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Abstract

This thesis addresses the structural controllability of driftless bi-

linear systems with sparse matrices. We begin with a rigorous in-

troduction to the controllability of nonholonomic nonlinear systems.

We present the notion of structural controllability and the fact that

the controllability of linear systems is a generic property. We give

a detailed presentation of the structural controllability of linear sys-

tems, based on Lin (1974). Afterwards, we proceed to the analysis

of the structural controllability of driftless bilinear systems. We ex-

amine two cases; in the first case the matrices of the driftless bilin-

ear system belong to a single vector space of matrices (single pattern

case); in the second case the matrices belong to more than one vec-

tor spaces (multiple pattern case). After a rigorous presentation of

the preliminaries of the theory of Lie algebras, we provide a theo-

rem which claims that in the single pattern case, the driftless bilinear

systems with more than two matrices can have a realization consist-

ing of two matrices. This important result extends the theorem of

Boothby (1975) about the realization of driftless bilinear systems. We

prove that the controllability of driftless bilinear systems in both sin-

gle and multiple pattern cases is a generic property. We define the

notion of the graph which corresponds to a vector space of matrices

and we establish necessary and sufficient conditions that relate the

connectivity of this graph with the structural controllability of the

driftless bilinear system in both cases. For the two patterns case, we

provide a theorem which states that driftless bilinear systems with

more than four matrices can have a realization with four matrices

and we prove that similar propositions can be stated for more than

two patterns.
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Chapter 1

Introduction

1.1 Motivation

We are concerned with the problem of structural controllability of

driftless bilinear control systems, where each control matrix belongs

to a sparse matrix space; see Belabbas (2013). The applications of bi-

linear systems are various. Bilinear systems model many complex

networked systems (see Liu, Slotine, and Barabasi (2011) and Ruths

and Ruths (2014)) such as networked control systems, where limited

number of the subsystems interact with each other, or where the con-

troller has access only to a limited number of states.

Bilinear models arise naturally in economic models. Two macroe-

conomic models which give rise to dynamic bilinear systems are the

growth model of a two sector economy and the simple monetary

model; see Aoki (1975). Furthermore, d’Alessandro (1975) presents

a set of bilinear macroeconomic models, starting with a bilinear ver-

sion of the Harrod-Domar growth model. Then a completely general

sensitivity theory for bilinear systems is developed in order to pro-

vide both a useful tool for the identification of this class of models,

and means to improve their use.

Bilinear systems are also used to model microbial cell-growth; see

Williamson (1977). The results from the controllability of bilinear sys-

tems are used in the control of systems with bilinear hysteresis. In

Nagy and Shekhawat (2009) the transient and steady-state response

of an oscillator with hysteretic force and sinusoidal excitation are

investigated. Hysteresis is modeled by using the bilinear model of

Caughey with a hybrid system formulation.

Bilinear systems appear also in vehicle control. Langson and Al-

leyne (1997) address the stabilization of the lateral motion dynamics

of an automobile. The bilinear terms are used to model the effect of
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steer angles on the effective moment arm associated with brake or

drive torques applied at the relevant wheel. Furthermore, bilinear

systems are of central importance in the control of quantum systems.

Weakly coupled systems are a class of infinite-dimensional conserva-

tive bilinear control systems with discrete spectrum. An important

feature of these systems is that they can be precisely approached by

finite-dimensional Galerkin approximations. This property is of par-

ticular interest for the approximation of quantum system dynamics

and the control of the bilinear Schrödinger equation; see Boussaïd,

Caponigro, and Chambrion (2013).

Linear systems have simple dynamics which are fully studied.

On the other hand, nonlinear systems are described by complex dy-

namics which are much more difficult to study in the general case.

The bilinear system is the simplest class of nonlinear system to study.

In many cases bilinearization of strongly nonlinear systems provides

a better approximation of a system around a point than the lineariza-

tion. Schwartz (1988) shows how bilinear models of essentially non-

linear technical systems may be constructed by two methods. The

first method starts from the nonlinear system equation and a bilinear

model is computed from two linear models for two suitably chosen

operating points. The second method uses system-realization theory

for bilinear systems.

1.2 Previous works in the area

The notion of controllability of bilinear systems was introduced by

Piechottka and Frank (1992), which found conditions for the control-

lability of homogeneous-in-the-state bilinear systems in state spaces

of dimensions two and three. In Rink and Mohler (1968), sufficient

conditions for complete controllability of systems that are bilinear

in state and control are established by geometrical arguments. The

global controllability for a class of bilinear systems is studied in Wei

and Pearson (1978). Specifically, using fixed-point arguments, suf-

ficient conditions are derived for global controllability of a nonho-

mogeneous bilinear system and a related class of nonlinear systems.

The topic of bilinear control systems is extensively analyzed in the

books by Elliot (2009) and Brockett (1973).
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Discrete time bilinear systems are also studied. Controllability of

time-invariant discrete-time bilinear systems with bounded control

inputs is discussed in Tarn, Elliot, and Goka (1973). Furthermore,

the controllability of a class of discrete time bilinear systems is pre-

sented in Evans and Murthy (1977). In Louati and Ouzahra (2014) it

is proven that in a Banach state space of infinite dimensions discrete

bilinear systems are uncontrollable, and the control of the projections

of the state on finite-dimensional subspaces is examined. Then finite-

dimensional results on near-controllability are generalized. In Ball,

Marsden, and Slemrod (1982) we are given a detailed study on the

controllability of distributed bilinear systems.

The generic properties of linear systems have been studied by

Dion, Commault, and Woude (2003). It is proven that the control-

lability of linear systems is a generic property; see Lee and Markus

(1986). The notion of structural controllability introduced by Lin

(1974) is based on the generic property of controllability in linear

control systems. The main result of Lin (1974) states that the pair

(A,b) is structurally controllable if and only if the graph correspond-

ing to (A,b) is spanned by a special graph named "cactus". The no-

tion of structural controllability and observability of linear systems is

also discussed in Willems (1986). The topic of strong structural con-

trollability is introduced in Mayeda and Yamada (1979). A system

is strongly structurally controllable if, whatever values (other than

zero) the indeterminate parameters of the system may take, the sys-

tem is controllable. The notion of minimal structural controllability

is presented in Lin (1976).

The study of structural controllability of linear systems was fol-

lowed by the study of controllability of special classes of bilinear

systems. In Ghosh and Ruths (2014b) the necessary and sufficient

conditions are provided for structural controllability of discrete-time

single-input bilinear systems with an input matrix of rank one. A

control configuration design for a class of structural bilinear systems

is presented in Ghosh and Ruths (2014a). Late advances on the struc-

tural controllability of sparse bilinear control systems are given in Be-

labbas and Gharesifard (2016). Important contributions to the math-

ematical theory of controllability and structural controllability of bi-

linear systems are presented in Kuranishi (1951), Boothby (1975) and

Wilson (1979). Finally, the notion of structural controllability is used
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in the study of multi-agent systems, see Zamani and Lin (2009), and

of hybrid systems, see Liu, Lin, and Chena (2013).

1.3 The structure of the thesis

The thesis consists of six chapters. In chapter 1, we present the moti-

vation behind the contributions of the thesis and the previous works

in this research area. We also give a detailed description of the contri-

butions of our work. In chapter 2, we provide necessary background

on the controllability of linear systems and nonholonomic nonlinear

systems with special emphasis on the controllability of driftless bilin-

ear systems. In chapter 3, we introduce the notion of structural con-

trollability and the notion of generic rank. In chapter 4, we present

in detail the results on the structural controllability of linear systems

which were initially introduced by Lin (1974). In chapter 5, we state

the problem of the structural controllability of driftless bilinear sys-

tems. Based on algebraic and graph theoretic results, we provide

necessary and sufficient conditions which characterize a driftless bi-

linear system as controllable or not. We examine two cases: in the

first case the matrices of the driftless bilinear system belong to a sin-

gle vector space of matrices (single pattern case); in the second case

the matrices belong to more than one vector space (multiple pattern

case). Chapter 6 contains the conclusion as well as a description of

future research directions.

1.4 Contribution

We focus on the study of the structural controllability of driftless bi-

linear systems with sparse matrices. We examine two cases: in the

first case the matrices of the driftless bilinear system belong to a sin-

gle vector space of matrices (single pattern case); in the second case

the matrices belong to more than one vector spaces (multiple pattern

case). Furthermore, we define the notion of structural controllability

of bilinear systems in the single pattern case as well in the multiple

pattern case. The theory of Lie algebras is of central importance in

the study of the controllability of bilinear systems; see Boothby and

Wilson (1979), Boothby (1975) and Brockett (1973). In section 5.2,

we present the necessary background of the theory of Lie algebras
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and we give the definition of the transitive Lie algebra. In our work,

we focus on two particular types of transitive Lie algebras: the sl(n)

and the so(n)+ aI , a∈. The proof that sl(n) and the so(n)+ aI , a∈ are

transitive Lie algebras is included in the thesis.

In section 5.3, we prove the proposition that the Lie algebra of a

vector space of matrices is of dimension two. Based on this result, we

can deduce the theorem of Kuranishi (1951) as a corollary. Further-

more, we can extend the theorem of Boothby (1975) to theorem 5.3.3,

which states that in the single case a controllable bilinear system of

more than two matrices can have a realization of two matrices only.

In the end of section 5.3, we prove that the controllability of bilinear

systems is a generic property in the single pattern and in the multiple

patterns case.

In section 5.4, we define the graph which corresponds to a vector

space of matrices and we provide results which relate the connectiv-

ity of this graph with the structural controllability of driftless bilinear

systems with matrices in this vector space. Specifically, if the vector

space is a subset of sl(n), the bilinear system is structurally control-

lable if and only if the corresponding graph is strongly connected.

If the vector space is a subset of so(n) + aI and contains all aI , a∈,

the bilinear system is structurally controllable if and only if the cor-

responding graph is connected.

In section 5.5 we extend our results for the single pattern case to

the multiple pattern case. We prove that in the case of two patterns

a system with more than four matrices with at least two matrices in

each pattern can have a realization with four matrices and exactly

two matrices in each pattern. We show that our results can be ex-

tended for more than two patterns.
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Chapter 2

Controllability of linear and

nonholonomic nonlinear

systems

In this chapter, we provide a short analysis of the controllability of

linear and nonholonomic control systems. Special emphasis is put

on the bilinear control systems. In each section, we describe all the

necessary mathematical tools. An extended analysis of linear sys-

tems can be found in (Hespanha 2009) and (Belabbas 2016). For a

detailed description on the controllability of nonholonomic systems,

see Belabbas (2016) and Brockett (1973).

2.1 Controllability of linear systems

In this section we give the theory of the controllability of linear time-

varying systems. The time varying case captures also the time in-

variant case as a special case. So, we focus on the linear time-varying

controlled system.

ẋ = A(t)x(t) + B(t)u(t) (2.1)

Definition 2.1.1. (Controllability).

We say that the system (2.1) is controllable over the time interval [t0, t1] if

for any x0, x1 ∈ Rn, there exists an integrable control input u(t) defined

over the time interval [t0, t1] such that x(t1) = x1 if x(t0) = x0 in (2.1).

The solution of differential equation (2.1) for an initial condition

x0 is:

x(t1) = Φ(t1, t0)x0 +

∫ t1

t0

Φ(t1, s)B(s)u(s)ds (2.2)
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where Φ(t1, t0) is the transition matrix of the differential equation

(2.1). Using the above equation, we define an affine operator from

the space of integrable functions to Rn; more specifically, the opera-

tor maps u(t) to x(t1). The system (2.1) is controllable if the operator

L(u) =

∫ t1

t0

Φ(t1, s)B(s)u(s)ds (2.3)

is onto Rn. We have to identify the range space of operator L de-

fined in (2.3). This is done by showing that the range space of L is

equivalent to the range space of the following operator on Rn:

W (t0, t1) =

∫ t1

t0

Φ(t0, s)B(s)BT (s)Φ(t0, s)
−1ds (2.4)

The operator W (t0, t1) is called the controllability gramian of the lin-

ear system (2.1).

Lemma 2.1.2. Let P(s) be a continuous function over the interval [t0, t1],

let

L : C([t0, t1]) 7→R : u 7→

∫ t1

t0

P (s)u(s)ds (2.5)

and

Q =

∫ t1

t0

P T (s)P (s)ds (2.6)

Then the range space of Q and the range space of L are the same.

We finish this section with the following useful theorem:

Theorem 2.1.3. There exists a u(s) that drives system (2.1) from x0 at t0

to x1 at t1 if and only if Φ(t0, t1)x(t1)− x0 is in the range space of

W (t0, t1) =

∫ t1

t0

Φ(t0, s)B(s)BT (s)ΦT (t0, s)ds (2.7)

Moreover, if y1 ∈ Rn is such that Φ(t0, t1)x(t1) − x0 = W (t0, t1)y0, then

u(t) = −BT (t)ΦT (t0, t)y0 is a control that achieves the desired transfer.

2.2 Controllability of nonholonomic nonlin-

ear systems

In this section, we provide the fundamental results for the control-

lability of nonholonomic systems. So, we focus on systems of the
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systems

form:

ẋ =

p
∑

i=1

uigi(x) (2.8)

for gi differentiable vector fields on a manifold M, where the ui are

the control inputs. At this point we give the definition of Lie bracket

and Lie algebra which will be widely used in the thesis.

Definition 2.2.1. (Lie bracket).

Let f(x) and g(x) be differentiable vector fields in Rn. We call the Lie

bracket of f and g, denoted by [f,g](x), the vector field:

[f, g] =
∂g

∂x
f −

∂f

∂x
g (2.9)

Definition 2.2.2. (Lie algebra).

A Lie algebra is a vector space g over some field F together with a binary

operator [., .] : g×g→g called the Lie bracket that satisfies the following

axioms:

Bilinearity [ax+by,z]=a[x,z]+b[y,z], [z,ax+by]=a[z,x]+b[z,y] for all scalars

a, b in F and all elements x, y, z in g.

Alternativity [x,x]=0, for all x in g.

The Jacobi identity [x,[y,z]]+[z,[x,y]]+[y,[z,x]]=0, for all x, y, z in g.

Using bilinearity to expand the Lie bracket [x+y,x+y] and using alterna-

tivity [x+y,x+y]=0, we get [x,y]+[y,x]=0 for all elements x, y in g, showing

that bilinearity and alternativity together imply:

Anticommutativity [x,y]=-[y,x] for all elements x, y in g. Anticommuta-

tivity only implies the alternating property if the field’s characteristic

is not 2.

Definition 2.2.3. (Derived distributions).

Given a set of smooth vector fields gi(x) on M, we set

D0(x) = span{g1(x), ..., gp(x)}. Generally, we define the kth derived dis-

tribution as:

Dk(x) = Dk−1(x)
⊕

span{[g̃i(x), g̃j(x)] g̃i, g̃j ∈ Dk−1(x)} (2.10)
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The dimension ofDk(x) is clearly upper bounded by n, where n is

the dimension of the tangent space TxM . Thus, there exists a smallest

integer j such that Dj is involutive. Now, we provide a theorem

which determines the reachable space of (2.8):

Theorem 2.2.4. For the system (2.8) with initial condition x0, the reachable

space is the integral manifold of the distribution D∞ (or Dk such that Dk =

Dk+1).

We conclude this section with the well-known Rashevsky-Chow

theorem.

Theorem 2.2.5. (Rashevsky-Chow).

Let N be a connected submanifold of M and let D be a distribution such that

D∞(x) = TxN for all x∈N . Then for any pair of x1, x2 ∈ N, there exists a

curve c(t) joining x1 to x2 such that ċ(t) ∈D.

2.2.1 Controllability of driftless bilinear systems

A special case of nonholonomic systems are the driftless bilinear sys-

tems:

ẋ(t) =

p
∑

i=1

Aix(t)ui(t) (2.11)

where the Ai are n×n matrices and n is the dimension of the state.

From theorem 2.2.2 the reachable space of 2.11 is the integral man-

ifold of the distribution D∞ which is equal to the Lie algebra of the

matrices A1, A2, ..., Ap, which are denoted by {A1, A2, ..., Ap}LA. We

observe that if {A1, A2, ..., Ap}LA = Rn×n then the system 2.11 is con-

trollable. However, this sufficient condition is not necessary for any

arbitrary bilinear system. In general, the system 2.11 is controllable

if and only if D∞ is a transitive Lie algebra.
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Chapter 3

Introduction to structural

controllability

A control system operates properly if and only if it is controllable

and observable; see Chen (1995). This fundamental result has been

further strengthened by the fact that controllability and observability

are robust properties in linear control systems; see Lee and Markus

(1986). That is, the set of all controllable pairs (A,B) is open and dense

in the space of all such pairs. This result was used by Lin (1974) to in-

troduce the concept of structural controllability, which states that all

uncontrollable systems structurally equivalent to a structurally con-

trollable system are atypical. This result dramatically decreased the

computational effort needed to decide the controllability of a system,

especially for systems of high dimensions; see Siljak (1991).

3.1 Mathematical preliminaries in structural

controllability

In this section, we provide the basic theorems that led to the formu-

lation of structural controllability. The most important theorem is

that the controllable pairs (A,B) are open and dense in the space of

all pairs; see Lee and Markus (1986). In this section, we provide the

statement and the proof of this theorem.

Theorem 3.1.1. Consider an autonomous linear system in Rn with the

control input u∈Rm:

ẋ = A0x+B0u (3.1)
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If (3.1) is controllable, then there exists an ǫ1 > 0 such that every au-

tonomous linear process

ẋ = Ax+Bu (3.2)

with ‖A− A0‖ < ǫ1 and ‖B − B0‖ < ǫ1 is also controllable.

If (3.1) is not controllable, then for each ǫ > 0, there exists a controllable

system:

ẋ = A1x+B1u (3.3)

with ‖A1 − A0‖ < ǫ ‖B1 − B0‖ < ǫ.

That is, the set of all controllable systems is open and dense in the metric

space of all autonomous linear systems in Rn, the distance from (3.3) to

(3.1) being ‖A1 − A0‖+ ‖B1 − B0‖.

Proof. If (3.1) is controllable in Rn, the rows of [B0, A0B0, . . . , A
n−1
0 B0]

describe n linearly independent vectors in Rnm. If ‖A − A0‖ < ǫ1

and ‖B − B0‖ < ǫ1 for a sufficiently small ǫ1 > 0, then the rows

of [B,AB, . . . , An−1B] must approximate these n vectors of Rnm and

hence must also be linearly independent. In this case (3.2) is also

controllable.

On the other hand assume that (3.1) is not controllable. For a given

ǫ > 0 choose matrices A1 and B1 with ‖A1 − A0‖ < ǫ, ‖B1 − B0‖ <

ǫ such that all entries of A1 and B1 are algebraically independent

over the rational numbers (that is, no nontrivial rational polynomial

relations hold between the entries ofA1 andB1 - the existence of such

A1 and B1 is a standard property of the arithmetic of real numbers).

Then

rank[B1, A1B1, . . . , A
n−1
1 B1] = n (3.4)

since no n×n subdeterminant can be zero because each such deter-

minant is a polynomial in the entries of A1 and B1. Thus, (3.3) is

controllable.

Theorem (3.1.1) assures us that, in the typical or generic case, an

autonomous linear system (3.2) is controllable. If (3.2) is to repre-

sent an actual physical system that involves parameters only approx-

imately determined, then we can always assume that (3.2) is control-

lable.
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3.2 Definition of structural controllability

In this section, we give the basic definitions of structural controlla-

bility. An analysis of structural controllability is presented in Siljak

(1991).

Definition 3.2.1. An n×m matrix M̃ = (m̃ij) is said to be a structured

matrix if its elements m̃ij are either fixed zeros or independent free parame-

ters.

A 2×2 structured matrix is:

M̃ =

[

0 ∗

∗ 0

]

(3.5)

To relate a numerical n×m matrix M = (mij) to a structured ma-

trix M̃ we define n = {1, 2, . . . , n}, m = {1, 2, . . . ,m} and state the

following:

Definition 3.2.2. A numerical matrix M is said to be admissible with re-

spect to a structured matrix M̃ , that is, M∈M̃ , if and only if m̃ij = 0

implies mij = 0 for all i∈n and j∈m.

The matrix

M =

[

0 1

2 0

]

(3.6)

is admissible with respect to M̃ of (3.5).

To state the definition of structural controllability, let us associate

with system (3.2) a structured system (Ã, B̃) so that (A,B)∈(Ã, B̃).

Structural controllability of the system S̃ is defined via the pair (Ã, B̃)

as in Lin (1974):

Definition 3.2.3. A pair of matrices (Ã, B̃) is said to be structurally con-

trollable if there exists a controllable pair (A,B) such that (A,B)∈(Ã, B̃).

3.3 The notion of generic rank

In order to state the necessary and sufficient conditions for structural

controllability of S̃, we need the notion of generic rank (or term rank)

of a structured matrix M̃ , which we denote by ρ̃(M̃). Simply, the



3.3. The notion of generic rank 13

generic rank of M̃ is the maximal rank that M̃ can achieve by choos-

ing numerical values for indeterminate elements of M̃ . Therefore, a

matrix M̃ has full generic rank if and only if there exists a matrix M

of full rank such that M∈M̃ .

To make the idea of the generic rank precise, we need certain no-

tions from algebraic geometry; see Wonham (1985). Let us assume

that a matrix M̃ has elements in R, there are v indeterminate entries,

and the rest of the entries are fixed zeros. Then, with M̃ we can asso-

ciate a parameter space Rv such that every data point p ∈ Rv defines

a matrix M ∈ M̃(p), which is obtained by replacing the arbitrary en-

tries m̃ij of M̃ by the corresponding elements of p = (p1, p2, . . . , pv)
T .

In a physical problem, it is important to know that if a matrix M

has a certain rank at a nominal parameter vector po, it has the same

rank at a vector p close to po, which corresponds to small deviations

of the parameters from their nominal values. Most often, it turns out

that the rank holds true for all p∈Rv except at the points p that lie

on an algebraic surface in Rv and which are, therefore, atypical. An

arbitrarily small perturbation of such points restores the rank of M.

Let us denote by φk(p1, p2, ..., pv), k∈K, K = {1, 2, ..., K}, a set

of K polynomials generated by all the r-th order minors of M, and

consider a variety V⊂R which is the locus of common zeros of the

polynomials φk:

V = {p∈Rv : φk(p1, p2, ..., pv) = 0, k∈K} (3.7)

The variety V is proper if V 6=Rv and nontrivial if V 6=0. We say

that the rank r of the matrix M holds generically relative to V when

the parameter values, which make the rank of M smaller than r, all

lie on a proper variety V in Rv. In other words, the variety V is either

the whole space Rv in which case ρ̃(M̃), or the complement V c of V

is open and dense in Rv and therefore generic. What this means is

that, if the rank condition fails at po∈Rv, then the condition can be

restored by an arbitrarily small perturbation of the parameter vector

p.
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Chapter 4

Structural controllability of

linear systems

An introduction to the concept of structural controllability and the

notion of generic rank was given in chapter 3. In this chapter, we pro-

vide the theory of structural controllability of linear time-invariant

control systems, described by a pair (A,b) where A ∈ Mn×n(R) and

b is column vector in Rn; see Lin (1974). The graph of a pair (A,b)

is also defined and it gives another way of describing the structure

of this pair. The property of structural controllability is reduced to

a property of the graph of the pair (A,b). The concepts of the graph

"cactus" and the graph "precactus" are introduced. The main result in

Lin (1974) states that the pair (A,b) is structurally controllable if and

only if the graph of (A,b) is spanned by a cactus. The result is also

expressed in terms of linear algebraic properties of the pair (A,b).

4.1 Structural controllability of linear systems

We begin this section with the following useful definition:

Definition 4.1.1. The pair (A,b) has the same structure as another pair

(Ã, b̃) of the same dimensions, if for every fixed (zero) entry of the ma-

trix/column pair (A,b), the corresponding entry of the matrix/column pair

(Ã, b̃) is fixed (zero) and, at the same time, for every fixed (zero) entry of

(Ã, b̃), the corresponding entry of (A,b) is also fixed (zero). Then one defines

the pair (A0, b0) to be structurally controllable if and only if there exists a

controllable pair (A,b) which has the same structure as (A0, b0).

We extend theorem 3.1.1 that the set of all controllable linear sys-

tems is open and dense, for the case of structural controllability, by

the following proposition:
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Proposition 4.1.2. The pair (A0, b0) is structurally controllable if and only

if ∀ ǫ > 0, there exists a controllable pair (A1, b1) of the same structure as

(A0, b0) such that ‖A1 − A0‖ < ǫ and ‖b1 − b0‖ < ǫ.

Proof. Let (A0, b0) be a pair. If ∀ ǫ > 0, there exists a controllable pair

(A1, b1) of the same structure as (A0, b0) such that ‖A1 − A0‖ < ǫ and

‖b1 − b0‖ < ǫ, then the pair (A0, b0) is obviously structurally control-

lable because (A1, b1) is controllable and has the same structure as

(A0, b0).

Conversely, assume that the pair (A0, b0) is structurally control-

lable; then by definition there exists a controllable pair (A2, b2) of

the same structure as (A0, b0). Consider now the pairs, A(λ) = (1 −

λ)A0 + λA2; b(λ) = (1 − λ)b0 + λb2, where λ∈[0, 1]. Then ψ(λ) =

det(b(λ), A(λ)b(λ), . . . , A(λ)n−1b(λ)) is a polynomial in λ, and this poly-

nomial is not identically zero (since it is different from zero for λ=1).

Given an arbitrary ǫ > 0, one can find λ0 ∈[0, 1] such that ‖A(λ) −

A0‖ < ǫ and ‖b(λ)−b0‖ < ǫ, ∀λ∈][0, λ0]. Further one can find λ1∈[0, λ0]

such that ψ(λ1) 6=0 since each polynomial has a finite number of ze-

ros. As a result, the pair (A(λ1), b(λ1)) is controllable.

If no entry of the pair (A,b) is fixed, then the pair (A,b) is struc-

turally controllable. However, if some entries of (A,b) are fixed, the

pair may not be structurally controllable. We consider two specific

forms of the pair (A,b) that lead to systems which are not structurally

controllable; see Lin (1974) and Siljak (1991).

Form I: We consider the pair (A,b) of the form

A =

[

A11 0

A21 A22

]

b =

[

0

b2

]

(4.1)

where A11∈R
k×k, A21∈R

(n−k)×k, A22∈R
(n−k)×(n−k), b2∈R

(n−k), 1≤k≤n

and by 0, one denotes a matrix or a vector containing only fixed

(zero) entries.

We see that rank(b, Ab, . . . , An−1b) is less than n, independently of

the values of A11, A21, A22, and b2. Thus, the pair (4.1) is not struc-

turally controllable.
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Form II: We consider the pair (A,b) in which the n×(n+1) matrix

[A|b] can be written as:

[A|b] =

[

P1

P2

]

(4.2)

where P2 is an (n − k)×(n + 1) matrix, and P1 is a k×(n + 1) matrix

(k≥1) with no more than k-1 non-zero columns (all the other columns

of P1 having only fixed (zero) entries). Then one obtains directly that

rank([A|b]) < n, independently of the non-zero entries in (4.2). From

the fact that rank([A|b]) < n together with the Hautus-Rosenbrock

test, we get that the pair (A,b) is not controllable. Thus, the pair (4.2)

is not structurally controllable.

In this chapter, we find the necessary and sufficient conditions of

structural controllability. We will prove that every pair (A,b) which

is not structurally controllable can be brought (after a suitable per-

mutation of the coordinates) to one of the forms (4.1) and (4.2).

4.2 The graph of a pair (A,b)

Given a pair (A,b), where A∈Mn×n(R), b∈Rn, one defines its graph

C, as the graph which contains exactly n + 1 nodes, v1, v2, . . ., vn, all

of whose edges are obtained as follows: For every non-fixed entry cij

of the n×(n + 1) matrix [A|b], the graph contains the oriented edge

(vj, vi) (an arrow going from vj to vi). The node vn+1, which corre-

sponds to the (n+1)-th column of [A|b], will be called the "origin" of

G. From the definition it follows that no arrow can point towards

vn+1. For every oriented edge (vj, vi) in G, the node vj will be called

the "origin" of this edge; a node v in the vertex set of G will be called

the "final" node, if v is not the origin of any oriented edge in G; see

Lin (1974).

We give two characteristic types of graphs corresponding to a pair

(A,b): the stem and the bud. For the pair (A1, b1) of the form

A1 =

















0 a1 0 . . . 0

0 0 a2 . . . 0

. . . . . . .

0 0 0 . . . an−1

0 0 0 . . . 0

















b1 =

















0

0

.

0

an

















(4.3)
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the corresponding graph is shown in Fig. 4.1.

v
n+1

v

v

v

v

v

n-1

n

i

2

1

FIGURE 4.1: stem

A graph of this form will be called a stem. For the pair (A2, b2) of

the form

A1 =

















0 a1 0 . . . 0

0 0 a2 . . . 0

. . . . . . .

0 0 0 . . . an−1

an 0 0 . . . 0

















b1 =

















0

0

.

0

an+1

















(4.4)

the corresponding graph is shown in Fig. 4.2.

v
n+1

v

v

v

v

v

n-1

n

i

2

1

FIGURE 4.2: bud

A graph of this form will be called a bud. The node vn+1 is called

the "origin" of the bud and the edge (vn+1, vn) is called the "distin-

guished edge" of the bud. Both of the pairs (4.3) and (4.4) are easily

seen to be structurally controllable.
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Now, we give two examples which correspond to (4.1) and to (4.2)

respectively. Consider, the following pair of the form (4.1):

A3 =







a11 a12 0

a21 a22 0

a31 a32 a33






b3 =







0

0

a31






(4.5)

The graph of this pair is depicted in Fig. 4.3, where the nodes vl and

v2 are said to be non-accessible.

v
1

v2

v

v

3

4

FIGURE 4.3: pair (4.5)

In general, a node vi (other than the origin) in the graph of a pair

(A,b) is called non-accessible if and only if there is no possibility of

reaching the node vi starting from the origin vn+l and going to vi only

in the direction of the arrows, along a path in the graph of the pair

(A,b). It is easy to see that in general, the graph of a pair (A,b) of the

form (4.1) contains at least one non-accessible node. Moreover, the

converse is also true: If the graph of a pair (A,b) is such that there

exists at least one non-accessible node, then (after a permutation of

the coordinates) (A,b) can be brought to the form (4.1) and therefore

(A,b) is not structurally controllable.

Now, we consider a pair of the form (4.2)

A4 =







0 a12 0

0 a22 0

0 a32 0






b4 =







a14

a24

a34






(4.6)

The graph of this pair is shown in Fig. 4.4.
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v1

v2
v3

v4

FIGURE 4.4: pair (4.6)

Consider here the set S formed by the nodes v1, v2, and v3 (S =

{v1, v2, v3}). Determine the set T (S) containing all the nodes vi with

the property that there is an oriented edge going from vj to a node

in S. Clearly, T (S) = {v2, v4}. Here, the T(S) contains two elements

while S contains three elements. One says that the graph contains a

dilation. More generally, the graph of a pair (A,b) contains a dilation

if and only if there is a set S of k nodes in the vertex set of the graph

(not containing the origin vn+l) such that there are no more than k−1

nodes vj in T(S). One denotes by T(S) the set of all the nodes vj with

the property that there exists an oriented edge from vj to a node in

S. Note that the origin vn+1 is not allowed to belong to S, but may

belong to T(S).

One can easily see that if the pair (A,b) has the form (4.2), then

its graph contains n dilation. Conversely, if the graph of a pair (A,b)

contains a dilation, then (after a permutation of the coordinates) the

matrix [A|b] can be brought to the form of (4.2), and, therefore, the

pair (A,b) is not structurally controllable.

4.2.1 The graph "Cacti"

If the graph of a pair is a stem or a bud, then the pair is structurally

controllable. We extend the conclusion to some special combinations

of stems and buds which we call "cacti". The lemma and the proposi-

tions presented in this section were initially presented and proven in

Lin (1974); the presentation of the proofs is beyond the scope of the

thesis.
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Lemma 4.2.1. Suppose that G is a graph of a structurally controllable pair.

Let B be a bud with the origin e, and suppose e is the only node which

belongs at the same time to the vertex set of G and to the vertex set of B.

Then G∪B is the graph of a structurally controllable pair.

The concept of a cactus initially introduced by Lin (1974), can

be defined in the following descriptive form: The graph P of a pair

(A,b) is a cactus if and only if one can write P = S∪B1∪B2∪ . . .∪Bp

where S is a stem and Bi are buds and, for every i = 1, 2, . . . , p, the

origin ei of Bi is also the origin of an oriented edge in the graph

S∪B1∪ . . .∪Bi−1. Moreover, ei is the only node which belongs at the

same time to the vertex set Bi and to the vertex set of

S∪B1∪B2∪ . . .∪Bi−1; see Fig. 4.5.

e
0

e
1

e
2

B
1

B

B

2

3

FIGURE 4.5: cactus

From the above definition and from Lemma 1, one obtains the

following propositions:

Proposition 4.2.2. If the graph of a pair (A,b) is a cactus, then the pair is

structurally controllable.

We say that the graph of a pair (A,b) is spanned by a cactus if it

becomes a cactus after removing some or none of the edges from the

graph. Then, we have the following proposition:

Proposition 4.2.3. If the graph of a pair (A,b) is spanned by a cactus, then

the pair (A,b) is structurally controllable.
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4.2.2 A class of graphs which are cacti

We focus on a class of graphs which are cacti. In the following lem-

mas we assume that G is the graph of a pair (A,b) and has the follow-

ing properties:

1) There is no non-accessible node in the vertex set of G.

2) There is no dilation.

3) G is minimal (after deleting any edge of the graph, one of the prop-

erties (1) and (2) is violated).

Lemma 4.2.4. Every node in G is accessible from the origin along one and

only one simple path.

We introduce the following notation: If M is any set of nodes,

denote by N(M) the number of distinct nodes in M. Furthermore,

we denote by Vi the set of all the nodes which can be reached from

the origin of G by passing through the edge ei. For every Vi, we

denote byGi the subgraphs of G whose set of nodes is exactly Vi∪{e}

(e is the origin) and whose edges are all the edges from G of the

form (a, b) with a∈Vi∪{e} and b∈Vi. The subgraphs Gi, defined as

above, will be called "bunches". Clearly, G = G1∪G2∪ . . .∪Gr, and

Gi are edge disjoint (Lemma 2). A subgraph Gi, defined as above,

is called a "terminal bunch" if there exists a subset S⊂Vi, such that

N(T (S)) = N(S) and T (S) contains the origin of G. Now, we are

ready to provide a sequence of important lemmas.

Lemma 4.2.5. If Gi is not a terminal bunch, then for every set S⊂Vi such

that T(S) contains the origin, one has N(T (S))−N(S)≥1.

Lemma 4.2.6. There exists at most one terminal bunch in G.

A graph H is a precactus if and only if one can write

H = B1∪B2∪ . . .∪Bp, where Bi are the buds such that for every i =

2, 3, . . . p the origin ei of Bi is also the origin of one oriented edge in

the graph of B1∪B2∪ . . .∪Bi−1. Moreover, ei is the only node which

belongs at the same time to the vertex set of Bi and to the vertex set

of B1∪B2∪ . . .∪Bi−1.

Lemma 4.2.7. Every precactus becomes a cactus after eliminating one or

more suitable edges.

Lemma 4.2.8. Any non-terminal bunch becomes a precactus, possibly after

eliminating some edges of the bunch. In other words, any non-terminal

bunch is "spanned" by a precactus.
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Lemma 4.2.9. There always exists a terminal bunch in G. Furthermore,

any terminal bunch G1 is spanned by a cactus.

Proposition 4.2.10. If the graph G of a pair (A,b) satisfies the properties:

1 There is no non-accessible node in the vertex set of G

2 There is no dilation

3 G is minimal (after deleting any edge of the graph, one of the properties 1

and 2 is violated)

then G is a cactus.

We can summarize the results of this section by the following the-

orem:

Theorem 4.2.11. The following properties are equivalent:

1 The pair (A,b) is structurally controllable.

2 There is no permutation of coordinates, bringing the pair (A,b) to one of

the forms (4.1) and (4.2).

3 The graph of (A,b) contains no non-accessible node and no dilation.

4 The graph of (A,b) is spanned by a cactus.
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Chapter 5

Structural controllability of

driftless bilinear systems

5.1 Structural controllability of driftless bi-

linear systems

5.1.1 Problem Statement

Let Σβ be the vector space of matrices in Rn×n, where β ⊂ {1, . . . , n}×

{1, . . . , n} and all entries not in β are forced to be zero. It is common

to represent a matrix in Σβ with a star symbol "*" in the non-zero en-

tries and with a 0 in the entries forced to be zero. We assume that the

matrix vector space Σβ contains sparse matrices. We usually refer to

Σβ as a sparse matrix space (SMS). Consider now the bilinear control

system

ẋ(t) = (Aℓ +
m
∑

ℓ=1

uℓ(t)Bℓ)x(t) (5.1)

where Aℓ ∈ Σα, Bℓ ∈ Σβ (β possibly different than α), and uℓ : R>0 →

R (control input) is a continuous function, for all ℓ ∈ {1, . . . ,m}, and

m ∈ Z≥1. We refer to this system as an m-bilinear sparse control

system. The controllability problem for bilinear control systems with

drift is to a large extent open; see Elliot (2009). For this reason, we

focus our attention on the class of bilinear control systems without

drift:

ẋ(t) = (
m
∑

ℓ=1

Bℓuℓ(t))x(t) (5.2)

where x(t) ∈ Rn for all t ≥ 0, and Bℓ ∈ Rn×n. We would like to

make clear that for the driftless bilinear control system the space of
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admissible control inputs that we consider is the space of all piece-

wise constant functions on R. At this point, we introduce the notion

of structural controllability of bilinear control systems, extending the

definition of structural controllability of linear systems initially pre-

sented in Lin (1974).

Definition 5.1.1. The system (5.2) with Bℓ ∈ Σβ , ℓ ∈ {1, . . . ,m}, is

structurally controllable if and only if there exist Bℓ ∈ Σβ , ℓ ∈ {1, . . . ,m}

such that the system (5.2) is controllable.

By definition 5.1.1 it is evident that if a system is controllable then

it is also structurally controllable. We are interested in the problem of

structural controllability of (5.2). We examine the case where all Bℓ ∈

Σβ for all ℓ ∈ {1, . . . ,m}, which is the single pattern case. Then, we

extend our results for Bℓ ∈ Σβ1
∪Σβ2

∪ . . .∪Σβk
, where k≤m and ℓ ∈

{1, . . . ,m}, with at least one matrix in each Σβi
, 1≤i≤k which is the

multiple patterns case. First, we provide the necessary background

on Lie algebras.

5.2 Preliminaries

5.2.1 The theory of Lie algebras

We begin with the definition of the Lie algebra of a matrix group G,

see Tapp (2005).

Definition 5.2.1. Let G be a matrix group. The Lie algebra of G is the

tangent space to G at I, which is denoted by

TIG:={γ′(0)|γ : (−ǫ, ǫ)→G, is differentiable with γ(0) = I} (5.3)

Proposition 5.2.2. The Lie algebra g of a matrix group G⊆GLn(R) is not

only a vector subspace but also a real subspace of Mn(R).

Proof. Since g is the tangent space of matrix group G, which has el-

ements of n×n matrices, then, trivially, the elements of g are n×n

matrices. Now, we must show that g is closed under scalar multipli-

cation and addition. Let λ be a real number, and let A be an element

of g. Then, by definition, A = γ′(0) for some differentiable path γ in

G, and γ(0) = I . Consider the path σ : (− ǫ
λ
, ǫ
λ
)→G, given by σ(t) =

γ(λt). This is in G and passes through the identity matrix I. It has
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initial velocity vector σ′(0) = λγ′(0) = λA, which proves that λA be-

longs to g. Next, let A, B be in g. This means thatA = α′(0),B = β′(0)

for some differentiable paths α, β in G with α(0) = β(0) = I . We con-

struct the product path δ(t):=α(t)β(t), which lies in G, because G is

closed under multiplication. This new path satisfies δ(0) = I and

δ′(0) = α′(0)β(0) + α(0)β′(0) = A·I + I·B = A + B, by the product

rule. This shows that A+B is also in g.

We recall some of the preliminaries required for Lie algebras that

are crucial for the study of bilinear systems; see Boothby and Wil-

son (1979) and Boothby (1975). Throughout, we assume that g is a

subalgebra of gl(n,R), where gl(n,R) is the Lie algebra of GL(n,R),

the set of all invertible n by n matrices on reals. We denote by g the

Lie algebra with the Lie product [·, ·], and the unique Lie subgroup

of GL(n,R) associated to it by G. The center of g is defined to be

Z(g) = {Z ∈ g | [A,Z] = 0, for all A ∈ g}

The centralizer of a subset s of g is

ζg(s) = {A ∈ g | [A, S] = 0, for all S ∈ s}

and the normalizer of s is

Ng(s) = {A ∈ g | [A, S] ∈ s, for all S ∈ s}

We introduce the definition of a Lie algebra associated to a vector

space of matrices Σβ .

Definition 5.2.3. Let Σβ be a vector space of matrices. The Lie algebra

associated to Σβ is denoted by {Σβ}LA and is defined as the intersection of

all Lie algebras that contain Σβ .

The Lie algebras {Σβ}LA for which the system (5.2) is control-

lable have been classified in Boothby (1975) and are called transitive

Lie algebras. In the following definition we recall the notion of tran-

sitive matrix group and of transitive Lie algebra which are of central

importance in our work.

Definition 5.2.4. The matrix group G is called transitive if

span{Bx|B∈G} = Rn\{0}, ∀x∈Rn\{0}
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The Lie algebra g corresponding to a transitive matrix group G is called a

transitive Lie algebra.

The following theorem of Boothby (1975) is a consequence of the

fact that the dimension of the center of a Lie algebra g is less than or

equal to 2 if G is transitive on Rn\{0} and of the theorem of Kuranishi

(1951), which is recalled in Theorem 5.2.5.

Theorem 5.2.5 (Kuranishi 1951). Let g0 be a real semisimple Lie subal-

gebra of gl(n,R). Then there exist two elements A1 and A2 of g0 which

generate g0.

Theorem 5.2.6 (Boothby 1975). Suppose system (5.2) is controllable on

Rn\{0}. Then there existsB1, B2 ∈ Rn×n such that the control system (5.2)

is equivalent to

ẋ(t) = (uB1 + vB2)x(t)

where u and v are piecewise constant functions on R.

Based on definition 5.2.4 it is evident that gl(n,R), the Lie algebra

of GL(n,R), is a transitive Lie algebra. We focus our attention on two

commonly used Lie algebras in the realization of bilinear systems:

the sl(n,R) which is the Lie algebra of traceless square matrices and

the so(n,R) + aI which is the Lie algebra of skew symmetric square

matrices augmented by aI . The diagonal entries of a matrix in sl(n)

are dependent because they sum to zero. So, dim(sl(n)) = n2−1. For

a matrix A∈so(n) + aI we see that for the entries A(i, j) and A(j, i) it

holds that A(i, j) = −A(j, i) and all the diagonal elements are equal.

So, dim(so(n) + aI) = (n−1)n
2

+ 1. Results similar to those presented

in this thesis can be derived for the rest of the transitive Lie algebras

classified in Boothby (1975) following the same procedure. At this

point, we provide two important lemmas about the transitivity of

the Lie algebras sl(n,R) corresponding to SL(n,R) and so(n,R) + aI

corresponding to SO(n,R)·a, a∈R.

Lemma 5.2.7. sl(n) is a transitive Lie algebra.

Proof. Based on definition 3.2, we prove that for any x ∈Rn\{0} and

y ∈Rn\{0} there exists a matrix A ∈SL(n) such that y = Ax. First,

we prove an easier case, namely that for any u ∈Rn\{0} there exists

a matrix B ∈SL(n) such that u = Be1, where e1 = [1, 0, . . . , 0], e1∈R
n.

1) If u1 6=0 then B is a lower triangular matrix and the first column of
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B is the vector uT . The diagonal elements b(i,i) = 1 for 2≤i≤n−1, and

b(n,n) =
1
u1

. All the other entries of B are equal to zero.

2) If u1 = 0, we know that at least one of the entries of u must be

non-zero, let ui 6=0 for i6=1. Then we swap u1 with ui and we get

u′ = [ui, . . . , u1, . . .]. Based on 1), we consider a matrix C such that

u′ = Ce1 and det(C) = 1. We multiply the i-th column of C by -1 and

we get D. It still holds that u′ = De1. Finally, we interchange the first

row of D with the i-th row of D and we get a new matrix E. It is clear

that u = Ee1 and det(E) = −det(D) = −(−det(C)) = det(C) = 1.

So, in both cases there exists a matrix M ∈SL(n) such that u =

Me1. Now, we can prove that given x ∈Rn\{0} and y ∈Rn\{0} there

exists A∈SL(n) such that y = Ax. We have proven that there exist A1

and A2 such that y = A1e1 and x = A2e1⇒e1 = A−1
2 x⇒ y = A1A

−1
2 x

and det(A1A
−1
2 ) = det(A1)det(A

−1
2 ) = 1.

The Lie algebra so(n) is not transitive. However, we establish

the following theorem which was originally presented in Boothby

(1975):

Lemma 5.2.8. so(n) + aI , a∈R is a transitive Lie algebra.

Proof. The so(n) is not a transitive Lie algebra. A matrix A ∈SO(n)

represents rotation around the origin. So, given a vector x∈Rn\{0},

there exists no matrix B∈SO(n) which gives us 2x. This issue is

resolved for the group SO(n)·a, where a∈R performs the scaling.

The Lie algebra which corresponds to the transitive matrix group

SO(n)·a is the transitive Lie algebra: so(n) + aI , where a∈R; see

Boothby (1975).

Now, we prove that transitivity implies controllability. First, we

provide the following definitions.

Definition 5.2.9. We denote by etfx0 the solution of the Cauchy problem

ẋ = f(x), x(0) = x0 at time t.

Definition 5.2.10. Let {B1, B2, . . . , Bn}, n∈N be a finite set of matrices.

The Lie algebra associated to the set {B1, B2, . . . , Bn} is denoted by

{B1, B2, . . . , Bn}LA and is equal to the Lie algebra associated to the vector

space span{B1, B2, . . . , Bn};

i.e. {B1, B2, . . . , Bn}LA = {span{B1, B2, . . . , Bn}}LA.

Based on definition 5.2.10, we easily deduce the following corol-

lary.
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Corollary 5.2.11. If span{B1, . . . , Bn} = span{C1, . . . , Cm} then

{span{B1, . . . , Bn}}LA = {span{C1, . . . , Cm}}LA.

Theorem 5.2.12. The system (5.2) is controllable if and only if the Lie

algebra {B1, . . . , Bm}LA is transitive.

Proof. We consider the system (5.2) where {B1, . . . , Bm}∈g and g is

transitive Lie algebra. The control inputs are piecewise constant.

Based on definition 5.2.9 the solution of the differential equation (5.2)

for the initial condition x0 is

x(t) = et1(u1B1+...+umBm)·. . .·etk(u1B1+...+umBm)x0 (5.4)

where t = t1 + . . . + tk. Since g is a transitive Lie algebra which cor-

responds to the transitive matrix group G, it holds for 1≤i≤k, we

have eti(u1B1+...+umBm) = Gi, where Gi∈G. So, x(t) = G1. . .Gkx0 and

G1. . .Gk = H∈G. Thus, x(t) = Hx0. By the definition of transitive

matrix, we have for any x0, xT∈R
n\{0} there exists a matrix H∈G

such that xT = Hx0. The system (5.2) can be driven from x0 to xT ,

in finite time T. This means that the system (5.2) is controllable. Con-

versely, if the system (5.2) is controllable, it can be driven from x0

to xT , in finite time T. Thus, there exists a matrix H∈G such that

xT = Hx0, for any x0, xT∈R
n\{0}. So, G is transitive.

We conclude this section with the definition of the set of matrices

which can be written as a Lie bracket of arbitrary length and contain

as entry at least one matrix A∈Σβ1
and at least one matrix B∈Σβ2

,

where Σβ1
and Σβ2

are matrix vector spaces.

Definition 5.2.13. Let Σβ1
and Σβ2

be two vector spaces, subspaces of

the Lie algebra {Σβ1

⊕

Σβ2
}LA. The set L(n)(Σβ1

,Σβ2
) contains all the Lie

brackets of n+ 1 matrices each, where at least one matrix A1 ∈Σβ1
, at least

one matrix A2 ∈ Σβ2
and all the other matrices A3, . . ., An+1 belong to

Σβ1
∪Σβ2

.

L(1)(Σβ1
,Σβ2

) = {[A1, A2], [A2, A1]}, where A1∈Σβ1
, A2∈Σβ2

.

L(2)(Σβ1
,Σβ2

) = {[[A1, A2], A3], [[A2, A3], A1], [[A3, A1], A2], [A1, [A3, A2]],

. . .}, where A1∈Σβ1
, A2∈Σβ2

, A3∈Σβ1
∪Σβ2

.

L(3)(Σβ1
,Σβ2

) = {[A1, [A2, [A3, A4]]], [A2, [A3, [A4, A1]]], [A3, [A4, [A1, A2]]],

. . . , [[A1, A3], [A2, A4]], . . .}, where A1∈Σβ1
, A2∈Σβ2

, A3, A4∈Σβ1
∪Σβ2

.
...
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L(i)(Σβ1
,Σβ2

) = {[A1, [A2, . . . [Ai, Ai+1]]], [A2, [A3, . . . [Ai, [Ai+1, A1]]]],

[A3, [A4, . . . [Ai, [Ai+1, [A1, A2]]]]], . . .}, where A1∈Σβ1
, A2∈Σβ2

, A3, . . . ,

Ai+1∈Σβ1
∪Σβ2

.
...

Finally, we define L(Σβ1
,Σβ2

) =
∞
⋃

i=1

L(i)(Σβ1
,Σβ2

).

Definition 5.2.14. Let Σβ1
and Σβ2

be two SMS. Let B1∈Σ1 and B2∈Σ2.

We denote by D the set of iterated Lie brackets of B1 and B2 defined as fol-

lows:

D(0) = {B1, B2},

D(1) = {[B1, B2], [B2, B1]}

D(2) = {[[B1, B2], B1], [[B1, B2], B2], [[B2, B1], B1], [[B2, B1], B2], [B1, B2],

[B2, B1]}
...

D(i) = {[Hk, Hj]} for all Hk, Hj∈D
(0)∪. . .∪D(i−1).

...

So, D(B1, B2) =
∞
⋃

j=0

D(j).

Proposition 5.2.15. If D(k)⊆span{D(0)∪. . .∪D(k−1)} then

D(m)⊆span{D(0)∪. . .∪D(k−1)}, where m≥k, k,m∈N.

Proof. By definition,D(k+1) = {[Hk, Hj]} for allHk, Hj∈D
(0)∪. . .∪D(k).

The assumption D(k)⊆span{D(0)∪. . .∪D(k−1)} and the bilinearity of

the Lie bracket implies that span{D(k+1)} = span{D(k)}. Thus,

D(k+1)⊆span{D(k+1)} = span{D(k)}⊆span{D(0)∪. . .∪D(k−1)}. Induc-

tively, we get that D(m)⊆span{D(0)∪. . .∪D(k−1)}.

Lemma 5.2.16. Let Σβ1
and Σβ2

be two SMS. Let B1∈Σ1 and B2∈Σ2. The

set D(0)∪. . .∪D(n2−1) contains a basis of D(B1, B2).

Proof. We assumeB1,B2 linearly independent. Otherwise,D(B1, B2) =

{B1}. Thus, dim{D(0)} = 2. IfD(i) 6⊆span{D(0)∪. . .∪D(i−1)}, for 0≤i≤n2−

1, then dim{span{D(0)∪. . .∪D(i)}}≥dim{span{D(0)∪. . .∪D(i−1)}}+1.

So, for D(n2−1) 6⊆span{D(0)∪. . .∪D(n2−2)}, we get

dim{span{D(0)∪. . .∪D(n2)}} = n2 which is the maximum number of

linearly independent n×n matrices and the statement is proven. If

for some i≤n2 − 1, D(i)⊆span{D(0)∪. . .∪D(i−1)} then from proposi-

tion 5.2.15, D(0)∪. . .∪D(i−1) contains a basis of D(B1, B2) and

D(0)∪. . .∪D(i−1)⊆D(0)∪. . .∪D(n2−1).
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5.3 Structural controllability of driftless bi-

linear sparse control systems

In this section, we wish to establish the basic theorems for the study

of structural controllability of bilinear systems. First, we provide the

following proposition which will be used in the proof of the follow-

ing theorems:

Proposition 5.3.1. Let Σβ⊂g be a subspace of dimension n < dim g and

such that {Σβ}LA = g. Then there existsB1, B2 ∈ Σβ such that {B1, B2}LA =

g.

Proof. We construct a sequence Σβ ⊃ Σ1
β ⊃ Σ2

β ⊃ · · · ⊃ Σn−2
β , where

the codimension of Σi
β in Σβ is i, such that {Σi

β}LA = g. We construct

this sequence by induction on i and using a contradiction argument.

To this end, let us assume that there is no subspace Σ1
β ⊂ Σβ of codi-

mension one such that {Σ1
β}LA = g. Using this assumption and since

{Σβ}LA = g, it is evident that all subspaces of codimension one of Σβ

are subalgebras of g.

Furthermore, since the intersection of subalgebras is again a sub-

algebra, and because all codimension two subspaces of Σβ can be

described as the intersection of two codimension one subspaces of

Σβ , we have that all codimension two subspaces of Σβ are subal-

gebras. Using this argument iteratively, we conclude that all two-

dimensional subspaces of Σβ are subalgebras.

Now let e1, . . . , en be a basis of Σβ . Because {Σβ}LA = g but Σβ 6=

g, there exist two elements z, w ∈ Σβ so that [z, w] /∈ Σβ . Let us write

z =
∑n

i=1 αiei and w =
∑n

i=1 βiei for αi, βi ∈ R. Then

[z, w] =
∑

j>i

(αiβj − αjβi)[ei, ej]

But we have shown that if no Σ1
β of codimension one in Σβ is such

that {Σ1
β}LA = g, then all dimension two subspaces of Σβ are subal-

gebras. Hence for all pairs ei, ej , there exists γij, δij ∈ F such that

[ei, ej] = γijei + δijej

Plugging this last relation in system 5.2, we obtain that [z, w] ∈ Σβ ,

which is a contradiction.
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We thus have that there exists Σ1
β ⊂ g of dimension n − 1 so that

{Σ1
β}LA = g. Using the argument above inductively, we can show the

existence of the Σi
β’s described above.

The following lemma can be easily deduced from the conclusion

of proposition 5.3.1.

Lemma 5.3.2. Let g be a semi-simple Lie algebra. Then there exists a codi-

mension one subspace Σβ ⊂ g with {Σβ}LA = g.

At this point we have to note that 5.2.5 can be considered as a

corollary of proposition 5.3.1. The result is proven by induction on

the codimension of a subspace Σβ ⊂ g that is generating. The induc-

tive step is obtained using Prop. 5.3.1 inductively and the base case

using lemma 5.3.2. From 5.2.5 we deduce 5.2.6. Now, we provide

the theorem about the minimum number of matrices needed for the

realization of the driftless bilinear systems.

Theorem 5.3.3. The system 5.2 with Bℓ ∈ Σβ , ℓ ∈ {1, . . . ,m} is struc-

turally controllable if and only if the system

ẋ(t) = (uB1 + vB2)x(t) (5.5)

is structurally controllable, where B1, B2∈Σβ .

Proof. If system (5.5) is structurally controllable then there exists

B1, B2 ∈ Σβ so that {B1, B2}LA = g and {B1, B2, B3, . . . , Bm}LA ⊇ g

for arbitraryB3, . . . Bm which implies that system (5.2) is structurally

controllable. If system (5.2) is structurally controllable then there

exist B1, B2, . . . , Bm ∈ Σβ such that {B1, B2, . . . , Bm}LA = g. Set

Σ = span{B1, B2, . . . , Bm}. Then by assumption, {Σ}LA = g. Then by

proposition 5.3.1, there existsB1, B2 ∈ Σ ⊆ Σβ so that {B1, B2}LA = g

which implies that system (5.5) is structurally controllable.

We will prove that the controllability of the bilinear system 5.5

with B1∈Σβ1
, B2∈Σβ2

is a generic property. This means that if a bi-

linear system is structurally controllable then for almost all pairs of

matrices (B1,B2) in Σβ1
×Σβ2

the system (5.5) is controllable. With

the term for almost all pairs (B1,B2) we mean all pairs (B1,B2) except

from a zero measure set of pairs in Σβ1
×Σβ2

.

Theorem 5.3.4. If system (5.5) is structurally controllable then for almost

all pairs of matrices B1∈Σβ1
, B2∈Σβ2

the system (5.5) is controllable.
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Proof. Since system (5.5) is structurally controllable there existB1∈Σβ1
,

B2∈Σβ2
such that system (5.5) is controllable. This implies that the set

of iterated Lie brackets 5.2.14, of B1 and B2 denoted by D(B1, B2),

has rank m = dim({B1, B2}LA). As a result, there exist m linearly

independent matrices Q1, Q2, . . ., Qm ∈D(B1, B2). For two arbitrary

matrices X∈Σβ1
, Y ∈Σβ2

, we consider the set of iterated Lie brack-

ets 5.2.14, of X, Y D(X, Y ) = {G1(X, Y ), . . . , Gi(X, Y ), . . .}, and by

Gi(X, Y ) we denote the matrices of the set of the iterated Lie brack-

ets D(X, Y ). By construction, there exist indexes i1, i2, . . ., im such

that Gi1(B1, B2) = Q1, Gi2(B1, B2) = Q2, . . ., Gim(B1, B2) = Qm.

We establish a procedure which transforms each matrixGi1(X, Y ),

. . ., Gim(X, Y ) to m×1 vectors v1(X, Y ), . . ., vm(X, Y ), respectively. If

Σβ1
,Σβ2

⊆sl(n) then {B1, B2}LA = sl(n); so the n×n matrix Gi1(X, Y )

is turned to a (n2 − 1)×1 column vector by placing the columns of

Gi1(X, Y ), one below the other in order, and the entryGi1(X, Y )(n,n) is

omitted because it depends on the other diagonal entries;Gi1(X, Y )(n,n)

= −
∑n−1

l=1 Gi1(X, Y )(l,l). We follow the same process for the rest of the

matrices Gi2(X, Y ), . . ., Gim(X, Y ).

If aI⊆Σβ1
,Σβ2

⊆so(n) + aI then {B1, B2}LA = so(n) + aI and the

n×n matrix Gi1(X, Y ) is turned to a (n(n−1)
2

+ 1)×1 column vector

in the following way. The first column of Gi1(X, Y ) is preserved

complete, while for the rest of the columns we keep only the en-

tries (i, j) for which i > j, while the others are omitted. This is be-

cause Gi1(X, Y )(i,j) = −Gi1(X, Y )(j,i) and all the diagonal elements

are equal. Finally, we place the remaining parts of the columns, one

below the other in order, and we form a (n(n−1)
2

+1)×1 column vector.

We follow the same process for the rest of the matrices Gi2(X, Y ), . . .,

Gim(X, Y ).

We define the polynomial p : Σβ1
×Σβ2

→R, p(X, Y ) =

det[v1(X, Y ), . . . , vm(X, Y )]. By construction, p(X, Y ) is not perma-

nently equal to a positive (or negative) constant. A polynomial is

either identically zero or non-zero almost everywhere; see Federer

(1969). As we mentioned, since (5.5) is structurally controllable, there

exist B1∈Σ1, B2∈Σ2 such that p(B1, B2) 6=0. Thus, p(X, Y ) is non-

zero almost everywhere in Σβ1
×Σβ2

. From the definition of p, it is

clear that the system (5.5) is controllable for almost all pairs B1∈Σβ1
,

B2∈Σβ2
.
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Remark 5.3.5. There is an alternative way to define the polynomial p(X, Y ) :

Σβ1
×Σβ2

→R. From lemma 5.2.16, we know that D(0)∪. . .∪D(n2−1) con-

tains a basis of D(X, Y ). We transform the matrices in D(0)∪. . .∪D(n2−1)

into vectors as described in theorem 5.3.4 and we create a matrix M whose

columns are the vectors. It holds that rank{M} = rank{MMT} and

MMT is a square m×m matrix, where m = dim({Σβ1

⊕

Σβ2
}LA). Thus,

we can define the polynomial as p(X, Y ) = det(MMT ).

For Σβ1
= Σβ2

= Σβ , we get the single pattern case. Theorem

5.3.4 can be easily extended for bilinear control systems with more

than two matrices and more than two SMS Σβi
.

Definition 5.3.6. We consider system (5.2) withBℓ ∈ Σβ1
∪Σβ2

∪ . . .∪Σβk
,

where k≤m and ℓ ∈ {1, . . . ,m}, with at least one matrix in each Σβi
,

1≤i≤m. The system (5.2) is structurally controllable if and only if there

exist Bℓ ∈ Σβ1
∪Σβ2

∪ . . .∪Σβk
, where k≤m and ℓ ∈ {1, . . . ,m} with at

least one matrix in each Σβi
, 1≤i≤m, such that the system (5.2) is control-

lable.

Theorem 5.3.7. We consider the SMS Σβ1
, . . ., Σβk

. If system (5.2) with

B1∈Σβi1
, . . .,Bm∈Σβim

, i1, . . . , im∈{1, . . . , k}, k≤mwith at least one ma-

trix in each Σβi
, 1≤i≤k, is controllable, then system (5.2) is controllable for

almost all tuples (B1, . . . , Bm) in Σβi1
×. . .×Σβim

.

In the following two sections, we investigate the structural con-

trollability of bilinear control systems for the single pattern case as

well as for the multiple pattern case. We introduce the notion of

the graph corresponding to one vector space or more than one ma-

trix vector spaces, for the single pattern and the multiple patterns

case respectively. We provide theorems that relate the structural con-

trollability of the bilinear system with the connectivity of the graph.

For undirected graphs we talk about simple connectivity, for directed

graphs we talk about strong connectivity, and for colored edges graphs

we talk about connectivity through paths with at least one alterna-

tion in color. If the matrices of bilinear systems are dense, the con-

nectivity is almost always guaranteed. The study of sparse matrix

spaces is of particular interest because we need to find the necessary

and sufficient conditions that guarantee the connectivity of the cor-

responding graph.
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5.4 The single pattern case

In this section, we investigate the structural controllability of bilin-

ear control systems for the single pattern case. First, we provide the

following useful definitions.

Definition 5.4.1. The graph G corresponding to the vector space Σβ of

n×n matrices is defined as the directed graph of n vertices v1, v2, . . ., vn for

which the edge ~vivj ∈E(G) if and only if there exists a matrix A ∈Σβ such

that for the entry A(i, j) it holds that A(i, j) 6=0.

Definition 5.4.2. Let Σβ be an SMS. We define Σβ
(0):=Σβ and Σβ

(i+1):=

Σβ
(i)⊕[Σβ

(i),Σβ
(i)], where [Σβ

(i),Σβ
(i)] = {[A,B]|A,B∈Σβ

(i)}.

Definition 5.4.3. Let Σβ be an SMS. Let G the digraph corresponding to

Σβ . We define G(0):=G and G(i+1) is the graph taken from G(i) after one-

step transitive closure, see Fig. 5.1.

FIGURE 5.1: The graph obtained by the plain and
dashed edges is the one-step transitive closure of the

graph which consists of the plain edges.

At this point, we would like to make clear that the matrix E(i,j)

denotes the matrix with zero in all entries, except from the entry (i, j)

which is equal to 1. The (i, j) entry of a matrixA is denoted byA(i, j).

Now, we establish the correspondence between graph G(i) and the

matrix vector space Σβ
(i).

Proposition 5.4.4. Given an SMS Σβ⊆sl(n), the corresponding SMS of

G(i) is Σβ
(i).

Proof. We proceed by induction on i.

Induction Basis (i=0): We have Σβ
(0):=Σβ and let G(0) the digraph

corresponding to Σβ
(0).
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Let Σβ
(1):=Σβ

(0)⊕[Σβ
(0),Σβ

(0)] and let G(1) be the digraph result-

ing from the one step closure of G(0). We prove that G(1) is the corre-

sponding graph of the SMS Σβ
(1).

First, we prove that for every edge ~vivj i6=j there exists a matrix

A ∈ Σβ
(1) such that A(i, j) 6=0. For an edge ~vivj ∈ E(G(1)) and ~vivj ∈

E(G(0)) then E(i,j) ∈Σβ
(0) ⇒E(i,j) ∈Σβ

(1). So, let us assume that for vi,

vj ∈ V (G(0)) the edge ~vivj ∈ E(G(1)) and ~vivj /∈ E(G(0)). Then there

exist vk ∈ V (G(0)) such that ~vivk ∈ E(G(0)) and ~vkvj ∈ E(G(0)). So, for

the matrices E(i,k), E(k,j) ∈ Σβ
(0) ⇒ [E(i,k), E(k,j)] = E(i,j)∈Σβ

(1). So, in

both cases, namely ~vivj /∈ E(G(0)) and ~vivj ∈ E(G(0)), we have that

E(i,j)∈Σ
(1)
β , where Σβ

(1) = Σβ
(0)⊕[Σβ

0,Σβ
0].

Now, we examine the special case of the self-loop edge. If the self-

loop ~vivi ∈ E(G
(0)), then by definition there exist matrix A∈Σβ

(0)⇒

A∈Σβ
(1), such that A(i, i) 6=0. If the self-loop ~vivi /∈ E(G(0)) and ~vivi ∈

E(G(1)) then there exist edges ~vivj and ~vjvi in E(G(0)). So, E(i,j), E(j,i)

∈ Σβ
(0) ⇒ [E(i,j), E(j,i)] = E(i,i) − E(j,j)∈Σβ

(1).

Second, we prove that if E(i,j)∈Σβ
(1) = Σβ

(0)⊕[Σβ
0,Σβ

0] then the

edge ~vivj ∈ E(G(1)). If E(i,j)∈ Σ
(0)
β then by definition the edge ~vivj ∈

E(G(0)) and since G(1) is the one step transitive closure of G(0), we

have that ~vivj ∈ E(G(1)). If E(i,j) /∈ Σβ
(0) ⇒ E(i,j)∈[Σβ

(0),Σβ
(0)] ⇒ ∃

E(i,k), E(k,j) ∈ Σβ
(0) such that E(i,j) = [E(i,k), E(k,j)]. Since E(i,k), E(k,j)∈

Σβ
(0) then ~vivk and by definition ~vkvj ∈ E(G(0)) ⇒ so from one step

transitive closure ~vivj ∈ E(G
(1)).

Induction step: Let us assume that the argument holds for i =

m; we will prove that it also holds for i = m + 1. By definition,

Σβ
(m+1) = Σβ

(m)⊕[Σβ
(m),Σβ

(m)], and G(m+1) is the one step transitive

closure of G(m). So, if we consider G(m) as a new G(0) and Σβ
(m) as

a new Σβ
(0) we can follow the procedure described in the basis step

and we can prove that G(m+1) is graph that corresponds to Σβ
(m+1).

This concludes the induction.

If the one step transitive closure does not increase the number

of edges, we get the final graph ḠΣβ
. By definition, the graph ḠΣβ

corresponds to {Σβ}LA. Based on proposition 5.4.4, we are ready to

establish the following corollary.

Corollary 5.4.5. The complete directed graph with self-loop at each vertex

is denoted by Kd,n. ḠΣβ
= Kd,n if and only if {Σβ}LA = sl(n).
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Proof. Let us assume that ḠΣβ
= Kd,n. We can see that since Σβ

(0)

has trace zero then every Σβ
(i) has trace zero, because the Lie bracket

of traceless matrices is a traceless matrix. Given Σβ⊆sl(n), based on

proposition 5.4.4, we can see that the graph ḠΣβ
= Kd,n corresponds

to sl(n). This is because, for every edge ~vivj∈E(ḠΣβ
) with i6=j, there

exists the matrixE(i,j)∈sl(n). For a self-loop ~vivi∈E(ḠΣβ
), there exists

the matrix E(i,i) − E(j,j)∈sl(n), i 6=j. Conversely, if {Σβ}LA = sl(n),

from proposition 5.4.4, we have that for the matrix E(i,j)∈sl(n) there

exists a directed edge ~vivj∈E(ḠΣβ
). For the matrix E(i,i)−E(j,j)∈sl(n)

there exists a self-loop ~vivi∈E(ḠΣβ
). Thus, ḠΣβ

= Kd,n.

Theorem 5.4.6. ḠΣβ
= Kd,n if and only if the system (5.5) with Σβ⊆sl(n)

is controllable for almost every pair B1, B2 in Σβ .

Proof. From corollary 5.4.5, ḠΣβ
= Kd,n if and only if {Σβ}LA = sl(n).

From lemma 5.2.7 we have that sl(n) is a transitive Lie algebra.

Thus, {Σβ}LA = sl(n) if and only if there exist B1, B2 in Σβ such

that system 5.5 is controllable. From theorem 5.3.4 the controllabil-

ity is a generic property for bilinear systems. Thus, we have that

{Σβ}LA = sl(n) if and only if system 5.5 is controllable for almost

every pair B1, B2 in Σβ .

At this point, we have a result which relates the structure of the

final graph GΣβ
corresponding to {Σβ}LA with the controllability of

system (5.5). Based on graph theoretic results, we would like to relate

the structure of the initial graph G corresponding to Σβ with the con-

trollability of system (5.5). To this end, we introduce the following

lemma.

Lemma 5.4.7. ḠΣβ
= Kd,n if and only if the initial graph G(0) is strongly

connected.

Proof. For the necessity, if G(0) is strongly connected then ∀ vi, vj ∈

V (G(0)), 1≤i, j≤n, there exists a directed path from vi to vj . Under

transitive closure the path is reduced to a directed edge connecting

vi to vj . Thus, if the initial graph G(0) is strongly connected then un-

der transitive closure we get a complete directed final graph. For the

sufficiency, let us assume that ḠΣβ
= Kd,n. In ḠΣβ

, we consider a di-

rected edge ~vivj where vi, vj ∈V (G(0)). If the edge ~vivj existed in the

initial graphG(0) we have a path between vi and vj inG(0). If the edge
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~vivj appeared in the k-th step of the transitive closure then in the (k-

1)-th step there exists vertex vk∈G
(k−1) such that the directed edges

~vivk, ~vkvj ∈E(G
(k−1)). Moving backwards, we repeat recursively the

same argument for the pair of vertices vi, vk and for the pair of ver-

tices vk, vj . We conclude that the initial graph contains a directed

path from vi to vj . Thus, the initial graph is strongly connected.

Now, we are ready to provide the following theorem.

Theorem 5.4.8. The initial graphG(0) corresponding to Σβ⊆sl(n) is strongly

connected if and only if the system (5.5) is controllable for almost all pairs

B1, B2 in Σβ .

Proof. Based on lemma 5.4.7, G(0) is strongly connected if and only

if ḠΣβ
= Kd,n. From theorem 5.4.6 ḠΣβ

= Kd,n, if and only if system

(5.5) is controllable for almost all pairs B1, B2 in Σβ⊆sl(n).

5.4.1 The so(n) + aI case

Slightly easier is the examination of the case of the controllability

of bilinear systems where aI⊆Σβ⊆so(n) + aI , a∈R. In this case, we

work on undirected graphs. Similar to definition 5.4.1, we give the

following definition.

Definition 5.4.9. Let aI⊆Σβ⊆so(n) + aI , a∈R be an SMS. The graph

G, corresponding to the vector space Σβ of n×n matrices, is defined as the

undirected graph of n vertices v1, v2, . . ., vn for which the edge vivj ∈E(G)

if and only if there exists a matrix A ∈Σβ for which it holds that A(i, j) 6=0

and A(j, i) 6=0.

The definitions 5.4.2 and 5.4.3 remain unchanged given that we

consider the definition of the one-step transitive closure for the case

of undirected graphs, which means that we do not care about the di-

rection of the edges but only about the existence. Following a similar

procedure as in proposition 5.4.4, we establish the correspondence

between Σβ
(i) and G(i).

Proposition 5.4.10. Given an SMS aI⊆Σβ⊆so(n) + aI , a∈R, the corre-

sponding SMS of G(i) is Σβ
(i).

Proof. We proceed by induction on i.

Induction Basis (i=0): We have Σβ
(0):=Σβ and let G(0) be the graph
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corresponding to Σβ
(0). Let Σβ

(1):=Σβ
(0)⊕[Σβ

(0),Σβ
(0)] and let G(1)

be the graph resulting from the one step closure of G(0). We prove

that G(1) is the corresponding graph of the SMS Σβ
(1). First, we

prove that for every edge vivj i 6=j there exists a matrix A ∈ Σβ
(1)

such that A(i, j) 6=0 and A(j, i) 6=0. For an edge vivj ∈ E(G
(1)) and vivj

∈ E(G(0)) then E(i,j) + E(j,i) ∈Σβ
(0)⇒E(i,j) + E(j,i) ∈Σβ

(1). So, let us

assume that for vi, vj ∈ V (G(0)) the edge vivj ∈ E(G(1)) and vivj /∈

E(G(0)). Then there exist vk ∈ V (G(0)) such that vivk ∈ E(G(0)) and

vkvj ∈ E(G(0)). This implies that the matrices A1 = E(i,k) + E(k,i)

and A2 = E(k,j) +E(j,k) are in Σβ
(0). So, [E(i,k) +E(k,i), E(k,j) +E(j,k)] =

[E(i,k), E(k,j)]+[E(i,k), E(j,k)]+[E(k,i), E(k,j)]+[E(k,i), E(j,k)] = E(i,j)+E(j,i).

Thus, E(i,j) + E(j,i) ∈Σβ
(1). So, in both cases, namely vivj /∈ E(G(0))

and vivj ∈ E(G(0)), we have that E(i,j) + E(j,i)∈Σβ1, where Σβ
(1) =

Σβ
(0)⊕[Σβ

0,Σβ
0]. For the self-loop vivi, we know that aI∈Σβ

(0) and

since Σβ
(1):=Σβ

(0)⊕[Σβ
(0),Σβ

(0)], it holds that aI∈Σβ
(1).

Second, we prove that for i 6=j if E(i,j) + E(j,i) ∈Σβ
(1) = Σβ

(0)⊕

[Σβ
0,Σβ

0] then the edge vivj ∈ E(G(1)). If E(i,j) + E(j,i) ∈ Σβ
(0) then

by definition the edge vivj ∈ E(G(0)) and since G(1) is the one step

transitive closure of G(0), we have that vivj ∈ E(G(1)). If E(i,j) + E(j,i)

/∈ Σβ
(0) ⇒ E(i,j)+E(j,i) ∈[Σβ

(0),Σβ
(0)]⇒∃ E(i,k)+E(k,i), E(j,k)+E(k,j) ∈

Σβ
(0) that give E(i,j) = [E(i,k) + E(k,i), E(j,k) + E(k,j)]. So, vivk and vkvj

∈ E(G(0)). So from one step transitive closure vivj ∈ E(G(1)). For the

matrix aI∈Σβ
(1) we know that G(0) contains all self-loops and from

one-step transitive closure G(1) contains all self-loops.

Induction step: Let us assume that the argument holds for i = m.

By definition, Σβ
(m+1) = Σβ

(m)⊕[Σβ
(m),Σβ

(m)], and G(m+1) is the one

step transitive closure of G(m). So, if we consider G(m) as a new G(0)

and Σβ
(m) as a new Σβ

(0), we can follow the procedure described in

the basis step and we can prove that G(m+1) is the graph that corre-

sponds to Σβ
(m+1). This concludes the induction.

Corollary 5.4.11. ḠΣβ
= Kn if and only if so(n) + aI = {Σβ}LA, a∈R.

By Kn we denote the complete graph with self-loop at each vertex.

Proof. Let us assume that ḠΣβ
= Kn. Given aI⊆Σβ⊆so(n)+aI , based

on proposition 5.4.10, we can see that the graph ḠΣβ
= Kn corre-

sponds to so(n) + aI . This is because, for every edge ~vivj∈E(ḠΣβ
)

with i6=j, there exists the matrix E(i,j) + E(j,i)∈so(n) + aI . For a



5.5. Multiple patterns case 39

self-loop ~vivi∈E(ḠΣβ
), there exists the matrix aI∈so(n) + aI . Con-

versely, if {Σβ}LA = so(n) + aI , from proposition 5.4.10, we have

that for the matrix E(i,j) + E(j,i)∈so(n) + aI there exists a directed

edge ~vivj∈E(ḠΣβ
). For a matrix aI∈so(n) + aI there exist the self-

loops ~vivi∈E(ḠΣβ
), 1≤i≤n. Thus, ḠΣβ

= Kn.

Theorem 5.4.12. ḠΣβ
= Kn if and only if the system (5.5) with aI⊆Σβ⊆

so(n) + aI is controllable for almost every pair B1, B2 in Σβ .

Proof. From corollary 5.4.11, ḠΣβ
= Kn if and only if {Σβ}LA =

so(n) + aI . From lemma 5.2.8 we have that so(n) + aI is a transitive

Lie algebra. Thus, {Σβ}LA = so(n) + aI if and only if there exist B1,

B2 in Σβ such that system (5.5) is controllable. From theorem 5.3.4

the controllability is a generic property for bilinear systems. Thus,

we have that {Σβ}LA = so(n) + aI if and only if system (5.5) is con-

trollable for almost every pair B1, B2 in Σβ .

Furthermore, the graph theoretic result of lemma 5.4.7 is updated

to lemma 5.4.13.

Lemma 5.4.13. GΣβ
= Kn if and only if the initial graphG(0) is connected,

where Kn is the complete graph with self-loop at each vertex.

Proof. Since aI⊆Σβ⊆so(n) + aI , a∈R every graph has a self-loop at

each vertex. The remaining part of the proof is the same as in lemma

5.4.7, given that we care about a path, not a directed path, between

two vertices vi, vj ∈V (G(0)).

Now, we can provide the following theorem which is equivalent

to theorem 5.4.8 for aI⊆Σβ⊆so(n) + aI , a∈R.

Theorem 5.4.14. Let aI⊆Σβ⊆so(n)+aI , a∈R. The initial graphG(0) cor-

responding to Σβ is connected if and only if the system (5.5) is controllable

for almost all pairs B1, B2 in Σβ .

Proof. Based on lemma 5.4.13, G(0) is connected if and only if GΣβ
=

Kn. From theorem 5.4.12, GΣβ
= Kn if and only if system (5.5) is

controllable for almost all pairs B1, B2 in Σβ .

5.5 Multiple patterns case

In this section, we investigate the case of multiple patterns, meaning

that in system (5.2) we haveBℓ ∈ Σβ1
∪Σβ2

∪ . . .∪Σβk
, where k≤m and
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ℓ ∈ {1, . . . ,m}. First, we extended proposition 5.3.1 for two patterns

Σβ1
, Σβ2

.

5.5.1 On the realization of bilinear systems with mul-

tiple patterns

Proposition 5.5.1. Let Σβ1
, Σβ2

be two SMS. Let Σβ1

⊕

Σβ2
⊂g be a sub-

space of dimension n < dimg and such that {Σβ1

⊕

Σβ2
}LA = g. Then

there existB1, B2 ∈ Σβ1
andB3, B4 ∈ Σβ2

such that {B1, B2, B3, B4}LA =

g.

Proof. According to definition 5.2.13, we have

{Σβ1

⊕

Σβ2
}LA = {Σβ1

}LA
⊕

{Σβ2
}LA

⊕

{L(Σβ1
,Σβ2

)}LA. From propo-

sition 5.3.1 there exist B1, B2 ∈Σβ1
such that {Σβ1

}LA = {B1, B2}LA

and there exist B3, B4 ∈Σβ2
such that {Σβ2

}LA = {B3, B4}LA. Further-

more, we prove that

{L(Σβ1
,Σβ2

)}LA⊆{B1, B2, B3, B4}LA: Let u ∈{L(Σβ1
,Σβ2

)}LA ⇒

u =
∑k

i=1 ciAi, where Ai∈L(Σβ1
,Σβ2

). Ai is a Lie bracket of arbitrary

length which contains elements from Σβ1
and from Σβ2

. In addi-

tion, Σβ1
⊆{B1, B2}LA and Σβ2

⊆{B3, B4}LA ⇒ Ai∈{B1, B2, B3, B4}LA

⇒ u∈{B1, B2, B3, B4}LA. So, after substitution {Σβ1

⊕

Σβ2
} = {B1, B2}LA

⊕

{B3, B4}LA
⊕

{B1, B2, B3, B4}LA = {B1, B2, B3, B4}LA.

We can see that there exist no matrices A ∈ Σβ1
and B ∈ Σβ2

such that {A,B}LA = g. Furthermore, there exist no A1, A2 ∈ Σβ1

and B1∈Σβ2
such that {A1, A2, B1}LA = g; neither A1 ∈ Σβ1

and

B1, B2∈Σβ2
such that {A1, B1, B2}LA = g. As a counterexample, we

provide the following two vector spaces:

Σβ1
=























0 ∗ 0 0 0 0

0 0 ∗ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0























Σβ2
=























0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∗ 0 0 0 ∗ 0

0 0 0 0 0 ∗

0 0 0 0 0 0























.

Based on proposition 5.5.1, we have the following theorem which

extends theorem 5.3.3 for the two pattern case.

Theorem 5.5.2. The system (5.2) whereBℓ ∈ Σβ1
∪Σβ2

where ℓ ∈ {1, . . . ,m},

m≥4, with at least two matrices in Σβ1
and at least two matrices in Σβ2

, is
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structurally controllable if and only if the system

ẋ = u1B1x+ u2B2x+ u3B3x+ u4B4x (5.6)

is structurally controllable, with B1, B2 ∈ Σβ1
and B3, B4 ∈ Σβ2

.

Proof. Let {Σβ1

⊕

Σβ2
}. If system (5.6) is structurally controllable then

there exist B1, B2 ∈ Σβ1
and B3, B4 ∈ Σβ2

so that {B1, B2, B3, B4}LA =

g and as a result {B1, B2, B3, B4, . . . , Bm}⊇g for arbitrary B5, . . ., Bm

which implies that system (5.2) is structurally controllable. For the

converse, if system (5.2) is structurally controllable then there exist

B1, B2, . . ., Bm in Σβ1
∪Σβ2

with at least two matrices in Σβ1
and at

least two matrices in Σβ2
such that {B1, B2, . . . , Bm}LA = g. Set Σ =

Σβ1

⊕

Σβ2
. Then by proposition 5.5.1, there exist B1, B2 ∈ Σβ1

and

B3, B4 ∈ Σβ2
so that {B1, B2, B3, B4}LA = g which implies that system

(5.6) is structurally controllable.

If in system (5.2) there exist only one matrix in Σβ1
and at least

two matrices in Σβ2
then system (5.2) is structurally controllable if

and only if the system

ẋ = u1B1x+ u3B3x+ u4B4x (5.7)

is structurally controllable withB1 ∈ Σβ1
andB3, B4 ∈ Σβ2

. Similarly,

if in system (5.2) there exist only one matrix in Σβ2
and at least two

matrices in Σβ1
then system (5.2) is structurally controllable if and

only if the system

ẋ = u1B1x+ u2B2x+ u3B3x (5.8)

is structurally controllable with B1, B2 ∈ Σβ1
and B3 ∈ Σβ2

.

We observe that theorem 5.5.2 is useful when m≥5. We can eas-

ily extend theorem 5.5.2 to cases of more than two patterns using

induction on the number of patterns with basis step theorem 5.5.2;

we need two matrices for each different pattern.

Theorem 5.5.3. The system (5.2) where Bℓ ∈ Σβ1
∪Σβ2

∪ . . .∪Σβk
, where

k≤m and ℓ ∈ {1, . . . ,m}, with at least two matrices in each Σβi
, 1≤i≤k,
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is structurally controllable if and only if the system

ẋ =uβ1,1Bβ1,1x+ uβ1,2Bβ1,2x+ uβ2,1Bβ2,1x+ uβ2,2Bβ2,2x+ . . .

+ uβk,1Bβk,1x+ uβk,2Bβk,2x
(5.9)

is structurally controllable, with Bβi,1, Bβi,2 ∈ Σβi
, 1≤i≤k.

Proof. We proceed by induction on k. The induction basis k = 2

is proven in theorem 5.5.2. For the induction step let us assume

that the hypothesis holds for k; we prove that it also holds for k + 1.

Let us consider a bilinear system where Bℓ ∈ Σβ1
∪Σβ2

∪ . . .∪Σβk+1
,

where k+1≤m and ℓ ∈ {1, . . . ,m}, with at least two matrices in each

Σβi
, 1≤i≤k. Let us assume that there exists one Σβi

such that there

exist at least 3 matrices that belong to it. Without loss of generality,

let us assume that i = k + 1. If such a Σβi
does not exist then the

statement is true by definition. So, by proposition 5.3.1, system (5.2)

is structurally controllable if and only if the system

ẋ =
∑

l:Bl∈Σβ1
∪...∪Σβk

ulBlx+ uβk+1,1Bβk+1,1x+ uβk+1,2Bβk+1,2x (5.10)

is structurally controllable. Then, by the induction hypothesis, which

says that there exist Bβi,1, Bβi,2 ∈ Σβi
, 1≤i≤k, such that

{span(Bβi,1, Bβi,2, 1≤i≤k)}LA = {span(Bl∈Σβ1
∪ . . .∪Σβk

)}LA, we know

that system (5.10) is structurally controllable if and only if the system

ẋ =uβ1,1Bβ1,1x+ uβ1,2Bβ1,2x+ uβ2,1Bβ2,1x+ uβ2,2Bβ2,2x+ . . .

+ uβk,1Bβk,1x+ uβk,2Bβk,2x+ uβk+1,1Bβk+1,1x+ uβk+1,2Bβk+1,2x

(5.11)

is structurally controllable. This concludes the induction.

In case we do not have at least two matrices in each pattern we

establish the following theorem.

Theorem 5.5.4. We consider system (5.2) with Bℓ ∈ Σβ1
∪Σβ2

∪ . . .∪Σβk
,

where k≤m and ℓ ∈ {1, . . . ,m}. Furthermore, we assume that the summa-

tion has at least two matrices from each Σβi
, 1≤i≤r and only one matrix

from each Σβj
, r+1≤j≤k. Then system (5.2) is structurally controllable if
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and only if the system

ẋ =uβ1,1Bβ1,1x+ uβ1,2Bβ1,2x+ . . .+ uβr,1Bβr,1x+ uβr,2Bβr,2x

+
∑

i:Bi∈Σβj
,r+1≤j≤k

uiBix
(5.12)

is structurally controllable, with Bβi,1, Bβi,2 ∈ Σβi
, 1≤i≤r.

All the results developed for two patterns can be inductively ex-

tended to cases of more than two patterns.
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Chapter 6

Conclusion

We have studied the structural controllability of sparse bilinear sys-

tems in the single pattern case as well as in the multiple pattern

case. For both cases, we provided theorems about the realization

of controllable bilinear systems which significantly extend the re-

sults of Boothby and Wilson (1979). We defined the notion of the

graph which corresponds to one or more patterns and we provided

a theory that relates the connectivity of the graph with the structural

controllability of the bilinear system. Our results for the two pat-

terns case can be inductively generalized for more than two patterns.

We proved that the controllability of bilinear systems is a generic

property in the single pattern as well as in the multiple pattern case.

Given that a bilinear system is structurally controllable, the generic

property permit us to conclude that the bilinear system is control-

lable for almost all matrices in the given vector space.

6.1 Future directions

The controllability and the structural controllability of bilinear sys-

tems with drift term is still an open issue; see Elliot (2009). For the

linear systems, the structural observability is directly derived from

the structural controllability results due to duality. However, in the

bilinear systems the duality property between controllability and ob-

servability does not hold. Thus, the analysis of the structural observ-

ability of bilinear systems, either driftless or with drift term, is an

open research topic. Finally, the theories developed from the analy-

sis of the structural controllability of linear and bilinear systems can

be used in the investigation of the properties of complex networks.
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