Node. Variable CLASSES:Bag stands for the statically
computed class table.

Now we discuss the JavaScript specification. Since JavaScript is untyped, its
values do not carry a type. V is not NaN, since NaN does not respect the order
relation on non-NaN floats, and the code is incorrect if V or the values in T1 were
NaN. The JavaScript semantics creates new environments and objects at function
call, which it does not garbage-collect at return. The “.Bag)8 ?_ :Bag” in both
the envs and objs cells states that there may be garbage left after the function
returns (“.” is the unit, while “_” is an anonymous variable, here existentially
quantified). JavaScript does not have threads.

The tree heap abstraction is defined in matching logic, and is di↵erent for each
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C
rule
hfunctionsi FUNCTIONS:Map h/functionsi
hstructsi STRUCTS:Map h/structsi
hmemi...

MEM:Map (tree(L1, T1 :Tree))8 tree(?L2, ?T2 :Tree))
...h/memi
hthreadsi hthreadi... hki

insert(tv(V:Int, int), tv(L1 :Loc, struct node))
)8 tv(?L2 :Loc, struct node)

...h/ki ...h/threadi h/threadsi
requires bst(T1) ^ �2147483648  V ^ V  2147483647
ensures bst(?T2) ^ tree_keys(?T2) = {V} [ tree_keys(T1)

Java
rule
hclassesi CLASSES:Bag h/classesi
hobjectStorei...

tree(R1, T1 :Tree))8 tree(?R2, ?T2 :Tree)
...h/objectStorei
hthreadsi hthreadi... hki

(class Node).insert(
V: Int :: int, R1 :Ref :: class Node)

)8 ?R2 :Ref :: class Node
...h/ki ...h/threadi h/threadsi

requires bst(T1) ^ �2147483648  V ^ V  2147483647
ensures bst(?T2) ^ tree_keys(?T2) = {V} [ tree_keys(T1)

JavaScript
rule
henvsi... ENVS:Bag (.Bag)8 ?_:Bag) ...h/envsi
hobjsi...

OBJS:Bag (.Bag)8 ?_:Bag)
(tree(L1 :Loc, T1 :Tree))8 tree(?L2 :Loc, ?T2 :Tree))

...h/objsi
hki insert(V:Float, O1 :Object))8 ?O2 :Object ...h/ki

requires bst(T1) ^ ¬isNaN(V)
ensures bst(?T2) ^ tree_keys(?T2) = {V} [ tree_keys(T1)

Figure 4.9: Binary search tree correctness specifications for C, Java, and JavaScript

language, taking into account the specifics of the memory model of each language.
Also bst, tree_keys, etc., are domain operation symbols in the signature.

At a high level, the three specifications are very similar. The di↵erences are
down to language-specific and semantics-specific details: type systems, name
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resolution, garbage collection, or the statically computed information by each
semantics. The tree heap abstraction hides the di↵erences in memory models.
Our generic verification infrastructure reasons about the tree abstraction and the
mathematical properties of BST while deferring the symbolic execution to the
semantics. The verification is fully automated and takes a few seconds (see
Table 4.3).

It is possible to generate the specification rules automatically from classic
verification annotations (pre/post conditions, loop invariants, class invariants, etc).
This has been done previously by MatchC (Section 4.1). We have not implemented
this feature, using instead a general-purpose notation which is faithful to both
reachability logic and our implementation.

4.2.2 Implementation

We discuss our novel implementation of the K verification infrastructure, depicted
in Figure 1.1, based on the language-independent proof system in Figure 3.1. Our
framework takes an operational semantics defined in K [89] as a parameter and
uses it to automatically derive program correctness properties. In other words,
our verification infrastructure automatically generates a program verifier from the
semantics, which is correct-by-construction w.r.t. the semantics. As discussed
in Section 3.1, we view a semantics as a set of reachability rules l ^ b )9 r. A
major di�culty in a language-independent setting is that standard language features
relevant to verification, like control flow or memory access, are not explicit, but
rather implicit (defined through the semantics).

The generated program verifier proves a set of user provided reachability rules,
representing the program correctness specifications of the code being verified,
typically one for each recursive function and loop. For the sake of automation,
the rules have the more restrictive form ⇡ ^  )8 ⇡0 ^  0, with ⇡ ^  and
⇡0 ^  0 conjunctive patterns. A conjunctive pattern is a formula ⇡ ^  with
⇡ a program configuration term with variables, and  a formula without any
configuration terms. We use all-path rules for specifications to capture some of
the local non-determinism (e.g. the non-deterministic C expression evaluation
order). Section 4.1.1 shows examples of specifications. As discussed there, we use
conventions already supported by K to have more compact specifications.

The generated program verifier is fully automated. The user only provides the
program correctness specifications. Specifically, to prove a set C of rules between
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conjunctive patterns, it uses the following algorithm for each ')8'0 2 C:

1 Q := successors(')
2 if Q is empty and 6|= '! '0 then fail

3 while Q not empty

4 pop 'c from Q
5 if |= 'c ! '0 continue
6 else if 9� with |= 'c ! �('l) for 'l )8 'r 2 C
7 add �('r) ^ frame('c) to Q
8 else

9 Q0 := successors('c)
10 if Q0 is empty then fail

11 add all Q0 to Q

successors(') returns, as a set, the disjunction of conjunctive patterns represent-
ing the one-step successors of ' (see Section 4.2.2). � is a substitution, and
frame(⇡ ^  ) returns  . The algorithm uses a queue Q of conjunctive patterns,
which is initialized with the one-step successors of ' (lines 1-2). At each step
the main loop (lines 3-11) processes a conjunctive pattern 'c from Q. If 'c im-
plies '0 then verification succeeds on this execution path (line 5). If 'c matches
the left-hand-side of a specification rule in C then the respective rule is used to
summarize its corresponding code (lines 6-7). Finally, if none of the cases above
hold, add all one-step successors of 'c to Q (lines 9-11). Using a specification is
preferred over the operational semantics. If there are no successors (lines 2 and
10), the verification fails, as some concrete configurations satisfying the formula
may not have a successor (e.g. a dereferenced pointer may be NULL in C). Our
algorithm is incomplete, i.e., fail means that the specification cannot be verified
successfully, not that it is violated by the code. Each pattern is simplified using
function/abstraction definitions and lemmas before being added to Q.

The algorithm automates the proof system in Figure 3.1. Implementing the
computation of multiple steps of symbolic execution across multiple paths with
a queue corresponds to Transitivity and Reflexivity. Computing successors
corresponds to Step, and splitting the subsequent disjunction to Case Analysis.
Finishing an execution path (line 5) corresponds to Consequence. Using a specifica-
tion rule (lines 6-7) corresponds to Consequence, Abstraction, and Axiom. Since
Q is initialized with the successors of ', a step of Transitivity already moved
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C to A. Consequence and Abstraction simplify a pattern before adding it to Q.
Circularity allows for the rules in C to be used in their own proofs.

Our verification infrastructure is implemented in Java, and uses Z3 [26] for
domain reasoning. It consists of approximately 30,000 non-blank lines of code,
and it took about 2.5 man-years to complete. Next, we discuss in more details
three aspects of our implementation: performing symbolic execution based on
a K semantics, reasoning about the matching logic formulae (including using
abstraction to express heaps properties), and integration with Z3.

Symbolic Execution

Language-independent symbolic execution is complicated by the absence of ex-
plicit control flow statements, which are language specific. We handle control flow
statements by noticing they are generally unifiable with the left-hand-sides of sev-
eral semantics rules. Consider the C code “if (b) x = 1; else x = 0;”.
It does not match the left-hand-side of any of the two semantics rules of if (they
require the condition to be either the constant true or the constant false [30]), but it
is unifiable with the left-hand-sides of both rules. We achieve symbolic execution
by performing narrowing [2] (i.e., rewriting with unification instead of matching).
When using the semantics rules, taking steps of rewriting on a ground configura-
tion yields concrete execution, while taking steps of narrowing yields symbolic
execution.

We compute successors(⇡ ^  ) using unification modulo theories. We distin-
guish several theories (e.g. booleans, integers, sequences, sets, maps, etc) that the
underlying SMT solver can reason about. Specifically, we unify ⇡ ^  with the
left-hand-side of a semantics rule ⇡l^ l. We begin with the syntactic unification of
⇡ and ⇡l. Upon encountering corresponding subterms (⇡0 in ⇡ and ⇡0l in ⇡l) which
are both terms of one of the theories above, we record an equality ⇡0 = ⇡0l rather
than decomposing the subterms further (if one is in a theory, and the other one is in
a di↵erent theory or is not in any theory, unification fails). If this stage is successful,
we end up with a conjunction  u of equalities, some having a variable in one side
and some with both sides in one of the theories. Then we check the satisfiability of
 ^  u ^  l using the SMT solver. If it is satisfiable, then ⇡r ^  ^  u ^  l ^  r

is a successor of ⇡ ^  , where ⇡r ^  r is the right-hand-side of the semantics rule.
Then successors is the disjunction of 'r ^  u ^  ^  l over all rules in S and all
unification solutions  u. While in general this disjunction may not be finite (see
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Section 3.2), in practice it is finite for the examples we considered. Intuitively,
“collecting” the constraints  u ^  l ^  r is similar to collecting the path constraint
in traditional symbolic execution (but is done in a language-generic manner). For
instance, the if case above, results in collecting the constraints b = true and
b = false. Notice that |= 9c ('[c/⇤] ^ 'l[c/⇤]) is satisfiable i↵ ' and 'l are
unifiable. Thus, we are sound by Step.

Several optimizations improve performance; we mention two. First, as the
semantics of a real-world language consists of thousands of rules, the verifier uses
an indexing algorithm to determine which rules may apply. Second, the verifier
caches partial unification results, e.g., for each semantics rule, the verifier caches
pairs of terms (t1, t2) that fail to unify with t2 a subterm of the left-hand-side of the
rule.

Matching Logic Prover

Matching logic reasoning is used in three cases in our algorithm: (1) to finish the
proof (line 5), (2) to use a specification rule to summarize a code fragment (line 6),
and (3) to simplify a pattern (before adding it to Q).

As discussed in Section 2.3, we use recursively-defined heap abstractions to
specify the correctness of programs manipulating lists and trees in the heap. Such
definitions exploit the recursive nature of the data-structures , e.g.,

tree(x, node(n, tl, tr)) = 9yz.x 7! [n, y, z], tree(y, tl), tree(z, tr)
tree(0, leaf) = emp

There is an extensive literature on such recursive definitions, especially in the
context of separation logic (for example [68]).

We employ two heuristics. The first is natural proofs (see Chapter 5). We
unfold a recursive definition during symbolic execution when we add conjunctive
pattern ⇡ ^  to Q if unfolding does not introduce a disjunction (i.e.,  guarantee
that only one of the cases in the definition holds). For example, in C, if  implies
the head pointer p of a tree is NULL, then we conclude the tree is empty. If  
implies p is not NULL, then we conclude p points to an object containing pointers
to the left and right subtrees. Successful unfolding occurs at the start of symbolic
execution, after a split (e.g. caused by if), or after using a specification rule (line
7). Unfolding makes a pattern more concrete, thus enabling operational semantics
rules to apply. We similarly unfold recursive definitions on the right-hand-side
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of an implication. Unfolding is language-independent, as it is not triggered my
memory accesses or other language-specific features.

While the above heuristic works on tree manipulating programs, it fails on list
segment manipulating programs, as a list segment can be unfolded at both ends.
We solve this by adapting the folding axioms proposed in [78] to work with data,
and using them as additional lemmas for list segments on the left-hand-side of an
implication, e.g.,

lseg(x, y,↵), lseg(y, 0, �) = lseg(x, 0,↵ · �)

Folding and unfolding are implemented by rewriting using the same infrastructure
used for symbolic execution. The recursive definitions and the lemmas are all given
as K rules.

As shown in Section 4.1.1, we use equationally constrained function and
predicate symbols (like bst and tree_keys); e.g.,

height(node(_, tl, tr)) = 1 +max(height(tl), height(tr))
height(leaf) = 0
height(_) � 0 = true

The first two define the height of a tree, while the third is a lemma. These equations
are given as K rules, and are used in two ways: to simplify a formula by rewriting
(oriented from left to right), and to be added in Z3 (see Section 4.2.2).

Integration with Z3

We use Z3 [26] to discharge the formulae that arise during matching logic reasoning
(required by Consequence and Step). These formulae involve the following theories:
integer, bitvector, set, sequence, and floating-point. We chose Z3 because of its
very good performance, and because it o↵ers features that are not part of the SMT-
LIB standard, including variables instantiation patterns for universally quantified
axioms, and mapping functions over arrays. While some of the formulae are not in
decidable theories, in practice Z3 successfully checks them.

As discussed in Section 4.2.2, the formulae contain equationally constrained
symbols. We encode these in Z3 as uninterpreted functions combined with as-
sertions of the form “8X. t = t0”. Z3 handles such assertions e�ciently using
E-matching [25]. By default, we specify the left-hand-side of these equations as

140



the variables instantiation pattern, which in e↵ect makes the equations only apply
from left to right. This heuristic is e↵ective in keeping the number of terms small.
For a select few equations, like the ones for the sorted predicate for sequences, we
wrote the patterns by hand.

Sets are one of the most important theories that we o↵er in our verifiers. We
handle the set theory as proposed in [27]. We encode the sets themselves as arrays
from the elements to true or false. Then, we encode the set operations as mapping
of boolean functions over the arrays, and set membership as array lookup. The
array map feature is only available in Z3, and is not part of the SMT-LIB standard.
This results in a decidable theory for sets.

Unfortunately, this set encoding does not work well with the encoding of se-
quence theory symbols as equationally constrained uninterpreted functions. This
case arises during the verification of the sorting examples. For this reason, we
developed an encoding of sets using uninterpreted functions and universally quan-
tified assertions. This encoding does not handle the set theory in a decidable way,
but in practice it works with the sequence theory.

JavaScript verification generates floating-point constraints. Z3 has basic support
for floating-point, but it does not integrate well with other theories. For this reason,
we abstracted floating-point values to values in a partial-order relation, when the
values only occur in comparisons and equality/inequality checks. This abstraction
is used on the keys of the search trees or the values in the sorted lists.

For these reasons, we have di↵erent SMT encodings for the di↵erent programs
we are verifying. We delegate to the user to choose which encodings are best suited
for a given program.

4.2.3 Evaluation

We evaluate the K verification infrastructure by instantiating it with four di↵erent
semantics, thus obtaining program verifiers for four di↵erent languages: KernelC
(a simple toy C-like language), C, Java, and JavaScript (complex real-world lan-
guages). Our goal is to validate our hypothesis that building program verifiers by
using K operational semantics and its verification infrastructure is e↵ective both in
terms of verification capabilities and tool building e↵ort. To evaluate this hypothe-
sis, first we implemented all the features required to verify the programs in Table 4.3
with KernelC: symbolic execution, reasoning with heap abstractions, integration
with Z3, etc. Then we instantiated our framework with the o↵-the-shelf semantics
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of C11 [30, 43], Java 1.4 [14], and JavaScript 5.1 [75] to obtain corresponding pro-
gram verifiers. We evaluated these verifiers by proving the correctness of the same
programs in Table 4.3, but written in C, Java, and JavaScript. The implementation
and the experiments are available on http://kframework.org.

The semantics we use are the most complete to date for their languages (see
Table 4.4 for their size). As we mentioned before, given the complexity of real-
world languages, we would like to separate the tricky language-specific features
that are orthogonal to the verification process from the language-independent
issues that make program verification hard. We achieve this by deferring to
the semantics to handle the language-specific features (automatic promotions of
integers in C, type checking, function call resolution, etc.). The K verification
infrastructure handles the language-independent reasoning (heap-allocated mutable
data structures, integers/bit-vectors/floating-points, etc.).

Operational Semantics

KernelC KernelC is a C-like pedagogical language distributed with theK frame-
work. It has the following features: arithmetic and boolean expressions, while
and if statements, recursive functions, structures, memory allocation/deallocation.
It is slightly more complex than the standard languages used in program verifica-
tion papers that introduce new heap logics/verification approaches. The language
semantics consists of 106 K rules. Since the language is free of tricky features, so
verification-friendly, using it with the K verification infrastructure did not reveal
any unexpected challenges.

C [30, 43] The C operational semantics is the most complete formal semantics of
C11. It captures over 75 types of undefined behavior in the ISO C standard, includ-
ing restrict qualifiers, null pointers, out-of-bound object access, un-sequenced side
e↵ects, e↵ective types, and many more. The semantics handles various basic data
types like struct, enum, float, and bitfield. It also handles the tricky issues regard-
ing integer types in C, including promotions, conversions, defined and undefined
overflow and underflow. It supports the complex C statements, including goto. The
semantics captures the intricacies of the C types system. It has over 2,500 K rules,
developed over the course of several years. One advantage of the semantics arises
from the fact that it is executable. Thus, the semantics has been thoroughly tested
against a number of benchmarks in order to provide evidence of its correctness.
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One of the most complex aspects of C is the memory model. The semantics
faithfully specifies the C memory model, as a map from base pointers to objects,
where each object is a map from o↵sets to bytes. Reads and writes happen at byte
level. For a read of a value of a given type, the semantics reads a number of bytes
from the memory equal to the size of the given type, and then interprets them to
obtain a value of the given type. Similarly, for a write of a value of a given type,
the semantics splits the value on a number of bytes equal to the size of the given
type, and then writes them.

In terms of aspects specific to C verification, the operational semantics handles
most of the tricky language features. The heap abstractions are more complex than
for any other language, due to the fact that C models the memory at byte level.
Thus, the heap abstractions need to mention how the value of each field of the struct
implementing the data structure is obtained from bytes. Another aspect specific to
C verification is due to the fact that the operational semantics models integers by
using arbitrary precision integers modulo arithmetic, rather than bitvectors. Thus,
specifications must state that all integer values are in the appropriate ranges.

Java [14] The Java operational semantics is the first complete formal semantics
of Java 1.4. It was extensively tested with a large test suite developed alongside
the project. The complexity of the semantics comes from the fact that Java is a
statically, strongly typed, object-oriented, multi-threaded language. It has over
1,580 K rules and took 20 man-months to define.

Java semantics consists of two parts: (1) the preprocessing semantics that
transforms the source Java program into another Java program restricted to use only
a subset of the Java features, and (2) the execution semantics that deals with these
core features. As the preprocessing semantics does not change the behavior of the
program, we verified the output of the preprocessing stage directly.

In terms of verification, the Java semantics handles most of the complex lan-
guage features. The heap abstractions take into account the possibility of object
inheritance. Also, like in the case of C, the semantics models integer values by us-
ing arbitrary precision integers modulo arithmetic, forcing program specifications
to also state that all integer values are in the appropriate ranges.

JavaScript [75] KJS is an operational semantics of JavaScript based on EC-
MAScript 5.1, which is the most complete and thoroughly tested semantics to date.
It faithfully defines all the details of the language standard such as strict/non-strict
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modes, accessor (getter/setter) properties, dynamic (implicit) casting, eval con-
struct, and (non-deterministic) for-in loop. It mechanizes the language standard,
establishing an one-to-one correspondence with the standard, which facilitates
manual inspection. It also has been tested against ECMAScript conformance test
suite, and passes all 2,782 test programs for the core language. Combined with
manual inspection, the test results increase the trust in the semantics. It consists of
over 1,370 K rules and took four man-months to define.

In terms of verification purpose, KJS provides language-specific reasoning.
Specifically, it deals with complicated object inheritances via prototype chains.
Unlike C++ or Java, JavaScript objects directly inherit another object via a hidden,
so-called prototype link. This direct inheritance (called prototypical inheritance)
allows updating an object to immediately a↵ect other objects whose inherited
properties are dynamically modified, added, or removed. Due to this dynamic
nature, even a simple object property lookup/update semantics is complicated,
employing deeply nested case analyses to cover every possible situation. Reasoning
about the complicated language-specific behavior is totally separated from the
verification framework, being delegated to the semantics. JavaScript also has
various unusual behaviors such as function-scoped environments or this value
resolutions, taken care of by the semantics as well.

Verification Experiments

Here we discuss how e↵ective in terms of proving capabilities it is to build program
verifiers using K operational semantics. To this end, we have verified using our
approach a number of challenging heap manipulating programs implementing the
same data structure operations in KernelC, C, Java, and JavaScript. These programs
have been used before to evaluate verification approaches, e.g., in [77, 65, 68]. Our
goal here is not to improve on the state-of-the-art in terms of proving capabilities
or speed, but rather to show that we can also verify such programs at comparable
performance, but in a language-independent setting. We conducted the experiments
on a machine with Intel Core i7-4960X CPU 3.60GHz and DDR3 RAM 64GB
1333MHz

Our examples fall in two categories. (1) Singly-linked list manipulating pro-
grams, including implementations of common sorting algorithms. For each sorting
function, we prove that the returned sequence is indeed sorted and has exactly the
same elements as the original sequence. (2) Implementations of binary search tree,
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AVL tree, red-black tree (RBT), and Treap data-structure operations. For each
function, we prove that it maintains the data-structure invariants and that the set of
elements is as expected.

Table 4.3 summarises our experiments. For KernelC, which is idealized for
verification, proving the implications required by Consequence (shown in the Rea-
soning column) dominates the total verification time. C, Java, and JavaScript are
complex languages, so the semantics-based symbolic execution (shown in the
Execution column) dominates the verification time. Note that since the programs
implement the same data structure operations in di↵erent languages, the complexity
of implications required by Consequence tends to be similar. Thus, the complex-
ity of the operational semantics is the most important factor contributing to the
di↵erence in the verification times reported. As expected, since C has the most
complex operational semantics, the times for C are the largest. The number of
queries of logical reasoning for C and Java is higher than for JavaScript because
of 32-bit integer range constraints, while the time spent on each query is similar
along the di↵erent languages, reflecting that the reasoning is language-independent.
Furthermore, each step of symbolic execution for JavaScript is much smaller than
for C and Java, because the JavaScript semantics is more fine-grained.

The AVL and RBT insert and delete programs take considerably longer than
the other programs because some of the auxiliary functions (like balance, rotate,
etc) are not given specifications and thus their bodies are being inlined, resulting in
a larger number of paths to analyze. To put this in perspective, VCDryad [77], a
state-of-the-art separation logic verifier for C build on top of VCC, takes 260s to
verify only the balance function in AVL, while it takes our generic infrastructure
instantiated with the C semantics 210s to verify AVL insert (including balance). In
general, we believe Table 4.3 suggests that our approach is practical and competitive
with the state-of-the-art on such data-structures.

Development Cost

We discuss how cost e↵ective in terms of tool development it is to build program
verifiers using K operational semantics and our verification infrastructure. Recall
that the semantics of C, Java, and JavaScript were developed as separate projects,
independently from the verification infrastructure.

Table 4.4 shows the development e↵ort of our approach. The language-specific
e↵ort consists of familiarizing with the semantics in order to be able to write the
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C Java JavaScript
Semantics development (months) 40 20 4
Semantics size (#rules) 2,572 1,587 1,378
Semantics size (LOC) 17,791 13,417 6,821
Language-specific e↵ort (days) 7 4 5
Semantics changes size (#rules) 63 38 12
Semantics changes size (LOC) 468 95 49
Specifications 36 31 31
Abstractions 6 6 6
Function definitions 14 14 14
Lemmas 7 7 7

Table 4.4: The development costs

correctness specifications as reachability rules (like the ones in Section 4.1.1), and
of making changes to the semantics. Most of changes to the semantics are bug fixes
(see Section 4.2.3), but some are performance improvements or simplifications.
The development e↵ort scales with the language complexity. The e↵ort for C is
considerably larger than for Java and JavaScript due to the low level complexity
of C. Overall, the numbers in Table 4.4 validate our hypothesis that program
verification based on operational semantics and the K verification infrastructure is
cost e↵ective in terms of development e↵ort.

For comparison, the state-of-the-art is to define a translator to an intermediate
verification language, like Boogie, or to define a verification condition (VC) gener-
ator. For example, the VCC translator from C to Boogie consists of approximately
5000 lines of F# [1]. We believe that writing such a translator takes considerably
more e↵ort than we reported for our approach in Table 4.4 (we do not include the
time to define the semantics into this comparison, since we assume the semantics
already exist, and they serve other purposes as well). Moreover, we believe that one
would have more confidence in an operational semantics to handle the tricky details
of complex languages than in a translation or a VC generator, for two reasons. First,
an operational semantics is more amenable to visual inspection, as it is written in a
domain-specific language for defining semantics. Second, an operational semantics
is executable and can be thoroughly tested. While this does not guarantee the
absence of bugs (see Section 4.2.3), it greatly reduces their occurrence.

Even if a semantics is not already available, we believe that developing an
operational semantics has an important advantage over building a translator or a
VC generator: the semantics is used not only for verification, but for other purposes
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as well, so overall the semantics development cost is amortized. For example, the
JavaScript semantics was used for bug finding in browsers [75].

Regarding number of annotations, our approach is comparable to the state-of-
the-art language-specific approaches that do not infer invariants (VCC, Frama-C).
The user provides one specification for each recursive function and loop. The user
also provides the definitions for heap abstractions and auxiliary functions used in
specifications. The user does not provide anything similar to ghost code or hints
for the verifier. The user may need to provide additional lemmas and those lemmas
apply to a class of programs rather than one particular program (e.g., the lemmas
for list segments in Section 4.2.2 are shared by all sorting-related programs in all
languages).

Operational Semantics Bugs

We found bugs in all the three operational semantics used for verification, despite
the fact that these semantics are thoroughly tested on thousands of programs [30,
43, 14, 75].

The main source of bugs is the unintended non-determinism in the semantics.
A semantics models a non-deterministic feature by having multiple rules that can
apply at the same time. Such a feature is the expression evaluation order in C:
“f() + g()” may call f() first and g() second or g() first and f() second. As a
result, only a fraction of the possible behaviors are observed under testing. During
symbolic execution, the K verifier considers all the rules that can apply (according
to Step in Figure 3.1). This revealed that each semantics contained unintended non-
determinism: pairs of rules where the semantics developers intended for one rule
to always apply before the other, but in fact both rules can apply simultaneously.
Applying the rules in the other order causes an incorrect result. We also found
other kinds of bugs, mostly caused by incorrect side conditions of the semantics
rules, or incorrect assumptions about the configuration.

We proposed fixes for the bugs we found and the semantics’ authors accepted
them. This indicates the existing methodology to validate semantics needs im-
provement.
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Chapter 5

Dryad

In this chapter, we turn our attention to automating reasoning about state properties,
with an emphasis on heap properties. As discussed in Section 4.2.2, we want to
implement automated reasoning techniques as part of the K verification infrastruc-
ture. Much of the work in this chapter comes from Madhusudan et al. [62] and
Qiu et al. [80].

In recent years, the automated deductive verification paradigm for software
verification that combines user written modular contracts and loop invariants with
automated theorem proving of the resulting verification conditions has become
very powerful. The latter process is often executed by automated logical decision
procedures supported by SMT solvers, which have emerged as robust and powerful
engines to automatically find proofs. Several techniques and tools have been
developed [22, 8, 48] and there have been several success stories of large software
verification projects using this approach (the Verve OS project [106], the Microsoft
hypervisor verification project using VCC [22], and a recent verified-for-security
OS+browser for mobile applications [63], to name a few).

Verification conditions do not, however, always fall into decidable theories. In
particular, the verification of properties of the dynamically modified heap is a big
challenge for logical methods. The dynamically manipulated heap poses several
challenges, as typical correctness properties of heaps require complex combinations
of structure (e.g., a pointer p points to a tree structure, or to a doubly-linked list, or
to an almost balanced tree, with respect to certain pointer-fields), data (the integers
stored in data-fields of the tree respect the binary search tree property, or the data
stored in a tree is a max-heap), and separation (the procedure modifies one list and
not the other and leaves the two lists disjoint at exit, etc.).

The fact that the dynamic heap contains an unbounded number of locations
means that expressing the above properties requires quantification in some form,
which immediately precludes the use of most SMT decidable theories (there are
only a few of them known that can handle quantification; e.g., the array property
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fragment [17] and the Strand logic [61, 60]). Consequently, expressing such
properties naturally and succinctly in a logical formalism has been challenging,
and reasoning with them automatically even more so.

For instance, in the Boogie line of tools (including VCC) of writing specifica-
tions using first-order logic and employing SMT solvers to validate verification
conditions, the specification of invariants of even simple methods like singly-
linked-list insert is tedious. In such code 1, second-order properties (reachability,
acyclicity, separation, etc.) are smuggled in using carefully chosen ghost variables;
for example, acyclicity of a list is encoded by assigning a ghost number (idx) to
each node in the list, with the property that the numbers associated with adjacent
nodes strictly increase going down the list. These ghost variables require careful
manipulation when the structures are updated; for example, inserting a node may
require updating the ghost numbers for other nodes in the list, in order to maintain
the acyclicity property. Once such a ghost-encoding of the specification is formu-
lated, the validation of verification conditions, which typically have quantifiers, are
dealt with using sound heuristics (a wide variety of them including e-matching,
model-based quantifier instantiation, etc. are available), but are still often not
enough and have to be augmented by instantiation triggers from the verification
engineer to help the proof go through.

In recent years, separation logic, especially in combination with recursive
definitions, has emerged as a much more succinct and natural logic to express
properties about structure and separation [85, 73]. However, the validation of
verification conditions resulting from separation logic invariants are also complex,
and has eluded automatic reasoning and exploitation of SMT solvers (even more
so than tools such as Boogie that use classical logic). Again, help from the user in
proving the verification conditions are currently necessary— the tools Verifast [48]
and Bedrock [19], for instance, admit separation logic specifications but require
the user to write low-level lemmas and proof tactics to guide the verification. For
example, in verifying an in-place reversal of a linked list2, Bedrock would require
several lemmas and a hint package be supplied at the level of the code in order for
the proof to go through.

The work in this paper is motivated by the opinion that entirely decidable logics
are too restrictive, in general, to support the verification of complex specifications

1http://vcc.codeplex.com/SourceControl/changeset/view/
dcaa4d0ee8c2#vcc/Docs/Tutorial/c/7.2.list.c

2http://plv.csail.mit.edu/bedrock/Tutorial.html
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of functional correctness for heap manipulating programs, and the other extreme
of user-supplied proof tactics and lemmas is too tedious, requiring of the user too
much knowledge of the underlying proof systems/decision procedures. Our aim
is to build completely automatic, sound, but incomplete proof techniques that can
solve a large class of properties involving complex data-structures.

The natural proof methodology:
The natural proofs methodology exploits a fixed set of proof tactics, keeping
the expressiveness of powerful logics, retaining the automated nature of proving
validity, but giving up on completeness (i.e., giving up decidability, retaining
soundness). The idea of natural proofs is to identify a subclass of proofs N such
that (a) a large class of valid verification conditions of real-world programs have a
proof inN , and (b) searching for a proof inN is decidable. In fact, we would even
like the search for a proof in N to be e�ciently decidable, possibly utilizing the
automatic logic solvers (SMT solvers) that exist today. Natural proofs are hence a
fixed set of proof tactics whose application is itself expressible in a decidable logic.

The results in this chapter provide natural proofs for general properties of
structure, data, and separation. Our contributions are: (a) we propose Dryad, a
dialect of separation logic for heaps, with no explicit (classical) quantification but
with recursive definitions, to express second-order properties; (b) we show that
Dryad is both powerful in terms of expressiveness, and that the strongest-post of
Dryad specifications with respect to bounded code segments can be formulated in
Dryad, (c) we show how Dryad has been designed so that it can be systematically
converted to classical logic using the theory of sets, allowing us to connect the
more natural and succinct specifications to more verbose but classical logic, and
(d) we develop a natural proof mechanism for classical logics with recursion and
sets that implement sound but incomplete reductions to decidable theories that can
be handled by an SMT solver.

Dryad: A separation logic with determined heaplets
The primary design principle behind separation logic is the decision to express
strict specifications— logical formulas must naturally refer to heaplets (subparts
of the heap), and, by default, the smallest heaplets over which the formula needs to
refer to. This is in contrast to classical logics (such as FOL) which implicitly refer
to the entire heap globally. Strict specifications permit elegant ways to capture how
a particular sub-part of the heap changes due to a procedure, implicitly leaving
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the rest of the heap and its properties unchanged across a call to this procedure.
Separation logic is a particular framework for strict specifications, where formulas
are implicitly defined on strictly defined heaplets, and where heaplets can be
combined using a spatial conjunction operator denoted by ⇤. The frame rule in
separation logic captures the main advantage of strict specifications: if the Hoare-
triple {P}C{Q} holds for some program C, then {P ⇤ R}C{Q ⇤ R} also holds (with
side-conditions that the modified variables in C are disjoint from the free variables
in R).

Consider, for example, expressing that the location x is the root of a tree.
This is a second-order property and formulations of it in classical logic using set
or path quantification are quite complex and not easily amenable to automated
verification. We prefer inductive definitions of structural properties without any
explicit quantification. The separation logic syntax with recursive definitions
and heaplet semantics allows simple quantifier-free formulas to express structural
restrictions; for example. tree-ness can be expressed simply as:

tree(x) :: (x = nil ^ emp) _ (x 7�! (l, r) ⇤ tree(l) ⇤ tree(r))

We first define a new logic, Dryad, that permits no explicit quantification, but
permits powerful recursive definitions to define integers, sets/multisets of integers,
and sets of locations, using least fixed-points. The logic Dryad furthermore has a
heaplet semantics and allows the spatial conjunction operator ⇤. However, a key
design feature of Dryad is that the heaplet for recursive formulas is essentially
determined by the syntax as opposed to the semantics. In classical separation logic,
a formula of the form ↵ ⇤ � says that the heaplet can be partitioned into any two
disjoint heaplets, one satisfying ↵ and the other �. In Dryad, the heaplet for a
(complex) formula is determined and hence if there is a way to partition the heaplet,
there is precisely one way to do so. We have found that most uses of separation
logic to express properties can be written quite succinctly and easily using Dryad
(in fact, it is easier to write such deterministic-heap specifications). The key
advantage is that this eliminates implicit existential quantification the separation
operator provides. In a verification condition that combines the pre-condition
in the negative and the post-condition in the positive, the classical semantics for
separation logic invariably introduces universal quantification in the satisfiability
query for the negation of the verification condition, which in turn is extremely hard
to handle.
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In Dryad, the semantics of a recursive definition r(x) (such as tree above),
requires that the heaplet be determined and defined as the set of all locations
reachable from the node x through a set of pointer-fields f1, ..., fk without passing
through a set of locations (given by a set of location terms t1, ...tn). While our
logical mechanisms can be extended beyond this notion (in deterministic ways),
we have found that this captures most common properties required in proving
data-structure manipulating programs correct.

Translating Dryad to classical logic with recursion:
The second key step in our paradigm is a technique to bridge the gap from sep-
aration logic to classical logic in order to utilize e�cient decision procedures
supported by SMT solvers. We show that heaplet semantics and separation logic
constructs of Dryad can be e↵ectively translated to classical logic where heaplets
are modeled as sets of locations. We show that Dryad formulas can be translated
into classical logic with free set variables that capture the heaplets corresponding
to the strict semantics. This translation does not, of course, yield a decidable theory
yet, as recursive definitions are still present (the recursion-free formulas are in a
decidable theory). The carefully designed Dryad logic with determined heaplet
semantics ensures that there is no quantification in the resulting formula in classical
logic. The heaplets of recursively defined properties, which are defined using the
set of all reachable nodes, are translated to recursively defined sets of locations.

Natural proofs for Dryad:
Finally, we develop a natural proof methodology for Dryad by showing a natural
proof mechanism for the equivalent formulas in classical logic. The basic proof
tactic that we follow is not just dependent on the formula embodying the verification
condition, but also on the precise footprint touched by the program segment being
verified. We unfold recursive definitions precisely across footprints, translating
them to the frontier of the footprint, and then use a form of formula abstraction that
treats recursive formulas on frontier nodes as uninterpreted functions. The resulting
formula falls in a logic over sets and integers, which is then decided using the
theory of uninterpreted functions and arrays using SMT solvers. The key feature is
that heaplets and separation logic constructs, which get translated to recursively
defined sets of locations, are unfolded along with other user-defined recursive
definitions and formula-abstracted using this uniform natural proof strategy,

While our proof strategy is roughly as above, there are many technical details
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that are complex. For example, the heaplets defined by pre/post conditions intrinsi-
cally specify the modified locations of the heap, which have to be considered when
processing procedure calls in order to ensure which recursively defined metrics on
locations continue to hold after a procedure call. Also, the final decidable theories
that we compile our conditions down to does require a bit of quantification, but
it turns out to be in the array property fragment which admits automatic decision
procedures.

Implementation and Evaluation:
Our proof mechanisms are essentially a class of decidable proof tactics that result
in sound but incomplete validation procedures. To show that this class of natural
proofs is e↵ective in practice, we provide a prototype implementation of our
technique, which handles a low-level programming language with pre-conditions
and post-conditions written in Dryad. We show, using a large class of correct
programs manipulating lists, trees, cyclic lists, and doubly linked lists as well as
multiple data-structures of these kinds, that the natural proof mechanism succeeds
in proving the verifications conditions automatically. These programs are drawn
from a range of sources, from textbook data-structure routines (binary search
trees, red-black trees, etc.) to routines from Glib low-level C-routines used in
GTK+/Gnome to implement file-systems, from the Schorr-Waite garbage collection
algorithm, to several programs from a recent secure framework developed for
mobile applications [63]. The work presented here is by far the only one that we
know of that can handle such a large class of programs, completely automatically.
Our experience has been that the user-provided contracts and invariants are easily
expressible in Dryad, and the automatic natural proof mechanisms work extremely
fast. In fact, contrary to our own expectations, we also found that the tool is useful
in debugging: in several cases, when the annotations supplied were incorrect, the
model provided by the SMT solver for the natural proof was useful in detecting
errors and correcting the invariants/program.

5.1 Motivating Example

In this section we give intuition into our verification approach through a motivating
example. Recall that a max-heap is a binary tree such that for each node n the key
stored at n is greater than or equal to the keys stored at each of its children. Heaps
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void heapify(loc x) {
if (x.left = nil)
s := x.right;

else if (x.right = nil)
s := x.left;

else {
lx := x.left;
rx := x.right;
if (lx.key < rx.key)
s := x.right;

else

s := x.left;
}
if (s =/= nil)
if (s.key > x.key) {
t := s.key;
s.key := x.key;
x.key := t;
heapify(s);

}
}

'pre ⌘
⇣
x

key,left,right7�! (k, l, r)
⇤ mheap��!

pf
(l) ⇤ mheap��!

pf
(r)

⌘

^ keys��!
pf

(x) = K

'post ⌘ mheap��!
pf

(x) ^ keys��!
pf

(x) = K

assume x.left0 , nil
assume x.right0 , nil
lx := x.left0
rx := x.right0
assume lx.key0 < rx.key0
s := x.right0
assume s , nil
assume s.key0 > x.key0
t := s.key0
s.key1 := x.key0
x.key2 := t
heapify(s)
mheap��!

pf
(x)

def
=

⇣

x = nil ^ emp
_ �

x
key,left,right7�! (k, l, r)

⇤ (mheap��!
pf

(l) ^ {k} � keys��!
pf

(l))

⇤ (mheap��!
pf

(r) ^ {k} � keys��!
pf

(r))
�⌘

keys��!
pf

(x)
def
=

⇣

x = nil ^ emp : ; ;

x
key,left,right7�! (k, l, r) ⇤ true :
keys��!

pf
(l) [ {k} [ keys��!

pf
(r) ;

default : ;
⌘

Figure 5.1: Motivating example: Heapify

are often used to implement priority queues. In Figure 5.1, in the lower right corner,
we express the property that a location x points to a max-heap using recursive
definitions keys��!

pf
(x) and mheap��!

pf
(x), with

�!
pf ⌘ {left, right}. These recursive defini-

tions are written in Dryad, which is formally introduced in Section 5.2. Intuitively,
Dryad extends quantifier free separation logic [85, 73] with recursive predicates
and functions. These recursive definitions allow us to express structural and data
properties on the heap, like those of max-heap, without explicit quantification.

For a location x, the recursive definition keys��!
pf

(x) returns the set of keys at
the nodes of the tree rooted at x: if x is nil and the heaplet is empty, then the
empty-set; otherwise, the union of the key stored at x and the keys stored in the left
and right subtrees of x. Similarly, the recursive definition mheap��!

pf
(x) states that x

points to a max-heap if: x is nil and the heaplet is empty; or x and the heaplets of
the left and right subtrees of x are mutually disjoint (x points to a tree) and the key
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at x is greater than or equal to the keys of the left and right subtrees of x.
The method heapify in Figure 5.1 is at the heart of the procedure for deleting

the root from a max-heap (removing the node with the maximum priority). If the
max-heap property is violated at a node x while satisfied by its descendants, then
heapify restores the max-heap property at x. It does so by recursively descending
into the tree, swapping the key of the root with the key at its left or right child,
whichever is greater. The precondition 'pre binds the free variable K to the set of
keys of x. The postcondition states that after the procedure call, x satisfies the
max-heap property and the set of keys of x is unchanged (same as K).

One of the main aspects of our approach is to reduce reasoning about heaplet
semantics and separation logic constructs to reasoning about sets of locations. We
use set operations like union, intersection and membership to describe separation
constraints on a heaplet satisfying a formula. This translation from Dryad formulas,
like those in Figure 5.1, to formulas in classical logic with recursive predicates
and functions is formally presented in Section 5.3. Intuitively, we associate a set
of locations to each (spatial) atomic formula, which is the domain of the heaplet
satisfying that formula. Dryad requires that this heaplet is syntactically determined
for each formula. For example, the heaplet associated to the formula x 7! ... is the
singleton {x}; for recursive definitions like mheap��!

pf
(x) and keys��!

pf
(x), the domain

of the heaplet is reach{left,right}(x), which intuitively is the set of locations reachable
from x using the pointer fields left and right, and can be defined recursively.

As shown in Figure 5.1, 'pre is a conjunction of two formulas. If Gpre is the do-
main of the heaplet associated to 'pre, then the first conjunct requires Gpre to be the
disjoint union of the sets {x}, reach{left,right}(left(x)) and reach{left,right}(right(x)). The
second conjunct requires Gpre = reach{left,right}(x). From these heaplet constraints,
we can translate 'pre to the following formula in classical logic over the global
heap:

Gpre = {x} [ reach{left,right}(left(x)) [ reach{left,right}(right(x))
^ x < reach{left,right}(left(x)) ^ x < reach{left,right}(right(x))
^ reach{left,right}(left(x)) \ reach{left,right}(right(x)) = ; ^ x , nil
^ mheap(left(x)) ^ mheap(right(x))
^ Gpre = reach{left,right}(x) ^ keys(x) = K
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Similarly, we translate 'post to

Gpost = reach{left,right}(x) ^ mheap(x) ^ keys(x) = K

Note that the recursive definitions mheap and keys without the “�” superscript are
in the classical logic (without the heaplet constraint). Hence the recursive predicate
mheap satisfies

mheap(x)$ �
x=nil^reach{left,right}(x) = ;�

_
⇣
x,nil^x<reach{left,right}(left(x))^x<reach{left,right}(right(x))
^ reach{left,right}(left(x)) \ reach{left,right}(right(x)) = ;
^ �

reach{left,right}(x) = {x} [ reach{left,right}(left(x))
[reach{left,right}(right(x))

�

^ mheap(left(x)) ^ {key(x)} � keys(left(x))
^ mheap(right(x)) ^ {key(x)} � keys(right(x))

⌘

The right side of Figure 5.1 presents a basic path from method heapify,
corresponding to the case when both children of x are not nil and the key of the
right child is greater than the keys of the left child and the root. The subscript
of a pointer/data field denotes the timestamp. A key insight is that any basic
path touches a finite number of locations and may call some recursive proce-
dures. We refer to the touched locations as the footprint, and to the adjacent
locations which are not part of the footprint as the frontier. For this example,
the footprint is { x, lx, rx } (s is known to be equal with rx) and the frontier is
{ left0(lx), right0(lx), left0(rx), right0(rx) }. We capture the e↵ect of the path until
the call to heapify by

left0(x) , nil ^ right0(x) , nil ^ lx = left0(x) ^ rx = right0(x)
^ key0(lx) < key0(rx) ^ s = right0(x) ^ s , nil
^ key0(s) > key0(x) ^ t = key0(s)
^ key1 = key0{s key0(x)} ^ key2 = key1{x t}

Once we have expressed the verification condition in classical logic with recur-
sive definitions over the global heap, we prove it using the natural proof method-
ology. We unfold the recursive definitions mheap(x), keys(x) and reach{left,right}(x)
for x, lx and rx (the footprint), thus evaluating them in terms of their values on
the frontier. The call to heapify preserves the recursive definitions on locations
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reachable from lx, and modifies those on rx according to the pre/post condition.
Finally, we abstract the recursive definitions on the frontier with uninterpreted
functions. We decide the resulted formula (which is in a decidable logic) using an
SMT solver. Section 5.4 describes this process in detail.

5.2 The Logic Dryad

In this section we present our logic Dryad, which is defined using heaplet semantics
and separation logic primitives. Hence, the logic is a quantifier-free heaplet logic
augmented with recursively defined predicates/functions.

5.2.1 Syntax

Let us fix a finite set of pointer-fields PF and a finite set of data-fields DF. A record
consists of a set of pointer-fields from PF and a set of data-fields from DF. Our
logic also presumes that locations refer to entire records rather than particular fields,
and that address arithmetic is precluded. We will use the term locations hence to
refer to these records. We assume that every field is defined at every location, i.e.,
all memory records have the same layout (to simplify the presentation); our logic
can easily be extended with record types.

Let Bool = {true, false} stand for the set of Boolean values, Int stand for the
set of integers and Loc stand for the universe of locations. For any set A, let S(A)
denote the set of all finite subsets of A, and letMS(A) denote the set of all finite
multisets with elements in A.

The Dryad logic allows expressing quantifier-free first-order properties over
heaps/heaplets augmented with recursively defined notions for a location to express
second-order properties, denoted as a function r : Loc ! D. The codomain D
can be IntL, S(Loc), S(Int),MS(Int)L or Bool, where IntL andMS(Int)L extend
Int andMS(Int) to lattice domains, respectively, in order to give least fixed-point
semantics (explained later in this section). Typical examples of these recursive
definitions include the definitions of the height of a tree or the height of black-
nodes in the tree rooted at a node (recursively defined integers), the set of nodes
reachable from a location following certain pointer fields (recursively defined sets
of locations), the set/multiset of keys stored at a particular data-field under nodes
reachable from a location (recursively defined set/multiset of integers), and the
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property that the tree rooted at a node is a binary search tree or a balanced tree or
just a tree (recursively defined predicates).

A Dryad formula ' is quantifier-free, but parameterized by a set of recursive
definitions Def �. The syntax of Dryad logic is given in Figure 5.2, where the
syntax of formulas is followed by the syntax for recursive definitions. Most
symbols in Dryad are common and self-explanatory. Note that the inequality (< or
) between integer sets/multisets indicates that any integer in the left-hand side is
less-than/not-greater-than any integer in the right-hand side. It is also noteworthy
that the separating conjunction (⇤) from separation logic is also allowed, but only if
it is not above any negation (¬). We require that every recursive function/predicate
used in the formula ' has a unique definition in Def �. Each recursive function is
parameterized by a set of pointer fields

�!
pf and a set of program variables ~v, denoted

as f ��!
pf ,~v

. The subscripts are used in defining the semantics of recursive functions in

Section 5.2.2. We usually simply use f � when the subscripts are not relevant in
the context. Similarly, recursive predicates are denoted as p��!

pf ,~v
or simply p�. The

recursive functions are defined using the syntax:

�
' f

1(x,~v, ~s) : t f
1 (x, ~s) ; . . . ; ' f

k (x,~v, ~s) : t f
k (x, ~s) ; default : t f

k+1(x, ~s)
�

where ' f
u(x,~v, ~s)/t f

u (x, ~s) is a formula/term in our logic with ~s implicitly existen-
tially quantified. The recursively defined predicates are defined using the syntax:
'p(x,~v, ~s), which is a formula in our logic with ~s implicitly existentially quanti-
fied. The recursive function syntax above expresses a case-split, with the function
evaluating to the first term whose guard evaluates to true. The restrictions on the
recursive definitions are:

• Subtraction, set-di↵erence, and negation are disallowed;

• Every variable in ~s should appear in the right hand side of a points-to relation
binding it to x exactly once.

For examples of recursive functions and predicates, see the definitions keys��!
pf

(x)

and mheap��!
pf

(x) in Figure 5.1, respectively. The set of program variables ~v parame-
terizing the definitions is empty in both these definitions and the set of implicitly
existentially-quantified variables ~s is {k, l, r}.
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5.2.2 Semantics

Our logic is interpreted on models that are program states:

Definition 19. A program state is a tuple C = (R, s, h) where

• R ✓ Loc \ {nil} is a finite set of locations;

• s : Vars! Int [ Loc is a store mapping program variables to locations or
integers (of appropriate type);

• h : R ⇥ (PF [ DF)! Int [ Loc is a heaplet mapping non-nil locations and
each pointer-field/data-field to values of the appropriate type. ⇤

Note that the set of locations is, in general, larger than the state R and hence
R defines a subset of heap locations. The store maps variables to locations (not
necessarily in R), but the heaplet h gives interpretations for pointer and data-fields
only for elements in R.

Given a heaplet h, for every pointer field pf, we denote the projection of h on
R ⇥ (PF \ {pf} [ DF) as h - pf; similarly, for every data-field df, we denote the
projection of h on R ⇥ (PF [DF \ {df}) as h - df. Also, for every subset S ✓ R, we
denote the projection of h on S ⇥ (PF [ DF) as h | S .

A term/formula with free variables F is interpreted by interpreting the free
variables in F using the map s from variables to values. The semantics of Dryad
is similar to that of classical Separation Logic (SL). In particular, a term/formula
without recursive definitions is interpreted exactly in the same way in Dryad and
SL. Hence we first give the semantics of the non-recursive part, followed by the
semantics of recursive definitions.

Before defining the semantics of formulas, we define the pure property for
terms/formulas. Intuitively, a term/formula is pure if it is independent of the heap.
Syntactically, a term/formula is pure if it does not contain emp, 7�! or any recursive
definition. Note that in SL all terms are pure, but in Dryad, a term can be impure if
it contains a recursive function f �.

Semantics of terms

Each T -term evaluates to either a normal value of type T , or to undef, which is
only used in interpreting recursive functions (will be explained later). As a special
value, undef will be propagated throughout the formula: if a formula ' contains
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a sub-term that evaluates to undef, then ' will evaluate to false if it appears
positively, and will evaluate to true otherwise. Intuitively, undef cannot help in
making the formula true over a model.

The Loc terms are evaluated as follows:

~x�C = s(x)
~nil�C = nil

For any binary operator op, t op t0 is evaluated as follows:

~t op t0�C =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

~t�C op ~t0�C if t or t0 is pure
~t�C|R1 op ~t0�C|R2 else if there exist R1,R2 such that

R = R1 [ R2, ~t�C|R1 , undef
and ~t0�C|R2 , undef

undef otherwise

where op is interpreted in the natural way.
For singletons, {it} will evaluate to ; if it evaluates to �1 or1:

~{it}�C =

8>>>>><
>>>>>:

undef if ~it�C = undef

; if ~it�C = �1 or 1
{~it�C} otherwise

{it}m and {lt} evaluate similarly.

Semantics of formulas

The formula true is always interpreted to be true:

(R, s, h) |= true

The formula emp asserts that the heap is empty:

(R, s, h) |= emp i↵ R = ;

The formula lt
�!
pf ,
�!
df7�! (~lt, ~it) asserts that the heap contains exactly one record consist-
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ing of fields
�!
pf and

�!
df , at address lt, with values ~lt and ~it, respectively. Formally,

the semantics of this formula is given as:

(R, s, h) |= lt
�!
pf ,
�!
df7�! (~lt, ~it) i↵ R = {~lt�R,s,h} and

h(~lt�R,s,h, pfi) = ~lti�R,s,h for corresponding pfi and lti,

h(~lt�R,s,h, dfi) = ~iti�R,s,h for corresponding dfi and iti.

Note that, as in separation logic, the above has a strict semantics— the heaplet
must be a singleton set and cannot be a larger set.

For binary relations t ⇠ t0 between integers, sets, and multisets, including
equality, the pure property plays an important role. Remember that in SL all terms
are pure. To be consistent with SL, if both t and t0 are pure, it is interpreted in the
normal way. Otherwise, t ⇠ t0 is only defined on the minimum heaplet required by
t and t0, more concretely the union of the heaplet associated with t and t0.

(R, s, h) |= t ⇠ t0 i↵ t or t0 is pure and ~t�C ⇠ ~t0�C

or t and t0 are impure and there exist R1,R2 s.t. R = R1 [ R2

and ~t�C|R1 , undef, ~t
0�C|R2 , undef and ~t�C|R1 ⇠ ~t0�C|R2

where ⇠ is interpreted in the natural way.
The semantics of the disjoint conjunction operator ⇤ is defined as follows. The

formula '0 ⇤ '1 asserts that the heap can be split into two disjoint parts in which '0

and '1 hold respectively:

(R, s, h) |= '0 ⇤ '1 i↵ there exist R0,R1 s.t. R0 \ R1 = ; and

R0 [ R1 = R and (R0, s, h | R0) |= '0 and (R1, s, h | R1) |= '1

Boolean combinations are defined in the standard way:

(R, s, h) |= '0 ^ '1 i↵ (R, s, h) |= '0 and (R, s, h) |= '1

(R, s, h) |= '0 _ '1 i↵ (R, s, h) |= '0 or (R, s, h) |= '1

(R, s, h) |= ¬' i↵ (R, s, h) 6|= '
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Semantics of recursive definitions

The main semantical di↵erence between Dryad and SL is on recursive definitions.
We would like to deterministically delineate the heap domain for any recursive
definition, so that the heap domain required by any Dryad formula can be syntacti-
cally determined. Given a recursive definition rec��!

pf ,~v
, the subscripts

�!
pf and ~v play

a role in delineating the heap domain. Intuitively, the heap domain for rec��!
pf ,~v

(l) is

the set of locations reachable from l using pointer-fields in
�!
pf , but without going

through the locations ~v. In other words, we want to take the set of locations that lie
in between l and ~v. Precisely, this set is determined by a location l and a program
state (R, s, h). We denote it as reachset�!pf ,~v (l, (R, s, h)). Formally it is the smallest
set of locations L satisfying the following two conditions:

1. l is in the set L if l is not in ~v and l , nil;

2. for each c in L, with c 2 R, and for each pointer pf, if h(c, pf) is not in ~v and
is not nil, then h(c, pf) is also in L.

Note that even though the reach set is defined with respect to the edges in the
heaplet, we can determine whether R includes all nodes reachable from l without go-
ing through ~v in the global heap by checking whether R = reachset�!pf ,~v (l, (R, s, h)).

For each recursive definition rec��!
pf ,~v

, we usually simply denote reachset�!pf ,~v as
reachsetrec, as the subscripts are implicitly known.

Now, given a program state C = (R, s, h) and a recursive function/predicate
rec�, the semantics on a location l depends on whether the heap domain R is exactly
the required reach set reachsetrec(l, (R, s, h)). If this is not true, we simply interpret
it as undef or false.

If the heap domain matches the reach set (i.e., R = reachset�!pf ,~v (l, (R, s, h))),
the semantics is defined in the natural way (using least fixed-points). The colon
operator in the syntax of recursive function f ��!

pf ,~v
translates into a nested if-then-else

(ITE) operator. Formally,

~ f ��!
pf ,~v

(l)�C = ITE
�
' f

1 , ~t
f
1�C|R1 , ITE(' f

2 , ~t
f
2�C|R2 , . . . ~t

f
k+1�C|Rk+1 . . . )

�

where R1 . . .Rk+1 ✓ R such that ~t f
i �C|Ri , undef. In order to give least fixed-point

semantics for recursive definitions in the logic, we extend the primitive data-types
to lattice domains. Bool with the order false v true forms a complete lattice, and
S(Loc) and S(Int) ordered by inclusion, with join as union and meet as intersection,
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form complete lattices. Integers and multisets are extended to lattices. Let (IntL,)
denote the complete lattice, where IntL = Int [ {�1,1}, and where the ordering
is , join is max, meet is min. Also, MS(Int)L,v denote the complete lattice
constructed fromMS(Int), whereMS(Int)L =MS(Int) [ {>}, and v extends the
inclusion relation with S v > for any M 2MS(Int). It is easy to see that (IntL,v)
and (MS(Int)L,v) are complete lattices.

Formally, let Def consists of definitions of integer functions I, set-of-locations
functions SL, set-of-integers functions SI, multiset-of-integers functions MSI and
predicates P. Since these definitions could rely on each other, we evaluate them
altogether as a function vector

r� = (
�!
i� ,
�!

sl�,
�!

si�,
��!

msi�,
�!
p�)

We take the cartesian product lattice of the individual lattices and take the least
fixed-point of r� to obtain the semantics for each definition. Let selectrec(lfp(r�)),
for each recursive definition rec�, denote the selection of the coordinate for rec�

in lfp(r�).
Now we can formally define the semantics of recursive definitions. For any

configuration C, the semantics of a recursive function f � is defined as:

~ f �(lt)�C =

8>><
>>:

select f
�
lfp(r�)

�
(~lt�C) if R = reachset f (~lt�C,C)

undef otherwise

and the semantics of a recursive predicate p� is defined as

~p�(lt)�C =

8>><
>>:

selectp
�
lfp(r�)

�
(~lt�C) if R = reachsetp(~lt�C,C)

false otherwise

Remark: Note that we disallow negative operations (subtraction, set-di↵erence
and negation) in defining recursive definitions. This syntactical restriction guaran-
tees that each iteration of r� is monotonic. By Knaster-Tarski theorem, r� admits a
least fixed-point.

5.2.3 Examples

The Dryad logic was already used in Section 5.1 to define max-heaps. Note that
the definition of a max-heap is precisely defined on the heaplet that includes the
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underlying tree nodes of the max-heap only, as the heaplet for a recursive definition
is the set of all reachable nodes according to the two pointers.

To clarify the di↵erence between Dryad and SL, consider now this recursive
definition:

p�{l,r}(x)
def
= (x = nil ^ emp) _

h
(x

l,r7�! y, z) ⇤
⇣
p�{l,r}(y) _ p�{l,r}(z)

⌘i

Now consider a global heap that has a tree rooted at x with pointer fields l and
r. The above recursive formula, in separation logic, will be true on any heaplet
that contains the nodes of a path in this tree from x to nil. However, in Dryad, we
require that the heaplet must satisfy the heap constraints of the formula and also
be the precise set of locations reachable from x using the pointer fields l and r.
Consequently, if the tree pointed to by x has more than one path, the Dryad formula
will be false for any heaplet.

The above example shows the advantage of Dryad; when heaplets are deter-
mined, we can avoid quantification. We have not found natural examples where an
undetermined heaplet semantics helps in specifying properties of heaps.

Dryad can express structures beyond trees. The main restriction we do impose
is that we allow only unary recursive definitions, as this allows us to find simpler
natural proofs since there is only one way to unfold the definition across a footprint.
However, Dryad can express structures like cyclic lists and doubly-linked lists.

A cyclic-list is captured as (v 7! y) ⇤ lseg�next,v(y). Here, v is a program variable
which denotes the head of the cyclic-list and lseg�next,v(y) captures the list segment
from y back to the head v, where the subscripts next and v indicate that the heaplet
of the list segment is the locations that can be reached using the field next, but
without going through v:

lseg�next,v(y)
def
= (y = v ^ emp) _ �

(y
next7! z) ⇤ lseg�next,v(z)

�

Another interesting example is a doubly-linked list. We define a doubly-linked
list as the following unary predicate:

dll�next(x) = (x = nil ^ emp) _ (x
next7! nil) _

�
x

next7! y ⇤ �
(y

prev7! x ⇤ true) ^ dll�next(y)
� �
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The first two disjuncts in the definition cover the base case when x is nil or the
location next to x is nil; otherwise, let y be the location next to x, then the prev
pointer at y points to x and location y is recursively defined as a doubly-linked list.

5.3 Translation to a Logic over the Global Heap

We now show one of the main results of this chapter— a translation from Dryad
logic to classical logic with recursive predicates and functions, but over the global
heap. The formulation of separation logic primitives in the global heap allows us
to express complex structural properties, like disjointness of heaplets and tree-ness,
using recursive definitions over sets of locations, which are defined locally, and are
amenable to unfolding across the footprint and hence amenable to natural proofs.

For example, consider the formula mheap�(x) ⇤ mheap�(y), where mheap� is
defined in Section 5.1. Since the heaplets for mheap�(x) and mheap�(y) are precise,
it can get translated to an equivalent formula with a free set variable G that denotes
the global heap over which the formula is evaluated:

mheap(x) ^ mheap(y) ^ (reachmheap(x) \ reachmheap(y) = ;)
^ (reachmheap(x) [ reachmheap(y) = G)

where mheap and reachmheap are corresponding recursive definitions in classical
logic, which will be defined later in this section. Note that we use italics and
remove the � superscript to show the di↵erence from their counterpart in Dryad.

We assume the Dryad formula to be translated is in disjunctive normal form,
i.e., _ operators should be above all ⇤ and ^ operators. This is not a real restriction
as one can always push the disjunction out. This normal form ensures that for all
occurrences of the separation operator in a formula, there exists a unique way of
splitting the heap so as to satisfy the ⇤ separated sub-formulas. Also, it ensures that
this unique heap-split can be determined syntactically from the structure of those
sub-formulas.

In our translation, we model the heaplets associated with a formula or a term as
a set of locations and all operations on these heaplets are modeled as set operations
like set union, set intersections, etc. over set-of-location variables. For example
the separating conjunction P ⇤ Q is translated to the following set constraint: the
intersection of the sets associated with the heaplets in the formulas P and Q is
empty. Given a formula ' in Dryad and its associated heap domain modeled by a
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Construct Domain-exact Scope
var/const false ;
{t}/{t}m dom-ext(t) scope(t)
t op t0 dom-ext(t) _ dom-ext(t0) scope(t) [ scope(t0)
f �(lt) true reachset f (lt)

true/false false ;
emp true ;

lt
~pf,~df7�! (~lt, ~it) true {lt}
p�(lt) true reachsetp(lt)
t ⇠ t0 dom-ext(t) _ dom-ext(t0) scope(t) [ scope(t0)
' ^ '0 dom-ext(') _ dom-ext('0) scope(') [ scope('0)
' ⇤ '0 dom-ext(') ^ dom-ext('0) scope(') [ scope('0)

Figure 5.3: Domain-exact property and Scope function. Both are defined only for
terms and formulas without disjunction and negation. A formula is assumed in its
disjunctive normal form.

set variable G, we define an inductive translation T into a classical logic formula
T (', G) in the quantifier-free theory of finite sets, integers and uninterpreted
functions. The translated formula is not interpreted on a heaplet, but interpreted on
a global heap (i.e., with the heap domain Loc).

The translation uses an auxiliary domain-exact property and an auxiliary scope
function. The domain-exact property indicates whether a term evaluates to a well-
defined value or a positive formula evaluates to true on a fixed heap domain or
not. This is di↵erent from the property pure; a pure formula or term is not domain-
exact but the reverse implication is not true, in general. For example, the formula
(lt 7�! it) ⇤ true is not domain-exact but is also not pure. The scope function maps
a term to the minimum heap domain required to evaluate it to a normal value, and
maps a positive formula to the minimum heap domain required to evaluate it to
true. The domain-exact property and the scope function are defined inductively in
Figure 5.3.

We describe the logic translation in detail in Figure 5.4. The ITE expression
used in the translation is short for "if-then-else". It is just a conditional expression
defined as follows: ITE(�, t1, t2) evaluates to t1 if � is true, otherwise evaluates to
t2.

In general, our translation restricts an impure term/formula to be evaluated only
on the syntactically determined heap domain according to the semantics of Dryad.
In particular, when evaluating a recursive formula or predicate p�, we ensure that
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T (var / const, G) ⌘ var / const
T ({t} / {t}m, G) ⌘ {t} / {t}m

T (t op t0, G) ⌘ T (t,G) op T (t0,G)
T ( f �(lt), G) ⌘ ITE

�
reach f (lt) = G, f (lt), undef

�

T (true / false, G) ⌘ true / false
T (emp, G) ⌘ G = ;

T (lt
~pf,~df7�! (~lt, ~it), G) ⌘ G = {lt} ^V

pfi pfi
�
T (lt,G)

�
= T (lti,G)

^V
dfi dfi

�
T (lt,G)

�
= T (iti,G)

T (p�(lt), G) ⌘ p(lt) ^G = reachp(lt)

T (t ⇠ t0, G) ⌘
8>><
>>:

t ⇠ t0 if t ⇠ t0 is not domain-exact

t ⇠ t0 ^G = scope(t ⇠ t0) otherwise
T (' ^ '0, G) ⌘ T (',G) ^ T ('0,G)
T (' _ '0, G) ⌘ T (',G) _ T ('0,G)

T (¬', G) ⌘ ¬T (',G)

T (' ⇤ '0, G) ⌘

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

T
�
', scope(')

� ^ T
�
'0, scope('0)

�

^ scope(') [ scope('0) = G
^ scope(') \ scope('0) = ;

if both ' and '0 are domain-exact

T
�
', scope(')

� ^ T
�
'0, G \ scope(')

�

^ scope(') ✓ G if only ' is domain-exact

T
�
'0, scope('0)

� ^ T
�
', G \ scope('0)

�

^ scope('0) ✓ G if only '0 is domain-exact

T
�
', scope(')

� ^ T
�
'0, scope('0)

�

^ scope(') [ scope('0) ✓ G
^ scope(') \ scope('0) = ;

if neither ' nor '0 is domain-exact

Figure 5.4: Translating Dryad terms/formulas to classical logic
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the heaplet is precisely the reach set reachp(lt). For a formula ' ⇤ '0, translation to
classical logic depends on whether the sub-formulas ' and '0 are domain-exact or
not. If a sub-formula is domain-exact then it is evaluated on its scope. If it is not
domain-exact, then it is evaluated on the rest of the heaplet.

Recursive definitions in Dryad are also translated to recursive definitions in
classical logic. Translating a recursive definition rec� uses the corresponding
definitions rec and reachrec, both of which are defined recursively in classical logic.
The set reachrec represents the domain of the required heaplet for evaluating rec�,
and the �-eliminated definition rec captures the value of rec� when the heaplet is
restricted to reachrec. Formally, suppose rec� is a recursive definition w.r.t. pointer
fields ~pf and stopping locations ~v, then reachrec is recursively defined as the least
fixed-point of

reachrec(x)
def
= ITE

✓
x = nil _ x 2 ~v, ;, {x} [

[

pf2~pf

�
reachrec(pf(x))

� ◆

For each recursive predicate p� defined as p�(x)
def
= 'p(x,~v, ~s), we define

p(x)
def
= T

�
'p(x, ~v, ~s), reachp(x)

�

Similarly, for each recursive function f � defined as

f �(x)
def
=

�
' f

1(x,~v, ~s) : t f
1 (x, ~s) ; . . . ' f

k (x,~v, ~s) : t f
k (x, ~s) ; default : t f

k+1(x, ~s)
�

we define

f (x)
def
= ITE

⇣
T
�
' f

1(x,~v, ~s), reach f (x)
�
, t f��

1 (x, ~s)

ITE
⇣

T
�
' f

2(x,~v, ~s), reach f (x)
�
, t f��

2 (x, ~s)

. . . , t f��
k+1 (x, ~s) . . .

⌘⌘

where t f��
i (x, ~s) is just the classical logic counterpart of t f

i (x, ~s), when interpreted
in a heap domain within reach f (x). Formally it is short for

ITE
⇣
scope(t f

i (x, ~s)) ✓ reach f (x), T
�
t f
i (x, ~s), scope(t f

i (x, ~s))
�
, undef

⌘

Now for each set of recursive definitions Def � in Dryad, we can translate it to a
set of recursive definitions Def in classical logic.
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P :� P ; P | stmt
stmt :� u := v | u := nil | u := v.pf | u.pf := v

| j := u.df | u.df := j | j := aexpr
| u := new | free u | assume bexpr
| u := f (~v,~z) | j := g(~v,~z)

aexpr :� int | j | aexpr + aexpr | aexpr � aexpr
bexpr :� u = v | u = nil | aexpr  aexpr

| ¬bexpr | bexpr _ bexpr

Figure 5.5: Syntax of programs

Theorem 6. Let ' be a Dryad formula w.r.t. a set of recursive definitions Def �.
For every program state C with heap domain Loc, and for every interpretation of
variables I including a valuation for set-variable G, (C, I) |= T (', G) w.r.t. Def
if and only if (C |G, I \ {G}) |= ' w.r.t. Def �. ⇤

5.4 Natural Proofs for Dryad

In this section we show how Dryad can be used in reasoning about the correctness
of imperative heap-manipulating programs, in terms of verifying Hoare-triples
where the pre- and post-conditions are expressed in Dryad. We first introduce a
simple programming language and the corresponding Hoare-triples, generate a
classical logic formula as the verification condition, utilizing in part the translation
defined in Section 5.3. Then we present the natural proof framework which consists
of two steps. In the first step, we utilize the idea of unfolding across the footprint to
strengthen the verification condition (VC). In the second step, we prove the validity
of the VC soundly using the technique of formula abstraction.

5.4.1 Programs and Hoare-triples

We consider straight-line program segments that do destructive pointer-updates,
data-updates and procedure calls. Parameterized by a set of pointer fields PF
and a set of data-fields DF, the syntax of the programs is defined in Figure 5.5,
where pf 2 PF, f 2 DF, u and v are program variables of type location, j and z
are program variables of type integer, int is an integer constant. To simplify the
presentation, we assume all program variables are local and are either pre-assigned
or assigned once in the program.
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We allow two kinds of recursive procedures, one returning a location f (~v,~z) and
one returning an integer g(~v,~z). Each procedure/program is annotated with its pre-
and post-conditions in Dryad. The pre-condition is denoted as a formula  pre(~v,~z,~c),
where ~v and ~z are variables as the formal parameters/program variables, ~c is a
set of implicitly existentially quantified complimentary variables (e.g., variable
K in the pre-condition 'pre in Figure 5.1). The post-condition is denoted as a
formula  post(ret,~v,~z,~c), where ret is the variable representing the returned value,
of corresponding type, ~v and ~z are program variables, ~c is a set of complimentary
variables that have appeared in the pre-condition  pre.

Given a straight-line program with its pre- and post-conditions { pre} P { post},
we define its partial correctness without considering memory errors3: P is partially
correct i↵ for every normal execution (memory-error free) of P, which transits
state C to state C0, if C |=  pre, then C0 |=  post.

Given a Hoare-triple { pre} P { post} as defined above, a set of recursive defini-
tions and a set of annotated procedure declarations are presented here. Assume that
P consists of n statements, then consider a normal execution E, which can be rep-
resented as a sequence of program states (C0, . . . ,Cn), where each Ci = (Ri, si, hi)
represents the program state after executing the first i statements. The verifica-
tion condition is just a formula interpreted on a state sequence (C0, . . . ,Cn). Let
pfi : Loc ! Loc be the function mapping every location l to its pf pointer, i.e.,
pfi(l) = hi(l, pf) for every location l. Similarly, dfi : Loc! Int is defined such that
dfi(l) = hi(l, df) for every l. Recall that every program variable is either pre-assigned
or assigned once in the program, each si is an expansion of the previous one, and
sn is the store with all program variables defined. Hence we simply use v to denote
sn(v). Moreover, every recursive predicate/function is also indexed by i. For exam-
ple, pi is the recursive predicate such that pi(l) is true i↵Ci |= T (p�(l), reachsetp(l)).
Now for every formula ' and every index i, we can give the index i to all the pointer
fields, data fields and recursive definitions. We denote the indexed formula as '[i].

We algorithmically derive the verification condition  VC corresponding to it in
classical logic with recursive definitions on the global heap.

3We exclude memory errors in order to simplify the presentation. Memory errors can be handled
using a similar VC generation for assertions that negate the conditions for memory errors to occur.
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5.4.2 Unfolding Across the Footprint

The verification condition obtained above is a quantifier-free formula involving
recursive definitions and the reachable sets of the form reachp(x), which are also
defined recursively. While these recursive definitions can be unfolded ad infinitum,
we exploit a proof tactic called unfolding across the footprint. Intuitively, the
footprint is the set of locations explored by the program explicitly (not including
procedure calls). More precisely, a location is in the footprint if it is dereferenced
explicitly in the program. The idea is to unfold the recursive definitions over the
footprint of the program, so that recursive definitions on the footprint nodes are
related, as precisely as possible, to the recursive definitions on frontier nodes. This
will enable e↵ective use of the formula abstraction mechanism, as when recursive
definitions on frontier nodes are made uninterpreted, the unfolding formulas ensure
tight conditions that the frontier nodes have to satisfy.

Furthermore, to enable e↵ective frame reasoning, it is also necessary to perform
verification condition strengthening with a set of instances of the frame rule. More
concretely, we need to capture the fact that a recursive definition (or a field) on a
location is unchanged during a segment or procedure call of the program, if the
reachable locations (or only the location itself) are not a↵ected by the segment or
procedure call.

We incorporate the above facts formally into the verification condition. Let
us introduce a macro function fp that identifies the location variables that are in
(or aliased to something in) the footprint. The footprint of P, FP, is the set of
dereferenced variables in P (we call a location variable dereferenced if it appears on
the left-hand side of a dereferencing operator “.” in P). Then fp(u) ⌘ W

v2FP(u = v).
Now we state the unfoldings and framings using a formula UnfoldAndFrame.

Assume there are m procedure calls in P, then P can be divided into m + 1 basic
segments (subprograms without procedure calls): S 0 ; g1 ; S 1 ; . . . ; gm ; S m

where S d is the (d + 1)-th basic segment and gd is the d-th procedure call. Then

UnfoldAndFrame ⌘
^

rec

^

0dm

^

u2LVars[{nil}



✓ ⇣
fp(u) _ u=nil

⌘
)

⇣
Unfoldrec

d (u) ^ FieldUnchangedd(u)
⌘ ◆
^

✓ ⇣
¬fp(u) _ u=nil

⌘
) RecUnchangedrec

d (u)
◆ �

The formula enumerates every recursive definition rec and every index d, and for
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each location u that is either pointed to by a location variable or is nil, the formula
checks if u is in the footprint, and then unfolds it or frames it accordingly. If u is in
the footprint, then we unfold rec for the timestamps before and after S d (represented
by the formula Unfoldrec

d (u) ); moreover, all fields of u are unchanged if it is not
a↵ected during calling gd (represented by the formula FieldUnchangedd(u) ). If u
is not in the footprint, i.e., in the frontier, then rec and its corresponding reach set
reachrec are unchanged after executing S d, if S d does not modify any location in
reachrec; they are also unchanged if reachrec is not a↵ected by calling gd. These
frame assertions are represented by the formula RecUnchangedrec

d (u).
Now we can strengthen the verification condition by incorporating the derived

formula above:

 0VC ⌘  VC ^ UnfoldAndFrame

Since the incorporated formula is implied by the verification condition, we can
reduce the validity of  VC to the validity of  0VC.

Theorem 7. Given a Hoare-triple { pre} P { post}, its verification condition  VC is
valid if and only if  0VC is valid. ⇤

5.4.3 Formula Abstraction

While checking the validity of the strengthened verification condition  0VC is still
undecidable, as we argued before, it is often su�cient to prove it by assuming that
the recursive definitions are arbitrary, or uninterpreted. Moreover, the uninterpreted
formula falls in the array property fragment [17], whose satisfiability is decidable
and is supported by modern SMT solvers such as Z3 [26]. This tactic roughly
corresponds to applying unification in proof systems.

To prove  0VC, we first replace each recursive predicate recd with an uninter-
preted predicate ˆrecd, and replacing the corresponding reach-set function reachrec

d

with an uninterpreted function ˆreachrec
d . Let the result formula be  abs

VC. This con-
version, called formula abstraction, is sound: if  abs

VC is valid, so is  0VC. When a
proof for  abs

VC is found, we call it a natural proof for  0VC (and also for  VC).
The formula abstraction step is the only step that introduces incompleteness

in our framework, but helps us transform the verification condition to a decidable
theory. Formula abstraction (combined with unfolding recursive definitions across
the footprint) discovers recursive proofs where the recursion is structural recursion
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on the definitions of the data-structures. The use of these tactics comes from the
observation that such programs often have such recursive proofs (see [101] also
for use of formula abstractions).

Our goal now is to check the satisfiability of ¬ abs
VC in a decidable theory. The

resulting formula can be expressed using the theory of maps (to model sets) and
corresponding map operations to model set operations. Formulas of the kind
S 1  S 2, where S 1 and S 2 are sets/multi-sets of integers, are the only ones that
introduce quantification, but they can be translated to formulas in the array property
fragment, which is decidable [17]. We hence obtain a formula  APF in the array
property fragment combined with the theory of uninterpreted functions, maps, and
arithmetic .

Theorem 8. Given a Hoare-triple { pre} P { post}, if the derived array formula
 APF is satisfiable, then the Hoare-triple is valid. ⇤

User-provided axioms:

While natural proofs are often e↵ective in finding recursive proofs that unfold
recursive definitions and do unification, they are not geared towards finding re-
lationships between various recursive definitions themselves. We hence require
the user to provide certain obvious relationships between the di↵erent recursive
definitions as axioms. For example, lseg(x, y) ⇤ list(y)) list(x) is such an axiom
saying that a list segment concatenated with a list yields a list. Note that these
axioms are not program-dependent, and hence are not program-specific tactics
that the user provides. These axioms are necessary typically to relate partial data-
structure properties (like list segments) to complete ones (like lists), especially in
iterative programs (as opposed to recursive ones), and we can fix them for each
class of data-structures. We also allow the use of the separating implication, �⇤,
from separation logic while specifying these axioms. User-defined axioms are
instantiated, using the natural proof philosophy, on precisely the footprint nodes
uniformly, and get translated to quantifier-free formulas.

5.5 Experimental Evaluation

We have implemented a prototype of the natural proof methodology for Dryad
presented in this chapter. The prototype verifier takes as input a set of user-defined
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Data-structure Routine Time (s)
/ Routine

Singly- find_rec, insert_front,
< 1sLinked List insert_back_rec, delete_all_rec,

copy_rec, append_rec, reverse_iter

Sorted List

find_rec, insert_rec, merge_rec,
< 1sdelete_all_rec, insert_sort_rec,

reverse_iter, find_last_iter
insert_iter 1.4

quick_sort_iter 64.8

Doubly- insert_front, insert_back_rec,
< 1sLinked List delete_all_rec, append_rec,

mid_insert, mid_delete, meld

Cyclic List insert_front, insert_back_rec,
< 1s

delete_front, delete_back_rec

Max-Heap heapify_rec 8.8

BST

find_rec, find_iter, insert_rec,
< 1s

delete_rec, remove_root_rec
insert_iter 72.4

find_leftmost_iter 4.7
remove_root_iter 65.6

delete_iter 225.2

Treap
find_rec, delete_rec < 1s

insert_rec 12.7
remove_root_rec 9.5

AVL-Tree

balance, leftmost_rec < 1s
insert_rec 4.1
delete_rec 13.9

RB-Tree

insert_rec 73.9
insert_left_fix_rec 8.1
insert_right_fix_rec 5.1

delete_rec 12.1
delete_left_fix_rec 7.6
delete_right_fix_rec 5.5

leftmost_rec < 1s
Binomial find_min_rec 1.1

Heap merge_rec 152.7
Schorr-Waite

marking_iter < 1s(for trees)

Tree inorder_tree_to_list_rec 2.4

Traversals inorder_tree_to_list_iter 42.7
preorder_rec, postorder_rec < 1s

inorder_rec 3.76

Table 5.1: Results of verifying data-structure algorithms.
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recursive definitions, a set of procedure declarations with contracts, and a set
of straight-line programs (or basic blocks) annotated with a pre-condition and a
post-condition specifying a set of partial correctness properties including structural,
data and separation requirements. Both the contracts and pre-/post-conditions are
written in Dryad. For each basic block, the verifier automatically generates the
abstracted formula  APF as described in Section 5.4, and passes  APF to Z3 [26], a
state-of-the-art SMT solver, to check the satisfiability in the decidable theory of
array property fragment. The front-end of our verifier is based on ANTLR and our
tool is around 4000 lines of C# code. Using the verifier, we successfully proved the
partial correctness of 59 routines over a large class of programs involving heap data
structures like sorted lists, doubly-linked lists, cyclic lists and trees. Additionally,
we pit our natural proofs methodology against real-world programs and successfully
verified, in total, 47 routines from di↵erent projects including the list and queue
implementations in the Glib open source library, the OpenBSD library, the Linux
kernel and the memory regions and the page cache implementations from two
di↵erent operating systems.

We conducted the experiments on a machine with a dual-core, 2.4GHz CPU
and 6GB RAM. The first part of our experimental results is tabulated in Table 5.1.
In general, for every routine, we checked the properties formalizing the complete
verification of the routines— capturing the precise structure of the resulting heap-
structure, the precise change to the data stored in the nodes and the precise heaplet
modified by the respective routines.

For every routine, the su�x rec or iter indicates if the routine was imple-
mented recursively or iteratively using while loops. The names for most of the
routines are self-descriptive. Routines like find, insert, delete, append,
etc. are the natural implementations of the corresponding data structure operations.
The routine delete_all for singly-linked lists, sorted lists and doubly-linked
lists recursively deletes all occurrences of a particular key in the input list. The max-
heap routine heapify accepts an almost max-heap in which the heap property is
violated only at the root, both of whose children are max-heaps, and recursively
descends the tree to restore the max-heap property. The routine remove_root
for binary search trees and treaps is an auxiliary routine which is called in delete.
Similarly, the routines leftmost for AVL-trees and RB-trees and delete_fix
and insert_fix for RB-trees are also auxiliary routines.

Schorr-Waite is a well-known graph marking algorithm which marks all the
reachable nodes of the graph using very little additional space. The algorithm
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achieves this by manipulating the pointers in the graph such that the stack of nodes
along the path from the root is encoded in the graph itself. The Schorr-Waite
algorithm is used in garbage collectors and it is traditionally considered as a chal-
lenging problem for verification [46]. The routine marking is an implementation
of Schorr-Waite for trees [58] and we check the property that the resulting output
tree is well-marked.

The routines inorder_tree_to_list construct a list consisting of the
keys of the input tree, which is traversed inorder. The iterative version of this
algorithm achieves this by maintaining a worklist/stack of sub-trees which remain
to be processed at any given time. The routines inorder, preorder and
postorder number the nodes of an input tree according to the inorder, preorder
and postorder traversal algorithm, respectively.

Table 5.2 shows the results of applying natural proofs to the verification of
various other real world programs and libraries. Glib is the low-level C library
that forms the basis of the GTK+ toolkit and the GNOME desktop environment,
apart from other open source projects. Using our prototype verifier, we e�ciently
verified Glib implementation of various routines for manipulating singly-linked
and doubly-linked lists. We also verified the queue library which forms part of the
OpenBSD operating system.

ExpressOS is an operating-system/browser implementation which provides se-
curity guarantees to the user via formal verification [63]. The module cachePage
maintains a cache of the recently used disc pages. The cache is implemented as a
priority queue based on a sorted list. We prove that the methods add_cachepage
and lookup_prev (both called whenever a disc page is accessed) maintain the
sortedness property of the cache page.

In an OS kernel, a process address space consists of a set of intervals of linear
addresses represented as a memory region. In the ExpressOS implementation, a
memory region is implemented as a sorted doubly-linked list where each node
of the list with a start and an end address represents an interval included in the
address space. We also verified some key components of the Linux implementation
of a memory region, present in the file mmap.c. In Linux, a memory region is
represented as a red-black tree where each node, again, represents an address
interval. We proved methods which find, remove and insert a vma_struct (vma is
short for virtual memory address) into a memory region.

It also worth mentioning that in the process of experiments, we did make
some unintentional mistakes, in writing both the basic blocks and the annotations.
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Example Routine Time (s)
/ Routine

glib/gslist.c

free, prepend, concat,

< 1s

Singly

insert_before, remove_all,

Linked-List

remove_link, delete_link,

LOC: 1.1K

copy, reverse, nth,
nth_data, find, position,

index, last, length
append 4.9

insert_at_pos 11.4
remove 3.1

insert_sorted_list 16.6
merge_sorted_lists 6.1

merge_sort 3.0
glib/glist.c free, prepend, reverse,

< 1sDoubly nth, nth_data, position,
Linked-List find, index, last,
LOC: 0.3K length

OpenBSD/queue.h

simpleq_init,
< 1s

Queue

simpleq_remove_after

LOC: 0.1K

simpleq_insert_head 1.6
simpleq_insert_tail 3.6
simpleq_insert_after 18.3
simpleq_remove_head 2.1

ExpressOS/cachePage.c lookup_prev 2.4
LOC: 0.1K add_cachepage 6.4
ExpressOS/ memory_region_init < 1s

memoryRegion.c create_user_space_region 3.6
LOC: 0.1K split_memory_region 5.8

linux/mmap.c find_vma, remove_vma,
< 1s

LOC: 0.1K remove_vma_list
insert_vm_struct 11.6

Table 5.2: Results of verifying open-source libraries.
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For example, forgetting to free the deleted node, or using ^ instead of ⇤ in the
specification between two disjoint heaplets, were common mistakes. In these
cases, Z3 provided counter-examples to the verification condition that captured
the essence of the bugs, and turned out to be very helpful for us to debug the
specification. These debugging hints are usually not available in other incomplete
proof systems.

Our experiments show that the natural proof methodology set forth in this
chapter is successful in e�ciently proving full-functional correctness of a large
variety of algorithms. Most of the VCs generated for the above examples were
discharged by Z3 in a few seconds. To the best of our knowledge, this is the first
automatic mechanism that can prove such a wide variety of algorithms correct,
handling such complex properties of structure, data and separation.
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Chapter 6

Related Work and Conclusion

The program verification literature is very rich, so we only discuss work close to
ours.

The idea of regarding a program (fragment) as a specification transformer to
analyze programs in a forwards-style goes back to Floyd in 1967 [36]. However,
his rules are not concerned with structural configurations, are not meant to be
operational, and introduce quantifiers.

We fully share the goal of the mechanical verification community to reduce
the correctness of program verification to a trusted formal semantics of the target
language [38, 69, 57, 47, 3], although our methods are di↵erent. Instead of a
framework to ease the task of giving multiple semantics of the same language
and proving systematic relationships between them, we advocate developing only
one semantics, operational, and o↵ering an underlying theory and framework with
the necessary machinery to achieve the benefits of multiple semantics without the
costs.

Dynamic logic [42] adds modal operators to FOL to embed program fragments
within specifications. For example,  ! [s] 0 means “after executing s in a
state satisfying  , a state may be reached which satisfies  0”. KeY [11] o↵ers
automatic verification for Java based on dynamic logic. Matching logic also
combines programs and specifications for static properties, but dynamic properties
are expressed in reachability logic which has a language-independent proof system
that works with any operational semantics, while dynamic logic still requires
language-specific proof rules (e.g., invariant rules).

Separation logic [72, 85] is an extension of Hoare logic. The major di↵erence
between separation and matching logic is that the former enhances Hoare logic
to work better with heaps, while the latter provides an alternative to Hoare logics
in which the configuration structure is explicit in the specifications, so heaps are
treated uniformly just like any other structures in the configuration.

Shape analysis [95] allows to examine and verify properties of heap structures.
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The ideas of shape analysis have also been combined with those of separation
logic [29] to quickly infer invariants for programs operating on lists. They can
likely be also combined with matching logic to infer patterns.

Using Hoare logic [45] to prove concurrent programs correct dates back to
Owicki and Gries [74]. In the rely-guarantee method proposed by Jones [49] each
thread relies on some properties being satisfied by the other threads, and in its
turn, o↵ers some guarantees on which the other threads can rely. O’Hearn [71]
advances a Separation Hypothesis in the context of separation logic [85] to achieve
compositionality: the state can be partitioned into separate portions for each
process and relevant resources, respectively, satisfying certain invariants. More
recent research focuses on improvements over both of the above methods and even
combinations of them [33, 103, 84, 44].

The satisfaction of all-path-reachability rules can also be understood intuitively
in the context of temporal logics. Matching logic formulae can be thought of as
state formulae, and reachability rules as temporal formulae. Assuming CTL⇤ on
finite traces, the semantics rule ')9 '0 can be expressed as ') E� '0, while an
all-path reachability rule ')8 '0 can be expressed as ') A^'0. However, unlike
in CTL⇤, the ' and '0 formulae of reachability rules ')9 '0 or ')8 '0 share their
free variables. Thus, existing proof systems for temporal logics (e.g., the CTL⇤ one
by Pnueli and Kesten [79]) are not directly comparable with our approach, which
considers only a specific type of temporal properties, as mentioned above.

Leroy and Grall [56] use the coinductive interpretation of a standard big-step
semantics as a semantic foundation both for terminating and for non-terminating
evaluation. Our approach is di↵erent in that: (1) our proof system can reason
about reachability between arbitrary formulae, rather than just the evaluation of
programs to values, and (2) although Circularity has a coinductive flavor, we
take the inductive interpretation of our proof system (rather than the coinduction
interpretation), and obtain soundness by appropriate guarding of the circular rules.

A popular approach to building program verifiers for real-world languages is
to translate to an IVL and do verification at the IVL level. This results in some
re-usability, as the VC generation and reasoning about state properties are imple-
mented only once, at the IVL level. However, the development of translators is both
time consuming and susceptible to bugs. Boogie [8] is a popular IVL integrated
with Z3. There are several verifiers built on top of Boogie, including VCC [22]
and HAVOC [52] for C, Spec# [9] for C #, and Dafny [54] and Chalice [55] for
academic languages. VCDrayd [77] is a separation logic based verifier built on top
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of VCC. Why3 [35] is another IVL, also integrated with SMT solvers (and other
provers). Tools built on top of Why3 include Frama-C [35] and Krakatoa [34], both
using the Jessie plug-in of Why3. There are many other practical VC generation
based tools (with or without an IVL), including Verifast [48] (an automatic verifier
for programs written in both C and Java based on separation logic) and jStar [28].
In contrast, we use existing operational semantics directly for verification, without
any translation to IVLs or language-specific VC generation.

Recent work proposes translating to a set of Horn clauses instead of an IVL,
and performing the verification at the level of the Horn clauses [41]. A semantics
based-approach to translation to Horn clauses for a fragment of C is presented
in [24], but it is unclear if the approach is generic enough to scale to the entire C or
to other real-world languages.

An approach for using the interpreter source code as a model of the language
in for symbolic execution is proposed in [18], but it is used to generate tests, not
verify programs.

Bedrock [19] is a Coq framework which uses computational higher-order
separation logic and supports mostly-automated proofs about low-level programs.
Bedrock requires the user to provide hints for lemma applications. Specifications
use operators defined in a pure functional language, similarly to the operators
defined algebraically in matching logic. It can serve as an IVL, and be the target
of translations from other languages which can be certified in Coq based on their
operational semantics. Our approach works with the operational semantics directly,
and thus does not need any such proofs.

Bae et al [6], Rocha and Meseguer [86], and Rocha et al [87] use narrowing
to perform symbolic reachability analysis in a transition system associated to a
unconditional rewrite theory for the purposes of verification. There are two main
di↵erences between their work and ours. First, they express state predicates in
equational theories. Matching logic is more general, being first-order logic over
a model of configurations T. Consequently, the Step proof rule takes these issues
into account when considering the successors of a state. Second, they use rewrite
systems for symbolic model checking. Our work is complementary, in the sense
that we use the operational semantics for program verification, and check properties
more similar to those in Hoare logic.

Equational algebraic specifications have been used to express pre- and post-
conditions and then verify programs forwards using term rewriting [40]. Evolving
specifications [76] adapt and extend this basic idea to compositional systems, refine-
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ment and behavioral specifications. What distinguishes the various specification
transforming approaches is the formalism they use. What distinguishes matching
logic is its apparently low-level formalism, dropping no detail from the configura-
tion. The use of variables in patterns o↵ers a comfortable level of abstraction by
mentioning in each rule only the necessary configuration components.

The Jahob system [107, 108] is one of the first attempts at full functional
verification of linked data structures, which integrates a variety of theorem provers,
including SMT solvers, and makes the process mostly automated. However,
complex specifications combining structure, data and separation usually require
more complex provers such as Mona [50], or even interactive theorem provers such
as Isabelle [70] in the worst case. The success of the proof search also relies on
users’ manual guidance.

The idea of unfolding recursive definitions and formula abstraction also features
in the work by Suter et al. [101, 102], where a procedure for algebraic data-types
is presented. However, this work focuses on soundness and completeness, and is
not terminating for several complex data structures like red-black trees. Moreover,
the work limits itself to functional program correctness; in our opinion, functional
programs are very similar to algebraic inductive specifications, leading to much
simpler proof procedures.

There is also a rich literature on completely automatic decision procedures
for restricted heap logics, some of which combine structure-logic and arbitrary
data-logic. These logics are usually FOLs with restricted quantifiers, and usually
are decided using SMT solvers. The logics Lisbq [51] and CSL [15, 16] o↵er
such reasoning with restricted reachability predicates and quantification; see also
the logics in [13, 81, 82, 67, 83, 7]. Strand is a relatively expressive logic that
can handle some data-structure properties (like BSTs) and admits decidable frag-
ments [61, 60], but is again not expressive enough for more complex properties of
inductive data-structures. None of these logics can express the class of VCs for
full functional verification explored in this dissertation.

The language-independent verification approach presented in this dissertation
comes with several limitations. First, the performance of symbolic execution
depends on the granularity of the semantics. In our evaluation, the more granular
semantics of JavaScript is twice as slow as that of Java. Second, specifications
are reachability rules between program configurations, which can be verbose.
The reachability rules could be generated from in-code annotations (pre/post
conditions, loop invariants, class invariants, etc), the same way that Hoare triples
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can be generated from in-code annotations. We have done this for our C specific
prototype, MatchC, but our generic infrastructure, KVI does not support this yet.
Next, non-determinism is handled by exhaustive interleaving. This works for
the non-deterministic evaluation of C expressions, but is currently infeasible for
threads. Finally, heap abstractions currently need to be defined for each language
separately, leading to boilerplate code.

To conclude, this dissertation introduces a language-independent verification
infrastructure that takes as input an operational semantics and automatically turns
it into a correct-by-construction program verifier. The framework is instantiated
with the semantics of C, Java, and JavaScript. The generated verifiers successfully
check the functional correctness of challenging programs that implement the same
algorithms in all three languages.

Several future directions look interesting. First, all the programs we verified
are single-threaded. We would like to extend our framework to support modular
reasoning about multi-threaded programs. Second, we would be interested to apply
our semantics based verifiers to larger pieces of code. Finally, we would like to
add invariant inference capabilities to our framework, to reduce the user annotation
burden.
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[88] G. Roşu, A. Ştefănescu, S. Ciobâcă, and B. M. Moore. One-path reachability
logic. In LICS, pages 358–367. IEEE, 2013. 28
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[90] G. Ros, u and A. S, tefănescu. Matching logic: a new program verification
approach (NIER track). In ICSE, pages 868–871, 2011. 28, 119
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