
c© 2016 by Jialu Liu. All rights reserved.



CONSTRUCTING AND MODELING TEXT-RICH INFORMATION NETWORKS:
A PHRASE MINING-BASED APPROACH

BY

JIALU LIU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Professor Jiawei Han, Chair
Professor Chengxiang Zhai
Professor Aditya Parameswaran
Doctor Cong Yu, Google Research



Abstract

A lot of digital ink has been spilled on “big data” over the past few years, which is often

characterized by an explosion of information. Most of this surge owes its origin to the un-

structured data in the wild like words, images and video as comparing to the structured

information stored in fielded form in databases. The proliferation of text-heavy data is par-

ticularly overwhelming, reflected in everyone’s daily life in forms of web documents, business

reviews, news, social posts, etc. In the mean time, textual data and structured entities often

come in intertwined, such as authors/posters, document categories and tags, and document-

associated geo locations. With this background, a core research challenge presents itself

as how to turn massive, (semi-)unstructured data into structured knowledge. One promis-

ing paradigm studied in this dissertation is to integrate structured and unstructured data,

constructing an organized heterogeneous information network, and developing powerful

modeling mechanisms on such organized network. We name it text-rich information net-

work, since it is an integrated representation of both structured and unstructured textual

data.

To thoroughly develop the construction and modeling paradigm, this dissertation will

focus on forming a scalable data-driven framework and propose a new line of techniques

relying on the idea of phrase mining to bridge textual documents and structured entities.

We will first introduce the phrase mining method named SegPhrase+ to globally discover

semantically meaningful phrases from massive textual data, providing a high quality dictio-

nary for text structuralization. Clearly distinct from previous works that mostly focused on
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raw statistics of string matching, SegPhrase+ looks into the phrase context and effectively

rectifies raw statistics to significantly boost the performance.

Next, a novel algorithm based on latent keyphrases is developed and adopted to largely

eliminate irregularities in massive text via providing an consistent and interpretable docu-

ment representation. As a critical process in constructing the network, it uses the quality

phrases generated in the previous step as candidates. From them a set of keyphrases are

extracted to represent a particular document with inferred strength through a statistical

model. After this step, documents become more structured and are consistently represented

in the form of a bipartite network connecting documents with quality keyphrases. A more

heterogeneous text-rich information network can be constructed by incorporating different

types of document-associated entities as additional nodes.

Lastly, a general and scalable framework, Tensor2vec, are to be added to trational data

minining machanism, as the latter cannot readily solve the problem when the organized

heterogeneous network has nodes with different types. Tensor2vec is expected to elegantly

handle relevance search, entity classification, summarization and recommendation problems,

by making use of higher-order link information and projecting multi-typed nodes into a

shared low-dimensional vectorial space such that node proximity can be easily computed

and accurately predicted.
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Chapter 1

Introduction

1.1 Background and Motivation

The past decade has witnessed the surge of interest in data mining which is broadly construed

to discover knowledge from all kinds of data, be it in academia, industry or daily life. The

information explosion brings the “big data” era to the light of the stage. This overwhelming

tide of information is largely composed of unstructured data like words, images and videos.

It is easy to distinguish them from structured data (e.g., relational data) in that the latter

can be readily stored in the fielded form in databases. A particularly prominent kind of

unstructured data comes in the form of text. Examples of such collections include scientific

publications, enterprise logs, news articles, social media and general Web pages.

documents

Words:
dbscan, methods, clustering, process, …

Topics:
[k-means, clustering, clusters, dbscan, …]

[clusters, density, dbscan, clustering, …]
[machine, learning, knowledge, mining, …]

Knowledge base concepts:
data mining: /m/0blvg

clustering analysis: /m/031f5p
dbscan: /m/03cg_k1

Document

Representation

Others?

Document Keyphrase:
dbscan: [dbscan, density, clustering, ...]

clustering: [clustering, clusters, partition, ...]
data mining: [data mining, knowledge, ...] 

author
venue

Figure 1.1: Research papers with various of docu-

ment representations can be associated with differ-

ent types of entities.

It can often be observed that un-

structured textual data and struc-

tured entities are interconnected,

such as document authors/posters,

categories/tags, and associated ge-

ographical locations. By mining

massive unstructured and struc-

tured data where the entities occur,

one can expect to extract semanti-

cally rich structures which reveal the similarity among entities and provide conceptual or
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topical grouping of them.

Example 1.1 (Textual Data in Research Community) For bibliographic data like

DBLPa , research papers are explicitly linked with authors and venues. Many interest-

ing research topics in Computer Science are studied and tremendous scientific terms are

mentioned in these publication records. Observing these relations as plotted in Fig. 1.1,

a user may expect to infer a researcher’s expertise through mining his/her published pa-

pers, or to figure out what venues are related and what papers to read and cite based on

his/her research interest.

ahttp://dblp.uni-trier.de/

Under this expectation, a core research challenge is how to turn massive, unstructured

data into structured knowledge due to the lack of a general data model that supports in-

tegrated structured and textual data. After such structuralization, many powerful analysis

methods and tools can be developed, experimented and refined. One promising paradigm

studied in this dissertation is first constructing an organized text-rich information networks

given the two parts, and then developing powerful modeling mechanisms on such organized

networks.

Such a data-to-network-to-knowledge paradigm is motivated based on these observations:

• Most social, informational, and physical entities are interconnected or interacting,

forming massive networks;

• Structured and unstructured textual data can be naturally linked together after text

structuralization1, which is the key step to construct text-rich information networks;

• If a text-rich information networks can be constructed, consisting of a small number of

types on the nodes and links but with a massive amount of data, they can be expected

to bring tremendous power on search, mining, and knowledge generation.

1Bringing structures to text documents.

2
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However, this paradigm poses significant challenges to the traditional text and network

mining techniques, including the following but not limited to

• The emerging big textual data, such as social media messages, can deviate from rigor-

ous language rules. Using various kinds of heavily trained linguistic processing makes

the method difficult to be applied.

• Document length and vocabulary may vary significantly across the corpus, e.g., web

pages. A good text structuralization approach needs to eliminate these obstacles and

generate compatible document representation.

• If a text-rich information networks can be constructed, it will be such a powerful tool

in data mining applications that we may predict it in no time to meet the requirements

of being extremely robust and scalable.

In this regard, we believe that the community would welcome and benefit from a set of

data-drive algorithms that work for large-scale datasets involving irregular textual data in

a robust way, while minimizing the human labeling cost. We are also convinced by various

study and experiments that our proposed methods embody enough novelty and contribution

to add solid building block, if not lay a sound base to the successive research.

1.2 Problem Formalization

We have developed a phrase mining algorithm en route of tackling the above mentioned chal-

lenge, which is one of our main contributions. This text structuraliation technique discovers

and utilizes semantically meaningful phrases from massive irregular text. Specifically,

3



Problem 1.1: Phrase Mining

Given a large in-domain document corpus D with specific focus on certain genres of

content, which can be any textual word sequences with arbitrary lengths, such as

articles, titles and queries, phrase mining tries to assign a value between 0 and 1 to

indicate the quality of each phrase, and provide a segmenter being able to partition a

text snippet into un-overlapped segments and identify phrase mentions. Phrases with

scores larger than 0.5 are viewed as quality phrases K = {K1, · · · , KM}.

Definition 1.1 (Quality Phrase) A quality phrase is a sequence of words that appear

contiguously in the text, and serves as a whole (non-composible) semantic unit in certain

context of the given documents.

There is no universally accepted definition of phrase quality. However, it is useful to

quantify phrase quality based on certain criteria, which will be discussed and defined in

Chapter 3. Note that within a particular domain, a phrase will likely have one meaning [36],

making the phrase relatively unambiguous and its quality estimation feasible. Moreover,

phrase quality is not contextual dependent. For example, both ‘knowledge discovery’ and

‘np hard’ are identified to be quality phrases from the bibliographic data in the computer

science domain. But in a specific paper published in the data mining conference, ‘knowledge

discovery’ should be considered to be more salient than ‘np hard’ even though they are

both mentioned in that paper. We call such salient phrases in the document as document

keyphrases, formally defined as

Definition 1.2 (Document Keyphrase) A document keyphrase is a quality phrase

that is relevant to a specific in-domain document, i.e., it serves as an informative word

or phrase to indicate the content of that specific document.

4



Different from typical way of defining keyphrase in the literature, we do not require their

number of mentions in a document to be significantly large. A supporting example is that: a

text mining paper may only mention ‘text mining’ once in its abstract, but this phrase is still

of great value since it is topically relevant to the rest of the content. This presents a brand

new challenge as well as brings great usefulness, especially for short texts. We formalize this

challenging problem as follows:

Problem 1.2: Document Keyphrase Extraction

Given a large collection of documents C and a set of high quality phrases K =

{K1, · · · , KM}, we aim to build a keyphrase extractor that can automatically iden-

tify document keyphrases given a new text query q, and infer strength scores

[P
(q)
1 , · · · , P (q)

M ]. Each entry in the vector quantifies relatedness between query and

a phrase in the range [0, 1]. Phrases with positive strength scores are considered to be

document keyphrases.

Compared with existing text mining approaches of modeling documents such as taking n-

grams, deriving noun phrases or using knowledge base concepts as demonstrated in Fig. 1.1,

we argue that high quality document keyphrases are naturally a better choice in the big

data scenario since they capture meaningful sequences of different lengths and can be easily

applied to emerging big corpora as a data-driven approach.

Meanwhile, documents become more structured and from the perspective of network, one

can think of bipartite relations between documents and keyphrases. On top of this simple

network, incorporating entities associated with the document extends the bipartite rela-

tions to higher-order relations, which is defined as a text-rich information network

throughout this dissertation.

5



Definition 1.3 (Text-Rich Information Network) A text-rich information net-

work can be formally represented by G = (E ,R), where E is the set of entities serving

as nodes, and R is the set of relations (second-order or higher-order) connecting the

entities, serving as links in the network.We use O and T to represent the sets of entity

types and relation types respectively. For any entity type o ∈ O, Eo refers to the set of

entities of type o; for any relation type t ∈ T , Rt defines the set of relations of type

t. Without loss of generality, E1 = K is the set of quality phrases mined from a large

collection of documents C.

The bibliographic data mentioned in Example 1.1, can be represented a text-rich infor-

mation network as follows:

Example 1.2 (Bibliographic Network) There are four types of nodes: E1 for phrases,

E2 for papers, E3 for authors, and E4 for venues. For links in the network, if we con-

sider higher-order relations, there is only one type of links connecting these nodes to-

gether, referred as “author publishes paper in a venue with keyphrases”. If we divide

these higher-order relations into bipartite ones, there exist three types of links: R1 for

the links connecting papers and their keyphrases; R2 for the links between papers and

authors; and R3 for the links between papers and venues.

Note that text-rich information network is a particular type of heterogeneous information

network in the sense that its links connect different types of nodes together constructed from

textual corpus. Modeling such a structured representation of textual data will benefit quite

many applications like entity classification, relevance search and multi-aspect mining. We

achieve this goal by solving a fundamental problem shared by all these tasks. That is,

6



Problem 1.3: Text-Rich Information Network Embedding

Given a text-rich information network, the problem of network embedding is to learn

a function M that projects each entity e ∈ E to a vector in a d-dimension space Rd

that keeps certain proximitya, where d� |E|, i.e., M : E → Rd.

aThe definition of entity proximity will be provided in the network embedding chapter.

This embedding problem is very general, which can be integrated with different tasks in

a natural way. For instance, by searching nearest neighbors of an author node constrained

on phrase nodes, we are able to identify his/her expertise and research interest. Also, by

plotting the same typed nodes like venues and keyphrases, we may tell the closeness between

different research areas and topics. Other than these two examples, embeddings are useful

for a lot of downstream applications including entity classification, clustering, recommender

system, and link prediction.

1.3 Framework

This section presents a coherent framework for constructing text-rich information network

using phrase mining-based techniques and modeling it using the embedding method. It is

comprised of three important modules as demonstrated in Fig. 1.2 to solve the previously

mentioned research challenges respectively. A series of new methodologies are invented

accordingly.

Phrase Mining

As the first step of the framework, a fully data-driven phrase mining method called Seg-

Phrase+ is proposed to efficiently discover quality phrases from massive text corpora. These

phrases form a dictionary for text structuralization.

Observing that raw frequency of phrase candidates fails to catch their contextual informa-
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Step 2: Document Keyphrase 

Inference!largely eliminates 

irregularities in text via providing 

an consistent and interpretable 

document representation

Network

Construction

Network

 Modeling

Raw Data Input:

!"#"$%&'&'(

)'*+,-.(-$.&/0*1-23

42"56&0/

7.("2$ 89$:*..

Step 1: Phrase Mining!
provides a dictionary of high 

quality phrases for text 

structuralization

Step 3: Network Embedding!
projects millions of multi-typed 

nodes into a shared low-

dimensional space robustly.

Figure 1.2: Overview of the scalable data-driven framework proposed in this dissertation to

construct and modeling text-rich information networks in three.

tion, the contribution of SegPhrase+ is to rectify the decisive raw frequency to help discover

the true quality of a phrase. In particular, the goal of the rectification is to estimate how

many times each word sequence should be interpreted in whole as a phrase in its occurrence

context. For example, frequency of ‘vector machine’ will be close to 0 after rectification but

its raw frequency will be the same as (or similar to) ‘support vector machine’.

In order to recover the true frequency with best effort, SegPhrase+ examines the context

of every occurrence of each word sequence and decides whether to count it as a phrase. Such

process is conducted by a dynamic programming process segmenting the word sequence into

non-overlapped words and phrases. Moreover, Segphrase+ integrates this segmentation with

8



the phrase quality assessment, such that (i) only frequent phrases with reasonable quality

are taken into consideration when enumerating segments; and (ii) the phrase quality guides

the segmentation, and the segmentation rectifies the phrase quality estimation. Such an

integrated framework benefits from mutual enhancement, and achieves both high quality

and high efficiency. Finally, both the phrase quality and the segmentation results are useful

from an application point of view. The segmentation results are especially desirable for

tasks like document indexing, categorization or retrieval, which will be covered in the next

module.

Document Keyphrase Inference

The next step is to utilize these detected quality phrases and link them with documents in

the form of keyphrases, with the goal of largely eliminating irregularities in text via providing

an consistent and interpretable document representation.

We observe that many keyphrases relevant to a given document are not frequently men-

tioned, which is especially true for short texts like paper abstracts and business reviews. On

the other hand, a keyphrase should be summarizing the topics of a document and closely

relevant to some parts of its content. Based on this idea, a novel solution, called Latent

Keyphrase Inference (LAKI), is developed to extract document keyphrases by modeling

such topical relevance. Specifically, each phrase mined in the last module is learned with a

silhouette-a cohesive set of topically related words and phrases, which enables the method

to assign appropriate strength scores to keyphrase candidates through statistical inference,

going beyond just explicit mentions.

Compared with the state-of-art document representation approaches, LAKI replaces bag-

of-words and concepts in knowledge base by using semantically meaningful phrases as the

representation unit. It removes the dependency on a knowledge base while providing, with

keyphrases, readily interpretable representations. This work also paves the way for the

9



third module, i.e., finally constructing and modeling more complicated text-rich information

networks which involve in entities associated with the documents like authors, locations, etc.

Text-Rich Information Network Embedding

By representing documents as a collection of keyphrases, one can naturally view those

keyphrases as structured units and build a bipartite network between them and documents.

Moreover, a gigantic text-rich information network can be constructed by incorporating more

document-relevant entities. In this step, we try to model with an embedding approach, i.e.,

nodes in the network including the document keyphrases are projected into a common space

such that different types of nodes can be compared in a homogeneous fashion. We believe

that different types of nodes and links in network will provide important insight to the mod-

eled data, in a much better way than the messy pieces without the heterogeneity that we

take great effort to strike.

To achieve this goal, we noticed that the links between different node types in a text-rich

information network can be inherently considered to describe higher-order relations between

document keyphrases and document-relevant entities. In our bibliographic network exam-

ple 1.2, relations are in the form of authors publishing papers in venues with keyphrases,

etc. In such scenarios, existing methodologies may fail because they simply extend homoge-

neous network analysis by sequentially modeling bipartite links between multi-typed nodes

and thus lose massive information. A legitimate approach towards successfully utilizing

heterogeneity in the network is to model the involved entities and keyphrases as a whole.

Therefore, a novel framework called tensor2vec is proposed to collectively learn network

embeddings by preserving proximity among nodes indicated by higher-order relations. Two

modeling methods are developed under the tensor framework with different definitions about

proximity. Extensive quantitative experiments have been conducted to demonstrate the

effectiveness, efficiency and robustness of the proposed tensor2vec framework.

10



We hope such an embedding approach can benefit a number of different data mining

tasks including relevance search, recommendation and classification.

The rest of the thesis is organized as follows. Chapter 2 reviews the literature. Then

the above modules are presented in Chapter 3 to 5. Chapter 6 concludes this thesis and

discusses the future work.

11



Chapter 2

Literature Review

In this chapter, an overview of the related work in constructing and modeling text-rich

information networks are first provided, followed by a detailed discussion about the literature

relevent to our proposed approaches.

2.1 Constructing Text-Rich Information Network

In order to construct high-quality information networks from textual data, information ex-

traction, natural language processing, and many other techniques should be integrated with

network construction. For textual data from general domain, entity linking techniques [90]

are developed to map from given entity mentions detected in text to entities in manually

curated knowledge bases like Freebase. For data in closed-domain where entity coverage in

public knowledge base is limited, mining quality phrases is a critical step. Similar to our

phrase mining work, [32] proposes a computationally efficient and effective model ToPMine,

which first executes an unsupervised phrase mining framework to segment a document into

single and multi-word phrases, and then employs a new topic model that operates on the

induced document partition. On top of that, entity typing techniques [84, 85] run data-

driven phrase mining to generate entity mention candidates and assign (fine-grained) types

(e.g., people, artist, actor) to mentions of entities in documents. Relationship extraction

is another important step to form links in network. Surface patterns between mentions of

entities in the text are grouped or categorized to serve as relations [106].
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For the structured entities associated with textual data like relational database, it may

be easy to partially construct an information network from it with well-defined schema. But

they can still be noisy in real world. The first problem is ambiguity. That is, one entity in a

network may refer to multiple surface names, or different entities may correspond to the same

surface name in the input data. Realizing this problem, the goal of entity resolution [11, 62] is

to determine the mapping between entities and their mentions in the input structured data.

Secondly, relations among entities may not be explicitly given or not complete sometimes,

e.g., the advisor-advisee relationship in the academia network [109]. Link prediction [60] can

be employed to fill out the missing relations for comprehensive networks. Finally, links may

not be reliable or trustable, e.g., the inaccurate item information in an E-commerce website

and conflicting information of certain objects from multiple websites. Studies on this mainly

include truth discovery [58] and crowdsourcing [33].

2.2 Modeling Text-Rich Information Network

Once the text-rich information network is constructed, the modeling part is similar to the

existing literature regarding heterogeneous information network.

Compared to the widely-used homogeneous information network which models links be-

tween single-typed nodes, the heterogeneous information network can effectively fuse more

information and contain rich semantics in nodes and links, and thus it forms a new develop-

ment of data mining. More and more researchers have noticed the importance of heteroge-

neous information network analysis and many novel data mining tasks have been exploited

in such networks, such as similarity search [96], clustering [65, 97], classification [45], recom-

mendation [115] and information fusion [40]. More detailed literature review is introduced

in a recent survey [91].

Heterogeneous information network is a powerful tool to handle the variety of big data,
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since it can flexibly and effectively integrate varied objects and heterogeneous information.

However, it is non-trivial work to build a real heterogeneous information network based

analysis system for huge, even dynamic data. So it usually cannot be contained in memory

and cannot be handled directly. Most of contemporary data mining tasks on heterogeneous

information network only work on small dataset, and fail to consider the quick and parallel

process on big data. But for our constructed text-rich information network, the scale is

really large considering millions of documents. There is an urge need for a scalable and

robust network mining technique that can solve very fundamental problem and serve the

results with other mining tasks.

2.3 Phrase Mining

Automatic extraction of quality phrases (i.e., multiword semantic units) from massive, dy-

namically growing corpora gains increasing attention due to its value in text analytics of

various domains. As the origin, the NLP community has conducted extensive studies

[111, 34, 79, 118, 5]. With pre-defined POS rules, one can generate noun phrases from

each document1. However, such rule-based methods usually suffer in domain adaptation.

Supervised noun phrase chunking techniques [81, 113, 20] leverage annotated documents

to automatically learn rules based on POS-tagged corpus. These supervised methods may

utilize more sophisticated NLP features such as dependency parser to further enhance the

precision [52, 69]. The various kinds of linguistic processing, domain-dependent language

rules, and expensive human labeling make it challenging to apply to emerging big corpora.

Another kind of approaches explore frequency statistics in document collections [28, 82,

78, 26, 32]. Most of them leverage a variety of statistical measures derived from a corpus to

estimate phrase quality. Therefore, they do not rely on linguistic feature generation, domain-

1http://www.nltk.org/howto/chunk.html
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specific rules or large training sets, and can process massive corpora efficiently. In [78], several

indicators, including frequency and comparison to super/sub-sequences, were proposed to

extract n-grams that are not only popular but also concise as concepts. Deane [28] proposed

a heuristic metric over frequency distribution based on Zipfian ranks, to measure lexical

association for phrase candidates.

In our phrase mining solution [64], phrasal segmentation is integrated with phrase quality

assessment, as a critical component for rectifying phrase frequency. Formally, phrasal seg-

mentation aims to partition a sequence into disjoint subsequences each mapping to a semantic

unit, i.e., word or phrase. In terms of identifying semantic units in word sequences, existing

work includes query segmentation [98, 59], phrase chunking [102, 14, 30], and Chinese word

segmentation [94, 18], following either supervised setting on labeled data, or unsupervised

setting on large corpus. In [98], Tan and Pang proposed a generative model in unsupervised

setting which adopted n-gram frequency from a large corpus and used expectation maximiza-

tion for computing segment scores. Li et al. [59] leveraged query click-through data based

on a bigram language model and further refined retrieval model with query segmentation.

2.4 Document Representations

A concise and comprehensive text representation is fundamental for different text processing

tasks. It also helps users quickly comprehend a text fragment or a document. In the past

decades, a good number of methods have been proposed for text representation.

Traditional bag-of-words and n-grams representation [4] are used to model word fre-

quency statistics but they suffer from inherent over-sparsity and fail to capture word-level

synonymy and polysemy. In addition to these two content features, some studies also con-

sider grammatical and syntactic features as complements, including part-of-speech tag se-

quence [48], parsing tree structure [68]. Such methods can better reflect writing style of a
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text fragment. But they rely on existing NLP tools and are heavily trained to be working

in a specific domain (usually open-domain).

On the other hand, neural network models are used to learn embeddings for each word in

a continuous space, e.g., distributed representation, which can encode not only attributional

similarity (i.e., words that appear in similar contexts will be close in the projected space),

but also the linguistic regularities (i.e., relational similarity between a pair of words) into

the learned vectors [8, 72]. However, aforementioned document representations are lack of

semantic interpretation—they do not have explicit semantic meaning and thus are hard to

be understood by users.

To provide an overview of the input text with richer semantics, a number of latent

topic-based methods are proposed [29, 15]. These methods leverage corpus-level word co-

occurrence statistics to discover different themes (i.e., latent topics) behind the input text,

and represent it using a vector where each dimension is a latent topic and each topic is a

distribution over words. Nevertheless, the interpretability of latent space for topic models is

still not straightforward and pursuing semantic meaning in inferred topics is difficult [17].

A recent trend aims to find “explicit” semantic units rather than latent topics to represent

text [110, 35, 39, 47]. Instead of leveraging only corpus-level statistics like topic modeling

does, the new approaches resort to external human-curated KBs and use a distribution over

the entire set of KB entries to represent text. This presents a big step towards promoting

semantics in text representations. Previous efforts mainly focus on designing more effective

models [43], and leveraging richer signals such as context information [31, 47], for generating

effective text representations. In particular, to overcome the limited coverage and freshness

of existing knowledge bases, researchers have studied on generating high coverage proba-

bilistic ontology/taxonomy from web corpus [112] and applying it to generate short text

representations [93].
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2.5 Keyphrase Extraction

Keyphrases are defined as a short list of terms to summarize the topics of a document [104].

Automatic keyphrase extraction has broken down the task into two main components,

namely, candidate keyphrase generation and keyphrase ranking.

Given a document, candidate keyphrase generation is the task of detecting all keyphrase

candidates, in the form of semantically meaningful phrases mentioned in the document. It

is quite similar to phrase mining and the majority methods are based on either n-grams or

POS sequences. Interested readers please refer to the related work in Sec. 2.3.

The next step of keyphrase ranking involves both supervised and unsupervised ap-

proaches. For the most supervised methods, they usually consist of a feature generation

module together with a ranking or classification algorithm. The majority of proposed fea-

tures combine frequency statistics within a single document and across an entire collection,

semantic similarity among keyphrases, popularity of keyphrases among manually assigned

sets, lexical and morphological analysis, and heuristics such as locality and the length of

phrases [111, 49]. For the classification/ranking algorithm, commonly-employed learners are

based on maximum entropy models [75], naive bayes [111, 104], support vector machine [117],

decision trees [104], etc.

While supervised approaches have generally proven to be successful, the need for training

data is not easy to obtain. Recently, unsupervised methods have gained popularity. In [71],

a graph-based ranking algorithm named TextRank was proposed to assemble top ranked

words to generate keyphrases based on a random surfer model. Wan and Xiao proposed

SingleRank [107], a simple modification of TextRank that to use a small number of near-

est neighbor documents to provide more knowledge to improve single document keyphrase

extraction. In [103], SemanticRank was proposed to connect nodes employing semantic re-

lations computed using WordNet or Wikipedia. Topical PageRank [67] splits the documents
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into topics using a Latent Dirichlet Allocation model [15] and creates keyphrases from top

ranked topical words.

2.6 Network Embedding

Network embedding aims at embedding nodes into low-dimensional spaces, in which every

node is represented as a vector. Such a low-dimensional embedding is very useful and has

received an increasing attention due to its variety of applications such as visualization [105],

node classification [10, 100, 80] and link prediction [60], and recommendation [86].

The studies of network embedding are related to the classical methods of graph em-

bedding or dimension reduction in general, such as IsoMap [101], LLE [87] and Laplacian

Eigenmap [7]. These approaches typically receive feature vectors of the data points as input

and construct the affinity graph like the K-nearest neighbor graph of data, and then embed

the affinity graph [61] into a low dimensional space. However, these algorithms usually rely

on eigen decomposition, the complexity of which is at least quadratic to the number of nodes,

making them inefficient to handle large-scale networks.

Recently in the natural language processing community, distributed representation of

text has been popularly adopted and proved to be quite effective in many tasks such as word

analogy [73], POS tagging and parsing [23], etc. These methods usually take advantage of

asynchronous stochastic gradient descent and thus become efficient, scaling up to millions of

documents. Meanwhile, they normally complete the tasks through learning the embeddings

of words and/or documents through (deep) neural networks.

Observing the trend in text embedding, researchers have proposed work to embed large-

scale networked data. [100] and [80] utilize the network link information to construct latent

vectors for node classification and link prediction. [21] starts from the personalized PageR-

ank but does further decompositions to get better protein-protein interaction predictions
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in biology networks. However, these “homogeneous” models cannot capture the extra node

type information and the information about relations across different typed nodes in hetero-

geneous information networks.

Heterogeneous information network is essentially an abstraction of higher-order rela-

tional data, where a higher-order relation is denoted as a hyper-link connecting more than

two nodes. It is worth noting that text-rich information network is a specific type of hetero-

geneous information newtork that is constructed from textual corpus and incorporate many

document-associated entities. There are also a few embedding algorithms developed for

such heterogeneous networks. But instead of modeling proximity among nodes co-occur in

each higher-order relation, both [99] and [19] decompose the high-order relation into several

pairwise interactions and then model them separately similar to the homogeneous setting

mentioned previously. Our model is substantially different since we directly model each

higher-order relation in heterogeneous information networks so that the proximity among

nodes can be better preserved.

In order to model the higher-order relations in the networks, we developed a tensor-based

framework. Studies of similar flavor of tensor modeling [50] have recently emerged for some

other mining tasks, such as recommender system [86], multi-relational learning [44], and

clustering [9]. In [86], a tensor factorization model is designed specifically for tag recommen-

dation; while we explore a more general framework for embedding from which two methods

are designed to model the entity-driven and relation-driven proximity respectively. [9] de-

fines higher-order network structures, such as cycles and feed-forward loops, and uses tensor

to model the higher-order relations. In sharp contrast, our framework is more general in

the sense that it allows a relatively large set of relation schema to describe networked data.

In addition, [9] only models the relation with one type of entity; while tensor2vec supports

multiple node types in multiple relations in a network.
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Chapter 3

A Data-Driven Approach for Phrase
Mining

As the building block for text structuralization, phrase mining refers to the process of ex-

tracting quality phrases from a in-domain corpus. In large, dynamic collections of docu-

ments, analysts are often interested in variable-length phrases, including scientific concepts,

events, organizations, products, slogans and so on. Efficient extraction of quality phrases

enable a large body of applications to transform from word granularity to phrase granular-

ity. In the literature, examples of such applications include topic tracking [55], OLAP on

multi-dimensional text collections [116], and document categorization.

Though the study of this task originates from the natural language processing (NLP)

community, the challenge has been recognized of applying NLP tools in the emerging big data

that deviate from rigorous language rules. Query logs, social media messages, and textual

transaction records are just a few examples. Therefore, researchers have sought more general

data-driven approaches, primarily based on the frequent pattern mining principle [2, 92].

The early work focuses on efficiently retrieving recurring word sequences, but many such

sequences do not form meaningful phrases. More recent work filters or ranks them according

to frequency-based statistics. However, the raw frequency from the data tends to produce

misleading quality assessment, and the outcome is unsatisfactory, as the following example

demonstrates.
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Table 3.1: A hypothetical example of word sequence raw frequency

sequence frequency phrase? rectified sequence frequency phrase? rectified
relational database system 100 yes 70 support vector machine 100 yes 80

relational database 150 yes 40 support vector 160 yes 50
database system 160 yes 35 vector machine 150 no 6

relational 500 N/A 20 support 500 N/A 150
database 1000 N/A 200 vector 1000 N/A 200

system 10000 N/A 1000 machine 1000 N/A 150

Example 3.1 (Raw Frequency-based Phrase Mining) Consider a set of scientific

publications and the raw frequency counts of two phrases ‘relational database system’

and ‘support vector machine’ and their subsequences in the frequency column of Ta-

ble 3.1. The numbers are hypothetical but manifest several key observations: (i) the

frequency generally decreases with the phrase length; (ii) both good and bad phrases

can possess high frequency (e.g., ‘support vector’ and ‘vector machine’); and (iii) the fre-

quency of one sequence (e.g., ‘relational database system’) and its subsequences can have

a similar scale of another sequence (e.g., ‘support vector machine’) and its counterparts.

Obviously, a method that ranks the word sequences solely according to the frequency will

output many false phrases such as ‘vector machine’. In order to address this problem,

different heuristics have been proposed based on comparison of a sequence’s frequency and its

sub-(or super-)sequences, assuming that a good phrase should have high enough (normalized)

frequency compared with its sub-sequences and/or super-sequences [78, 26]. However, such

heuristics can hardly differentiate the quality of, e.g., ‘support vector’ and ‘vector machine’

because their frequency are so close. Finally, even if the heuristics can indeed draw a line

between ‘support vector’ and ‘vector machine’ by discriminating their frequency (between

160 and 150), the same separation could fail for another case like ‘relational database’ and

‘database system’.

Using the frequency in Table 3.1, all heuristics will produce identical predictions for

‘relational database’ and ‘vector machine’, guaranteeing one of them wrong. This example
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suggests the intrinsic limitations of using raw frequency counts, especially in judging whether

a sequence is too long (longer than a minimum semantic unit), too short (broken and not

informative), or right in length. It is a critical bottleneck for all frequency-based quality

assessment.

In this work [64], we address this bottleneck, proposing to rectify the decisive raw fre-

quency that hinders discovering the true quality of a phrase. The goal of the rectification is

to estimate how many times each word sequence should be interpreted in whole as a phrase

in its occurrence context. The following example illustrates this idea.

Example 3.2 (Rectification) Consider the following occurrences of the 6 multi-word

sequences listed in Table 3.1.

1. A drelational database systemc for images...

2. dDatabase systemc empowers everyone in your organization...

3. More formally, a dsupport vector machinec constructs a hyperplane...

4. The dsupport vectorc method is a new general method of dfunction estimationc...

5. A standard dfeature vectorc dmachine learningc setup is used to describe...

6. dRelevance vector machinec has an identical dfunctional formc to the dsupport

vector machinec...

7. The basic goal for dobject-oriented relational databasec is to dbridge the gapc be-

tween...

The first 4 instances should provide positive counts to these sequences, while the last three

instances should not provide positive counts to ‘vector machine’ or ‘relational database’

because they should not be interpreted as a whole phrase (instead, sequences like ‘feature

22



vector’ and ‘relevance vector machine’ can). Suppose one can correctly count true occur-

rences of the sequences, and collect rectified frequency as shown in the rectified column of

Table 3.1. The rectified frequency now clearly distinguishes ‘vector machine’ from the other

phrases, since ‘vector machine’ rarely occurs as a whole phrase.

The success of this approach relies on reasonably accurate rectification. Simple arith-

metics of the raw frequency, such as subtracting one sequence’s count with its quality super

sequence, are prone to error. First, which super sequences are quality phrases is a question

itself. Second, it is context-dependent to decide whether a sequence should be deemed a

whole phrase. For example, the fifth instance in Example 3.2 prefers ‘feature vector’ and

‘machine learning’ over ‘vector machine’, even though neither ‘feature vector machine’ nor

‘vector machine learning’ is a quality phrase. The context information is lost when we only

collect the frequency counts.

In order to recover the true frequency with best effort, we ought to examine the context

of every occurrence of each word sequence and decide whether to count it as a phrase. The

examination for one occurrence may involve enumeration of alternative possibilities, such as

extending the sequence or breaking the sequence, and comparison among them. The test

for word sequence occurrences could be expensive, losing the advantage in efficiency of the

frequent pattern mining approaches.

Facing the challenge of accuracy and efficiency, we propose a segmentation approach

named phrasal segmentation, and integrate it with the phrase quality assessment in a unified

framework with linear complexity (w.r.t the corpus size). First, the segmentation assigns

every word occurrence to only one phrase. In the first instance of Example 3.2, ‘relational

database system’ are bundled as a single phrase. Therefore, it automatically avoids double

counting ‘relational database’ and ‘database system’ within this instance. Similarly, the

segmentation of the fifth instance contributes to the count of ‘feature vector’ and ‘machine

learning’ instead of ‘feature’, ‘vector machine’ and ‘learning’. This strategy condenses the
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individual tests for each word sequence and reduces the overall complexity while ensures

correctness. Second, though there are an exponential number of possible partitions of the

documents, we are concerned with those relevant to the phrase extraction task only. There-

fore, we can integrate the segmentation with the phrase quality assessment, such that (i)

only frequent phrases with reasonable quality are taken into consideration when enumerat-

ing partitions; and (ii) the phrase quality guides the segmentation, and the segmentation

rectifies the phrase quality estimation. Such an integrated framework benefits from mutual

enhancement, and achieves both high quality and high efficiency. Finally, both the phrase

quality and the segmentation results are useful from an application point of view. The seg-

mentation results are especially desirable for tasks like document indexing, categorization or

retrieval.

The main contributions lie in the following aspects:

• Realizing the limitation of raw frequency-based phrase mining, we propose a novel

segmentation-integrated framework to rectify the raw frequency. To the best of our

knowledge, it is the first work to integrate phrase extraction and phrasal segmentation

and mutually benefit each other.

• The proposed method is scalable: both computation time and required space grow

linearly as corpus size increases. It is easy to parallelize as well.

• Experimental results demonstrate that our method is efficient, generic, and highly ac-

curate. Case studies indicate that the proposed method significantly improves appli-

cations like interesting phrase mining [6, 37, 77] and relevant word/phrase search [73].
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3.1 Phrase Quality and Phrasal Segmentation

Recall that phrase mining is a process of extracting quality phrases from an large in-domain

corpus. There is no universally accepted definition of phrase quality. But it is still useful to

quantify phrase quality based on certain criteria. We use a value between 0 and 1 to indicate

the quality of each phrase, and specify four requirements of a good phrase, which conform

with previous work.

• Popularity: Since many phrases are invented and adopted by people, it could change over

time or occasions whether a sequence of words should be regarded as a non-composible

semantic unit. When relational database was first introduced in 1970 [22], ‘data base’

was a simple composition of two words, and then with its gained popularity people even

invented a new word ‘database’, clearly as a whole semantic unit. ‘vector machine’ is not a

meaningful phrase in machine learning community, but it is a phrase in hardware design.

Quality phrases should occur with sufficient frequency in a given document collection.

• Concordance: Concordance refers to the collocation of tokens in such frequency that

is significantly higher than what is expected due to chance. A commonly-used example

of a phraseological-concordance is the two candidate phrases ‘strong tea’ and ‘powerful

tea’ [41]. One would assume that the two phrases appear in similar frequency, yet in the

English language, the phrase ‘strong tea’ is considered more proper and appears in much

higher frequency. Because a concordant phrase’s frequency deviates from what is expected,

we consider them belonging to a whole semantic unit.

• Informativeness: A phrase is informative if it is indicative of a specific topic. ‘This

paper’ is a popular and concordant phrase, but not informative in publication corpus.

• Completeness: Long frequent phrases and their subsets may both satisfy the above

criteria. A complete phrase should be interpreted as a whole semantic unit in certain

context. In the previous discussion of Example 3.2, the sequence ‘vector machine’ does not
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appear as a complete phrase. Note that a phrase and its subphrase can both be valid in

appropriate context. For example, ‘relational database system’, ‘relational database’ and

‘database system’ can all be valid in certain context.

Efficiently and accurately extracting quality phrases is the main goal of this study. For

generality, we allow users to provide a few examples of quality phrases and inferior ones.

The estimated quality should therefore align with these labeled examples. Previous work

has overlooked some of the requirements and made assumptions against them. For example,

most work assumes a phrase candidate should either be included as a phrase, or excluded

entirely, without analyzing the context it appears. Parameswaran et al. [78] assumed that if

a phrase candidate with length n is a good phrase, its length n− 1 prefix and suffix cannot

be a good phrase simultaneously. We do not make such assumptions. Instead, we take a

context-dependent analysis approach – phrasal segmentation.

A phrasal segmentation defines a partition of a sequence into subsequences, such that

every subsequence corresponds to either a single word or a phrase. Example 3.2 shows

instances of such partitions, where all phrases with high quality are marked by brackets

dc. The phrasal segmentation is distinct from word, sentence or topic segmentation tasks

in natural language processing. It is also different from the syntactic or semantic parsing

which relies on grammar to decompose the sentences with rich structures like parse trees.

Phrasal segmentation provides the necessary granularity we need to extract quality phrases.

The total count for a phrase to appear in the segmented corpus is called rectified frequency.

It is beneficial to acknowledge that a sequence’s segmentation may not be unique, due

to two reasons. First, as we mentioned above, a word sequence may be regarded as a phrase

or not, depending on the adoption customs. Some phrases, like ‘bridge the gap’ in the last

instance of Example 3.2, are subject to a user’s requirement. Therefore, we seek for segmen-

tation that accommodates the phrase quality, which is learned from user-provided examples.
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Second, a sequence could be ambiguous and have different interpretations. Nevertheless,

in most cases, it does not require perfect segmentation, no matter if such a segmentation

exists, to extract quality phrases. In a large document collection, the popularly adopted

phrases appear many times in a variety of context. Even with a few mistakes or debatable

partitions, a reasonably high quality segmentation (e.g., yielding no partition like ‘support

dvector machinec’) would retain sufficient support (i.e., rectified frequency) for these quality

phrases, albeit not for false phrases with high raw frequency.

With the above discussions, we have formalizations:

Definition 3.1 (Phrase Quality) Phrase quality is defined to be the possibility of a

multi-word sequence being a coherent semantic unit, according to the above four criteria.

Given a phrase v, phrase quality is:

Q(v) = p(dvc|v) ∈ [0, 1]

where dvc refers to the event that the words in v compose a phrase. For a single word

w, we define Q(w) = 1. For phrases, Q is to be learned from data.

For example, a good quality estimator is able to return Q(relational database system) ≈ 1

and Q(vector machine) ≈ 0.

Definition 3.2 (Phrasal Segmentation) Given a word sequence C = w1w2 . . . wn

of length n, a segmentation S = s1s2 . . . sm for C is induced by a boundary index sequence

B = {b1, b2, . . . , bm+1} satisfying 1 = b1 < b2 < · · · < bm+1 = n+1, where a segment st =

wbtwbt+1 . . . wbt+|st|−1. Here |st| refers to the number of words in segment st. Since bt +

|st| = bt+1, for clearness we use w[bt,bt+1) to denote word sequence wbtwbt+1 · · ·wbt+|st|−1.
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Example 3.3 Continuing our previous Example 3.2 and specifically for the first in-

stance, the word sequence and marked segmentation are

C = a relational database system for images

S = / a / relational database system / for / images /

with a boundary index sequence B = {1, 2, 5, 6, 7} indicating the location of segmenta-

tion symbol /.

Based on these definitions, the main input of phrase mining task is a corpus with a small

set L of labeled quality phrases and L̄ of inferior ones. The corpus can be represented by a

giant word sequence C = C1 . . . CD, where Cd is the word sequence of document d, d = 1 . . . D.

Each document can be further partitioned into smaller pieces based on different properties

of the corpus, such as sentences according to punctuation. The output is a ranked list of

phrases with decreasing quality, together with a segmenter that can partition a text snippet

into un-overlapped segments and identify phrase mentions. Phrases with scores larger than

0.5 are viewed as quality phrases.

3.2 Phrase Mining Framework

We first present the full procedure of phrase mining. Then we introduce each of them in

following subsections.

1. Generate frequent phrase candidates according to popularity requirement (Sec. 3.2.1).

2. Estimate phrase quality based on features about concordance and informativeness

requirements (Sec. 3.2.2).

3. Estimate rectified frequency via phrasal segmentation (Sec. 3.2.3).
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4. Add segmentation-based features derived from rectified frequency into the feature set

of phrase quality classifier (Sec. 3.2.4). Repeat step 2 and 3.

5. Filter phrases with low rectified frequencies to satisfy the completeness requirement

as post-processing step.

An complexity analysis for this framework is given at Sec 3.2.5 to show that both of its

computation time and required space grow linearly as the corpus size increases.

3.2.1 Frequent Phrase Detection

Algorithm 1: Frequent Phrase Detection

1 Input: Document corpus C, minimum support threshold τ .
2 Output: Raw frequency dictionary f of frequent phrases and words.
3 f ← an empty dictionary
4 index ← an empty dictionary
5 for i ← 1 to |C| do
6 index[C[i]]← index[C[i]] ∪ i
7 while index is not empty do
8 index′ ← an empty dictionary
9 for u ∈ index.keys do

10 if |index[u]— ≥ τ then
11 f [u]← |index[u]|
12 for j ∈ index[u] do
13 u′ ← u⊕ C[j + 1]
14 index′[u′]← index′[u′] ∪ {j + 1}

15 index← index′

16 return f

The task of detecting frequent phrases can be defined as collecting aggregate counts for

all phrases in a corpus that satisfy a certain minimum support threshold τ , accordding to

the popularity requirement. In practice, one can also set a maximum phrase length ω to
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restrict the phrase length. Even if no explicit restriction is added, ω is typically a small

constant. For efficiently mining these frequent phrases, we draw upon two properties:

1. Downward Closure property: If a phrase is not frequent, then any its super-phrase is

guaranteed to be not frequent. Therefore, those longer phrases will be filtered and never

expanded.

2. Prefix property: If a phrase is frequent, any its prefix units should be frequent too. In

this way, all the frequent phrases can be generated by expanding their prefixes.

The algorithm for detecting frequent phrases is given in Alg. 1. We use C[·] to index a word

in the corpus string and |C| to denote the corpus size. The ⊕ operator is for concatecating

two words or phrases. Alg. 1 returns a key-value dictionary f . Its keys are vocabulary U

containing all frequent phrases P , and words U \ P . Its values are their raw frequency.

3.2.2 Phrase Quality Estimation

Estimating phrase quality from only a few training labels is challenging since a huge number

of phrase candidates might be generated from the first step and they are messy. Instead of

using one or two statistical measures [34, 79, 32], we choose to compute multiple features

for each candidate in P . A classifier is trained on these features to predict quality Q for all

unlabeled phrases. For phrases not in P , their quality is simply 0.

We divide the features into two categories according to concordance and informativeness

requirements in the following two subsections. Only representative features are introduced

for clearness. We then discuss about the classifier in Sec. 3.2.2.

Concordance Features

This set of features is designed to measure concordance among sub-units of a phrase. To

make phrases with different lengths comparable, we partition each phrase candidate into two
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disjoint parts in all possible ways and derive effective features measuring their concordance.

Suppose for each word or phrase u ∈ U , we have its raw frequency f [u]. Its probability

p(u) is defined as:

p(u) =
f [u]∑

u′∈U f [u′]

Given a phrase v ∈ P , we split it into two most-likely sub-units 〈ul, ur〉 such that pointwise

mutual information is minimized. Pointwise mutual information quantifies the discrepancy

between the probability of their true collocation and the presumed collocation under inde-

pendence assumption. Mathematically,

〈ul, ur〉 = arg min
ul⊕ur=v

log
p(v)

p(ul)p(ur)

With 〈ul, ur〉, we directly use the pointwise mutual information as one of the concordance

features.

PMI(ul, ur) = log
p(v)

p(ul)p(ur)

Another feature is also from information theory, called pointwise Kullback-Leibler diver-

gence:

PKL(v‖〈ul, ur〉) = p(v) log
p(v)

p(ul)p(ur)

The additional p(v) is multiplied with pointwise mutual information, leading to less bias

towards rare-occurred phrases.

Both features are positively correlated with concordance.

Informativeness Features

Some candidates are unlikely to be informative because they are functional or stopwords.

We incorporate the following stopword-based features into the classification process:
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• Whether stopwords are located at the beginning or the end of the phrase candidate;

which requires a dictionary of stopwords. Phrases that begin or end with stopwords, such

as ‘I am’, are often functional rather than informative.

A more generic feature is to measure the informativeness based on corpus statistics:

• Average inverse document frequency (IDF) computed over words;

where IDF for a word w is computed as

IDF(w) = log
|C|

|{d ∈ [D] : w ∈ Cd}|

It is a traditional information retrieval measure of how much information a word provides

in order to retrieve a small subset of documents from a corpus. In general, quality phrases

are expected to have not too small average IDF.

In addition to word-based features, punctuation is frequently used in text to aid inter-

pretations of specific concept or idea. This information is helpful for our task. Specifically,

we adopt the following feature:

• Punctuation: probabilities of a phrase in quotes, brackets or capitalized;

higher probability usually indicates more likely a phrase is informative.

Besides these features, many other signals like knowledge-base entities and part-of-speech

tagging can be plugged into the feature set. They are less generic quality estimators and

require more training or external resources. It is easy to incorporate these features in our

framework when they are available.

Classifier

Our framework can work with arbitrary classifiers that can be effectively trained with small

labeled data and output a probabilistic score between 0 and 1. For instance, we can adopt
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random forest [16] which is efficient to train with a small number of labels. The ratio

of positive predictions among all decision trees can be interpreted as a phrase’s quality

estimation. In experiments we will see that 200–300 labels are enough to train a satisfactory

classifier.

Just as we have mentioned, both quality phrases and inferior ones are required as labels

for training. To further reduce the labeling effort, some machine learning ideas like PU-

learning [57] can be applied to automatically retrieve negative labels. Active learning [89]

is another popular mechanism to substantially reduce the number of labels required via

iterative training. Moreover, it is possible to train a transferable model on one document

collection and adapt it to the target corpus. We plan to explore these directions in future

work.

3.2.3 Phrasal Segmentation

The discussion in Example 3.1 points out the limitations of using only raw frequency counts.

Instead, we ought to examine the context of every word sequence’s occurrence and decide

whether to count it as a phrase, as introduced in Example 3.2. The segmentation directly

addresses the completeness requirement, and indirectly helps with the concordance require-

ment via rectified frequency. Here we propose an efficient phrasal segmentation method to

compute rectified frequency of each phrase. We will see that combined with aforementioned

phrase quality estimation, bad phrases with high raw frequency get removed as their rectified

frequencies approach zero.

Furthermore, rectified phrase frequencies can be fed back to generate additional features

and improve the phrase quality estimation. This will be discussed in the next subsection.

We now propose the phrasal segmentation model integrated with the aforementioned

phrase quality Q. Given a word sequence C, and a segmentation S = s1 . . . sm induced by
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boundary index sequence B = {b1, . . . , bm+1}, where st = w[bt,bt+1), the joint probability is

factorized as:

p(S,C) =
m∏
t=1

p
(
bt+1, dw[bt,bt+1)c

∣∣∣bt) (3.1)

where p(bt+1, dw[bt,bt+1)c|bt) is the probability of observing a word sequence w[bt,bt+1) as the

t-th quality segment. As segments of a word sequence usually have weak dependence on

each other, we assume they are generated one by one for the sake of both efficiency and

simplicity.

We now describe the generative model for each segment. Given the start index bt

of a segment st, we first generate the end index bt+1, according to a prior distribution

p(|st| = bt+1 − bt) over phrase lengths. Then we generate the word sequence w[bt,bt+1) ac-

cording to a multinomial distribution over all segments of length (bt+1 − bt). Finally, we

generate an indicator whether w[bt,bt+1) forms a quality segment according to its quality

p(dw[bt,bt+1c|w[bt,bt+1)) = Q(w[bt,bt+1)). We formulate its probabilistic factorization as follows:

p(bt+1, dw[bt,bt+1)c|bt) = p(bt+1|bt)p(dw[bt,bt+1)c|bt, bt+1)

=p
(
bt+1 − bt

)
p
(
w[bt,bt+1)

∣∣∣|st| = bt+1 − bt
)
Q(w[bt,bt+1))

The length prior p(|st| = bt+1 − bt) is explicitly modeled to counter the bias to longer

segments as they result in fewer segments. The particular form of p(|st|) we pick is:

p(|st|) ∝ α1−|st| (3.2)

Here α ∈ R+ is a factor called segment length penalty. If α < 1, phrases with longer length

have larger value of p(|st|). If α > 1, the mass of p(|st|) moves towards shorter phrases.

Smaller α favors longer phrases and results in fewer segments. Tuning its value turns out
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to be a trade-off between precision and recall for recognizing quality phrases. At the end of

this subsection we will discuss how to estimate its value by reusing labels in Sec. 3.2.2. It is

worth mentioning that such segment length penalty is also discussed by Li et al. [59]. Our

formulation differs from theirs by posing a weaker penalty on long phrases.

We denote p(w[bt,bt+1)

∣∣∣|st|) with θw[bt,bt+1)
for convenience. For a given corpus C with D

documents, we need to estimate θu = p(u
∣∣∣|u|) for each frequent word and phrase u ∈ U ,

and infer segmentation S. We employ the maximum a posteriori principle and maximize the

joint probability of the corpus:

D∑
d=1

log p(Sd, Cd) =
D∑
d=1

md∑
t=1

log p
(
b

(d)
t+1, dw

(d)
[bt,bt+1

c
∣∣∣b(d)
t

)
(3.3)

To find the best segmentation to maximize Eq. (3.3), one can use efficient dynamic

programming (DP) if θ is known. The algorithm is shown in Alg. 2.

To learn θ, we employ an optimization strategy called Viterbi Training (VT) or Hard-EM

in the literature [3]. Generally speaking, VT is an efficient and iterative way of parameter

learning for probabilistic models with hidden variables. In our case, given corpus C, it

searches for a segmentation that maximizes p(S, C|Q, θ, α) followed by coordinate ascent on

parameters θ. Such a procedure is iterated until a stationary point has been reached. The

corresponding algorithm is given in Alg. 3.

The hard E-step is performed by DP with θ fixed, and the M-step is based on the

segmentation obtained from DP. Once the segmentation S is fixed, the closed-form solution

of θu can be derived as:

θu =

∑D
d=1

∑md

t=1 1s
(d)
t =u∑D

d=1

∑md

t=1 1|s(d)t |=|u|

(3.4)

where 1 denotes the identity indicator. We can see that θu is the rectified frequency of u

normalized by the total frequencies of the segments with length |u|. For this reason, we
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Algorithm 2: Dynamic Programming (DP)

1 Input: Word sequence C = w1w2 . . . wn, phrase quality Q, normalized frequency θ,
segment length penalty α.

2 Output: Optimal segmentation S.
3 h0 ← 1, hi ← 0 (0 < i ≤ n)
4 denote ω as the maximum phrase length
5 for i = 1 to n do
6 for δ = 1 to ω do

7 if hi · p(bt+1 = bt + δ, dw[i+1,i+δ+1)c
∣∣∣bt) > hi+δ then

8 hi+δ ← hi · p(bt+1 = bt + δ, dw[i+1,i+δ+1)c
∣∣∣bt)

9 gi+δ ← i

10 i← n
11 m← 0
12 while i > 0 do
13 m← m+ 1
14 sm ← wgi+1wgi+2 . . . wi
15 i← gi

16 return S ← smsm−1 . . . s1

name θ normalized rectified frequency.

Note that Soft-EM (i.e., Bawm-Welch algorithm [12]) can also be applied to find a max-

imum likelihood estimator of θ. Nevertheless, VT is more suitable in our case because:

1. VT uses DP for the segmentation step, which is significantly faster than Bawm-Welch

using forward-backward algorithm for the E-step;

2. Majority of the phrases get removed as their θ approaches 0 during iterations, which

further speeds up our algorithm.

It has also been reported in [3] that VT converges faster and results in sparser and sim-

pler models for Hidden Markov Model-like tasks. Meanwhile, VT is capable of correctly

recovering most of the parameters.

Previously in Eq. (3.2) we have defined the formula of segment length penalty. There is a
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Algorithm 3: Viterbi Training (VT)

1 Input: Corpus C, phrase quality Q, length penalty α.
2 Output: θ.
3 initialize θ with normalized raw frequencies in the corpus
4 while not converge do
5 θ′u ← 0, ∀ u ∈ U
6 for d = 1 to D do
7 Sd ← DP (Cd, Q, θ, α) via Alg. 2

8 assume Sd = s
(d)
1 · · · s

(d)
m

9 for t = 1 to m do

10 u← w
(d)
[bt,bt+1)

11 θ′u ← θ′u + 1

12 normalize θ′ w.r.t. different length as in Eq. (3.4)
13 θ ← θ′

14 return θ

Table 3.2: Effects of segmentation feedback on phrase quality estimation

phrase qlty before feedback after feedback problem fixed by feedback

np hard in the strong sense 0.78 0.93 slight underestimate
np hard in the strong 0.70 0.23 overestimate

false pos. and false neg. 0.90 0.97 N/A
pos. and false neg. 0.87 0.29 overestimate

data base mgmt system 0.60 0.82 underestimate

data stream mgmt system 0.26 0.64 underestimate

hyper-parameter α that needs to be determined outside the VT iterations. An overestimate

α will segment quality phrases into shorter parts, while an underestimate of α tends to keep

low-quality phrases. Thus an appropriate α reflects the user’s trade-off between precision

and recall. To judge what α value is reasonable, we propose to reuse the labeled phrases

used in the phrase quality estimation. Specifically, we try to search for the maximum value

of α such that VT does not segment positive phrases. A parameter r0 named non-segmented

ratio controls the trade-off mentioned above. It is the expected ratio of phrases in L not

partitioned by dynamic programming. The detailed searching process is described in Alg. 4

where we initially set upper and lower bounds of α and then perform a binary search. In
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Algorithm 4: Penalty Learning

1 Input: Corpus C, labeled quality phrases L, phrase quality Q, non-segmented ratio r0.
2 Output: Desired segment length penalty α.
3 up← 200, low ← 0
4 while not converge do
5 α← (up+ low)/2
6 θ ← V T (C, Q, α) via Alg. 3
7 r ← r0 × |L|
8 for i = 1 to |L| do
9 S ← DP (Li, Q, θ, α) via Alg. 2

10 if |S| = 1 then
11 r ← r − 1

12 if r ≥ 0 then
13 up← α

14 else
15 low ← α

16 return (up+ low)/2

Alg. 4, |S| denotes the number of segments in S and |L| refers to the number of positive

labels.

3.2.4 Feedback as Segmentation Features

Rectified frequencies can help refine the feature generation process in Sec. 3.2.2 and improve

the quality assessment. The motivation behind this feedback idea is explained with the

examples shown in Table 3.2. ‘Quality before feedback’ listed in the table is computed

based on phrase quality estimation introduced in Sec. 3.2.2. For example, the quality of ‘np

hard in the strong’ is significantly overestimated according to the raw frequency. Once we

correctly segment the documents, its frequency will be largely reduced, and we can use it to

guide the quality estimator. For another example, The quality of phrases like ‘data stream

management system’ were originally underestimated due to its relatively lower frequency

and smaller concordance feature values. Suppose after the segmentation, this phrase is not
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broken into smaller units in most cases. Then we can feed that information back to the

quality estimator and boost the score.

Based on this intuition, we design two new features named segmentation features and

plug them into the feature set introduced in Sec. 3.2.2. Given a phrase v ∈ P , these two

segmentation features are defined as:

log
p(S, v)||S|=1

max|S|>1 p(S, v)

p(S, v)||S|=1 log
p(S, v)||S|=1

max|S|>1 p(S, v)

where p(S, v) is computed by Eq. (3.1). Instead of splitting a phrase into two parts like

the concordance features, we now find the best segmentation with dynamic programming

introduced in the phrasal segmentation, which better models the concordance criterion.

In addition, normalized rectified frequencies are used to compute these new features. This

addresses the context-dependent completeness requirements. As a result, misclassified phrase

candidates in the above example can get mostly corrected after retraining the classifier, as

shown in Table 3.2.

A better phrase quality estimator can guide a better segmentation as well. In this way,

the loop between the quality estimation and phrasal segmentation is closed and such an

integrated framework is expected to leverage mutual enhancement and address all the four

phrase quality requirements organically.

Note that we do not need to run quality estimation and phrasal segmentation for many

iterations. In our experiments, the benefits brought by rectified frequency can penetrate

after the first iteration, leaving performance curves over the next several iterations similar.

It will be shown in the experiments.
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3.2.5 Complexity Analysis

Frequent Phrases Detection: Since the operation of Hash table is O(1), both the time

and space complexities are O(ω|C|). ω is a small constant indicating the maximum phrase

length, so this step is linear to the size of corpus |C|.

Feature Extraction: When extracting features, the most challenging problem is how to

efficiently locate these phrase candidates in the original corpus, because the original texts

are crucial for finding the punctuation and capitalization information. Instead of using

some dictionaries to store all the occurrences, we take the advantage of the Aho-Corasick

Automaton algorithm and tailor it to find all the occurrences of phrase candidates. The time

complexity is O(|C|+ |P|) and space complexity O(|P|), where |P| refers to the total number

of frequent phrase candidates. As the length of each candidate is limited by a constant ω,

O(|P|) = O(|C|), so the complexity is O(|C|) in both time and space.

Phrase Quality Estimation: As we only labeled a very small set of phrase candidates,

as long as the number and depth of decision trees in the random forest are some constant,

the training time for the classifier is very small compared to other parts. For the prediction

stage, it is proportional to the size of phrase candidates and the dimensions of features.

Therefore, it could be O(|C|) in both time and space, although the actual magnitude might

be smaller.

Viterbi Training: It is easy to observe that Alg. 2 is O(nω), which is linear to the number

of words. ω is treated as a constant, and thus the VT process is also O(|C|) considering

Alg. 3 ususally finishes in a few iterations.

Penalty Learning: Suppose we only require a constant ε to check the convergence of the

binary search. Then after log2
200
ε

rounds, the algorithm converges. So the number of loops

could be treated as a constant. Because VT takes O(|C|) time, Penalty learning also takes

O(|C|) time.
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Table 3.3: Statistics about datasets

dataset #docs #words #labels
Academia 2.77M 91.6M 300
Yelp 4.75M 145.1M 300

Summary. Because the time and space complexities of all components in our framework

are O(|C|), our proposed framework has a linear time and space complexities and is thus

very efficient. Furthermore, the most time consuming parts, including penalty learning and

VT, could be easily parallelized because of the nature of independence between documents

and sentences.

3.3 Experimental Study

In this section, experiments demonstrate the effectiveness and efficiency of the proposed

methods in mining quality phrases and generating accurate segmentation. We begin with

the description of datasets.

Two real-world data sets were used in the experiments and detailed statistics are sum-

marized in Table 3.3.

• The Academia dataset1 is a collection of major computer science journals and pro-

ceedings. We use both titles and abstracts in our experiments.

• The Yelp dataset2 provides reviews of 250 businesses. Each individual review is con-

sidered as a document.

To demonstrate the effectiveness of the proposed approach, we compared the following

phrase extraction methods.

1http://aminer.org/billboard/AMinerNetwork
2https://www.yelp.com/academic_dataset
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• TF-IDF ranks phrases by the product of their raw frequencies and inverse document

frequencies;

• C-Value proposes a ranking measure based on frequencies of a phrase used as parts

of their super-phrases following a top-down scheme;

• ConExtr approaches phrase extraction as a market-baskets problem based on an

assumption about relationship between n-gram and prefix/suffix (n− 1)-gram;

• KEA3 is a supervised keyphrase extraction method for long documents. To apply this

method in our setting, we consider the whole corpus as a single document;

• TopMine4 is a topical phrase extraction method. We use its phrase mining module

for comparison;

• ClassPhrase ranks phrases based on their estimated qualities (removing step 3–5

from our framework);

• SegPhrase combines ClassPhrase with phrasal segmentation to filter overestimated

phrases based on normalized rectified frequency (removing step 4 from our framework);

• SegPhrase+ is similar to SegPhrase but adds segmentation features to refine quality

estimation. It contains the full procedures presented in Sec. 3.2.

The first two methods utilize NLP chunking to obtain phrase candidates. We use the

JATE5 implementation of the first two methods, i.e., TF-IDF and C-Value. Both of them

rely on OpenNLP6 as the linguistic processor to detect phrase candidates in the corpus. The

3https://code.google.com/p/kea-algorithm
4http://web.engr.illinois.edu/˜elkishk2/
5https://code.google.com/p/jatetoolkit
6http://opennlp.apache.org
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rest methods are all based on frequent n-grams and the runtime is dramatically reduced.

The last three methods are variations of our proposed method.

It is also worth mentioning that JATE contains several more implemented methods in-

cluding Weirdness [1]. They are not reported here due to their unsatisfactory performance

compared to the baselines listed above.

For the parameter setting, we set minimum phrase support τ as 30 and maximum phrase

length ω as 6, which are two parameters required by all methods. Other parameters required

by baselines were set according to the open source tools or the original papers.

For our proposed methods, training labels for phrases were collected by sampling repre-

sentative phrase candidates from groups of phrases pre-clustered on the normalized feature

space by k-means. We labeled research areas, tasks, algorithms and other scientific terms

in the Academia dataset as quality phrases. Some examples are ‘divide and conquer’, ‘np

complete’ and ‘relational database’. For the Yelp dataset, restaurants, dishes, cities and

other related concepts are labeled to be positive. In contrast, phrases like ‘under certain

assumptions’, ‘many restaurants’ and ‘last night’ were labeled as negative. We down-sample

low quality phrases because they are dominant over quality phrases. The number of train-

ing labels in our experiments are reported in Table 3.3. To automatically learn the value

of segment length penalty, we set the non-segmented ratio r0 in Alg. 4 as 1.0 for Academia

dataset and 0.95 for Yelp dataset. The selection of this parameter will be discussed in detail

later in this section.

To make outputs returned by different methods comparable, we converted all the phrase

candidates to lower case and merged plural with singular phrases. The phrase lists generated

by these methods have different size, and the tail of the lists are low quality. For the simplicity

of comparison, we discarded low-ranked phrases based on the minimum size among all phrase

lists except ConExtr. ConExtr returns all phrases without ranking. Thus we did not remove

its phrases. The remaining size of each list is still reasonably large (¿ 40,000).
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3.3.1 Quantitative Evaluation and Results

The goal of our experiments is to study how well our methods perform in terms of “precision”

and “recall” and compare with baselines. Precision is defined as the number of quality

phrases divided by the number of phrase candidates. Recall is defined as the number of

quality phrases divided by the total number of quality phrases.

Wiki Phrases: The first set of experiments were conducted by using Wikipedia phrases as

ground truth labels. Wiki phrases refer to popular mentions of entities by crawling intra-Wiki

citations within Wiki content. To compute precision, only the Wiki phrases are considered

to be positive. For recall, we combine Wiki phrases returned by different methods altogether

and view them as all quality phrases. Precision and recall are biased in this case because

positive labels are restricted to Wiki phrases. However, we still expect to obtain meaningful

insights regarding the performance difference between the proposed and baselines.

Pooling: Besides Wiki phrases, we rely on human evaluators to judge whether the rest of

the candidates are good. We randomly sampled k Wiki-uncovered phrases from the returned

candidates of each compared method. These sampled phrases formed a pool and each of

them was then evaluated by 3 reviewers independently. The reviewers could use a popular

search engine for the candidates (thus helping reviewers judge the quality of phrases that

they were not familiar with). We took the majority of the opinions and used these results

to evaluate the methods on how precise the returned quality phrases are. Throughout the

experiments we set k = 500.

Precision-recall curves of different methods evaluated by both Wiki phrases and pooling

phrases are shown in Fig. 3.1. The trends on both datasets are similar.

Among the existing work, the chunking-based methods, such as TF-IDF and C-Value,

have the best performance; ConExtr reduces to a dot in the figure since its output does not

provide the ranking information. Our proposed method, SegPhrase+, outperforms them
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significantly. More specifically, SegPhrase+ can achieve a higher recall while its precision

is maintained at a satisfactory level. That is, many more quality phrases can be found by
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Figure 3.1: Precision-recall in 4 groups of experi-

ments: (Academia, Yelp) × (Wiki phrase, pooling).

SegPhrase+ than baselines. Un-

der a given recall, precision of our

method is higher in most of the

time.

For variant methods within our

framework, it is surprising that

ClassPhrase could perform com-

petitively to the chunking-based

methods like TF-IDF. Note that

the latter requires large amounts

of pre-training for good phrase

chunking. However, ClassPhrase’s

precision at the tail is slightly

worse than TF-IDF on Academia

dataset evaluated by Wiki phrases.

We also observe a significant dif-

ference between SegPhrase and

ClassPhrase, indicating phrasal

segmentation plays a crucial role to

address the completeness require-

ment. In fact, SegPhrase already

beats ClassPhrase and baselines.

Moreover, SegPhrase+ improves

the performance of SegPhrase, be-
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cause of the use of phrasal segmen-

tation results as additional features.

An interesting observation is that the advantage of our method is more significant on

the pooling evaluations. The phrases in the pool are not covered by Wiki, indicating that

Wikipedia is not a complete source of quality phrases. However, our proposed methods,

including SegPhrase+, SegPhrase, and ClassPhrase, can mine out most of them (more than

80%) and keep a very high level of precision, especially on the Academia dataset. Therefore,

the evaluation results on the pooling phrases suggest that our methods not only detect the

well-known Wiki phrases, but also work properly for the long tail phrases which might occur

not so frequently.

From the result on Yelp dataset evaluated by pooling phrases, we notice that SegPhrase+

is a little weaker than SegPhrase at the head. As we know, SegPhrase+ has tried to utilize

phrasal segmentation results from SegPhrase to refine the phrase quality estimator. However,

segmentation features do not add new information for bigrams. If there are not many quality

phrases with more than two words, SegPhrase+ might not have significant improvement and

even can perform slightly worse due to the overfitting problem by reusing the same set of

labeled phrases. In fact, on Academia dataset, the ratios of quality phrases with more than

2 words are 24% among all Wiki phrases and 17% among pooling phrases. In contrast, these

statistics go down to to 13% and 10% on Yelp dataset, which verifies our conjecture and

explains why SegPhrase+ has slightly lower precision than SegPhrase at the head.

3.3.2 Model Selection

The goal of model selection is to study how well our methods perform in terms of “precision”

and “recall” on various candidate models with different parameters. We specifically want to

study two potentially interesting questions:
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• How many labels do we need to achieve good results of phrase quality estimation?

• How to choose non-segmented ratio r0 for deciding segment length penalty?

Table 3.4: Impact of training data size on ClassPhrase (Top: Academia, Bottom: Yelp)

#labels prec. recall f1 #wiki phr. #total

50 0.881 0.372 0.523 6,179 24,603
100 0.859 0.430 0.573 6,834 30,234
200 0.856 0.558 0.676 8,196 40,355
300 0.760 0.811 0.785 11,535 95,070

#labels prec. recall f1 #wiki phr. #total

50 0.948 0.491 0.647 6,985 79,091
100 0.948 0.540 0.688 6,692 57,018
200 0.948 0.554 0.700 6,786 53,613
300 0.944 0.559 0.702 6,777 53,442

Number of Labels

To evaluate the impact of training data size on the phrase quality estimation, we focus on

studying the classification performance of ClassPhrase. Table 3.4 shows the results evaluated

among phrases with positive predictions (i.e., {v ∈ P : Qv ≥ 0.5). With different numbers

of labels, we report the precision, recall and F1 score judged by human evaluators (Pooling).

The number of correctly predicted Wiki phrases is also provided together with the total

number of positive phrases predicted by the classifier. From these results, we observe that the

performance of the classifier becomes better as the number of labels increases. Specifically,

on both datasets, the recall rises up as the number of labels increases, while the precision

goes down. The reason is the down-sampling of low quality phrases in the training data.

Overall, the F1 score is monotonically increasing, which indicates that more labels may

result in better performance. 300 labels are enough to train a satisfactory classifier.
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Table 3.5: Impact of non-segmented ratio r0 on SegPhrase (Top: Academia, Bottom: Yelp)

r0 prec. recall f1 #wiki phr. #total
1.00 0.816 0.756 0.785 10,607 57,668
0.95 0.909 0.625 0.741 9,226 43,554
0.90 0.949 0.457 0.617 7,262 30,550
0.85 0.948 0.422 0.584 7,107 29,826
0.80 0.944 0.364 0.525 6,208 25,374

r0 prec. recall f1 #wiki phr. #total
1.00 0.606 0.948 0.739 7,155 48,684
0.95 0.631 0.921 0.749 6,916 42,933
0.90 0.673 0.846 0.749 6,467 34,632
0.85 0.714 0.766 0.739 5,947 28,462
0.80 0.725 0.728 0.727 5,729 26,245

Non-segmented Ratio

The non-segmented ratio r0 is designed for learning segment length penalty, which further

controls the precision and recall phrasal segmentation. Empirically, under higher r0, the

segmentation process will favor longer phrases, and vice versa. We show experimental results

in Table 3.5 for models with different values of r0. The evaluation measures are similar to

the previous setting but they are computed based on the results of SegPhrase. One can

observe that the precision increases with lower r0, while the recall decreases. It is because

phrases are more likely to be segmented into words by lower r0. High r0 is generally preferred

because we should preserve most positive phrases in training data. We select r0 = 1.00 and

0.95 for Academia and Yelp datasets respectively, because quality phrases are shorter in Yelp

dataset than in Academia dataset.

3.3.3 Efficiency Study

The following execution time experiments were all conducted on a machine with two Intel(R)
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Table 3.6: Running Time

dataset file size #words time

Academia 613MB 91.6M 0.595h

Yelp 750MB 145.1M 0.917h

Xeon(R) CPU E5-2680 v2 @ 2.80GHz. Our

framework is mainly implemented in C++

while a small part of preprocessing is in

Python7. As shown in Fig. 3.2, the linear

curves of total runtime of SegPhrase+ on dif-

ferent proportions of data verifies our linear time complexity analyzed in Sec. 3.2.5.

Besides, the pies in Fig. 3.3 show the ratios of different components of our framework.

One can observe that Feature Extraction and Phrasal Segmentation occupy most of the

runtime.
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Figure 3.2: Runtime on different propor-

tions of data

Fortunately, almost all components of our

frameworks can be parallelized, such as Fea-

ture Extraction, Phrasal Segmentation and

Quality Estimation, which are the most ex-

pensive parts of execution time. It is be-

cause sentences can be proceeded one by one

without any impact on each other. There-

fore, our methods could be very efficient for

massive corpus using parallel and distributed

techniques. Here we do not compare the run-

time with other baselines because they are implemented by different programming languages

and some of them further rely on various third-party packages. Among existing implemen-

tations, our method is empirically one of the fastest.

7The code is available at https://github.com/shangjingbo1226/SegPhrase.
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Figure 3.3: Runtime of different modules in our framework on Academia and Yelp dataset

3.3.4 Case Study

Previous experiments are focused on evaluating phrase quality quantitatively. In this sub-

section, we show two case studies based on applications taking segmented corpora as input.

Note that the segmented corpus can be obtained by applying the segmenter (i.e., the other

output of the phrase mining methods)onto the training corpus.

Interesting Phrase Mining

The first application is to mine interesting phrases in a subset of given corpus. Interesting

phrases are defined to be phrases frequent in the subset C ′ but relatively infrequent in the

overall corpus C [6, 37, 77]. Given a phrase v, its interestingness is measured by freq(v, C ′) ·

purity(v, C ′, C) = freq(v, C ′)2/freq(v, C), which considers both phrase frequency and purity

in the subset.

We list a fraction of interesting phrases in Table 3.7 mined from papers published in

SIGMOD and SIGKDD conferences. Each series of proceedings form a subset of the whole

Academia corpus. Two segmentation methods are compared. The first one relies on dy-

namic programming using phrase quality estimated by SegPhrase+. The other is based

on the phrase chunking method adopted in JATE, which is further used to detect phrase
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Table 3.7: Interesting phrases mined from papers published in SIGMOD and SIGKDD

SIGMOD SIGKDD
SegPhrase+ Chunking SegPhrase+ Chunking

1 data base data base data mining data mining
2 database system database system data set association rule
3 relational database query processing association rule knowledge discovery
4 query optimization query optimization knowledge discovery frequent itemset
5 query processing relational database time series decision tree
... ... ... ... ...
51 sql server database technology assoc. rule mining search space
52 relational data database server rule set domain knowledge
53 data structure large volume concept drift important problem
54 join query performance study knowledge acquisition concurrency control
55 web service web service gene expression data conceptual graph
... ... ... ... ...

201 high dimensio. data efficient impl. web content optimal solution
202 location based serv. sensor network frequent subgraph semantic relation
203 xml schema large collection intrusion detection effective way
204 two phase locking important issue categorical attribute space complexity
205 deep web frequent itemset user preference small set
... ... ... ... ...

candidates for TF-IDF and C-Value methods. To be fair, we only show phrases extracted

by SegPhrase+, TF-IDF and C-Value methods in the table. Because TF-IDF and C-Value

perform similarly and they both rely on the chunking method, we merge their phrases and

report mining results in one column named ‘Chunking’. Phrases in SegPhrase+ but missing

in the chunking results are highlighted in purple (red vice versa). One can observe that

the interesting phrases mined by SegPhrase+ based on the segmentation result are more

meaningful and the improvement is significant. Relatively speaking, phrases mined from

the chunking method are of inferior quality. Therefore, many of them are not covered by

SegPhrase+.

Word/Phrase Similarity Search

With a segmented corpus, one could train a model to learn distributed vector representations

of words and phrases [73]. Using this technique, words and phrases are mapped into a vector
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Table 3.8: Top-5 similar phrases for representative queries (Top: Academia, Bottom: Yelp)

Query data mining olap
Method SegPhrase+ Chunking SegPhrase+ Chunking

1 knowledge discovery driven methodologies data warehouse warehouses
2 text mining text mining online analy. proc. clustcube
3 web mining financial investment data cube rolap
4 machine learning knowledge discovery olap queries online analy. proc.
5 data mining techniques building knowledge multidim. databases analytical processing

Query blu-ray noodle valet parking

Method SegPhrase+ Chunking SegPhrase+ Chunking SegPhrase+ Chunking

1 dvd microwave ramen noodle soup valet huge lot
2 vhs lifetime wty noodle soup asian noodle self-parking private lot
3 cd recliner rice noodle beef noodle valet service self-parking
4 new release battery egg noodle stir fry free valet parking valet
5 sony new battery pasta fish ball covered parking front lot

space such that semantically similar words and phrases have similar vector representations.

It helps other text mining algorithms to achieve better performance by grouping similar units.

The quality of the learned vector representation is closely related to the quality of the input

segmented corpus. Accurate segmentation results in good vector representation and this

performance gain is usually evaluated by comparing similarity scores between word/phrase

pairs. To be specific, one could compute top-k similar words or phrases given a query and

compare the ranked lists. We use this to verify the utility of both quality phrase mining and

quality segmentation.

We show the results in Table 3.8 from SegPhrase+ and the chunking method mentioned

in the previous interesting phrase mining application. Queries were chosen to be capable

of showing the difference between the two methods for both Academia and Yelp datasets.

Distributed representations were learned through an existing tool [73] and ranking scores

were computed based on cosine similarity.

From the table, one can easily tell that the rank list from SegPhrase+ carries more sense

than that from phrase chunking. One of the possible reasons is that chunking method only

detects noun phrases in the corpus, providing less accurate information of phrase occurrences

than SegPhrase+ to the vector representation learning algorithm.
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Chapter 4

Latent Keyphrase Extraction for
Semantic Information Modeling

Text data (e.g., web queries, business reviews, product manuals) are ubiquitous. But their

document length and vocabulary vary significantly. One property for a good text structural-

ization approach is its ability to eliminate these obstacles and generate compatible document

representation. In this chapter, we introduce such a novel representation that relies on phrase

mining results and can be both efficient and effective.

If one looks back in the literature, the most common document representation is the

bag-of-words [4] due to its simplicity and efficiency. This method however typically fails to

capture word-level synonymy (missing shared concepts in distinct words, such as “doctor”

and “physician”) and polysemy (missing distinct concepts in same word, such as “Wash-

ington” can be either the city or the government). As a remedy, topic models [29, 15] try

to overcome this limitation by positing a set of latent topics which are distributions over

Table 4.1: Representations for query “DBSCAN is a method for clustering in process of

knowledge discovery.” returned by various categories of methods.

Categories Representation
Words dbscan, method, clustering, process, ...
Topics [k-means, clustering, clusters, dbscan, ...]

[clusters, density, dbscan, clustering, ...]
[machine, learning, knowledge, mining, ...]

KB Concepts data mining, clustering analysis, dbscan, ...
Document Keyphrases dbscan: [dbscan, density, clustering, ...]

clustering: [clustering, clusters, partition, ...]
data mining: [data mining, knowledge, ...]
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words, and assuming that each document can be described as a mixture of these topics.

Nevertheless, the interpretability of latent space for topic models is not straightforward

and pursuing semantic meaning in inferred topics is difficult [17, 70]. Concept-based mod-

els [35, 110, 93, 39, 43] were proposed to overcome these barriers. The intuition is to link the

documents with concepts in a general Knowledge Base (KB), like Wikipedia or Freebase, and

assign relevance score accordingly. For example, the text sequence “DBSCAN for knowledge

discovery” can be mapped to KB concepts like “KB: data mining”, “KB: density-based clus-

tering” and “KB: dbscan” (relevance scores are omitted). Such methods take advantage of

a vast amount of highly organized human knowledge. However, most of the existing knowl-

edge bases are manually maintained, and are limited in coverage and freshness. Researchers

have therefore recently developed systems such as Probase [112] and DBpedia [13] to re-

place or enrich traditional KBs. Neverthless, the rapid emergence of large, domain-specific

text corpora (e.g., business reviews) poses significant challenges to traditional concept-based

techniques and calls for methods of representing documents by interpretable units without

requirement of a KB.

In this chapter, we are particularly interested in the problem of learning representations

for domain-specific texts: Given massive training texts in a specific domain or genre, we

aim to learn a systematic way to derive consistent and interpretable representations for any

new in-domain documents without relying on a KB. When existing approaches are directly

applied to solve this problem, they encounter one or several limitations listed below:

• Representation interpretability: Most data-driven methods (e.g., bag-of-words and

topic models) lack straightforward interpretation for the document representation, which is

critical for model verification and for ensuring that the model is capturing user’s intuitions

about the text input [17].

• Representation consistency: Traditional methods behave relatively poor when text

length and vocabulary change between documents, e.g., web pages.
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• Domain restriction: For concept-based methods relying on a KB [35, 93, 110], the

provided knowledge in KB usually suffers from limited coverage and freshness on specific,

dynamic or emerging domains. Moreover, due to the wide range of domains covered in a gen-

eral KB, many words will have multiple possible KB referents even if they are unambiguous

in the target domain, thus introducing noise and distortion in the document representation

even when the vocabulary overlap between the target domain and knowledge base is small

[39].

To address the above challenges, we instantiate the interpretable units in the document

representation as quality phrases, which have been introduced in Chapter 3. That is to say, a

document is represented as a subset of quality phrases that are informative to summarize the

document content. For ease of presentation, we name these phrases as document keyphrases1.

However, not all document keyphrases are frequently mentioned in the text, which is

especially true for short texts like paper abstracts and business reviews. Meanwhile, explicit

mentions of different keyphrases in different documents can potentially be synonym due to

the vocabulary gap. It seem that the consistency issue still exists. To deal with it, we propose

to associate each quality phrase with a silhouette—a cohesive set of topically related content

units (i.e., words and phrases), which is learned from the in-domain corpus itself.

Definition 4.1 (Quality Phrase Silhouette) Given a quality phrase Km, its sil-

houette Sm comprises a cohesive bag of content units (i.e., words and phrases) top-

ically related to Km. Let the total set of content units in the corpus is denoted as

T = {T1, · · · , TL}. Then Sm is a non-negative vector [Sm1, · · · , SmL] where each entry

Sml refers to a relatedness score between quality phrase Km and content unit Tl.

These silhouettes not only enhance the interpretability of corresponding quality phrases, but

also enable the computer to identify latent document keyphrases through statistical inference.

1See its definition in Chapter 1.
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In this way, we can provide similar sets of keyphrases if two documents are semantically

similar while ignoring document length and vocabulary gap to a large degree.

An example of document representation using latent document keyphrases is provided

in Table 4.1, together with results of other approaches. In contrast with them, the major

contributions of this work [63] are:

1. We propose to use latent keyphrases as the document representation for domain-specific

texts, which enhances the interpretability and consistency of representation and solves

the domain restriction brought by traditional approaches.

2. We develop a Bayesian network-based approach to model quality phrase silhouettes,

which later helps infer latent document keyphrases and solves the rarity of explicit

keyphrase mentions in the document.

3. Experiments on corpora of different domains show both the effectiveness and efficiency

of the proposed solution.

A novel solution, called Latent Keyphrase Inference (LAKI), will be introduced in the

rest this chapter. As shown in Fig. 4.1, LAKI can be divided into two phases: (i) the offline

phrase silhouette learning phase, which extracts quality phrases from the in-domain corpus

and learns their silhouettes respectively, and (ii) the online document keyphrase inference

phase, which identify keyphrases for each query based on the quality phrase silhouettes, as

outlined below.

• Offline Phrase Silhouette Learning:

1. Mine quality phrases from a textual corpus; and

2. Learn quality phrase silhouettes by iteratively optimizing a Bayesian network with respect

to the unknown values, i.e., latent document keyphrases, given observed content units in

the training corpus.
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Figure 4.1: Overview of LAKI. White and grey nodes represent quality phrases and content

units respectively.

• Online Document Keyphrase Inference:

1. Segment input query into content units; and

2. Do inference for document keyphrases given the observed content units, which quantifies

relatedness between the input query and corresponding keyphrase.

4.1 Quality Phrase Silhouetting

In this section, we present how to obtain quality phrase silhouettes by optimizing a Bayesian

network w.r.t. latent document keyphrases, given observed content units (i.e., words and

phrases after segmentation) in the training corpus. Recall that the silhouette of a quality

phrase Km consists of a bag of related content units for capturing the topic of Km. Besides

modeling dependency between quality phrases and content units, we consider interactions

between quality phrases themselves and make the network hierarchical with DAG-like struc-

ture shown in Fig. 4.2. Content units are located at the bottom layer and quality phrases
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form the rest. Both types of nodes act as binary variables2 and directional links between

nodes depict their dependency. Specifically, the links connecting quality phrases to content

units form the so-called quality phrase silhouettes.

Before diving into the technical details, we motivate our multi-layered Bayesian network

approach to the silhouetting problem. First, this approach enables our model to infer not

just explicitly mentioned document keyphrases. For example, even if the text only contains

‘html’ and ‘css’, the word ‘web page’ comes to mind. But more than that, a multi-layered

network will activate ancestor quality phrase like ‘world wide web’ even they are not directly

linked to ‘html’ or ‘css’, which are content units in the bottom layer.

Meanwhile, we expect to identify document keyphrases with different relatedness scores.

Reflected in this Bayesian model from a top-down view, when a parent quality phrase is

activated, it is more possible for its children with stronger connection to get activated.

K5K1

K4K2

T5 T6T1 T2 T3 T4

K3

Quality Phrases

Content Units

Figure 4.2: An illustrative Bayesian network for quality

phrase silhouetting.

Furthermore, this formula-

tion is flexible. We allow a con-

tent unit to get activated by

each connected quality phrase

as well as by a random noise

factor (not shown in Fig. 4.2),

behaving like a Noisy-OR, i.e.,

a logical OR gate with some

probability of having “noisy” output. This increases robustness of the model especially

when training documents are noisy.

We define the conditional distribution in our Bayesian network in line with the above

motivations. Mathematically, we use K = {K1, K2, . . . , KM} and T = {T1, T2, . . . , TL} to de-

2For multiple mentions of a content unit, we can simply make several copies of that node together with
its links.
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Figure 4.3: An alternative representation of Noisy-Or Bayesian network. We assume parents

Pa(Z3) of Z3 are Pa1
3 = Z1 and Pa2

3 = Z2 respectively.

note quality phrases and content units respectively. For notational convenience, we use a uni-

fied symbol Z to denote K and T such that K = {Z1, . . . , ZM} and T = {ZM+1, . . . , ZM+L}.

A child node Zj is Noisy-OR [42] with its parent nodes Pa(Zj) = {Pa1
j , Pa

2
j , . . .} as:

p(Zj = 1
∣∣Pa(Zj)) = 1− exp

(
−W0j −

∑
i

Wij1Paij

)
(4.1)

where W denotes link weight and 1 is an indicator function returning 1 if its associated

node state is true. In this way, larger weight of a link will make its child node more likely

to be activated. Note that the leak term W0j allows for the possibility of a node to be true

even if all parents are false. Intuitively, it can be explained as a prior for a quality phrase

node and a noise for a content unit. Meanwhile, leak terms {W0∗} for all nodes can be

naturally transformed to link weights by positing a latent factor Z0 with p(Z0 = 1) = 1,

where notationally convenient. An example of such a notation is shown on the left side of

Fig. 4.3 for a tiny family.

In the following subsections, we first discuss how to learn link weights given the Bayesian

network structure and then discuss how the initialization is done to decide this structure

and to set initial link weights.
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4.1.1 Model Learning

To effectively learn link weights during quality phrase silhouetting, Maximum Likelihood

Estimation (MLE) is adopted. The intuition is to estimate parameters by maximizing the

likelihood of observed content units together with partially-observed document keyphrases3.

Suppose we have D documents in the corpus C where each document Cd uses a binary vector

t(d) to represent the states of content units (i.e., observed or not), the log-likelihood of the

corpus is:

L(C) =
D∑
d=1

log
∑
k∈Ω(d)

p(K = k, T = t(d)) (4.2)

where Ω(d) is the space of all possible combinations of document keyphrase states. This

space changes for different documents and will be discussed later in this subsection.

It is difficult to directly optimize Eq. (4.2) due to the latent states for the rest quality

phrases. Instead we resort to the Expectation-Maximization (EM) algorithm which guar-

antees to give a local optimum solution. The EM algorithm starts with some initial guess

at the maximum likelihood parameters and then proceeds to iteratively generate successive

estimates by repeatedly applying the E-step (Expectation-step) and M-step (Maximization-

step). For general Bayesian networks, normally p(Zj, Pa(Zj)|T = t) must be computed for

all state combinations between Zj and Pa(Zj) in the E-step. In our case due to the presence

of Noisy-OR as in Eq. (4.1), we can dramatically reduce the complexity by dividing the

whole family into parent-child pairs and computing each pair separately. To demonstrate

this, we show an alternative representation of the left Noisy-OR network in Fig. 4.3 by

adding grey nodes for each link. A grey node Xij is true with probability 1 − exp (−Wij)

only if the parent node Paij is true. The original child white node on the left now becomes

3Explicit document keyphrases can be identified by applying existing keyphrase extraction methods like
[111].

60



deterministic-OR of parent grey nodes. Based on this representation, one can still derive

the same probability distribution as Eq. (4.1).

Expectation Step: Since the child white node always performs OR operation on its parents,

we only need to focus on the grey nodes with single parent. This reduces a lot of storage

consumption and transforms our task to computingR
(d)
ij = P (Xij = 1, Paij = 1|T = t(d),Ω(d))

together with P
(d)
m = P (Km = 1|T = t(d),Ω(d)) where:

• R(d)
ij refers to the probability of a grey node Xij to be activated as well as that both of

its parent Paij and child node Zj are present; and

• P (d)
m refers to the probability of a quality phrase node Km to be activated, i.e., becoming

a document keyphrase.

Unfortunately, to compute these two terms exactly, one still needs to enumerate all possible

combinations of quality phrase states. This is NP-hard for a Bayesian network like ours [24].

We therefore constrain the search space Ω(d) such that non-related quality phrases are directly

excluded before applying EM. That is, we only allow ancestors of observed content units to

change states during the inference. We are essentially forcing certain elements of K to be

fixed in their states during the enumeration of Ω(d). The corresponding analytical expressions

are derived following Bayes rules:

R
(d)
ij =

∑
c∈Ω(d) p

(
Z = {k, t(d)}

) P (Xij=1|Paij)

p(Zj=zj |Pa(Zj))
1zj 1Paij∑

z∈Ω(d) p
(
Z = {k, t(d)}

)
P (d)
m =

∑
z∈Ω(d) p

(
Z = {k, t(d)}

)
1km∑

z∈Ω(d) p
(
Z = {k, t(d)}

) (4.3)

For longer text, there will still be a large number of quality phrase nodes left for inference

following the above strategy, making inference intractable at a large scale. We therefore

resort to approximate inference by applying a stochastic sampling technique for generating
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samples from the joint probability distribution over Z. This type of approximation technique

is also used for online inference, introduced in the next section.

Maximization Step: Based on the sufficient statistics collected by the Expectation step,

one can update each link weight Wij between node Paij and Xij with the following closed-

form solutions:

Wij = − log
(

1−
∑

dR
(d)
ij∑

d P
(d)

Paij

)
, W0j = − log

(
1−

∑
dR

(d)
0j

|N |

)

Expectation and maximization steps are iterated until the model changes minimally.

4.1.2 Model Initialization

Like other EM frameworks, the parameter estimation will suffer from the problem of local

maximum, making the results vary with different network structures and initialized link

weights. Therefore, to obtain a good initialization before model training is important for

our task.

Specifically, there are two sub-problems for the model initialization:

1. How to decide topological order among quality phrase nodes and to build links among

them?

2. How to build links between quality phrases and content units?

For the former, a reasonable topological order of DAG should be similar to that of a do-

main ontology. The links among quality phrase nodes should reflect IS-A relationships [114].

Ideally, documents and queries which are describing specific topics will first imply some

deep quality phrase nodes being activated. Then the ontology-like topological order ensures

these content units have the chance of being jointly activated by general phrase nodes via

inter-phrase links. Many techniques [114, 88, 25] have been previously developed to induce
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an ontological structure over quality phrases. It is out of scope of our work to specifically

address these or evaluate their relative impact in our evaluation. We instead use a simple

data-driven approach, where quality phrases are sorted based on their counts in the corpus,

assuming phrase generality is positively correlated with its number of mentions [88]. Thus,

quality phrases mentioned more often are higher up in the graph. Links are added from

quality phrase Ki to Kj if Ki has more counts and they are closely related and frequently

co-occurred:

p(Ki|Kj) ≥ α, sim(Ki, Kj) ≥ β

where α is a threshold reflecting the confidence about the IS-A relationship and β requires two

quality phrases to be related. And sim(Ki, Kj) is computed based on the cosine similarity

between word2vec embeddings of phrases Ki and Kj. In our work, we empirically set α and

β to be 0.5 and 0.3 respectively. Note that the latter score is also used to detect equivalence

between quality phrases (i.e., acronyms or inflectional variants) [66] and we merge them to

alleviate the duplication problem. We remark that some more sophisticated work can be

applied here to help detect different lexical semantic and syntactic relations. We leave this

for future work.

Once the topological order among quality phrase nodes has been decided, one can con-

catenate all content units right after the sorted quality phrases and then link higher-ranked

phrase nodes to lower-ranked content units only when sim(Km, Tj) ≥ β.

We initialize link weights between nodes to be their sim(·, ·) scores. As for the leak terms

of nodes, they are simply set to be the probability of observing them in the corpus.
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4.2 Online Inference and Encoding

The online inference is designed to efficiently quantify the relatedness between the text query

and its potential document keyphrases. Inspired by the sufficient statistics collected in E-

step, we are particularly interested in computing P
(q)
m = p(Km|T = t(q)), i.e., the activation

probability for a certain keyphrase Km, as the non-negative relatedness score.

Notice that in the online inference phase, efficiency is usually a big challenge and the

inference previously mentioned for the E-step will be intractable if the document becomes

too long. In this regard, we resort to an approximate sampling approach. This technique

can be applied to compute both P
(q)
m and P

(d)
m . At the same time, R

(d)
ij = p(Xij, Pa

i
j|T = t(d))

needed in the E-step can be benefited.

4.2.1 Inexact Inference Using Gibbs Sampling

In the last section, we discussed about the exact inference in E-step where enumeration over

document keyphrase states are necessary to help compute the above terms. In fact, they

can be more efficiently approximated by use of Monte Carlo sampling methods, which are

a set of computational techniques for generating samples from a target distribution like the

joint probability p(K,T = t) in our setting. Among the Monte Carlo family, we apply Gibbs

sampling in this work to sample quality phrase variables during each inference procedure.

Given content unit vector t representing a document Cd or query q, we proceed as follows:

1. Start with initial setting: only observed content units and explicit document keyphrases

are set to be true, denoted by {k(0), t}

2. For each s ∈ {1, . . . , S}, sequentially sample all quality phrase nodes following condi-

tional distribution p(Km|K−m = {k(s)
1 , . . . , k

(s)
m−1, k

(s−1)
m+1 , . . . , k

(s−1)
M }, T = t), denoted as

k(s).
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where

p(Km = 1|K−m = k−m, T = t) =
p(Km = 1, K−m = k−m, T = t)∑1
i=0 p(Km = i,K−m = k−m, T = t)

(4.4)

To compute Eq. (4.4) efficiently, for every quality phrase node, we maintain the following

probability ratio:

p(Km = 1, K−m = k−m, T = t)

p(Km = 0, K−m = k−m, T = t)
(4.5)

where K−m refers to all the phrase nodes except Km. Given the above ratio, one can easily

compute Eq. (4.4) needed for sampling Km.

Now the problem becomes how to maintain Eq. (4.5) for each phrase node during the

sampling process. In fact, according to the chain rule in Bayesian network, we have

p(Km = 1, K−m = k−m, T = t)

p(Km = 0, K−m = k−m, T = t)
=
p(Km = 1|Pa(Km))

p(Km = 0|Pa(Km))

×
∏

Zj∈Ch(Km)

p(Zj|Pa−Km(Zj), Km = 1)

p(Zj|Pa−Km(Zj), Km = 0)

where Ch(Km) refers Km’s children. From the above equation, one can conclude that

Eq. (4.5) for node Km should be updated whenever nodes in its Markov blanket4 change

states.

The above Gibbs sampling process ensures that samples approximate the joint probability

distribution between all phrase variables and content units. Such sampling is performed over

all the original nodes in the network but does not include the grey nodes (see Fig. 4.3) in the

alternative representation for the sake of sampling efficiency. One can easily compute the

probability distribution over each of the grey nodes given a quality phrase state combination.

4Markov blanket for a node in a Bayesian network composed of its parents, children and children’s other
parents.
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By marginalizing over necessary quality phrase variables in the Bayesian network, the

following approximate equations can be derived:

R̂ij =

∑S
s=1

p(Xij=1|Paij)

p(Zj=z
(s)
j |Pa(Zj))

1
z
(s)
j
1Paij

S
, P̂m =

∑S
s=1 1k

(s)
m

S

4.2.2 Search Space Reduction

To further improve the efficiency of Gibbs sampling, one can follow the idea of E-step to

reduce the number of sampled nodes. Intuitively, only a small portion of quality phrases are

related to the text query. There is no need to sample all phrase nodes since most of them do

not have chance to get activated. That is to say, we can skip majority of them based on a

reasonable relatedness prediction before conducting Gibbs sampling. Suppose content unit

vector T ′ = {T ′1, · · · , T ′l } ⊆ T contains only observed content units. We pick the following

scoring function:

p(T ′ = {1, · · · , 1}|Zj = 1)

This score can be viewed as the probability of generating the observed content units when

quality phrase Zj is activated. Computing p(T ′ = {1, · · · , 1}|Zj = 1) is still challenging

because quality phrases are connected and enumeration over state combinations of connected

quality phrases are unavoidable. Thus we adopt a local arborescence structure [108] to

approximate the probability by keeping the path from Zj to each content unit T ′r for which

the activation probability product along the path is maximum among all paths from Zj to

T ′r. In this way, the activation probability for each content unit is independent given Zj is

activated. The associate probability of the approximate link between quality phrase node
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Zj and content unit Tr is denoted as p̃(T ′r = 1|Zj = 1). We then have:

p(T ′ = {1, · · · , 1}|Zj = 1) ≈
∏
r

(
1−
(

1− p(T ′r = 1|Z0)
)
×

(
1− p̃(T ′r = 1|Zj = 1)

))

In addition, the score can be naturally and efficiently propagated from children to parents

in the network recursively:

p̃(T ′r = 1|Zj = 1) = max
i

p̃(T ′r = 1|Chij = 1) p(Chij = 1|Zj = 1)

where Chij refers to the ith child node of Zj. The above equation can be computed following

reverse topological order of quality phrase nodes. It is worth noting that in this stage

we are generating document keyphrase candidates for the sampling procedure in inference

step. Therefore, this pruning strategy is critical for model performance. A poor strategy

will incorporate irrelevant quality phrases and miss important ones, which further affects

sampling efficiency and undermines representation.

4.3 Experimental Study

In this section, experiments were conducted to demonstrate the effectiveness of the pro-

posed LAKI in generating high quality representations of text queries. We begin with the

description of datasets.

Two real-world data sets were used in the experiments and detailed statistics are sum-

marized in Table 4.2.

• The Academia dataset is a collection of major computer science publications. We use

both paper titles and abstracts in venues of database, data mining, machine learning,
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Table 4.2: Dataset statistics

Dataset #Docs #Words Content type
Academia 0.43M 28M title & abstract
Yelp 0.47M 98M review

natural language processing and computer vision.

• The Yelp dataset provides reviews of 250 businesses. We extract all the reviews belong

to the restaurant category and each individual review is considered as a document.

The proposed method is compared with an extensive set of document representation

approaches. They are briefly described as follows.

• Explicit Semantic Analysis (ESA) [35] encodes each text query as a weighted vector of

KB entries, where the values on each dimension denote the similarity scores computed

between the query and the associated KB entries

• KBLink [110] first detects related KB entries in the query and then represents it using

the hyperlink structures of the KB centered at the identified entries

• BoW stands for bag-of-words method where each dimension reflects word frequency

in the query

• ESA-C extends ESA by replacing the general KB with a domain-specific corpus where

each document is considered to be a KB entry in the original ESA framework

• Latent Semantic Analysis (LSA) [29] is a topic modeling technique learning word and

document representations by applying Singular Value Decomposition to the words-by-

documents co-occurrence matrix

• Latent Dirichlet Allocation (LDA) [15] is a probabilistic topic model assuming words

in each document were generated by a mixture of topics, where a topic is represented
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Table 4.3: Comparisons among different methods

Method Semantic Space Input Source Toolkit
ESA KB concepts KB ESAlib
KBLink KB concepts KB WikiBrain
BoW Words - scikit-learn
ESA-C Documents Corpus ESAlib
LSA Topics Corpus scikit-learn
LDA Topics Corpus MALLET
Word2Vec - Corpus gensim
EKM Explicit Document Keyphrases Corpus -
LAKI Latent Document Keyphrases Corpus -

as a multinomial probability distribution over words

• Word2Vec [72] computes continuous distributed representations of words by training

a neural network, with the desideratum that words with similar meanings will map to

similar vectors

• Latent Keyphrase Inference (LAKI) is the proposed method that derive document

representation via inferring latent keyphrases in the text

• Explicit Keyphrase Mentiosn (EKM) is similar to LAKI but only includes keyphrases

explicitly mentioned in the document.

Table 4.3 provides more details about the differences among the above methods. The first

two methods utilize knowledge base as the input source to train models in order to represent

any new text query. In contrast, the rest methods except BoW require a domain-specific

corpus as the training source.

4.3.1 Quantitative Evaluation and Results

For phrase mining, we set the minimum phrase support as 10 and the maximum phrase

length as 6, which are two parameters required by SegPhrase+. The process generates 33
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Table 4.4: Model information of LAKI

Dataset #Nodes #Links #Quality Phrases (existing in Wiki)
Academia 237K 1.40M 33K (6,367)
Yelp 292K 1.14M 25K (4,996)

and 25 thousand quality phrases on Academia and Yelp respectively. Among them, only

6367 and 4996 exist in Wikipedia, which implies Wikipedia misses a lot.

LAKI was initialized and trained following Sec. 4.1.2 on both datasets, whose model

information is listed in Table 4.4. The Yelp model contains more content units but has

fewer quality phrases and links, indicating the knowledge underlying Yelp reviews is less

structured. Regarding the inference process of LAKI, we run the Gibbs sampler for 5000

iterations per query. The pruning strategy introduced in Sec. 4.2 is applied to select at

most 200 phrase nodes as candidates for sampling. Settings of these two parameters will be

discussed later in this section. EM steps are repeated until the change on training perplexity

is small enough.

Regarding other methods, ESA and KBLink need a general KB as the input source.

Wikipedia is chosen since it is rich in both text content and structural links. For LSA and

LDA, both require users to specify number of topics before training. During our experiments,

various numbers of topics ranging from 10 to 1000 have been tested and the best got reported.

Word2Vec has two main learning algorithms: continuous bag-of-words and continuous skip-

gram. We compared both of them in our tasks and discovered the former generally worked

better. For the sake of convenience, results of the continuous bag-of-words algorithm with

context window size of 5 are reported. As suggested in the paper, negative sampling was

activated and vector dimensionality was set to be 300.

In addition, TF-IDF is applied to re-weight terms for BoW, LSA and EKM. Stop words

are removed for all the methods. Other parameters required by contrasting methods were

set as the default values according to the toolkits.
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The goal of our experiments is to quantitatively evaluate how well our method performs

in generating documents representations of online queries. We introduce our empirical eval-

uation in two problem domains: phrase relatedness and document classification.

Phrase Relatedness: For a set of phrase pairs, method performance is evaluated by how

well the generated relatedness scores correlate with the gold scores. The gold score for each

phrase pair is based on human judgements of the pair’s semantic relatedness.

To create these phrase pairs, we first sampled 100 pairs of frequently co-occurred phrases

for each dataset respectively. Then we expanded the set by randomly combining phrases

from different pairs and the final evaluation set contains 300 pairs. Each pair was carefully

assigned a relatedness score from 0 to 3 where higher score indicates stronger similarity. We

used Pearson’s linear correlation coefficient to compare computed relatedness scores with

human judgements.

To compute semantic relatedness of a paired phrases, KBLink proposes to use a combined

relatedness measure inspired from TF-IDF and Google Distance. For other methods, cosine

metric is used to compare their vectorial representations.

Document Classification: In this classification task, we wish to classify a document

into several mutually exclusive classes. A challenging aspect of the document classification

problem is the choice of features. Considering document representations as features, we

expect the classification accuracy can well reflect the discriminative power of each method.

For each compared method, we first derived vectorial representations for all the training

and testing documents without reference to their true class label. Then a support vector

machine with both linear and radial basis function kernels was trained on the training set

(only the best was reported). Classification accuracy on the testing set is reported to measure

the performance of the method.

For the methods trained on the Academia dataset, we created a held-out set of 500
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Table 4.5: Phrase relatedness correlation

Method Academia (with phrase) Yelp (with phrase)
ESA 0.4320 (-) 0.4567 (-)
KBLink 0.1878 (-) 0.4179 (-)
ESA-C 0.4905 (0.5243) 0.4655 (0.5029)
LSA 0.5877 (0.6383) 0.6700 (0.7229)
LDA 0.3610 (0.5391) 0.3928 (0.5405)
Word2Vec 0.6674 (0.7281) 0.7143 (0.7419)
LAKI 0.7504 0.7609

publications authored by five researchers in different research areas. We sampled each au-

thor’s publications to avoid the problem of class imbalance. Regarding the Yelp dataset,

we followed the above procedure and extracted 1000 reviews for 10 chain restaurants. As

for the classification details, we used LibSVM software package and created the training set

with 70% of all documents. Five-fold cross validation was conducted to decide the proper

parameter of the kernel. Five test runs were conducted on different randomly partitioned

training and test sets. The average performance is reported.

The correlations between computed relatedness scores and human judgements are shown

in Table 4.5. Let’s first ignore the numbers in parenthesis and we can discover that the

trends on two datasets are similar.

Both BoW and EKM are not reported because queries (i.e., phrases) are too short and

they tend to return 0 most of the time, making it inappropriate for this task. Among other

existing work, Word2Vec has the best performance due to its effective modeling of word

representations in low dimensional space. Meanwhile, Word2Vec is good at representing very

short text by simply computing arithmetic mean of word embeddings. LDA performs the

worst in this task, suffering from the severe data sparsity in short text inference scenario.

This phenomenon is consistent with recent studies on short text topic modeling. As for

the two KB-based methods, both behave relatively poor in spite of their extraordinary

performance reported on open domain in [35, 110]. KBLink is noticeably lower on Academia
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dataset due to the sparsity of hyperlinks between academic concepts. This is probably

due to the reasons about domain restriction and out-of-domain noise. We can verify this

assumption to some extent by comparing it with ESA-C. The latter method replaces KB

with a domain corpus, which can be considered as a weak domain adaptation by viewing

each document as a KB entry. ESA-C thus outperforms ESA slightly but its performance

is still not satisfactory compared to LSA and Word2Vec. This implies enormous potential

if a method is able to handle domain adaptation well, and meanwhile to bring KB-like

semantics into each dimension. Our proposed method, LAKI, first extracts quality phrases

from a corpus and then represents queries in the space of these phrases, fulfilling the above

two targets simultaneously. Consequently, it outperforms the second best method (i.e.,

Word2Vec) by 0.083 on Academia and 0.0466 on Yelp dataset, which is even more statistically

significant than the gap between the second and the third best methods.

Table 4.6 shows evaluation results for the document classification task. LAKI still

achieves much improvement compared with the competitors. The difference is especially

noticeable on Yelp, where LAKI achieves 90.58% accuracy and the second best is 75.55%.

It supports our claim that the proposed LAKI method is quite useful in representing both

short-text and long-text documents. Among the other methods, LDA generates the best

results since each document now contains more words than the previous short text scenario,

making it easier to do inference by utilizing the word co-occurrence patterns. BoW is not

performing well mainly due to the over-sparsity problem. Though documents are relatively

long (100 words for Academia and 200 words for Yelp on average), some documents from

the same category still share only a few words, which makes the classifier easy to misclassify.

Similar to BoW, EMK performs much worse than LAKI due to the sparsity of keyphrase

mentions, indicating the superiority of using latent keyphrases over explicit mentions. ESA-

C beats ESA once again, reflecting the shortcoming of using general KB on a topic-focused

domain. Word2Vec is omitted from the table due to its poor performance when applied
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Table 4.6: Document classification accuracy (%)

Method Academia (with phrase) Yelp (with phrase)
ESA 37.61 (-) 46.56 (-)
KBLink 36.37 (-) 35.94 (-)
BoW 48.05 (45.60) 51.26 (45.97)
ESA-C 39.75 (42.20) 49.13 (54.51)
LSA 72.50 (79.22) 66.55 (78.57)
LDA 77.27 (80.52) 75.55 (82.65)
EKM 45.46 40.57
LAKI 84.42 90.58

to long text. Simply computing arithmetic or geometric mean of word embeddings results

in very poor performance (close to random guess). We have also tried applying gradient

descent to learn the document representations as introduced in [54]. But the performance is

still far below our expectation.

Another significant difference between LAKI and the existing work is its support for

multi-word phrases. By segmenting queries into content units, LAKI views each input query

as a bag of phrases instead of words. Some other methods including BoW, ESA-C, LSA,

LDA and Word2Vec can be modified to support such phrase-based input just like LAKI.

Therefore, we have conducted experiments to show whether using the same input as LAKI

can help boost their performance. Numbers within parenthesis in Tables 4.5 and 4.6 indi-

cate the corresponding performance after switching to the phrase-based input. The highest

correlation scores obtained by Word2Vec increase to 0.7218 and 0.7419 on the two datasets,

which are still beated by LAKI. For the document classification task, LDA achieves the

best accuracy among all contrasting methods, which are still 3.9% and 7.93% lower than

LAKI for the two datasets respectively. It is interesting to see that BoW fails to utilize the

phrase-based input. Our explanation is that BoW is lack of a training process and it relies

fully on the content units in the input. It usually becomes more difficult for queries to share

phrases than words due to the decrease in number of content units after segmentation.
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Figure 4.4: Training perplexity and performance of LAKI versus increasing iterations of EM

4.3.2 Model Selection

In this subsection, we study the model behavior under different experimental settings. We

begin with an empirical convergence study of the EM algorithm. Fig. 4.4 presents the train-

ing perplexity of LAKI with its performance versus iteration. Due to the good initialization

discussed in Sec. 4.1.2, the perplexity becomes quite stable after the fifth iteration. This

help save a lot of training time in practice. The perplexity is not monotonically decreasing

because of the approximations resulted from pruning and sampling.
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Figure 4.5: Performance variations of LAKI with in-

creasing number of document keyphrase candidates

after pruning

There are two parameters in

our LAKI method: number of

quality phrases after pruning and

sample size for Gibbs sampler.

The former parameter decides the

number of phrase nodes involved

in the later sampling process. A

smaller value will make the final

output sparser while a larger one

has risk in incorporating more unrelated phrases to compromise the performance. Fig. 4.5

shows how the performance varies with changes in this parameter. We can observe a peak
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around 150 quality phrases for the phrase relatedness task. In contrast, the curve is gen-

erally going up for the document classification task and becomes stable around 400. Our

explanation is that the queries for the latter task contain more observed content units and

there should exist more document keyphrases for longer text queries. This suggests a way to

dynamically decide the number of pruned phrases. But in this work we simply fix its value

to 200 and plan to explore this idea in the future.
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Figure 4.6: Performance with increasing sample size
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Figure 4.7: Performance with different phrase sets

For the Gibbs sampling size,

a larger value usually leads to

more accurate and stable estima-

tion of the probability distribu-

tion. We show the experiment

in Fig. 4.6 where both mean and

standard deviation are reported.

The curves are consistent with our

expectation and they become rel-

atively flat after 5000. Based on

this observation we set the sam-

pling size to 5000 for the sake of

saving time consumption.

Another experiment has been conducted to show the benefit by considering more quality

phrases into the Bayesian network. As reported in Table 4.4, there is a large portion of

quality phrases not existing in Wikipedia. To justify the domain restriction of Wiki, it is

interesting to compare the standard LAKI model with the simplified version trained only on

Wiki-covered phrases (see its definition in [64]). The bar plots in Fig. 4.7 demonstrate that

with more quality phrases involved, LAKI is able to achieve outstanding improvement.
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Figure 4.8: Impact of sample size (left), number of quality phrases after pruning (middle),

and word counts (right) on query processing time

4.3.3 Efficiency Study

To understand the run-time complexity of our framework, we first analyse the execution

time of online query encoding phase. The experiments were conducted on a machine with 20

cores of Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz. The code is implemented in C++5.

As shown in Fig. 4.8, LAKI grows linearly proportional to the sampling size, the number of

quality phrases after pruning and the length of the query. Besides this, the pies in Fig. 4.9

show ratios of different components of our framework. One can observe that the pruning and

sampling steps occupy most of the runtime. Moreover, as query size increases, the sampling

part consumes relatively more.

Sampling
70.6% Pruning

29.2 %

Segmentation 

0.2%

Sampling
87.1%

Pruning
12.7 %

Segmentation 

0.2%
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Figure 4.9: Breakdown of query processing time

Fortunately, almost all components

of our frameworks can be easily par-

allelized, because of the nature of in-

dependence between documents and

queries. For the offline phrase silhou-

ette learning phase, as the very first

step, keyphrase extraction shares sim-

5The code is available at https://github.com/remenberl/Latent-Keyphrase-Inference.
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ilar time complexity as reported in [64]. The most time consuming part is quality phrase

silhouetting, which is an EM algorithm and each individual inference in E-step has similar

performance compared to Figs. 4.8 and 4.9. The only difference is the pruning time for

silhouetting because the search space is constrained as discussed in Sec. 4.1.1.

4.3.4 Case Study

Previous experiments are focused on evaluating representation quality and time complexity

quantitatively. In this subsection, we first present several queries with their top-ranked

document keyphrases in Table 4.7 generated from the online phase of LAKI. Overall we see

that LAKI can handle both short and long queries quite well. Most document keyphrases are

successfully identified in the list. Relatedness between keyphrase and queries generally drops

with ranking lowers down. Meanwhile, both general and specific document keyphrases exist

in the ranked list. This provides LAKI with more discriminative power when someone applies

it to text mining applications like document clustering and classification. Moreover, LAKI

has the ability to process ambiguous queries like ‘lda’ based on contextual words ‘topic’. We

attribute this to the well-modelled quality phrase silhouettes and we show some examples

of them in Table 4.8. As a quality phrase silhouette might contain many content units, we

only demonstrate ones with the most significant link weights. For ease of presentation, link

weights are omitted in the table.
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Table 4.7: Examples of document representation by LAKI with top-ranked document

keyphrases (relatedness scores are ommited due to the space limit).

Query LDA BOA

Docu-
ment
Keyphrases

linear discriminant analysis, latent
dirichlet allocation, topic models, topic
modeling, face recognition, latent
dirichlet, generative model, topic,
subspace models, . . .

boa steakhouse, bank of america,
stripsteak, agnolotti, credit card, santa
monica, restaurants, wells fargo,
steakhouse, prime rib, bank, vegas, las
vegas, cash, cut, dinner, bank, money,
. . .

Query LDA topic BOA steak

Docu-
ment
Keyphrases

latent dirichlet allocation, topic, topic
models, topic modeling, probabilistic
topic models, latent topics, topic
discovery, generative model, mixture,
text mining, topic distribution, . . .

steak, stripsteak, boa steakhouse,
steakhouse, ribeye, craftsteak, santa
monica, medium rare, prime, vegas,
entrees, potatoes, french fries, filet
mignon, mashed potatoes, texas
roadhouse, . . .

Query SVM deep dish pizza

Docu-
ment
Keyphrases

support vector machines, svm classifier,
multi class, training set, margin, knn,
classification problems, kernel function,
multi class svm, multi class support
vector machine, support vector, . . .

deep dish pizza, chicago, deep dish,
amore taste of chicago, amore, pizza,
oregano, chicago style, chicago style deep
dish pizza, thin crust, windy city, slice,
pan, oven, pepperoni, hot dog, . . .

Query
Mining Frequent Patterns without
Candidate Generation

I am a huge fan of the All You Can Eat
Chinese food buffet.

Docu-
ment
Keyphrases

mining frequent patterns, candidate
generation, frequent pattern mining,
candidate, prune, fp growth, frequent
pattern tree, apriori, subtrees, frequent
patterns, candidate sets, . . .

all you can eat, chinese food, buffet,
chinese buffet, dim sum, orange chicken,
chinese restaurant, asian food, asian
buffet, crab legs, lunch buffet, fan, salad
bar, all you can drink, . . .

Query

Text mining, also referred to as text data
mining, roughly equivalent to text
analytics, refers to the process of
deriving high-quality information from
text. High-quality information is
typically derived through means such as
statistical pattern learning.

It’s the perfect steakhouse for both meat
and fish lovers. My table guest was
completely delirious about his Kobe Beef
and my lobster was perfectly cooked.
Good wine list, they have a lovely
Sancerre! Professional staff, quick and
smooth.

Docu-
ment
Keyphrases

text analytics, text mining, patterns,
text, textual data, topic, information,
text documents, information extraction,
machine learning, data mining,
knowledge discovery, . . .

kobe beef, fish lovers, steakhouse,
sancerre, wine list, guests, perfectly
cooked, lobster, staff, meat, fillet, fish,
lover, seafood, ribeye, filet, sea bass,
risotto, starter, scallops, steak, beef, . . .︸ ︷︷ ︸︸ ︷︷ ︸

Academia Yelp
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Table 4.8: Examples of quality phrase silhouettes (from offline quality phrase silhouette

learning). Link weights are omitted.

Quality Phrase linear discriminant analysis boa steakhouse

Silhouette

linear discriminant analysis, lda,
face recognition, feature extraction,
principle component analysis,
uncorrelated, between class scatter,
. . .

boa steakhouse, boa, steakhouse,
restaurant, dinner, strip steak,
craftsteak, santa monica, vegas, filet,
ribeye, new york strip, sushi roku,
. . .

Quality Phrase latent dirichlet allocation ribeye

Silhouette

latent dirichlet allocation, lda,
topics, perplexity, variants,
subspace, mixture, baselines, topic
models, text mining, bag of words,
. . .

ribeye, steak, medium rare, medium,
oz, marbled, new york strip, well
done, prime rib, fatty, juicy, top
sirloin, filet mignon, fillet, . . .

Quality Phrase support vector machines deep dish

Silhouette

support vector machines, svm,
classification, training, classifier,
machine learning, prediction, hybrid,
kernel, feature selection, . . .

deep dish, pizza, crust, thin crust
pizza, chicago, slice, pepperoni, deep
dish pizza, pan style, pizza joints,
oregano, stuffed crust, chicago style,
. . .

Quality Phrase fp growth chinese food

Silhouette

fp growth, algorithm, apriori like,
mining, apriori, frequent patterns,
mining association rules, frequent
pattern mining, fp tree, . . .

chinese food, food, chinese,
restaurants, americanized, asian,
orange chicken, chow mein, wok,
dim sum, panda express, chinese
cuisine, . . .

Quality Phrase text mining mcdonalds

Silhouette

text mining, text, information
retrieval, machine learning, topics,
knowledge discovery, text data
mining, text clustering, nlp, . . .

mcdonalds, drive through, fast food,
mcnugget, mcflurry, fast food chain,
sausage mcmuffin, big bag,
mcmuffin, burger king, . . .

Quality Phrase database sushi

Silhouette

database, information, set, objects,
storing, retrieval, queries, accessing,
relational, indexing, record, tables,
query processing, transactions, . . .

sushi, rolls, japanese, sushi joint,
seafood, ayce, sushi rolls, salmon
sushi, tuna sushi, california roll,
sashimi, sushi lovers, sushi fish, . . .︸ ︷︷ ︸︸ ︷︷ ︸

Academia Yelp
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Chapter 5

Tensor-Based Large-Scale Network
Embedding

The previous two chapters introduce how to bring structures into text. Besides analysing the

textual content, we notice that documents are naturally rich in structure in other aspects,

in which structures result from various relations between documents and their associated

entities.

In business reviews, there exist relations as users writing reviews for businesses. In

bibliographic data, relations are in the form of authors publishing papers in venues, etc. The

analysis of relational data containing documents is of great pragmatic interest, and has

attracted increasing attention in academia and industry [99, 26, 96, 46].

Prevalent mining approaches in the literature focus on “second-order” data in which a

bipartite network is built and analyzed between single-typed entities, e.g. authors, and doc-

ument content. However, many real-world data are more versatile in structure with regards

to more than two types involved. In such scenarios, existing methodologies may fail and a

legitimate approach towards such relations is to model the involved entities as a whole. In

particular, we define such relations involving more than two entity types (including docu-

ment content such as keyphrases) as higher-order relations. Accordingly, the collection of

higher-order relations is higher-order relational data. As discussed above, the bibliographical

data are an archetypal example, in which each publication relation involves four entity types:

author, paper, phrase, and venue. Due to the heterogeneity of the entities involved in each

relation, [45, 96] proposed to abstract such data as heterogeneous information networks [91],

where a network becomes heterogeneous if it contains more than two entity types, compared
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to homogeneous or bipartite information networks containing one or two typed entities. Par-

ticularly, since the network is constructed and centered on documents, we name it Text-Rich

Information Network. Different from typical definition for links in the network which con-

nect two nodes, a link in text-rich information network in this chapter may associate with

more, in correspondence with a higher-order relation.

With the formulation of text-rich information network, this chapter studies the problem

of embedding nodes/entities in this type of network into a low-dimensional vector space, in

which every node/entity is represented by a vector. The learned embeddings should preserve

proximity in the network. Semantically, entities should have similar embeddings if they co-

occur with similar entities or they involve in similar relations. The similarity of relations are

further determined by the similarity of their constituent entities.

The learned embeddings are useful for various downstream applications including visu-

alization [105], entity classification [10], clustering [76], recommender system [53], and link

prediction [60]. Due to the broad applications of the entity embeddings and humongous scale

of real-world data, it is desirable to have an efficient framework for learning node embeddings

that scales in text-rich information network.

There have been some efforts en route to such embedding tasks, including [19, 99]. How-

ever, instead of directly analyzing the higher-order relational data by modeling every inter-

action among multiple entity types as a whole, [19, 99] opt to construct a set of bipartite

networks and model each of them separately.

In Fig. 5.1, a network schema (i.e., a generalized network explaining higher-order re-

lations) of the bibliographical data is depicted on the left. The publication relation is a

higher-order relation type, since entities of types author, venue and phrase are associated

with the relation identifier publication1. Existing methods, denoted as pairwise method

(shown on the bottom right of the figure), represent each higher-order relation as the union

1Different from Example 1.2, here entity “paper” is replaced with relation identifier “publication”.
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Figure 5.1: Illustration of bibliographical data. A publication relation includes multiple

entity types, with network schema shown on the left.

of several bipartite networks, each of which is then studied independently of the remaining

ones. The decomposition of the higher-order relations is detrimental due to the neglect of

other entity types in the higher-order relations. To address the information loss incurred by

the pairwise methods, we propose to model each higher-order relation as a whole, as shown

on the upper right of Fig. 5.1.

Author(s)

Venue Phrase(s)

Publication

Author(s)

Publication

Venue Phrase(s)

Figure 5.2: Two methods to model the text-rich in-

formation networks. Left: Entity2Vec, Right: Rela-

tion2Vec.

In particular, we adopt the

framework of tensor modeling to

encapsulate these higher-order re-

lations in the network. Each en-

tity type is represented by one di-

mension in the tensor, and the ob-

served relations correspond to the

nonzero values. For the biblio-

graphical data in Fig. 5.1, we can design a three-dimensional tensor with author, phrase

and venue as dimensions. We remark that the relation itself can be included in the tensor as

an extra dimension, in which case the bibliographic data would become a four-dimensional

tensor with the relation identifier (publication) as the forth dimension.

Based on the framework of tensor modeling, we further propose two methods to model
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the text-rich information networks, as depicted in Fig. 5.2. The entity-driven method (en-

tity2vec) models the proximity among entities that co-occur with similar constituent en-

tities in the higher-order relations; while the relation-driven method (relation2vec) models

the proximity among entities that oc-occur in similar higher-order relations. The arrows

indicate that information can be propagated in both directions.

In the pairwise methods, several bipartite relations are analyzed individually; in the

tensor-based framework, each higher-order relation becomes the basic unit. Therefore, the

tensor-based framework enables more efficient information propagation between the con-

stituent entities (and the relations for the relation2vec method). By comparison, in the

pairwise methods information can only be propagated between each pair of entities at one

time. Furthermore, with all entities considered in the tensor-based framework, it is more

robust to noisy entities. This is because informative entities may dominate tensor values,

which helps to control the negative effects of noisy entities. As for pairwise methods, noisy

entities would be modeled in absence of relevant entities due to the independent modeling

of each bipartite relation, resulting in perturbation of the learned model.

To summarize, we make the following contributions in this work2:

1. We propose the problem of learning embeddings for text-rich information networks. In

particular, we propose to model higher-order relations involving multiple entity types in

the network.

2. Under a novel framework of tensor2vec, we develop two methods to model higher-order

relations from different perspectives, entity-driven method entity2vec and relation-driven

method relation2vec, which enable more efficient information propagation between entities

and are more robust to noisy entities.

3. Extensive experiments are conducted to corroborate the efficacy of the tensor2vec frame-

work towards effective learning of network embeddings that preserve proximity.

2This work is in submission to KDD2016.
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5.1 Network Schema and Entity Proximity

As we previously introduced, text-rich information network is essentially an abstraction for

higher-order relational data involving textual content. In this section, we first provide the

formal definition of relational data, followed by its network representation. Then we discuss

how to model entity proximity under such representation.

To begin with, we define relational data with its higher-order extension.

Definition 5.1 (Relational Data) By reusing the symbols in the definition of text-

rich information network, relational data are defined as D = (E ,R), where E = {e1, . . . , en}

is the set of entities and R is the set of relations (second-order or higher-order) among

the entities.

In conventional relational data, in which relations are mostly bipartite, i.e., R ⊆ E × E .

However, for higher-order relational data, there could be multiple entity types involved in

each relation type. Moreover, the number of relation types is not constrained and it is

possible to have multiple relation types among the same set of entity types.

We use O and T to represent the sets of entity types and relation types respectively. For

any entity type o ∈ O, Eo refers to the set of entities of type o; for any relation type t ∈ T ,

Rt defines the set of relations of type t. Moreover, the set of entity types involved in Rt is

defined as St, with the entity type of the jth component as Stj . Therefore, ∪t∈TRt = R and

∪t∈T St = O.

Definition 5.2 (Higher-order Relational Data) Higher-order relational data are

a collection of relations satisfying the condition that there exists t ∈ T for which |St| > 2.

A higher-order relational dataset can be naturally represented as a heterogeneous infor-

mation network, with its network schema defined as follows
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Figure 5.3: Network schema for business review data. Relation type I defines the review

relation type while relation type II is for the relation type of business profile.

Definition 5.3 (Network Schema) A network schema is a graph centered at rela-

tion identifiers, each of which defines a relation type. With O, T as defined beforehand,

for each relation type t ∈ T , its corresponding relation identifier is connected with each

of its involved entity types o ∈ St.

Example 5.1 [Bibliography] Regarding the bibliographical data, with its network schema

depicted on the left of Fig. 5.1, we only have one relation type with its identifier publi-

cation connected to three entity types including author, venue, and phrase.

Example 5.2 [Business Review] One network schema of business review is summarized

in Fig. 5.3 which has two relation types. For relation type I, we have review as relation

identifier while user, business, and phrase (in the review) are the entity types involved.

For relation type II which refers to business profile, business and word (in the business

name) serve as constituent entity types. We note that phrases are mined through latent

keyphrase inference.

A network schema describes the structure of relation types, and relation types further

have concrete relations as their instances. For a relation type t ∈ T , we denote a relation
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as Rt =
[
Ht

1, . . . ,Ht
|St|
]
, where Ht

i (for i = 1, . . . , |St|) is a list of entities involved in the

relation instance. The entities in Ht
i are of the same entity type as Sti . The collection of

relations of type t is Rt = {Rt}.

Based on the bibliographical network schema described in Example 5.1, one of the most

cited KDD papers can be used as an example of a publication relation as follows.

T. Joachims. “Optimizing search engines using clickthrough data.” In KDD.

This bibliographic record provides a relation R with its elements Hvenue = [KDD];

Hauthor = [T. Joachims]; Hphrase = [search engines, clickthrough data, user query, . . .]3.

Given higher-order relational data and its network schema, we want to learn entity em-

beddings which represent each entity in a low-dimension space such that the proximity

between entities in the higher-order relational data can be well preserved. In particular, we

consider two approaches of modeling entity proximity, which relies on similarity propagation

through entity and relation respectively.

Definition 5.4 (Entity-Driven Proximity) The entity-driven proximity between

a pair of entities is the similarity between the entities they co-occurring with in the

relations.

In other words, two entities are close if they co-occur with similar entities in the higher-

order relations. Another approach learns proximity through relations.

Definition 5.5 (Relation-Driven Proximity) The relation-driven proximity between

a pair of entities is the similarity between their involving relations and the similarity be-

tween relations is further determined by proximity between their constituent entities.

3Superscript t is omitted for simplicity.
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5.2 Tensor2vec: The Network Embedding Framework

In this section, we introduce the embedding framework, tensor2vec, for text-rich information

network.

For now, we assume that there is only one relation type in the network. The case

when there are multiple relation types will be discussed shortly. The relation Rt ∈ Rt can

be simplified as R with superscript t omitted. In addition, we define the concept of sub-

relation, which samples one entity from each entity list in R. For instance, given a relation

R =
[
H1, . . . ,H|S|

]
, a sub-relation is r =

[
h1, . . . , h|S|

]
, such that hi ∈ Hi for i = 1, . . . , |S|.

Moreover, B = H1 × . . .×H|S| is the set of R’s sub-relations. |B| =
∏|S|

i=1 |Hi| and r ∈ B.

Without loss of generality, we assume that each higher-order relation R has unit weight

in the network and each sub-relation r only appears once in B. When the number of entity

types |S| > 2, the higher-order relations D can be modeled in a tensor D. The index of each

element in the tensor is specified by the sub-relation r, with element value being the weight

of the sub-relation. Because each sub-relation may appear in multiple relations, the weight

of the sub-relation r is Dr =
∑

R′∈R δ(r ∈ B′)/|B′|, where δ(·) is the indicator function, and

B′ is the set of sub-relations of R′.

Hence, the proposed framework on learning entity embeddings in higher-order relational

data is called tensor2vec.

Specifically, we propose two methods to model the higher-order relations in the network,

entity2vec and relation2vec, to model the entity-driven and relation-driven proximity, as

defined in Definition 5.4 and 5.5 respectively.

5.2.1 Entity2vec

For an observed relation, we first define the conditional probability of an entity co-occurring

with other constituent entities. More formally, given a relation R, we sample a sub-relation
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r ∈ B. The probability of hj (target entity) co-occurring with r−j = [. . . , hj−1, hj+1, . . .]

(context entities) is defined as

P1(hj|r−j) =
exp

(
S(wj,W−j)

)∑
e∈ESj exp

(
S(we,W−j)

) , (5.1)

where ESj is the set of entities with the same entity type Sj, we is the embedding for

e ∈ ESj , W =
[
w1, . . . ,w|S|

]
with wj ∈ Rd being the embedding vector for hj, and W−j

corresponds the list of embeddings for r−j. Moreover, S(·, ·) is a scoring function to measure

the proximity between target entity and context entities.

Particularly, we define the scoring function as follows:

S(x,Y) =
∑n

i=1
x>yi, (5.2)

where x,yi ∈ Rd for i = 1, . . . , n and Y = [y1, . . . ,yn].

Remark 5.1 It is worth noting the scoring function is a free parameter and orthogonal

to the proposed embedding framework. Other scoring functions can be adopted. For more

scoring functions, please refer to [50, 51, 86, 95].

As mentioned about, the entity2vec method is to model the entity-driven proximity.

Entities that co-occur with similar entities are similar. To preserve the entity-driven prox-

imity, we want to make the conditional probability be close to the empirical distribution of

P̂1(e|r−j) = D[r−j ,e]/Dr−j
(∀e ∈ ESj), where Dr−j

=
∑

e′∈ESj D[r−j ,e′] and [r−j, e
′] = [. . . , hj−1,

e′, hj+1, . . .]. Therefore, with λr−j
= Dr−j

being the importance of the context entities r−j,

we maximize the following objective function,

L1 = −
∑|S|

j=1

∑
r−j∈Aj

λr−j
·KL

(
P̂1(·|r−j),P1(·|r−j)

)
=
∑|S|

j=1

∑
r−j∈Aj

∑
e∈OSj D[r−j ,e] logP1(e|r−j),

89



where KL(·, ·) is the KL divergence, Aj = ∪R′∈RB′−j with B′−j = [r−j]r∈B′ , and the second

equality holds with constant terms omitted.

In addition, based on the definition of D, we obtain

∑
r−j∈Aj

∑
e∈OSj

D[r−j ,e] logP1(e|r−j)

=
∑
R∈R

1

|B|
∑
r∈B

logP1(hj|r−j).
(5.3)

Substituting Eq. (5.3) into L1, it follows that

L1 =
∑
R∈R

1

|B|
∑
r∈B

|S|∑
j=1

logP1(hj|r−j). (5.4)

5.2.2 Relation2vec

Since relation2vec method is to capture the relation-driven proximity, we first define the

conditional probability of a relation co-occurring with its constituent entities. We also inter-

pret it as given the list of constituent entities, how likely we can observe the corresponding

relation.

For a relation R, we sample a sub-relation r. We first extend the tensor D into |S| + 1

dimension and denote it as D̃, such that for an arbitrary relation R′, D̃[r,R′] = 1/|B′| if r ∈ B′

and 0 otherwise, where B′ is the set of sub-relations of R′. The conditional probability for

observing the relation R given r is

P2(R|r) =
exp

(
S(w̃,W)

)∑
R′∈R exp

(
S(w̃′,W)

) ,
where w̃ and w̃′ are the embeddings for the relations R and R′, and W is the list of

embeddings for all entities in r. S(·, ·) is the scoring function, as defined in Eq. (5.2).

As discussed above, the relation2vec model is to model the relation-driven proximity.
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Entities are similar if they involve in similar relations. The similarity between relations is

determined by proximity between their constituent entities. To preserve the relation-driven

proximity, we optimize to minimize the KL-divergence of P2 and the empirical distribution

of P̂2(R′|r) = D̃[r,R′]/Dr. By defining λ′r as the importance of the sub-relation r, we have

that the objective function to be maximized is

L2 = −
∑

r∈Ã λ
′
rKL

(
P̂2(·|r),P2(·|r)

)
,

where Ã = ∪R∈RB. Therefore, Ã defines the set of sub-relations in the higher-order relational

data D.

Moreover, based on the definition of D̃, it holds that

∑
r∈Ã

∑
R′∈R

D̃[r,R′] logP2(R′|r)

=
∑
R∈R

1

|B|
∑
r∈B

logP2(R|r),
(5.5)

Substituting Eq. (5.5) into L2 with λ′r = Dr and removing constant terms yields that

L2 =
∑

R∈R

1

|B|
∑

r∈B
logP2(R|r). (5.6)

5.2.3 Multiple Relation Types

Recall Example 5.2 that there could be multiple relation types associated with text-rich

information networks. In order to extend both methods to this case, we use L as a unified

notation for L1 and L2. Suppose there are |T | relation types, for t ∈ T , we denote the

objective as Lt. Thus, Lt = Lt1 for entity2vec, and Lt = Lt2 for relation2vec.

Therefore, considering all the relation types, we have the objective function as L∗ =∑
t∈T Lt.
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Remark 5.2 The number of entity types for the tth relation type is |St|. If |St| = 2 for

all t ∈ T , i.e., the higher-order relations reduce to bipartite, then the method of entity2vec

for the case with multiple relation types reduces to the prevailing pairwise method. In

other words, the existing models [19, 100] are special cases of our model.

5.3 Noise Pairwise Ranking

In this section, we propose a novel optimization framework from a pairwise ranking per-

spective, named as noise pairwise ranking. We first show its optimization procedures for

entity2vec and relation2vec given one relation type, i.e., |T | = 1, followed by the extension

to the case when there are multiple relation types.

5.3.1 Objective Derivation

Considering the objective function of entity2vec in Eq. (5.4), direct optimization of L1 is

intractable since the conditional probability Eq. (5.1) requires the summation over the entire

set of entities with certain type Sj. The same challenge exists for optimizing the objective

function of relation2vec in Eq. (5.6), which requires the summation over the entire set of

relations.

To address this challenge, noise contrastive estimation (NCE) [74] and negative sampling

(NEG) [73] are proposed. NCE reduces the problem of estimating the conditional proba-

bility into a probabilistic classification problem to distinguish samples from the empirical

distribution and a noise distribution. While negative sampling also learns the parameters as

a binary classification problem, it particularly formulates the objective as logistic regression,

which is shown to be effective in embedding learning [73, 80, 100].

As [38] shows, the hyperparameter of negative sampling value k [73] plays an important
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role in obtaining the optimal embeddings. To get rid of the hyperparameter, we develop

a new optimization framework from a pairwise ranking perspective, noise pairwise ranking

(NPR). In comparison, NCE and NEG are discriminative models, while our model is a

generative model in optimizing the conditional probability. The developed NPR framework

is applicable to both entity2vec and relation2vec. To illustrate the underlying idea, the

conditional probability to be maximized can be abstracted as follows:

P(v|u) =
exp

(
S(wv,wu)

)∑
v′∈V exp

(
S(wv′ ,wu)

) , (5.7)

where V is the set of objects (which can be instantiated to entities or relations), with wv,wu

as the embeddings of the object v, u accordingly. Therefore, we have

P(v|u) =
(

1 +
∑
v′ 6=v

exp
(
S(wv′ ,wu)− S(wv,wu)

))−1

, (5.8)

which follows from Eq. (5.7) via dividing the denominator and numerator by exp
(
S(wv,wu)

)
.

Instead of directly optimizing Eq. (5.8) over all v′ ∈ V \ v, we update Eq. (5.8) with respect

to a small set of noise samples in V \ v, where an individual sample is denoted as vn. With

σ(·) representing the sigmoid function that σ(x) = 1/(1+exp(−x)), we update the following

probability instead,

P(v > vn|u) = σ
(
− S(wvn ,wu) + S(wv,wu)

)
, (5.9)

which can be interpreted as maximizing the probability of observing the target v over the

noise vn, given the context u. Particularly, it can be easily verified that

P(v|u) >
∏

vn 6=v P(v > vn|u),

which implies that optimizing P(v > vn|u) can be explained as optimizing the lower bound
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Algorithm 5: Entity2vec( O, r ,β, Θ)

1 Sample an entity type o ∈ O
2 Draw hn ∼ Pn(Eo) as negative
3 for o′ ∈ O do

4 ΘEo′ ← ΘEo′ + βo
′ · ∂P1(hj > hn|r−j)/∂ΘEo′

5 return Θ

of P(v|u).

Remark 5.3 The derived pairwise ranking results in Eq. (5.9) is similar to the Bayesian

Pairwise Ranking (BPR) proposed in [86]. However, BPR is designed for the person-

alized ranking in a specific recommender system with the negative samples coming from

missing implicit feedback; while our NPR is derived based on approximation from the

softmax definition of the conditional probability, besides the negative samples are sam-

pled from noise distribution.

Thus, for all vn ∈ V \ v, (5.7) can be approximated by

P(v|u) ∝ Evn∼Pn logP(v > vn|u),

where Pn is the noise distribution. Similar to NCE and NEG, NPR also has the noise

distribution Pn as a free parameter. We set Pn ∝ d
3/4
u as proposed in [73], where du is the

degree of u. For entity2vec, the degree du of each entity is the number of high-order relation

involving the entity; for relation2vec, the degree du is set to be 1 since each higher-order

relation has unit weight.

5.3.2 Optimization for Entity2vec

In this section, we directly apply the NPR optimization framework proposed in Section 5.3.1

to the entity2vec model.
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Based on the NPR optimization framework proposed in Section 5.3.1, we apply it to the

method of entity2vec. Recall that the objective of entity2vec is defined in Eq. (5.4) with the

conditional probability defined in Eq. (5.1). By applying the NPR optimization framework

to the conditional probability in Eq. (5.1), we have the new objective function as

L̃1 =
∑

R∈R

1
|B|
∑
r∈B

|S|∑
j=1

Ehn∼Pn(Sj) logP1(hj > hn|r−j),

where hn is the sampled noise from Pn(Sj) and the latter is the noise distribution of entities

of type Sj. In addition

P1(hj > hn|r−j) = σ
(
− S(wn,W−j) + S(wj,W−j)

)
,

where wn is the embedding of hn.

To optimize L̃1, we use the asynchronous stochastic gradient algorithm (ASGD) [83] due

to the sparsity of the optimization problem, which means that most gradient updates only

modify a small portion of the variables. Define Θ = {we}e∈E as the parameters, we have

the gradient

∂L̃1
∂Θ

=
∑

R∈R
1
|B|
∑

r∈B
∑|S|

j=1 Ehn∼Pn(ESj )

∂ log P1(hj>hn|r−j)

∂Θ
.

In specific,

∂ logP1(hj > hn|r−j)
∂wj

= σ(S∆)
∑
l 6=j

wl;

∂ logP1(hj > hn|r−j)
∂wn

= −σ(S∆)
∑
l 6=j

wl;

∂ logP1(hj > hn|r−j)
∂wl

= σ(S∆)(wj −wn), ∀ l 6= j,

where S∆ = S(wn,W−j)− S(wj,W−j).

Note that entities with types of smaller size are updated more often due to the strategy of

sampling sub-relations. This inevitably makes some entity types better trained than others
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Algorithm 6: Relation2vec(O, R, r, β, η, Θ, Γ).

1 Draw Rn ∼ Pn(R) as negative
2 for o′ ∈ O do
3 ΘEo′ ← ΘEo′ + βo

′ · ∂P2(R > Rn|r)/∂ΘEo′

4 Γ← Γ + η · ∂P2(R > Rn|r)/∂Γ
5 return Θ, Γ

as optimization proceeds, resulting in the learned Θ being trapped at poor local optima. In

order to balance the average step size among different entity types, when applying ASGD to

learn the embedding, we propose to adjust the global step size using a type-wise gradient

coefficient. Suppose the global step size is η, given an entity type o ∈ O, the step size for

each entity in Eo is defined as βo = αoη, where αo is the gradient coefficient,

αo = |Eo| /max
o′∈O

{
|Eo′|

}
. (5.10)

We define β = [βo]o∈O as the vector of step size for each entity type. The updating process

for a single iteration of entity2vec is summarized in Alg. 5, where ΘEo′ is the embeddings

for entities of type Eo′ , for o′ ∈ O.

5.3.3 Optimization for Relation2vec

Similarly, we apply the NPR optimization framework to relation2vec, which yields the new

optimization objective of

L̃2 =
∑

R∈R
1
|B|
∑

r∈B ERn∼Pn(R) logP2(R > Rn|r),

where Rn is the sampled noise relation from Pn(R), which is uniform due to the unit weights

of all relations. In addition, we have

P2(R > Rn|r) = σ
(
− S(w̃n,W) + S(w̃,W)

)
,
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where w̃n is the embedding for Rn. It is worth noting that in relation2vec, we have re-

lation embedding Γ as parameters, in addition to entity embeddings Θ. The gradient

∂P2/∂Θ, ∂P2/∂Γ can be obtained similarly as entity2vec. The corresponding updating pro-

cess for a single iteration of relation2vec is presented in Alg. 6.

5.3.4 Unified Algorithm

The optimization procedures for entity2vec and relation2vec introduced in the previous sec-

tions are applicable when there is only one relation type, i.e., |T | = 1. Here, we consider

the scenario when |T | > 1. The unified algorithm is shown in Alg. 7, with η0 and IN as

the initial step size and the iteration number. When learning embeddings for the entities

(and the relations), we opt to use a similar procedure to that used in [99], which is to use

all relation types jointly. Accordingly, we adopt the strategy that for each relation type, a

relation instance of that type is randomly sampled, as shown in for loop starting at Line 9.

Moreover, due to the facts of Eq. (5.3) and Eq. (5.5), we do not need to materialize the

tensor. The sub-relation can be efficiently sampled via first sampling a higher-order relation

Rt (Line 10) and then sampling a sub-relation (Line 11) from Rt.

5.4 Experimental Study

In this section, we report experimental results of the proposed tensor2vec methods, including

entity2vec and relation2vec, corresponding to entity-driven and relation-driven proximity

respectively. To evaluate whether the learned embeddings preserve the proximity between

entities in higher-order relational data, we apply the embeddings to two tasks, classification

and ranking. Particularly, via a series of quantitative studies, we aim at answering the

following questions:
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Algorithm 7: Tensor2vec.

1 Input: O, T , E ,R, S, η0, IN , method
2 Initialize: randomly initialize Θ, Γ
3 for o ∈ O do
4 αo is obtained via Eq. (5.10)

5 for i = 0 to IN − 1 do
6 η ← η0 · (IN − i)/IN
7 β ← η · [αo]o∈O
8 for t ∈ T do
9 Sample a relation Rt ∈ Rt

10 Sample a sub-relation rt ∈ Bt
11 if method is entity2vec then
12 Θ← Entity2vec(St, rt, β, Θ)
13 else
14 Θ,Γ← Relation2vec(St, Rt, rt, β, η, Θ, Γ)

15 return Θ

Q1: Do tensor2vec methods, including both entity2vec and relation2vec, learn better entity

embeddings compared with existing methods?

Q2: Are tensor2vec methods robust when noisy entities are involved and data become

sparse?

Q3: Under what scenarios, does entity2vec learn better embeddings than relation2vec, and

vice versa?

We reuse the two datasets mentioned in previous chapters: Academia and Yelp. The basic

statistics regarding the entities in the datasets are summarized in Table 5.1.

Academia is a collection of bibliographic information on major computer science jour-

nals and proceedings, from which we extracted three types of entities and one relation

identifier, with the network schema presented in Fig. 5.1. Each relation corresponds to a

publication, and each publication involves authors, venue, and keyphrases identified in the

paper using LAKI.
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Table 5.1: Number of entities for Academia and Yelp.

Academia
Author Phrase Venue Paper
209,679 165,657 7953 1,938,912

Yelp
Business Phrase Word Review
12,241 130,259 6,709 905,658

The Yelp provides business reviews and we extracted two relation types as presented in

Fig. 5.3 with review and business profile as their relation identifiers. In relation type I, there

are three entity types including user, business and phrase; while for relation type II, we have

two entity types, business and word appeared in its name. User is removed from the review

relation type due to its sparsity that the number of reviews written by each user is typically

small.

In order to demonstrate the efficacy of the two proposed methods, we use an extensive set

of existing methods as baselines. For the sake of convenience, we define some notations before

detailing the baselines. Recall that E is the set of entities and R is the set of relations in the

network. We define the coocurrence matrix M ∈ R|E|×|E| such that Mi,j denotes the number

of higher-order relations that ei and ej are both involved in. Due to the fact that some

methods decompose the data into bipartite relations, their degrees may vary significantly

and compromise the embeddings. Thus we can first apply normalizions to these bipartite

relations to make their total degree equivalent and then merge them to get normalized M̃

as described in [45]. The dimensionality is set to be 300 for all methods. In particular, the

following methods are considered:

1. Singular Value Decomposition (SVD) on M, and singular vectors are used as entity

representation.

2. Normalized SVD (NSVD) on M̃.

3. Positive shifted PMI (PPMI). As shown in [56], the word embedding with negative
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sampling is equivalent to approximate the PPMI. Hence, we perform SVD on the

PPMI matrix of M .

4. Non-negative Matrix Factorization (NMF) on M, and matrix factor is used as entity

representation.

5. Normalized NMF (NNMF) on M̃.

6. LINE [100]: a second-order entity embedding approach. We ignore the higher-order

relations and apply LINE to the decomposed bipartite relations directly.

7. PTE [99]: an entity embedding approach that models each bipartite relation in a

round-robin fashion within every higher-order relation.4

The goal of our experiments is to quantitatively evaluate how well our methods perform

in generating proximity-preserved embeddings.

One way to evaluate the quality of the embeddings is through the proximity-related entity

classification task. After obtaining the embeddings of the entities, we feed these embeddings

into classifiers including linear SVM and logistic regression to perform classification with

five-fold cross validation. Supposing v ∈ E , we define l∗v as the true label of v while l̂v as the

predicted label of v. We report the classification metric accuracy (Acc.) which is defined as

Acc. =
∑

v∈El
δ
(
l̂v = l∗v

)
/|El|,

where El is the set of entities that have labels and δ(·) is the indicator function. Due to the

space limit, the higher accuracy between linear svm and logistic regression gets reported.

Classification relies on ground truth labels to learn mapping function between embeddings

and classes. It may not be able to exploit information underlying all dimensions. Therefore

4The labels are not provided during the training.
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Table 5.2: Classification accuracy (%) and AUC on two datasets, respecting tasks of research

group (Academia), research area (Academia) and restaurant categories (Yelp).

Research Group Research Area Restaurant Type
Method Acc. AUC Acc. AUC Acc. AUC

SVD 81.03 0.7137 83.27 0.5720 74.09 0.7147
NSVD 72.41 0.6958 89.75 0.6271 66.45 0.6244
PPMI 70.69 0.7513 90.22 0.7450 82.82 0.6504
NMF 73.28 0.6210 75.69 0.5798 79.64 0.7955

NNMF 72.41 0.7223 88.31 0.7665 72.00 0.7328
LINE 78.45 0.5607 79.48 0.5565 79.82 0.6378
PTE 87.93 0.7235 90.27 0.6646 81.91 0.7195

entity2vec 84.48 0.7957 92.18 0.7905 88.00 0.8961
relation2vec 87.07 0.8207 91.66 0.8417 87.27 0.8826

we further use a ranking metric called area under the curve (AUC) [27] to evaluate the

quality of embeddings over all dimensions.

AUC = |El|−1P
(
sim(u, v) > sim(u′, v)|l∗v = l∗u, l

∗
v 6= l∗u′

)
,

where v, u, u′ ∈ El and sim(u, v) is the similarity measure between the embeddings of u, v.

Specifically, we use cosine similarity as the similarity measure. The AUC measure becomes

high if embeddings are close for nodes sharing the same label, while distant for nodes having

different labels.

Regarding the Academia dataset, we have two types of labels over authors. The first is

on the research groups, with 116 members from four research group manually labelled.

These groups are lead by Christos Faloutsos, Dan Roth, Jiawei Han, and Michael I. Jordan,

respectively. The other type of labels is on the research area, including 4,040 researchers

from four research areas including data mining, database, machine learning, and artificial

intelligence.
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As for the Yelp dataset, we select eleven restaurant categories including Mexican,

Chinese, Italian, American (traditional), American (new), Mediterranean, Thai, French,

Japanese, Vietnamese and Indian as labels. For each category, we randomly select 100

restaurants that have at least 50 reviews. Restaurants with multiple labels are excluded.

5.4.1 Quantitative Evaluation and Results

Now we are ready to present the experimental results for the aforementioned tasks and try

to answer the three questions raised at the beginning of this section.

Table 5.2 summarizes the experimental results on classification (Acc.) and ranking (AUC)

in Academia and Yelp.

Considering the results for research group in Academia, we note that PTE and rela-

tion2vec achieve the best performance. PTE is slightly better than relation2vec on accuracy

but the latter outperforms the former on AUC by a large margin. Entity2vec narrowly loses

to relation2vec on both measures. It is interesting to see that the normalization strategy on

M has a big effect on the performance, but the trend is opposite between SVD and NMF.

For the task of research area in Academia, entity2vec attains the best performance on

classification accuracy and relation2vec has the highest AUC score. The results on research

area are better than the ones on research group for all methods, which means that the

research area task is easier than the former task. It’s worth noting that two tensor2vec

methods are better than baselines on both measures, confirming the their effectiveness of

capturing the proximity. We also observe that both NSVD and NNMF beat their unnor-

malized versions, implying that the normalization trick works at least for some tasks.

With respect to the Yelp dataset, on classifying the restaurant type, we observe that

both tensor2vec methods are significantly better than the baselines, for both measures. A

tentative explanation is that tensor2vec framework models both relation types explicitly, the
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Table 5.3: Classification accuracy (%) and AUC on two datasets with extra noisy entity

types (“year” for Academia and “zipcode” for Yelp).

Research Group Research Area Restaurant Type
Method Acc. AUC Acc. AUC Acc. AUC

SVD 78.03 0.6846 80.10 0.5374 67.73 0.6902
NSVD 70.69 0.6668 87.48 0.6112 48.81 0.6138
PPMI 68.09 0.7175 88.99 0.7162 81.09 0.6892
NMF 72.73 0.6121 71.96 0.5635 67.00 0.7469

NNMF 71.38 0.6823 86.12 0.7411 43.45 0.6142
LINE 80.17 0.5465 78.94 0.5425 76.09 0.6035
PTE 85.34 0.6297 89.83 0.5873 75.18 0.6702

entity2vec 76.72 0.7582 89.11 0.7614 85.91 0.8296
relation2vec 85.34 0.8214 91.26 0.8425 86.73 0.8834

review relation and the business profile relation, which better captures the proximity among

entities. For PTE and the rest methods, this intricate structure will be dropped due to the

representation limits of the models.

To summarize, we positively answer Q1 on the effectiveness of tensor2vec methods in

learning the entity embeddings. Among all the competitors, PTE works relatively well for

all three tasks, showing its idea of modeling bipartite relations better than the rest. But

compared to our framework, by modeling the higher-order relation as a whole, one can

achieve even better performance.

5.4.2 Robustness Study

Robustness to Noisy Entities

One challenge of modelling higher-order relations in the text-rich information network is

to develop a method with anti-interference ability. Hence, we test the robustness of the

tensor2vec framework against artificially inserted entity noises. The added noisy entities are

designed to convey little knowledge regarding the tasks on both datasets. Consequently, for
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Academia data, we include the year of the publication as an additional entity type. For Yelp

data, the zip code of the restaurant is considered. The results are summarized in Table 5.3.

For all three tasks, relation2vec achieves the best performance and is better than the

baselines by a large margin. In addition, entity2vec is bested by relation2vec for all three

tasks, but attain results better than PTE and the rest methods in most cases. These

observations verify our expectation that relation2vec is more robust to noise than all the

rest methods including entity2vec. A possible explanation is that entity2vec explicitly models

the proximity between the noisy entity and the context entities, leading to deviation of the

entity embeddings from the optimal ones. In contrast, relation2vec forces a noisy entity

to interact with the relation identifier together with other context entities, which helps to

reduce its influence. But we still recognize that entity2vec is the second best method in

terms of absolute performance.

Robustness to Sparsity

In general, the sparsity of relational data is defined as the average number of relations each

entity is involved in. Thus, if we assume the set of entities to be relatively stable, the

sparsity of the relational data can be altered by sampling a subset of all the relations. In

this section, we randomly sample different percentages (1%, 5%, 10%, 20%, 30%, 50%) of

the two datasets and repeat the three tasks mentioned aforehand. Experimental results are

reported in Table 5.4 for the Academia dataset and Table 5.5 for the Yelp dataset. The

density measures are reported in the first two rows. For Academia, since the classification

is performed on authors, we define density measure as the number of publications each

author is associated with. For Yelp, because the businesses are of interest, we define density

measure as the number of reviews each restaurant receives. The density measure increases

as the sampling percentage increases, and its incremental rate is slower than the latter due

to the long-tail behavior in the relational data. In other words, when more relations are
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sampled, the size of the entity set will also increase, leading to a slower rate of increment.

Across the three tasks in the two datasets, vertically we observe the two tensor2vec

methods achieve the best performance in general among all cases. In Academia dataset, for

both tasks, relation2vec is better than entity2vec for both measures in most cases. In Yelp

dataset, when less than 20% of relations are sampled, relation2vec attains better results than

entity2vec; when more than 20% of relations are sampled, entity2vec outperforms similar

to relation2vec; across the different sampling percentages the margin between entity2vec

and relation2vec is relatively small. For different percentages, we observe that PTE is still

the most stable method among all baselines while the performances of the rest fluctuate

wildly for different tasks. When the density measure is close to 1 such as 1% of relations

being sampled in the Academia dataset, the AUC scores are close to random (0.5). This is

because with a density measure of 1.29, the average number of relation instances an entity is

involved in is only slightly higher than 1 and the co-occurrence observations are not sufficient

to capture proximity among entities.

Based on the vertical comparison and vertical comparison from Table 5.3, with regard

to Q2, the tensor2vec framework is relatively robust to noise and data sparsity.

Horizontally, we observe that when more relations are observed, the accuracies of the

classification tasks increases as well.The increment rate is the largest when sampling per-

centage changes from 1% to 5%. Similarly, the performance improvements from 10% to 20%

are more significant than from 20% to 30%. Particularly, we are interested in the case, when

the sampled percentage of relations exceeds 20%, the performance of entity2vec becomes

comparable with relation2vec, and is even slightly better. When the density measure in-

creases, entity2vec becomes more effective in modeling the semantic relatedness. In other

words, entity2vec is more effective when there are enough observations. It is worth noting

that even though entity2vec better performs than relation2vec when the sampling percentage

is larger than 20%, relation2vec is only surpassed by a small margin.

105



T
ab

le
5.

4:
T

h
e

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

an
d

A
U

C
re

su
lt

s
on

sa
m

p
le

d
A

ca
d
em

ia
d
at

a
co

n
si

d
er

in
g

b
ot

h
re

se
ar

ch
gr

ou
p

an
d

re
se

ar
ch

ar
ea

cl
as

si
fi
ca

ti
on

.
T

h
e

sp
ar

si
ty

is
m

ea
su

re
d

b
y

th
e

av
er

ag
e

n
u
m

b
er

of
p
u
b
li
ca

ti
on

ea
ch

au
th

or
is

in
vo

lv
ed

in
(s

im
il
ar

b
el

ow
). S
am

p
li
n
g

%
.

1%
5%

10
%

20
%

30
%

50
%

D
en

si
ty

M
ea

su
re

1.
26

4
2.

02
8

2.
88

2
4.

59
5

6.
40

0
10

.3
15

M
et

h
o
d

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

R
es

ea
rc

h
G

ro
u
p

S
V

D
38

.4
6

0.
56

02
66

.6
7

0.
61

69
65

.5
9

0.
64

81
72

.5
5

0.
64

94
72

.8
6

0.
67

20
77

.2
8

0.
69

24
N

S
V

D
43

.5
9

0.
55

04
58

.7
3

0.
59

19
68

.8
2

0.
63

30
70

.5
9

0.
63

45
72

.6
4

0.
65

17
74

.5
5

0.
67

90
P

P
M

I
46

.1
5

0.
55

02
60

.3
2

0.
59

93
76

.3
4

0.
65

57
71

.5
7

0.
67

03
72

.9
7

0.
67

92
74

.5
5

0.
71

92
N

M
F

41
.0

3
0.

55
83

57
.1

4
0.

59
89

56
.9

9
0.

58
74

54
.9

0
0.

60
09

66
.9

6
0.

59
50

70
.9

1
0.

61
20

N
N

M
F

46
.1

5
0.

54
62

55
.5

6
0.

66
01

60
.2

2
0.

68
06

75
.4

9
0.

71
67

70
.5

5
0.

71
97

71
.8

2
0.

72
94

L
IN

E
5
6
.4

1
0.

60
04

66
.6

7
0.

62
54

72
.0

4
0.

58
77

77
.4

5
0.

56
19

77
.8

6
0.

56
69

85
.4

5
0.

58
71

P
T

E
5
6
.4

1
0.

61
90

69
.8

4
0.

67
27

76
.3

4
0.

64
34

84
.3

1
0.

67
78

8
5
.9

4
0.

70
34

8
8
.1

8
0.

67
83

en
ti

ty
2v

ec
53

.8
5

0.
60

34
66

.6
7

0.
70

82
72

.0
4

0.
71

51
74

.5
1

0.
75

15
75

.5
5

0.
76

40
82

.7
3

0.
78

41
re

la
ti

on
2v

ec
5
6
.4

1
0
.6

5
4
7

7
3
.0

2
0
.7

4
3
4

8
3
.8

7
0
.7

7
4
9

8
5
.2

9
0
.8

2
2
1

84
.1

3
0
.8

2
2
0

8
8
.1

8
0
.8

3
1
6

R
es

ea
rc

h
A

re
a

S
V

D
47

.8
8

0.
51

62
62

.4
7

0.
53

37
66

.2
7

0.
54

11
71

.6
6

0.
55

16
75

.4
7

0.
55

51
79

.1
5

0.
56

44
N

S
V

D
52

.3
9

0.
50

76
66

.2
1

0.
50

04
72

.1
5

0.
50

21
77

.9
1

0.
51

57
80

.1
3

0.
52

99
85

.2
3

0.
56

00
P

P
M

I
51

.6
7

0.
50

63
68

.0
0

0.
50

92
72

.6
6

0.
51

80
78

.1
5

0.
53

95
80

.5
9

0.
56

69
85

.9
1

0.
62

03
N

M
F

43
.3

7
0.

51
43

53
.5

4
0.

53
29

59
.3

0
0.

53
91

63
.6

3
0.

54
93

68
.0

1
0.

55
60

70
.7

2
0.

56
37

N
N

M
F

50
.5

0
0.

53
03

62
.5

0
0.

57
73

67
.7

3
0.

62
06

72
.3

7
0.

64
86

76
.5

1
0.

68
07

82
.9

1
0.

75
94

L
IN

E
57

.1
7

0.
55

52
69

.8
3

0.
57

64
72

.1
5

0.
57

16
74

.8
9

0.
55

01
74

.5
3

0.
53

39
80

.8
2

0.
58

22
P

T
E

53
.2

9
0.

52
91

7
1
.5

4
0.

58
58

73
.9

5
0.

57
82

79
.0

3
0.

60
15

82
.6

8
0.

63
56

86
.8

0
0.

63
40

en
ti

ty
2v

ec
5
7
.5

3
0
.5

6
3
5

69
.7

1
0.

61
08

74
.9

1
0.

67
98

80
.2

6
0.

71
99

81
.6

6
0.

72
93

86
.1

7
0.

78
17

re
la

ti
on

2v
ec

54
.6

4
0.

55
00

71
.0

9
0
.6

2
8
2

7
5
.9

0
0
.6

8
3
4

8
1
.6

4
0
.7

4
0
5

8
3
.9

4
0
.7

6
4
5

8
7
.8

4
0
.8

0
7
5

T
ab

le
5.

5:
T

h
e

cl
as

si
fi
ca

ti
on

ac
cu

ra
cy

an
d

A
U

C
re

su
lt

s
on

sa
m

p
le

d
Y

el
p

d
at

a.

S
am

p
li
n
g

%
.

1%
5%

10
%

20
%

30
%

50
%

D
en

si
ty

M
ea

su
re

1.
96

3
4.

79
1

8.
15

5
15

.0
9

22
.3

2
37

.0
1

M
et

h
o
d

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

A
cc

.
A

U
C

S
V

D
64

.1
2

0.
61

33
70

.8
5

0.
67

86
73

.4
4

0.
70

01
73

.9
8

0.
71

00
73

.8
2

0.
71

21
74

.8
2

0.
71

34
N

S
V

D
62

.0
7

0.
60

81
63

.3
6

0.
62

36
65

.1
7

0.
63

08
66

.9
7

0.
62

75
67

.0
0

0.
62

80
67

.3
6

0.
62

59
P

P
M

I
59

.3
5

0.
55

61
65

.0
1

0.
54

84
69

.9
4

0.
56

26
75

.4
3

0.
58

24
78

.5
5

0.
60

89
80

.5
5

0.
62

53
N

M
F

63
.6

1
0.

67
90

71
.2

3
0.

73
81

75
.0

9
0.

75
94

76
.3

4
0.

78
77

78
.0

9
0.

79
07

78
.1

8
0.

79
91

N
N

M
F

60
.7

1
0.

67
10

66
.7

6
0.

70
22

68
.4

7
0.

70
82

70
.7

9
0.

72
13

70
.7

3
0.

72
97

70
.7

3
0.

73
12

L
IN

E
60

.8
8

0.
53

37
71

.7
2

0.
53

67
77

.3
2

0.
56

89
80

.7
1

0.
66

65
80

.9
1

0.
67

89
81

.2
7

0.
68

33
P

T
E

64
.2

9
0.

63
15

72
.8

9
0.

67
58

76
.2

8
0.

69
93

79
.2

5
0.

71
63

81
.0

0
0.

70
43

80
.9

1
0.

72
66

en
ti

ty
2v

ec
71

.0
9

0.
75

76
79

.0
1

0.
83

16
82

.6
3

0.
86

21
85

.0
8

0
.8

8
2
5

8
6
.3

6
0
.8

8
4
5

8
6
.8

2
0
.8

9
3
8

re
la

ti
on

2v
ec

7
3
.3

0
0
.7

7
4
7

7
9
.6

9
0
.8

4
3
4

8
3
.0

6
0
.8

7
4
6

8
5
.4

4
0.

87
79

85
.8

2
0.

87
65

86
.3

6
0.

88
62

106



#Dimension
100 200 300 400 500

A
U
C

0.78

0.79

0.8

0.81

0.82

0.83

Research Group

#Dimension
100 200 300 400 500

0.76

0.78

0.8

0.82

0.84

0.86

Research Area

#Dimension
100 200 300 400 500

0.87

0.88

0.89

0.9
Restaurant Category

Entity2vec
Relation2vec

Figure 5.4: Performance variations in terms of AUC verse the dimension of the embeddings.
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Figure 5.5: Performance variations in terms of AUC verse the choice of the gradient for

updates.

Hence, we answer Q3 based under two scenarios. If the data is noisy, relation2vec is more

robust than entity2vec. If the network is relatively sparse, relation2vec is more effective than

entity2vec; otherwise, if the data is relatively dense, both methods are robust in preserving

the proximity among entities and entity2vec is slightly better than relation2vec.

5.4.3 Model Study

In this section, we study the effect of the hyperparameters. Particularly we study four

aspects: the dimensionality of the embedding, the type-wise gradient coefficient, the number

of iterations, and the number of threads. Based on studies in Section 5.4.1, we observe
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Figure 5.6: Performance variations in terms of AUC verse the number of updating iterations.

that AUC results are more stable than classification accuracy. Our explanation is that

classification needs to learn the mapping function between embeddings and classes based on

some certain assumptions, which may not agree with the embedding data. Therefore, we

opt to report AUC results for the model study.

We plot the AUC results against dimensionality of the learned embeddings in Fig. 5.4.

An increasing and converging performance pattern is observed for both methods, which is a

common pattern that has been observed in previous work [100, 99].

In Section 5.3, we proposed a type-wise gradient coefficient for ASGD. We verify the

effectiveness of the proposed gradient coefficient, compared with a global gradient for all

types, the results are reported in Fig. 5.5, which clearly shows the superiority of the proposed

gradient coefficient for step size adjustment, especially on the Yelp dataset.

In addition, we study how the number of iterations affects the results, as reported in

Fig. 5.6. The pattern of first increasing and then converging is observed. When the iteration

number is sufficiently large, the embeddings are stable.
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Figure 5.7: Number of relations processed per second verse the number of threads.

5.4.4 Efficiency Study

Regarding the efficiency, we have tested the number of relations processed per second against

the number of threads, which is shown in Fig. 5.7. The experiments were conducted on a

machine with 20 cores of Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz. The code is

implemented in C++5. One can observe that the more threads we have, the larger the

number of relations processed per second. Therefore, our method can be easily scaled to

extremely large networks. However, it is worth mentioning that the incremental speed-up

of relation2vec is smaller than entity2vec. Our explanation is that relation2vec has many

more parameters than entity2vec due to the embeddings of relations, resulting in slower

performance due to the caching mechanism among different threads when they are accessing

random entities and relations.

5The code is available at https://bitbucket.org/hgui/tensor2vec/.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we have taken several steps towards constructing and modeling text-rich

information networks, which follows the data-to-network-to-knowledge paradigm.

For phrase mining, we introduced a novel framework for extracting quality phrases from

text corpora focused on certain genres of content. The framework is data-driven and requires

only limited training to achieve outstanding performance. The key idea is to rectify the

raw frequency of phrases which misleads quality estimation. We develop a segmentation-

integrated approach for this purpose, which significantly boosts the final quality of extracted

phrases. It is the first work to explore the mutual benefit of phrase extraction and phrasal

segmentation. By intergrating them, this work addresses a fundamental limitation of phrase

mining and empowers widespread applications. Meanwhile, the method is scalable: both

computation time and required space grow linearly as corpus size increases.

A number of open problems need to be solved to allow further development of the pro-

posed phrase mining framework. One direction is to investigate reducing the number of

training labels. The current framework requires the model to be trained by 300 labeled

phrases. It would be preferable if a transferable model can be pretrained on general doc-

ument collection and adapt itself to the target corpus. An alternative is to use a domain-

independent phrase collection as the training source. Overlapped phrases are first identified

and then used to serve as the positive labels. Another direction is to replace Viterbi Training
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by other parameter estimation approaches to further improve the phrasal segmentation. For

instance, one can find top-k best segmentations instead of one for each text snippet. This is

less deterministic than the current design but consumes more computational power.

For document keyphrase extraction, we introduced a new research problem of learning

representation for domain-specific texts using Latent Keyphrase Inference. It integrates

phrase mining and silhouetting to help infer latent document keyphrases and solves the

rarity of explicit keyphrase mentions in the query. The generated document representations

are shown to significantly boost performance in potential text mining tasks compared to

state-of-art methods. Meanwhile, document keyphrases are highly self-explanatory through

learned quality phrase silhouettes.

A number of open problems need to be solved to allow further development of LAKI. One

direction is to simultaneously model structured data such as meta information associated

with the documents, including named entity, authorship, publishers, etc.. An alternative

is to improve the model initialization by modeling more sophisticated relationship between

quality phrases and considering more robust structured learning method. Regarding the

scalability, it would be preferable if one can work out a more efficient inference algorithm.

For example, we can use a deterministic module like neural network and train it using

inference results from our current framework.

Lastly for text-rich information network embedding, we introduced the concept of net-

work schema to describe the structure of higher-order relations in the network. Moreover,

we proposed the tensor2vec framework, which models each higher-order relation as a whole,

resulting in more efficient information propagation. Two methods were presented to learn

proximity-preserved embeddings: entity2vec modeling the proximity among the constituent

entities, and relation2vec modeling proximity between the relation and the associated enti-

ties. Within the tensor2vec framework, we presented a ranking based method to efficiently

optimize the conditional probabilities via noise sampling. Extensive quantitative experi-
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ments have been conducted to corroborate the efficacy of the proposed model in learning the

entity embeddings, particularly robustness towards noisy observations and data sparseness.

We identify some future work for the tensor2vec framework. Firstly, it is general and

could be adapted to many downstream applications, including recommender system and link

prediction. Secondly, this work focuses on learning embeddings in an unsupervised manner.

Exploring how to incorporate labels and generate predictive embeddings is a promising

direction. Finally, the text-rich information networks in this chapter is constructed by using

LAKI to extract structured units from text. An interesting extension is to consider linking

the networks with knowledge base.

6.2 Impact

The overarching theme of our research is developing large-scale data-driven methods that

can handle real-world text datasets in a robust way. It has broad impact on a variety of

text-related applications including document representation and indexing, relevance search,

entity classification, summarization and recommendation. It has been used in both academic

and industrial settings:

• Academia: Our works [64, 63] are being taught in data mining courses at UIUC

(CS512) and coursera. Several tutorials introduced and compared our works at top

computer science conferences including SIGMOD2016, WWW2016 and ACL2015.

• Industry:

– Our phrase mining work is used in Army Research Lab under the Network Science

Collaborative Technology Alliance (NSCTA) program.

– Since our works are open-sourced, they have been widely used among many com-

panies and independent researchers. A report from TripAdvisor is available on-
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line1.

at Multiple Scales project (ADAMS) to detect insider threats and exfiltration in the

government and the military.

• Awards:

– SegPhrase [64] got the grand prize of Yelp Dataset Challenge, 2015

– The entity disambiguation work [62] won the 2nd place of KDD Cup: Author

Disambiguation Challenge, 2013

6.3 Research Frontiers

Mining textual data using network is a young and promising research field. There are many

unexplored territories and challenging research issues. Here we outline some of the research

directions stemming from our work.

6.3.1 Enriching Text-Rich Information Networks

Our study in most of the chapters assumes that a document is represented as a bag of

keyphrases and is associated with a set of entities. Algorithms developed using such net-

work schema can handle simple applications such as similarity search. To approach more

complicated tasks like answering questions ‘who are actively developing deep learning sys-

tems that can be deployed on distributed systems’, one needs to construct a richer network

involving more types of nodes and links. For example, phrases can be typed (i.e., phrases

like people name, job titles) by inferring their textual contexts. Attributes and hypernyms

are two link types that can be modeled between phrases. Meanwhile, link types among

1http://engineering.tripadvisor.com/using-nlp-to-find-interesting-collections-of-hotels/
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document-associated entities can be more complicated by incorporating knowledge base re-

lations. Nevertheless, construction of a high-quality enriched text-rich information network

becomes increasingly more challenging when we move towards more structured knowledge

inferred from textual data.

6.3.2 Refining Text-Rich Information Networks

During the process of text structuralization, we typically use phrase mentions as the struc-

tured units. Our next challenge is to recognize concepts effectively for providing conceptual

summarization of unstructured data. Such refinement from phrase mentions to concepts

encounters two problems: (1) varietymany phrase mentions may refer to the same concept

(e.g., page rank and PageRank, cytosol and cytoplasm); and (2) ambiguitymultiple concepts

may share the same phrase mentions (e.g., PCR can refer to polymerase chain reaction

or principle component regression). Similar refinement can be applied to the document-

associated entities through entity resolution. But we notice that interconnected, structured

and unstructured data can mutually enhance each other in the process of refining since both

of them provide the context and imply similarity. By integrating the construction and refine-

ment of text-rich information network can greatly improve the network quality than doing

them in a sequential order.

6.3.3 Modeling of Text-Rich Information Networks

Network is the intermediate data representation between the raw data input and the discov-

ered knowledge output to users. Our previous studies on text-rich information networks as

well as existing studies on mining heterogeneous networks have shown that modeling data

as networks with multi-typed nodes often captures richer node/link semantics and generates

better results than their homogeneous or unstructured counterparts. But almost all these
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works assume the network has only a few number of node types based on simple network

schema. As mentioned at the beginning of this section, network can become more com-

plicated with more node or link types, it brings new challenges and opportunities for more

powerful models to solve and explore. Besides the complication on node and link types, text-

rich information networks can also be huge, even dynamic, so it usually cannot be contained

in memory and cannot be handled directly. Once we know that the data is dynamically

updated or a user at a time could be only interested in a tiny portion of nodes and links,

we can model small networks “extracted”dynamically from some existing networks, based

on expected node/link behaviors or user-specified constraints.
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