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Abstract 

In sagebrush (Artemisia tridentata Nutt.) communities, the expansion and infilling of 

conifers decreases perennial vegetation cover and density, and lowers ecosystem resilience and 

resistance of the shrub-grass dominated state. Successional trajectories following disturbance 

are highly dependent upon residual species abundance, composition, and resulting structure. 

Understanding how tree dominance and tree-reduction treatments interact over time will help 

inform state-and-transition-models to guide management. Juniper (Juniperus spp. L.) and 

pinyon (Pinus spp. L.) trees were reduced by prescribed fire and cutting at 10 sites across the 

western United State. Vegetation cover and density were measured on untreated and treated 

plots across a gradient of tree dominance index (TDI, defined as tree cover / (tree + shrub + tall 

grass cover)) 3 and 6 years after treatment. I analyzed responses by functional group using 

mixed model analysis of covariance, with TDI treated as a covariate. As tree cover increased and 

TDI approached 0.5 (22% tree cover), shrub cover declined to 25% of the maximum. Three 

years after treatments, prescribed fire reduced both shrub and perennial herbaceous cover. 

Although total shrub cover returned to pre-burn percentages 6 years after treatment, it was 

still much lower than on the unencroached reference state and sagebrush cover was still < 1%. 

Six years after cut treatments, total shrub cover increased by 7% and sagebrush cover increased 

by 2.2% compared to no treatment. Tall perennial grasses are especially important in resisting 

dominance by invasive species such as cheatgrass (Bromus tectorum L). By 6 years after 

treatment, tall grass and cheatgrass cover both increased on prescribed fire and cut treatments, 

especially at higher pretreatment TDI. However, ratios of cheatgrass to tall grass cover were 

much lower on cut than on burn plots. This outcome suggests that system resistance to 
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cheatgrass dominance is best supported by tree cutting. To retain the shrub, and especially 

sagebrush, components on a site and increase ecosystem resilience and resistance through 

increases in tall grasses, I recommend treating at low to mid TDI and using mechanical 

methods, such as cutting or mastication. Differential effects of prescribed fire compared to 

mechanical tree reduction, when implemented at different phases of tree dominance, should 

be incorporated into state-and-transition-models to clarify transitional effects and state 

outcomes. 
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Introduction 

Since the late 1800’s, semi-arid lands around the world have been experiencing 

increased cover of woody vegetation (Archer et al., 1995; Miller and Tausch, 2001; Archer and 

Predick, 2014). In the western United States (US), woody conifers such as juniper (Juniperus 

spp. L.) and pinyon pine (Pinus spp. L.) are expanding and infilling in rangelands at an 

unprecedented rate (Miller et al., 2000; Brockway et al., 2002; Miller et al., 2008; Floyd and 

Romme, 2012; O’Connor et al., 2013). In sagebrush (Artemisia tridentata Nutt.) communities, 

the expansion and infilling of juniper and pinyon can lead to altered fire regimes, increased soil 

erosion, and decreased shrub and herbaceous cover (Burkhardt and Tisdale, 1976; Tausch and 

West, 1995; Miller et al., 2000; Miller and Tausch, 2001; Bates et al., 2005; Ansley et al., 2006; 

Pierson et al., 2007; Roundy et al., 2014a). Increased canopy fuel loads (Young et al., 2015) and 

decreased understory cover (Roundy et al., 2014a) as trees expand and infill may result in 

severe fire followed by annual weed dominance, increased fire frequency, and loss of 

ecosystem services.  

Woodland expansion can cause declines in many sagebrush obligate species and is 

considered a threat to greater sage-grouse (Centrocercus urophasianus), a species of serious 

conservation concern (Rowland et al., 2008). Baruch-Mordo et al. (2013) found that sage-

grouse leks did not remain active once conifer canopy cover exceeded 4%. Miller et al. (2008) 

estimated that in the western portion of sage-grouse habitat, 75% of sagebrush steppe 

encroached by these conifers may become heavily-dominated by trees within 40-50 years.  
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Tree removal has been used to restore structure and function to these communities 

(Brockway et al., 2002; O’Connor et al., 2013). However, successional trajectories following 

disturbance are dependent upon residual species abundance, composition, and resulting 

structure on a site (Bates et al., 2005; Briske et al., 2008; Bates et al., 2013; Miller et al., 2014 a, 

2014b; Roundy et al., 2014a). As tree cover increases, both shrub and herbaceous cover 

decrease, with shrubs displaying a greater sensitivity (Tausch and West, 1995; Roundy et al., 

2014a; Bybee et al., 2016). After tree removal, if shrub and herbaceous cover have already 

declined, these missing components of the community can be replaced by invasive species 

(Young et al., 2013a, 2013b, 2014). For this reason, pretreatment tree dominance plays a vital 

role in steering the successional trajectories of these systems following disturbance (Miller et 

al., 2000; Archer et al., 2011; Miller et al., 2014a; Roundy et al., 2014a).  

State-and-Transition-Models 

Resilience theory and state-and-transition-models (STMs) are useful tools for making 

land management decisions that will improve ecosystem conditions (Bestelmeyer et al., 2003; 

Stringham et al., 2003; Bestelmeyer et al., 2004; Briske et al., 2008; Bagchi et al., 2013; 

Chambers et al., 2014b; Miller et al., 2014a). The development of STMs requires an 

understanding of underlying ecological site potential, ecosystem processes, ecological 

thresholds, and successional trajectories given pretreatment site conditions and the treatment 

method employed (Chambers et al., 2014b; Miller et al., 2014b; Roundy et al., 2014a). 

Ecological resilience describes the ability of a system to regain structure and function after 

disturbance or stress (Chambers et al., 2014b).  
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Higher resilience would be indicated by a return to a pre-disturbance or pre-stressed 

state, as quantified by similar vegetation cover and composition as the reference (pre-

disturbance or pre-stressed) state. System resilience is a function of site biotic and 

environmental characteristics that are currently being characterized by management agencies 

in the form of ecological site descriptions (Chambers et al., 2014a, 2014b). Resilience for an 

ecological site is also a function of the type of disturbance or stressor (Roundy et al., 2014a; 

Bybee et al., 2016), however proposed models for sagebrush steppe systems have not specified 

effects of different tree reduction treatments on resilience (Chambers et al., 2014b).  

Ecological resistance is a system’s ability to maintain its current state when exposed to 

stressors (Briske et al., 2008; Chambers et al., 2014b). Evaluation of management actions (e.g. 

prescribed fire vs. tree cutting) and successional timing (implementation across a gradient in 

pretreatment tree dominance) is needed to determine how to best reinforce a restoration 

trajectory (Briske et al., 2008) toward a reference state considered to be desirable (enhance 

resilience) and resist a trajectory to an undesirable state (weed dominance). In sagebrush 

communities, shrubs and perennial bunchgrasses serve to maintain natural fire regimes, resist 

invasive species, and decrease erosion and can help to increase ecological resistance (Burkhardt 

and Tisdale, 1976; Tausch and West, 1995; Miller et al., 2000; Miller and Tausch, 2001; Bates et 

al., 2005; Ansley et al., 2006; Pierson et al., 2007; Roundy et al., 2014a).  

Response from Tree Removal Treatments 

Following prescribed fire, sites in the Great Basin region typically experience an increase 

in cheatgrass (Bromus tectorum L.), a reduction in fire-intolerant shrubs and short-term 
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reduction in perennial grasses, with perennial grasses typically recovering within a few years 

after treatment (Bates et al., 2013; Miller et al., 2013; Chambers et al., 2014b; Miller et al., 

2014b; Roundy et al., 2014a). By 3 years after treatment, mechanical treatments, such as 

cutting or mastication, conducted at low to mid-levels of tree dominance can to increase 

resistance to cheatgrass, preserve shrub cover and result in a more rapid recovery of perennial 

herbaceous cover than prescribed fire (Miller et al., 2014b; Roundy et al., 2014a; Bybee et al., 

2016). When prescribed fire is used, and when mechanical treatments are implemented at high 

tree dominance, treatments result in an herbaceous-dominated site 3 years after treatment 

due to the loss of shrubs from tree infilling or fire (Roundy et al., 2014a).  

Cheatgrass 

A major concern for sagebrush ecosystems is the potential crossing of a biotic threshold, 

where, after disturbance, invasive annuals such as cheatgrass dominate, and recovery of 

perennial vegetation is unlikely without control of invasive annuals and seeding of native 

species. Structure, abundance, and composition of perennial herbaceous vegetation, especially 

tall grasses, and biological soil crusts are important in limiting cheatgrass invasion and 

dominance (Chambers et al., 2007; Blank and Morgan, 2012; Reisner et al., 2013; Miller et al., 

2014a). Tall grasses increase resistance to cheatgrass invasion by limiting the availability of gaps 

for establishment, and reducing water and nutrient availability (Blank and Morgan, 2012; 

Reisner et al., 2013), whereas biological soil crusts restrict root penetration and growth within 

interspaces (Serpe et al., 2008). Compared to prescribed fire, mechanical treatments result in 

greater resistance to cheatgrass dominance through retention of shrubs, increases in tall 

grasses, and greater cover of biological soil crusts (Miller et al., 2014a, 2014b; Roundy et al., 
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2014a; Bybee et al., 2016). Sites in which treatments are conducted at high tree dominance are 

more likely to experience increases in cheatgrass cover due to lower perennial herbaceous and 

shrub cover prior to treatment and thus higher availability of resources (Bates et al., 2013). Soil 

temperature and moisture regimes also influence a site’s resistance to invasion, with warm and 

dry sites displaying lower resistance (Chambers et al., 2014a; Miller et al., 2014a). 

Objectives  

The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is a collaborative 

research effort initiated, in part, to aid in the development of STMs for sagebrush ecosystems 

by examining ecological responses to vegetation treatments across the Great Basin region. 

Here, I use SageSTEP data to determine the effects of pretreatment tree dominance and 

treatment method on plant succession 6 years after tree removal treatments were 

implemented.  

Roundy et al. (2014a) examined the 3-year, post-treatment results of the woodland 

portion of the SageSTEP study and concluded that to maintain the shrub community; 

treatments should be implemented at low to mid tree dominance using mechanical treatments 

that can selectively remove trees, leaving the shrubs intact. If treatments are implemented at 

high tree dominance using mechanical treatments or at any level of tree dominance using 

prescribed fire, the community will shift to an herbaceous-dominated site and may require 

replanting of shrubs. Cheatgrass cover was greatest on prescribed fire treatments, especially 

when implemented at high pretreatment tree dominance. Cheatgrass cover was lower on 

mechanical treatments, but increased at high pretreatment tree dominance. Perennial grass 
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cover exceeded that of cheatgrass at most study locations. Roundy et al. (2014a) concluded 

that more time after treatment was needed to determine the effects of treatment and 

pretreatment tree dominance on resistance and resilience of these communities. Further 

research is needed to determine how fast shrubs recover and whether perennial grasses or 

cheatgrass dominate over time. My study is an essential follow-up to these results to determine 

how successional trajectories have changed from 3 to 6 years post-treatment in an effort to 

predict how these communities will ultimately respond to conifer removal treatments. My 

study is unique in that it includes data from sites across the Great Basin region representing a 

wide range of biotic and abiotic characteristics, and because it describes regional vegetation 

responses to a range of pretreatment tree dominance.  

For my study, I will discuss ecological resilience and resistance as related to the 

reference state, or cover and composition on untreated plots at minimal tree cover. Increases 

in perennial herbaceous cover and shrub cover following conifer removal treatments will signify 

increased ecosystem resilience, whereas ecological resistance will be indicated by cheatgrass 

response to treatment and pretreatment tree dominance. My primary question was how did 

tree reduction treatments and pretreatment tree dominance affect vegetation at 6 years 

compared to 3 years post treatment? I was especially interested in sagebrush recovery and 

dominance of perennial herbaceous vegetation as indicators of resilience and lack of cheatgrass 

cover as an indicator of resistance. I hypothesize that on cut treatments, perennial herbaceous 

cover and shrub cover will continue to increase and thus limit cheatgrass invasion, indicating 

higher ecosystem resilience and resistance. On burn treatments, I expect that cheatgrass cover 

will continue to increase and shrub cover will remain low.  
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Methods 

Study Area 

This study consisted of 10 conifer-encroached or wooded shrubland sites (Romme et al., 

2009) located across the Great Basin region (Figure 1, Table 1): four western juniper (Juniperus 

occidentalis Hook.) sites in Oregon and northern California, three single-leaf pinyon (Pinus 

monophylla Torr. & Frém.)-Utah juniper (Juniperus osteosperma Engelm.) sites in central and 

eastern Nevada, one Utah juniper site in Utah, and two Colorado pinyon (Pinus edulis Engelm.)-

Utah juniper sites in Utah (McIver et al., 2010; Miller et al., 2014b; Roundy et al., 2014a, 

2014b). These sites all contain sagebrush (Artemisia spp. L.) communities on loamy soils 

(Roundy et al., 2014b).  

Elevation, soils, and climate vary widely among sites and across the study region. 

Elevation is highest in the middle of the Great Basin and lower on the western and eastern 

edges. Sites in the northwestern portion of the Great Basin consist of basalt-derived soils with 

the majority of precipitation falling between November and June (McIver et al., 2010; Miller et 

al., 2014b; Roundy et al., 2014a, 2014b). Sites in the central and eastern portion of the Great 

Basin include igneous-, metamorphic-, and sedimentary-based soils with less precipitation 

between November and June, and variable summer precipitation (Roundy et al., 2014a, 2014b). 

The wide distribution of my study sites allows me to determine regional responses to 

treatments. 
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Experimental Design and Treatments 

 The study design was a randomized complete block with each study site being 

considered as a block and receiving two treatments and an untreated control. Within each 

block, both cutting (cut) and prescribed fire (burn) treatments, as well as the untreated control, 

were randomly assigned to 8-ha to 20-ha plots. All three plots were placed on sites with similar 

topographic position, soils, and vegetation, and were fenced where necessary, to exclude 

livestock (Miller et al., 2014b). Vegetation treatments were applied in a staggered-start design 

from 2006 to 2009, and vegetation was intensively monitored 3 and 6 years post-treatment. 

Fire treatments consisted of low to moderate severity broadcast burns applied once 

between August and November. Cut treatments were applied within six months of fire 

treatments between the months of September and November (McIver et al., 2010; Miller et al., 

2014b). These treatments involved cutting all trees > 2 m in height and leaving the slash on the 

ground across the contour (McIver et al., 2010). Tree canopy cover was reduced to < 5% on 

burned treatments and < 1% on mechanical treatments (Roundy et al., 2014a). 

Vegetation Measurements 

Within each treatment and control plot, 15 0.1-ha (30-m × 33-m) subplots were 

randomly placed across a tree dominance gradient (Miller et al., 2014b, Roundy et al., 2014a) 

and marked using steel stakes. Subplots were established and placed to span a gradient of 

pretreatment tree dominance index (TDI, defined as: tree cover/ [tree + shrub + tall grass 

cover]). TDI is a useful indicator of pretreatment tree dominance across many sites because it 

expresses tree cover relative to cover of all the major competitors for resources (Ryel et al., 
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2008, 2010; Roundy et al., 2014a, 2014b). Sufficient subplots were located to allow a subset to 

be randomly selected across the range of TDI. Vegetation was measured within all subplots 

prior to treatment (year 0) and intensively 3 and 6 years post-treatment. A 30-m baseline was 

established within each subplot with 5 permanent transects placed at 2 m, 7 m, 15 m, 23 m, 

and 28 m. The point intercept method (Herrick et al., 2009) was used to sample plant cover by 

species and ground cover groups every 0.5 m along each transect for a total of 300 points for 

each subplot and 4,500 points per treatment plot. Cover data were then categorized into shrub, 

tall grass (deep-rooted), short grass (shallow-rooted; only Sandberg bluegrass (Poa secunda J. 

Presl) was considered short grass in this study), perennial, annual, exotic forb, cheatgrass, and 

bare ground cover. Foliar cover for each functional group was recorded as a single hit for each 

point if the point came in contact with any member of that functional group. More than one 

functional group could be recorded at a single point. Bare ground was only recorded if it was 

the first and only hit at a point. From these data, percentage of cover for each subplot was 

calculated.  

Density was measured in 0.25-m2 quadrats every odd-meter along the 7 m, 15 m, and 

23 m transects for tall perennial grasses, nonrhizomatous perennial forbs, and shrub species  

< 50 mm in height for a total of 45 quadrats per subplot. Tree canopy cover was estimated for 

all trees > 0.5 m in height by measuring the longest crown diameter and the perpendicular 

crown diameter. These measurements were used to calculate crown area ( ) for each tree 

using the formula              , where D1 is the longest crown diameter and D2 is the 

perpendicular to D1. The summation of crown area for all trees in the subplot was used to 

estimate total tree canopy cover. All other variables were measured prior to treatment and will 
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continue for a minimum of 10 years post treatment, with intensive monitoring every 3 years 

(McIver et al., 2010).  

Analysis 

I analyzed data by functional group using mixed model analysis of covariance (Littell et 

al., 2006; Proc Glimmix, SAS v9.4, SAS Institute, Inc., Cary, NC; Roundy et al., 2014a). I 

normalized non-tree cover data using the logit transformation and density data using the 

square-root transformation prior to analysis (Warton and Hui, 2011). Treatment and year since 

treatment (YST; 3 and 6) were considered fixed factors, whereas location was considered 

random. Because data were only at two points in time, it was not possible to calculate a time 

series variance structure (repeated measures). By adding subplot as a random term in the 

model, Proc Glimmix accounted and adjusted for the data correlation between 3 and 6 YST 

measurements on the same subplots. I considered pretreatment TDI a covariate and it was not 

transformed. When covariate by main effect interactions were not significant (P > 0.05), I 

removed them from the model (Littell et al., 2006). 

I used the Tukey test to determine differences among estimates of treatments when the 

treatment by YST interaction was significant (P < 0.05). When 2-way interactions of treatment 

or YST with TDI were significant, or when the 3-way interaction of these factors was significant 

(P < 0.05), I compared treatments for each YST using a Tukey test for each 0.05 increment of 

the TDI covariate from 0 to 1. Significance of these tests was set at P < 0.01 to control the 

experiment-wise error rate. Pretreatment tree cover was regressed over TDI for all subplots 

across all sites to relate responses to tree cover for this sample of subplots. 
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Results 

Density for all functional groups showed a significant interaction (P < 0.05) between 

either treatment with YST and TDI with YST (Table 2). These results indicate density response 

over time depended more on treatment method for some variables, and more on pretreatment 

TDI for others. For most cover variables, the interaction of treatment and YST was significant 

(Table 2), indicating that cover variables responded differently to treatments at 6 YST compared 

to 3 YST. In addition, the interaction of treatment and TDI was significant for most cover 

variables, indicating that response to treatment was also influenced by pretreatment TDI.  

Annual forb cover 

The interactions of treatment and YST, as well as treatment with TDI, were significant 

for annual forb cover (Table 2). Annual forb cover was highest on burn plots both 3 and 6 YST 

and at all TDI (Table 3), though cover decreased from 14.6% to 2.5% on these plots during this 

same period (Figure 2). By 6 YST, annual forb cover on cut plots had returned to the low levels 

seen on untreated plots (<1%). 

Exotic forb cover 

All 2-way interactions of treatment, YST, and TDI were significant for exotic forb cover 

(Table 2). Exotic forb cover responded similarly to annual forb cover, with highest exotic forb 

cover occurring on burn plots at low to mid TDI (Table 3). Average exotic forb cover was 

relatively low across most subplots (<10% on 86% of subplots). However, on some plots, 

primarily burn plots, exotic forb cover exceeded 30% and was as high as 65.7%. Exotic annual 

forb cover did not differ between untreated and cut plots at any level of TDI (Table 3, Figure 3). 
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Perennial forbs 

All 2-way interactions with TDI were significant, and the interaction of treatment and 

YST was marginally significant for perennial forb density (Table 2). Average perennial forb 

density decreased from 3 to 6 YST on all treatments and across all TDI ranges (Figure 4). 

Perennial forb density decreased with increasing TDI for all treatments, averaging 8.2% at TDI = 

0 to 3.3% at TDI = 1.  

The interactions of treatment with YST, as well as treatment with TDI, were significant 

for perennial forb cover (Table 2). Perennial forb cover averaged < 6.5% across all TDI and 

treatments, both 3 and 6 YST. Perennial forb cover on cut plots showed little variation across 

TDI, whereas burn and untreated plots showed higher perennial forb cover at low TDI with 

cover decreasing as TDI increased (Figure 3).  

Cheatgrass cover 

All 2-way interactions of treatment, YST, and TDI were significant for cheatgrass cover 

(Table 2). Cheatgrass increased on treated and untreated plots from 3 to 6 YST, increasing most 

dramatically on burn plots from 3.0% to 8.6% (Figure 5). At 6 YST, cheatgrass cover was greater 

on the burn than untreated plots at all TDI and greater than on the cut plots at TDI ≤ 0.75 (Table 

3). Cutting resulted in greater cheatgrass cover than untreated plots at ≥ 0.40 TDI (Table 3, 

Figure 5).  
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Short grasses 

The interaction of YST and TDI was significant for short grass (Sandberg bluegrass) density, 

whereas the interaction of YST and treatment was marginally significant (Table 2). Short grass 

density decreased across all treatments from 3 to 6 YST at all TDI ≥ 0.1 (Figure 4). The 

interaction of treatment and YST was significant for short grass cover (Table 2). However, short 

grass cover was not significantly different among treatments or across years.  

Tall Grasses 

The 3-way interaction of TDI, treatment and YST was significant for tall grass density 

(Table 2). Tall grass density on untreated plots was not significantly different from that of burn 

or cut plots. By 6 YST, cut treatments resulted in slightly greater tall grass density (0.6 to 0.8 

plants m-2) than burn treatments at all TDI ≥ 0.7 (Table 3, Figure 3).  

The 3-way interaction between TDI, treatment and YST was significant for tall grass 

cover (Table 2). Tall grass cover increased on all treatments from 3 to 6 YST, increasing more 

dramatically on cut (7.8% cover) and burn (6.0% cover) plots than on untreated (2.8% cover) 

plots. By 6 YST, both burn (at TDI ≥ 0.55) and cut treatments (at TDI ≥ 0.35) resulted in greater 

tall grass cover than untreated plots (Table 3). Cut treatments resulted in greater tall grass 

cover than burn treatments at TDI ≥ 0.55 (Figure 3).  

Perennial grass cover 

The 3-way interaction between TDI, YST, and treatment was significant for perennial 

grass cover (Table 2). By 6 YST, cut treatments had the greatest average perennial grass cover 
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(28.0%), averaging 10.0% more cover than untreated plots. Perennial grass cover was greater 

on cut treatments 6 YST than burn treatments at TDI ≥ 0.80 and untreated plots at TDI ≥ 0.50 

(Table 3, Figure 3). Burn treatments resulted in greater perennial grass cover than untreated 

plots only at very high TDI (Table 3).  

Total perennial herbaceous cover 

The interaction of treatment and TDI was significant for total perennial herbaceous 

cover (Table 2). Cut treatments and burn treatments resulted in greater total perennial 

herbaceous cover than untreated at TDI ≥ 0.40 and TDI ≥ 0.55 respectively (Table 3, Figure 3). 

Cut treatments resulted in greater total perennial herbaceous cover than burn treatments only 

at the highest TDI (Table 3).  

Sagebrush 

The interactions of treatment and YST, as well as treatment and TDI, were significant for 

sagebrush density. Burn treatments resulted in low sagebrush density (≤ 0.09 plants m-2) across 

all TDI, even 6 YST (Figure 6). Cut plots resulted in higher sagebrush density 6 YST than burn 

plots at TDI ≤ 0.70 (Table 3). On average and across years, cut treatments resulted in sagebrush 

densities of 0.29 plants m-2, whereas burns resulted in 0.04 plants m-2 and 0.06 plants m-2 in 

years 3 and 6, respectively. Sagebrush density was stable across years on cut treatments, 

increased on burn treatment (0.016 plants m-2), and decreased on the control (-0.021 plants m-

2). Sagebrush density at high TDI (> 0.85) was extremely low (< 0.1 plants m-2) across all 

treatments and years (Figure 6).  
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The interactions of treatment and TDI, as well as treatment and YST, were significant for 

sagebrush cover (Table 2). On burn and untreated plots, sagebrush cover increased less than 

0.6% from year 3 to 6, whereas sagebrush cover on cut treatments increased an average of 

2.7% (Figure 6). Cut and untreated plots exhibited greater sagebrush cover than burn plots at  

TDI ≤ 0.85 and TDI ≤ 0.60 respectively (Table 3). In subplots where TDI exceeded 0.25 

(approximately 10% tree cover, Figure 7), sagebrush cover was only 50% of the maximum shrub 

cover on both untreated and cut plots. Even at 6 YST, untreated plots showed greater 

sagebrush cover than burn plots at TDI ≤ 0.60. 

Total shrub density and cover 

The 3-way interaction between TDI, YST, and treatment was significant for shrub density 

(Table 2). Shrub density decreased on untreated plots (-0.06 plants m-2) and increased on burn 

(0.11 plants m-2) and cut (0.04 plants m-2) plots from 3 to 6 YST. Cut treatments resulted in 

higher shrub density than burn treatments at TDI ≤ 0.95 and untreated plots at TDI ≥ 0.40 

(Table 3, Figure 6).  

The 2-way interactions between treatment and YST, as well as treatment and TDI, were 

significant for shrub cover (Table 2). Shrub cover increased on cut and burn treatments from 3 

to 6 YST (Figure 6). Shrub cover was lower on burn plots than on both cut and untreated plots 

at TDI ≤ 0.90 and TDI ≤ 0.35 respectively (Table 3, Figure 6). On plots where TDI exceeded 0.4, 

shrub cover had declined to less than 50% of the maximum potential cover (approximately 17% 

tree cover, Figure 7). 
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Sagebrush seedling density 

 Across all treatments, the percentage of subplots containing sagebrush seedlings and 

juveniles (< 5 cm in height) decreased from 3 to 6 YST. The percentage of subplots with 

sagebrush seedlings was relatively consistent across years on burn plots, but decreased on both 

untreated and cut plots from 3 to 6 YST (Figure 8). Burn treatments were the only treatments to 

experience increases in sagebrush density (> 5cm in height) and these increases were relatively 

small (0.016 plants m-2), thus decreases in sagebrush seedlings were not due to plants growing 

> 5cm. Density of seedlings also decreased from 3 to 6 YST on treated and control plots. 

However, cut and burn treatments had higher sagebrush seedling density than untreated plots 

in both years (Figure 8).  

Bare ground cover 

 The 2-way interactions of treatment with YST, as well as treatment with TDI, were 

significant for bare ground cover (Table 2). From 3 to 6 YST, there was a significant reduction in 

bare ground on treated and untreated plots, with the greatest reduction on cut (8.8%) plots 

and burn (9.0%) plots (Figure 9). Bare ground on untreated plots 6 YST exceeded that of cut and 

burn treatments at TDI ≥ 0.10 and TDI ≥ 0.40 respectively (Table 3).  

Deviation from reference state 

 By using a TDI = 0 for no treatment to represent a reference state, or the idealized 

restoration target, I was able to graph (Figure 10) the deviations away from this reference state 

in an attempt to visualize how successful each treatment method, or restoration pathway, was 
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at moving the community towards the desired condition. Cut treatments 6 YST resulted in 

conditions most similar to that of the reference state.  

Discussion 

Shrub Response 

Sagebrush communities, and the species that depend on them, are being threatened by 

the expansion and infilling of juniper and pinyon (Burkhardt and Tisdale, 1976; Miller and 

Tausch, 2001; Bates et al., 2005; Ansley et al., 2006; Pierson et al., 2007). Shrubs are an 

important component of these ecosystems and contribute to wildlife habitat as well as 

biodiversity (Huber et al., 1999; Miller et al., 2005). Sagebrush, in particular, is an important 

food source for sage-grouse, and other sagebrush obligates (Connelly et al., 2004). As tree 

cover increased, shrubs were rapidly lost, declining to 25% of the maximum potential cover 

where tree dominance approached 0.50 (22% tree cover, Figure 7). These results parallel those 

found in earlier studies (Tausch and West, 1995; Miller et al., 2000). At high TDI, shrub cover 

was extremely low, and these areas will likely recover slowly following treatment. 

Cut treatments had the greatest sagebrush and total shrub cover and also exhibited the 

greatest increase in shrub cover over time. Total shrub cover on cut plots was double that of 

untreated plots and triple that of burn plots. However, sagebrush density on cut treatments 

was not different from untreated plots across years. These results indicate that the major 

increase in sagebrush cover was the result of canopy expansion of existing shrubs rather than 

new individuals. This highlights the importance of residual pretreatment plants in directing the 

successional trajectories of these sites. Furthermore, total shrub density increased on both cut 
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and burn plots from 3 to 6 YST, whereas sagebrush density remained stable on cut plots and 

only slightly increased on burn plots. This indicates that sagebrush recruitment is lower than 

the other shrubs at the study sites, which include fire-tolerant species such as yellow 

rabbitbrush (Chrysothamnus viscidiflorus [Nutt.]). 

 Burn treatments resulted in a significant loss of shrubs and these plots still had not 

recovered at 6 YST, especially at high TDI. On burn plots, sagebrush cover remained lower than 

on untreated plots 6 YST, whereas total shrub cover (sagebrush + all other shrubs) had returned 

to untreated levels. This difference may indicate that sagebrush cover is much slower to 

recover following fire than the other, perhaps more fire-tolerant, shrubs such as yellow 

rabbitbrush (Chambers et al., 2014b). Recovery of sagebrush canopies can take 15 to >50 years 

to recover following disturbance (Miller et al., 2014b). Thus, given enough time, these shrubs 

may recover to the higher levels seen on cut treatments.  

Little to no viable big sagebrush seeds are carried over in the seed bank from year to 

year (Young and Evans, 1989; Meyer and Monsen, 1992). In addition, sagebrush germination 

rates can vary widely and are largely dependent upon climate (Meyer and Monsen, 1992). Thus, 

the presence of a local seed source is vital for sagebrush recruitment. Cut treatments resulted 

in the highest percentage of subplots containing sagebrush seedlings, with the percentage of 

subplots containing seedlings decreasing from 3 (39.9%) to 6 YST (26.9%). Bybee et al. (2016) 

found similar results with mechanical mastication treatments resulting in higher seedling 

density than untreated plots. The total percentage of subplots containing sagebrush seedlings 

declined from 3 to 6 YST from 28.5% to 19.7%. Sagebrush density (> 5 cm height) remained 

stable on cut treatments, increased on burn treatments and decreased on controls, whereas 
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the percentage of subplots containing seedlings decreased on both cut and control plots and 

remained relatively stable on burns. This indicates that the decrease in percentage of subplots 

containing seedlings is not due to seedlings growing > 5 cm, but rather a decrease in new 

seedlings. This may be due to differences in weather following treatment and may also reflect 

greater competition between seedlings and other perennial vegetation 6 YST.  

Cheatgrass Invasibility in Relation to Treatment Type and Level of Infilling 

Perennial herbaceous vegetation, in particular tall grasses, are vital to maintaining 

ecosystem resilience and resistance, especially in areas being threatened with cheatgrass 

invasion (Chambers et al., 2007; Blank and Morgan, 2012; Reisner et al., 2013). There is a clear 

pattern of decreased perennial vegetation with increasing tree dominance (Roundy et al., 

2014a; Bybee et al., 2016). Tree removal can result in increased herbaceous cover, plant species 

richness and diversity, litter cover, and decreased bare ground (Brockway et al., 2002; O’Connor 

et al., 2013), which in turn can increase ecosystem resilience and resistance (Chambers et al., 

2007; Blank and Morgan, 2012; Reisner et al., 2013). 

My findings are consistent with other studies (Ross et al., 2012; O’Connor et al., 2013) 

showing that disturbance from removing trees, either mechanically or with fire, may lead to 

increases in cheatgrass due to greater availability of resources and less competition. For 

example, Young et al. (2013a, 2013b, 2014) found that tree mastication increased soil water 

availability, inorganic nitrogen availability, and seedling growth of cheatgrass. In the current 

study, cheatgrass cover increased on treated and untreated plots from 3 to 6 YST. However, 

cheatgrass cover was nearly 3-fold greater 6 YST and experienced a 5-times greater increase 
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from 3 to 6 YST on burn plots when compared to cut plots. This increase following burn 

treatments may be the result of loss of fire-tolerant shrubs and increased soil nutrient and 

water availability (Chambers et al., 2007).  Although cut treatments resulted in slightly higher 

cheatgrass cover than untreated plots, increases in cheatgrass cover from 3 to 6 YST were 

significantly lower than on burn plots.  

Cheatgrass cover was greatest on treated sites at high TDI, likely due to lower cover of 

perennial grasses, forbs, and shrubs prior to treatments and thus a greater availability of 

resources following tree removal. Tall grass cover was greater on cut treatments than burn 

treatments at mid to high levels of TDI. This indicates that mid to high levels of tree infilling puts 

a system at higher risk of cheatgrass invasion following tree removal treatments, but cut 

treatments exhibit more resistance to cheatgrass invasion than burn treatments.  

Encouraging Ecosystem Resilience and Resistance 

Maintaining perennial herbaceous cover and shrub cover is vital for the healthy 

functioning of sagebrush ecosystems. Tall grasses, in particular, play an important role in 

increasing ecosystem resilience and resistance (Chambers et al., 2007; Blank and Morgan, 2012; 

Reisner et al., 2013; Miller et al., 2014a). Tall grasses and cheatgrass use soil water and nitrogen 

within the same soil depth (Ryel et al., 2008; Leffler and Ryel, 2012; Roundy et al., 2014b). Tree 

reduction increases time of available water and inorganic nitrogen availability within this depth 

(Young et al., 2013b, 2014; Roundy et al., 2014b). Therefore, tall grasses are important in 

reducing resource availability to cheatgrass after tree reduction. Tall grass density was 

relatively stable between years, only increasing on cut treatments at high TDI. This suggests 
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that cover increases mainly are due to existing plants increasing their foliar cover and only the 

result of new recruitment on cut treatments at high TDI.  

On cut plots, tall grass cover increased, even at high pretreatment tree dominance. This 

higher tall grass cover may aid in suppressing cheatgrass and other invasive annuals (Chambers 

et al., 2007; Blank and Morgan, 2012; Reisner et al., 2013; Miller et al., 2014a). Tall grass cover 

on burn plots also appeared to be recovering, however at high TDI, tall grass cover remained 

lower than on cut plots. Higher tall grass cover on cut plots likely plays a role in maintaining 

lower levels of cheatgrass cover.  

Tall grass recovery, and subsequent reduction in bare ground, is critical to reducing 

erosion in intercanopy areas following tree removal (Williams et al., 2014). Cut and burn 

treatments resulted in a two-fold greater decrease in bare ground than untreated plots. This 

indicates that, regardless of treatment, the non-tree vegetation responds favorably to tree 

removal treatments.  

Since I define resilience as the ability to return to a reference, unencroached state, we 

can visualize the resilience of these sites using Figure 10. These graphs illustrate the cover 

difference between the unencroached (TDI = 0), untreated condition and the conditions 

following treatment. Graphs of the untreated plots show a loss of both perennial grass and 

shrub cover as TDI increases. This is not an artifact of having tall grass and shrub cover as 

variables in the denominator of TDI. Decreased shrub and tall grass cover could only be 

considered an artifact of TDI if their absolute cover stayed the same or increased and tree cover 

increased sufficiently to make them appear to decrease with increasing TDI. It is well 
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documented that as tree cover increases, shrub and perennial herbaceous cover decrease 

(Tausch and West, 1995; Miller et al., 2000; Roundy et al., 2014a; Bybee et al., 2016). Also, 

increased tree cover without decreases in understory plants that use similar resources in a 

semi-arid, resource-limited system (Roundy et al., 2014b) is unlikely. Thus, tree expansion and 

infilling move the system away from the reference and desired plant community. The worse-

case scenario of waiting to treat these expansion sites is that woody-fuel buildup results in 

severe fire, subsequent weed dominance and recurrent, frequent fire unless these sites are 

successfully reseeded to perennial herbs and shrubs by management agencies (Whisenant, 

1990; Brooks et al., 2004; Chambers et al., 2014b). 

The graphs for treated plots in Figure 10 indicate a definite interaction between TDI and 

response to treatment relative to the reference state, and lead to important management 

implications that should be incorporated into state-and-transition-models. On the burn 

treatment at 6 YST, shrub cover was still far below that of the reference state at all 

pretreatment TDI. Perennial grass cover on burn treatments was > 10% lower than the 

reference state at TDI > 0.3 (> 12.5% tree cover). Shrub cover is slower to respond to tree 

reduction by fire than perennial or annual grass cover so that prescribed fire results in an 

herbaceous-dominated plant community when implemented at most TDI. Cheatgrass is most 

likely to dominate when prescribed fire is used at a higher pretreatment TDI where perennial 

grass cover is lacking. Prescribed fire implemented at low TDI results in lower shrub cover than 

the reference community. However, the resulting perennial grass-dominated community could 

have high resilience itself, it just may not provide the functionality of the reference community. 

When prescribed fire is implemented at intermediate to high TDI where perennial grass cover is 
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lacking, indications are that resistance to cheatgrass dominance is decreased. In this situation, 

managers will usually reseed to avoid cheatgrass dominance. Figure 10 also indicates that the 

cut treatment at 6 YST resulted in the greatest resilience or return to the reference state when 

implemented at low TDI (< 0.2 TDI or < 9% tree cover) before any shrub cover was lost to 

encroachment. Since perennial grass cover increased much faster after tree cutting than shrub 

cover, and especially sagebrush cover, cutting at low to intermediate TDI is necessary to 

reinforce resilience of the shrub/perennial grass community. Cutting trees at higher TDI’s will 

result in an herbaceous-dominated state which has much lower shrub cover than the reference 

state, but may be as resilient as either a perennial grass or annual grass-dominated state. The 

ratio of cheatgrass cover to tall grass cover on cut plots remained stable from 3 to 6 YST, 

whereas cheatgrass cover increased relative to tall grass cover on both burn and untreated 

plots. Long-term monitoring will help determine whether or not cutting trees at high TDI or 

burning at low to intermediate TDI will ultimately result in resistance to cheatgrass dominance. 
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Summary 

To retain the shrub component on a site and increase ecosystem resilience and 

resistance, I recommend treating at low to mid tree dominance and avoiding prescribed fire. 

Areas with low levels of tree encroachment (TDI < 0.35, approximately 15% tree cover) could 

potentially be protected against increases in cheatgrass following cut treatments due to greater 

perennial herbaceous cover. These results agree with an earlier study that showed a more 

desirable vegetation response when juniper was treated at or below 20 percent crown cover 

(Huber et al., 1999). 

Burn treatments should be especially avoided in areas in which it is vital to retain the 

sagebrush for wildlife and where cheatgrass is present. If treatments are delayed until higher 

TDI ranges, tree removal may result in perennial grassland instead of a grass-shrub mix and 

require replanting of shrubs. Although cut treatments resulted in greater resilience and 

resistance through increases in tall grass and shrub cover and greater resistance to cheatgrass, 

these treatments may require additional follow-up to remove young trees. Differential effects 

of tree reduction treatments implemented at different phases of tree dominance should be 

incorporated into state-and-transition-models to better clarify successional trajectories and 

resulting states. This study highlights the important if pretreatment site conditions on 

restoration outcomes as well as the importance of long-term monitoring.  
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Tables and Figures 

Table 1. List of 10 sites with dominant species, elevation range, and soils. Moutain big sage (Artemisia tridentata Nutt. subsp. 
vaseyana [Rydb.] Beetle), Idaho fescue (Festuca idahoensis Elmer), Sandberg bluegrass (Poa secunda J. Presl.), bluebunch 
wheatgrass (Pseudoroegneria spicata [Pursh] Á. Löve), basin big sage (Artemisia tridentata Nutt. subsp. tridentata), Thurber’s 
needlegrass (Achnatherum thurberianum [Piper] Barkworth),, squirreltail (Elymus elymoides [Raf.] Swezey), Wyoming big sage 
(Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young), mountain mahogany (Cercocarpus ledifolius Nutt), 
muttongrass (Poa fendleriana [Steud.] Vasey), needle and thread (Hesperostipa comata [Trin. & Rupr.] Barkworth) 

  Study site Target vegetation Elevation 

Western juniper    

 

Blue Mountain 
Mountain big sage/Idaho fescue-
Sandberg bluegrass-bluebunch 
wheatgrass 

1500-1700 m 

 

Bridge Creek 
Basin big sage/bluebunch 
wheatgrass-Sandberg bluegrass 

800-900 m 

 

Devine Ridge 
Mountain big sage/Sandberg 
bluegrass-Thurber's needlegrass-
Idaho fescue 

1600-1700 m 

 

Walker Butte 
Mountain big sage/Thurber's 
needlegrass-Idaho fescue-squirreltail 

1400-1500 m 

Single-leaf pinyon-Utah juniper  

 

Marking Corral 
Wyoming big sage/Thurber's 
needlegrass 

2300-2400 m 

 

Seven Mile 
Mt. mahogany-mountain big 
sage/bluebunch wheatgrass-
muttongrass 

2300-2500 m 

 

South Ruby 
Mountain 

Wyoming big sage-
bitterbrush/bluebunch wheatgrass-
Sandberg bluegrass-Thurber's 
needlegrass 

2100-2200 m 

Utah 
juniper    

 

 

Onaqui 
Wyoming big sage/bluebunch 
wheatgrass 

1700-2100 m 

Colorado pinyon-Utah juniper  

 

Greenville Bench 
Wyoming big sage/needle and 
thread-bluebunch wheatgrass 

1750-1850 m  

 

Scipio 
Wyoming big sage/bluebunch 
wheatgrass 

1700-1800 m 
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Table 2. Mixed model analysis of covariance results for cover (%) and density (plants m
-2

) for non-tree cover for untreated control plots and burn and cut fuel control treatments 
in relation to tree dominance at the time of treatment as measured by the covariate tree dominance index. NDF indicates numerator degrees of freedom; DDF, denominator 
degrees of freedom calculated according to Kenward and Roger (1997). 
 

 
 

a 
TRTN indicates treatment; TDI, tree dominance index; YST, year since treatment. Bolded values indicate F significance (p<0.05). 

 

b 
Reduced model 

NDF DDF F P NDF DDF F P NDF DDF F P NDF DDF F P

TRTNa 2 58.65 22.19 <.0001 2 61.38 5.26 0.0078 2 39.59 1.56 0.2234 2 39.5 1.93 0.1589

YSTa 1 901.1 541.43 <.0001 1 900.3 49.24 <.0001 1 463.9 20.89 <.0001 1 459.6 5.39 0.0207

TDIa 1 924.4 0.07 0.7923 1 920.3 1.7 0.1927 1 457.8 40.74 <.0001 1 448.5 64.74 <.0001

TRTN X YST 2 901.2 12.36 <.0001 2 900.3 4.74 0.0089 2 463.9 4.84 0.0083 2 461.6 2.76 0.0641

TDI X TRTN 2 772.6 8.57 0.0002 2 750.9 3.31 0.037 2 464.8 12.87 <.0001 2 455.4 4.79 0.0087

TDI X YST - - - - 1 900.3 6.67 0.01 - - - - 1 463.2 4.29 0.0388

TRTN X TDI X YST - - - - - - - - - - - - - - - -

NDF DDF F P NDF DDF F P NDF DDF F P NDF DDF F P

TRTNa 2 17.98 0.49 0.62 2 17.9 6.53 0.0074 2 48.48 0.06 0.9431 2 38.41 3.28 0.0486

YSTa 1 465.6 1.29 0.2568 1 459.3 2.89 0.0897 1 458.4 13.34 0.0003 1 459.1 0.31 0.5798

TDIa 1 454.3 38.29 <.0001 1 451.5 24.58 <.0001 1 456.3 182.27 <.0001 1 455.3 131.19 <.0001

TRTN X YST 2 465.6 6.69 0.0014 2 461.3 2.45 0.0873 2 458.3 1.01 0.3648 2 459 5.08 0.0066

TDI X TRTN - - - - - - - - 2 457.1 25.57 <.0001 - - - -

TDI X YST - - - - 1 462.6 8.17 0.0045 1 461.8 18.9 <.0001 - - - -

TRTN X TDI X YST - - - - - - - - 2 461.7 6.09 0.0025 5 697.6 3.77 0.0023

NDF DDF F P NDF DDF F P NDF DDF F P NDF DDF F P

TRTNa 2 35.4 0.42 0.6621 2 45.8 0.22 0.8029 2 40.71 70.03 <.0001 2 38.62 54.28 <.0001

YSTa 1 461.7 17.58 <.0001 1 465.6 103.78 <.0001 1 461.9 158.69 <.0001 1 459.9 0.41 0.522

TDIa 1 454.5 226.96 <.0001 1 459.4 246.32 <.0001 1 461.4 239.05 <.0001 1 460.4 237.76 <.0001

TRTN X YST 0 461.6 3.46 0.0321 2 465.5 1.89 0.152 2 461.9 12.54 <.0001 2 459.9 15.62 <.0001

TDI X TRTN 2 463.5 21.27 <.0001 2 461 24.09 <.0001 2 468.5 35.91 <.0001 2 469.1 31.45 <.0001

TDI X YST 1 465.4 6.2 0.0131 - - - - - - - - - - - -

TRTN X TDI X YST 2 465.3 3.03 0.0492 - - - - - - - - - - - -

NDF DDF F P NDF DDF F P NDF DDF F P NDF DDF F P

TRTNa 2 56.89 50.29 <.0001 2 59.88 40.38 <.0001 2 46.15 9.88 0.0003 2 36.6 1.44 0.2499

YSTa 1 464.5 276.53 <.0001 1 456.6 1.15 0.2834 1 463.5 11.76 0.0007 1 465.4 275.2 <.0001

TDIa 1 465 298.77 <.0001 2 456.6 23.53 <.0001 1 459.6 15.85 <.0001 1 451.6 1.29 0.2559

TRTN X YST 2 464.5 63.15 <.0001 1 462 324.47 <.0001 2 465.4 16.3 <.0001 2 465.3 23.09 <.0001

TDI X TRTN 2 446.7 17.36 <.0001 2 442.9 12.35 <.0001 2 461.8 10.67 <.0001 2 461.6 6.21 0.0022

TDI X YST - - - - 1 458.6 4.37 0.0371 1 466.9 10.33 0.0014 - - - -

TRTN X TDI X YST - - - - 2 458.5 7.5 0.0006 - - - - - - - -

Total shrub coverb Total shrub density Cheatgrass coverb Bare ground coverb

Short grass coverb Short grass densityb Tall grass cover Tall grass densityb

Perennial grass cover Perennial herbaceous coverb Sagebrush coverb Sagebrush densityb

Annual forb coverb Exotic forb coverb Perennial forb coverb Perennial forb densityb



27 
 

Table 3. Range of the pretreatment tree dominance index (TDI) covariate where significant differences (P<0.01) in tree removal 
treatments were found for vegetation cover variables 6 years after treatment. Comparisons with ≤ 1 indicate that the 
comparison was significant for all values of TDI.  

 

  
a 
Reduced model 

 

Variable Year 6 Response TDI Variable Year 6 Response TDI

Burn > cut ≤ 1 Cut > burn ≤ 0.85

Burn > untreated ≤ 1 Untreated > burn ≤ 0.60

Cut > untreated 1 Cut = untreated ≤ 1

Burn > cut ≥ 0.15 Cut > burn ≤ 0.90

Burn > untreated ≥ 0.40 Untreated > burn ≤ 0.35

Cut = untreated ≤ 1 Cut > untreated ≥ 0.20

UT = B ≤ 1 Burn = cut ≤ 1

C > UT ≥ 0.90 Burn = untreated ≤ 1

C = B ≤ 1 Cut = untreated ≤ 1

Burn > cut ≤ 0.75 Burn = cut ≤ 1

Burn > untreated ≤ 1 Burn = untreated ≤ 1

Cut > untreated ≥ 0.40 Untreated > cut ≤ 0.95

Burn = cut ≤ 1 Cut > burn ≥ 0.7

Burn = untreated ≤ 1 Untreated = burn ≤ 1

Cut = untreated ≤ 1 Cut = untreated ≤ 1

Cut > burn ≥ 0.55 Cut > burn ≤ 0.95

Burn > untreated ≥ 0.55 Untreated > burn ≤ 0.40

Cut > untreated ≥ 0.35 Cut > untreated ≥ 0.40

Cut > burn ≥ 0.80 Cut > burn ≤ 0.70

Burn > untreated ≥ 0.95 Untreated = burn ≤ 1

Cut > untreated ≥ 0.50 Cut = untreated ≤ 1

Cut > burn ≥ 1 Cut = burn ≤ 1

Burn > untreated ≥ 0.55 Untreated > burn ≥ 0.40

Cut > untreated ≥ 0.40 Untreated > cut ≥ 0.10

Perennnial 

grass cover

Total perennial 

herbaceous 

covera

Sagebrush 

cover
a

Total shrub 

covera

Perennial forb 

densitya

Short grass 

density
a

Tall grass 

densitya

Total shrub 

density

Sagebrush 

densitya

Baregrounda

Annual forb 

cover
a

Exotic forb 

covera

Perennial forb 

covera

Cheatgrass 

cover
a

Short grass 

covera

Tall grass    

cover
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Figure 1. Study site locations in the Great Basin including predominant tree species on each site. 
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Figure 2. Vegetation cover 3 and 6 years after treatment in relation to treatment method. Different letters denote significant 
differences identified through Tukey’s test.  
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Figure 3. Vegetation cover 6 years after treatment in relation to treatment method and tree dominance index. 
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Figure 4. Vegetation cover 3 and 6 years after treatment in relation to tree dominance index. 
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Figure 5. The graph on the left depicts cheatgrass cover 6 years after treatment in relation to tree dominance index and 
treatment method.  The graph on the right depicts cheatgrass cover in relation to treatment type and year since treatment. 
Different letters denote significant differences identified through Tukey’s test. 
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Figure 6. Upper graphs depict vegetation cover 6 years after treatment in relation to tree dominance index. The lower graphs 
depict vegetation cover in relation to years since treatment and treatment method. Different letters denote significant 
differences identified through Tukey’s test. 
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Figure 7. Regression showing relationship of pre-treatment tree cover (TC) to tree dominance index (TDI).  BC indicates Bridge 
Creek; BM, Blue Mountain; DR, Devine Ridge; GR, Greenville; MC, Marking Corral; ON, Onaqui; SC, Scipio; SR, South Ruby; SV, 
Seven Mile; WB, Walker Butte.   
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Figure 8. Percentage of subplots containing sagebrush seedlings 3 and 6 years since treatment 

 

 

 

 

Figure 9. The left graph depicts bare ground cover in relation to treatment method and years since treatment. The right graph 
depicts bare ground cover in relation to treatment method and tree dominance index. Different letters denote significant 
differences identified through Tukey’s test.
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Figure 10. Differences between post-treatment functional group cover (%) and pre-treatment functional group cover at TDI = 0 across treatment types and years. Differences 
indicate how far a functional group cover is from the unencroached plant community or idealized restoration target. 
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