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Abstract

Throughout the past decade, we have witnessed an active interest in distributed motion coordination

algorithms for networked mobile autonomous robots. Often, in multi-robot systems, each robot exe-

cuting a coordination task is a little cost, a disposable autonomous agent that has ad-hoc sensing or

communication capability, and limited mobility. Coordination tasks that a group of multiple mobile

robots might perform include formation control, rendezvous, distributed estimation, deployment, flock-

ing, etc. Also, there are challenging tasks that are more suitable for a group of mobile robots than

an individual robot, such as surveillance, exploration, or hazardous environmental monitoring. The

field has been collectively investigated by many researchers in robotics, control, artificial intelligence,

and distributed computing. However, relatively little work has been done on developing algorithms to

provide resilience to failures that can occur. The problem is extremely difficult to handle in that any

partial failure of a robot is not readily detectable. Some failures in robot resources can have an adverse

effect on not only the performance of the robot itself, but also other robots, and the collective task

performance as well.

This study presents the development of fault-tolerant distributed control policies for multi-robot

systems. We consider two problems: rendezvous and coverage. For the former, the goal is to bring all

robots to a common location, while for the latter the goal is to deploy robots to achieve optimal coverage

of an environment. We consider the case in which each robot is an autonomous decision maker that

is anonymous (i.e., robots are indistinguishable to one another), memoryless (i.e., each robot makes

decisions based upon only its current information), and dimensionless (i.e., collision checking is not

considered). Each robot has a limited sensing range and can directly estimate the state of only those

robots within that sensing range, which induces a network topology for the multi-robot system. We

assume that it is not possible for the fault-free robots to identify the faulty robots (e.g., due to the

anonymous property of the robots). For each problem, we provide an efficient computational framework

and analysis of algorithms, all of which converge in the face of faulty robots under a few assumptions
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on the network topology and sensing abilities. A suite of experiments and simulations confirm our

theoretical analysis and demonstrate that our proposed algorithms are useful in fault-prone multi-robot

systems.
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Chapter 1

Introduction

Throughout the past decade, we have witnessed an active interest in distributed motion coordina-

tion algorithms for networked mobile autonomous robots. These robots include not only Unmanned

Ground Vehicles (UGVs), but Unmanned Aerial Vehicles (UAVs), and Autonomous Underwater Vehi-

cles (AUVs) as well. Often, in multi-robot-systems, each robot executing a coordination task is a low

cost, disposable autonomous agent that has ad-hoc sensing or communication capability, and limited

mobility. Coordination tasks that a group of multiple mobile robots might perform include (pattern)

formation control, rendezvous, distributed estimation, deployment, flocking, etc. Also, there are chal-

lenging tasks that are more suitable for a group of mobile robots than an individual robot, such as

surveillance, exploration, or hazardous environmental monitoring. Examples for practical uses of net-

worked multi-robots include warehouse automation, forest fire monitoring, oil-spill monitoring, and

ocean sampling, to name a few. The related fields of research for this topic include autonomous mobile

robots, swarm robotics, robotic networks, and mobile sensor networks. The field has been collectively

investigated by many researchers in robotics, control, artificial intelligence, and distributed computing.

The mobility of robots, and robots’ interactions with the environment make them prone to fail in

many cases. Bernardine et al. [3], discussed three principal categories for possible failures that can

occur in a networked multi-robot system.

• Communication failures: There are possibilities of occasional loss of messages, or loss of commu-

nication between robots.

• Partial failure of a robot : When a robot partially fails, it loses the ability to use some of its

resources, but retains the ability to use other resources.

• Complete robot failure: When a robot completely fails, it will no longer function.

Relatively little work has been done for multi-robot coordination algorithms to provide resilience to

failures that can occur. The problem is extremely difficult to handle in that any partial failure of a
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robot is not easily detectable. Some failures in robot resources can have an adverse effect on not only

the performance of the robot itself, but also other robots, and the collective task performance as well.

If a distributed coordination algorithm is designed to work properly only under an ideal environment, a

partial failure of some robot can result in failure of a cooperative mission. It is also of an independent

interest to consider the worst-case scenario that can occur by faulty robots in a networked multi-robot

system, e.g., there can be malicious robots which aim to disrupt the performance of coordination tasks

of functioning robots. A few of the related works for this example can be found in our previously

generated studies [4, 5].

Some examples of a few practical failure scenarios that can happen in networked autonomous mobile

robots include the following.

• Sensor failure: This includes incorrect sensor readings, and encompasses all scenarios in which

robots are not able to efficiently collect sensor data. Since each robot makes decisions based upon

its sensor data, this could result in collision with other robots, or task failure.

• Battery depletion and power loss: This failure is related to the complete robot failure described

above. When this happens, robots will no longer operate.

There can be other hardware related failures, which could also hinder functioning robots from success-

fully performing their tasks.

In this study, we present distributed coordination algorithms for multi-robot systems that are resilient

to possible robot failures. These include random failures experienced by individual robots, as well as

the possibility of malicious behavior by some of the robots. We consider the two specific problems

of rendezvous and deployment, i.e., coverage control, among the coordination tasks, e.g., formation

control, rendezvous, distributed estimation, deployment, flocking, etc.

We note that the identities of the faulty robots in our problem are unknown, that is the faulty robots

are members of the multi-robot system. Thus, our problem is different from game theory problems [6,7]

where each robot computes the best strategy knowing that other robots will do the same, and the typical

objectives of these studies are to find the, e.g., Nash equilibrium1 [8]. Also, our problem is different

from the objective of robust control where the main concern is robust design of a control system that is

insensitive to modeling errors or uncertainty.

1For example, two strategies s, s′ for two robots are said to be in Nash equilibrium if one robot is using s, then other
robot can do no better than using s′, and vice versa.
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1.1 Thesis organization and highlights of chapters

This thesis is organized as follows.

• Chapter 2: In this chapter, we formally define our dynamical system composed of multiple robots,

where robots have local sensing or communication capability. Next, we introduce the concept of

malicious robots, and describe properties of multi-robot systems in the presence of malicious

robots.

• Chapter 3: In this chapter, we briefly review recent state-of-the-art results related to rendezvous

of multi-robot systems. We introduce the circumcenter algorithm with connectivity maintenance,

and show that with the algorithm, all robots rendezvous to a point in finite time using LaSalle’s

invariance principle.

• Chapter 4: In this chapter, we propose a distributed control policy to achieve approximate ren-

dezvous by a group of robots even when some robots in the system fail. These nonconforming

robots correspond to faults in the multi-robot system, and our control policy is thus a fault-tolerant

policy. Our main result is a practical distributed algorithm based upon discrete geometry, e.g.,

Tverberg’s theorem, which achieves approximate convergence in the face of faulty robots under

weak assumptions on the interconnection topology. In simulation results, we show that our algo-

rithm works better for the case of both stationary and dynamic faults, i.e., when faulty robots

remain stationary, than other contemporary convergence algorithms. Also, a suite of experiments

are presented to confirm our theoretical results. We conclude the chapter by stating a number of

future directions. The work in this chapter has appeared as two conference papers in [11,12].

• Chapter 5: In this chapter, we consider the problem of designing distributed control algorithms to

solve the rendezvous problem for multi–robot systems with limited sensing, for situations in which

random robots may fail during execution. We first formulate a distributed solution based upon

averaging algorithms that have been reported in the consensus literature. In this case, at each

stage of execution, a 1–step sequential optimal control, i.e., näıve greedy algorithm), is used. We

then propose a distributed stochastic optimal control algorithm that minimizes a mean–variance

cost function for each stage, given that the probability distribution for possible robot failure is

known a priori. We show via simulation results that our algorithm provides statistically better

rendezvous task performance in comparison to that of the classical circumcenter algorithm [9]
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in cases of randomly occurring stationary robot failures. We conclude the chapter by stating a

number of future directions. The work in this chapter has appeared as a conference paper in [13].

• Chapter 6: In this chapter, we introduce previous results on the multi-robot deployment problem.

In particular, we review the Voronoi-based partitioning scheme used in mobile sensor networks,

introduce Lloyd’s algorithm, and provide theorems that show the convergence properties of a

deployment algorithm that is based upon Lloyd’s method.

• Chapter 7: In this chapter, we consider the case in which k sensors are assigned to each region in

the partition, in order to obtain coverage that is robust to sensor failure. For this case, we prove

that the optimal workspace partition is the order−k Voronoi partition, with each sensor assigned

to an order−k Voronoi region for which it is a generator. The collection of associated regions for a

given sensor defines its guarded region, and we prove that in the optimal configuration each sensor

is located at the critical point of the distributed cost associated with its guarded region. Finally

we introduce a class of distributed algorithms for our optimal sensor placement problem which

require minimal inter-agent communications. The provided simulation results shows competitive

coverage performance in the presence of individual node failures compared to classical Voronoi-

based coverage method. The work in this chapter has appeared as a conference paper in [14].

• Chapter 8: In this chapter, we present a brief summary and possible future directions from this

dissertation.

• Appendices: Appendix A briefly describes SQP, Appendix B discusses the ergodic theory, Ap-

pendix C provides several proofs for auxiliary lemmas that are used in the main proof of Chapter

4, and Appendix D introduces several concepts to represent algorithms a set-valued map and

invariance principle tailored for set-valued mappings.
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Chapter 2

Backgrounds and preliminaries

In this chapter, we formally define a multi-robot system to be a robotic network composed of a group of

robots with local sensing or communication capabilities. In Section 2.1, we define each individual robot

as a discrete-time continuous-space dynamical system. In Section 2.2, we define the interconnection

topology of a group of robots in terms of the robots’ sensing and/or communication capabilities. In

Section 2.3, we introduce the concept of malicious robots. In Section 2.4, we describe properties of

multi-robot systems that are of interested in our research. We conclude this chapter in Section 2.5 by

defining terminologies that will be used in the subsequent chapters.

2.1 A multi-robot system

We consider a group of n autonomous mobile robots where each of them is contained in a bounded

workspace Q ⊆ Rd where d ∈ {1, 2, 3}. We assume that there are n robots, each with an index

i ∈ I = {1, . . . , n} where I is called the index set. We model each robot as a discrete-time continuous-

space dynamical system defined by the 3−turple (Xi, Ui, fi) where Xi is a state space, Ui is an input

space, and fi : Xi × Ui → Xi is a discrete time evolution map that defines the ith robot’s motion.

The state of the ith robot is defined by xi ∈ Xi ⊆ Q ⊂ Rd. Each robot is assumed to be equipped

with sensors that enable it to sense the environment, including the state of other robots. Robots may

perform sensing via ad hoc communication [15] such that each robot communicates only with its local

neighbors.

While the state of the multi-robot system is a vector x = (x1, . . . , xn) ∈ (Rd)n, it will often be

convenient to refer to the set of positions at which the robots are located. For this purpose, we use the

notation x = [x1, . . . , xn] to denote the multiset of robot positions. We use multisets rather than simple

sets for this purpose to allow the possibility of multiple robots occupying the same position. Note that we

will use x to denote both the state, x = (x1, . . . , xn) and the multiset x = [x1, . . . , xn], relying on context

to resolve any ambiguities. Also in Chapter 4, we use n×d matrix x = (x1, . . . , xn)>—where each point
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xi ∈ Rd is a d× 1 column vector—to refer to the set of positions at which the robots are located. The

ordered family of state evolution maps for the n robots, f : (X1 ×U1)× · · · (Xn ×Un)→ X1 × · · · ×Xn,

is denoted by f = (f1, . . . , fn).

2.2 Networked robots

The communication and sensing occurring among the robots defines the interconnection topology of

the multi-robot system. The topology is represented by a graph G = (V, E) in which V = I is the set of

vertices, each of which corresponds to a robot, and E ⊆ V ×V is the set of undirected edges. Given the

set of edges, the index set of the neighbors for robot i ∈ I is defined by Ni = {j ∈ I | (i, j) ∈ E}. For

convenience, in the sequel we will use Ñi = {j ∈ I | (i, j) ∈ E} ∪ {i} to denote the index set including

both robot i and its neighbors. Similarly we will use x̃i to denote the set of positions including both

robot i and its neighbors.

If the n robots exchange messages, the interconnection topology is defined with a communication

graph whose edge set is given by a set of ordered pairs (i, j) with robots i, j ∈ I such that (i, j) ∈ E if

and only if there is direct communication link from robot i to robot j. In a similar manner, based upon

the sensing capabilities and configurations of the robots, the interconnection topology can be defined

with a sensing graph whose edge set is the set of ordered pairs (i, j) with robots i, j ∈ I such that

(i, j) ∈ E if and only if the ith robot can detect the jth robot.

In our research, the interconnection topology of the system is represented by a proximity graph. A

proximity graph is a graph whose vertex set is an index set of distinct points, and whose edge set is

determined by the relative locations of the point set (see e.g., [16] for more details). Among proximity

graphs, we are particularly interested in two types: the r−disk graph, and the Delaunay graph.

For an r−disk graph Gr−disk = (V, E), each robot i ∈ I has a corresponding position xi ∈ Q. For

robots i and j, (i, j) ∈ E , if and only if ‖xi − xj‖ < ri. Here, ri denotes a sensing radius, and robot i is

connected to robot j where robot j is within the sensing radius of robot i. If we assume that all robots

have the same sensing radius, ri = r, then Gr−disk is an undirected graph, i.e., (i, j) ∈ E if and only

if (j, i) ∈ E , and the connectivity relation is symmetric. The r−disk graph will be used extensively in

both Chapter 4 and Chapter 5, which deal with the rendezvous problem.

The Delaunay graph GD = (V, E) is the dual of the Voronoi diagram. The Voronoi diagram includes

a region Vi for each i ∈ I, and edge (i, j) ∈ E if and only if Vi is adjacent to Vj . The Voronoi diagram

is described in more detail in Section 6.2.1, and in various texts on computational geometry, e.g., [17].
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The Delaunay graph will be used in Chapter 7, which deals with deployment problems.

Based on context, we sometimes drop the subscripts “r−disk” and “D” from G and denote either of

the graphs simply by G = (V, E).

2.3 Malicious agents

A Faulty Multi-robot System (F-MRS) consists of n robots, of which some are faulty. We denote by

F ⊆ I the index set of faulty robots, and by nf the number of faulty robots, nf = |F|.

Because we will frequently refer to the set of fault-free robots, it is convenient to define the following

notation. We denote by I the index set of the fault-free robots, by x the set of their positions. The

number of fault-free robots is denoted n = n − nf . Without loss of generality, in the sequel we will

assume that the robots are indexed such that the fault-free robots have indices I = {1, . . . , n} and the

faulty robots have indices F = {n+ 1, . . . , n}.

We define the interconnection topology of the fault-free robots by a directed graph G = (V, E) with

V = I and E ⊆ V × V obtained by removing from E all edges incident to faulty robot vertices. For

the ith robot, we denote by N i its index set of fault-free in-neighbors in the graph G, and by nfi the

number of its faulty neighbors in the graph G (i.e., nfi = |Ni ∩ F|).

Robots may fail in various ways, ranging from minor variations in performance to outright malicious

behavior. In our research, we consider failures that lie on a spectrum ranging from so-called crash

faults (in which the robot simply ceases to operate) to malicious behavior that attempts to undermine

the performance of the entire multi-robot system. Faults of these types have long been a topic of

research in the distributed computing literature [18]. In distributed computing, crash faults occur

when a processor ceases sending messages to its neighbors, and malicious behavior is characterized as a

Byzantine fault [19], in which a processor sends arbitrary, and possibly distinct, incorrect messages to

its neighbors. Our problem is slightly different from that confronted in distributed computing problems.

For us, in the case where robots can observe the behavior of their neighbors (using sensing capabilities),

it is not possible for a malicious robot to send distinct signals to different neighbors, since all neighbors

can directly observe the malicious robot’s behavior. Thus, our characterization of malicious behavior

includes only a subset of the Byzantine faults faced in distributed computing.

Using the terminology of Section 2.1 , we may characterize faults in terms of the state evolution map

fi and the control input ui. If a fault-free robot has state evolution map f∗i , then we say that the i-th

robot is faulty if fi 6= f∗i at any time during execution. In the case of crash faults, we would have
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fi(xi(t), ui) = xi(t), and in this case fi 6= f∗i except for the situation in which xi(t) is an equilibrium

point for the system. If we assume that robots share the same distributed control law u∗(·) [20], then a

fault occurs any time when ui 6= u∗. In the case of feedback control, ui would generally be a function

of xi(t), as well as the states of the neighbors of the ith robot, and possibly of t. Malicious behavior is

thus characterized by a robot choosing to apply a control input that is different from the one prescribed

by the distributed control law of the multi-robot system.

2.4 System properties

Similar to other studies (see e.g., [21]), the operation of the multi-robot system follows a cyclic behavior.

The following three sequential operations create a single cycle: Look, Compute, Move. First in the Look

state, each robot takes a snapshot of the current state of robots within its sensing region. Typically [22],

a robot’s sensing region is defined by a ball of radius r centered at its position. Next in the Compute

state, based upon the information obtained from Look state each robot calculates its control input ui.

Then in the Move state, each robot executes its chosen control. Every robot is memoryless such that

it generates a control input based upon only the information provided at the current time.

Robots are considered to be dimensionless; thus robots never collide1 with each other, and multiple

robots are allowed to be located at a same position. However, we do assume that each robot can

distinguish if a point is occupied by multiple robots. This is sometimes called multiplicity detection [21]

capability. Lastly, the robots are anonymous, i.e., each robot is indistinguishable from all other robots.

Thus, if there are faulty robots, due to the anonymity property, it is not possible for any robot to

identify which of its neighbors are faulty robots.

We consider synchronous systems, where every robot takes its snapshot of its local neighbors at times

determined by a global clock. Thus, at all t ∈ Z≥0, for each functioning robot i ∈ I, the control system

is given by

xi(t+ 1) = fi(xi(t), ui(t)), t = 0, 1, 2, . . . . (2.1)

The motion control law for each robot is generated during the Compute state based on the information

gained during the Look state.

1 While we do not explicitly consider collision detection, all of the algorithms we present can be adapted to avoid
collision by incorporating localized rules which do not violate the correctness or convergence properties of the algorithms.
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2.5 A few other basic notations

We shall introduce a few notations we will use throughout the text. We use ‖·‖ to denote the Euclidean

norm of a vector. We will use R≥0 to denote the non-negative real numbers, and Z≥0 to denote the

non-negative integers. For a set S ⊂ Rd the convex hull conv(S) is defined as the smallest convex set

containing S. We denote the boundary of the set by ∂S, and the interior of the set S as int(S). The

cardinality of S is denoted by |S|. If S is a convex polytope in Rd, then Ver(S) is the set of vertices of

S, and diam(S) is the the diameter of S, which is defined by the maximum Euclidean distance between

any two points in S, i.e., diam(S) = max{‖p− q‖ | p, q ∈ S}. For two points p, q ∈ Rd, we define

int(p, q), p, q to be the open and closed line segment connecting points p and q respectively. Also we let

H(p, q) = {s ∈ Rd | ‖s− p‖ ≤ ‖s− q‖} denote the closed halfspace of Rd of points closer to p than to

q. If d = 2, we may use the term halfplane instead of halfspace. Given a bounded space S ⊂ Rd, with

a density function φ : S → R≥0 defined over S, and some point p ∈ Rd, we define MS :=
∫
S
φ(q) dq to

be the mass of S, CS :=
∫
S
qφ(q) dq∫
S
φ(q) dq

to be the mass centroid of S, and JS,p :=
∫
S
‖q − p‖2 φ(q) dq to be

the 2nd moment of inertia of S with respect to p. Given a square matrix M ∈ Rl×l, M � 0 means that

M is positive definite. A matrix is positive, if every element in the matrix is positive. Given a square

matrix A, we denote by [A]ij the (i, j)th element of A, and by [A]k the kth column of A. We denote

by In the n × n identity matrix, and by 1n×1 the n × 1 column vector whose elements are all 1s. For

arbitrary n × n square matrices B, C, we write B ≤ C if [B]ij ≤ [C]ij for all pairs i, j ∈ {1, . . . , n}.

We use LHS as a shorthand for the left-hand side of an equation. Similarly, RHS as a shorthand for

right-hand side. For x ∈ Rd, and S ⊂ Rd

ρ(x, S) = inf
y∈S
‖x− y‖

defines the distance of x from S. A sequence of points (x(l))∞l=0 approaches a set S i.e., x(l) → S as

l→∞ means

ρ(x(l), S)→ 0 as l→∞.

The closure of a set S ⊂ Rd is defined by

cl(S) = {x ∈ Rd | ρ(x, S) = 0}.
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Thus a set S is closed, if S = cl(S), and open if its complement is closed. An alternative definition of

a closed set uses the definition of an open set. For p ∈ Rd, we define B(p, r), B(p, r) by the open and

closed ball of radius r centered at p, i.e., B(p, r) = {q ∈ Rd | ‖q − p‖ < r}, and B(p, r) = {q ∈ Rd |

‖q − p‖ ≤ r}. A set S is open, if for each x ∈ S, there is ε > 0 such that the ε−neighborhood of x

is contained in S, i.e., B(x, ε) ⊂ S. A set S is closed, if its complement is open. Given a real vector

v = [v1, . . . , vl]
> ∈ Rl, v ≥ 0 means vi ≥ 0 for all i = 1, . . . , l. We shall use both notations (x(t))∞t=0

and (x(t)) (if the context is clear) to denote an infinite sequence x(0), x(1), x(2), . . . , x(t), x(t+ 1), . . . .
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Chapter 3

Related studies: Multi-robot
rendezvous

One of the most well-studied topics in multi-robot coordination is the problem of bringing a distributed

group of robots to the same physical location in R2 or R3. There are two versions of this problem. In the

first version the goal is to arrive to an exact agreement on the physical location of robots. In robotics,

this problem is referred to as rendezvous [1, 16, 20, 23, 24], or gathering [21, 25–29], and it is closely

related to the distributed consensus problem, which studies agreement between locally communicating

agents (not necessarily mobile agents arriving to a physical location) [30–32]. The second version of the

problem is concerned with obtaining approximate solutions; every robot approaches the same physical

location in an asymptotic manner. This type of problem is referred to as an ε−rendezvous or convergence

problem, or as approximate consensus in non-robotics communities.

Some of the earliest work in multi-robot rendezvous1 problems is by Ando et al. [1,9], who proposed

the circumcenter algorithm. The circumcenter algorithm utilizes a geometric center called the circum-

center from discrete geometry. Roughly speaking, given a point set, the circumcenter is the center of the

smallest ball enclosing all the points in the set. According to the algorithm, each robot moves towards

the circumcenter of the positions of its neighbors and the robot itself, while preserving the connectiv-

ity2 with its neighbors. Lin and Morse [23, 24, 34] provided a convergence result for the circumcenter

algorithm using a Lyapunov-like method given an initially connected graph for both synchronous [24]

and asynchronous systems [34]. Later on, Cortes et al., [35] provided a more general result by showing

convergence of the circumcenter algorithm using LaSalle’s Invariance principle under switching, i.e.,

time-varying topology condition, and additionally showed the algorithm’s robustness when link failures

occur between nodes, under a few assumptions on interconnection topology.

Independently, those studies in [21, 25–29, 36] deal with the gathering problem, which usually con-

siders finite-time convergence of a group of multiple robots with unlimited visibility3. These problems

1Texts such as [33] state in a rather different way that the rendezvous problem is a special case of the gathering problem
where the system contains only two robots.

2Connectivity in the graph that represents the interconnection topology of the robots.
3Each robot can detect or see every other robot.
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have been investigated in both synchronous and asynchronous systems under various assumptions on

robot capability. Such capabilities of the robot include agreement on the coordinate system, consistent

compass, multiplicity detection, and unlimited mobility. A detailed analysis and description of the state

of the art on this subject are contained in Chapter 3 of [33] and the references therein.

The rendezvous and gathering problems are closely related to the consensus problem, which is a

popular topic in both computer science [18] and control [30, 31, 37–43] literature. In particular, those

studies in control communities concern multi-agent coordination that aims at convergence of the states of

the agents to a common value. These studies use system theoretic approaches, and have various names,

e.g., consensus [37–40], flocking4 [31], and formation control [41, 42] in which the communication links

between agents are either time-dependent or time-independent. There are also studies [30, 43] that

are not limited to a specific task, but can be applied for a general coordination tasks for multi-agent

systems.

The remainder of this chapter is organized as follows. Section 3.1 formally defines the rendezvous

task. Then we provide details of the circumcenter algorithm in Section 3.2. In Section 3.3, we provide

a brief analysis of the algorithm, and introduces LaSalle’s Invariance principle for non-deterministic

algorithms. Section 3.3.2 provides a theorem which states finite-time convergence of a group of robots

executing the circumcenter algorithm. Section 3.4 concludes this chapter by providing discussions of

the approaches used in the chapter.

3.1 Rendezvous of a group of robots

We formally define both exact and approximate rendezvous of a group of robots as follows.

Definition 3.1.1 (An exact rendezvous). Let x(t) = {x1(t), . . . , xn(t)} be the set of positions of n

robots at time t = 0, 1, 2 . . . , where xi(t) ∈ Q ⊂ Rd with d = 1, 2, 3. Suppose that the interconnection

topology of the n robots is represented by an r−disk graph Gr−disk(t) = (V, E(t)). Then, the n robots are

said to (exactly) rendezvous at time t, if the following relation holds:

xi(t) = xj(t), (i, j) ∈ E(0). (3.1)

Recall that E(0) is the set of edges of the graph Gr−disk(0) at initial time 0. Thus, if the graph of

n robots is initially connected, and the robots exactly rendezvous at some time t > 0, then x1(t) =

4Flocking is a special case of the distributed consensus problem for multi-agent systems or swarms in which the agents
must agree upon a common heading value. If applied to animals, this is also called schooling and herding.
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· · · = xn(t). Note that according to the definition, when robots rendezvous, they do not need to be

stationary5.

Definition 3.1.2 (An approximate rendezvous). Let x(t) = {x1(t), . . . , xn(t)} be the set of positions of

n robots at time t = 0, 1, 2 . . . , where xi(t) ∈ Q ⊂ Rd with d = 1, 2, 3. Suppose that the interconnection

topology of n robots is represented by an r−disk graph Gr−disk(t) = (V, E(t)). Then, the n robots are

said to approximately rendezvous, if for each ε > 0, there exists T ∈ Z≥0 such that t > T implies

‖xi(t)− xj(t)‖ < ε, (i, j) ∈ E(0). (3.2)

An alternative definition of ε−rendezvous can be found in Chapter 4 of [20], which uses the condition

that the Euclidean distance between the position of each robot and the average of positions of all robots

must be less than some distance ε > 0.

3.2 A rendezvous algorithm: the circumcenter algorithm

In this section, we review the circumcenter and circumradius of a bounded set, and introduce the circum-

center algorithm [1, 16, 23], which is one of the well-studied rendezvous algorithms. We also introduce

a connectivity constraint set that provides sufficient conditions for preserving pairwise connectivity

between robots, which is used for the circumcenter algorithm.

As its name implies, the circumcenter algorithm requires the computation of the circumcenter of a

point set. This is defined formally as follows.

Definition 3.2.1 (Circumcenter of a bounded set [9]). The circumcenter of a bounded set S ⊂ Rd,

denoted by CC(S) is the center of the closed ball of minimum radius that contains S. The circumradius

of S denoted by CR(S) is the radius of this smallest ball.

It is known that the circumcenter is unique [44]. The problem of obtaining the circumcenter and

circumradius of a bounded set S ⊂ Rd can be formulated as the following convex programming problem

[44] in r ∈ R and p ∈ Rd:

minimize
r, p

r

subject to ‖q − p‖ ≤ r, ∀q ∈ S,
5A robot i is stationary at time t ≥ 0 if xi(t) = xi(t+ 1)
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xj [t] � xi[t]

xj [t] � xi[t]

2

r

2

Ci,j [t]
0

(a)

r

2

xj [t]

xi[t]

xj [t] + xi[t]

2

(b)

Figure 3.1: (a) Pairwise connectivity constraint Ci,j(t), (b) Proof for Proposition 3.3.3 (Inspired by the figure of Ando et
al., [1]).

where r and p which solve the problem are the circumradius of S, and the circumcenter of S respectively.

This is also known as minimum covering sphere problem in some literature [44,45].

During the execution of the circumcenter algorithm, it is necessary to ensure that network connectivity

is not compromised. For each robot, the connectivity constraint [1,9,23,24,34,35] provides a sufficient

condition for maintaining connectivity with its neighbors at the next iteration, i.e., stage, step, using

only local information, such as the positions of its own neighbors. Thus, such a connectivity constraint

can be used for distributed algorithms. We define this constraint as follows. Let Ci,j(t) be the pairwise

connectivity constraint set for two distinct robots, robot i and j, which are neighbors to each other,

i.e., ‖xi(t)− xj(t)‖ ≤ r at time t where r is the sensing radius. The pairwise connectivity constraint is

defined by

Ci,j(t) = B
(
xj(t)− xi(t)

2
,
r

2

)
. (3.3)

Fig. 3.1(a) shows the pairwise connectivity constraint with robots i and j. Suppose that at time

t = 0, 1, 2 . . . , robot l = 1, . . . , n evolves with a discrete time system xl(t+ 1) = xl(t) + ul(t). Then if

at time t, ith and jth robots that are neighbors, i.e., ‖xi(t)− xj(t)‖ ≤ r, and they choose their control

to be ui(t) ∈ Ci,j(t), and uj(t) ∈ Cj,i(t) respectively, then at time t + 1, the two nodes i and j remain

neighbors, i.e., ‖xi(t+ 1)− xj(t+ 1)‖ ≤ r.

If there are neighbors of robot i other than robot j, the connectivity constraint set with all the

neighbors is exactly the intersection of all pairwise constraint sets associated with robot i. We denote

by Ci(t) the intersection:

Ci(t) =
⋂

j∈Ni(t)

Ci,j(t). (3.4)
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The circumcenter algorithm is a distributed rendezvous algorithm that was first introduced by Ando

et al. [1]. The convergence properties of the algorithm were further studied by a few other researchers

including Lin and Morse [23, 24], and Cortes et al. [16, 20]. As was discussed in Section 2.4, at every

stage, each robot executes the following operations:

• Look : Each robot determines the positions of its neighbors.

• Compute: Each robot calculates its circumcenter, and its connectivity constraint set.

• Move: Each robot moves towards the circumcenter while maintaining connectivity with its neigh-

bors, and respecting its maximum travel distance per stage.

We note that the circumcenter of a point set {xj(t)}j∈Ñi(t) is equivalent to the circumcenter of the

convex hull of of the point set {xj(t)}j∈Ñi(t), i.e.,

CC
(
{xj(t)}j∈Ñi(t)

)
= CC

(
conv

(
{xj(t)}j∈Ñi(t)

))
. (3.5)

To be used in the sequel, we define a new symbol CCi(t) to be the circumcenter of node i and its

neighbors at stage t, i.e.,

CCi(t) := CC
(
{xj(t)}j∈Ñi(t)

)
. (3.6)

The circumcenter algorithm can be applied to a simple discrete time dynamical system by

xi(t+ 1) = xi(t) + ui(t), t = 0, 1, 2, . . . , (3.7)

where ui(t) is defined by

ui(t) = σ∗i (t)(CCi(t)− xi(t)), σ∗i (t) ∈ [0, 1], ui(t) ∈ Ci(t) ∩ B(0, vmax) (3.8)

where σ∗i (t) is a weight between 0 and 1 that appropriately assigns the desired position xi(t+ 1) along

a closed line segment xi(t),CCi(t), vmax > 0 is the maximum travel distance for every robot during one

stage, and 0 is a d × 1 zero vector. In particular, if we are interested in the control vector ui(t) with
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the largest magnitude6, we obtain σ∗i (t) from the following problem:

maximize
σi(t)∈[0, 1]

σi(t)

subject to σi(t)(CCi(t)− xi(t)) ∈ Ci(t) ∩ B(0, vmax).

This representation of the circumcenter law for a simple discrete-time dynamical system (3.7)-(3.2) is

similar to that given in [35] of Cortes et al. The circumcenter algorithm is guaranteed to achieve exact

rendezvous. We will discuss this in the following section.

3.3 Analysis of the circumcenter algorithm

In this section we present an analysis of the correctness properties of the circumcenter algorithm. Our

approach follows closely that presented in [24, 35], but we include this here because many techniques

used here will be applied in Chapter 7 as well. For those who are familiar with multi-robot rendezvous

may prefer to skip this section.

First, we state propositions that define two important properties of the circumcenter of a convex

polytope, which will be used to show convergence property of the circumcenter algorithm.

Proposition 3.3.1 (Blumenthal [45]). Given a closed convex polytope S ⊂ Rd, the following relation

holds.

CC(S) ∈ S \ ver(S). (3.9)

The proof is contained [45].

Proposition 3.3.2 (Proposition 2.1 [35], Proposition 1, [24]). Let S be a non-empty set in Rd. If

p ∈ S \ CC(S), and S ⊂ B(p, r′), then

(
int(p,CC(S)) ∩ B

(
p+ q

2
,
r′

2

))
6= ∅ (3.10)

holds for all q ∈ S.

Proof. First we note that the open line segment int(p,CC(S)) is non-empty because p 6= CC(S). We

consider two cases:
6We assume that each robot moves toward its circumcenter while maintaining connectivity with its neighbors under

its limitations on mobility as closely as it can.
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Case 1: ‖q − p‖ < r′: In this case, it is sufficient to show that p is an interior point of the closed ball

B
(
p+q

2 , r
′

2

)
. Since ‖q − p‖ < r′, p ∈ B

(
p+q

2 , r
′

2

)
, which implies

(
int(p,CC(S)) ∩ B

(
p+ q

2
,
r′

2

))
6= ∅

as required.

Case 2: ‖q − p‖ = r′: Since p is not the circumcenter of S e.g., p 6= CC(S), and the circum-

center is unique, it can be deduced that CR(S) < r′. In other words, there is a circumcenter

CC(S) 6= p of the set S that has the corresponding circumcenter CR(S) smaller than r′. By this, both

CC(S) ∈ B(p, CR(S)) and CC(S) ∈ B(q, CR(S)) hold, and this implies that CC(S) ∈ B(p, CR(S)) ∩

B(q, CR(S)). By using the fact that CR(S) < r′, and CC(S) ∈ B(p, r′) ∩ B(q, r′), it can be deduced

that
(

int(p,CC(S)) ∩ B
(
p+q

2 , r
′

2

))
6= ∅ as required.

A proof similar to this is contained in pg. 2 [35].

It is formally stated in the following proposition that the connectivity constraint can be used to

maintain connectivity between a group of robots.

Proposition 3.3.3 (Lemma 4.2, Chapter 4 [20]). Let x(t) = {x1(t), . . . , xn(t)} be the set of positions

of n robots at some time t ∈ Z≥0, xj ∈ Q ⊂ Rd. We assume that the following are true.

• The interconnection topology at time t is defined with an r−disk graph Gr−disk(t) = (V, E(t))

• At time t = 0, 1, 2, . . . , each robot i = 1, . . . , n evolves by xi(t + 1) = xi(t) + ui(t), and chooses

its control ui(t) to be in its connectivity constraint set Ci(t) (3.3-3.4), e.g., ui(t) ∈ Ci(r)(t).

Then, ‖xi(t)− xj(t)‖ ≤ r holds for each (i, j) ∈ E(0), at all t = 0, 1, 2, . . . .

Proof. Let us first show that given two robots i, and j which are neighbors to each other at time instant

t, e.g., ‖xi(t)− xj(t)‖ ≤ r, if ui(t) ∈ Ci,j(t) and uj(t) ∈ Cj,i(t), then

‖xi(t+ 1)− xj(t+ 1)‖ ≤ r.

Before we proceed, we define sum, and difference between set, and vector. Given a bounded set S ⊂ Rd

and a vector s ∈ Rd, the sum is s+ S = {s+ s′ | s′ ∈ S}. It can be shown that

xi(t+ 1) ∈ xi(t) + Ci,j(t) = B
(
xi(t) + xj(t)

2
,
r

2

)
, (3.11)
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and

xj(t+ 1) ∈ xj(t) + Cj,i(t) = B
(
xi(t) + xj(t)

2
,
r

2

)
. (3.12)

Both xi(t+ 1), xj(t+ 1) being in the same closed ball with radius r
2 implies

‖xi(t+ 1)− xj(t+ 1)‖ ≤ r

(see Fig. 3.1(b)). By repeating this process with the rest of the neighbors in Ni(t), it is routine to show

that the connectivity is maintained with all neighbors of robot i, and the result follows.

We note that Proposition 3.3.3 implies that an infinite sequence of r−disk graphs (Gr−disk(t))∞t=0 that

represents the interconnection topology of (x(t))∞t=0 satisfies the following relations

Gr−disk(0) ⊆ Gr−disk(1) ⊆ · · · ⊆ Gr−disk(t) ⊆ · · · , t = 2, 3, . . . (3.13)

3.3.1 The circumcenter algorithm as a map

In this subsection, we represent the circumcenter algorithm with connected topologies as a set-valued

mapping T̃ cc : Qn → 2Q
n

. For convenience of analysis, using (3.7-3.2), we define a singleton-valued

map T cc
Gr−disk(t) : Qn → Qn whose ith component map T cc

Gr−disk(t),i : Qn → Q is given by

T cc
Gr−disk(t),i(x1(t), . . . , xn(t)) = xi(t) + σ∗i (t)(CCi(t)− xi(t)) (3.14)

where σ∗i (t) is obtained from (3.2). Note for a fixed topology represented by the graph Gr−disk(t),

T cc
Gr−disk(t),i depends continuously on the locations of the ith robot and its neighbors, e.g., {xj(t)}j∈Ñi(t)

at t = 0, 1, 2 . . . . We formally put this as a proposition.

Proposition 3.3.4. Given a fixed topology Gr−disk(t) at t = 0, 1, 2, . . . , the singleton-valued map

T cc
Gr−disk(t) is continuous on Qn.

A set-valued map can be used to take into account the time-varying topology of a group of robots along

the trajectory of the circumcenter algorithm. Set-valued maps can be used to model non-deterministic

algorithms [30,35,46]. We define the set valued map T̃ cc : Qn → 2Q
n

by

T̃ cc(x(t)) = {T cc
Gr−disk

(x(t)) ∈ Qn | Gr−disk = (V, E) is connected}, (3.15)
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i.e., the set valued map T̃ cc(x(t)) is collection of all possible maps T cc
Gr−disk

(x(t)) at different intercon-

nection topologies that are connected. The set T̃ cc(x(t)) is finite because the number connected graph

with a vertex set V is finite. We note from (3.15) that T cc
Gr−disk(t)(x(t)) ∈ T̃ cc(x(t)) holds for each

t = 0, 1, 2, . . . .

A set-valued map T̃ cc is said to be closed at y∗, if for any convergent sequences ym → y∗, zm → z∗,

such that zm ∈ T̃ cc(ym) holds for each m = 0, 1, 2, . . . , then z∗ ∈ T̃ cc(y∗). The map T̃ cc is said to

be closed on Qn, if it is closed for all y ∈ Qn. The closedness of set-valued map is analogous to the

continuity of an ordinary map. The following proposition states that the map T is closed on Qn.

Proposition 3.3.5 (Proposition 4.3 [35]). The set-valued map T̃ cc is closed on Qn ⊂ (Rd)n.

A proof7 for proposition is contained in [35]. The proof is based upon the definition of the closed

set-valued map.

Proposition 3.3.6 (Proposition 4.3 [35]). For each t = 0, 1, 2, . . . , x(t + 1) ∈ T̃ cc(x(t)) implies

conv(x(t+ 1)) ⊂ conv(x(t)).

Proof. By Proposition 3.3.1 and (3.5), for each xi(t),

CCi(t) ∈ conv
(
{xj(t)}j∈Ñi(t)

)

holds for all i = 1, . . . , n. By the definition of convex-hull, for each i = 1, . . . , n,

conv
(
{xj(t)}j∈Ñi(t)

)
⊂ conv(x(t))

holds and this implies that for each i = 1, . . . , n, CCi(t) ∈ conv(x(t)). Hence, xi(t),CCi(t) ∈ conv(x(t))

holds. Thus, from (3.7)-(3.2) it can be deduced that xi(t+ 1) ∈ conv(x(t)) holds for each i = 1, . . . , n,

and again by the definition of convex hull of a point set, conv(x(t + 1)) ⊆ conv(x(t)) holds for t =

0, 1, 2, . . . .

3.3.2 Exact rendezvous with the circumcenter algorithm

In this subsection, we prove that a set of robots with initially connected topology executing the cir-

cumcenter law will converge to a point in finite time using LaSalle’s Invariance Principle for closed

7In [35], the set-valued map that was shown to be closed is the cirumcenter algorithm at all strongly connected

topologies, and this is more general than our map T̃ cc (3.15). Thus their proposition 4.3 [35] can be used.
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set-valued maps. Suppose that there is a set Q ∈ Rd, and let there be an algorithm that is represented

by a set valued map T̃ cc : Qn → 2Q
n

. Given n point set q0 ∈ Qn, a trajectory of the algorithm defined

by T̃ cc from q0 is a sequence (qk)∞k=0 which satisfies

qk+1 ∈ T̃ cc(qk), k = 0, 1, 2, . . . (3.16)

A trajectory (qk)∞k=0 approaches a set U if, for every neighborhood8 L of U , there exists k′ > 0 such

that qk ∈ L for k ≥ k′. We write qk → U , as k →∞. A set M is weakly positively invariant w.r.t. T̃ cc,

if for each q ∈M there exists q′ ∈ T̃ cc(p) such that q′ ∈M . The continuous function L : (Rd)n → R is

non-increasing along T̃ cc on Qn ⊂ Rd, if L(q′) ≤ L(q) for all q ∈ Qn, and all q′ ∈ T̃ cc(q). We note that

the function V with such properties is often referred to as Lyapunov function.

Remark 3.3.1. The Theorem D.4.1 in the Appendix D (LaSalle’s Invariance Priciple for closed set-

valued maps) can be used to show the a convergence of non-deterministic discrete-time dynamical system

whose trajectory T̃ cc is computed by recursively setting qk+1 to an arbitrary element in the set T̃ cc(qk)

for each k = 0, 1, . . . , where T̃ cc is a closed set-valued map [16,47]. Note that the theorem requires that

there must be a continuous function L non-increasing along every trajectory of T̃ cc. In the following

subsection, we chose the Lypunov function L to be the diameter of the group of n robots, and use

Theorem D.4.1 to show that a multi-robot system evolving with circumcenter algorithm beginning with

initially connected interconnection topology, will converge to a point.

Next, to be used in the sequel, we define the term: consensus of points.

Definition 3.3.1 (Consensus of n points). An ordered set of points x = (x1, . . . , xn) ∈ (Rd)n is called

a consensus if x1 = x2 = · · · = xn.

Next, we show that a group of robots whose interconnection topology is initially connected, executing

the circumcenter algorithm defined by the set-valued map T̃ cc will rendezvous in finite time. For the

proof, we use LaSalle’s Invariance Principle stated in Theorem D.4.1, and choose Lyapunov candidate

function to be the diameter of the position set of the n robots.

L(x(t)) := diam(x(t)) = max
i, j∈I

‖xj(t)− xi(t)‖ (3.17)

The method of using the diameter of a point set as a Lyapunov function has been previously used

8A neighborhood of a set U ⊆ S is a subset of S that, for each point u ∈ U , contains an open ball centered at u.
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in a number of papers [24, 30, 35]. In order to qualify as a Lyapunov function, the function L must

be non-increasing along T̃ cc in Qn. In the next proposition, we show that the function L is indeed

non-increasing along the algorithm T̃ cc.

Proposition 3.3.7. For all t = 0, 1, 2, . . . , L(x(t+ 1)) ≤ L(x(t)) holds, where x(t+ 1) ∈ T (x(t)).

Proof. This is an immediate consequence of Proposition 3.3.6. In other words, for each t = 0, 1, 2, . . . ,

conv(x(t+ 1)) ⊂ conv(x(t)) implies L(x(t+ 1)) ≤ L(x(t)) where x(t+ 1) ∈ T (x(t)) [24,30,35].

We note that the Proposition 3.3.6 implies that for every x(t) in the trajectory (x(t))∞t=0 we have

xi(t) ∈ conv(x(0)) holds for i = 1, . . . , n, with all t = 0, 1, 2, . . . . To be used in the sequel, we define a

new symbol D to denote the compact set conv(x(0)), e.g., D := conv(x(0)). We are ready to state the

main result in the following theorem, which is similar to that provided in [20,35].

Theorem 3.3.1 (An exact rendezvous with the circumcenter law [24,35]). Let x(t) = {x1(t), . . . , xn(t)}

be the set of positions of n robots at time t = 0, 1, 2, . . . , where xi(t) ∈ Q ⊂ Rd. Suppose that the

interconnection topology of n robots are represented by an r−disk graph Gr−disk(t) = (V, E(t)), and

initially at t = 0, the graph is connected. If at t = 0, 1, 2, . . . , each robot executes the circumcenter

algorithm, then all n robots will exactly rendezvous at a point in finite time.

Proof. The proof below follows closely that given in Theorem 4.6 of [35]. We provide a brief summary

of the proof. We show via LaSalle’s invariance principle (Theorem D.4.1) that robots executing circum-

center algorithm with connected topologies defined by a set-valued map (3.15) at each stage approaches

an invariant set that is a consensus. Since it is given that the initial topology is connected and the

connectivity is maintained by the algorithm, the theorem holds as a special case. Then we show the

finite time convergence by the definition of the circumcenter and circumcenter algorithm.

We note that the followings are true:

• According to Proposition 3.3.5, (3.14), and (3.15), a group of robots executing circumcenter

algorithm that is denoted by a set-valued map T̃ cc is closed on Dn.

• The function L defined in (3.17) is continuous, and by Proposition 3.3.7, L is non-increasing along

T̃ cc. Thus L is a Lyapunov function w.r.t. T̃ cc.

• For every x(t) in the trajectory (x(t))∞t=0 of T̃ cc, xi(t) ∈ D for i = 1, . . . , n at each t = 0, 1, 2, . . . ,

which implies that the trajectory is bounded.
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Let M be the weakly positively invariant set defined by

M := {q ∈ Qn | ∃q′ ∈ T̃ cc(q) such that L(q′) = L(q)}.

We are ready to apply LaSalle’s Invariance Principle for non-deterministic algorithms (Theorem D.4.1).

Using the theorem, we can show that every bounded trajectory generated by T̃ cc under time-varying

topologies approaches M , e.g.,

x(t)→M, as t→∞. (3.18)

We claim that M is n−tuple of points in consensus. Let Γ9 be the ordered set of n points in consensus

Γ = {(q, . . . , q) ∈ Dn | q ∈ D}. (3.19)

Then our claim becomes M = Γ. We show that both inclusions M ⊂ Γ, and Γ ⊂ M hold. First note

that for every q′ ∈ Γ, q′ ∈M holds, which implies that Γ ⊂M .

Next we show the inclusion M ⊂ Γ by a contradiction. Suppose that M * Γ such that M \ Γ 6= ∅.

We claim that the set M \ Γ is a weakly positively invariant set with the desired property as defined.

We consider a point set q′′ = {q′′1 , . . . , q′′n} ∈ M \ Γ, then diam(q′′) > 0 holds. In what follows, we

show that by our algorithm T , for each p′ ∈ ver(conv(q′′)), p′′ ∈ conv(q′′) \ ver(conv(q′′)) holds for all

p′′ ∈ T̃ cc(p′). We can show this by Proposition 3.3.1, Proposition 3.3.2 , and Proposition 3.3.3 which

states that interconnection topology of n robots from initially connected topology, will say connected by

the connectivity constraint imposed on the circumcenter algorithm. First note that by Proposition 3.3.3,

unless n robots are in consensus, the connected topology implies that for each q′′i ∈ q′′ ⊂M\Γ, there is at

least one point q′′j ∈ q′′, with q′′i 6= q′′j , such that
∥∥q′′i − q′′j

∥∥ ≤ r. Since diam(conv(q′′)) is determined by

points in ver(conv(q′′)), given each vertex q′′m ∈ ver(conv(q′′)), there is at least one point in q′′l ∈ q′′ with

q′′m 6= q′′l such that ‖q′′m − q′′l ‖ ≤ r. Let G? be some connected graph. Then, according to Proposition

3.3.1 and Proposition 3.3.2, for any such G?, T cc
G?(q′′) ⊆ conv(q′′)\ver(conv(q′′)), holds. In other words,

the relation holds for each circumcenter algorithm defined by a point-to-point map T cc
G? . By the definition

of the set-valued map T̃ cc from (3.15), q′′′ ⊆ conv(q′′) \ ver(conv(q′′)) holds for all q′′′ ∈ T̃ cc(q′′), and

this implies that diam(q′′′) < diam(q′′) holds for all q′′′ ∈ T̃ cc(q′′), e.g., V (q′′′) < V (q′′) holds for all

q′′′ ∈ T̃ cc(q′′). Thus, the set M does not satisfy the condition V (q′′′) = V (q′′) where q′′′ ∈ T̃ cc(q′′),

which is a contradiction. Thus, M = Γ holds as required. Hence, by the Lasalle’s Invariance principle

9In [35], Γ is termed as the diagonal set of Dn such that diag(Dn) := {(q, . . . , q) ∈ Dn | q ∈ D}.
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stated in Theorem D.4.1, the trajectory (x(t))∞t=0 of the algorithm T̃ cc will approach the set Γ.

Next, we show that the sequence converge to a point instead of the set Γ. Note that since every

trajectory of T̃ cc, e.g., (x(t))∞t=0 where x(t + 1) ∈ T̃ cc(x(t)), is bounded, there must be a convergent

subsequence which converges to a consensus.

Then, using the properties of Lyapunov function L (continuity and monotonicity), we show that

entire sequences converge to the limit of the convergent subsequence, e.g., consensus. Let x? ∈ Γ. We

note that the following are true:

• For t = 0, 1, 2, . . . , L(x(t+ 1)) ≤ L(x(t)) holds where x(t+ 1) ∈ T̃ cc(x(t)).

• There exists a convergent subsequence with infinite set of non-negative integers in its natural

order10 K such that

x(t)→ x? (3.20)

as t→∞ with t ∈ K, where x? ∈ Γ.

We show that

lim
t→∞

L(x(t)) = lim
t∈K
L(x(t)) = L(x?) = 0 (3.21)

holds for some x? ∈ Γ. By continuity of L, we have

lim
t∈K
L(x(t)) = L(x?). (3.22)

From the 1st bullet, the sequence (L(x(t)))∞t=0 is non-increasing such that for any l ∈ Z≥0,

L(x?) ≤ L(x(l)). (3.23)

holds. Using (3.22), and definition of limit, for each ε > 0, there is tε ∈ K such that for t ≥ tε, and

t ∈ K,

L(x(t))− L(x?) < ε (3.24)

By the monotonic property of the sequence (L(x(l)))∞l=0, for all l ≥ tε,

L(x(l)) ≤ L(x(tε)). (3.25)

10An example of such sequence is K = 0, 1, 7, 9, . . . .
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In sum, we have L(x(l))− L(x?) < ε for all l ≥ tε, and this implies that x(l)→ x? as l →∞, e.g., the

entire sequence converges to x?.

Lastly, we show that the convergence is in finite time. The above asymptotic convergence result

implies that for each ε′ > 0 there exists some time tε′ ≥ 0 such that for t′ > tε′ , ‖xi(t)− x?i ‖ < ε′ holds

for all i = 1, . . . , n. Let us consider ε′ = min(vmax,
r
2 ), then at time t′′ = tε′+1 > tε′ , CCi(t

′′) = CCj(t
′′)

for all i, j ∈ I which implies an exact rendezvous x1(t′′) = · · · = xn(t′′) at time t′′, as required.

3.4 Discussion

All the propositions, and theorems contained in this chapter have been proven previously by other

researchers [24, 30, 35, 47, 48]. A similar versions of Theorem 3.3.1 can be found in [20, 24, 35]. For the

convergence proof of Theorem 3.3.1, we used the discrete-time version of LaSalle’s Invariance principle

(See Theorem D.4.1 in the Appendix D) [49] extended to set-valued maps11. Our proof closely follows

that given in [35]. Independently, Lin and Morse [24] used a standard Lyapunov argument to prove

Theorem 3.3.1.

A similar convergence result of Theorem 3.3.1, can be also obtained using the set-valued Lyapunov

theory discussed in [30, 43]. Independent of the above mentioned research, Lorenz [50] proposed a

theorem using the proper, equi-proper convex-hull averaging map that bears similarity with Moreau’s

set-valued Lyapunov theorem [30, 43], but requires weaker conditions than Moreau’s theorem. More

details on the difference between the two approaches are stated in [51].

11The complete proof of the LaSalle’s Invariance principle for non-determinmistic algorithm is contained in the Appendix
D.
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Chapter 4

Multi-robot robust rendezvous
algorithm: a combinatorial approach

In this chapter, we consider a fault-tolerant version of the multi-robot rendezvous problem. In most

all approaches that have been reported for the rendezvous problem, it is implicitly assumed that all

of the individual robots will faithfully and accurately execute an agreed upon, decentralized control

policy. Here, we consider the case in which some of the robots, termed faulty robots, fail to follow the

policy. For multi-robot systems, this could result from physical failure due to component malfunction

(e.g., sensor error), or to depletion of energy (e.g., dead batteries). More generally, faults might even

include adversarial scenarios, such as the presence of malicious robots which try to maximally degrade

the performance of coordination tasks [4, 5].

We present what we believe to be the first fault-tolerant, distributed consensus algorithm for the case

of robots operating in a multi-dimensional workspace. The contributions of the chapter are twofold.

First, we present a distributed algorithm for convergence of fault-free robots in the presence of malicious

robots. The algorithm relies on the concept of a Tverbeg partition of a pointset in Rd. The key property

of a Tverberg partition is that there is a non-empty intersection of the convex hulls of the elements

in partition. This property allows the construction of fault-tolerant control policies that do not rely

on coordinate averaging schemes. Second, we give a rigorous analysis of the algorithm’s performance,

combining elements of the methods given in the decentralized control community [31, 32], in which

faulty robots are not considered, and from the fault-tolerant computing community [52, 53], in which

network topology is independent of system state. Our analysis also provides a bound on the number of

iterations required to achieve approximate convergence within a specified error bound. We demonstrate

our algorithm for three different sensing models, evaluating performance via extensive simulation.

Fault tolerance has been a concern in digital computing since its earliest days [54], and our fault-

tolerant rendezvous problem has a close relationship to the classical Byzantine Generals problem in

distributed computing [19]. The two problems have several key differences, e.g., for the Byzantine

Generals problem the communication links are fixed, while in the multi-robot scenario communication
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links depend on the distances between pairs of robots; however, the overall goal for the Byzantine

Generals problem (achieving agreement among the fault-free processors, in spite of the presence of

faulty processors in the network) is analogous to the goal of achieving rendezvous. The approximate

Byzantine consensus problem is an extension of the original Byzantine generals problem for which the

goal is to allow the fault-free processors to agree on a value asymptotically [55–57]. Recently, there have

been studies of approximate Byzantine consensus problems where the consensus value is a d-dimensional

vector in Euclidean space. This problem is termed as Byzantine vector consensus [58]. Because of the

similarities between the Byzantine Generals problem and the rendezvous problem, we are able to exploit

a number of results from the area of fault-tolerant distributed computing, particularly the results found

in [52,53].

Independent from those studies on fault-tolerant consensus in digital computing communities, there

is also a body of research on fault-tolerant consensus [59–71] and fault-tolerant rendezvous or gathering

[28,35,72–76,76–78] in the control and robotics communities respectively. We will review here a few of

those studies that are closely related to the problem of interest in this chapter.

In the control community, a number of studies have focused on the consensus problem for the special

case of a scalar consensus variable. A median-based consensus algorithm is described in [61, 79], in

which each node uses only its own value and the median of its neighbors’ values for the state update. In

a similar manner, Leblanc et al., [56,80] consider a protocol where each node removes neighbors’ values

that are extreme with respect to its own value. Their study is an extension of resilient consensus protocol

previously investigated in [81]. There are also several studies that use control theoretic approaches to

provide provably correct distributed consensus algorithms for cases in which malicious or unreliable

links are present e.g., [63–66, 68, 69]. Again, in all of these approaches, the consensus variables are

scalars, taking their values on the real-line.

A number of approaches have focused on robustness to changes in network topology, caused, for

example, by adversarial nodes that can cause loss of edges or even nodes from the connectivity graph,

e.g., [56, 63, 82]. In [82], the authors prove robustness of a special class of random graphs to such

adversarial behaviors, and also show that the problem of determining robustness is coNP-complete.

In [62], Khanafer et al., proposed a zero-sum game between groups of nodes and an adversary where

the group of nodes executes robust distributed averaging while the adversary strategically disconnects

a set of links to prevent the nodes from converging. They formulate two versions of the problem which

are competition between two players whose action is reversed i.e., min-max and max-min problems.
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The Maximum principle was used to obtain optimal strategies for both problems and also to provide

sufficient conditions for existence of saddle points. We note that these approaches consider only a

limited class of possible faults - those that result in changes to network connectivity. In contrast, our

approach is able to deal a more general class of faults in which nodes may exhibit malicious behavior

while remaining anonymous, and without altering network topology.

Finally, we note the work of Zhu and Martinez [59, 60] who consider the special case of adversarial

nodes launching replay attacks1. They have proposed a novel distributed resilient algorithm for multi-

vehicle systems based upon a receding-horizon control method that converges to a desired formation

regardless of any replay attacks by adversarial nodes. Their model requires each node to have a memory.

Again, our approach is able to handle this type of fault, as well as much more general classes of faults,

and our method does not require memory.

There have been a number of attempts to solve the fault-tolerant gathering/rendezvous problem in

the robotics community [28,35,72–78]. However, all of these rely on the assumption that each fault-free

robot can see all other robots in the workspace, i.e., each fault-free robot has unlimited visibility, which

implies a fully connected communication graph. Under this condition, Agmon and Peleg [72] presented

a correct algorithm to gather all functioning robots when one of the robots crashes permanently. Defago

et al., [28] extended Agmon and Peleg’s previous work and showed feasibility of probabilistic gathering

under various assumptions related to synchrony and crash/Byzantine faults. Bouzid et al., [74] proposed

an algorithm to gather all fault-free robots in the presence of multiple crash faults. In their algorithm,

Weber points2, which have the key property of remaining unchanged under straight line movements

of any of the points towards or away from it, were used. The same authors also proposed Byzantine

tolerant gathering algorithm [75–77] for multi-robots moving in a line. Their approach is a combination

of that of Leblanc [56] and Zhang [61], in that in their algorithm each robot uses a trimming method to

remove up to f largest and f smallest values from their neighbors, and takes the median of the values

that are left.

In the remainder of the chapter, we present our approach to solving the fault-tolerant distributed

consensus problem. In Section 4.1 we present the concept of a Tverberg partition, which is the key

concept underlying our approach. In Section 4.2 we present our fault-tolerant algorithm, which we

refer to as ADRC. The main theoretical result of the chapter, a theorem that guarantees convergence

under mild connectivity assumptions, is presented in Section 4.3. Section 4.4 presents three different

1Adversarial nodes consecutively repeating the control commands for a period of time
2The geometric median of set of points in a Euclidean space is the point minimizing the sum of distances to the

points [83].
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instantiations of the ADRC algorithm based on different sensing models and their performance is

analyzed via number of simulation results in Section 4.5 and a suite of experiments using a multi-

robot testbed in Section 4.6. Finally, Section 4.7 concludes the chapter with a few remarks.

4.1 Tverberg Partitions and Safe Points

Our fault-tolerant algorithms rely on the ability to construct a partition of n points into nf + 1 disjoint

subsets whose convex hulls have a non-empty intersection. As we describe below, this implies that the

non-empty intersection will consist of points that lie in the convex hull of the set of fault-free nodes. In

this section we review results from discrete geometry that establish when and how such a partition can

be constructed.

Definition 4.1.1 (An r-divisible point set [84]). A set of n points is r-divisible if it can be partitioned

into r pairwise disjoint subsets such that the intersection of the convex hulls of these r subsets is non-

empty.

Using the definition, we state the classical Tverberg’s theorem, which provides conditions that guar-

antee a given point set to be r-divisible.

Theorem 4.1.1 (Tverberg’s Theorem [84]). Any set of n points in Rd is r-divisible if n ≥ (d+ 1)(r−

1) + 1.

Corollary 4.1.1 (Maximum Tverberg Partition). The maximum value of r for which a set of n points

in Rd is guaranteed to be r-divisible using Theorem 4.1.1 is r = dn/(d+ 1)e.

The result follows from straightforward computations using the bound in Theorem 4.1.1.

Fig. 4.1 shows examples of point sets in R2 that are r-divisible, for n = 4, 7, 10 and r = 2, 3, 4

respectively. Note in Fig. 4.1(a), the four points are partitioned into a set containing the three vertices

of the triangle and a set containing only the point lying inside the triangle, the latter also being the

only point in the intersection of the convex hulls of the two elements of the partition.

A partition Π = {P1 . . . Pr} such that ∩conv(Pi) 6= ∅ is called a Tverberg partition, and the size of

the partition |Π| = r is called the Tverberg depth or merely depth when the context is clear. Note that

for a given point set of size n, the Tverberg partition of depth r is not necessarily unique. A point

p ∈ ∩iconv(Pi) is called a Tverberg point of depth r. A Tverberg point for a point set in Rd is analogous

to the concept of the median for a point set in R.
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(a) 4 points, r = 2 (b) 7 points, r = 3 (c) 10 points, r = 4

Figure 4.1: Examples showing Tverberg points obtained with different number of points and division in R2 (circle: point, star:
a Tverberg point).

Suppose x = {x1 . . . xn} specifies the set of states of n robots, of which nf are faulty. If x is (nf + 1)

divisible, i.e., if n ≥ (d+ 1)nf + 1, then we can partition x into subsets P1, . . . Pnf+1, and at least one

of these sets will contain only fault-free robots (since there are nf + 1 sets but only nf faulty robots).

Furthermore, since ∩iconv(Pi) ⊆ conv(Pj) for all j ∈ {1, . . . , nf + 1}, any Tverberg point of depth

nf +1 is contained in the convex hull of a set of fault-free nodes. This motivates the following definition

of safe point.

Definition 4.1.2 (Safe point). For a set of n points in Rd, of which at most nf correspond to the

positions of faulty nodes, a point p is nf -safe (referred to as an nf -safe point) if it has a neighborhood

that is guaranteed to lie in the convex hull of the n− nf fault-free nodes.

There are at least two ways to ensure that a point p is nf -safe: (i) It is a Tverberg point of depth

nf + 1 that lies in the relative interior of the non-empty intersection of the convex hulls of (nf + 1)-

disjoint subsets. These subsets constitute the associated Tverberg partition. (ii) For every subset of

size n, p has a neighborhood that lies in the convex hull of the subset.

Our algorithm for fault-tolerant rendezvous explicitly constructs d-dimensional neighborhoods of safe

points at each iteration. The following proposition provides a method to construct such a neighborhood.

Proposition 4.1.1. For a set of n points in Rd that is (nf + 1)- divisible, if z1, . . . , zd+1 are Tverberg

points of depth nf + 1 in general position, each q ∈ ri(conv({z1, . . . , zd+1})) is nf -safe.

Proof. By the properties of Tverberg point, for each choice of the subset Q with size n,

zi ∈ conv(Q), i = 1, . . . , d+ 1. (4.1)

Under the condition that z1, . . . , zd+1 is in general condition ri(conv(z1, . . . , zd+1)) 6= ∅. By the def-
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inition of convex sets, (4.1) implies conv(z1, . . . , zd+1) ⊂ conv(Q). Hence for each choice of q ∈

ri(conv(z1, . . . , zd+1)), and Q with size n q ∈ ri(conv(Q)). By Definition 4.1.2 q is nf -safe, and the

proof is complete.

Unfortunately, even if a point set is (nf + 1)-divisible, it is not always the case that there exist d+ 1

Tverberg points of depth nf + 1 in general position. This can be seen in the example of Fig. 4.1(a), in

which the set of Tverberg points is a 0-dimensional subset of R2 (i.e., a single point). In such cases, the

relative interior of the Tverberg points is empty, and a d-dimensional neighborhood of safe points does

not exist. In such cases, Tverberg points may lie on the boundary, rather than in the interior, of the

convex hull of fault free nodes. For example, in Fig. 4.1(a), if any vertex of the triangle corresponds to

a faulty node, then the Tverberg point will be a vertex of the convex hull of the fault-free nodes, and

not an interior point. This motivates the following definition.

Definition 4.1.3 ((r, k)-divisible point set [85]). A set of n points in Rd is (r, k)-divisible if it can

be partitioned into r pairwise disjoint subsets such that the intersection of the convex hulls of these r

subsets is at least k-dimensional (0 ≤ k ≤ d).

If a point set is (nf + 1, d)-divisible, then there exists a set of d+ 1 Tverberg points of depth nf + 1

in general position, which allows the application of Proposition 4.1.1. Reay [85] and Roudneff [86, 87],

have given conditions under which a point set is (r, k)-divisible.

Conjecture 4.1.1 (Reay’s conjecture [85]). A set of n points in general position in Rd (with 0 ≤ k ≤ d)

is (r, k)-divisible if n ≥ (d+ 1)(r − 1) + k + 1.

For the case of k = d, Reay’s conjecture has been shown to be true for 2 ≤ d ≤ 8 [85–88].

Proposition 4.1.2 (Birch [88] and Roudneff [86,87]). For d = 2, 3, . . . , 8, any set of n points in general

position in Rd is (r, d)-divisible if n ≥ r(d+ 1).

This result allows us to apply our algorithm to robots with state spaces X ⊆ Rd for d ≤ 8, and

provides the following sufficient condition for constructing a neighborhood of nf -safe points.

Corollary 4.1.2 (Sufficient condition for nf -safe neighborhood). For d = 2, 3 . . . , 8, any set of n ≥

(nf + 1)(d + 1) points in general position will have a Tverberg partition of depth nf + 1, along with a

set of d+ 1 Tverberg points z1, . . . zd+1 such that every q ∈ ri(conv({z1, . . . , zd+1})) is nf -safe.

Three examples are shown in Fig. 4.2.
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(a) 6 points, r = 2 (b) 9 points, r = 3 (c) 12 points, r = 4

Figure 4.2: Examples of (r, 2)-divisible points set in R2 (circle: position of nodes, shaded area: 2-dimensional intersection).

4.1.1 Computational Complexity and Approximations

In general, the problem of computing Tverberg partitions is NP-Hard. Given n points in d dimensional

space, the best known algorithm to obtain a Tverberg partition of depth r = dn/(d+ 1)e requires up

to O(nd) computation time.

A recent study [2] reports a Lifting Algorithm that computes an approximate3 Tverberg partition

of size
⌈
n/2d

⌉
and a sample Tverberg point in linear time in n and quasi-polynomial time in d, i.e.,

dO(1)n, under the condition that the n points are in general position4. The algorithm is a recursive

projection-lifting algorithm. First, the point set in Rd is projected onto hyperplanes, Hm, of successively

lower dimension, m, eventually onto the real line, H1 = R1, and a partition (not a Tverberg partition)

is constructed for this projection onto H1. Then, for m = 2, . . . , d a partition for Hm is computed using

a lifting method applied to the partition of Hm−1. The algorithm terminates when m = d, and the

resulting partition is a Tverberg partition of depth dn/2de.

While a general description of the algorithm is beyond the scope of this chapter, it can easily be

illustrated for the case of a point set in R2. Fig. 4.3 illustrates the procedure. In this case, there

is only one step of projection (onto hyperplane H1 = R1) and one lifting step. First, the n points

are projected onto R1, and a partition is formed by creating 2-tuples of points that have successively

increasing distance to the left and the right of the median. For the example shown in Fig. 4.3(a) the

partition consists of five 2-tuples of points. Next, the line l through the median and perpendicular

to R1 is constructed. For each 2-tuple in the partition of R1, the points are lifted back into R2, and

3Approximate in the sense that, given the same number of points, the algorithm obtains a Tverberg partition with
decreased depth.

4The set of non-general configurations is measure zero, and thus any randomly drawn set of n points will be in general
position with probability 1. Nevertheless, since our algorithms run on computers with finite precision arithmetic, the
general position assumption must be verified in practice. When the general position assumption does not hold, small
random perturbations may be applied to produce a point set in general configuration.
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(a) (b) (c)

Figure 4.3: A procedure to obtain a Tverberg point by lifting method (the figure is inspired by that contained in [2]).

the intersection of l with the convex hull of the lifted points is computed, as shown in Fig. 4.3(b).

The median of these intersection points is computed, and 2-tuples of convex hulls are constructed by

establishing symmetric correspondences about this median (analogous to the process for H1). In this

example, since there were an odd number (five) of elements in the partition of H1, we construct two

2-tuples, and one 1-tuple. These points that are included in corresponding 1- or 2-tuples define the

Tverberg partition of the original point set, which is shown in Fig. 4.3(c). The depth of the resulting

Tverberg partition is
⌈
n/2d

⌉
= 3. Complete details of the lifting method can be found in [2].

4.2 A Fault-Tolerant Algorithm for Distributed Consensus

In this section, we introduce our Approximate Distributed Robust Convergence algorithm, which we call

ADRC. The basic idea behind our algorithm is that each fault-free robot constructs d + 1 maximal

depth Tverberg points, uses these to define a safe point, and then executes a motion toward the safe

point. The basic procedure is shown in Algorithm 1. We now present the details of the algorithm.

For each i ∈ I, define ñfi(t) as the maximal value of nfi for which we can ensure the existence of an

nfi-safe point with respect to the neighborhood Ni(t). From Corollary 4.1.2 we have

ñfi(t) ≤
|Ni(t)|
d+ 1

− 1 (4.2)

We use the Lifting Algorithm of Section 4.1.1 to construct a Tverberg partition of Ni(t) of depth
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Algorithm 1: ADRC

Require: δ > 0, {{Ni(t), αi(t)}i∈I}t∈Z≥0

foreach iteration t do
for each fault-free robot i do

// Look

Compute ñfi(t)
// Compute

Compute an ñfi(t)-safe point, si(t)
ui(t)← αi(t)(si(t)− xi(t))
// Move

if ‖ui(t)‖ < δ then
Halt

else
Execute control ui(t)

end

end

end

r = d|Ni(t)|/2de. This imposes the constraint that

ñfi(t) ≤
⌈ |Ni(t)|

2d

⌉
− 1 (4.3)

Combining (4.2) and (4.3) we obtain:

ñfi(t) ≤ min

{⌈ |Ni(t)|
2d

⌉
,
|Ni(t)|
d+ 1

}
− 1 (4.4)

Proposition 4.2.1 (Existence of a safe point). For a node with neighbors Ni(t), the Lifting Algorithm

will construct a Tverberg partition of depth ñfi(t) + 1 and an ñfi(t)-safe point for

ñfi(t) = min

{⌈ |Ni(t)|
2d

⌉
,

⌊ |Ni(t)|
d+ 1

⌋}
− 1 (4.5)

For the ith robot, our algorithm generates d + 1 Tverberg points of depth ñfi(t) + 1. This is done

by invoking the lifting algorithm d + 1 times, each time using a randomly chosen direction for the

hyperplane projection steps. The center of mass of these d+ 1 points, si(t), is an ñfi(t)-safe point. The

basic procedure is shown in Algorithm 2. Fig. 4.4 illustrates the process for d = 2 and |Ni(t)| = 20.

Figs. 4.4(a)–(c) show the results of three applications of the lifting algorithm, each of which produces

a Tverberg point of depth 5. Fig. 4.4(d) shows the resulting safe point si.

The action taken by the ith robot at time t is simply to move toward the safe point si(t). This leads
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Algorithm 2: Calculate ñfi(t)-Safe point

Require: Ni(t), d

ñfi(t)← min
{⌈
|Ni(t)|

2d

⌉
, |Ni(t)|

d+1

}
− 1

j ← 0, zi[ ]← ∅
while j ≤ d+ 1 do

θ ←rand(1, d)×2π
zic ← tverbergPnt(Ni(t), ñfi(t) + 1, θ)
/* Calculate a Tverberg point of depth ñfi(t) + 1 using the lifting algorithm with

hyperplane at random angle θ */

if isGeneralPosition(zi[ ], zic) then
zi[j]← zic
j ← j + 1

end

end
si(t)← mean (zi[ ])
return si(t)

to the following state update equation

xi(t+ 1) = xi(t) + ui(t) (4.6)

where

ui(t) = αi(t)(si(t)− xi(t)), (4.7)

and αi(t) is dynamically chosen parameter in the range, 0 < αmin ≤ αi(t) ≤ αmax < 1, such that ui(t)

does not violate constraints, e.g., maximum allowable displacement per stage. It is possible to consider

systems with more complex dynamics than those of (4.6), but we do not do so in this chapter.

Our algorithm is aggressive, in that it computes the maximal number of partitions possible, thus

providing maximal fault-tolerance relative to the neighborhood size of each robot. This aggressiveness

comes at a computational cost. We address this, and other computational issues, in Section 4.4.

Without loss of generality, throughout the remainder of the chapter we assume that robots evolving

under ADRC are always in general position. If this is not the case, general position can be achieved by

adding small perturbations to the positions of the robots.

4.3 Analysis of ADRC

In this section, we analyze the convergence of ADRC. The main result is given in Theorem 4.3.1,

which establishes conditions under which ADRC will converge. Our analysis builds on previous work

in distributed control of fault-free systems [31,89] and in fault-tolerant computing [52,53]. The former
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(a) (b)

(c) (d)

Figure 4.4: A safe point calculated by lifting method with 20 points. In (a)-(c), stars are Tverberg points and circles are
positions of the nodes, and in (d) square symbol is the safe point, stars are Tverberg points obtained from (a)-(c).

35



is not concerned with cases in which individual nodes may fail, while the latter does not consider the

case of time-varying network topology.

We begin by showing that under ADRC the evolution of the fault-free nodes can be described as a

time-varying linear system that depends only on the fault-free nodes, and deriving certain properties

of the corresponding time-varying system matrix. We then establish an appropriate concept of joint

connectivity [31,89], which we call repeated reachability. The concept will be used to provide a minimally

restrictive condition on the connectivity graph of the fault-free nodes for convergence under ADRC.

Finally, we employ properties of stochastic matrices [90–93] to demonstrate convergence of ADRC.

4.3.1 Evolution of the fault-free nodes as an LTV system

The behavior of the fault-free robots executing ADRC can be described as a discrete-time linear time-

varying system. In particular, the system evolution can be simply expressed as a backward product of

non-homogeneous system matrices. Our approach closely follows that given in [52].

Proposition 4.3.1. For an F-MRS in which the fault-free nodes execute ADRC, if nfi(t) ≤ ñfi(t) for

each i ∈ I, then the evolution of the fault-free nodes, x(t), can be represented by an LTV system of the

form

x(t+ 1) = M(t)x(t), t = 0, 1, 2, . . . , (4.8)

in which x(t) is an n × d matrix, and M(t) is an n × n row-stochastic matrix with [M]ij(t) > 0 for

i = j, or j ∈ N i(t).

Proof. Let Yi := {xj}j∈N i denote the set of positions of the fault-free neighbors of node i. By Propo-

sition 4.2.1, ADRC constructs an nfi(t)-safe point si(t) for each i ∈ I. Thus, there exists some set of

fault-free neighbors with positions P ⊆ Yi such that

si(t) ∈ ri(conv(P )) ⊆ ri(conv(Yi(t)),

Thus (see Proposition C.0.1), for each i ∈ I, there is a set of non-zero weights {λij}j∈N i(t) such that

si(t) can be represented by

si(t) =
∑

j∈N i(t)

λij(t)xj(t) (4.9)

with
∑
j∈N i(t) λij(t) = 1, and λij(t) > 0 for all j ∈ N i(t).
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Plugging (4.9) into (4.6) and (4.7), for each i ∈ I, we obtain

xi(t+ 1) = (1− αi(t))xi(t) + αi(t)


 ∑

j∈N i(t)

λij(t)xj(t)}


 .

There is such an equation for each i ∈ I, and these may be combined to obtain (4.8) by defining the

n× n matrix M(t) as follows. For i, j ∈ I

M(t) =





1− αi(t) if j = i

αi(t)λij(t) if j 6= i and j ∈ N i(t)

0 otherwise.

Note that M(t) is row-stochastic, with diagonal elements [M]ii(t) = 1−αi(t) ≥ 1−αmax, and [M]ij(t) =

αi(t)λij(t) for i 6= j if j ∈ N i(t).

Using (4.8), we may define state transition matrix Φ(tF , tI), for tI , tF ∈ Z≥0 where tI ≤ tF using a

backward product of system matrices

Φ(tF , tI) = M(tF )M(tF − 1) . . .M(tI)

=

tF∏

t=tI

M(t). (4.10)

4.3.2 Jointly Reachable Graphs

In this section, we define the concept of joint reachability, which is analogous to the concept of joint

connectivity introduced in [31, 89]. For a jointly reachable sequence of graphs, we give a relationship

between the adjacency matrix for the union of the graphs and the adjacency matrices for the individual

graphs in the sequence. We then extend the concept of joint reachability to infinite sequences of graphs

by defining the concept of repeated reachability, which will play a key role to establish a minimally

restrictive condition in Theorem 4.3.1.

We denote by G(t) the connectivity graph of the fault-free nodes at time t, and by A(t) the corre-

sponding adjacency matrix.
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Definition 4.3.1 (Jointly reachable sequence of graphs). For j ∈ N, consider a sequence of graphs

G(Tj), . . . ,G(Tj+1 − 1)

of length Lj = Tj+1−Tj, and with common vertex set V, such that G(t) = (V, E(t)) for t = Tj , . . . , Tj+1−

1. The union of these graphs is defined by

G̃Tj ,Tj+1−1 =

Tj+1−1⋃

t=Tj

G(t) =


V,

Tj+1−1⋃

t=Tj

E(t)


 .

We say that the sequence is jointly reachable if there exists some v ∈ V such that for each v′ 6= v in V

there exists a path from v′ to v in G̃Tj ,Tj+1−1.

For a jointly connected sequence of graphs G(Tj), . . . ,G(Tj+1 − 1), we denote by Ãj the adjacency

matrix for G̃Tj ,Tj+1−1. The following lemma provides a useful relationship between Ãj and the individual

adjacency matrices A(t), Tj ≤ t ≤ Tj+1 − 1.

Lemma 4.3.1. For A(Tj), . . . ,A(Tj+1−1) adjacency matrices for a sequence of graphs G(Tj), . . . ,G(Tj+1−

1), with the adjacency matrix Ãj for G̃Tj ,Tj+1−1, the following inequality holds:

In + Ãj ≤
Tj+1−1∏

t=Tj

(In +A(t)). (4.11)

Proof. Since G̃Tj ,Tj+1−1 is the union graph of the finite graph sequence {G(t)}Tj+1−1
Tj

,

ẼTj ,Tj+1−1 =
⋃

t∈[Tj , Tj+1−1]

E(t),

which implies

Ãj = ÃTj ,Tj+1−1 ≤
Tj+1−1∑

t=Tj

A(t). (4.12)

Simple calculation yields

In +

Tj+1−1∑

t=Tj

A(t) ≤
Tj+1−1∏

t=Tj

(In +A(t)). (4.13)
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Now, we can combine the two inequalities (4.12) and (4.13) to obtain:

In + Ãj ≤
Tj+1−1∏

t=Tj

(In +A(t)).

The following related result holds for any sequence of adjacency matrices. This includes A(t), Ãj or

a general adjacency matrix Aj .

Lemma 4.3.2. Let A0,A1, . . . be a sequence of n× n adjacency matrices and let η = (n− 1)2n(n−1).

Then for any l = 0, 1, . . . we have

(In +Al∗)n−1 ≤
l+η−1∏

j=l

(In +Aj)

for l∗ ∈ Z≥0 such that the term (In +Al∗) appears at least n− 1 times in the right hand side.

Proof. Since there are at most 2n(n−1) possible adjacency matrices, in any set of η = (n − 1)2n(n−1)

adjacency matrices, at least one matrix, Al∗ must appear at least n − 1 times. The inequality then

follows from the fact that Aj consists of nonnegative entries.

Joint reachability is a property of finite-length sequences of graphs. To establish conditions for

convergence of ADRC, we extend this notion to infinite graph sequences with the following definition,

which is similar to the concept of repeatedly jointly rooted graph sequence previously defined in [89].

Definition 4.3.2 (Repeatedly reachable graph sequence). An infinite sequence of graphs G(0),G(1),G(2) . . .

is said to be repeatedly reachable if there exists a sequence of times 0 = T1 < T2 . . . such that

Tj+1 − Tj = Lj < ∞ and the subsequence G(Tj), G(Tj + 1), . . . , G(Tj+1 − 1) is jointly reachable

for all j.

We denote by Lmax the least uniform upper bound for all Lj, i.e., Lj ≤ Lmax, for all j ∈ N.

In other words, the sequence G(0),G(1),G(2) . . . is repeatedly reachable if it can be partitioned into

contiguous finite length subsequences of lengths Lj ≤ Lmax that are themselves jointly reachable.

Note that the condition “the sequence G(0),G(1),G(2) . . . is repeatedly reachable” is significantly less

restrictive than the condition “ G(t) strongly connected for all t ∈ Z≥0”.
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4.3.3 Convergence of ADRC

In this section, we provide the main theoretical result of the chapter. We begin by using properties of

jointly reachable graphs to infer a lower bound on the backward product of system matrices (Proposition

4.3.2 whose proof relies on Lemma 4.3.3). Then, using Proposition 4.3.2, we derive a bound on the

coefficient of ergodicity for a finite backward product of system matrices (Lemma 4.3.4). Finally, we

present the main result in Theorem 4.3.1.

Lemma 4.3.3. For an F-MRS in which the fault-free nodes execute ADRC, and for a jointly reachable

sequence of graphs G(Tj), . . . ,G(Tj+1− 1) with Ãj the adjacency graph for G̃Tj ,Tj+1−1, if nfi(t) ≤ ñfi(t)

for all i ∈ I, for each j ∈ N there exists γj ∈ (0, 1) such that

γ
Lj
j (In + Ãj) ≤

Tj+1−1∏

t=Tj

M(t) (4.14)

where Lj = Tj+1 − Tj .

Proof. By Proposition 4.3.1, [M(t)]ij > 0, for i = j or [A(t)]ij 6= 0, and thus, for each t there exists

γ(t) ∈ (0, 1) such that

γ(t)(In +A(t)) ≤M(t).

Taking the product for each side over the sequence we obtain

Tj+1−1∏

t=Tj

γ(t)(In +A(t)) ≤
Tj+1−1∏

t=Tj

M(t). (4.15)

Let γj be a lower bound on γ(t) for the interval Tj to Tj+1 − 1. Then

γ
Lj
j

Tj+1−1∏

t=Tj

(In +A(t)) ≤
Tj+1−1∏

t=Tj

γ(t)(In +A(t)). (4.16)

Finally, Combining (4.15) and (4.16) and applying Lemma 4.3.1 we obtain

γ
Lj
j (In + Ãj) ≤

Tj+1−1∏

t=Tj

M(t).

Proposition 4.3.2. For an F-MRS in which the fault-free nodes execute ADRC, if
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(a) nfi(t) ≤ ñfi(t) for each i ∈ I and t ∈ Z≥0, and

(b) the sequence of connectivity graphs for the fault-free nodes, G(0),G(1),G(2), . . . , is repeatedly reach-

able

then for each l ∈ Z≥1, there exists γ ∈ (0, 1), and i ∈ I such that

γTl+η−Tl1n×1 ≤



Tl+η−1∏

t=Tl

M(t)



i

(4.17)

in which 0 = T0 < T1 < T2 . . . is a sequence of times such that Tj+1−Tj = Lj <∞ and G(Tj), . . . ,G(Tj+1−

1) is jointly reachable for all j; and η = (n− 1)2n(n−1).

Proof. By Lemma 4.3.3 there exists γj ∈ (0, 1) such that

γ
Lj
j (In + Ãj) ≤

Tj+1−1∏

t=Tj

M(t), (4.18)

for Lj = Tj+1 − Tj .

We may compute the product of each side over the interval from j = l to j = l + η − 1,

l+η−1∏

j=l

γ
Lj
j (In + Ãj) ≤

l+η−1∏

j=l

Tj+1−1∏

t=Tj

M(t). (4.19)

Now, let γ be a uniform lower bound for the γj , then

l+η−1∏

j=l

γLj (In + Ãj) ≤
l+η−1∏

j=l

γ
Lj
j (In + Ãj). (4.20)

Since Lj = Tj+1 − Tj , simple calculations yield

l+η−1∑

j=l

Lj =

l+η−1∑

j=l

Tj+1 − Tj = Tl+η − Tl.

Combining this result with (4.19) and (4.20) we obtain

γTl+η−Tl
l+η−1∏

j=l

(In + Ãj) ≤
Tl+η−1∏

t=Tl

M(t). (4.21)

We now apply Lemma 4.3.2. Let l∗ be such that the term (In + Ãl∗) appears at least n− 1 times in
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the product on the left hand side of (4.21). Then (by Lemma 4.3.2)

(
In + Ãl∗

)n−1

≤
l+η−1∏

j=l

(
In + Ãj

)
,

and thus

γTl+η−Tl
(
In + Ãl∗

)n−1

≤ γTl+η−Tl
l+η−1∏

j=l

(In + Ãj). (4.22)

But the matrix Ãl∗ is an adjacency matrix for a graph with a globally reachable node, and thus,

using Lemma C.0.3, there is some i such that

γTl+η−Tl1n×1 ≤ γTl+η−Tl
[(

In + Ãl∗
)n−1

]

i

. (4.23)

Finally, combining (4.21), (4.22), and (4.23), we obtain

γTl+η−Tl1n×1 ≤



Tl+η−1∏

t=Tl

M(t)



i

.

The following lemma provides a bound on the coefficient of ergodicity, τ1, for a finite backward

product of system matrices evolving under ADRC. A brief review of stochastic matrices and ergodicity

is provided in Appendix B. A more comprehensive review can be found in [90,91].

Lemma 4.3.4. Let τ1(S) denote the coefficient of ergodicity for a stochastic matrix S. For an F-MRS

in which the fault-free nodes execute ADRC, if

(a) nfi(t) ≤ ñfi(t) for each i ∈ I and t ∈ Z≥0, and

(b) the sequence of connectivity graphs for the fault-free nodes, G(0),G(1),G(2), . . . , is repeatedly reach-

able

then the following inequality holds:

v∏

h=0

τ1



T(h+1)η−1∏

t=Thη

M(t)


 ≤ (1− γLmaxη)v, (4.24)

in which 0 = T0 < T1 < T2 . . . is a sequence of times such that Tj+1−Tj = Lj <∞ and G(Tj), . . . ,G(Tj+1−

1) is jointly reachable for all j; and η = (n− 1)2n(n−1).
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Proof. Proposition B.0.1 together with Proposition 4.3.2 imply

τ1



T(h+1)η−1∏

t=Thη

M(t)


 ≤ 1− γT(h+1)η−Thη (4.25)

which holds for all h ∈ Z≥0. Let Lmax ∈ N be a uniform upper bound for the Lj . Thus, for all h ∈ Z≥0

1− γT(h+1)η−Thη ≤ 1− γLmaxη. (4.26)

Combining (4.25) and (4.26), and computing the product of each side for h = 0 to h = v for some v,

we obtain,
v∏

h=0

τ1



T(h+1)η−1∏

t=Thη

M(t)


 ≤ (1− γLmaxη)v.

Note that the values taken by t in the left hand side range from t = 0 when h = 0 to t = T(v+1)η − 1

for h = v.

We now state the main theorem of the chapter, which guarantees that under certain connectivity

conditions, the fault-free robots executing ADRC will converge to within any desired ε bound, regardless

of the behavior of the faulty robots. The proof of the theorem provides a bound on the time required

to achieve ε-convergence.

Theorem 4.3.1 (Convergence of ADRC). For an F-MRS in which the fault-free nodes execute ADRC,

if

(a) nfi(t) ≤ ñfi(t) for each i ∈ I and t ∈ Z≥0, and

(b) the sequence of connectivity graphs for the fault-free nodes, G(0),G(1),G(2), . . . , is repeatedly reach-

able

then for every t ≥ 0, fault-free pair i, j ∈ I, and ε > 0, there is some tε > 0 such that ‖xi(t)− xj(t)‖ < ε

for all t > tε.

Proof. Our proof, which uses the ergodicity of a backward product of stochastic matrices, is directly

inspired by the results given in [32,52], and relies on classical results from [94].

Let 0 = T0 < T1 < T2 . . . denote a sequence of times such that Tj+1 − Tj = Lj < ∞, and

G(Tj), . . . ,G(Tj+1 − 1) is jointly reachable for all j. Such a sequence exists, since G(0),G(1),G(2), . . .

is repeatedly reachable. For an arbitrary time t ≥ 0, let v? be the largest non-negative integer which

satisfies T(v?+1)η − 1 ≤ t, and t? = T(v?+1)η − 1, with η = (n− 1)2n(n−1).
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We can express the system evolution of fault-free robots using state transition matrix Φ given in

(4.10) as

x(t) = Φ(t, 0)x(0) (4.27)

= Φ(t, T(v?+1)η)Φ(T(v?+1)η − 1, 0)x(0) (4.28)

= Φ(t, t?) Φ(t?, 0)x(0)︸ ︷︷ ︸
x(t?)

. (4.29)

Now, for each time t ≥ 0, there are two possibilities:

1. t = t? = T(v?+1)η − 1 for some v?, or

2. T(v?+1)η < t < T(v?+1)η − 1, for some v?.

We will first consider the case when t = t?, and evaluate the maximum difference of the rows of Φ(t?, 0)

to provide a uniform upper bound for the Euclidean distance between the positions of any fault-free pair

at t?. Then using the contracting property of the map Φ, we will show that the maximum Euclidean

distance between fault-free pairs is non-increasing for T(v?+1)η < t < T(v?+1)η − 1, for any v?.

Case 1: t = t?

For notational convenience, we denote by xli the lth coordinate of xi, and we define qij(t) := [Φ(t, 0)]ij

as the (i, j)th entry of the matrix product Φ(t, 0). We denote by αl the absolute value of the largest

lth component of the initial position of all robots

αl = max
m∈I
|xlm(0)|

Consider the difference in lth coordinate of the positions of any two fault-free robots i, j ∈ I at time

t? > 0
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|xli(t?)− xlj(t?)| =
∣∣∣∣∣
n∑

g=1

(qig(t
?)− qjg(t?))xlg(0)

∣∣∣∣∣

≤
n∑

g=1

∣∣(qig(t?)− qjg(t?))xlg(0)
∣∣ (4.30)

≤
n∑

g=1

|(qig(t?)− qjg(t?))|
∣∣xlg(0)

∣∣ (4.31)

≤ αl

n∑

g=1

|qig(t?)− qjg(t?)| (4.32)

≤ αln δ

(
t?∏

t=0

M(t)

)
(4.33)

= αln δ



T(v?+1)η−1∏

t=0

M(t)


 (4.34)

= αln δ




v?∏

h=0

T(h+1)η−1∏

t=Thη

M(t)


 (4.35)

≤ αln

v?∏

h=0

τ1



T(h+1)η−1∏

t=Thη

M(t)


 (4.36)

≤ αln(1− γLmaxη)v
?

(4.37)

In the steps above (4.30) follows from the triangle inequality, (4.31) follows from the Cauchy-Schwartz

inequality; (4.32) uses the definition of αl; (4.33) uses the definition of maximum range given by (B.3);

(4.34) is obtained using t? = T(v?+1)η − 1; (4.36) follows from Lemma B.0.2; (4.37) follows from (6.7)

of lemma 4.3.4.

Using (4.37), we can compute a bound on the distance between the positions of any two robots at

time t?:

‖xi(t?)− xj(t?)‖2 =

d∑

l=1

∣∣xli(t?)− xlj(t?)
∣∣2 (4.38)

≤
d∑

l=1

α2
l n

2(1− γLmaxη)2v? . (4.39)
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Setting the upper bound to ε, i.e., setting

d∑

l=1

α2
l n

2(1− γLmaxη)2v? ≤ ε2

and solving for v? yields

v∗ ≤
log ε− log n− 1

2
log
∑

α2
l

log
(
1− γLmaxη

) . (4.40)

And we can obtain the actual time t? at the switching step v? using

t? = T(v?+1)η − 1.

We note in (4.39) that as the switching time v? →∞ the left hand side will tend to 0. We now consider

the case when t is not a switching time.

Case 2: T(v?+1)η < t < T(v?+1)η − 1

For a given configuration x(t) of the fault-free nodes, we define the diameter of x(t) as

diam(x(t)) := max
i,j∈I

‖xi(t)− xj(t)‖ . (4.41)

For a switching time t = t?, (4.39) provides a uniform upper bound on the diameter of the positions of

the fault-free nodes:

diam(x(t?)) ≤ n(1− γLmaxη)v
?

(
d∑

l=1

α2
l

) 1
2

.

For t? = T(v?+1)η < t < T(v?+1)η − 1, if the fault-free robots execute ADRC, we can apply (4.29) to

obtain

conv(x(t)) = conv(Φ(t, t?)x(t?)) ⊂ conv(x(t?))

and this implies

diam(x(t)) ≤ diam(x(t?)).

Thus, the uniform upper-bound obtained for Euclidean distance between all fault-free pairs at switching

time t? is also a valid for all t ≥ t?. However it is not known whether for some arbitrary pair i, j ∈ I,

‖xi(t)− xj(t)‖ ≤ ‖xi(t?)− xj(t?)‖ will hold for t > t?.
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Combining the results for Case 1 and Case 2 above, we have shown that for every ε > 0, and for all

pairs i, j ∈ I, there is t? > 0 such that t > t? implies ‖xi(t)− xj(t)‖ < ε.

Remark : To this point, our proof only demonstrates ergodicity in the weak sense, which, on its own,

does not imply that the positions of the fault-free robots will converge to a point that is stationary.

However, it has been shown by [92] that backward products of row-stochastic matrices have a nice

property that is summarized in the following theorem:

Theorem 4.3.2 (Chatterjee and Seneta [93]). For backward product of stochastic matrices, weak and

strong ergodicity are equivalent.

Using Theorem 4.3.2, we can deduce the following corollary, which implies convergence to a fixed

point.

Corollary 4.3.1 (Convergence of ADRC to a fixed point). Consider the assumptions and settings given

by Theorem 4.3.1. Then there is p ∈ Q ⊆ Rd such that for all i ∈ I, xi(t)→ p as t→∞.

4.3.4 Comments on the weak ergodicity of ADRC

The paper [90], discusses various classes of matrices that show ergodic properties. Stochastic, Indecom-

posable, Aperiodic (SIA) matrices comprise the largest of these classes. Roughly speaking, SIA matrices

are regular matrices5, and an infinite product of SIA matrices tends to a matrix with identical rows.

The set of scrambling matrice6 is a subset of the SIA matrices, with the nice feature that multiplying

any two scrambling matrices produces a matrix that is also scrambling. This is contrast to SIA matrices:

multiplying two SIA matrices does not necessarily produce an SIA matrix. The following relationships

hold between matrix classes that are used in this chapter:

{Positive matrices} ⊂ {Matrices with a positive column} ⊂ {Scrambling matrices} ⊂ {SIA}.

Recall that Proposition 4.3.2 states that the infinite backward product of system matrices generated

by ADRC can be expressed as an infinite backward product of matrices with positive columns. By

the inclusion above, these are in fact scrambling matrices. Thus, the weak ergodicity of ADRC follows

5A row-stochastic matrix is regular if it has a unit eigenvalue, i.e, the eigenvalue λ = 1 is simple. The powers of every
regular matrix converge to a rank one row-stochastic matrix.

6A row-stochastic matrix is scrambling if and only if any two rows have at least one positive element in a coincident
position.
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by the classical results contained in, e.g., [90, 91] which asserts that the infinite product of scrambling

matrices is weakly ergodic.

4.4 A Family of ADRC Algorithms

Like all distributed control algorithms, convergence of ADRC relies on maintaining appropriate connec-

tivity conditions; in the case of ADRC, repeated reachability of the connectivity graphs of the fault-free

nodes is a condition of Theorem 4.3.1. In this section, we propose three versions of ADRC, each with

its own strategy for maintaining adequate connectivity.

In the case of fault-free networks in which connectivity is determined by the sensing capabilities of

each robot, it is often possible to enforce connectivity constraints by limiting the range of motion of

each robot, based on the locations of its neighbors (e.g., [23, 35]). The circumcenter algorithm [1, 23]

is one such approach. Unfortunately, these approaches cannot be applied in cases when some of the

robots are faulty; if a fault-free robot constrains its motion in order to enforce connectivity with a faulty

neighbor, then the faulty neighbor has the possibility to impede, or even prevent, convergence of the

fault-free nodes by its actions. For example, if connectivity is enforced, and if there is a faulty robot

that moves far away, fault-free robots that are initially connected to the faulty robot may have no choice

but to follow the faulty robot (in order to maintain connectivity), which may result in a partitioned

connectivity graph or divergence of robot positions.

Rather than constraining the motions of the robots, we have opted to design a class of algorithms that

employ variable-range sensing to maintain connectivity. This approach is motivated by work in wireless

sensor networks (WSNs) [95, 96], where sensor nodes are capable of adjusting their sensing ranges to

conserve energy. In particular, we assume that each fault-free robot can dynamically adjust its sensing

range, resulting in a trade-off between cost of energy for sensing and connectivity maintenance.

Our three algorithms, ADRC-I, ADRC-II, ADRC-III, are defined as follows:

ADRC-I Each robot has a fixed sensing range, ri. This is the typical case that is considered in

distributed control algorithms for fault-free networks.

ADRC-II At time t + 1, the ith robot chooses its sensing range ri(t + 1) so that Ni(t) ⊆ Ni(t + 1),

i.e., the sensing range is chosen so that its set of neighbors is monotonically non-decreasing.

ADRC-III At time t+ 1, the ith robot chooses its sensing range ri(t+ 1) so that it has nN neighbors,

where
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faulty robot

initial configuration

local coordinate avg.: r = 0.55 circumcenter: r = 0.55 ADRC-II: ri(0) = 0.15, rmax = 0.55fault-free robot

configuration after 30 stages

Figure 4.5: Initial configuration and the configuration after 30 stages with stationary faults.

nN , max{(nflocal,max
+ 1)(d+ 1), nflocal,max

2d + 1}

and nflocal,max
is the maximum number of faults every robot is desired to tolerate.

Note that ADRC-III imposes a fixed value for the neighborhood size as a function of the maximum

number of faulty neighbors, while the ADRC-II allows the number of neighbors to grow to n as the

robots converge. As a result, the computational cost for ADRC-III may be significantly less than that

for ADRC-II, particularly during the final stages of convergence (when the presence of faulty neighbors

will have less impact on performance). Furthermore, since ADRC-II enforces continued connectivity

with all of its initial neighbors, sensing cost can be made arbitrarily high by a malicious neighbor. For

these reasons, if a reasonable estimate is available for the number of faulty neighbors, ADRC-III is a

more attractive algorithm.

4.5 Numerical simulation

This section presents a suite of numerical simulation results to demonstrate the performance of our

proposed algorithms. We will work with an F-MRS where the intercommunication topology is charac-

terized by the proximity of the robot positions. In particular,the interconnection topology of the robots

at time t is defined by a disk graph Gdisk(t) = (V, E(t)), where E(t) ∈ V × V and (j, i) ∈ E(t) if and

only if i, j ∈ V, i 6= j, and ‖xj(t)− xi(t)‖ ≤ min{ri(t), rmax}.

The workspace for our simulations is Q = [0, 1]×[0, 1] ∈ R2, in which 300 robots are initially deployed

in general position. Comparisons of rendezvous performance in the presence of faulty robots are made

between three algorithms: a local coordinate averaging algorithm [37], the circumcenter algorithm [1],

and ADRC (in its three versions). For local coordinate averaging and the circumcenter algorithm, the

sensing radius is fixed and uniform with ri(t) = 0.55. For fair comparison, we apply controllable sensing
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radius for our algorithm where the initial values are ri(0) = 0.55, and the upper bound is rmax = 0.55.

The maximum displacement per stage is vmax = 0.05, the convergence error bound is ε = 1× 10−7,

and the number of faults is nf = 30. For ADRC-III, we uniformly set the number of tolerable faulty

neighbors for every fault-free robot as nflocal,max
= 40 such that nN = 161, and ñfi = nflocal,max

= 40

for all i ∈ I.

The first simulation considers the case of stationary faults. Fig. 4.5 shows the initial configuration,

and configuration at stage 30 for the three algorithms. Fig. 4.6 shows position change over the evolutions

of each of the three algorithms. As can be seen from the figures, the circumcenter law does not converge

in the presence of stationary faults, while both local-averaging and ADRC-II do converge. The value

ñfi − nfi for ADRC-II is shown in Fig. 4.7(a), and algebraic connectivity7 over 30 stages is shown

in Fig. 4.7(b). The two plots in Fig. 4.7 show that the current example satisfies two connectivity

conditions found in Theorem 4.3.1. Fig. 4.8 shows ri(t) for the fault-free robots (a) for ADRC-II when

there are no faults, (b) for ADRC-II when there are 30 faults, (c) for ADRC-III when there are 30

faults. Compared to Fig. 4.8(a) where there are no faults, Fig. 4.8(b) shows that overall the ri(t) for

fault-free robots do not decrease as fault-free robots positions converge to a point. On the other hands,

Fig. 4.8(c) shows that if ADRC-III is used under the identical settings, the sensing radii converge. The

example shows one advantage of ADRC-III over ADRC-II.

The second simulation results correspond to the case of dynamic faults. For this simulation, each

faulty robot merely traces out a square pattern (each side of length 2×vmax). The initial configuration,

and the faulty robots motion pattern is shown in Fig. 4.9. Fig. 4.10 shows positions change over the

evolutions of the three algorithms. As can be seen, ADRC-II converges to a consensus, while both local

averaging and the circumcenter algorithm fail to converge. The value ñfi − nfi for ADRC-II is shown

in Fig. 4.11(a), and algebraic connectivity over 30 stages is shown in Fig. 4.11(b).

Table 4.1: Details of the points of convergence (POC) in Fig. 4.12(b)

POC
number of nodes
at the POC

for each node at the POC,
the number of neighbors from
A B C D F

A 81 80 1 0 0 0
B 70 12 69 0 0 0
C 29 0 0 28 25 28
D 90 0 0 0 81 0

In our third and final simulation, we provide a few examples that depict shortcomings of ADRC-III

7It was shown in [97] that if the algebraic connectivity of a digraph G is positive, i.e., λ2(L(G)) > 0, then G has a
globally reachable node.
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Figure 4.6: Positions change of fault-free robots during 30 stages.

51



-20

0

20

40

60

0 10 20
stage number

ñ
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Figure 4.7: Connectivity changes over the evolution.
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Figure 4.8: Radii change during the evolution with ADRC-II, III with 0 and 30 stationary faults.
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fault-free robot faulty robot trace

initial configuration faulty robots’ motion patterns

Figure 4.9: Initial configuration and faulty robots’ motion pattern.

due to limiting the neighborhood size by the value nflocal,max
. Fig. 4.12 shows the configuration after

30 stages when applying the value for nflocal,max
= 30 and 20 respectively. The symbols A, B in Fig.

4.12(a) and A–D in Fig. 4.12(b) are the points of convergence (POC), and disks indicate the common

sensing ranges of the points. In Fig. 4.12(a), the neighborhood size for every fault-free robot is set to

121. The number of robots at A8 is 160. Since each robot at A is connected to 121 robots from A, it

will not move because its safe point should be found near A. The number of robots at B is 110, and

every robot at B is connected to 9 robots from A, 106 robots from B, and 6 faulty robots. Since each

safe point for a robot at B is necessarily contained in the convex hull of fault-free neighbors’ positions

and the value nflocal,max
= 30 is greater than the number of robots connected to A plus the number of

faulty robots (9+6=15), the safe point must be at B. Thus, all the robots at B will not move. Fig.

4.12(b) shows convergence to 4 groups of points after 30 stages, and the result can be analyzed in a

similar manner. Refer to Table 7.1 for the details.

4.6 Experimental results

This section presents a series of Robotarium experiments to verify our fault-tolerant rendezvous algo-

rithm. The Robotarium [98,99] is a multi-robot testbed developed at the Georgia Institute of Technol-

ogy. The testbed consists of custom-designed robots which are called the GRITSBots [99]. An image of

the Robotarium testbed is shown in Fig. 4.13(a), and that of the GRITSBot is shown in Fig. 4.13(b).

After our algorithm—being provided as a script—is uploaded to each GRITSBot, robots are initially

deployed at a randomly chosen configuration. Then, each robot is commanded to execute the script

for a specified number of discrete time steps, which in our case, is set to 1000. Total 10 experiments

8In this context, a robot is at A, if it is sufficiently close to A.
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Figure 4.10: Positions change of fault-free robots during 30 stages.
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Figure 4.12: Convergences to multiple points due to the neighborhood size limit.
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(a) Robotarium test-bed (b) GRITSBot

Figure 4.13: Photo courtesy of [98].

are carried out to test our theoretical results on the real multi-robot platform. The experiments from

#1 through #5 are performed with 8 robots from which one of them are faulty and the experiments

from #6 through #10 are performed with 11 robots from which two of them are faulty. Those faulty

robots are randomly sampled and simply wander around the workspace periodically based on some

random nonlinear sinusoidal function. Due to the small workspace size and the limited availability

on the number of robots, we assumed complete graph for the interconnection topology throughout the

experiments9.

Fig. 4.14, 4.15, and 4.16 show positions change of all robots during the 1000 iterations. The solid

lines show the change in the positions of fault-free robots, and the dashed lines show the change in

the positions of faulty robots. As can bee seen from the figures, after 1000 iterations, all the fault-free

robots successfully gathered together at a fixed location, regardless of the actions of faulty robots. In

particular, Fig. 4.17 shows a few web-cam snapshot images of both initial and final configurations and

the motions of all robots obtained from the two experiments: #5 and #10.

9Recall that each robot executing ADRC algorithms should have sufficiently large neighborhood size to tolerate certain
number of faults.
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Figure 4.14: Positions change of fault-free robots during 1000 iterations (experiment #1-#4).
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Figure 4.15: Positions change of fault-free robots during 1000 iterations (experiment #5-#8).

59



time step
0 200 400 600 800 1000

po
si

tio
n 

(X
)

-1

-0.5

0

0.5

1
experiment #9

time step
0 200 400 600 800 1000

po
si

tio
n 

(Y
)

-0.5

0

0.5

1

(a)

time step
0 200 400 600 800 1000

po
si

tio
n 

(X
)

-0.5

0

0.5

1
experiment #10

time step
0 200 400 600 800 1000

po
si

tio
n 

(Y
)

-0.5

0

0.5

(b)

Figure 4.16: Positions change of fault-free robots during 1000 iterations (experiment #9-#10).

4.7 Conclusion

This chapter proposed a computationally efficient, decentralized, fault-tolerant algorithm for rendezvous

of a group of robots with limited sensing. We provided the convergence analysis of the proposed

algorithm by borrowing several tools form ergodic theory, matrix theory, and graph theory. A number

of experimental results using a multi-robot testbed as well as a suite of simulation results are provided to

illustrate the theoretical results. Future work will involve relaxing the dimensionless robots assumption,

e.g., considering fat robot models [100] with collision avoidance, and proposing tighter connectivity

constraints for each robot by taking into account the cooperative actions between fault-free robots.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Initial configurations (1st row), final configurations (2nd row), trajectories of robots (3rd row) for experiment #5
(left column) and experiment #10 (right column). The circled robots shown in (a)-(d) are faulty.
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Chapter 5

Multi-robot robust rendezvous
algorithm: an optimization
approach
In this chapter, we address the problem of computing distributed motion control algorithms for a multi-

robot system that performs rendezvous tasks under random robot failures (i.e., in the case when certain

robots may randomly fail to operate properly, for example due to low battery). We assume that it is

not known a priori which robots will fail, and that the functioning robots are not able to reliably discern

when other robots have failed (e.g., if communication constraints prevent direct verification via queries

to potentially failing robots). We do, however, assume that probabilities associated to robot failures

are available, and the algorithms that we develop rely on these probability distributions to compute

stochastic optimal control strategies to maximize performance in an expected sense.

There is always a possibility that a few robots will fail during coordination tasks, and even, a few faulty

robots may result in failure in mission. However to best of our knowledge, there have been relatively

few attempts to develop fully distributed algorithms that both achieve the rendezvous task and are

resilient in the face of possible failures by some of the robots. The incomplete list of bibliographies

related to this topic is contained in the beginning of Chapter 4.

In this chapter, we formulate a distributed optimization problem that every functioning robot solves

at each stage. The cost functional can be calculated by each robot using only the limited sensing

and communication data e.g., positions of its neighbors. For every functioning robot, the sequence of

solutions obtained by solving the problem at each stage becomes a distributed motion control policy.

The cost functional is the squared errors between position of of a robot and the average position of the

robot plus its neighbors. The idea of our formulation came from Vicsek’s model [10] one of the linear

averaging algorithms that was verified to work under no failure cases [31].

We model the index set of robots that may fail as a stochastic quantity, and embed the failure

model into our formulated problem. We found it difficult to use our proposed stochastic failure model

with the previous linear averaging algorithms, e.g., Vicsek’s model [10,31], circumcenter algorithm [9],

Lyapunov-based consensus algorithm [37, 38, 40]. We propose a distributed stochastic cost functional
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in which the faulty robots are defined with a random set such that they are excluded from the cost

computation. Then, we formulate a stochastic problem that minimizes the expectation of the cost

function. In addition, we consider mean-variance cost model proposed by [101] to penalize the large

variance as well. In addition, to ensure connectivity of the network, we adopt the connectivity constraint

from [1,9,23,35], which provides a sufficient condition for rendezvous, and it is easily implementable in

a distributed controller.

We choose sequential quadratic programming (SQP) as a our solution method. Instead of solving the

nonlinear program directly, using SQP enables us to solve subproblems, each of which is a quadratic

program (QP) with linear constraints that is relatively easy to solve.

To demonstrate our algorithms, we provide several numerical simulations in which robots fail at

random. In this chapter, we consider only the case in which robot failure implies that the robot is no

longer able to move, and is not able to signal to other robots that it has failed (as, e.g., with power

loss). Our numerical simulation results shows that our proposed algorithm guarantees statistically

better rendezvous task performance than the well-known circumcenter algorithm [9] under stationary

faulty robots.

This chapter is organized as follows. In Section 5.1, we formally defines the measure of rendezvous

in the presence of faults. Then in Section 5.2, we formulate our distributed rendezvous problem as a

1–step optimal control problem in the presence of potential robot failure, and we investigate constraints

for the problem to ensure point convergence. In Section 5.3, we proposed our stochastic robot failure

model, and consider the mean–variance cost function to take into account random robot failures. We

demonstrate simulation results in Section 5.4 to verify our proposed algorithms. As an extension, we

propose a minimax version of our problem, and present a few simulation results with a simple example

in Section 5.5. Then, we conclude this chapter in Section 5.6. This work has appeared as a conference

paper in [13].

5.1 Rendezvous measure in the presence of faults

In this chapter, we propose multi-robot robust rendezvous in the presence of faults. Since we would

like to see and compare the robustness of the algorithm to faults between different algorithms (also for

the case robots does not converges or meet at a point), we provide a measure of the robustness. To use

the measure, we assume that the interconnection topology if the graph at initial time t = 0, i.e., G(0),

is connected. Then, if G(0) is connected and F = ∅ (i.e., no faults), a correct rendezvous algorithm,
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e.g., circumcenter law, will bring all robots to a single point. Otherwise, if there are faults, there is no

guarantee for the convergence. Let RDV(t) be the rendezvous measure in the presence faults at the

time t which is defined by

RDV(t) =
1

n

n∑

i=1

‖xi(t)− xavg(t)‖2 (5.1)

where xavg(t) is the average positions of fault-free robots at t, i.e., xavg(t) = 1
n

∑n
i=1 xi(t). In other

words, RDV(t) is a variance of the positions of fault-free robots that shows how far robot’s positions

are spread out respect to the average position value. Thus, given an initially connected graph G(0), in

the most desirable cases, RDV(t)→ 0 as t→∞.

5.2 Problem formulation

In the section, we formulate a minimization problem for each functioning robot that needs to be solved at

each stage. Best For every functioning robot, the sequence of solutions obtained by solving the problem

at each stage becomes its distributed motion control policy. Our approach is sometimes called a one–

step optimization method, or the greedy algorithm depending on context. Our problem formulation in

this section is used as a framework to apply stochastic robot failure model in the following section.

Recall that x(t) is configuration of n robots deployed in Qn ⊆ (Rd)n at some time step t ∈ Z≥0. The

discrete time evolution for each fault-free robot i ∈ I is given by

xi(t+ 1) = fi(xi(t), ui(t)) = xi(t) + ui(t), t ∈ 0, 1, 2, . . .

We want to find the control policy, i.e., an ordered set of control vectors (ui(0), ui(1), ui(2), . . . ) for

each functioning robot i ∈ I which minimizes a certain cost function for t = 0, 1, 2, . . . .

5.2.1 Rendezvous problem

We formulate our distributed rendezvous problem based on the Vicsek’s model [10]. In [10], Vicsek et

al. proposed a nearest neighbor rule that is used to update the heading of self-driven particles moving

at a same speed with the average of the particle’s own direction and the directions of its neighbors.

In a similar manner, at every stage, each functioning robot i ∈ I senses the positions of its neighbors,

i.e., other agents within specified distance r, and moves towards the average of its own position and its

64



neighbors’ positions. The discrete time evolution of the system using the algorithm is given by

xi(t+ 1) =
1

|Ni(t)|+ 1


xi(t) +

∑

j∈Ni(t)

xj(t)


 . (5.2)

It was shown by Jadbabaie et al. [31] that under a few assumptions on the network connectivity, agents

moving with Vicsek’s model converge to a consensus. Note that (5.2) is a special case of adjacency-based

linear averaging algorithm [20, 31] with unweighted adjacency matrix. For details of the subject refer

to Chapter 1 of [20].

Based upon the linear update rule, a minimization problem for each fault-free robot i ∈ I at stage t

is formulated as follows.

minimize
ui(t)

∥∥∥∥∥∥
1

|Ni(t)|+ 1


 ∑

j∈Ni(t)

xj(t) + xi(t)


− xi(t)− ui(t)

∥∥∥∥∥∥

2

. (5.3)

The problem is to find a control ui(t) ∈ Rd for each fault-free robot i ∈ I that minimizes the distributed

cost given by a squared distance between ith robot position at stage t+ 1, and the average positions of

the ith robot’s neighbors plus the robot itself at stage t. Note that if faults present among its neighbor,

each fault-free robot i ∈ I cannot calculate the correct cost value that should be the function of only

the positions of fault-free neighbors and the robot’s input. Using the previous results from [38,102], we

can state the following theorem.

Theorem 5.2.1. If G(t) is static, strongly connected, and balanced for t ∈ Z≥0, RDV(t)→ 0 as t→∞.

5.3 Optimal strategies in the presence of random robot

failures

In this section, we propose a probabilistic robot failure model. Based upon our previous formulation

(5.3), we will formulate a cost functional that depends on the set of positions of faulty robots. Then

we propose two stochastic programs: the one that minimize the expectation of the cost, and the other

that minimizes the linear combination of expectation and the variance of the cost.
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5.3.1 Modeling robot failure

In this subsection, we propose a method to model the random robot failure. In particular, we will look

at the local model, i.e., for each fault-free robot i ∈ I, the event that any subset of its neighbors are

faulty. For this, we consider a distributed probability space for ith robot at stage t that is defined with

3-turple

(Ωi(t),Fi(t), Pi(t))

where

• Ωi(t) is the sample space which is set of outcomes that corresponds to set of all possible failure

configurations among the neighbors of i such that |Ωi(t)| = 2|Ni(t)|.

• Fi(t) is the event space which is the collection of all subset of Ωi(t), i.e., Fi(t) ∈ 2Ωi(t).

• Pi(t) is the probability measure, i.e., probability distribution, such that Pi(t)(Ωi(t)) = 1.

We define a random set Fi(t) as a map Fi(t) : Ωi(t) → 2Ni(t), and we define nfi(t) = |Fi(t)|. The

physical meaning of Fi(t) in our context is the index set of the random faults present among the set of

neighbors Ni(t) such that Fi(t) ⊆ Ni(t).

5.3.2 An example of robot failure model

In this subsection, we consider the binomial distribution to model our random robot failures in cases

when failure events for individual robots are mutually independent. Suppose that nfi(t) is a random

variable that is binomially distributed that is sum of |Ni(t)| mutually independent failure events identi-

cally distributed with probability p such that we may write nfi(t) ∼ Bi(|Ni(t)| , p). For each fault-free

robot i ∈ I, we consider a random variable Xij(t) associated with it neighbor j ∈ Ni(t) by

Xij(t) =





1, if robot j fails

0, if robot j does not fail

and Xij(t) ∼ Be(p) such that

P{Xj = 1} = p, (5.4)
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which is read as probability that the robot with index j fail equals p, and

P{Xj = 0} = 1− p. (5.5)

Since, in this example random variables (Xij(t))j∈Ni(t) are mutually independent, and identically dis-

tributed, we may write nfi(t) as the sum of random variables (Xij(t))j∈Ni(t)

nfi(t) =
∑

j∈Ni

Xij(t). (5.6)

Thus, the probability measure for an event that robots with index set w are faulty among Ni(t) is

expressed by the following PMF

pFi(t)(w) = Pi(t) {“robots with index set w are faulty”}

= p|w|(1− p)|Ni(t)|−|w|, i ∈ I, w ∈ Ωi(t). (5.7)

This can be read as probability of an event that robots with index w fail with probability p and rest of

the robots in the neighbors do not fail with probability 1− p. While in binomial random variable, only

the number of trials, i.e., experiment, and number of success (or fail) is the concern, with our model,

not only the number of robots that fails nfi(t), but the actual indices of the robots that fail Fi(t) are

important as well.

5.3.3 A stochastic optimization

If certain robots are faulty, our cost function should depend only on the positions of fault-free robots.

Give some fault-free robot with index i ∈ I at stage t, let the cost functional be a real valued function

gi : (Rd)Ñi(t) × Ωi(t)× Rd → R≥0 defined by

gi(x̃i(t), Fi(t), ui(t)) =

∥∥∥∥∥∥∥∥

1

|x̃i(t)| − |Fi(t)|




∑

xj(t)∈x̃i(t),
s.t. j /∈Fi

xj(t)


− xi(t)− ui(t)

∥∥∥∥∥∥∥∥

2

. (5.8)

Note that the cost functional gi for each fault-free robot i is a function of only the local information,

e.g., position of its neighbors that are not in Fi(t). Since (5.8) contains the random set Fi(t), it is not

possible for ith robot to calculate the cost. Instead each robot can minimize the expectation of the cost
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provided that the probability distribution of Fi(t) is known a priori.

minimize
ui(t)

E
[
gi(x̃i(t), Fi(t), ui(t))

]
. (5.9)

If one wants to penalize the input which results in relatively large variance, we may consider minmizing

the linear combination of expectation and variance of the cost. This leads to a mean-variance problem

given as follows.

minimize
ui(t)

E
[
gi(x̃i(t), Fi(t), ui(t))

]
+ αvvar

[
gi(x̃i(t), Fi(t), ui(t))

]
(5.10)

where αv is a positive weight for variance term. This approach is better known as mean–variance

model in robust optimization (RO) literature, e.g. [103–105], and was first introduced by [101] on his

portfolio selection model. Originally, this formulation was proposed to be used for high–risk decision

making under uncertainty. According to literature on the subject, the variance is closely related to

risk aversion measure. However, in many situations two quantities are conflicting (see text from multi-

objective optimization, e.g. [106]). Also quite often, it is of its own interest to find the best αv for

Pareto efficiency.

5.3.4 Inequality constraints

In this subsection, we consider a constrained stochastic optimization by adding a few inequality con-

straints to (5.9), (5.10). The constraints will be used for SQP formulation in the next subsection. It is

known from [30,35,50] that sufficient constraints for rendezvous (with no faults) are : first, at each time

step, every robot moves to a position that is in the strict convex-hull of the positions of it neighbors (we

call this strict convex-hull constraint), and second, at each time step, every robot maintains its connec-

tivity with its neighbors (connectivity constraint [1]). The two conditions together provide sufficiency

for the algorithm to converge to a point. Along with two constraints, we add velocity constraint that

limits each robot’s the travel distance during each stage. We define m numbers of real-valued functions

hij : (Rd)Ñi(t) × Ωi(t) × Rd → R≥0 where where the subscript ij indicates the jth constraint for ith

robot such that j ∈ {1, . . .mi(t)}. The number mi(t) corresponds to the total number of constraints.

There are 3 types of constraints among total mi(t) constraints. For convenience, we assume that each

type contains mi1(t), mi2(t), mi3(t) number of inequalities respectively. For each fault-free robot with

index i ∈ I, three types of constraints are defined as follows.
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5.3.4.1 Proper convex–hull constraint

As was discussed in [50], one of the sufficient conditions for distributed rendezvous are at each time

step, every robot move to the strict convex hull of the positions of its neighbors plus the position of the

robot itself. In the presence of fault, each robot must move to the strict convex hull of the positions of

its fault-free neighbors plus the position of the robot itself. We note that the convex hull formed with

position of ith robot and its fault-free neighbors can be represented by linear inequalities as:




ai1(t)T

...

aimi1(t)(t)
T



y ≤




bi1(t)

...

bimi1(t)(t)




(5.11)

where each aij(t) is a d× 1 vector, each bij(t) is a scalar, y is a d× 1 vector of reals, and mi1(t) is the

minimum number of linear inequalities required such that mi1(t) ≤ |Ni(t)| − nfi(t) + 1. Then, for all

j = 1, . . . ,mi1(t), xi(t+ 1) = xi(t) + ui(t) must satisfy

hij(x̃i(t), Fi(t), ui(t)) = aij(t)
T (ui(t) + xi(t))− bij − δ ≤ 0 (5.12)

where δ > 0 is a small positive real number that is used to emulate strict inequality to ensure that the

feasible region is in the interior of the convex-hull conv((xi)i∈Ni(t)∪{i}).

5.3.4.2 Connectivity constraint

The connectivity constraint provides another sufficient conditions for exact rendezvous [24, 35] of a

group of robots. Recall that pairwise connectivity constraint [1] for ith robot and its neighbor l is

Ci,l(t) = B
(
xl(t)− xi(t)

2
,
r

2

)
. (5.13)

Equivalently, this can be expressed with quadratic inequalities as follows. For j = mi1(t)+1, . . . ,mi1(t)+

mi2(t),

hij(x̃i(t), Fi(t), ui(t)) =

∥∥∥∥ui(t)−
xl(t)− xi(t)

2

∥∥∥∥
2

− r2

4
≤ 0, (5.14)

for all l ∈ Ni(t), and since there are exactly
∣∣N i(t)

∣∣ number of fault-free neighbors, mi2(t) =
∣∣N i(t)

∣∣.
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5.3.4.3 Velocity constraint

The last constraint accounts for the maximum travel distance during each time interval. Let vi be the

maximum travel distance allowed for ith robot. Then for j = mi1(t) +mi2(t) +mi3(t),

hij(x̃i(t), Fi(t), ui(t)) = (ui(t))
Tui(t)− v2

i ≤ 0 (5.15)

and mi3(t) = 1.

Remark 5.3.1. The strict convex-hull constraint is usually satisfied with local averaging algorithm,

because, for each robot, the average of the positions of neighbors is necessarily in the strict convex hull

of the positions of neighbors. Nevertheless, we provide the condition here to explicitly emphasize that the

condition together with connectivity constraint ensures the rendezvous of a group of initially connected

robots without faults.

In our simulation, we relax both proper convex-hull constraint and connectivity constraint. This is

simply because we do not know which robots are faulty and which robots are not.

5.3.5 SQP formulation

In this section we state our sub–problem which is used in SQP algorithm (See the Appendix A). First

let us assume that we are given a set of positions of robots at stage t ∈ Z≥0, i.e, x(t) and would like to

obtain the optimal control vector for fault-free robots u(t)∗ = {u1(t)∗, . . . , un(t)∗}. For each i ∈ I and

t ∈ Z≥0, we fix x̃i(t) and vary ui(t) by first letting ui(t) := u0
i where u0

i is the initial iterate1.

minimize
dkui

∇L(uki , λ
k
i )dkui + 1

2d
T
uki
H(uki , λ

k
i )dkui

subject to




∇hi1(x̃i(t), Fi(t), u
k
i )

...

∇himi(t)(x̃i(t), Fi(t), uki )



dkui +




hi1(x̃i(t), Fi(t), u
k
i )

...

himi(t)(x̃i(t), Fi(t), u
k
i )



≤ 0.

where k = 0, 1, . . . is the iteration number, and dkui = ui − uki . The Lagrangian is given as follows.

L(uki , λ
k
i ) = E

[
gi(x̃i(t), Fi(t), u

k
i )
]

+ αvvar
[
gi(x̃i(t), Fi(t), u

k
i )
]

+

mi(t)∑

j=1

λkijhij(x̃i(t), Fi(t), u
k
i ).

1For example, u0i can be set to d× 1 vector with 0s.
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Using the solution of (5.3.5), ui(t) is updated uk → ui(t) for each iteration step, and as the iteration

proceeds, ui(t) approaches to locally optimal solution of QP.

5.4 Simulation results

This section is organized as follows. First, we compare a pure rendezvous performance between cicum-

center algorithm [1] and the local averaging algorithm when there are no faults. Then, we present a

few results which compares rendezvous performance between circumcenter algorithm and our proposed

algorithm under random stationary robot failures.

In our simulation we let Q to be a square workspace [0 50]2 in R2, and choose n pseudo–random

points in Q for the robots’ initial positions. The maximum travel distance for each robot is equally set

to 2, i.e., v1 = · · · = vn = 2.

5.4.1 Comparison of rendezvous task performance between circumcenter

law and local averaging algorithm without failure

In this subsection, we evaluate the rendezvous performance of the local averaging algorithm with no

faults (each robot’s control policy is determined as sequence of solutions to the problem in (5.10)

subject to inequality constraints discussed in subsection 5.3.4 by setting p = 0, αv = 0). We do this by

comparing the approximate rendezvous time with circumcenter algorithm. Table 5.1 compares minimum

time for approximate rendezvous, i.e., the smallest t? s.t. RDV(t) < 1E− 7 for all t ≥ t?, with different

sensing radius between two algorithms: circumcenter and our algorithm when varying the total number

of robots. The rendezvous time is measured with the minimum stage number at which every fault-free

robots rendezvous at a point. For all cases, local averaging algorithm outperforms circumcenter law,

and the performance gain is more evident when total number of robots is large.

Table 5.1: Comparison of rendezvous time, i.e, iteration number between two algorithms

number of robots sensing radius circumcenter local averaging algorithm
10 25 14 14
50 16 21 16
100 9 24 22
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5.4.2 Comparison between circumcenter law, local averaging algorithm,

and our stochastic algorithm under random stationary robot failures

In this section, we compare resiliency to stationary robot failure between circumcenter algorithm, lo-

cal averaging algorithm, and our proposed stochastic algorithm. Unless otherwise noted, for all the

algorithms that we compare, the both proper convex-hull constraint and the connectivity constraint

were relaxed. We generate 100 random samples of different configurations with 50 robots in which the

average failure rate is 10%, and each robot’s sensing/communication radius is 20. For our proposed

algorithm we used p = 0.1 and αv = 100.

Both Fig. 5.1 (a combined plot) and Fig. 5.2 (individual plots) show scatter plots which compare

mean of positions of functioning robots between algorithms after 50 stages, using 100 random samples

that are generated with different configurations with 50 robots in which the average failure rate is 10%.

Fig. 5.3 (a combined plot) Fig. 5.4 (individual plots), and Fig. 5.5 (histogram) show RDV(50), i.e., the

variance of positions of functioning robots between algorithms obtained with the same settings after

50 stages, where the horizontal axis is the sample number and the vertical axes are RDV(50). We

chose the final stage to be 50, because change in the values after 50 stages are insignificant. As can be

seen from the figures, local averaging algorithm results in relatively smaller variance than circumcenter

algorithm, either with or without connectivity constraints. Also, stochastic version of our local averaging

algorithm—where the failure model has binomial distribution with p = 0.1, and αv = 100—shows

relatively smaller variance than the local averaging algorithm.

According to the statistical results, our proposed stochastic version of local averaging algorithm is

less sensitive to stationary robot failures than other rendezvous algorithms.

5.5 A min-max problem

In both Fig. 5.3 and Fig. 5.4, a few peaks are observed from our stochastic algorithm with p = 0.1 and

αv = 100. This means that the worst-case performance of our proposed algorithm is poor. This is not

surprising because our proposed algorithm finds solution which minimize the cost in an expected sense.

We plan to consider minimax version of our program by minimizing the linear combination of expected

cost and the variance given the worst-case probability distributions under a few constraints on the

probability distribution.
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Figure 5.1: Scatter plots of positions mean of functioning robots between different algorithms after 50 stages with 100 samples
where avg. failure rate is 10%.

5.5.1 Poisson-binomial probability distribution

First we relax the previous assumption on identically distributed probability of failure events for dif-

ferent robots. The motivation for this is to develop more robust method which can handle broader

cases of failure scenarios in which failure rate may not be identical for different robots. While the

stochastic program is minimization of linear combination of expected function and variance term which

requires probability distribution to be known a priori, in minimax stochastic program—we are about

to propose—this is not the case. As long as the probability distribution is properly constrained, the

solution to the problem can be obtained. For our problem, we consider the probability distribution to

be a generalized version of binomial distribution known as Poisson-Binomial distribution. The formal

definition is contained in various texts on probability theory, e.g., [107].

Our Poisson-binomially distributed random variable is expressed by nfi(t) ∼ PBD((pj)j∈Ni(t)) such

that it is the sum of Bernoulli distributed independent random variables (Xij(t))j∈Ni(t)

nfi(t) =
∑

j∈Ni(t)

Xij(t). (5.16)

In particular, each Xij(t) is random variable with values {0, 1} such that

P{Xij(t) = 1} = pj , (5.17)
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Figure 5.2: Scatter plots of positions mean of functioning robots between different algorithms after 50 stages with 100 samples
where avg. failure rate is 10%.
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Figure 5.3: Comparison of RDV(50) values between different algorithms after 50 stages with 100 samples where avg. failure rate
is 10%.
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(b) cirumcenter law without enforcing connectivity constraint
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Figure 5.4: Comparison of RDV(50) values between different algorithms after 50 stages with 100 samples where avg. failure rate
is 10%.
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Figure 5.5: Comparison of RDV(50) values between different algorithms after 50 stages with 100 samples where avg. failure rate
is 10%.
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that is read as probability that the robot with index j fail equals pj , and

P{Xij(t) = 0} = 1− pj (5.18)

is read as probability that the robot with index j does not fail is 1 − pj . Note that pj = ph is not

necessarily true for j, h ∈ Ni(t) with j 6= h. Thus given some vector (pj)j∈Ni(t) ∈ [0, 1]|Ni(t)|, and the

Poisson-Binomial distributed random variable nfi(t), the PMF for the random set Fi(t) is defined by

pFi(t)(w) =
∏

j∈w
pj

∏

h∈N i(t)

(1− ph), i ∈ I, w ⊆ Ni(t). (5.19)

5.5.2 Stochastic minimax program

In this subsection, we briefly explain our plan to formulate the problem when the probability distribution

is not known a priori and we would like to obtain solution that is robust under inaccurate probability

distribution information. For more details on stochastic minimax program see texts, e.g., [108] and

reference therein.

Recall that Poisson-binomial distribution is characterized by an ordered set of failure rates of ith

robot’s neighbors, i.e., (pj)j∈Ni(t). For convenience, we define a new symbol to define a set Pi :=

(pj)j∈Ni(t). Then, each fault-free robot i ∈ I solves at each stage t ∈ {0, 1, . . . ,∞} the following

stochastic minimax problem2:

minimize
ui(t)

{
max
Pi

{
EPi

[
gi(x̃i(t), Fi(t), u

k
i )
]

+ αvvar
Pi

[
gi(x̃i(t), Fi(t), u

k
i )
]}}

subject to µf − εf ≤
∑
j∈Ni(t) pj

|Ni(t)|
≤ µf + εf

aj ≤ pj ≤ bj , j ∈ Ni(t) (5.20)

where aj and bj are numbers between [0, 1] that is lower bound and upper bound for the failure rate of

robot j respectively, µf is the average value of failure rate for all robots such that 0 ≤ µf ≤ 1, and εf

is the error bound such that 0 ≤ εf ≤ min(µf , 1− µf ). We assume that these values µf , εf , aj , bj are

known. We plan to show via simulation, how our proposed method handles the worst-case scenarios

compared to from our previous method under same settings. Also, we plan to provide analytical results

2The form of the construct is similar to that found in [108].
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that prove approximate rendezvous of our algorithm in the presence of random faults.

5.5.3 One step minimax solution: an example

In this section, we will obtain a one-step solution for (5.20) with a simple example. For any given

Fi(t) ⊆ Ni(t) and x̃i(t) ∈ Rd(‖Ni(t)|+1) we define

x̂i(t) :=
1

|x̃i(t)| − |Fi(t)|+ 1


xi(t) +

∑

xj(t)∈x̃i(t),
s.t. j /∈Fi

xj(t)


 .

For convenience, we suppress t for the moment, and define the cost C(ui) to be an explicit function of

ui:

C(ui) := E
[
gi(x̃i, Fi, ui)

]
+ αvvar

[
gi(x̃i, Fi, ui)

]

= E
[
‖x̂i − (xi + ui)‖2

]
+ αvvar

[
‖x̂i − (xi + uu)‖2

]
.

We note that the following lemma holds.

Lemma 5.5.1. C(ui) is convex.

Proof. For the proof, we obtain the gradient ∇uiC(ui) and Hessian HuiC(ui).

∇uiC(ui) = −2E
[
(x̂i − (xi + ui))

]
+ αv ∗

(
−4E

[
(x̂i − (xi + ui))

3
]

+ 4E
[
(x̂i − (xi + ui))

]
E
[
‖x̂i − (xi + ui)‖2

])
,

and the Hessian HuiC(ui) is

HuiC(ui) =

(
2 + αv

(
8E
[
‖x̂i − (xi + ui)‖2

]
− 8E

[
(x̂i − (xi + ui))

]2))>
Id

=
(

2 + 8αvvar
[
(x̂i − (xi + uu))

])>
Id

where 1d is d × d identity matrix Since each variance term is non-negative, HuiC(ui) is positive-semi

definite for all ui. Thus C(ui) is convex.

Now we are ready to present our simulation result. For this simulation, we consider n = 4 robots

with identifiers 1, 2, 3, 4 initially deployed in a square workspace [0, 1] × [0, 1] as seen from Fig. 5.6.
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Figure 5.6: Initial configuration with 4 robots in [0, 1]2.

We assume that the sensing range r and maximum velocity per stage vmax is unbounded.

We learned from Lemma 5.5.1 that the cost function is convex with respect to ui, however there is no

direct relationship between the cost and p, thus we cannot directly obtain solution of (5.20). Instead

we solve the minimization problem by varying p from 0 to 1 with increment of 0.01.

Fig 5.7 shows the one-step minimization solution with different αv values. Obviously, when p = 0,

i.e., probability that each node fails is zero, every node will move to the coordinate average of the

positions of all robots. Also, when p = 1, i.e., probably that each node fails is one, every node will not

move at all. Varying αv from 0 to 1000 result in move conservative behavior in that each robot will not

make a move until reaching relatively high value of p.

Fig 5.8 shows RDV(1) with respect to p from 0 to 1. The maximum RDV(1) appears near p = 0.75

when αv = 0 and shifting left toward p = 0.58 as we increased αv. The value p which maximizes

RDV(1) is not the same for all nodes, but very similar to each other. The minimax solution for this

problem can be obtained by finding the value p at each peak.
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p from 0 to 1

(a) αv = 0

p from 0 to 1

(b) αv = 10

p from 0 to 1

(c) αv = 100

p from 0 to 1

(d) αv = 1000

Figure 5.7: One step optimization result when varying p from 0 to 1.
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Figure 5.8: RDV(1) with respect to p from 0 to 1.
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5.6 Conclusion

In this study, we proposed an optimization-based control policy for fault-tolerant multi-robot ren-

dezvous. We have provided a few numerical simulation results to show that our approach is statistically

better than other rendezvous methods in the literature. Also, we proposed a minimax version of the

problem and obtained solution for a simple example. Solutions for more complicated problems for MRS

with large neighborhood size can be obtained via other numerical optimization methods, e.g., Monte

Carlo sample average approach [109–111].
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Chapter 6

Related studies: multi-robot
deployment

The multi-robot deployment problem studies control algorithms for multi-robot system that enable

a group of robots to collectively maximize Quality of Service (QoS) that could be provided within

a bounded space. The multi-robot deployment problem is closely related to the classical locational

optimization problem [17,112,113] from operations research. The locational optimization problem is a

spatial resource allocation problem where one is interested in finding the optimal resource allocation rule

that maximizes some quantity of interest. A few examples of this include studying the optimal animal

territory sharing method, optimal placement of mailboxes in a city, optimal design of vector quantizers

for minimum distortion, optimal microphone placement for detection of sound sources, and optimal

olfactory recepter placement. The solutions for those problems are typically obtained via mathematical

programming [112].

Independent from these facility location problems, there are multi-robot deployment problems [22,

114–120]. The main objective for those studies is to propose single time deployment algorithms for

Mobile Sensor Networks1, which are optimal for specific interests, e.g., Quality of Service (QoS), sensor

reading performance, resource allocation efficiency, target detection probability, etc. These problems

[22,116,118] are sometime called coverage control problems, and they show a sharp contrast to coverage

path-planning problems [121–123], which aim to find the best area coverage algorithm for mobile robots

that visit all points in a bounded space by sweeping the robots through the space.

Among various multi-robot deployment methods, we are interested in Voronoi-based coverage control

algorithms [16, 114, 115, 124, 125] for multi-robot systems that utilize the classical Voronoi diagram.

In these algorithms, each robot moves towards the centroid of its associated region (Voronoi region).

It has been shown in a number of papers [20, 118, 126] that, if every robot/node/point updates its

position with Lloyd’s method [127], the collective QoS, e.g., target detection performance, will be

maximized. These algorithms are decentralized in that each robot only requires local data, e.g., positions

1A multi-robot system where each robot is equipped with sensors with limited ad hoc sensing/communication capa-
bilities
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of other robots in the neighborhood, for the computation in the algorithm. More recently, based upon

the above mentioned studies regarding Voronoi-based coverage control, there has been much research

which studies more practical issues that could be found in the same topic [114, 124, 125]. Nowzari et

al., [124] studied a Voronoi diagram-based coverage control problem where individual agents operate

with outdated information about each others’ locations. Laventall and Cortés [125] assume that each

robot is equipped with a limited-range anisotropic sensor, and present a solution to decentralized Voronoi

coverage in non-convex polygonal environments. In their algoritm, each robot uses a combination of the

Tangent bug algorithm [128] and Lloyd’s algorithm for its control strategy. Kwok and Martinez [114]

propose distributed coverage algorithms for mobile sensor networks in which agents have limited power

to move. Their approach accounts for power constraints by assigning time-varying generalized Voronoi

regions to each robot.

Independently of the above mentioned studies, there are partially decentralized approaches [129,130]

for coverage control problems that assume joint target detection capability with multiple robots2. In

[129], a probability distribution encodes the frequency of random events that can occur, and each

mobile robot is equipped with a range limited sensor. Communication cost is considered as a limiting

constraint, and a gradient-based algorithm that requires only local information from each sensor is

proposed to locally maximize the joint-detection probabilities of the random events. In [130], the joint

probability of missed detection is explicitly computed, and used to derive a gradient descent algorithm

to minimize the total probability of missed detection, given the prior probability of individual sensor

failure.

This chapter is organized as follows. In Section 6.1, we state the multi-robot deployment problem. In

Section 6.2, we state a few definitions and introduce some notations which help our sequel presentation.

Next we define a cost function based on the missed detection probability in Section 6.3. In Section 6.4,

we formally revisit the discrete-time Lloyd’s algorithm and its convergence properties using LaSalle’s

Invariance Principle in Section 6.5. Lastly, in Section 6.6, we discuss all the approaches used in the

section.

6.1 The problem statement

The multi-robot deployment problem we are interested in this chapter can be formulated as a problem of

minimizing the probability of missed detection of targets by a group of robots [130]. Let x = (x1, . . . , xn)

2Multiple robots can cooperate in detecting each target.
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be an ordered set of positions of n robots in some bounded Euclidean space Q ⊂ Rd. Roughly stated,

the multi-robot optimal deployment problem is given by,

min
x∈Qn

P {missed detection of targets |x} (6.1)

where the probability of missed detection is a function of positions of robots x that depends on the

distribution of targets in the bounded space Q. Note that, we are interested in distributed motion

control strategies that can be used to solve the problem (6.1). In other words, each robot i = 1, . . . , n

solves a sub-problem, i.e., a distributed counterpart, using only local resources, e.g., position of its

neighbors, and by doing so, all robots collectively solve the problem (6.1).

The problem formulation of (6.1) is useful when there is a possibility that some robots from a group

could fail [130]. In most of the distributed deployment algorithms, non-intersecting regions are assigned

to different robots [22,118] respectively. Thus, if some robots fail, targets in the regions associated with

those faulty robots are left being uncovered/undetected. On the other hand, if we assume that joint

detection3 is available, then every target in the space Q is being monitored by at least one robot. The

formulation of (6.1) could not only be used to model distributed deployment problems [118], but can

handle more of the general cases of partially distributed deployment problems [130] that are designed for

failure-prone systems. In this chapter, we describe typical distributed static deployment problems [118].

In Chapter 7, we propose a robust deployment strategy where multiple robots can jointly detect each

target.

6.2 A few definitions

In this section, we review a few definitions related to the Voronoi diagram4, and define the intercon-

nection topology of a group of robots that will be used to define our problem in the sequel.

6.2.1 Voronoi diagram

Let us start this subsection, by reviewing the definition of the ordinary Voronoi diagram in Euclidean

space Rd.

3Two or more robots cooperatively detect each target.
4We use the terms Voronoi diagram, Voronoi tessellation, and Voronoi partition interchangeably throughout this

chapter.
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Definition 6.2.1 (The ordinary Voronoi diagram). Let x = (x1, . . . , xn) be an ordered set of positions

of n distinct points, where xi ∈ Rd. We define by

Vi(x) =
{
q ∈ Rd

∣∣ ‖q − xi‖ ≤ ‖q − xj‖ j 6= i, j ∈ I
}

(6.2)

the ordinary Voronoi region associated with the generator position xi, and the set given by

V (x) = {V1(x), . . . , Vn(x)}, (6.3)

the ordinary Voronoi diagram generated by x = {x1, . . . , xn}.

It is known that there are algorithms with computational complexity of O(n log n) to obtain the

Voronoi diagram given finite number of points [17,131]. We note that in the ordinary Voronoi diagram,

some of the regions could be unbounded. There is a similar concept to ordinary Voronoi diagram when

the domain upon which the diagram is defined is bounded, i.e., there are no unbounded Voronoi regions,

as follows:

Definition 6.2.2 (The ordinary Voronoi diagram bounded by Q [17]). An ordinary Voronoi diagram,

i.e., partition, bounded by Q ⊂ Rd is defined by

V∩Q(x) = {V1(x) ∩Q, . . . , Vn(x) ∩Q} (6.4)

where the subscript ∩Q is used to denote the fact that Voronoi diagram is defined over the bounded

space Q. If some Voronoi region Vj shares boundary with Q, i.e., Vj ∩ ∂Q 6= ∅, we call Vj a boundary

Voronoi region.

In the sequel, if the position set x and the workspace Q are clear from the context, by dropping

∩Q from the subscript and removing (x), we simply express the bounded Voronoi partition in (6.4) as

V = {V1, . . . , Vn}. Next, we define the dynamic Voronoi diagram, which is useful when positions of

robots change w.r.t. time.

Definition 6.2.3 (Dynamic Voronoi diagram [132]). Let x(t) = (x1(t), . . . , xn(t)) be an ordered set of

positions of n robots at time t = 1, 2, . . . , where xi(t) ∈ Q ⊆ Rd. We call

Vi(x(t)) = {q ∈ Q | ‖q − xi(t)‖ ≤ ‖q − xj(t)‖ , j 6= i, j ∈ I} , t = 0, 1, 2 . . . , (6.5)
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the dynamic Voronoi region of robot i at time t [132]. Also, we let V (x(t)) = {V1(x(t)), . . . , Vn(x(t))}

be the dynamic Voronoi diagram generated by x(t). For brevity, we may simply write V (x(t)) =

{V1(x(t)), . . . , Vn(x(t))} as V (t) = {V1(t), . . . , Vn(t)}.

6.2.2 The interconnection topology: A Delaunay graph

For the problem in the current chapter, the interconnection topology of a group of n robots with position

set x is represented by the Delaunay graph denoted by GD = (V, E). Then, given i, j ∈ V with i 6= j,

(i, j) ∈ E , if and only if Vi ∩ Vj 6= ∅. Also, we say that robot i and robot j are Voronoi neighbors to

each other if (i, j) ∈ E .

6.3 A probabilistic cost function

In this section, we derive the probability that a set of n robots equipped with sensors at some configu-

ration x ∈ Qn will fail to detect targets in a bounded space. Our derivation method follows that given

in [130]. We define the target location to be a random vector X ∈ Q ⊂ Rd with probability density

function, i.e., target distribution function, φ : Q → R≥0 such that
∫
Q
φ(q) dq = 1. We denote by Di,

the event that robot i located at xi detects the target, and by Di, the complement event that robot

located at xi ∈ Q fails to detect the target. It is often found in the literature, e.g. [22,118], that for each

sensor attached to a robot, the sensing, i.e.,the target detection, performance degrades with distance

between the sensor and a target. In a similar manner, we use non-decreasing, continuous functions

fi : R≥0 → [0, 1] associated with robot i = 1, . . . , n to model the sensor performance. In particular,

given a robot located at xi, and a target located at q, we use fi to explicitly show the dependence of

the missed-detection probability on the Euclidean distance ‖q − xi‖ between q and xi as:

P
{
Di

∣∣X = q
}

:= fi(‖q − xi‖). (6.6)

Now let us consider the case when all n robots participate in detecting a target located at q ∈ Q, and

let D be a collective event that no robot detects the target. Then, by assuming that the set of n events

{D1, . . . , Dn} are mutually independent, using (6.6), the conditional probability that all n robots fail to

detect the target located at q, i.e., P
{
D
∣∣X = q

}
, is obtained with

P
{
D
∣∣X = q

}
=

n∏

i=1

P
{
Di

∣∣X = q
}

=

n∏

i=1

fi(‖q − xi‖). (6.7)
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The total probability of missed detection is then

P
{
D
∣∣X ∈ Q

}
=

∫

Q

P
{
D
∣∣X = q

}
φ(q)dq. (6.8)

Since X ∈ Q from the left hand side of (6.8) implies all targets in workspace Q, we may remove it for

simplicity. Then, if we partition Q into n regions {W1, . . . ,Wn} we may write P (D) as

P
{
D
}

=

n∑

i=1

∫

Wi

n∏

i=1

P
{
Di

∣∣X = q
}
φ(q) dq. (6.9)

For a special case often found in the literature [118] where each robot i can only detect targets in its

associated region Wi , P
{
Di

∣∣X = q
}

can be simply obtained by

P
{
Di

∣∣X = q
}

=




fi(‖q − xi‖), If q ∈Wi

1. If q /∈Wi

(6.10)

By applying (6.10) to (6.9), we obtain

P1

{
D
}

:=

n∑

i=1

∫

Wi

fi(‖q − xi‖)φ(q) dq (6.11)

where we use subscript 1 in P1

{
D
}

to emphasize the fact that each robot i detects only the target that

lies in its associated region5 Wi. In the sequel, it will be used to express (6.11) explicitly as a function

of both the sensor locations x and the partition W . For this purpose, we define

H(x,W ) := P1

{
D
}

=
n∑

i=1

∫

Wi

fi(‖q − xi‖)φ(q) dq. (6.12)

We note that if we let x′ be set of positions of n robots, and W ′, W ? be two different partitions of

Q. Then, the equation H(x′, W ′) = H(x′, W ?) is not necessarily true. In other words, even with an

identical configuration of a group of robots, the cost need not be the same for different partitioning

methods of a workspace Q into n regions.

5For the case in Chapter 7 where k robots are used to detect target in some properly defined region, e.g., order−k
region, we use subscript k instead, i.e., Pk{D}.
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6.4 The deployment algorithm: a discrete time Lloyd’s

algorithm

In this section, we formally define a few terms, then introduce the discrete time Lloyd’s algorithm

for a static-deployment of a group of robots over a bounded space. We provide a few propositions to

show that the cost (6.12) is a non-increasing function along the evolution of the algorithm. Then, using

LaSalle’s Invariance principle [49], we show that all robots evolving with Lloyd’s algorithm will converge

to a point set which forms a special type of tessellation named as the Centroidal Voronoi tessellation

(CVT) [126].

6.4.1 Discrete-time Lloyd’s algorithm

In this subsection, we introduce the discrete-time Lloyd’s algorithm for static deployment of a group of

robots that is based upon Lloyd’s method [127]. Lloyd’s method was originally used for least squares

quantization in Pulse-Code Modulation (PCM). According to Du et al., [126], Lloyd’s method [127] is

one of the fixed point iteration algorithms which has two major stages per each algorithm step. In the

first stage, a Voronoi diagram with current point set is obtained, and centroids for the Voronoi regions

are calculated. In the second stage, current points are updated with the computed centroids of their

Voronoi regions. For more details of the algorithm, see e.g. [17, 133].

Before we proceed further, we formally define the centroid of each robot’s Voronoi region. Given

n−tuple of points x = (x1, . . . , xn) in a bounded space Q with xi ∈ Q, the Voronoi partition of

the workspace Q given the configuration x is given as a set V = {V1, . . . , Vn}. Let the mapping

CVi : Qn → Q, i = 1, . . . , n be defined by

CVi(x) =

∫

Vi

q φ(q) dq

∫

Vi

φ(q) dq

, (6.13)

which maps a point set x to the centroid of Voronoi region Vi for each i = 1, . . . , n. Recall that

φ : Q → R≥0 is the target distribution function. It will be shown rigorously in the sequel that the

map CVi : Qn → Q is a continuous mapping away from the degenerate points where distinct points

collapse6 [134].

6Roughly speaking, the map CVi is continuous on Qn except for a set of points where two or more points are at a
same location.
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The discrete-time Lloyd’s algorithm is an application of Lloyd’s method for mobile sensor networks;

at each iteration step, every robot moves towards the centroid of its Voronoi region within its maximum

travel distance. Let vmax > 0 be the maximum travel distance for every robot during one stage. In the

discrete-time Lloyd’s algorithm, at stage t each robot i evolves with the following equation.

xi(t+ 1) = xi(t) + ξi(t)(CVi(x(t))− xi(t)), t = 0, 1, 2, . . . , (6.14)

where

ξi(t) =





1, If ‖CVi(x(t))− xi(t)‖ ≤ vmax

vmax

‖CVi (x(t))−xi(t)‖ . Otherwise

(6.15)

The discrete-time Lloyd’s algorithm (6.14-6.15) can be represented by a single-valued map T dl : Qn →

Qn where its component map for robot i, T dl
i : Qn → Q is defined by

T dl
i (x(t)) = xi(t) + ξi(t)(CVi(x(t))− xi(t)), (6.16)

where ξi(t) is obtained from (6.15).

6.4.2 Two important propositions

In this subsection, we state two propositions that will be used to depict the properties of the discrete-

time Lloyd’s algorithm. First we assume that every robot has an identical target detection performance.

Assumption 6.4.1. We assume that function fi : R≥0 → [0, 1] for i = 1, . . . , n is identical for all

robots, i.e., f1 = · · · = fn.

Unless otherwise noted, assumption 6.4.1 will be applied to all theorems, propositions that will be

stated in the sequel. In the following proposition, we show that the Voronoi partition is a locally optimal

partitioning scheme with respect to the cost function (6.12).

Proposition 6.4.1 (Cortes et al., [118], Du et al., [126]). Let x = (x1, . . . , xn) be an ordered set

of positions of n distinct robots where xi ∈ Q ⊂ Rd. Then, given the Voronoi partition V (x) =

{V1(x), . . . , Vn(x)} of Q, for each partition W = {W1, . . . ,Wn} of Q, the following inequality holds:

H(x,V (x)) ≤ H(x,W ). (6.17)
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The equality holds only if V (x) = W . In other words, the Voronoi partition is the minimizing parti-

tioning scheme w.r.t. the cost function provided in (6.12).

Proof. For convenience, let V := V (x), and Vi := Vi(x) for each i = 1, . . . , n. Let J be the collection

of all possible subsets of I = {1, . . . , n}. Then the cardinality of the set J is |J | = 2n. Given the

generator point set x ∈ Qn, any partition W = {W1, . . . ,Wn} of Q, and for each i = 1, . . . , n with its

Voronoi region Vi ∈ V , we may find some element, which itself is a set, J∗ ∈ J , that is the solution to

the following problem:

min
J∈J

|J |

subject to Vi ⊆
⋃

j∈J
Wj .

By solving the problem for each i = 1, . . . , n, we obtain the smallest number of regions in {Wj}nj=1

whose union includes Vi. By using the definition of ordinary Voronoi diagram from definition 6.4 and

assumption 6.4.1, the following inequality can be obtained.

∫

Vi

fi(‖q − xi‖)φ(q) dq ≤
∑

j∈J∗

∫

Vi∩Wj

fj(‖q − xj‖)φ(q) dq, i = 1, . . . , n. (6.18)

We note that except for the trivial case |J∗| = 1 with Wj = Vi, the inequality in (6.18) is strict for each

i = 1, . . . , n. We may apply summation from 1 to n over both hand sides of (6.18) to obtain:

n∑

i=1

∫

Vi

fi(‖q − xi‖)φ(q) dq ≤
n∑

i=1

∑

j∈J∗

∫

Vi∩Wj

fj(‖q − xj‖)φ(q) dq

=

n∑

h=1

∫

Wh

fh(‖q − xh‖)φ(q) dq,

which implies that H(x,V ) ≤ H(x,W ) holds as required. We note that the equality holds only when

V = W .

According to Proposition 6.4.1, the Voronoi partition is a minimizing partitioning scheme with respect

to the cost function (6.12). In the following definition, we introduce a special partition type called

centroidal Voronoi tessellation (CVT).

Definition 6.4.1 (A Centroidal Voronoi Tessellation (CVT) [126]). Let x = (x1, . . . , xn) be an ordered

set of positions of n distinct robots where xi ∈ Q ⊂ Rd. We call a Voronoi partition V = {V1, . . . , Vn}

the centroidal Voronoi tessellation (CVT) if, xi = CVi(x) holds for all i = 1, . . . , n.
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In the next proposition, we show that CVT is the special type of partition of Q which has an

optimizing property with respect to (6.12).

Proposition 6.4.2 (Cortes et al., [118], Du et al., [126]). Let x = (x1, . . . , xn) be an ordered set of

positions of n robots where xi ∈ Q ⊂ Rd. A group of n robots execute the discrete-time Lloyd’s algorithm

that is defined by a map T dl : Qn → Qn whose component map T dl
i for i = 1, . . . , n is provided in (6.15-

6.16). For all position sets x that are distinct7, the following inequality holds:

H(T dl(x),V (x)) ≤ H(x,V (x)) (6.19)

where the equality in (6.19) holds only if xi = CVi(x) for all i = 1, . . . , n.

The proposition states that the cost function is non-increasing along the trajectory generated by

Lloyd’s algorithm T dl, and the configuration that forms the CVT is the critical point for the cost

function (6.12). The proof of the proposition uses the Parallel Axis Theorem, and the complete proof

is provided in [118,126].

6.5 Convergence of the discrete-time Lloyd’s algorithm

In this section, we show the correctness of the discrete-time Lloyd’s algorithm. Here by correctness, we

mean the convergence of the algorithm to a locally optimal configuration which forms the CVT of the

workspace.

To be used in the sequel, we define another cost function L : Qn → R≥0 that shows explicit dependence

on the configuration x, when the underlying partition is the Voronoi partition V (x). L : (Rd)n → R≥0

is defined by:

L(x(t)) := H(x(t),V (x(t))), t = 0, 1, 2, . . . (6.20)

Next, we show that our cost function L : (Rd)n → R≥0 bears the following property.

Proposition 6.5.1 (Du et al. [126, 134], Cortes et al. [47, 118]). The function L is continuous and

non-increasing along the map T dl, i.e.,

L(T dl(x(t))) ≤ L(x(t)), t = 0, 1, 2, . . . . (6.21)

7No two points in x coincide.
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The equality holds only if x(t) forms a CV T .

Proof. First by the definition of the function H(x, W ) in (6.12) and the continuity of the functions fi

for i = 1, . . . , n on their domains, it can be verified that the function L is continuous on Qn. Next, by

Proposition 6.4.2, for each t = 0, 1, 2, . . . ,

H(T dl(x(t)),V (x(t))) ≤ H(x(t),V (x(t))) (6.22)

holds. By Proposition 6.4.1, given the generator point p ∈ Qn, the Voronoi partition V (p) of p is the

partition minimizing the function H(q,V (q)). Using the property,

H(T dl(x(t)),V (T dl(x(t)))) ≤ H(T dl(x(t)),V (x(t))) ≤ H(x(t),V (x(t))), (6.23)

holds. Thus by the above inequality (6.23), H(T dl(x(t)),V (T dl(x(t)))) ≤ H(x(t),V (x(t))) and by (6.20)

holds, which implies

L(T dl(x(t))) ≤ L(x(t)), t = 0, 1, 2, . . . (6.24)

as required. By Proposition 6.4.2, equality holds only at the critical points that are exactly the config-

urations that form a CVT.

We note that given n robots if two or more robots are at a same location, according to Definition

6.2.2, it is not possible to define a Voronoi diagram with n Voronoi regions. We must exclude such

co-location events to ensure the continuity of the map CVi : Qn → Q defined in (6.13). Before doing

so, we formally define the notion of degeneracy of a point set.

Definition 6.5.1 (A degenerate point set). A multiset of n points x = [x1, . . . , xn] ∈ Qn ⊆ (Rd)n

is called degenerate if any two or more points in x are at the same location. Otherwise, the set is

non–degenerate.

Let Q̃n be a n−tuple of points that are non-degenerate, i.e.,

Q̃n := {q = (q1, . . . , qn) ∈ Qn | qi 6= qj , i 6= j, i, j ∈ I}. (6.25)

Then, we note that the following proposition holds.

Proposition 6.5.2 (Du et al. [126,134], Cortes et al. [47, 118]). The map T is continuous on Q̃n.
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Next, we define a set E by

E := {x′ ∈ Q̃n ⊂ (Rd)n | L(T dl(x′)) = L(x′)}. (6.26)

We note that E is the non-degenerate set of critical points of L that is exactly the non-degenerate set

of n−tuple points that form CVTs.

According to Proposition 3.5 in [126], each limit point in the trajectory generated by Lloyd’s algorithm

in any dimensional space is non-degenerate, provided that a few general assumptions8 are satisfied.

Based upon the non-degeneracy of limit points of trajectories generated by Lloyd’s algorithm, and the

definition of the discrete-time Lloyd’s algorithm given in (6.14-6.15), we can ensure that the following

proposition holds:

Proposition 6.5.3. If initial positions of n robots are distinct, i.e., x(0) ∈ Q̃n, then every n−tuple point

set in the trajectory (x(t))∞t=0 of T is non-degenerate and every point along the trajectory is bounded.

We are ready to state the main result in the following theorem which states that a group of robots

executing the discrete-time Lloyd’s algorithm will converge to a distinct, i.e., non–degenerate, point set

that forms a CVT.

Theorem 6.5.1 (Convergence of discrete-time Lloyd’s algorithm: Cortes et al. [47, 118], Du et al.

[134]). Let x(t) = [x1(t), . . . , xn(t)] be the multiset of positions of n robots at time t ∈ Z≥0 where

xi(t) ∈ Q ⊂ Rd. Suppose that Q is bounded and convex, and the initial positions of the n robots are

distinct. If all robots evolve with the discrete-time Lloyd’s algorithm defined by a map T dl : Qn → Qn

(6.15-6.16), then the set of positions of the n robots will converge to a distinct n−tuple of points that

forms a CVT.

Proof. The idea of our proof (i.e., the ideas contained in the proofs of previous propositions 6.5.1, 6.5.2,

6.5.3 and the idea of using the LaSalle Invariance principle, Theorem D.4.1), is similar to the proof of

Proposition 3.4 [47], Theorem 2.6 [134], and Proposition 3.3 [118]. From previous propositions, we note

that the following are true.

• According to Proposition 6.5.1, the function L is continuous on Qn, and is non-increasing along

the map T dl on Qn. This implies that the function L is continuous on Q̃n, and is non-increasing

along the map T dl on Q̃n.

8The workspace Q must be convex, the function φ must be integrable.
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• According to Proposition 6.5.2, the map T dl is continuous on Q̃n.

• According to Proposition 6.5.3, every n−tuple point set along the trajectory (x(t))∞t=0 of T dl is

non-degenerate and bounded.

If we define M to be the largest positively invariant set contained in E = {x′ ∈ Q̃n ⊂ (Rd)n |

L(T dl(x′)) = L(x′)}, then, using LaSalle’s Invariance Principle (Theorem D.4.1) with L as a Lyapunov

function, it can be guaranteed that there is some c ∈ R such that the trajectory (x(t))∞t=0 of T dl

approaches to M ∩L−1(c). Since E is the set of critical points of L, M must be contained in the set of

non-degenerate points that form CVTs.

Next, we show that the entire sequence (x(t))∞t=0 converges to a point. Since every point in the

trajectory (x(t))∞t=0 of T dl in Q̃n is bounded, there is a subsequence (x[ti])
∞
ti=0 such that ti → ∞ and

x[ti] → x? where x? ∈ M . Now using the fact that the function L is continuous, and non-increasing

along T dl on Q̃n, it can be shown that the entire sequence converges to x? that forms a CVT.

6.6 Conclusion

In this chapter, we reviewed one of the distributed static deployment algorithms where each robot

chooses its sensing region to be a Voronoi region, and executes Lloyd’s algorithm to move toward the

centroid of the Voronoi region. This approach has been extremely popular in the literature of mobile

sensor networks [16, 114, 115, 124, 125], because of the fact each Voronoi region can be calculated using

only local information by each robot, and Lloyd’s algorithm guarantees convergence of positions of

the robots to one of the locally optimal configurations (that form CVTs) given a certain cost function

related to Quality of Service (QoS). Thus, the approach is distributed, optimal, and correct9. Based

upon these results, in Chapter 7, we propose a static deployment algorithm that is robust to random

sensor failures by endowing robots with joint target detection capabilities that were discussed in [130].

9In this context, Lloyd’s algorithm is correct in the sense that robots’ positions converge to equilibrium points that
form a CVT.
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Chapter 7

Multi-robot robust deployment
algorithm

In recent years, mobile sensor networks (MSNs) have found increasing applicability for problems in-

cluding surveillance, search and rescue mission, natural disaster forecast, animal habitat monitoring,

exploration of hazardous environment (see, e.g., the surveys given in [135–137]). Many of these appli-

cations require sensor deployment in hostile environments, which can lead to failure of individual nodes

in the network. In this chapter, we address the problem of sensor failure by developing methods for

robust sensor deployment.

Much research in the MSN literature has been devoted to the problem of controlling sensor movement

such that the sensor nodes maintain maximum coverage of their regions of interest. This coverage control

problem is closely related to the locational optimization problem [17, 112, 126], which deals with the

optimal placement of resources in a spatial domain. Various distributed motion control algorithms have

been presented that drive the nodes to their optimal positions (see, e.g., [22, 115, 118, 129]), however,

these algorithms have not typically considered the possibility of sensor failure, and converge to optimal

sensor configurations under the assumption that all sensors function properly and accurately implement

the control algorithm. With such approaches, failure of a single sensor can lead to network failure, for

example, in the problem of target detection.

One of the primary reasons that the failure of a single node can be so significant is that many

distributed MSN algorithms simplify communication and computation requirements by partitioning

the workspace into regions, and then assigning only one node per region. Thus, failure of a single node

results in one region that is not covered by the network.

A number of approaches have been proposed in which multiple sensors can work cooperatively to

achieve coverage, including [129, 130]. In [129], a probability distribution encodes the frequency of

random events that can occur, and each mobile node is equipped with range limited sensor. Commu-

nication cost is considered as a limiting constraint, and a gradient-based algorithm that requires only

local information to each sensor is proposed to locally maximize the joint-detection probabilities of the
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random events. In [130], the joint probability of missed detection is explicitly computed, and used to

derive a gradient descent algorithm to minimize the total probability of missed detection, given the

prior probability of individual sensor failure.

A closely related problem to ours from computer science is the k−coverage problem [138–142], which

is typically aimed for intruder detection applications. The objective of a general k−coverge problem is

to place minimum number of sensors in a bounded area such that every target in the area is covered

by at least k sensors. The k−coverage problem is similar to ours in that both pursue robust coverage,

i.e., more than a one sensor detects every target. However there are fundamental differences between

the two problems. First, in the k−coverage problem, it is assumed that there are redundant sensors

available for a bounded area. Thus, the major concern is to decide which sensors to use, and which

sensors to put to sleep to minimize energy consumption. On the other hand, in our case, the number

of sensors is not free to choose as in k−coverage problem. Instead, the number of sensors is given,

and the goal is to find an optimal configuration/motion control strategy for the sensors that maximizes

collective target detection performance under the assumption that each target in the workspace is being

covered by k sensors. Second, while in the k−coverage problem it is typically assumed that there are a

finite number of targets in the workspace and that sensors are deployed in a grid, in our problem, the

workspace is continuous such that targets are distributed over the space, and sensors are not contained

to move on a grid.

While most of above mentioned studies assumes that sensor locations are exact, there are exceptions.

In [143], Vu and Zheng modeled uncertainty in sensor locations by disk areas with possibly different

radius centered at their nominal locations. They introduced the concept of order−k max Voronoi

diagram1 in order to determine minimum sensing radius needed to ensure the worst-case k−coverage.

Pierson et al., [146, 147] proposed an adaptive, distributed on-line algorithm for multi-robot coverage.

In their algorithm, which bases on the classical results of [47], each node uses weighting adaptation law

which assigns weights on their neighbors by comparing their relative performance (degradation occurs

due to errors in sensor readings [147] or actuation errors [146]). Lyapunov-like proof was used to show

the convergence of their algorithm to an invariance set. As it was discussed in the conclusion from [146],

their current algorithm is guaranteed to work in the presence of robots with simple actuation or sensor

errors, but not with malicious or faulty robots. We will try to address such issues in this work.

This chapter expands upon the method presented in [130]. As with most previous approaches, we

1Their concept of order−k max Voronoi diagram is based on the order−k Voronoi diagram [144, 145]. Additionally,
they make use of sensing radii of sensors in their definition.
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partition the workspace into regions. Unlike those approaches, we consider the case in which k sensors

with exact locations are assigned to guard each region in the partition. Thus, for any region in the

partition, if one sensor fails, k− 1 sensors remain functional. By varying the choice of k, we obtain the

classical approach when k = 1, and the case of full workspace coverage (the case considered in [130])

when k = n, for a network of n sensors. Values of k from 2 to n− 1 provide successively more accurate

approximations to the full coverage (i.e., complete knowledge of the workspace) at the expense of

increasing computation and communication requirements. For k > 1, our method is robust in the sense

that even if one sensor fails, there are other sensors that can successfully detect the target.

The main results in this chapter are as follows. First, we show that the order−k Voronoi partition is

the optimal partition of the workspace when each sensor is assigned to those order−k Voronoi regions

for which it is a generator (i.e., when the order−k Voronoi region for each sensor is the set of all points

in the workspace for which it is one of the k nearest sensors). We provide conditions for the optimal

configurations at which each sensor is located. This is a generalization of the classical result for the

problem where k = 1, in which case the Centroidal Voronoi tessellation is known to be optimal, and

the optimal configuration is such that each sensor is positioned at the centroid of its Voronoi regions.

Finally, we present a distributed algorithm for our optimal sensor placement problem whose convergence

property is proven.

One benefit to our approach is that it allows communication and computation costs to be considered

against the relative performance gains as k ranges from 1 to n, and as computation ranges from fully

decentralized to fully centralized. For 1 < k < n, our approach is regarded as decentralized, however

not fully decentralized in that additional local communication/sensing could be necessary.

The remainder of the chapter is organized as follows. A few notations and terminologies are introduced

in Section 7.1. We begin the Section 7.2 by formulating an appropriate cost function that corresponds

to the probability of missed detection for order−k redundancy in sensing. In Section 7.2.1, we introduce

generalized Voronoi partition, and show that the order−k Voronoi partition is the optimal partition.

In Section 7.2.2, given any order−k partition, we provide conditions for configurations that minimize

the cost function. Then, in Section 7.3 we introduce a robust deployment algorithm and show its

convergence properties via LaSalle’s Invariance Principle tailored for set-valued maps. Simulation

results with k = 2 are shown in Section 7.4. Section 7.5 concludes this chapter by presenting a number

of future directions.
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R1
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R = {R1, R2, R3}
x = {x1, x2, x3}

G({R1, R2}) = {x2, x3}
G({R3}) = {x1, x2}
G−1({x2}) = {R2, R3}
G−1({x1, x3}) = {R1, R2, R3}

x3

x2

x1

R3

: sensors : targets : guarded by : partition of Q

Figure 7.1: The mapping G.

7.1 Preliminaries

7.1.1 Workspace partitioning

Let R = {R1, . . . , Rm} be a partition of Q, into m disjoint regions. Due to the definition of a partition

of a bounded space resulting regions are disjoint, and union of those regions complete the space, we

have Q =
⋃m
i=1Ri, where Ri ∩Rj = ∅ for every pair i, j ∈ {1, . . . ,m} with i 6= j.

7.1.2 k−redundant coverage

In this chapter, we consider the multi-agent target detection problem where every mobile sensor guards

some particular region in Q, which we will call guarded region throughout the text. In other words,

each robot has its own associated region where the robot will always detect targets in the region with

some positive probability. Thus, our model generalizes Voronoi sensing [118] where each sensor has its

own Voronoi region whose generator is exactly the robot’s position.

For a given partition R of a bounded space Q ⊂ R into m regions, and set of n sensors x in Q, let

G : 2R → 2x be a map that assign a set of regions to a set of sensors. We assume that the inverse

map G−1 always exists. Then, given l ∈ N with l ≤ m regions Ri1 , . . . , Ril ⊂ Q, G({Ri1 , . . . , Ril})

gives the set of sensors that guard those l regions. Inversely, given h ≤ n sensors xi1 , . . . , xih ∈ Q,

G−1({xi1 , . . . , xih}) give the set of regions that are guarded by those h sensors. An illustrative example

of the map G is given in Fig. 7.1.

To add robustness to sensor failures, we propose a redundant coverage method where each region

from a partition is guarded by exactly k ∈ N (where 1 ≤ k ≤ n) number of sensors. The notion is

summarized below.
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(a) k=1
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4 5

(b) k=2

Figure 7.2: The order−k partitions of a square workspace.

Definition 7.1.1 (k−redundant coverage). Consider a bounded space Q ∈ Rd where target is contin-

uously distributed over Q, and n sensors are deployed in Q. k−redundant coverage is special type of

sensor coverage where every target is guarded by exactly k sensors.

If necessary, we will use the term order−k region to denote the region guarded by exactly k sensors,

and the order−k partition for the partition where every region is order−k.

Fig. 7.2 shows another examples of order−k partitions of a bounded square workspace. Fig. 7.2(a)

shows an example of with k = 1, and Fig. 7.2(b) shows an example with k = 2. The order−1 partition

in Fig. 7.2(a) can be expressed as R = {R1, . . . , R5} each is guarded by robot with index {1}, {2}, {3},

{4}, {5} respectively. In a similar manner, the order−2 partition in Fig. 7.2(b) can be expressed as

R = {R1, . . . , R8} each is guarded by a pair of robots with indices {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3},

{2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5} respectively. We note that there are no regions guarded by a pair of

robots with indices {1, 4} nor {2, 4}.

7.1.3 Additional notations

For a given target, we denote by Di, the event that robot positioned at xi detects the target, and by Di,

the complement event that the robot positioned at xi fails to detect the target. Consider case when all

n robots participate in detecting a particular target located at q ∈ Q. In this case, we denote by D, the

collective event that no robots detects the target. We define the target location to be a random vector

X ∈ Q ⊂ Rd with probability density function (PDF), i.e., target distribution function, φ : Q → R≥0
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where ∫

Q

φ(q) dq = 1.

We may now formulate a function for the probability of missed target detection given a specific

partition R, set of sensor locations x, and mapping of regions to sensors G.

7.1.4 Probability of missed-detection revisited

In this section, we derive the probability that a set of n robots equipped with sensors at some config-

uration x each xi ∈ Q ⊂ Rd. This time, we will take into account the mapping G. Our derivation

method follows closely to that given in [130].

We consider the probabilistic sensor detection model. The conditional probability P
{
Di

∣∣X = q
}

measures the missed-detection probability when a target q is at some distance from the sensor located

at xi. The model reflects the behavior of range sensing devices such as infrared and ultrasound sensors.

We will assume that n events D1, . . . , Dn are mutually independent such that the conditional probability

that all n robots fail to detect a specific target located at q is obtained by

P
{
D
∣∣X = q

}
=

n∏

i=1

P
{
Di

∣∣X = q
}
.

Hence, the total probability of missed detection targets distributed over Q by n robots is

P
{
D
}

:= P
{
D
∣∣X ∈ Q

}
=

∫

Q

P
{
D
∣∣X = q

}
φ(q) dq

=

∫

Q

n∏

i=1

P
{
Di

∣∣X = q
}
φ(q) dq

where we omitted X ∈ Q on the left hand side for simplicity (provided that Q is obvious from the

context). If Q can be partitioned into, let’s say, m dis-joint regions, then we can break the integral into

a sum of integrals, each taken over a disjoint region among the partition R as

P
{
D
}

=

m∑

j=1

∫

Rj

n∏

i=1

P
{
Di

∣∣X = q
}
φ(q) dq.

For a special case where m = n, and each robot at xi has exactly one and only region Ri ∈ R to guard,

P
{
D
}

is given by

P
{
D
}

=

n∑

i=1

∫

Ri

P
{
Di

∣∣X = q
}
φ(q) dq.
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which takes exactly the same form to that found in [Du, Cortes, etc], and it is used as a performance

measure for fully decentralized deployment of MSNs, or as the distortion of vecter quantizers.

In particular, under k−redundant coverage, where each region is guarded by exactly k sensors, we

have

P
{
D
}

=

m∑

j=1

∫

Rj

∏

xi∈G(Rj)

P
{
Di

∣∣X = q
}
φ(q) dq.

Note that in the product term of the RHS, only sensors that guard the region Rj are considered. As

the measure for the likelihood that a sensor positioned at xi fail to detect target located at q, we use

twice differentiable, continuous, non-decreasing function fi : R≥0 → [0, 1] such that

P (Di | X = q) =





fi(‖q − xi‖), if q ∈ G−1(xi)

1. otherwise

(7.1)

Generally, for the multi-sensor coverage/deployment problem (see e.g., [47, 118, 126], etc), the like-

lihood that some target will be detected by a sensor has inverse relation to the Euclidean distance

between target and the sensor position. For this case, (7.1) is interpreted as follows. If a particular

target located at q is guarded by agent i, the probability that it will be missed by the sensor is non-

increasing with respect to the distance to the target. Otherwise if the target is not guarded by the

agent i, of course it will always be undetected by the agent i.

7.2 Optimality Criterion

In order to frame the multi-robot k−redundent deployment problem as an optimization problem, we

use the probability of missed detection of targets in Q by n robots as our cost function, and attempt

to minimize the cost with respect to the choice of partition, assignment of guards to each disjoint

region, and configuration of robots. To make explicit dependence on the three quantities we have just

mentioned, we define H to be a real-valued function of x, R, and G whose function value, i.e., cost, is

given by

H(x,R, G) =

m∑

j=1

∫

Rj

∏

xi∈G(Rj)

fi(‖q − xi‖)φ(q) dq (7.2)

where x, R, G is as before. The optimization problem is merely to choose right parameters x,R and G

minimizing the cost

min
x

min
R

min
G
H(x,R, G). (7.3)
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We will now show how to select x, R, and G. First result states that for a fixed configuration x, the

order−k Voronoi partition and the associated set of generators are the necessary condition for x to be

a minimizer. While it is not yet clear how to choose the an optimal configuration under the order−k

Voronoi tessellation that provides both necessity and sufficiency, we will propose an algorithm in the

next section which will achieve local optimality in a limited sense.

Since a typical MSN consists of hundreds to thousands of robots equipped identical sensors, we assume

throughout:

Assumption 7.2.1 (indistinguishability). The functions fi : R≥0 → [0, 1], i = 1, . . . , n are twice

continuously differentiable identical functions, i.e., f1 = · · · = fn, that are non-decreasing along R≥0,

And to avoid pathological cases2, we will assume throughout:

Assumption 7.2.2 (general quadratic position [17, 148]). For a given set of points x ∈ (Rd)n where

n ≥ 4:

(a) x is finite and distinct,

(b) (the non-cosphericity) there does not exists a hyper sphere, C, such that points xl1, . . . , xlk ∈

x(k ≥ 4) are on C and all points in x \ {xl1, . . . , xlk} are outside C,

(c) (the non-collinearity) the points in x are not on the same line.

7.2.1 The optimal partition

7.2.1.1 An ordinary Voronoi diagram

We first review the ordinary Voronoi diagram defined over the Euclidean space.

Definition 7.2.1 (A Voronoi partition [149]). Let x = {x1, . . . , xn} be a set of n distinct points where

xi ∈ Rd.

V (xi) = {q ∈ Rd | ‖q − xi‖ ≤ ‖q − xj‖ j ∈ I \ {i}}

is the ordinary Voronoi region associated with the generator positioned at xi. We denote by

V (x) = {V (x1), . . . , V (xn)}

the ordinary Voronoi digram generated with x.

2A number of examples are discussed in [17].
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We now consider the generalized version of the Voronoi diagram which was proposed by Shamos and

Hoey [144].

7.2.1.2 An order−k Voronoi partition

Definition 7.2.2 (An order−k Voronoi partition [144]). Let x = {x1, . . . , xn} be a set of points where

xl ∈ Rd. An order−k Voronoi region associated with a point set U = {xl1 , . . . , xlk} with size k is given

by

V (U) = {q ∈ Rd | max
xj∈U

‖q − xj‖ ≤ min
xh∈x\U

‖q − xh‖}

where we call U the generators of V (U). The set of all such regions comprise the order−k Voronoi

diagram, Vk(x) which is given by

Vk(x) = {V (U) | U ⊂ x, |U| = k}.

To be used in the sequel, if we let m be the binomial coefficient indexed by n and k

m :=

(
n

k

)
,

The size of each order−k Voronoi partition with n generators is henceforth upper-bounded by m, i.e.,

|Vk(x)| ≤ m. Depending on the choice of the subset U ⊂ x some Voronoi regions associated with

the point set, i.e., V (U), can be empty. Additional details about obtaining the number of non-empty

Voronoi regions of all orders is discussed by Shamos and Hoey [144]. Note that given some set of k

points U ⊂ x, V (U) is the locus of points closer or equal to some point in U to any other point not in

U . Thus, alternatively using the halfspace we may define V (U) by

V (U) =
⋂

xi∈U,xj∈x\U

H(xi, xj) =
⋂

xi∈U

⋂

xj∈x\U

H(xi, xj) (7.4)

where H(xi, xj) is the closed halfspace of Rd of points closer or equal to xi than to xj . It is shown

in Fig. 7.3, an example procedure to obtain an order−k Voronoi region, associated with some point

set U = {x1, x2} using (7.4). It is reported in [145] that the worst-case complexity for obtaining the

order−k Voronoi diagram with n points in Rd is O(k(n− k)).

Fig. 7.4 shows examples of order−k Voronoi regions with k = 1, 2. In Fig. 7.4(a), the shaded region
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⋂
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⋂
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Figure 7.3: A procedure to compute Voronoi region V (U). In this example x = {x1, x2, x3, x4}, U = {x1, x2}.
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{1, 3}

(b) k=2

Figure 7.4: The order−k Voronoi regions.
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{3, 4}

{4, 5}

{3, 5}

{2, 5}
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Figure 7.5: 1st node’s guarded regions under the order−k Voronoi partition.

V1({x1}) is associated with {1} with k = 1, and in Fig. 7.4(b) the region V2({x1, x3}) is associated with

{1, 3} with k = 2. Fig. 7.5 shows the 1st node’s guarded region under the order−k Voronoi tessellations

of the a square workspace with k = 1, 2 respectively. The shaded areas show regions associated with

robot 1 under order−1 Voronoi partition in Fig. 7.5(a), and under order−2 Voronoi partition in Fig.

7.5(b) respectively.

7.2.1.3 The optimal partition, and mapping

Given an order−k partition, we define a special type of mapping Gk : 2Vk → 2x, which assigns each

order−k region to its generator.

Theorem 7.2.1. For k−redundant coverage, the cost H(x,R, G) is minimized only if R = Vk, and

G = Gk.

Proof. For the proof we use the definition of order−k Voronoi diagram. Consider a set U ⊂ x with size

k whose associated order−k Voronoi region is non-empty. Then by Definition 7.2.2

Vk(U) = {q ∈ Rd | max
xj∈U

‖q − xj‖ ≤ min
xh∈x\U

‖q − xh‖}

where U = Gk(Vk(U)). We claim that for each q ∈ Vk(U)

∏

xj∈U
‖q − xj‖ ≤

∏

xh∈T
‖q − xh‖ (7.5)

holds for all T ⊂ x with |T | = k. We consider two cases. Case 1: U = T
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The equality (7.5) holds trivially.

Case 2: U 6= T

In this case, T \ U 6= ∅ such that we may express RHS of (7.5) by

∏

xh∈T \U

‖q − xh‖
∏

xl∈U∩T
‖q − xl‖

In a similar manner the left hand side of (7.5) can be expressed as

∏

xi∈U\T

‖q − xj‖
∏

xj∈U∩T
‖q − xj‖ .

We note that |T \ U| = |U \ T | = |T − T ∩ U| = |U − T ∩ U|, and for all xh ∈ T \ U

max
xi∈U

‖q − xi‖ ≤ ‖q − xh‖ ,

which implies
∏

xi∈U\T

‖q − xj‖ ≤
∏

xh∈T \U

‖q − xh‖ .

Hence, (7.5) holds as claimed.

Under Assumption 7.2.1, for each value of q ∈ Vk(U)

∏

xj∈U
fj(‖q − xj‖)φ(q) ≤

∏

xh∈T
fh(‖q − xh‖)φ(q). (7.6)

Without loss of generality, for general partitionR that is not necessarily an order−k Voronoi partition,

we define an index set for regions from R which has non-empty intersection with Vk(U) by

IU := {j ∈ {1, . . . ,m} | Rj ∩ Vk(U) 6= ∅}

Then, we claim

∫

Vk(U)

∏

xj∈U
fj(‖q − xj‖)φ(q) dq ≤

∑

j∈IU

∫

Rj∩Vk(U)

∏

xh∈G(Rj)

fh(‖q − xh‖)φ(q) dq. (7.7)

Since integration from both hand sides of (7.7) is taken over Vk(U) with density function φ, and (7.6)

holds for every choice of q ∈ Vk(U), the inequality in (7.7) holds.
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After taking summation over the workspace Q, we have

∑

U⊂x, |U|=k,U=Gk(Vk(U))

∫

Vk(U)

∏

xj∈U
fj(‖q − xj‖)φ(q) dq ≤

m∑

j=1

∫

Rj

∏

xh∈G(Rj)

fh(‖q − xh‖)φ(q) dq. (7.8)

If R 6= Vk(x), i.e., R is not an order−k Voronoi tessellation of Q given x, (7.8) must hold with strict

inequality over some measurable set of Q. Thus, we have shown so far that H is minimized when every

region in R is chosen to be exactly the order−k Voronoi region associated with the its k generators.

7.2.2 Optimal sensor configuration

7.2.2.1 Non-convexity of the cost function (separately convex over w.r.t. each variable)

The proof of Proposition 7.2.1 depends on the following lemma.

Lemma 7.2.1. Let g1 and g2 be convex functions defined over a convex set C ⊂ Rd. Then for each

w1, w2 ∈ R≥0 the weighted sum of two functions w1g1 + w2g2 is also convex over C.

We will omit the proof of Lemma 7.2.1. The proof of Lemma 7.2.1 follows from the definition of the

convex functions and is contained in [150–152].

Proposition 7.2.1. For a k−redundant coverage, if Q is convex, and φ is bounded on Q, then for R

and G, H(x,R, G) is separately convex with respect to each variable x1, . . . , xn.

Proof. Without loss of generality, for a given partition R and G, we may choose i ∈ I. If xj is fixed

for all j ∈ I \ {i}, then the function H(x,R, G) is merely infinite sums of weighted convex functions

fi(‖q − xi‖) for particular q ∈ Q plus a constant term. Under Assumption 7.2.1, and given conditions,

i.e., Q is bounded subset of Rd that is convex, and φ is bounded on Q, it follows from Lemma 7.2.1

that H(x,R, G) is convex with respect to xi over its domain Q. We can repeat this process for every

i ∈ I. This completes the proof.

7.2.2.2 Distributed cost function

Consider a cost function associated with each individual robot. We refer to the cost solely due to ith

robot’s effort for target detection by Distributed cost. For each i ∈ I, consider a map Mi : Qn → R≥0

defined by

Mi(x) :=
∑

Rj∈G−1(xi)

∫

Rj

∏

xl∈G(Rj)

fl(‖q − xl‖)φ(q) dq (7.9)
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where the choice of R and G is implicit. An important relationship between total cost and sum of all

n distributed costs is provided in the following proposition.

Proposition 7.2.2. Given k−redundant coverage

H(x,R, G) =
1

k

n∑

i=1

Mi(x) (7.10)

Proof. The proof is immediate by combining two equations (7.2) and (7.9).

kH(x,R, G) = k

m∑

j=1

∫

Rj

∏

xi∈G(Rj)

fi(‖q − xi‖)φ(q) dq

=

m∑

j=1

k

∫

Rj

∏

xi∈G(Rj)

fi(‖q − xi‖)φ(q) dq

=

n∑

i=1

∑

Rj∈G−1(xi)

∫

Ri

∏

xl∈G(Rj)

fl(‖q − xl‖)φ(q) dq

=

n∑

i=1

Mi(x) (7.11)

By the definition of k−redundant coverage, each disjoint region is guarded by exactly k sensors. By

dividing both hand sides of (7.11) by k, (7.10) is obtained.

Proposition 7.2.3. For a given k−redundant coverage, R and G, x∗ ∈ Qn is a critical point of

H(x,R, G) if and only if ∇xiMi(x
∗) = 0d×1 for all i = 1, . . . , n.

Proof. By direct comparison between (7.2) (7.9), we obtain

∇xiH(x,R, G) = ∇xiMi(x), i = 1, . . . , n (7.12)

If x∗ := {x∗1, . . . , x∗n} ∈ Qn is the common critical point for all functionsM1, . . . ,Mn, i.e.,∇xiMi(x
∗) |xi=x∗i =

0d×1 for all i ∈ I. Then using the relationship (7.12), for each i ∈ I ∇xiH(x∗,R, G) = ∇xiMi(x
∗) =

0d×1 which implies that x∗ is the critical point of H(x, ·, ·). Only if part can be verified in a similar

manner.

7.2.2.3 1−redundant coverage (the non-redundant case)

The proof of Proposition 7.2.4 depends on the following lemmas and theorems:
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Lemma 7.2.2. A real square matrix M is positive definite if and only if det(M) > 0.

Lemma 7.2.3. Let M1, . . . ,Mn be l× l real square matrices, and M := diag(M1, . . . ,Mn) be a nl×nl

block diagonal matrix. Then

det(M) =

n∏

i=1

det(Mi).

Proofs for the two lemmas are found in texts on matrix analysis e.g., [153].

Theorem 7.2.2. Consider a real-valued function g(y) with continuous first and second derivatives

defined over some convex set D. The function g(y) is strictly convex if and only if the Hessian Hg(y)

is positive definite for all x ∈ D.

Theorem 7.2.3. If g : Rd → R is a twice differentiable, (strictly) convex function over some convex

set D ⊂ Rd, then any critical points of g in D is a (strict) global minimizer of g.

Proofs for both Theorem 7.2.2 and 7.2.3 are found in non-linear programming texts, e.g., [150,152].

Proposition 7.2.4. For a 1−redundant coverage, if Q is a bounded subset of Rd that is convex and x∗

is a critical point of H(x,R, G) for each choice of R and G, then x∗ is a strict global minimizer.

Proof. Recall that for the given assumptions the family of identical functions f1, . . . , fn are strictly

convex. If k = 1, each region region Ri is guarded by only one agent positioned at xi, such that the

innermost product term in Mi(x) contains only fi(‖q − xi‖). Thus, using Proposition 7.2.3 we have

∇xj∇xiH(x,R, G) = ∇xj∇xiMi(x) =





0d×d, if j 6= i

∇2
xiMi, if j = i

and the Hessian is a block matrix given by

HH(x,R, G) =




∇2
x1
M1(x) 0d×d · · · 0d×d

0d×d ∇2
x2
M2(x) · · · 0d×d

...

0d×d 0d×d · · · ∇2
xnMn(x).




We claim that every d×d block matrix on the diagonal is positive definite. For all i ∈ I by Proposition

7.2.1, ∇2
xiMi(x) � 0, and by Lemma 7.2.2 this implies det(∇2

xiMi(x)) > 0. It follows from Lemma
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7.2.3

det(HH(x,R, G)) =

n∏

i=1

det(∇2
xiMi(x)) > 0.

Again, by applying Lemma 7.2.2

HH(x,R, G) � 0,

holds for each R, G. It follows from Theorem 7.2.2 that H is strictly convex over Qn. Let x∗ :=

(x∗1, . . . , x
∗
n). be the critical point of H. Then by Theorem 7.2.3, the strict convexity of the function

implies that x∗ is the strict global minimizer for H over Qn.

7.3 Our algorithm: a robust deployment algorithm

7.3.1 Algorithm description

We proposed a distributed iterative algorithm where at each iteration step only a set of robots that

are sufficiently independent to each other move. The meaning of “sufficient independence” depends on

whether positions for the set of robots are decoupled in the cost function H. For a given configuration

x ∈ (Rd)n of n sensors, let S(x) be the collection of all sets of sensor positions that do not guard a

common region:

S(x) := {S ⊂ x | ∀xi, xj ∈ S with xi 6= xj , @U = Gk(Vk(U)) 6= ∅ s.t. xi, xj ∈ U} .

We note that S(x) is uniquely determined by the configuration x. In our proposed algorithm, at each

time step only a group of robots whose set of positions are one of the elements of the collection S(x)

will operate. For our algorithm, we assume that each robot is capable of, or have access to the following

information.

(A) Total number of robots in the system (MRS)

(B) Global clock

(C) Self identifier

(D) Peer-to-Peer(P2P) communication with its local neighbors

Based on the capabilities, at each time step, every robot communicates with its local neighbors to decide

whether to operate or not. The followings are involved in such processes.
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Algorithm 3: A procedure to collectively obtain S via P2P communication

Require:

• Each robot knows n; the total number of robots

• Each robot knows global clock

• Each robot knows its self identifier

• Each robot can communication with its neighbors

for each iteration t do
S ← ∅, active[i]← 0 for all i ∈ I for each robot i ∈ I do

if mod(t, n) = i or mod(t, n) = 0 and i = n then
active[i]← 1

end

end
for each robot i ∈ I do

if mod(t, n) 6= i then
if active[j] = 0 for all xj such that there exists U = Gk(Vk(U)) ⊂ x with xi, xj ∈ U then

if for all j, i < j then
active[i]← 1

end

end

end
if active[i] = 1 then
S ← S ∪ {xi}

end

end
return S

end

(a) Robot should check whether its neighbors are active

(b) Robot should check whether its neighbor and the robot itself guard a common region.

(c) Robot should check whether its neighbor has a smaller identifier compared to its own identifier.

The details of the algorithm is summarized in Algorithm 3 and 4.

Remark: In fact, (iv) the inter-agent communication is not necessary but sufficient. We shall show

that as long as the information (i)-(iii) is available to every robot, our algorithm will converge. It

is expected that more communications will improve convergence speed of our proposed algorithm,

Nevertheless, since it is not of our main concern we will not discuss the topic further in the chapter.

7.3.2 Optimal property of the algorithm

We will derive an expression for the case when only a subset of sensor positions S ⊆ x, where S ∈ S(x),

operate, such that H(x,R, G) becomes essentially a function of S,R and G. It is convenient to define

112



Algorithm 4: A robust deployment algorithm

Require: S ∈ S(x), vmax

for each iteration do
for each robot i ∈ I do

if xi ∈ S then
obtain x∗i that solves ∇xiM(x) |xi=x∗i

= 0d×1

if ‖xi − x∗i ‖ ≤ vmax then
xi ← x∗i

elsexi ← xi + vmax
x∗i−xi

‖xi−x∗i ‖end

end

end

end

another function H by

H(S,R, G) := H(x,R, G)

∣∣∣∣
(x\S is fixed)

For convenience, let s := |S| be the cardinality of S.

Proposition 7.3.1. For a k−redundant coverage, if Q is a compact convex subset of Rd and φ is

bounded over Q, then for each R, G, x ∈ Qn, and S ∈ S(x), the critical point S∗ of H(S,R, G) is the

strict global minimizer for the function over Qs.

Proof. The proof is almost identical to that of Proposition 7.2.4. Similar to what we have in Proposition

7.2.3, given x ∈ Qn and S ∈ S(x) for each xi, xj ∈ S

∇xj∇xiH(S,R, G) = ∇xj∇xiMi(x) =





0d×d, if xj ∈ S \ {xi}

∇2
xiMi(x). if xj = xi,

provided that x \ S is fixed. Using the relation we have obtained so far, the Hessian HH(S,R, G) is

obtained as

HH(S, x,G) =




∇2
xi1
Mi1(x) 0d×d · · · 0d×d

0d×d ∇2
xi2
Mi2(x) · · · 0d×d

...

0d×d 0d×d · · · ∇2
xis
Mis(x)




where xij ∈ S for all j ∈ {1, . . . , s}, and il < il+1 for l = 1, . . . , s − 1. Similar to Proposition 7.2.1,

for the given condition H(S,R, G) is seperately convex to xi ∈ S. Thus, each diagonal block matrix is
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positive definite. It follows from Lemma 7.2.2, ∇2
xij
Mij (x) � 0 for all xij 6= x∗ij , and this implies

det(∇2
xij
Mij (x)) > 0.

By Lemma 7.2.3, provided that x \ S is fixed,

det(HH(S, x,G)) =

s∏

j=1

det(∇2
xij
Mij (x)) > 0.

Again by Lemma 7.2.2,

HH(S,R, G) � 0 (7.13)

holds for each R, G, Then by Theorem 7.2.2, (7.13) implies that H is strictly convex over Qs. If we let

S∗ = (x∗i1 , . . . , x
∗
is

) is the critical point of H over Qs, then by Theorem 7.2.3, the strict convexity of the

function implies that the critical point S∗ is the strict global minimizer for H over Qs.

7.3.3 Convergence of our algorithm

For a given x ∈ Qn and S ∈ S(x), our algorithm can be represented by a single-valued map T̃ rd :

Qn ×Qs → Qn comprised of n component maps T̃ rd = (T̃ rd
1 , . . . , T̃ rd

n ) where each map is defined by

T̃ rd
i (x,S) =





x?i , if xi ∈ S

xi, otherwise

(7.14)

where

x?i =





x∗i , if ‖xi − x∗i ‖ ≤ vmax

xi + vmax
x∗i − xi
‖xi − x∗i ‖

, if ‖xi − x∗i ‖ > vmax

provided that maximum displacement per stage is set to vmax for all agents, and x∗i ∈ Q solves

∇xiM(x) |xi=x∗i = 0d×1.

Since, for a given x and S(x) there are finite number of possible ways to collectively choose S

for each time step, it would be convenient to define our algorithm using a set-valued mapping. Let

T rd : Qn → 2Q
n

be a set-valued map given by

T rd(x) := {T̃ rd(x,S) ∈ Qn | S ∈ S(x)}. (7.15)
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Thus, our algorithm is expressed as a difference inclusion using the set-valued map T rd by

x(t+ 1) ∈ T rd(x(t)), t ∈ Z≥0. (7.16)

where x(0) ∈ Qn, Q ⊂ Rd.

Note that for a given S ∈ S(x), each single-valued map T̃ rd : Qn × Qs → Qn is continuous on

its domain Qn. Here, the collection S(x) is uniquely determined by the configuration x. Due to the

continuity of each single-valued map T̃ rd, it follows by results from set-valued analysis, i.e., [154], that

the set-valued map T rd is closed on Qn ⊂ (Rd)n. See the Appendix D for more details on this.

The proof of Theorem 7.3.1 depends on the following proposition.

Proposition 7.3.2. If T̃ rd : Qn → Qn is continuous, then T rd : Qn → 2Q
n

is closed.

Proof. We first note that for a given x ⊂ Qn ⊆ (Rd)n, we may choose a collection S(x). Due to the

finiteness of S(x), the set T rd(x) is also finite. Also, we note that for every choice of S, the map T̃ rd is

continuous on Qn. Consider a convergent sequence of point set (X (k))∞l=0

X (l)→ X (7.17)

where X (l) ∈ Qn, and X ∈ Qn. By the definition of continuous functions, (7.17) implies

T̃ rd(X (k),S)→ T̃ rd(X ,S).

Without loss of generality, if we let

Y(k) := T̃ rd(X (l),S)

and

Y := T̃ rd(X ,S)

then certainly

Y(k)→ Y.

For each S, using the relation (7.15)

Y(k) = T̃ rd(X (k),S) ∈ T rd(X (k)),
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and

Y = T̃ rd(X ,S) ∈ T rd(X ).

Since Y ∈ T rd(X ) holds under every choice of S ∈ S(x), it follows from Definition D.2.1 that the map

T rd is closed.

We now state the main theorem of this chapter.

Theorem 7.3.1 (Convergence of our algorithm). Consider a group of n robots initially deployed at

x(0) = {x1(0), . . . , xn(0)} in Q ⊆ Rd. Under Assumption 7.2.1, and k−redundant coverage, if Q is

bounded subset of Rd that is convex, and φ is bounded on Q, then a sequence (x(t))t∈Z≥0 generated by

our algorithm from x(0) approaches the set of critical points for H.

Proof. By Proposition 7.3.1, for a given x ∈ Qn, R, and G

H(S∗,R, G) ≤ H(S,R, G)

holds for S ∈ S(x) where S∗ is a critical point of H on Qs provided that x \ S is fixed. Thus, for

R = Vk(x), and G = Gk

H(S∗,Vk(x), Gk) ≤ H(S,Vk(x), Gk) (7.18)

holds and using (7.14), (7.18) implies:

H(T̃ rd(x,S),Vk(x), Gk) = H((T̃ rd
i (x,S))xi∈S ,Vk(x), Gk)

≤ H(S,Vk(x), Gk) = H(x,Vk(x), Gk)

which holds as long as x \S is fixed. Since the above inequality holds for every S ∈ S(x), we may apply

the set-valued map T rd which was previously defined (7.15). Thus, for each Z ∈ T rd(x)

H(Z,Vk(x), Gk) ≤ H(x,Vk(x), Gk).

Applying Theorem 7.2.1,

H(Z,Vk(Z), Gk) ≤ H(Z,Vk(x), Gk) ≤ H(x,Vk(x), Gk)
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for all Z ∈ T rd(x). This implies

H(Z,Vk(Z), Gk) ≤ H(x,Vk(x), Gk) (7.19)

for all Z ∈ T rd(x). Consider L(x) := H(x,Vk(x), Gk) as a Lyapunov function candidate for (7.16)

where Vk(x), and Gk is uniquely determined by x. We claim that L is a Lyapunov function for (7.16)

on Qn. To show this, L must be continuous and non-decreasing along the trajectory (x(t))∞t=0 generated

by (7.16), and bounded below. First, it follows from (7.19) for each x ⊂ Qn

L(Z) ≤ L(x) (7.20)

holds for all Z ∈ T rd(x). Due to the continuity of H on Qn, L is also continuous on Qn, and because H

is the probability measure L bounded below by 0. Hence, L is a proper Lyapunov function for (7.16).

Consider the algorithm that is generated by the set-valued map as in (7.16) Note that every set of

points generated from x(0) is bounded in Qn [solutions to constrained convex program obtained at

each iteration is bounded in Qn], thus trajectory (x(t))∞t=0 is bounded. Also, by Proposition 7.3.2, the

set-valued map T rd is closed on Qn.

Let E be a set of positions for n robots defined by

E =
{
Y ∈ Qn | ∃Z ∈ T rd(Y) s.t. H(Z,Vk(Z), Gk) = H(Y,Vk(Y), Gk)

}
.

Under the obtained conditions so far, it follows from LaSalle’s Invariance principle for algorithms

defined via set-value maps (see the Theorem D.4.1) by taking the limit as t→∞, the sequence generated

by our algorithm approaches the limit set M that is the largest weakly positively invariant set contained

in E.

It remains to who that the set M is exactly the set of critical points for H. Let C be a set of critical

points for H given by

C = {X ∈ Qn | ∇xH(x,Vk(x), Gk) |x=X= 0nd×1}.

Let us show that M = C. Clearly, C ⊂ M . To prove the other inclusion M ⊂ C, we reason by

contradiction. Consider x = {x1, . . . , xn} ∈ M \ C. Then by Proposition 7.2.3, there exists i ∈ I such

that ∇xiMi(x) 6= 0d×1. Since Mi is strictly convex over Q, there is a critical point x∗i 6= xi such that
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∇xiMi(x) |xi=x∗i = 0d×1 and

Mi({x1, . . . , x
∗
i , . . . , xn}) <Mi({x1, . . . , xi, . . . , xn}). (7.21)

For each j ∈ I \ {i} we consider two parts:

Mj(x) =
∑

Rh∈G−1(xj)\G−1(xi)

∫
Rh

∏
xl∈G(Rh)

fl(‖q − xl‖)φ(q) dq

︸ ︷︷ ︸
Mj1(x)

+
∑

Rh∈G−1(xj)∩G−1(xi)

∫
Rh

∏
xl∈G(Rh)

fl(‖q − xl‖)φ(q) dq

︸ ︷︷ ︸
Mj2(x)

.

The first part on the right hand side does not changes its value due to xi, only the second part on the

right hand side does. This is because the xi is observed in the inner-most product term in the second

part only. Note that if G−1(xj)∩G−1(xi) = ∅ the second part vanishes. Consider the sum of allMj(x)

for which j ∈ I \ {i}
∑

j∈I\{i}

Mj(x) =
∑

j∈I\{i}

Mj1(x) +
∑

j∈I\{i}

Mj2(x)

We claim that the following inequality holds

∑

j∈I\{i}

Mj({x1, . . . , x
∗
i , . . . , xn}) <

∑

j∈I\{i}

Mj({x1, . . . , xi, . . . , xn}). (7.22)

Since the value
∑
j∈I\{i}Mj1(x) are identical on both hand sides with respect to the change in xi, we

merely need to show

∑

j∈I\{i}

Mj2({x1, . . . , x
∗
i , . . . , xn}) <

∑

j∈I\{i}

Mj2({x1, . . . , xi, . . . , xn}).

We note that

∑

j∈I\{i}

Mj2(x) =
∑

j∈I\{i}

∑

Rh∈G−1(xj)∩G−1(xi)

∫

Rh

∏

l∈G(Rh)

fl(‖q − xl‖)φ(q) dq

= (k − 1)Mi(x).
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Hence,

(k − 1)Mi({x1, . . . , x
∗
i , . . . , xn}) =

∑

j∈I\{i}

Mj2({x1, . . . , x
∗
i , . . . , xn}) <

∑

j∈I\{i}

Mj2({x1, . . . , xi, . . . , xn})

= (k − 1)Mi({x1, . . . , xi, . . . , xn})

and our claim is true. Combining (7.21) and (7.22) yields:

∑

j∈I
Mj({x1, . . . , x

∗
i , . . . , xn}) <

∑

j∈I
Mj({x1, . . . , xi, . . . , xn}). (7.23)

Applying Proposition 7.2.2 to the inequality (7.23) yields

L({x1, . . . , x
∗
i , . . . , xn}) < L({x1, . . . , xi, . . . , xn})

such that {x1, . . . , x
∗
i , . . . , xn} /∈M where

{x1, . . . , x
∗
i , . . . , xn} ∈ T rd({x1, . . . , xi, . . . , xn}).

This contradicts the fact that M is weakly positively invariant. Thus M ⊂ C, and together with C ⊂M

we have shown that M = C. Hence the sequence (x(t))t∈Z≥0
generated by our algorithm defined via

set-valued map T rd from x(0) ∈ Qn approaches the set C that is the set of critical points for H.

The proposition does not tell if the convergence is to an global optimal configurations. Nonetheless,

the limit points are locally optimal solutions for the set of all distributed cost functions.

7.4 Simulation results

In the numerical simulation, we consider a network of 10, 20, and 30 mobile robots deployed in a

planer square workspace [0, 1]2 in which targets are uniformly distributed. Those robots use either

Lloyd’s algorithm [127] or our proposed algorithm with k = 2 as their control strategy. We consider

synchronous, discrete-time control policy, similar to the motion cycle (look, compute, and move) that

is found in the other literature on multi-robot systems (See e.g., [28]). For Lloyd’s algorithm, it is

assumed that sensing range for each robot is large enough to detect targets in its associated Voronoi
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initial configuration Lloyd’s algorithm our algorithm

n=10

n=20

n=30

Figure 7.6: 1st column: initial configurations, 2nd column: configurations after 100 stages with Lloyd’s algorithm, 3rd column:
configurations after 100 stages with our algorithm, 1st row: n = 10, 2nd row: n = 20, 3rd row: n = 30 (filled circles: positions
of robots, lines: partition of the workspace)

region. Similarly, for our algorithm, it is assumed that sensing range for each robot is large enough

to detect targets in its associated order−2 Voronoi region, and each robot can communicate with its

order−2 Voronoi neighbors.

7.4.0.1 Convergence test

It is shown in the first, second and third row of Fig. 7.6 the case when n = 10, n = 20, and n = 30

respectively. The 1st column shows the initial configuration of robots, and the 2nd column shows

configurations after 100 stages when robots execute Lloyd’s algorithm, and the 3rd column shows

configurations after 100 stages when robots execute our proposed algorithm.

It is shown in Fig. 7.7 the cost over 30 stages with n = 10, 20, and 30 when initial configuration is

given as the first columns of Fig. 7.6. It is clear that as predicted by the analysis, both algorithms

converge within some error bound after 100 stages; however the cost values from our algorithms are
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Figure 7.7: Cost comparison between (a) Lloyd’s algorithm, and (b) our algorithm over 30 stages.
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Table 7.1: Types of failure

Faulty system Servo Sensor

Type 1 ◦
Type 2 ◦
Type 3 ◦ ◦

much lower than that observed from Lloyd’s algorithm. This is owe to the fact that, in our algorithm,

multiple robots (i.e., in our case k = 2) enhances the overall target detection probability by jointly

detecting each target.

7.4.0.2 Robustness to failures

In the second simulation example, we consider the case of 10 robots in which part of them are faulty

robots. The initial configuration is shown in the 1st row of Fig. 7.6, and we will very the number

of faulty robots by nf = 1, 2, 3, 4, 5. We show via a few examples that our algorithm is relatively

more robust to faulty robots’ behavior compared to Lloyd’s algorithm. For this, we consider 3 types of

failures.

• Type 1 : This is the case when faulty robots fail to record target detection data. This could occur

when storage device is corrupt. In this case, the data collected by any faulty robot is not reliable.

Thus, we may simply assume that target missed-detection probability is 1 by every faulty robot over

its associated sensing region.

• Type 2 : This is the case when servo system in each faulty robot completely fails such that every

faulty robot remain stationary.

• Type 3 : This is the case when faulty robot loses its ability to move or detect the target, i.e., complete

failure.

Table. 7.1 summarizes 3 types of failures we consider in this simulation. In Fig 7.8 comparisons

between cost values over 100 stages are made between Lloyd’s algorithm and our proposed algorithm

with different types of faulty robots.

First, we consider the case when faulty robots always fail to correctly report target detection results,

i.e., Type 1 failure. This could be one of the many examples when faulty robots are malicious or

deceptive such that they execute the algorithm just like fault-free robots; however they are not honest

about the detected target data. It is shown in Fig. 7.8(a) the overall costs obtained with two algorithms

are the highest among all failure types, i.e., Type 1–3, that we consider in this example. This is roughly
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Figure 7.8: Cost comparison between (a) Lloyd’s algorithm, and (b) our algorithm over 100 stages under different failure types.
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(a) (b)

Figure 7.9: Comparison of coverage holes with (a) Lloyd’s algorithm, and (b) our algorithm after 100 stage (blank circles:
fault-free robots, filled circles: faulty robots).

due to the fact that for both algorithms, robots converges to their optimal configuration, and if faulty

robots do not detect those targets in their associated regions that is proven to be optimal, number

targets that are being missed-detected becomes the largest3.

Next, we consider the case when faulty robots are stubborn, i.e., Type 2 failure. It is shown in Fig.

7.8(b) the overall cost change is similar to that is shown in Fig. 7.7. As seen in the figure, the higher

the number of faulty robots, the higher the cost value.

Finally, we consider the case when all the faulty robots completely fail. It is shown in Fig 7.8(c)

that for both algorithms the overall cost values are the largest among all three failure scenarios. In this

case, our algorithm achieved slightly better detection performance than to that obtained with Lloyd’s

algorithm.

7.4.0.3 Coverage hole

Before we proceed to the next simulation, we briefly introduce a new term coverage hole. The coverage

hole is an area of a workspace in R2 that is left undetected by any of the fault-free robots. In other

words, it is the non-empty region where the missed-detection probability equals to 1. For the simulation

we consider 10 robots with initial condition as the 1st row of Fig. 7.6, in which 5 robots fail with Type 1.

It is shown in Fig. 7.9 the coverage hole for two algorithms, i.e., Lloyd’s algorithm, and our algorithm at

30th stage. Our algorithm shows smaller are of coverage hole than that observed with Lloyd’s algorithm.

As seen in Fig. 7.9(b), the coverage hole is found at the top–left corner of because it is the only area

which is associated with two robots that are both faulty at the same time.

3In fact, targets are being distributed over the continuous workspace with density φ such that they are not countable.
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Figure 7.10: Performance of the two approaches with respect to 3 types of failure.

7.4.0.4 Statistical results

In the last simulation, we show via statistical results that our algorithm always performs well, i.e.,

the previous simulation results were not only the special cases. We consider 100 random deployments

of 10 robots’ and for each deployment 5 faulty robots are sampled without replacement. Simulations

were performed for three types of failure models. Fig. 7.10 consists of histograms, each compares the

frequency of the cost value at 30th stage determined by the two algorithms under different types of

failures. Overall, the result shows that our algorithm is statistically more robust to all 3 types of failure

modes than to Lloyd’s algorithm. Especially as can been seen the second histogram from Fig. 7.10, our

algorithm performs notably better with respect to Type 2 failure than to Lloyd’s algorithm compared

to other two histograms.

7.4.0.5 A counter example

Recall that in our algorithm for a given x, we consider S(x), and S in order to choice configuration that

are sufficiently independent to each other. And at each iteration, only the sufficiently independent set

of agents execute their command. Given the identical setting with n = 10 appears in top-left of Fig.
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Figure 7.11: A counter example.

7.6, Fig. 7.11 compares the cost changes over 30 stages between our algorithm where only the robots

with identifies in S move, and a fully decentralized algorithm where at each step all robots move. As

can be seen, the counter example shows that cost fluctuates which implies that the fully decentralized

method is not a descent algorithm. The main reason is the distributed cost function which each agent

optimizes are coupled with state of the neighboring agents. Hence due to the coupled terms if all robots

move to their critical points at the same time, convergence cannot be guaranteed.

7.5 Conclusion

In this chapter, we present a robust deployment algorithm based on the generalized Voronoi tessellations

[144]. We showed that the order−k Voronoi tessellation is the optimal partition type, and the optimal

configuration is found at the critical points of distributed cost functions. Also, we proposed a descent

algorithm and showed the convergence of the proposed algorithm using LaSalle’s Invariance principle.

A number of simulation results were present to show that our proposed algorithm is indeed robust under

robot failures in statistical sense at the cost of potential increase in energy.

Our current method can be easily extended for practical implementations. A few examples are sensor

model in which each node is limited by its sensing range, and where detection performance is radially

non–uniform, e.g., anisotropic sensors. Also, recall that the distributed computation of S—the index

set of robots that does not guard the common regions—requires P2P communication between adjacent

sensor nodes. During the P2P communication process, two nodes exchange their identifier values and
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make the comparison. In fact, it is still possible to achieve convergence without the necessity of P2P

communication nor violating our assumption. This can be done by commanding each node to move

periodically according to the global clock and its identifier. However this method still requires each

node to be aware of its identifier, total number of robots, and the global clock. We expect more practical

algorithms which can achieve convergence faster than the one contained in this text.
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Chapter 8

Conclusion

This thesis is about fault-tolerant control policies for multi-robot systems that are both distributed

and scalable. We consider failures that include random failures experienced by individual robots, as

well as the possible malicious behavior by some of the robots. Compared to other problems of design-

ing distributed coordination strategies for multi-robot systems, e.g., game theoretic or robust control

approaches, our problem has its own difficulty due to faulty robots being indistinguishable members

of the multi-robot system. One of the key motivations for this work lies in the following observation:

In every physical multirobot system, robots are prone to fail. Despite the inherent robustness of the

robotic swam or multi-robot systems to measurement errors or disturbances, partial failure of robots

can bring out nontrivial performance degradation, delay, or failure of certain coordinated missions.

In this work, we presented high level fault-tolerant algorithms for multi-robot systems in the pres-

ence of faulty robots, and we attempted to either find minimally restrictive conditions under which a

designed controller provides convergence guarantee, or design controllers that optimize performance in

the presence of individual failures. So far, I have studied two problems, rendezvous and deployment,

i.e., coverage control, among many other coordination tasks for multi-robot systems. Our algorithms

are constructed by techniques used in discrete geometry, and convergence of the algorithms is analyzed

with nonlinear analysis. Current results show that our proposed algorithms are significantly robust to

arbitrary behavior of faulty robots compared to existing algorithms found in the literature, while the

trade-offs are made by slightly increased computational complexity or additional conditions imposed

on the interconnection topology between robots. Although several aspects of the relevant topics for

fault-tolerance for MRS have been explored in this thesis, many issues of concern and interest remain

for future study. In the next section, we outline a few directions in which a new step can be taken.
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8.1 Future works

In this section, we outline a few directions in which immediate progress can be made from the work in

this dissertation.

8.1.1 Multi-robot robust rendezvous problem: the combinatorial approach

• Assynchronous system: Our approach can be easily extended to asynchronous system which has

the same fault-tolerance guarantees as the current algorithm designed for synchronous system. A

number of studies on this topic can be found in [34,89].

• Fault-tolerant rendezvous of UAVs: Our method can be applied to the path-planning of a group of

unmanned aerial vehicles. For this, additional local planner such as potential field based planner,

or sampling-based planner, e.g., PRM, RRT, can be used.

8.1.2 Multi-robot robust rendezvous problem: the optimization approach

• A distributed robust decision making : The minimax version of our program—which considers the

linear combination of expected cost and the variance given the worst-case probability distributions

under a few constraints on probability distribution—can be used for a robust decision making

(see the opinion dynamics literature, e.g., [50]) where each states can only observe states in its

neighborhood.

• Sample average approach: Solutions to much more complicated versions of our problem with large

neighborhood size can be obtained via utilizing other numerical optimization methods, e.g., Monte

Carlo sample average approach [109–111].

8.1.3 Multi-robot robust deployment problem

• Practical sensor model : A more realistic sensor model in which each node is limited by its max-

imum sensing range, and where detection performance is radially non-uniform, e.g., anisotropic

sensors, can be considered by simple substitution of the sensor model.

• A general robust deployment algorithm: One advantage of our approach is its generality. By

varying k from 1 to n, one obtains the fully decentralized deployment strategy whose solution

is known as CVT, or obtains the semi-distributed method whose solution is local minimums.
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Currently, our numerical simulation demonstrates results with k up to 2. We postulate that we

can develop effective solutions for any k.

8.1.4 Malicious nodes’ strategy

Previously in our study [4, 5], we considered the performance of distributed control algorithms for

networked robotic systems when one or more robots are malicious. In particular, we investigate the

performance of the contemporary coordination algorithms, e.g., circumcenter [5], Lloyd’s algorithm

[4], when one or more agents act maliciously to maximally disrupt the coordinated performance by

group of cooperative agents. The malicious agents’ algorithm are obtained via finite-horizon dynamic

programming. A suite of simulation results demonstrates that the malicious nodes’ actions can change

the interconnection topology of the cooperative agents. Hence, we speculate that the method can be

used to evaluate any fault-tolerant algorithms, not limited to those algorithms presented in Chapter 4,

5, and 7.
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Appendix A

Sequential quadratic programming
(SQP)

In this section, we review the sequential quadratic programming (SQP) method proposed by Wilson

[155], which will in part be used to solve our series of one–step optimization problems in this chapter.

The following is a typical non–linear programming problem with inequality constraints:

minimize g(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m,

where g, and hi are all real–valued convex functions twice differentiable on a convex set C ⊂ Rn. Recall

that the Lagrangian L(x, λ) is defined by

L(x, λ) = g(x) +

m∑

j=1

λihi(x) (A.1)

where the Lagrange multiplier λ is given as an m × 1 vector λ = (λ1, . . . , λm)T . The Hessian H(x, λ)

is an n× n square matrix of second-order partial derivatives of the Lagrangian L(x, λ).

SQP is an iterative method. Given the current iterate xk where k = 0, 1, . . . one can obtain the next

iterate xk+1 by solving a sub–problem that is a quadratic programming (QP) problem. Assume that

at the kth iteration, xk and λk are specified. First, we obtained the second order–approximation of the

Lagrangian centered at xk by fixing λk.

L(x, λ) = L(xk, λk) +∇L(xk, λk)T dx +
1

2
dTx H(xk, λk) dx,

where dx = x−xk. The algorithm finds the best search directions d∗x for each algorithm step by solving

the following quadratic sub–problem that is a form of QP with linear inequality constraints with respect

to the n× 1 vector dx:
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minimize ∇L(xk, λki )T dx +
1

2
dTx H(xk, λk) dx

subject to ∇hi(xk)T dx + hi(x
k) ≤ 0, i = 1, . . . ,m.

Both the cost and the constraint functions are given as approximations, 2nd and 1st order respectively,

of the original function at xk in which the direction vector is dx. One may use readily available QP

solvers (e.g. CGAL, CPLEX, MATLAB) to solve the sub–problem. The solution d∗x is used to obtain

the next iterates xk+1, λk+1 as

xk+1 = xk + αd∗x, λk+1 = λk + αd∗λ,

where d∗λ = λ∗qp−λk, λ∗qp is the optimal multiplier of the above QP, and α is a step–size parameter. The

algorithm terminates when solution is within some specified error bound. More details on convergence

proofs are contained in various numerical optimization literature (see e.g., [156]).
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Appendix B

A few results from Matrix theory

The coefficient of ergodicity was formally defined in [90, 91]. It provides a measure of ergodicity1 of

row-stochastic matrices. Given a row-stochastic matrix P ∈ Rn×n, the coefficient of ergodicity λ(P) is

defined by:

λ(P) = 1−min
i,j

∑

h

min ([P]ih, [P]jh) . (B.1)

The following lemma is immediate from (B.1).

Lemma B.0.1. Consider a row-stochastic matrix P. If P ∈ Rn×n has at least one column, all of whose

elements are lower bounded by τ > 0, then λ(P) ≤ 1− τ .

As was stated in [92], λ(P) is one of the matrix norms such that sub-multiplicity property of matrix

norm holds for coefficient of ergodicity as well. In other words, given any t ∈ Z+, for row-stochastic

matrices S(0), . . . ,S(l), with S(l) ∈ Rn×n the following inequality holds

t∏

l=0

λ (S(l)) ≤ λ
(

t∏

l=0

S(l)

)
. (B.2)

Given any square matrix P ∈ Rn×n, another quantity δ(P) was defined previously in [91] by

δ(P) = max
j

max
i1,i2
|[P]i1j − [P]i2j | . (B.3)

The value δ(P) is called maximum range of P that is the maximum difference between any pair of

elements in the same column [91], and is closely related to coefficient of ergodicity λ(P) of matrix P

such that sometimes it is also called coefficient of ergoditicy as well e.g., [91]. It provides the upper-

bound for the difference in the rows among all columns. There is an inequality relation between the

above mentioned two coefficients of ergodicities of product of stochastic matrices, and it is stated in the

following lemma.

1Roughly speaking, the ergodicity is used to describe limiting behavior for sequence of matrix products [90].
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Lemma B.0.2 (Hajnal [90] and Wolfowitz [91]). For row-stochastic matrices S(0), . . . ,S(t), with S(l) ∈

Rn×n

δ

(
t∏

l=0

S(l)

)
≤

t∏

l=0

λ (S(l)) . (B.4)

holds for t = 0, 1, 2, . . . .
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Appendix C

Proofs for propositions/lemmas
from Chapter 4

Proposition C.0.1. Given a point set x in Rd, any point p ∈ ri(conv(x)) can be written as non-zero

convex combination of all points in ver(conv(x)) whenever ri(conv(x)) 6= ∅.

Proof. Consider m ∈ conv(x) be the barycenter, i.e., coordinate average, of all corners of conv(x). For

each p ∈ ri(conv(x)), there is ε > 0 which makes a point q = (1 + ε)p − εm contained in ri(conv(x)).

Writing p in terms of q and m,

p =
1

1 + ε
q +

ε

1 + ε
m

Since q ∈ ri(conv(x)), it can also be written as a convex combination of some of the corner points in

ver(conv(x)). Recall that m is the arithmetic mean of all the corner points in ver(conv(x)). Thus, p

can be represented by non-zero convex combination of all vertices ver(conv(x)) as claimed.

The proof of Lemma C.0.3 depends on the following propositions.

Proposition C.0.2. Let Ai, Bi ∈ Rn×n non-negative matrices for i = 1, . . . ,m. If for each i, there is

τi > 0 such that Ai ≥ Bi ≥ τiIn for i = 1, . . . ,m,

AmAm−1 · · ·A1 ≥ BmBm−1 · · ·B1 ≥
m∏

i=1

τiIn.

Proof. Ai ≥ Bi implies Ai = Bi + B′i where B′i ≥ 0. Since Bi has positive diagonals, with τi > 0 there

is B′′i ≥ 0 such that

Bi = B′′i + τiIn

We will prove by induction that, for all m ∈ N

AmAm−1 · · ·A1 ≥ BmBm−1 · · ·B1 ≥
m∏

i=1

τiIn. (C.1)
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For the case m = 1 the proof is trivial.

Base case: When m = 2, the first term of (C.1) is

A2A1 = (B2 + B′2)(B1 + B′1)

= (B′′2 + B′2 + τ2In)(B′′1 + B′1 + τ1In)

= B′′2B′′1 + B′′2B′1 + τ1B
′′
2 + B′2B

′′
1

+ B′2B
′
1 + τ1B

′
1 + τ ′2B

′′
1 + τ ′2B

′
1 + τ1τ2In, (C.2)

and the second term of (C.1) is

B2B1 = (B′′2 + τ2In)(B′′1 + τ1In)

= B′′2B′′1 + τ1B
′′
2 + τ2B

′′
1 + τ1τ2In. (C.3)

Since all the terms found in (C.3) can also be found in (C.2), and the rest of the terms found in (C.2)

are element-wise non-negative, A2A1 ≥ B2B1, and B2B1 ≥ τ2τ1In.

Induction step: Let k ∈ Z≥0 and suppose that (C.1) is true for k. If we let

Ck :=

k∏

i=1

Ai, Dk :=

k∏

i=1

Bi, τ
′ :=

k∏

i=1

τi

then

Ck ≥ Dk ≥ τ ′In.

We claim that

Ak+1Ak · · ·A1 ≥ Bk+1Bk · · ·B1 ≥
k+1∏

i=1

τiIn.

By substituting terms up to k by Ck, Dk, τ ′ we will show

Ak+1Ck ≥ Bk+1Dk ≥ τk+1τ
′In. (C.4)

We note that

Ak+1 ≥ Bk+1 ≥ τk+1In,
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and there is some B′k+1 ≥ 0 such that

Ak+1 = Bk+1 + B′k+1.

Also, we have

Bk+1 = B′′k+1 + τk+1In

where B′′k+1 ≥ 0. By induction hypothesis we may write

Ck = Dk + D′k

with D′k ≥ 0 and

Dk = D′′k + τ ′In

where D′′k ≥ 0 such that

Ck = D′′k + D′k + τ ′In.

The first term of (C.4) is

Ak+1Ck = (B′′k+1 + B′k+1 + τk+1In)(D′′k + D′k + τ ′In)

= B′′k+1D
′′
k + B′′k+1D

′
k + τ ′B′′k+1 + B′k+1D

′′
k

+ B′k+1D
′
k + τ ′B′k+1 + τk+1B

′′
1 + τ ′k+1B

′
1

+ τk+1τ
′In, (C.5)

and the second term of (C.4) is

Bk+1Dk = (B′′k+1 + τk+1In)(D′′k + τ ′In)

= B′′k+1D
′′
k + τ ′B′′k+1 + τk+1D

′′
k + τk+1τ

′In

≥ τk+1τ
′In =

k+1∏

i=1

τiIn. (C.6)

Since all the terms from (C.6) can also be found in (C.5), and the rest of the terms found in (C.5) are

element-wise non-negative, (C.4) holds true, and the proof of the induction step is complete.

Conclusion By the principle of induction (C.1) is true for all m ∈ N.
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Lemma C.0.3. Consider a directed graph G = (V, E) with n nodes where A is the adjacency matrix

for G. If ith node is globally reachable, then

1n×1 ≤ [(In +A)l]i (C.7)

whenever l ≥ n− 1.

Proof. We will prove (C.7) by showing that

1 ≤ [(In +A)l]ji

holds for all j ∈ V whenever l ≥ n− 1.

1. Consider j = i. By Proposition C.0.2,

In = Imn ≤ (In +A)m, m = 1, 2, . . . ,

and this implies that 1 ≤ [(In +A)m]ii for all i ∈ V, and m ∈ N.

2. Consider j ∈ V \ {i}. Since the graph G has globally reachable node i, by the definition of

the global reachability, if i is globally reachable for every j ∈ V \ {i}, there is a directed path from

node j to i. We note that the maximum geodesic distance, i.e., length of the path, between any

two nodes is at most n − 1. Thus, we may express the directed path between any two nodes (j, i)

where j 6= i with length 1 ≤ k ≤ n − 1 as a sequence j, l1, l2, . . . , lk−1, i where l0 = j. Thus,

(j, l1) ∈ E , (l1, l2) ∈ E , . . . (lk−2, lk−1) ∈ E , (lk−1, i) ∈ E , and this implies that [A]jl1 = 1, [A]lk−1i = 1,

and [A]lm,lm+1 = 1 for all m = 1, . . . , k − 2. Hence, for each j there exists k ≤ n − 1 such that the

product [A]jl1 [A]l1l2 · · · [A]lk−2lk−1
[A]lk−1i = 1, and this implies

1 ≤ [Ak]ji. (C.8)

By Proposition C.0.2,

Am ≤ (In +A)m

for all m ∈ N such that for any pair i, j ∈ V

[Am]ji ≤ [(In +A)m]ji. (C.9)
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Combining (C.8) and (C.9), we have

1 ≤ [(In +A)k]ji,

and again by Proposition C.0.2

(In +A)k ≤ (In +A)m

holds for all m ≥ k. Thus,

1 ≤ [(In +A)k]ji ≤ [(In +A)m]ji

for all m ≥ k. Note that the uniform upper-bound for k is n− 1. Hence, as long as m ≥ n− 1

1 ≤ [(In +A)m]ji

holds for all j ∈ V \ {i}.

Combining two results for the cases j = i and j ∈ V \ {i}, whenever l ≥ n− 1,

1n×1 ≤
[
(In +A)l

]
i

which completes the proof.
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Appendix D

Invariance principle for algorithms
defined via set-valued maps

The appendix contains materials from Zangwill [46], Luenberger [151] and LaSalle [49].

D.1 Algorithm as a set-valued map

It is beneficial to define an iterative algorithm using set-valued map, i.e., point-to-set map. First,

we show explicit difference between single-valued map, i.e., point-to-point map and point-to-set map.

Consider a bounded subset Q of Rd, and a point-to-point map T : Q→ Q. For a given point x(0) ∈ Q,

an algorithm defined by the map T generates a sequence

x(0), x(1), x(2), . . .

by

x(l + 1) = T (x(l)), l = 0, 1, 2, . . .

If the map T is continuous on Q, then by the definition of continuity for every point y ∈ Q, y(l) → y

as l→∞ implies T (y(l))→ T (y).

In a similar manner if T is a point-to-set map given by T : Q → 2Q then we may define a more

general version of an algorithm that is generated by the set-valued map by

x(l + 1) ∈ T (x(l)), l = 0, 1, 2, . . . (D.1)

The motion, i.e., trajectory, generated by T from x(0) refers to a sequence of states:

x(0), x(1), · · · , x(l), · · ·

We shall introduce in a moment the concept for set-valued map similar to that of continuity for
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point-to-point map called closedness.

D.2 Closedness of set-valued map

Definition D.2.1 (Zangwill [46]). Let Q be a bounded subset of Rd, and T : Q → 2Q be a set-valued

map. The map T is closed at some x ∈ Q if two there are sequences (x(l))∞l=0, (y(l))∞l=0 satisfying

x(l)→ x,

y(l)→ y

where y(l) ∈ T (x(l)) for all l ∈ Z≥0 implies

y ∈ T (x).

We say that the map T is closed, if T is closed at all x ∈ Q.

We shall assume from this point on that T is a set-valued map, and is closed.

D.3 Limit set and invariant set

Definition D.3.1 (Birkhoff [157]). A point y is a limit point of (x(l))∞l=0 if there is a sequence of

integers li; such that (x(li))→ y and li →∞ as i→∞. The limit set Ω(x(0)) of (x(l))∞l=0 is the set of

all limit points of (x(l))∞l=0.

According to the definition, every limit set is closed. It is quite often a closed set is defined as a set

which contains all its limit points [158].

Definition D.3.2. A set S ⊂ Q is said to be weakly positively invariant relative to T : Q → 2Q if for

each x ∈ S, there is y ∈ S such that y ∈ T (x).

Theorem D.3.1. Every limit set Ω(x(0)) for (D.1) is closed and weakly positively invariant.

Proof. Suppose y ∈ Ω(x(0)). There is a sequence of integers li such that li → ∞, and (x(li)) → y as

i→∞. Since T is closed, then according to Definition D.2.1, if x(li+1)→ y′ where x(li+1) ∈ T (x(li))

for all l ∈ Z≥0, then y′ ∈ T (y). Since y′ ∈ Ω(x(0)) as well, we can conclude that for each z ∈ Ω(x(0)),
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there is z′ ∈ Ω(x(0)) such that z′ ∈ T (z). According to Definition D.3.2, Ω(x(0)) is weakly positively

invariant.

The proof of the following theorem follows closely to that given in [49].

Theorem D.3.2. If trajectory (x(l)) by T is bounded for l ∈ Z≥0, then Ω(x(0)) is non-empty, compact,

weakly positively invariant, and is the smallest closet set that x((l)) approaches as n→∞.

Proof. The boundedness of the motion (x(l)) by T clearly implies that Ω(x(0)) is non-empty and

bounded. Thus by Theorem D.3.1, Ω(x(0)) is compact, i.e., closed and bounded, and weakly positively

invariant. We shall show that the entire sequence approaches the limit set, i.e., x(l) → Ω(x(0)), if the

motion (x(l)) is bounded. Since ρ(x(l), Ω(x(0))) is bounded, if the motion (x(l)) does not approach

Ω(x(0)), there is a sequence (li) such that as i→∞, (x(li)) converges but does not approach Ω(x(0)).

This is clearly a contradiction since the limit of (x(li)) must be in Ω(x(0)) [by the definition of the limit

set]. Hence (x(l)) → Ω(x(0)). For each closed set E that (x(l)) → E, Ω(x(0)) ⊂ E such that Ω(x(0))

is the smallest closed set that (x(l)) approaches as l→∞.

D.4 An extension of Lyapunov direct method

We shall show that, suitably defined, Lyapunov functions give information about the location of limit

sets. This is done exploiting the invariance property of limit sets, and for this reason the idea behind

what we are about to do is called the Invariance Principle.

Let V : Rd → R. Relative to the set-valued map T , and if (x(l))∞l=0 is solution of (D.1), we define

V̇ (x(l)) := V (x(l+ 1))−V (x(l)) the difference of V at l along T , and V̇ (x(l)) ≤ 0 for all l ∈ Z≥0 means

that V is non-increasing along solutions.

Definition D.4.1. Let Q be any set in Rd. We say that V is a Lyapunov function of (D.1) on Qn if

(i) V is continuous, and (ii) V is non-increasing along solutions.

For V a Lyapunov function of (D.1) on Q ⊂ Rd, we define

E = {x ∈ cl(Q) | ∃y ∈ T (x) such that V (y) = V (x)}

We use M to denote the largest weakly positively invariant set in E, and V −1(c) = {x ∈ (Rd)n |

V (x) = c}.
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Theorem D.4.1 (Invariance principle for algorithms defined via point-to-set maps [46, 49, 151]). If V

is a Lyapunov function of the system (D.1) on Q ⊂ Rd, and (x(l)) is a solution of (D.1) bounded in G

for all l, then there is a number c ∈ R such that x(l)→M ∩ V −1(c) as l→∞.

Proof. Our assumption implies that V (x(l)) is non-increasing with l and is bounded from below. Hence

there is a number c such that V (x(l)) → c as l → ∞. Consider a limit point y ∈ Ω(x(0)). Then

there is a sequence (li) such that li → ∞ and x(li) → y. Since V is continuous, V (x(li)) → V (y) = c

such that Ω(x(0)) ⊂ V −1(c). Since Ω(x(0)) is weakly positively invariant, there is z ∈ T (y) such that

V (z) = V (y) = c. Hence, Ω(x(0)) ∈M , and Ω(x(0)) ∈ E. By Theorem D.3.2, x(l)→ Ω(x(0)), and this

implies that x(l)→M ∩ V −1(c).
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