
c© 2016 Anupam Das

UNDERSTANDING AND MITIGATING THE PRIVACY RISKS OF
SMARTPHONE SENSOR FINGERPRINTING

BY

ANUPAM DAS

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Doctoral Committee:

Associate Professor Nikita Borisov, Chair
Associate Professor Matthew Caesar
Associate Professor Romit Roy Choudhury
Assistant Professor Paris Smaragdis
Professor Dan Boneh, Stanford University

ABSTRACT

The widespread use of smartphones in our everyday life gives rise to pri-

vacy concerns. Fingerprinting smartphones can jeopardize user privacy by

enabling remote identification of users without users’ awareness. In this

dissertation we study the feasibility of using onboard sensors such as micro-

phones, accelerometers and gyroscopes to fingerprint smartphones. During

fabrication, subtle imperfections arise in device sensors which induce distinc-

tive anomalies in the generated signal. Using machine learning techniques

we can distinguish smartphones generating such distinctive anomalies.

We first look at fingerprinting smartphones through onboard microphones

and speakers. We explore different acoustic features and analyze their ability

to successfully fingerprint smartphones. Our study identifies the prominent

acoustic features capable of fingerprinting smartphones with a high success

rate, and also examines the impact of background noise and other variables on

fingerprinting accuracy. Next, we surreptitiously fingerprint smartphones us-

ing the imperfections of motion sensors (i.e., accelerometers and gyroscopes)

embedded in modern smartphones, through a web page. We analyze how

well motion sensor fingerprinting works under real-world constraints by col-

lecting data from a large number of smartphones under both lab and public

environments. Our study demonstrates that motion sensor fingerprinting is

effective even with 500 users. We also develop a model to estimate predic-

tion accuracy for larger user populations; our model provides a conservative

estimate of at least 10% classification accuracy with 100 000 users, which

suggests that motion sensor fingerprinting can be effective when combined

with even a weak browser fingerprint. We then investigate the use of motion

sensors on the web and find, distressingly, that many sites send motion sensor

data to servers for storage and analysis, paving the way for potential finger-

printing. Finally, we consider the problem of developing countermeasures for

motion sensor fingerprinting; we propose several practical countermeasures

ii

and evaluate their usability through a large-scale user study. We find that

countermeasures such as data obfuscation and sensor quantization are really

promising in the sense that they not only drastically reduce fingerprinting

accuracy but also remain benign to applications using motion sensors.

iii

To my family, for their love and support.

iv

ACKNOWLEDGMENTS

First and foremost I thank my advisor, Nikita Borisov, whose support and

guidance made this dissertation work possible. It has been an honor to have

spent the last six years under his tutelage. I appreciate the many hours

of discussion and brainstorming we had all of which has made my Ph.D.

experience productive and stimulating. I specially thank him for providing

me with the freedom to grow as a researcher. His advice on both research as

well as on my career has been invaluable to me.

I would also like to thank Matthew Caesar who has been like a second ad-

visor to me. He has been really supportive and has always placed a high level

of trust on my judgment to pursue various projects. He has also provided

insightful directions regarding my research and helped me acquire funds to

carry out my research projects. I also have to thank my other committee

members, Romit Roy Choudhury, Paris Smaragdis and Dan Boneh for their

constructive advice and suggestion; with special thanks to Romit for provid-

ing me with many of the smartphones used in my experiments. The work

that follows would not be possible without their valuable feedback.

Several people have helped and shared their knowledge with me at the

University of Illinois. Firstly, I want to thank the present and past members

of the Hatswitch research group: Amir Houmansadr, Sonia Jahid, Qiyan

Wang, Joshua Juen, Giang Nyugen and Xun Gong for providing a stimulating

yet enjoyable research environment. I would like to specially thanks Prateek

Mittal, a former member of Hatswitch research group, for his valuable advice

and guidance regarding both research and career path choice. Also, I would

like to thank Edward Chou and Muhammad Haris Mughees for their help

with data collection. Secondly, I would like to thank Carol Wisniewski for

handling and managing all my travel and reimbursement related paperworks

to make my life easier. Her help meant I could seamlessly concentrate on my

research. Lastly, I would like to extend my appreciation to all the members of

v

Bangladesh Student Association (BSA) group at the University of Illinois. I

was lucky to have so many fellow countrymen near me throughout my Ph.D.

life. They not only acted as a source of stress relief for me but also many

of them actively participated in my user studies. I am grateful to them for

their participation.

I would like to take this opportunity to thanks all my teachers and advisers

at Bangladesh University of Engineering and Technology (BUET) for their

support and effort to prepare students like myself for higher studies. The

strong undergraduate curriculum at BUET had prepared me for the hard

road ahead. I am ever indebted to BUET for providing me with the oppor-

tunity to not only learn from the best minds of the country, but also mentor

the best students of our country.

Last but not least, everything I have done is only possible due to the love

and support from my family. I would like to thank my father and mother

for their unconditional support and belief as I pursued my education. My

father who is a professor himself has been my role model from childhood. A

special thanks goes to my mother who has sacrificed her career for me and my

sister. Without her care and attention to detail we would not have made it

this far. My sister has been my good friend all my life and I thank her for all

her mental support and advice when times were tough. Also, I would like to

thank my newborn niece who cheers up my day with her smiling face. Finally,

special thanks to the newest member of my family, Toma, my wife as well

as her wonderful family who all have been supportive and caring. The best

outcome from the past one year of my life is finding Toma, my best friend

and soul-mate. Toma has been a true supporter and has unconditionally

loved me during my good and bad times. She has been non-judgmental of

me and instrumental in instilling confidence. She has faith in me and my

intellect even when I doubt myself. The last few months have been really

crucial for me as I have been deciding my future career path. I thank Toma

for nudging me in the right direction.

Thanks to all of my close family and friends who have supported and

encouraged me throughout the years. I dedicate this dissertation to those

who believed in me and to God above who has provided me with this great

opportunity.

vi

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xiii

LIST OF ALGORITHMS . xvii

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Dissertation Outline . 5
1.4 Collaborators and Published Works 7

CHAPTER 2 BACKGROUND AND RELATED WORK 9
2.1 Acoustic Hardware . 9

2.1.1 Microphone . 9
2.1.2 Microspeaker . 11

2.2 Motion Sensors . 12
2.2.1 Accelerometer . 13
2.2.2 Gyroscope . 13

2.3 Related Work . 15
2.3.1 Browser Fingerprinting 15
2.3.2 Microphone and Speaker Fingerprinting 17
2.3.3 Motion Sensor Fingerprinting 18

CHAPTER 3 FINGERPRINTING SMARTPHONES VIA MICRO-
PHONES AND SPEAKERS . 20
3.1 Overview . 20
3.2 Methodology . 21

3.2.1 Procedure for Fingerprinting Speakers 22
3.2.2 Procedure for Fingerprinting Microphones 22
3.2.3 Procedure for Fingerprinting both Speakers and Mi-

crophones . 23
3.3 Experimental Setup . 24

3.3.1 Device Types . 24
3.3.2 Audio Genre Types . 24

vii

3.3.3 Analytic Tools . 25
3.4 Acoustic Features . 25
3.5 Classification Algorithms and Evaluation Metrics 31

3.5.1 Classification Algorithms 31
3.5.2 Evaluation Metrics: . 32

3.6 Feature Exploration . 33
3.6.1 Feature Exploration for Different Make and Model . . . 35
3.6.2 Feature Exploration for Same Make and Model 36
3.6.3 Feature Exploration for Large Pool of Devices 38

3.7 Experimental Evaluations . 39
3.7.1 Fingerprinting Different Make and Model Devices . . . 40
3.7.2 Fingerprinting Same Make and Model Devices 41
3.7.3 Fingerprinting All Make and Model Devices 42

3.8 Sensitivity Analysis . 44
3.8.1 Impact of Sampling Rate 44
3.8.2 Impact Training Set Size 45
3.8.3 Impact of Distance between Speaker and Recorder . . . 45
3.8.4 Impact of Ambient Background Noise 46

3.9 Limitations . 48
3.10 Summary . 48

CHAPTER 4 FINGERPRINTING SMARTPHONES VIA MO-
TION SENSORS . 50
4.1 Overview . 50
4.2 Data Collection Setup and Data Processing 51

4.2.1 Data Collection Setup 51
4.2.2 Data Processing . 54

4.3 Temporal and Spectral Features 55
4.4 Classification Algorithms and Evaluation Metrics 57

4.4.1 Classification Algorithms 58
4.4.2 Evaluation Metrics . 58

4.5 Experimental Setup . 59
4.5.1 Lab Setting . 59
4.5.2 Public Setting . 59
4.5.3 Analytic Tools . 60

4.6 Feature Exploration . 60
4.7 Experimental Evaluations . 61

4.7.1 Results from Lab Setting 62
4.7.2 Results from Public Setting 63
4.7.3 Results from Combined Setting 63

4.8 Sensitivity Analysis . 64
4.8.1 Impact of Device Number 64
4.8.2 Impact of Training Set Size 64
4.8.3 Impact of Temperature 65

viii

4.8.4 Temporal Stability . 67
4.9 Summary . 68

CHAPTER 5 LARGE-SCALE MOTION SENSOR FINGERPRINT-
ING . 69
5.1 Overview . 69
5.2 Data Collection . 69
5.3 Classification Algorithms and Metrics 71
5.4 Fingerprinting Large Number of Smartphones 71
5.5 Large-Scale Simulation . 72

5.5.1 Distance Metric Learning 72
5.5.2 Intra- and Inter-Device Distance Modeling 74
5.5.3 Simulating k-NN for Large Number of Devices 77

5.6 Summary . 80

CHAPTER 6 USAGE PATTERNS OF MOTION SENSORS IN
THE WILD . 82
6.1 Data Collection Framework 82
6.2 Feature Extraction . 82
6.3 Measurement Study Results 83

6.3.1 Websites Accessing Motion Sensors 84
6.3.2 Types of Usage for Motion Sensors 84

6.4 Summary . 87

CHAPTER 7 COUNTERMEASURES FOR MOTION SENSOR
FINGERPRINTING . 88
7.1 Sensor Calibration . 88

7.1.1 Calibrating Accelerometers 89
7.1.2 Calibrating Gyroscopes 91
7.1.3 Fingerprinting Calibrated Data 93

7.2 Data Obfuscation . 94
7.2.1 Uniform Noise . 95
7.2.2 Laplace Noise . 99
7.2.3 White Noise . 101

7.3 Sensor Quantization . 102
7.3.1 Fingerprinting Quantized Data 104

7.4 Determining Feasible Countermeasures 105
7.4.1 Utility under Calibration 105
7.4.2 Utility under Obfuscation 106
7.4.3 Utility under Quantization 108
7.4.4 Deployment Considerations 109

7.5 Effectiveness of Countermeasures at Large-Scale 109
7.6 Large-Scale User Study of Privacy vs. Utility 111

7.6.1 Study Design . 111
7.6.2 Study Results . 113

ix

7.6.3 Limitations . 114
7.7 Summary . 116

CHAPTER 8 CONCLUSION . 118

REFERENCES . 121

APPENDIX A FEATURE DISTRIBUTIONS FOR MOTION SEN-
SOR DATA . 136

APPENDIX B DEVICE MODELS IN OUR DATASET 138

APPENDIX C DEVICE MODELS IN OUR USER STUDY 139

x

LIST OF TABLES

2.1 Comparison with other motion sensor fingerprinting studies. . 19

3.1 Types of phones used for fingerprinting acoustic components. . 24
3.2 Types of audio excerpts used in our experiments. 25
3.3 Explored acoustic features. 26
3.4 Feature exploration for different make and model smart-

phones using only speaker. 36
3.5 Feature exploration for different make and model smart-

phones using only microphone. 37
3.6 Feature exploration for different make and model smart-

phones using both speaker and microphone. 38
3.7 Feature exploration for same make and model smartphones

using only speaker. 39
3.8 Feature exploration for same make and model smartphones

using only microphone. 40
3.9 Feature exploration for same make and model smartphones

using both speaker and microphone. 41
3.10 Feature exploration for 50 android smartphones. 43
3.11 Fingerprinting different make and model devices. 43
3.12 Fingerprinting same make and model devices. 43
3.13 Fingerprinting heterogeneous devices. 44
3.14 Impact of ambient background noise. 48

4.1 Sampling frequency from different browsers. 53
4.2 Types of background audio stimulation. 54
4.3 Explored temporal and spectral features. 56
4.4 Types of lab phones used. 59
4.5 Average F-score under lab setting. 63
4.6 Average F-score under public setting where smartphones

are kept on top of a desk. 63
4.7 Average F-score under both lab and public setting where

smartphones are kept on top of a desk. 64
4.8 Types of phones used for analyzing temperature effect. 66
4.9 Impact of temperature on motion sensor fingerprinting. 67
4.10 Fingerprinting sensors at different dates. 67

xi

5.1 Average F-score for different size of training set. 72
5.2 Performance of different metric learning algorithms. 74
5.3 Average F-score of k-NN after LDML. 75

6.1 Top websites accessing motion sensors. 84
6.2 Silhouette coefficient for different number of clusters. 85
6.3 Generic use cases for accessing motion sensor data. 87
6.4 Description of use cases for accessing motion sensor data. . . . 87

7.1 Average F-score for calibrated data under lab setting. 95
7.2 Average F-score for obfuscated data under lab setting. 96
7.3 Average F-score for obfuscated data under public setting

(63 phones) where smartphones were kept on top of a desk. . . 97
7.4 Average F-score for obfuscated data under both lab and

public setting (93 phones) where smartphones were kept
on top of a desk. 97

7.5 Privacy vs. Utility tradeoff for different countermeasures. . . . 107
7.6 Comparing obfuscation and quantization with baseline for

545 devices. 110
7.7 Number of users that completed the first n levels recruited

through Amazon’s Mechanical Turk and other means. 113

xii

LIST OF FIGURES

2.1 The internal architecture of a MEMS microphone chip used
in modern smartphones. 10

2.2 (a) The basic components of a speaker, (b) A typical MEMS
microspeaker, (c) The internal architecture of a micros-
peaker chip. 11

2.3 Internal architecture of a MEMS accelerometer. Differen-
tial capacitance is proportional to the applied acceleration. . . 14

2.4 MEMS-based gyros use Coriolis force to compute angular
velocity. The Coriolis force induces change in capacitance
which is proportional to the angular velocity. 14

3.1 Fingerprinting smartphone speakers in public location. 21
3.2 Fingerprinting smartphone microphones in public location. . . 21
3.3 Fingerprinting both smartphone speakers and microphones. . . 21
3.4 Steps for fingerprinting speakers. 22
3.5 Steps for fingerprinting microphones. 23
3.6 Steps for fingerprinting both microphone and speaker. 23
3.7 Procedure for extracting MFCCs from audio signals. 30
3.8 MFCCs for a given audio sample taken from three differ-

ent handsets manufactured by the same vendor. We can
see that some of the coefficients vary significantly, thus en-
abling us to exploit this feature to fingerprint smartphones. . . 42

3.9 Impact of sampling frequency on precision/recall. 45
3.10 Impact of varying training set size on accuracy. 46
3.11 Impact of varying the distance between smartphone and

microphone. 47
3.12 Experimental setup for determining the impact of ambient

background noise. 47

4.1 Fingerprinting motion sensors through HTML5. 51
4.2 Screenshots of our data collection website. Users are first

asked to place the device on a flat surface before selecting
a specific background audio-stimulation. 54

4.3 Distribution of participant device models. 60

xiii

4.4 Exploring the number optimal features for different sen-
sors. a) For accelerometer using more than the top 10 fea-
tures leads to diminished returns, b) For gyroscope all 75
features contribute to obtaining improved accuracy, c) For
the combined sensor stream using more than 70 features
leads to diminished returns. 62

4.5 Average F-score for different numbers of smartphones. F-
score generally tends to decrease slightly as more devices
are considered. 65

4.6 Average F-score for different ratio of training and testing
data. With only two training data we achieved an F-score
of 98%. 66

5.1 Distribution of the number of data samples per smartphone. . 70
5.2 Comparing mutual information for different metric learn-

ing algorithms. Mutual information per feature for (a)
untransformed data (b) LMNN transformation (c) ITML
transformation, and (d) LDML transformation. 74

5.3 Estimated inter-device distance distributions for 4 subsets
of devices where each subset contains 141 devices. 76

5.4 Estimated intra-device distance distributions for 4 subsets
of devices where each subset contains 141 devices. 77

5.5 Estimated distributions for (a) inter-device distance (Cinter)
(b) intra-device distance (Cintra). (c) Difference between
intra- and inter-device distance distribution. 78

5.6 Comparing real world results with simulation results. Sim-
ulation results closely match real world results for k = 1. . . . 81

6.1 Overview of our JavaScript analysis setup. 83
6.2 Scatter plot for JavaScript snippets accessing motion sen-

sors along reduced dimensions. 85
6.3 Silhouette plot for the estimated 8 clusters. 86

7.1 Calibrating accelerometer along three axes. We collect
measurements along all 6 directions (±x,±y,±z). 90

7.2 Accelerometer offset and gain error from 30 smartphones. . . . 91
7.3 a) Offset and gain error in gyroscope impact systems that

use them for angular-displacement measurements, b) Cal-
ibrating the gyroscope by rotating the device 180◦ in the
positive x-axis direction. 92

7.4 Gyroscope offset and gain error from 30 smartphones. 94
7.5 Impact of obfuscation range as the range is linearly scaled

up from 1x to 10x of the base range. 98
7.6 Impact of randomly inserting new data points. 99

xiv

7.7 Approximation of the probability of correct classification
under differential privacy approach where noise is modeled
through only offset and gain errors along all three axes for
both accelerometer and gyroscope. 100

7.8 Impact of randomly selecting offset and gain error from a
Laplace distribution inspired by differential privacy. 101

7.9 Impact of Gaussian white noise on F-score. 102
7.10 Convertion from Cartesian coordinate system (x, y, z) to

Polar coordinate system (r, θ, φ). 103
7.11 Impact of sensor quantization on F-score. 104
7.12 Accelerometer magnitude for different mitigation schemes. . . 106
7.13 Accelerometer magnitude after removing disruptive coun-

termeasures. 106
7.14 Impact of Laplace noise on utility. 108
7.15 Impact of Gaussian white noise on sensor utility. 108
7.16 Comparing large-scale classification accuracy for obfusca-

tion and quantization. 110
7.17 Game interface. The object is to roll the ball to the flag

while avoiding traps by tilting the smartphone. The user
is then asked for feedback about the relative difficulty of
each level using different privacy settings. 112

7.18 Subjective and objective difficulty metrics increase across
game levels. Box plots show the median (horizontal line)
and the interquartile range (box), while whiskers show the
range between the 5th and 95th percentile, with the out-
liers being individually represented. The notch in the box
denotes the 95% confidence interval around the median. 114

7.19 Game durations and number of restarts, as each level is
played three times. A large training effect is observed be-
tween the first and second attempt, with a smaller effect
between the second and third. 115

7.20 Impact of privacy method on subjective and objective rat-
ings, when considering second and third attempts only.
Shown are the histogram of subjective ratings and CDFs
of game durations and number of restarts for all 5 levels.
No significant difference found in any of the metrics. 116

A.1 Distributions for the top 12 original features. 136
A.2 Distributions for the top 12 features selected based on JMI

criterion after LDML transformation is performed. 137

B.1 Distribution of the different make and model of smart-
phones that provided sensor data for our study. 138

xv

C.1 Distribution of the different make and model of smart-
phones that participated in our user study. 139

xvi

LIST OF ALGORITHMS

1 Sequential Feature Selection (SFS). 35

2 Simulating k -NN classifier. 79

3 Obfuscated Data Injection. 98

xvii

CHAPTER 1

INTRODUCTION

The world is more connected than ever before and smartphones are making

it easy for users to stay connected to the world around them. According to

new figures from eMarketer the number of smartphone users worldwide will

surpass 2 billion in 2016 [1]. The rapid uptake of intelligent smartphones is

not surprising, due to the numerous advantages they provide to consumers,

from entertainment and social applications to business and advanced com-

puting capabilities. As a result smartphones have unprecedented access to

sensitive personal information, and impose threatening concerns for user pri-

vacy [2, 3, 4, 5, 6, 7].

1.1 Motivation

Smartphones have made it easy for users to access online services and in-

formation from anywhere at anytime. However, such seamless connectivity

with the web has made it lucrative for advertisers to track users’ activities

at different websites. Traditionally, advertisers implant cookies to build con-

sumer profiles on users by tracking a user’s surfing history without informing

the user. Such privacy-invasive tracking raised concerns in the way cookies

were being used and as a result legislation was passed to make changes to

the rules on using cookies [8]. This prompted browser developers to provide

ways to clear cookies, and also provide options to browse in private modes

which do not store long-term cookies. Moreover, around 2010 the “Do Not

Track” policy was proposed, which enabled users to opt out of tracking by

websites they do not visit, including analytics services, advertising networks,

and social platforms [9]. However, even though major online advertising

trade groups initially pledged to support “Do Not Track” that promise still

remains unfulfilled. And even with “Do Not Track” enabled most websites

1

in the wild were found to not honor the user’s preference [10]. So after the

failure of the “Do Not Track” proposal, users have increasingly started using

tools such as ad- and tracker-blocking extensions, as well as private browsing

modes, to protect their privacy.

In turn, advertisers have started fingerprinting user devices through the

browser [11] to track users across the web without the use of cookies. A

device fingerprint is a set of system attributes that, with high likelihood,

uniquely characterizes a device. These attributes generally include, for ex-

ample, the device’s screen size, the versions of installed softwares, and the

list of installed fonts. Attributes that are more diverse and stable (e.g., the

list of fonts) facilitate better identification compared to those that are more

common or unpredictable. Such stateless user tracking allows advertising

companies to overcome the restrictions imposed by regulation on cookies.

Thus, browser-based fingerprinting raises serious privacy concerns for every-

day users because its stateless nature makes it hard to detect and even harder

to opt-out. Moreover, this fingerprinting technique works just as well in the

private browsing mode. To make things worse, in recent years researchers

have come up with a more advanced technique that uses HTML5 canvas ele-

ments to fingerprint the fonts and rendering engines used by the browser [12].

Many studies have shown that all of these techniques are actually used in

the wild [13, 10, 14].

With the advent of smartphones the battle for user privacy is shifting to-

wards mobile platforms, which are quickly becoming the dominant mode for

web browsing [15, 16, 17, 18]. Although existing fingerprinting techniques

become less effective on mobile platforms due to constrained hardware and

software environment [19, 20]; modern smartphones open door to new threats

as they are equipped with a wide variety of sensors such as microphones, ac-

celerometers and gyroscopes all of which are accessible to applications and

websites for a variety of novel uses. These sensors can be exploited to threaten

user privacy by enabling sensor fingerprinting. During manufacturing, im-

perfections are introduced in the analog circuitry of these sensors, and as

such, two sensors never produce the same signal. This dissertation conveys

the following statement–

“It is feasible to fingerprint smartphones by exploiting the manufacturing im-

perfections of onboard sensors. There are also ways to mitigate some of these

sensor fingerprinting techniques.”

2

1.2 Contributions

In this dissertation, we study how acoustic hardware such as microphones and

speakers, and motion sensors such as accelerometers and gyroscopes can to

utilized to fingerprint smartphones under realistic settings. First, we look at

how these sensors can be exploited as side-channels to enable an advertiser to

fingerprint smartphones. Second, we focus on deriving countermeasures for

motion sensor fingerprinting as accessing these sensors require no explicit user

permission, whereas accessing microphone requires explicit user permission.

Next, we perform real world web scanning to see how websites are accessing

motion sensors. Lastly, through user study we look at how our proposed

countermeasures impact the utility of the motion sensors.

This dissertation makes the following major contributions:

• Fingerprinting Onboard Sensors in Smartphones: We explore

ways to fingerprint smartphones through embedded sensors. We look

at acoustic sensors like microphones (and speakers), and also investigate

motion sensors like accelerometers and gyroscopes.

– Fingerprinting Acoustic Hardware: We exploit hardware-

level imperfections in speakers and microphones to uniquely dis-

tinguish smartphones. Manufacturing process introduces subtle

imperfections into the analog circuitry of these components, and

as such the audio streams produced by two speakers or received

by two microphones are never alike. Through an observational

study, we find that these imperfections are substantial and preva-

lent enough that we can reliably fingerprint devices by conducting

spectral analysis on recorded audio streams. We also identify the

most dominant acoustic features capable of distinguishing devices

with high accuracy.

– Fingerprinting Motion Sensors: We investigate the feasibility

of fingerprinting motion sensors such as accelerometers and gyro-

scopes in smartphones. These motion sensors are used by many

applications such as health monitoring and interactive gaming.

However, by measuring the anomalies in the signal generated by

these motion sensors it is possible to uniquely track smartphones.

Distressingly, such measurements can be conducted surreptitiously

3

in the browser as they do not require explicit user permission and

can thus be used to track users across applications and websites.

We find that simultaneous use of both accelerometer and gyro-

scope produces a more accurate fingerprint for the device than us-

ing only the accelerometer or gyroscope. We also show that the use

of inaudible sound, played through the smartphone speaker, stim-

ulates the onboard gyroscope uniquely and thus improves finger-

printing accuracy. To verify whether our fingerprinting technique

holds for a large number of devices, we perform a large-scale user

study to demonstrate that motion sensor fingerprinting is effective

even with 500 users. We also develop a model to estimate predic-

tion accuracy for larger user populations; our model provides a

conservative estimate of at least 10% classification accuracy with

100 000 devices.

• Mitigating Sensor Fingerprinting: We next explore ways to coun-

teract sensor fingerprinting and study their implication on the utility

of the sensors.

– Possible Mitigation Techniques: We look at how to mitigate

fingerprinting of sensors like accelerometers and gyroscopes that

are deemed non-sensitive (i.e., accessing them does not require

explicit user permission). We investigate three different counter-

measure techniques. First, we consider the use of calibration to

eliminate some of the error that results from manufacturing im-

perfections. Promisingly, we find that calibrating the accelerome-

ter is easy and has a significant impact on classification accuracy.

Gyroscope calibration, however, is more challenging without spe-

cialized equipment, and attempts to calibrate the gyroscope by

hand do not result in an effective countermeasure. Second, we

introduce an alternative countermeasure called obfuscation, which

introduces additional noise to the sensor readings in the hopes of

hiding the natural errors. Obfuscation has the advantage of not

requiring a calibration step; we find that by adding noise that is

similar in magnitude to the natural errors that result from man-

ufacturing imperfections, we can reduce the accuracy of finger-

printing more effectively than by calibration. We also investigate

4

a few variations of obfuscation where we explore adding noise in

a differential privacy preserving manner (inspired by Differential

Privacy), as well as adding white Gaussian noise to obfuscate fre-

quency domain features. Lastly, we look at quantization where we

lower the resolution of the sensor by mapping their values to fixed

bins. The basic idea behind quantization is that human brain

cannot discriminate minute changes in angle and/or magnitude,

and as a result if the raw values from a sensor are altered slightly,

this should not adversely impact the functionality of the sensor.

We find that quantization also drastically reduces fingerprinting

accuracy.

– Analyzing Utility of Sensors: Finally, we look at how our

countermeasure techniques impact the utility of the underlying

sensors. To evaluate this we first identify how motion sensors are

being used in the wild. With this in mind we analyze the static and

dynamic JavaScripts used by the top 100 000 Alexa websites [21].

We discover several common applications of motion sensors such

as orientation and gesture detection. But distressingly, we find

that a large fraction of scripts send motion data back to a server.

Thus, although we have not been able to identify cases of motion

sensor fingerprinting in the wild, the infrastructure for collecting

and analyzing this data is already present in some cases. After

identifying the most common applications, we evaluate the impact

of our countermeasures for a step-counter and a tilt-based video

game. These two applications are user-centric and thus provide us

with both subjective and objective measures. We find that data

obfuscation and sensor quantization do not adversely affect the

utility of the motion sensors.

1.3 Dissertation Outline

The rest of the thesis is organized as follows. Chapter 2 provides background

on the internal architecture of these hardware and highlights the most likely

source of idiosyncrasies for these hardware. We also provide an elaborate

description of various related works on fingerprinting devices.

5

Next, we describe how we used audio streams generated and/or received

by smartphones to uniquely distinguish smartphones in Chapter 3. We start

off by describing the experimental framework for capturing the unique char-

acteristics of the onboard microphone and speaker. We then describe our

acoustic feature extraction process and look at how different features con-

tribute to generating a unique device fingerprint. Lastly, we look at how well

we can fingerprint smartphones through microphones and speakers, both

separately and collectively. We also investigate how different environmental

factors impact the stability of our fingerprints.

Chapter 4 describes how onboard motion sensors can be exploited to track

smartphones through the web browser. We first describe our data collection

setup where we develop our own web page to collect motion sensor data.

We then discuss the features that we used to generate the device finger-

print, along with the machine learning tools that we use for matching the

fingerprints. Next, we evaluate how well we can fingerprint smartphones in

both lab setting and public setting. Finally, we perform sensitivity analysis

to determine how stable our fingerprints are under different environmental

conditions.

Having shown that it is feasible to fingerprint motion sensors embedded in

smartphones through a web page, we extend our experiment for a large-scale

analysis in Chapter 5. Through Amazon’s Mechanical Turk we were able to

collect data from more than 500 devices and we study how our fingerprinting

approach scales for this range of devices. We also generate parametric intra-

and inter-cluster distance distributions from this large dataset. We utilize

state-of-the-art distance metric learning algorithms to optimize our intra-

and inter-cluster distances for a k-NN classifier. Such distance distributions

enable us to emulate distance-based classifiers like k-NN to estimate how well

our fingerprinting approach performs with 100 000 devices.

In Chapter 6 we perform a real world measurement study to determine

how many of the top websites access motion sensors from smartphones. Our

measurement study reveals that about 1% of the top 100 000 websites access

motion sensors. We then broadly determine the use cases for accessing motion

sensors. We find that there are broadly 8 different use cases for accessing

motion sensor data, but disturbingly, majority of the websites send motion

sensor data to third party sites for storage or analysis.

We discuss and explore the effectiveness of several countermeasures against

6

motion sensor fingerprinting in Chapter 7. All of our proposed countermea-

sures significantly thwart device fingerprinting accuracy. However, some of

our countermeasures also adversely affect the utility of motion sensors. We,

therefore, study and determine the countermeasures that have minimal im-

pact on the utility of the underlying motion sensors. We perform a large-scale

user study to show that our proposed countermeasures can be readily adopted

by web browsers to better protect user privacy.

Lastly, we summarize all our findings and provide our final statement in

Chapter 8.

1.4 Collaborators and Published Works

Most of our work has been peer-reviewed and published in top tier security

conferences. In this context we would like to acknowledge our collaborators

– Edward Chou for his help in designing user-studies and Muhammad Haris

Mughees for his help in collecting JavaScripts accessing motion sensors in the

wild. Following are the conference publications and technical reports related

to the different chapters in this dissertation.

• Fingerprinting smartphones using acoustic components:

– A. Das, N. Borisov, and M. Caesar, “Fingerprinting Smart De-

vices Through Embedded Acoustic Components,” CoRR, vol.

abs/1403.3366, 2014. [Online]. Available: http://arxiv.org/abs/

1403.3366

– A. Das, N. Borisov, and M. Caesar, “Do You Hear What I Hear?:

Fingerprinting Smart Devices Through Embedded Acoustic Com-

ponents,” in Proceedings of the 21st ACM SIGSAC Conference on

Computer and Communications Security (CCS), 2014, pp. 441–

452

• Fingerprinting smartphones using motion sensors:

– A. Das, N. Borisov, and M. Caesar, “Exploring Ways To

Mitigate Sensor-Based Smartphone Fingerprinting,” CoRR, vol.

abs/1503.01874, 2015. [Online]. Available: http://arxiv.org/abs/

1503.01874

7

– A. Das, N. Borisov, and M. Caesar, “Tracking Mobile Web Users

Through Motion Sensors: Attacks and Defenses,” in Proceedings

of the 23rd Annual Network and Distributed System Security Sym-

posium (NDSS). Internet Society, 2016

• Fingerprinting smartphones at large-scale and analyzing mo-

tion sensor access patterns in the web:

– A. Das, N. Borisov, E. Chou, and M. H. Mughees, “Smart-

phone Fingerprinting Via Motion Sensors: Analyzing Feasibility

at Large-Scale and Studying Real Usage Patterns,” CoRR, vol.

abs/1605.08763, 2016. [Online]. Available: http://arxiv.org/abs/

1605.08763

8

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter we take a closer look at some of the onboard hardware such

as microphone, speaker, accelerometer and gyroscope. This will provide us

with an understanding of how these hardware components can be used to

uniquely fingerprint smartphones. We also discuss some of the most recent

and well-known studies regarding device fingerprinting.

2.1 Acoustic Hardware

Microphone and speaker are the most common acoustic hardware available

on any type of smartphone. They provide the fundamental functionality

of a phone, which is placing and receiving phone calls. So we first take a

closer look at their internal architecture to identify the potential source of

imperfections that make them distinguishable.

2.1.1 Microphone

Microphones in modern smartphones are based on Micro-Electro-Mechanical

Systems (MEMS) [27, 28, 29]. To enhance active noise and echo canceling ca-

pabilities, most smartphones today have more than one MEMS microphone.

For example, the iPhone 5 has a total of three embedded MEMS micro-

phones [28]. According to the IHS-iSuppli report, Apple and Samsung were

the top consumers of MEMS microphones in 2012, accounting for a combined

54% of all shipped MEMS microphones [27].

A MEMS microphone, sometimes called a microphone chip or silicon micro-

phone, consists of a coil-less pressure-sensitive diaphragm directly etched into

a silicon chip. It comprises of a MEMS die and a complementary metal-oxide-

semiconductor (CM-OS) die combined in an acoustic housing [30, 31]. The

9

CMOS often includes both a preamplifier and an analog-to-digital (AD) con-

verter. Modern fabrication techniques enable highly compact deigns, making

them well suited for integration in digital mobile devices. The internal archi-

tecture of a MEMS microphone is shown on Figure 2.1. From the figure we

can see that the MEMS microphone’s physical design is based on a variable

capacitor consisting of a highly flexible diaphragm in close proximity to a

perforated, rigid back-plate. The perforations permit the air between the

diaphragm and back-plate to escape. When an acoustic signal reaches the

diaphragm through the acoustic holes, the diaphragm is set in motion. This

mechanical deformation causes capacitive change which in turn causes volt-

age change. In this way sound pressure is converted into an electrical signal

for further processing. The back-chamber acts as an acoustic resonator and

the ventilation hole allows the air compressed inside the back chamber to

flow out, allowing the diaphragm to move back into its original place.

⇓

Sound Wave

Distance

Variable Capacitance
Flexible Diaphragm

Perforated rigid back−plate
Acoustic holes

Electrode

Ventilation hole

Back−chamber

Movable diaphragm

Compressed Air

Figure 2.1: The internal architecture of a MEMS microphone chip used in
modern smartphones.

The sensitivity of the microphone depends on how well the diaphragm

deflects to acoustic pressure; it also depends on the gap between the static

back-plate and the flexible diaphragm. Unfortunately, even though the man-

ufacturing process for these microphones has been streamlined, no two chips

roll off the assembly line functioning in exactly the same way. Imperfec-

tions can arise for the following reasons: slight variations in the chemical

10

composition of components from one batch to the next, wear in the manu-

facturing machines or changes in temperature and humidity. While subtle

imperfections in the microphone chips may go unnoticed by human ears,

computationally such discrepancies may be sufficient to discriminate them,

as we later show.

2.1.2 Microspeaker

A microspeaker is a scaled down version of a basic acoustic speaker. So

let us first look at how speakers work before we discuss how microspeakers

can be used to generate unique fingerprints. Figure 2.2(a) shows the basic

components of a speaker. The diaphragm is usually made of paper, plastic

or metal and its edges are connected to the suspension which is a rim of

flexible material that allows the diaphragm to move. The narrow end of the

diaphragm’s cone is connected to the voice coil. Voice coil is attached to the

basket by a spider (damper), which holds the coil in position, but allows it

to move freely back and forth. A permanent magnet is positioned directly

below the voice coil.

Permanent Magnet

Diaphragm

Spider

Basket

Back−plate

Suspension

Voice coil

(a) (b) (c)

Figure 2.2: (a) The basic components of a speaker, (b) A typical MEMS
microspeaker, (c) The internal architecture of a microspeaker chip.

11

Sound waves are produced whenever electrical current flows through the

voice coil, which acts as an electromagnet. Running varying electrical cur-

rent through the voice coil induces a varying magnetic field around the coil,

altering the magnetization of the metal it is wrapped around. When the

electromagnet’s polar orientation switches, so does the direction of repulsion

and attraction. In this way, the magnetic force between the voice coil and

the permanent magnet causes the voice coil to vibrate, which in turn vibrates

the speaker diaphragm to generate sound waves.

Figure 2.2(b) shows a typical MEMS microspeaker chip and Figure 2.2(c)

shows the components inside the microspeaker [32]. The components are

similar to that of a basic speaker; the only difference is the size and fabri-

cation process [33, 34, 35]. The amplitude and frequency of the sound wave

produced by the speaker’s diaphragm is dictated respectively by the distance

and rate at which the voice coil moves. Each speaker component can intro-

duce variations into the generated sound. For example, variations in the

electromagnetic properties of the driver can cause differences in the rate and

smoothness at which the diaphragm moves. Therefore, due to the inevitable

variations and imperfections of the manufacturing process, no two speakers

are going to be alike, resulting in subtle differences in their produced sound.

In our work, we develop techniques to computationally localize and evaluate

these differences.

2.2 Motion Sensors

Motion sensing is transforming how users interact with smartphones and as

a result motion sensing has become a “must have” feature for all major op-

erating systems and hardware platform providers. Motion sensors enable a

rich user-interactive experience in the form of gesture recognition, activity

recognition and tracking. These capabilities enable sophisticated applications

such as immersive gaming, augmented reality, fitness/health monitoring and

accurate navigation, all of which are providing new ways to generate revenue

for carriers and manufacturers. Accelerometer and gyroscope are the most

common motion sensors available on smartphones. Accelerometer and gyro-

scope sensors in modern smartphones are based on Micro-Electro-Mechanical

Systems (MEMS). STMicroelectronics [36] and InvenSense [37] are among

12

the top vendors supplying MEMS-based accelerometer and gyroscope sensor

to different smartphone manufacturers [38]. Traditionally, Apple [39, 40]1

and Samsung [42, 43] favor using STMicroelectronics motion sensors, while

Google [44, 45] tends to use InvenSense sensors.

2.2.1 Accelerometer

Accelerometer is a device that measures proper acceleration. Proper accel-

eration is different from coordinate acceleration (linear acceleration) as it

measures the g-force. For example, an accelerometer at rest on a surface

will measure an acceleration of g = 9.81ms−2 straight upwards, while for a

free falling object it will measure an acceleration of zero. MEMS-based ac-

celerometers are based on differential capacitance [46]. Figure 2.3 shows the

internal architecture of a MEMS-based accelerometer. As we can see there

are several pairs of fixed electrodes and a movable seismic mass. Under zero

force the distances d1 and d2 are equal, and as a result the two generated ca-

pacitance are equal, but a change in force will cause the movable seismic mass

to shift closer to one of the fixed electrodes (i.e., d1 6= d2) causing a change

in the generated capacitance. This difference in capacitance is detected and

amplified to produce a voltage proportional to the acceleration. The slightest

gap difference between the structural electrodes, introduced during the man-

ufacturing process, can cause a change in the generated capacitance. Also,

the flexibility of the seismic mass can be slightly different from one chip to an-

other. These form of minute imprecisions in the electro-mechanical structure

induce subtle imperfections in accelerometer chips.

2.2.2 Gyroscope

Gyroscope measures the rate of rotation (in rads−1) along the device’s three

axes. MEMS-based gyroscopes use the Coriolis effect to measure the angular

rate. Whenever an angular velocity of ω̂ is exerted on a moving mass of

weight m, and velocity v̂, the object experiences a Coriolis force in a direction

perpendicular to the rotation axis and to the velocity of the moving object

(as shown in figure 2.4). The Coriolis force is calculated by the following

1iPhone 6 has been reported to use sensors made by InvenSense [41]

13

Seismic Mass

Movable

Anchor

Fixed Electrode

1d d2

Figure 2.3: Internal architecture of a MEMS accelerometer. Differential
capacitance is proportional to the applied acceleration.

equation, F̂ = −2mω̂ × v̂. Generally, the angular rate (ω̂) is measured by

sensing the magnitude of the Coriolis force exerted on a vibrating proof-mass

within the gyro [47, 48]. The Coriolis force is sensed by a capacitive sensing

structure where a change in the vibration of the proof-mass causes a change

in capacitance which is then converted into a voltage signal by the internal

circuitry. Again the slightest imperfection in the electro-mechanical structure

will introduce idiosyncrasies across chips.

m

Y

X

Z

ω

v

F = −2m * v
Coriolis

ω

Figure 2.4: MEMS-based gyros use Coriolis force to compute angular
velocity. The Coriolis force induces change in capacitance which is
proportional to the angular velocity.

14

2.3 Related Work

Human fingerprints, due to their unique nature, are a very popular tool used

to identify people in forensic and biometric applications [49, 50]. Researchers

have long sought to find an equivalent of fingerprint in computer systems

by finding characteristics that can help identify an individual device. Such

fingerprints exploit variations in both the hardware and software of devices

to aid in identification.

As early as 1960, the US government used unique transmission charac-

teristics to track mobile transmitters [51]. Later, with the introduction of

cellular network researchers were able to successfully distinguish transmit-

ters by analyzing the spectral characteristics of the transmitted radio sig-

nal [52]. Researchers have suggested using radio-frequency fingerprints to

enhance wireless authentication [53, 54], as well as localization [55]. Others

have leveraged the minute manufacturing imperfections in network interface

cards (NICs) by analyzing the radio-frequency of the emitted signals [56, 57].

Computer clocks have also been used for fingerprinting: Moon et al. showed

that network devices tend to have a unique and constant clock skews [58];

Kohno et al. exploited this to distinguish network devices through TCP and

ICMP timestamps [59].

Software can also serve as a distinguishing feature, as different devices

have a different installed software base. Researchers have long been exploit-

ing the difference in the protocol stack installed on IEEE 802.11 compliant

devices. Desmond et al. [60] have looked at distinguishing unique devices

over Wireless Local Area Networks (WLANs) simply by performing timing

analysis on the 802.11 probe request packets. Others have investigated sub-

tle differences in the firmware and device drivers running on IEEE 802.11

compliant devices [61]. 802.11 MAC headers have also been used to uniquely

track devices [62]. Moreover, there are well-known open source toolkits like

Nmap [63] and Xprobe [64] that can remotely fingerprint an operating system

by analyzing unique response from the TCP/IP networking stack.

2.3.1 Browser Fingerprinting

A common application of fingerprinting is to track a user across multiple visits

to a website, or a collection of sites. Traditionally, this was done with the aid

15

of cookies explicitly stored by the browser. However, privacy concerns have

prompted web browsers to implement features that clear the cookie store,

as well as provide private browsing modes that do not store cookies long-

term. This has prompted site operators to develop other means of uniquely

identifying and tracking users. Eckersley’s Panopticon project showed that

many browsers can be uniquely identified by enumerating installed fonts and

other browser characteristics that are easily accessible via JavaScript [11].

A more advanced technique uses HTML5 canvas elements to fingerprint the

fonts and rendering engines used by the browser [12]. Others have proposed

the use of performance benchmarks for differentiating between JavaScript

engines [65]. Lastly, browsing history can to used to profile and track online

users [66]. Numerous studies have found evidence of these and other tech-

niques being used in the wild [10, 14, 13]. A number of countermeasures to

these techniques exist; typically they disable or restrict the ability of a web-

site to probe the characteristics of a web browser. Nikiforakis et al. propose

using random noise to make fingerprints non-deterministic which essentially

breaks linkability across multiple visits [67].

With the rapid growth of smart devices, researchers are now focusing on

adopting existing fingerprinting techniques in the context of smartphones.

Like cookies, app developers have looked at using device IDs such as Unique

Device Identifier (UDID) or International Mobile Station Equipment Identity

(IMEI) to track users across multiple applications. However, Apple ceased

the use of UDID since iOS 6 [68] and for Android accessing IMEI requires ex-

plicit user permission [69]. Moreover, due to constrained hardware and soft-

ware environment existing methods often lack in precision for smartphones,

and recent studies have shown this to be true [19, 20]. However, this year

Laperdrix et al. have shown that it is in fact possible to fingerprint smart-

phones effectively through user-agent string which is becoming richer every

day due to the numerous vendors with their different firmware updates [70].

Others have looked at fingerprinting smartphones by exploiting the personal

configuration settings which are often accessible to third party apps [71].

16

2.3.2 Microphone and Speaker Fingerprinting

Our work is inspired by hardware-based fingerprinting techniques. We, firstly,

focus on fingerprinting onboard speakers and microphones, and in this con-

text the following works are closely related to ours.

Clarkson’s work [72] showed that it is possible to distinguish loudspeak-

ers by analyzing recorded audio samples emitting from them. However, his

experiments used special audio clips that contained 65 different frequencies,

whereas we are using common audio excerpts like ringtones. Moreover, his

experiments ignored the subtlety introduced by microphones. In fact in one

experiment, though statistically not meaningful as it tested only two similar

microphones, they found no variation across microphones. We, on the other

hand found that microphones can vary across different units. Finally, his

study did not thoroughly analyze the different acoustic features that can be

used to successfully carry out device fingerprinting. As a result, he was able

to achieve only 81% accuracy in distinguishing heterogeneous loudspeakers.

Bojinov et al. [73] were investigating the feasibility of fingerprinting smart-

phones through both speakers and microphones around the same time. They

were looking at the intensity ratio of the transmitted and received audio sig-

nal at 13 different frequencies. However, our experimental setup differs from

them in several ways. Firstly, they experimented with only 16 devices all of

the same make and model whereas we experimented with 52 devices from five

different manufacturers. So, we test our approach for not only same make

and model devices but also different make and model devices. Secondly,

we look at fingerprinting the speaker and microphone individually as well as

combining both of them. Lastly, we study the impact of ambient background

noise on fingerprinting accuracy.

Contemporary to our work, Zhou et al. [74] have also looked at finger-

printing smartphones through speakers. They used high frequency inaudible

sound to minimize the impact of background noise; while this is generally

true, there are everyday environments like metro station that exhibit high

frequency white noise. One point to note is that in the case of recording

audio through the phone’s built-in microphone they are actually fingerprint-

ing both the speaker and microphone and not just the speaker. Also, their

experiments were conducted using 50 OEM (Original Equipment Manufac-

turer) speaker chips on a single Samsung Galaxy S3. However, the internal

17

packaging of the different components inside the phone along with the sur-

face on which the phone is kept impacts the produced audio signal [73]. So,

compared to our work their experimental setup is less realistic because we

use individual smartphones instead of individual speaker chips. Finally, their

study only looks at speakers of the same make and model whereas we test

our approach for both same and different make and model devices.

On a different note audio fingerprinting has a rich history of notable re-

search [75]. There are studies that have looked at classifying audio excerpts

based on their content [76, 77]. Others have looked at distinguishing human

speakers from audio segments [78, 79]. There has also been work on explor-

ing various acoustic features for audio classification [80]. One of the more

popular applications of audio fingerprinting has been genre and artist recog-

nition [81, 82]. Our work takes advantage of the large set of acoustic features

that have been explored by existing work in audio fingerprinting. However,

instead of classifying the content of audio segments, we utilize acoustics fea-

tures to capture the manufacturing imperfections of microphones and speak-

ers embedded in smartphones.

2.3.3 Motion Sensor Fingerprinting

While it is possible to fingerprint smartphones through microphones and

speakers, such techniques require access to the microphone, which is typically

controlled with a separate permission due to the obvious privacy concerns

with the ability to capture audio. On the other hand accessing motion sensors

is considered not sensitive and as such no explicit user permission is required

to access them. We, therefore, also focus on fingerprinting smartphones

surreptitiously through accelerometers and gyroscopes. The following studies

closely resemble our work in this dissertation.

Bojinov et al. [73] consider using accelerometers to fingerprint smart-

phones. Their techniques, however, rely on having the user perform a cali-

bration of the accelerometer, the parameters of which are used to distinguish

phones. Dey et al. [83] apply machine learning techniques to create an ac-

celerometer fingerprint, but they require the vibration motor to be active to

stimulate the accelerometer sensor; in the absence of external stimulation,

they report an average precision and recall of around 87% for 25 station-

18

ary phones. In contrast, our work studies phones that are in a natural

web-browsing setting, either in a user’s hand or resting on a flat surface.

Additionally, we consider the simultaneous use of both accelerometer and

gyroscope to produce a more accurate fingerprint. Inspired by prior work

that uses the gyroscope to recover audio signals [84], we also stimulate the

gyroscope with an inaudible tone. Moreover, our work provides a real world

perspective on the problem. We not only show that sensor-based fingerprint-

ing works at large-scale but also show how websites are accessing the sensor

data in the wild. Finally, we propose and evaluate several countermeasures

to reduce fingerprinting accuracy without entirely blocking access to the mo-

tion sensors. To analyze the impact of our countermeasures we perform a

large-scale user study where users play an online game to show that our

countermeasures do not affect the utility of the motion sensors. Table 2.1

highlights some comparisons with related works.

Table 2.1: Comparison with other motion sensor fingerprinting studies.

Work Sensors
a

Setting Stimulation
Features Features # of

Result
b

Explored Used Devices
[83] A Lab Vibration 80 36 107c 99% Acc
[83] A Lab None 80 36 25 87% Fs
[73] A Lab Flip phone 2 2 33 100% Acc
[73] A Public Flip phone 2 2 3583d 15% Acc

Ours A,G Lab None 100 70 30 99% Fs
Ours A,G Public None 100 70 471e 86% Fs
Ours A,G Lab+Public None 100 70 501 86% Fs
Ours A,G Lab In hand 100 70 30 93% Fs
Ours A,G Lab In hand+Audio 100 70 30 98% Fs

ahere ‘A’ means accelerometer and ‘G’ refers to gyroscope
bhere ‘Acc’ means Accuracy and ‘Fs’ refers to F-score
c80 external chips, 25 phones and 2 tablets
dconsidering only devices with two submissions
econsidering only devices with at least 5 training samples

19

CHAPTER 3

FINGERPRINTING SMARTPHONES VIA
MICROPHONES AND SPEAKERS

All smartphones have acoustic components like microphone and speaker.

These are the very basic hardware available in any mobile phone. These

acoustic components are used for many purposes in today’s multimedia-

rich ecosystem starting from simple call making to interacting with games.

However, these acoustic hardware can be exploited to fingerprint smart-

phones. During fabrication, subtle imperfections arise in device microphone

and speaker which induce anomalies in the generated and received audio

signal. These anomalies can be utilized to generate unique fingerprints for

smartphones.

3.1 Overview

We start with an overview of our approach and present several viable at-

tack scenarios. The key observation behind our work is that imperfections

in smartphone hardware induce unique signatures on the received and trans-

mitted audio streams, and these unique signatures, if identified, can be used

by an adversary to fingerprint the device. We consider three fingerprinting

scenarios: speaker, microphone, and joint speaker-microphone fingerprint-

ing. In the first case, an attacker in a public environment, such as a cafe or

shopping mall, records audio generated by a smartphone speaker, such as a

ringtone (malicious app can also transmit inaudible sounds to remain unde-

tectable). The attacker can then use the recorded audio samples to track and

identify users as shown in Figure 3.1. Alternately, the attacker may obtain

audio recorded by a smartphone microphone and use that to identify the

user who made the recording as shown in Figure 3.2; this can have forensic

applications. A third way to track users is to convince them to install a

malicious application (e.g., a free online game), which can play and record

20

audio clips using the device’s speaker and microphone. The app can then

stealthily upload the recorded audio clips to the attacker (e.g., piggybacking

it on log-in information or game state), who can then use the audio samples

to uniquely distinguish each user as shown in Figure 3.3. To do this, the ap-

plication would require access to both the speaker and microphone, as well as

network access, but such permissions are very common [85] and are unlikely

to raise alarm, especially given that a significant portion of the users cannot

comprehend the full consequences of smartphone permissions [86, 87, 88].

Figure 3.1: Fingerprinting smartphone speakers in public location.

Figure 3.2: Fingerprinting smartphone microphones in public location.

Figure 3.3: Fingerprinting both smartphone speakers and microphones.

3.2 Methodology

Our approach consists of two main tasks. The first task is acquiring a set of

audio samples for analysis in the first place. To do this, we have a listener

module, responsible for receiving and recording device audio. The listener

21

module could be deployed as an application on the smartphone (many mobile

OSes allow direct access to microphone input), or as a stand-alone service

(e.g., the adversary has a microphone in a public setting like shopping mall

to pick up device audio). The next task is to effectively identify device signa-

tures from the received audio stream. To do this, we have an analyzer module,

which leverages signal processing techniques to localize spectral anomalies,

and constructs a ‘fingerprint’ of the auditory characteristics of the device. We

individually evaluate the feasibility of fingerprinting speakers, microphones

and a combination of both.

3.2.1 Procedure for Fingerprinting Speakers

An attacker can leverage our technique to passively observe audio signals

(e.g., ringtones or inaudible sound) emitted from device speakers in public

environments. To investigate this, we first look at fingerprinting speakers

integrated inside smartphones. For fingerprinting speakers we record audio

clips played from smartphones onto a laptop and we then extract acoustic

features from the recorded audio excerpts to generate fingerprints as shown

in Figure 3.4. We look at devices manufactured by both same vendor and

different vendors.

Figure 3.4: Steps for fingerprinting speakers.

3.2.2 Procedure for Fingerprinting Microphones

Attackers may also attempt to fingerprint devices by observing imperfec-

tions in device microphone, for example by convincing the user to install

an application on their phone, which can observe inputs from the device’s

microphone. To investigate the feasibility of this attack, we next look at

22

fingerprinting microphones embedded in smartphones. To do this, we record

audio clips played from a laptop onto smartphones as shown in Figure 3.5.

Again we consider devices made by both same vendor and different vendors.

Figure 3.5: Steps for fingerprinting microphones.

3.2.3 Procedure for Fingerprinting both Speakers and
Microphones

An attacker may attempt to fingerprint devices by observing imperfections

in both device microphone and speaker, for example by convincing the user

to install a game on their phone which requires access to device speaker and

microphone to interact with the game (something like My Talking Tom [89]).

The attacker could potentially play a theme song at the start of the game

and at the same time make a recording of the audio clip. To investigate the

feasibility of this attack, we develop our own android app that plays and

records audio clips simultaneously and uploads the data to a remote server.

The recorded audio clips would then enable the attacker to characterize the

imperfections in microphones and speakers embedded inside smartphones.

Figure 3.6 summarizes the whole process.

Figure 3.6: Steps for fingerprinting both microphone and speaker.

23

3.3 Experimental Setup

To perform our experiments, we constructed a small testbed environment

with real smartphone device hardware. In particular, our default environ-

ment consisted of a 266 square foot (14’x19’) office room, with nine-foot

dropped ceilings with polystyrene tile, comprising a graduate student office

in a University-owned building. The room was filled with desks and chairs,

and opens out to a public hall with footstep traffic. The room also receives a

minimal amount of ambient noise from air conditioning, desktop computers,

and florescent lighting. We placed smartphones in various locations in the

room. To emulate an attacker, we placed an ACER Aspire–5745 laptop in

the room. To investigate performance with inexpensive hardware, we used

the laptop’s built-in microphone to collect audio samples. We investigate

how varying this setup affects the performance of the attack in latter parts

of this chapter.

3.3.1 Device Types

We test our device fingerprinting approach on devices from five different

manufacturers. Table 3.1 highlights the models and quantities of the different

phones used in our experiments.

Table 3.1: Types of phones used for fingerprinting acoustic components.

Maker Model Quantity
Apple iPhone 5 1
HTC Nexus One 14

Samsung
Nexus S 8

Galaxy S3 3
Galaxy S4 10

Motorola Droid A855 15
Sony Ericsson W518 1

Total 52

3.3.2 Audio Genre Types

We also investigate different genres of audio excerpts. Table 3.2 describes the

different types of audio excerpts used in our experiments. Duration of the

24

audio clips varies from 3 to 10 seconds. The default sampling frequency for all

audio excerpts is 44.1 kHz unless explicitly stated otherwise. All audio clips

are stored in WAV format [90] using 16-bit pulse-code-modulation (PCM)

technique.

Table 3.2: Types of audio excerpts used in our experiments.

Type Description Variations
Instrumental Musical instruments playing together, e.g., ringtone 4

Human speech Small segments of human speech 4
Song Combination of human voice & instrumental sound 3

3.3.3 Analytic Tools

For analysis, we leverage the following audio tools and analytic modules:

MIRtollbox [91], Netlab [92], Audacity [93] and Hertz [94]. Both MIRtoolbox

and Netlab are MATLAB modules providing a rich set of functions for an-

alyzing and extracting audio features. Audacity and Hertz are mainly used

for recording audio clip on laptop and smartphone, respectively.

3.4 Acoustic Features

Given our knowledge that imperfections exist in device audio hardware, we

now need some way to detect them. To do this, our approach identifies

acoustic features from an audio stream, and uses the features to construct a

fingerprint of the device. Computing acoustic features from an audio stream

has been a subject of much research [80, 75, 95, 76]. To gain an understanding

of how a broad range of acoustic features are affected by device imperfections

we investigate 15 different acoustic features (listed in Table 3.3), all of which

have been well-documented by researchers. A brief description of each acous-

tic feature follows.

Root-Mean-Square (RMS) Energy: This feature computes the square

root of the arithmetic mean of the squares of the original audio signal strength

at various frequencies. In the case of a set of N values {x1, x2, . . . , xN}, the

25

Table 3.3: Explored acoustic features.

Feature Dimension
1 RMS 1
2 ZCR 1
3 Low-Energy-Rate 1
4 Spectral Centroid 1
5 Spectral Entropy 1
6 Spectral Irregularity 1
7 Spectral Spread 1
8 Spectral Skewness 1
9 Spectral Kurtosis 1
10 Spectral Rolloff 1
11 Spectral Brightness 1
12 Spectral Flatness 1
13 MFCCs 13
14 Chromagram 12
15 Tonal Centroids 6

RMS value is given by the following formula:

xrms =

√
1

n
(x21 + x22 + · · ·+ x2N) (3.1)

The RMS value provides an approximation of the average audio signal strength.

Zero Crossing Rate (ZCR): The zero-crossing rate is the rate at which

the signal changes sign from positive to negative or back [96]. This feature has

been used heavily in both speech recognition and music information retrieval,

for example to classify percussive sounds [97]. ZCR for a signal s of length

T can be defined as:

ZCR =
1

T

T∑
t=1

|s(t)− s(t− 1)| (3.2)

where s(t) = 1 if the signal has a positive amplitude at time t and 0 otherwise.

Zero-crossing rate provides a measure of the noisiness of the signal.

Low Energy Rate: The low energy rate computes the percentage of frames

(typically 50 ms chunks) with RMS power less than the average RMS power

for the whole audio signal. For instance, a musical excerpt with some very

loud frames and a lot of silent frames would have a high low-energy rate.

26

Spectral Centroid: Spectral centroid represents the “center of mass” of

a spectral power distribution. It is calculated as the weighted mean of the

frequencies present in the signal, determined using a Fourier transform, with

their magnitudes as the weights:

Centroid, µ =

∑N
i=1 fi ·mi∑N
i=1mi

(3.3)

where mi represents the magnitude of bin number i, and fi represents the

center frequency of that bin.

Spectral Entropy: Spectral entropy captures the spikiness of a spectral

distribution. As a result spectral entropy can be used to capture the for-

mants or peaks in the sound envelope [98]. To compute spectral entropy, a

Digital Fourier Transform (DFT) of the signal is first carried out. Next, the

frequency spectrum is converted into a probability mass function (PMF) by

normalizing the spectrum using the following equation:

wi =
mi∑N
i=1mi

(3.4)

where mi represents the energy/magnitude of the i-th frequency component

of the spectrum, w = (w1, w2, . . . , wN) is the PMF of the spectrum and N

is the number of points in the spectrum. This PMF can then be used to

compute the spectral entropy using the following equation:

H =
N∑
i=1

wi · log2wi (3.5)

The central idea of using entropy as a feature is to capture the peaks of the

spectrum and their location.

Spectral Irregularity: Spectral irregularity measures the degree of varia-

tion of the successive peaks of a spectrum. This feature provides the ability to

capture the jitter or noise in a spectrum. Spectral irregularity is computed

as the sum of the square of the difference in amplitude between adjoining

spectral peaks [99] using the following equation:

Irregularity =

∑N
i=1(ai − ai+1)

2∑N
i=1 a

2
i

(3.6)

27

where the (N + 1)-th peak is assumed to be zero. A change in irregularity

changes the perceived timbre of a sound.

Spectral Spread: Spectral spread defines the dispersion of the spectrum

around its centroid, i.e., it measures the standard deviation of a spectrum.

So it can be computed as:

Spread, σ =

√√√√ N∑
i=1

[(fi − µ)2 · wi] (3.7)

where wi represents the weight of the i-th frequency component obtained

from Equation (3.4) and µ represents the centroid of the spectrum obtained

from Equation (3.3).

Spectral Skewness: Spectral skewness computes the coefficient of skew-

ness of a spectrum. Skewness (third central moment) measures the symmetry

of the distribution. A distribution can be positively skewed in which case

it has a long tail to the right while a negatively-skewed distribution has a

longer tail to the left. A symmetrical distribution has a skewness of zero. The

coefficient of skewness is the ratio of the skewness to the standard deviation

raised to the third power.

Skewness =

∑N
i=1 [(fi − µ)3 · wi]

σ3
(3.8)

Spectral Kurtosis: Spectral Kurtosis gives a measure of the flatness or

spikiness of a distribution relative to a normal distribution. It is computed

from the fourth central moment using the following function:

Kurtosis =

∑N
i=1 [(fi − µ)4 · wi]

σ4
(3.9)

A kurtosis value of 3 means the distribution is similar to a normal distribution

whereas values less than 3 refer to flatter distributions and values greater than

3 refer to steeper distributions.

Spectral Rolloff: The spectral rolloff is defined as the frequency below

28

which 85% of the distribution magnitude is concentrated [76]

arg min
fc∈{1,...,N}

fc∑
i=1

mi ≥ 0.85 ·
N∑
i=1

mi (3.10)

where fc is the rolloff frequency and mi is the magnitude of the i-th frequency

component of the spectrum. The rolloff is another measure of spectral shape

that is correlated to the noise cutting frequency [100].

Spectral Brightness: Spectral brightness calculates the amount of spec-

tral energy corresponding to frequencies higher than a given cut-off threshold.

This metric correlates to the perceived timbre of a sound. Increase of higher

frequency energy in the spectrum yields a sharper timbre, whereas a decrease

yields a softer timbre [101]. Spectral brightness can be computed using the

following equation:

Brightnessfc =
N∑
i=fc

mi (3.11)

where fc is the cut-off frequency (set to 1500 Hz) and mi is the magnitude

of the i-th frequency component of the spectrum.

Spectral Flatness: Spectral flatness measures how energy is spread across

the spectrum, giving a high value when energy is equally distributed and a

low value when energy is concentrated in a few narrow frequency bands. The

spectral flatness is calculated by dividing the geometric mean of the power

spectrum by the arithmetic mean of the power spectrum [102]:

Flatness =

[∏N
i=1mi

]1/N
1
N

∑N
i=1mi

(3.12)

where mi represents the magnitude of bin number i. Spectral flatness pro-

vides a way to quantify the noise-like or tone-like nature of the signal. One

advantage of using spectral flatness is that it is not affected by the amplitude

of the signal, meaning spectral flatness virtually remains unchanged when the

distance between the sound source and microphone fluctuates during record-

ing.

Mel-Frequency Cepstrum Coefficients (MFCCs): MFCCs are short-

term spectral features and are widely used in the area of audio and speech

29

processing [103, 76]. Their success has been due to their capability of com-

pactly representing spectrum amplitudes. Figure 3.7 highlights the procedure

for extracting MFCCs from audio signals. The first step is to divide the sig-

nal into fixed size frames (typically 50 ms chunks) by applying a windowing

function at fixed intervals. The next step is to take Discrete Fourier Trans-

form (DFT) of each frame. After taking the log-amplitude of the magnitude

spectrum, the DFT bins are grouped and smoothed according to the percep-

tually motivated Mel-frequency scaling.1 Finally, in order to decorrelate the

resulting feature vectors a discrete cosine transform is performed. We use

the first 13 coefficients for our experiments.

Frames Log

Mel-ScalingDCT

Audio

MFCCs

DFT

Figure 3.7: Procedure for extracting MFCCs from audio signals.

Chromagram: A chromagram (also known as harmonic pitch class pro-

file) is a 12-dimensional vector representation of an audio signal showing

the distribution of energy along the 12 distinct semitones or pitch classes.

First a DFT of the audio signal is taken and then the spectral frequencies

are mapped onto a limited set of 12 chroma values in a many-to-one fash-

ion [104]. In general, chromagram is robust to noise (e.g., ambient noise or

percussive sounds) and independent of timbre change.

Tonal Centroids: Tonal centroid introduced by Harte et al. [105] maps a

chromagram onto a 6-dimensional Hypertorus structure. The resulting rep-

resentation wraps around the surface of a Hypertorus, and can be visualized

as a set of three circles of harmonic pitch intervals: fifths, major thirds, and

minor thirds. Tonal centroids are efficient in detecting changes in harmonic

contents.

1Mel-scale approximates the human auditory response more closely than the linearly-
spaced frequency bands. http://en.wikipedia.org/wiki/Mel scale

30

3.5 Classification Algorithms and Evaluation Metrics

Before we dig deep into the evaluation section, let us briefly describe the

classification algorithms and metrics that we used to determine how well we

can fingerprint smartphones using onboard microphones and speakers.

3.5.1 Classification Algorithms

We need some way to leverage the set of features to perform device identifica-

tion. To achieve this, we leverage a supervised classification algorithm, which

takes observations (features) from the observed device as input, and attempts

to classify the device into one of several previously-observed devices. To do

this, our approach works as follows. First, we perform a training step, by

collecting a number of observations from a set of devices. Each observation

(data point) corresponds to a set of features observed from that device, rep-

resented as a tuple with one dimension per feature. As such, data points can

be thought of as existing in a hyper-dimensional space, with each axis cor-

responding to the observed value of a corresponding feature. Our approach

then applies a classification algorithm to build a representation of these data

points, which can later be used to associate new observations with device

types. When a new observation is collected, the classification algorithm re-

turns the most likely device that caused the observation.

To do this effectively, we need an efficient classification algorithm. In our

work, we compare the performance of two alternate approaches described be-

low: k-nearest neighbors (associates an incoming data point with the device

corresponding to the nearest “learned” data points), and Gaussian mixture

models (computes a probability distribution for each device, and determines

the maximally-likely association).

k-NN: k-nearest neighbor algorithm (k-NN) is a non-parametric lazy learn-

ing algorithm. The term “non-parametric” means that the k-NN algorithm

does not make any assumptions about the underlying data distribution,

which is useful in analyzing real world data with complex underlying dis-

tribution. The term “lazy learning” means that the k-NN algorithm does

not use the training data to make any generalization, rather all the train-

ing data are used in the testing phase making it computationally expensive

31

(however, different optimizations are possible). k-NN algorithm works by

first computing the distance from the input data point to all training data

points and then classifies the input data point by taking a majority vote of

the k closest training records in the feature space [106]. The best choice of k

depends upon the data; generally, larger values of k reduce the effect of noise

on the classification, but make boundaries between classes less distinct.

GMM: A Gaussian mixture model is a probabilistic model that assumes

all the data points are generated from a mixture of a finite number of Gaus-

sian distributions with unknown parameters. The unknown patterns and

mixture weights are estimated from training samples using an expectation–

maximization (EM) algorithm [107]. During the matching phase the finger-

print for an unknown recording is first compared with a database of pre-

computed GMMs and then the class label of the GMM that gives the high-

est likelihood is returned as the expected class for the unknown fingerprint.

GMMs are often used in biometric systems, most notably in human speaker

recognition systems, due to their capability of representing a large class of

sample distributions [108, 76].

For analyzing and matching fingerprints we use a desktop machine with the

following configuration: Intel i7-2600 3.4 GHz processor with 12 GiB RAM.

We found that the average time required to match a new fingerprint was

around 5–10 ms for k-NN classifier and around 0.5–1 ms for GMM classifier.

3.5.2 Evaluation Metrics:

We use standard multiclass classification metrics such as precision, recall,

and F-score [109] in our evaluation. Assuming there are fingerprints from

n classes (e.g., n different devices), we first compute the true positive (TP)

rate for each class, i.e., the number of traces from the class that are classified

correctly. Similarly, we compute the false positive (FP) and false negative

(FN), as the number of wrongly accepted and wrongly rejected traces, re-

spectively, for each class i (1 ≤ i ≤ n). We then compute precision, recall,

32

and F-score for each class using the following equations:

Precision, Pri =
TPi

TPi + FPi
(3.13)

Recall, Rei =
TPi

TPi + FNi

(3.14)

F-Score, Fi =
2× Pri ×Rei
Pri +Rei

(3.15)

F-score is the harmonic mean of precision and recall; it provides a good mea-

sure of overall classification performance, since precision and recall represent

a tradeoff: a more conservative classifier that rejects more instances will

have higher precision but lower recall, and vice versa. To obtain the overall

performance of the system we compute average values in the following way:

Avg. Precision, AvgPr =

∑n
i=1 Pri
n

(3.16)

Avg. Recall, AvgRe =

∑n
i=1Rei
n

(3.17)

Avg. F-Score, AvgF =
2× AvgPr × AvgRe
AvgPr + AvgRe

(3.18)

Each audio excerpt is recorded/played 10 times, 50% of which is used

for training and the remaining 50% is used for testing. The selection of

training and testing sample is done in random. To prevent any bias in the

selection of the training and testing set we rerun our experiments 10 times

and report the average F-score. We report the maximum evaluation obtained

by varying the number of nearest-neighbors (k) from 1 to 5 for k-NN classifier

and considering 1 to 5 Gaussian distributions per class for GMM classifier.

Since GMM parameters are produced by the randomized EM algorithm,

we perform 10 parameter-generation runs for each instance and report the

average classification performance. We also compute the 95% confidence

interval, but we found it to be less than 1% and therefore, do not report it

in the rest of the chapter.

3.6 Feature Exploration

At first glance, it might seem that we should use all features at our disposal

to identify device types. However, including too many features can worsen

33

performance in practice, due to their varying accuracies and potentially-

conflicting signatures. Hence, in this section, we provide a framework to

explore all the 15 audio features described in Table 3.3 and identify the dom-

inating subset of all features, i.e., which combination of features should be

used. For this purpose we adopt a well known machine learning strategy

known as feature selection [110, 111]. Feature selection is the process of

reducing dimensionality of data by selecting only a subset of the relevant

features for use in model construction. The main assumption in using fea-

ture selection technique is that the data may contain redundant features.

Redundant features are those which provide no additional benefit than the

currently selected features. Feature selection techniques are a subset of the

more general field of feature extraction, however, in practice they are quite

different from each other. Feature extraction creates new features as func-

tions of the original features, whereas feature selection returns a subset of

the original features. It is preferable to use feature selection over feature

extraction when the original units and meaning of features are important

and the modeling goal is to identify an influential subset. When the features

themselves have different dimensionality, and numerical transformations are

inappropriate, feature selection becomes the primary means of dimension

reduction.

Feature selection involves the maximization of an objective function as it

searches through the possible candidate subsets. Since exhaustive evaluation

of all possible subsets are often infeasible (2N for a total of N features)

different heuristics are employed. We use a greedy search strategy known

as sequential forward selection (SFS) where we start off with an empty set

and sequentially add the features that maximize our objective function. The

pseudo code of our feature selection algorithm is described in Algorithm 1.

The algorithm works as follows. First, we compute the F-score that can

be achieved by each feature individually. Next, we sort the features based

on their achieved F-score in descending order. Then, we iteratively add

features starting from the most dominant one and compute the F-score of

the combined feature subset. If adding a feature increases the F-score seen

so far we move on to the next feature, else we remove the feature under

inspection. Having traversed through the entire set of features, we return

the subset of features that maximizes our device classification task. Note

that this is a greedy approach, therefore, the generated subset might not

34

Algorithm 1 Sequential Feature Selection (SFS).

Input: Input feature set F
Output: Dominant feature subset D
F score← []
for f ∈ F do
F score[f]← Classify(f)

end for
F ′ ← sort(F, F score) #In descending order
max score← 0
D ← ∅
for f ∈ F ′ do
D ← D ∪ f
temp← Classify(D)
if temp > max score then
max score← temp

else
D ← D − {f}

end if
end for
return D

always provide the optimal F-score. However, for our purpose, we found this

approach to perform well, as we demonstrate in our evaluation section. We

test our feature selection algorithm for all three types of audio excerpts listed

in Table 3.2. We report the maximum F-score obtained by varying k from

1 to 5 for k-NN classifier and also considering 1 to 5 Gaussian distributions

per class for GMM classifier.

3.6.1 Feature Exploration for Different Make and Model

First, we look at features obtained from smartphones manufactured by five

different vendors. We take one representative smartphone from each row

of Table 3.1 giving us a total of 7 different phones. Each type of audio is

recorded 10 times giving us a total of 70 samples from the 7 representative

handsets; 50% of which (i.e., 5 samples per handset) is randomly selected for

training and the remaining 50% is used for testing. All the training samples

are labeled with their corresponding handset identifier. Both classifiers return

the class label for each audio clip in the test set and from that we compute

F-score.

35

Table 3.4: Feature exploration for different make and model smartphones
using only speaker.

Feature

Fingerprinting Speakers
Maximum F-Score (%)

Instrumental Human Speech Song
k-NN GMM k-NN GMM k-NN GMM

1 RMS 97.4 98 80.8 78.3 88.8 86.2
2 ZCR 57.6 52.1 63.7 48.6 77 77
3 Low-Energy-Rate 69.2 51.8 52.8 38.2 59.6 58.8
4 Spectral Centroid 91.5 88.4 59.4 55.8 88.1 87.7
5 Spectral Entropy 84 80.5 59.4 46.5 91.5 91
6 Spectral Irregularity 31.3 51.4 37.5 46.8 43.2 50.3
7 Spectral Spread 90.2 89.2 56.7 56.7 91 85.7
8 Spectral Skewness 68.3 82.1 69 62 82.9 79.9
9 Spectral Kurtosis 76.7 79.5 68.1 60.2 88.6 86.9
10 Spectral Rolloff 86.6 86.4 85.8 66.7 74.8 76.1
11 Spectral Brightness 87.5 85.2 70.9 87.7 85.5 77.1
12 Spectral Flatness 84.5 84 61.6 61.3 95.1 97.4
13 MFCCs 97.4 100 100 100 94.8 100
14 Chromagram 84.3 79.4 81.1 100 97.4 100
15 Tonal Centroid 86.4 88.4 80.3 98.2 100 100
Sequential Feature Selection [1,7] [13] [13] [13] [15] [13]

Max F-Score 100 100 100 100 100 100

Table 3.4 highlights the subset of features selected by our sequential feature

selection algorithm for features obtained from different brands of smartphone

speakers. We find that most of the time MFCCs are the dominant features for

all categories of audio excerpt. We see similar outcomes for features obtained

from different brands of smartphone microphones in Table 3.5. And when we

combine both speaker and microphone (Table 3.6), we see that both MFCCs

and Tonal Centroids provide high F-scores.

3.6.2 Feature Exploration for Same Make and Model

Next, we look at features obtained from phones manufactured by the same

vendor and are of the same model. From Table 3.1 we see that we have 15

Motorola Droid A855 handsets, which is the largest number among all the

other types of phones in our collection. We, therefore, use these 15 devices

for all the experiments in this section. Again, each type of audio is recorded

10 times giving us a total of 150 samples from the 15 handsets; 50% of which

36

Table 3.5: Feature exploration for different make and model smartphones
using only microphone.

Feature

Fingerprinting Microphones
Maximum F-Score (%)

Instrumental Human Speech Song
k-NN GMM k-NN GMM k-NN GMM

1 RMS 87.2 84.4 62.7 70.3 80.2 82.8
2 ZCR 76.4 74.3 75.7 76.8 72.4 71.3
3 Low-Energy-Rate 47 42.2 26 19.5 38.8 36.6
4 Spectral Centroid 73.7 69.7 70 77.9 73.7 76
5 Spectral Entropy 52.1 56.5 68 59.8 68.8 58.8
6 Spectral Irregularity 49.3 55 52.6 49.7 53 48.7
7 Spectral Spread 90.4 86.2 50.5 54.8 81.6 76.5
8 Spectral Skewness 71.4 63.4 65.6 63.6 61.8 49.7
9 Spectral Kurtosis 63.9 61.2 65.2 65.1 85.4 58
10 Spectral Rolloff 37.8 42.7 82.9 83.8 67.7 73
11 Spectral Brightness 66.4 64.8 60.3 60.2 63.7 67.4
12 Spectral Flatness 92.5 92.5 66.7 68.9 74.8 74.4
13 MFCCs 94.8 94.8 79.9 92.1 90.4 95.4
14 Chromagram 88.4 77.7 88.7 86 78.4 87.7
15 Tonal Centroid 91.9 92.7 92.1 86.4 89.6 92.5
Sequential Feature Selection [13,1] [13,1,7] [15,9,1] [13,15,11] [13,1,12] [13,1,9]

Max F-Score 97.4 100 92.1 93 92.5 97.4

is randomly selected for training and the remaining 50% is used for testing.

Table 3.7 shows the maximum F-score achieved by each acoustic feature

for the three different types of audio excerpt. The table also highlights the

dominating subset of features selected by our sequential feature selection

algorithm. We again find that MFCCs are the dominant features for all

categories of audio excerpt.

We observe similar results for same make and model microphones as shown

in Table 3.8. Even when we test audio segments that combine features from

both the phone’s built-in speaker and microphone we see that MFCCs are still

the dominant features among all the acoustic features (shown in Table 3.9).

One thing that is noticeable — in general the F-score for same make and

model devices is lower compared to what we get for different make and model

devices. This is understandable as same make and model devices contain the

same brand of speakers and microphones whereas different make and model

devices might contain different brands of speakers and microphones. Thus, it

is only trivial that fingerprinting same brand of speakers and/or microphones

is going to be a harder problem.

To get a better understanding of why MFCCs are the dominant acoustic

37

Table 3.6: Feature exploration for different make and model smartphones
using both speaker and microphone.

Feature

Fingerprinting Speakers and Microphones
Maximum F-Score (%)

Instrumental Human Speech Song
k-NN GMM k-NN GMM k-NN GMM

1 RMS 93.1 92.7 89 80.8 93.1 96.3
2 ZCR 83.3 83.3 84.6 78.8 93.1 96.3
3 Low-Energy-Rate 93.1 90 81.7 77.7 96.3 96.3
4 Spectral Centroid 82.3 85.1 40.5 42.7 74.2 76.1
5 Spectral Entropy 78.3 72.4 81 67.9 96.3 96.3
6 Spectral Irregularity 74.6 72.7 55.4 53.6 90.1 81.1
7 Spectral Spread 86.5 86.5 92.7 92.4 93.1 93.1
8 Spectral Skewness 92.3 89.7 84.6 86.2 96.3 96.3
9 Spectral Kurtosis 89.5 86.3 60.7 59.5 81.6 85.3
10 Spectral Rolloff 100 96.3 92.7 92.7 100 96
11 Spectral Brightness 80.4 79.4 81.6 67.6 87.4 90.2
12 Spectral Flatness 85.1 85.1 96.3 92.7 100 96.3
13 MFCCs 93.1 100 96.3 96.3 92.7 100
14 Chromagram 96.3 93.1 88.6 96.3 86.5 100
15 Tonal Centroid 96.3 100 96.3 96.3 100 100
Sequential Feature Selection [10] [13] [12] [13] [10] [13]

Max F-Score 100 100 96.3 96.3 100 100

features we plot the MFCCs of a given audio excerpt from three different

handsets on Figure 3.8. All the coefficients are ranked in the same order for

the three handsets. We can see that the magnitude of the coefficients vary

across the handsets. For example, coefficient 3 and 5 vary significantly across

the three handsets. Hence, MFCCs contain high degree of variability making

it the dominant feature for fingerprinting smartphones.

3.6.3 Feature Exploration for Large Pool of Devices

Lastly, we look at features from all the devices in our collection. In this case

we combine microphone and speaker to generate the auditory fingerprint for

smartphones. We do so because in the previous sections we found that com-

bining speaker and microphone yields the highest accuracy. To collectively

fingerprint smartphones using both the embedded microphone and speaker

we use our android app to play and record audio clips simultaneously. We,

therefore, limit ourself to only android devices for this experiment. In our

38

Table 3.7: Feature exploration for same make and model smartphones
using only speaker.

Feature

Fingerprinting Speakers
Maximum F-Score (%)

Instrumental Human Speech Song
k-NN GMM k-NN GMM k-NN GMM

1 RMS 34.9 33.8 16.6 12.3 20 25.7
2 ZCR 29.7 26.5 12.2 14.4 13 7.1
3 Low-Energy-Rate 12.5 14.8 15 5.7 21.8 18.7
4 Spectral Centroid 28 30.5 12.2 19 39.9 40.3
5 Spectral Entropy 20.9 19.8 14.2 16.6 33.9 26.3
6 Spectral Irregularity 14.5 11.7 7.4 14.7 11.8 17.5
7 Spectral Spread 36.4 43.7 11.3 14.3 35.2 38.4
8 Spectral Skewness 33.9 29.1 13.3 15.5 31.5 40.3
9 Spectral Kurtosis 30.5 29.1 11.6 16 31.1 36.8
10 Spectral Rolloff 40.4 39 14.9 14.3 38.7 41.1
11 Spectral Brightness 32.1 31.6 18.9 21.8 18.5 17.9
12 Spectral Flatness 34.9 31 19.8 13.3 32.4 30
13 MFCCs 90.4 96.5 91.3 97.5 90 91.4
14 Chromagram 79.1 70.6 72.9 66 80.6 80
15 Tonal Centroid 77 60 65.4 53.4 63.6 53.8
Sequential Feature Selection [13,14] [13,14] [13] [13,14] [13,7] [13,14]

Max F-Score 97.5 97.7 93.7 98.2 91.5 92.9

collection we had a total of 50 android devices (iphone5 and Sony Ericsson

W518 were the two non-android devices in our collection). Table 3.10 high-

lights our findings. We see that again MFCCs are the dominant features for

all categories of audio excerpt. This is expected as we saw similar outcomes

in Table 3.6 and Table 3.9.

3.7 Experimental Evaluations

We perform a series of experiments to evaluate how well we can fingerprint

smartphones by exploiting the manufacturing imperfections of microphones

and speakers embedded in them. We look at fingerprinting devices, first, of

different make and model, followed by devices of same make and model, and

finally a combination of both with multiple units of different models. Note

that the audio excerpts used for feature exploration and the ones used for

evaluating our fingerprinting approach in this section are not identical. We

use different audio excerpts belonging to the same three categories listed in

39

Table 3.8: Feature exploration for same make and model smartphones
using only microphone.

Feature

Fingerprinting Microphones
Maximum F-Score (%)

Instrumental Human Speech Song
k-NN GMM k-NN GMM k-NN GMM

1 RMS 40.2 36.9 19.6 20.1 23.5 28.6
2 ZCR 22.7 29.6 26.2 22.6 44.5 41.9
3 Low-Energy-Rate 22.6 24.8 5.2 7.4 10.7 13.4
4 Spectral Centroid 17.3 24.8 16.6 12.9 33.7 35.7
5 Spectral Entropy 29.1 22.2 15.2 15.1 40.3 36
6 Spectral Irregularity 12.6 16.3 13.2 17.9 15.8 18.6
7 Spectral Spread 17.2 22.6 16.4 14.9 36.2 34.8
8 Spectral Skewness 31.8 28.1 20.8 13.7 38 43.1
9 Spectral Kurtosis 28.5 26.1 20.3 14 45.8 39.2
10 Spectral Rolloff 30 32.8 15.1 11.6 46.1 44
11 Spectral Brightness 22.5 20.3 12.6 16 33.1 27.4
12 Spectral Flatness 24.6 23.8 17.2 12.2 39.2 35.5
13 MFCCs 89 93.5 98.8 96.2 94.1 97.5
14 Chromagram 71.5 55.3 75 88.7 87.3 85.3
15 Tonal Centroid 67.8 51.3 70 70.8 83.1 79.4
Sequential Feature Selection [13,8,12] [13,8,12] [13] [13,14,2] [13,14,10] [13,14]

Max F-Score 93 96.7 98.8 97.5 96.3 97.9

Table 3.2, so as to not bias our evaluations. All the evaluations are done

with 50% of the samples (randomly chosen) being used for training and the

remaining 50% for testing.

3.7.1 Fingerprinting Different Make and Model Devices

First, we look at fingerprinting devices of different make and model. So,

we take one representative smartphone from each row of Table 3.1 giving

us a total of 7 different phones. We test our fingerprinting approach using

all three types of audio excerpt. To generate fingerprints we only use the

acoustics features obtained from our sequential feature selection algorithm

as listed in Tables 3.4, 3.5 and 3.6. Table 3.11 summarizes our findings. From

Table 3.11 we see that we can successfully, with an F-score of 100%, identify

which audio clip originated from which smartphone. Similar to speaker, we

also find that microphone properties differ quite substantially across vendors.

We see that by using only the microphone to fingerprint smartphones we can

achieve an F-score of over 97%. Combining microphone with speaker the

40

Table 3.9: Feature exploration for same make and model smartphones
using both speaker and microphone.

Feature

Fingerprinting Speakers and Microphones
Maximum F-Score (%)

Instrumental Human Speech Song
k-NN GMM k-NN GMM k-NN GMM

1 RMS 87.2 83 92.1 93 89.5 89.2
2 ZCR 59.8 60.5 56.8 58.4 67.6 75.2
3 Low-Energy-Rate 67.4 70.9 30.1 36.7 69.7 64.5
4 Spectral Centroid 30.1 27.5 25.7 30.1 35.1 32.7
5 Spectral Entropy 78.5 70.3 52.9 54.8 81.8 81.8
6 Spectral Irregularity 63.9 54.6 32.5 33.6 62.5 67.1
7 Spectral Spread 84.6 81.3 67.6 62.8 87 87.4
8 Spectral Skewness 85.7 88.3 58.7 54.4 70.9 68.9
9 Spectral Kurtosis 80.3 80.6 51.9 49.9 82.2 76.2
10 Spectral Rolloff 79.4 73.4 46.9 51.5 77.2 71.8
11 Spectral Brightness 86 88 75.2 69.2 87.5 79.5
12 Spectral Flatness 79.8 79 45.5 45.4 86.4 87.2
13 MFCCs 100 100 98.7 100 100 100
14 Chromagram 98.8 95.8 97.6 100 100 96.5
15 Tonal Centroid 98.8 94.8 95.2 92.7 100 98.8
Sequential Feature Selection [13] [13] [13] [13] [13] [13]

Max F-Score 100 100 98.7 100 100 100

F-score bumps back up to 100%.2 Thus, a malicious app having access to

speaker and/or microphone can successfully fingerprint smartphones using

only a few acoustic features.

3.7.2 Fingerprinting Same Make and Model Devices

We now look at fingerprinting the 15 Motorola Droid A855 handsets. Ta-

ble 3.12 highlights our findings. We test our fingerprinting approach against

three different forms of audio excerpt. We use the acoustic features obtained

from our sequential feature selection algorithm as listed in Tables 3.7, 3.8

and 3.9. From Table 3.12, we see that we can achieve an F-score of over 94%

in identifying which audio clip originated from which handset using only

the speaker as our source for generating the fingerprints. Using only micro-

phones we can bump up the F-score to 95%. However, we obtain the best

2For fingerprinting smartphones through both microphone and speaker we use our
android app for data collection. And as a result we exclude iPhone5 and Sony Ericsson
W518 handset from this experiment, reducing the pool of handsets to 5 devices.

41

1 2 3 4 5 6 7 8 9 10 11 12 13
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Set 1

Mel−Frequency Cepstral Coefficients

M
a

g
n

it
u

d
e

1 2 3 4 5 6 7 8 9 10 11 12 13
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Set 2

Mel−Frequency Cepstral Coefficients

M
a

g
n

it
u

d
e

1 2 3 4 5 6 7 8 9 10 11 12 13
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
Set 3

Mel−Frequency Cepstral Coefficients

M
a

g
n

it
u

d
e

Figure 3.8: MFCCs for a given audio sample taken from three different
handsets manufactured by the same vendor. We can see that some of the
coefficients vary significantly, thus enabling us to exploit this feature to
fingerprint smartphones.

result when we consider fingerprinting both the speaker and microphone. In

that case we achieve an F-score of 100%. In other words we were able to

fingerprint all test samples correctly when we combined anomalies from both

the embedded microphone and speaker. So, if a malicious app can get access

to the speaker (which does not require explicit permission) and microphone

(which may require explicit permission, but many games nowadays require

access to microphone anyway) it can successfully track individual devices.

3.7.3 Fingerprinting All Make and Model Devices

Lastly, we evaluate how effectively we can fingerprint the 50 android smart-

phones in our collection. The setting is similar to all the previous experiments

where each audio clip is recorded 10 times, 50% of which is used for training

and the remaining 50% for testing. We use our android app to collect all

42

Table 3.10: Feature exploration for 50 android smartphones.

Feature
Maximum F-Score (%)

Instrumental Human Speech Song
k-NN GMM k-NN GMM k-NN GMM

1 RMS 82.7 80 87.3 84 78.7 76.8
2 ZCR 51.3 48.2 50.3 45.9 48.5 45.9
3 Low-Energy-Rate 45.2 40.6 19.4 15.4 31.9 33.8
4 Spectral Centroid 35.6 34.7 23.7 25.8 25.7 30.1
5 Spectral Entropy 56.2 60.8 46.3 48.1 67.7 67.7
6 Spectral Irregularity 46.1 47 25.9 23.6 26.9 35.3
7 Spectral Spread 57.4 57 54.2 49.7 70.9 74.1
8 Spectral Skewness 50.3 53.9 34.5 32.5 52.7 59.9
9 Spectral Kurtosis 45 47.7 37.1 38.6 51.5 54.2
10 Spectral Rolloff 49.5 53.5 48.4 45.9 59.1 62.8
11 Spectral Brightness 52.1 54.5 38.1 35.3 59.2 61.7
12 Spectral Flatness 61 60.1 61.6 63.4 67.3 68.3
13 MFCCs 100 100 100 99.6 100 99.6
14 Chromagram 96.2 93.4 98.9 95.8 99.6 98.2
15 Tonal Centroid 96 89 95.5 91.8 98.5 98.5
Sequential Feature Selection [13] [13] [13] [13] [13] [13]

Max F-Score 100 100 100 99.6 100 99.6

Table 3.11: Fingerprinting different make and model devices.

Hardware
Avg. F-Score (%)

Instrumental Human Speech Song
k-NN GMM k-NN GMM k-NN GMM

Speaker 97.4 100 94.8 100 97.4 100
Microphone 94.8 100 94.8 97.4 97.4 100

Speaker+Microphone 96.3 100 96.3 100 96.3 100

Table 3.12: Fingerprinting same make and model devices.

Hardware
Avg. F-Score (%)

Instrumental Human Speech Song
k-NN GMM k-NN GMM k-NN GMM

Speaker 96.3 98.3 98.8 98.8 92.6 94.5
Microphone 95.3 95.3 98.8 100 96.2 96.1

Speaker+Microphone 100 100 100 100 100 100

the audio samples. Table 3.13 summarizes our fingerprinting results. We

see that we can obtain an F-score of over 98% in fingerprinting all the 50

smartphones. This result suggests that fingerprinting smartphones via mi-

crophones and speakers is truly feasible.

43

Table 3.13: Fingerprinting heterogeneous devices.

Hardware
Avg. F-Score (%)

Instrumental Human Speech Song
k-NN GMM k-NN GMM k-NN GMM

Speaker+Microphone 99 98.3 99.6 99.3 99.6 100

3.8 Sensitivity Analysis

In this section we investigate how different factors such as audio sampling

rate, training set size, the distance between audio-source and recorder, and

background noise impact our fingerprinting accuracy. Such investigations will

help us determine the conditions under which our fingerprinting approach will

be feasible, specially if the attacker is tracking devices in public locations.

For the following set of experiments we only focus on fingerprinting similar

model smartphones from the same vendor (as this has been shown to be a

tougher problem in the previous sections) and consider only fingerprinting

speakers as this is applicable to the scenario where the attacker is tracking

devices in public locations. We also consider recording only ringtones (i.e.,

audio clips belonging to our defined ‘Instrumental’ category in Table 3.2)

for the following experiments. Since we are recording ringtones, we use the

features highlighted in Table 3.7 under the ‘Instrumental’ category.

3.8.1 Impact of Sampling Rate

First, we investigate how the sampling rate of audio signals impacts our fin-

gerprinting precision. To do this, we record a ringtone at the following three

frequencies: 8 kHz, 22.05 kHz and 44.1 kHz. Each sample is recorded 10

times with half of them being used for training and the other half for testing.

Figure 3.9 shows the average precision and recall obtained under different

sampling rates. As we can see from the figure, as sampling frequency de-

creases, the precision/recall also goes down. This is understandable, because

the higher the sampling frequency the more fine-tuned information we have

about the audio sample. However, the default sampling frequency on most

hand-held devices today is 44.1 kHz [112], with some of the latest models

adopting even higher sampling rates [113]. We, therefore, believe sampling

rate will not impose any obstacles for our fingerprinting approach, and in

44

future we will be able to capture more fine grained variations with the use

of higher sampling rates.

 70

 75

 80

 85

 90

 95

 100

44.1 22.05 8

A
v

g
P

r/
A

v
g

R
e

(%
)

Sampling Frequency (kHz)

k-NN AvgPr
k-NN AvgRe
GMM AvgPr
GMM AvgRe

Figure 3.9: Impact of sampling frequency on precision/recall.

3.8.2 Impact Training Set Size

Next, we consider performance of the classifiers in the presence of limited

training data. For this experiment we vary the training set size from 10% to

50% (i.e., from 1 to 5 samples per device) of all available samples. Figure 3.10

shows the evolution of the F-score as training set size is increased. We see

that as the training set size increases the F-score also rises which is expected.

However, we see that even with only three samples per device we can achieve

an F-score of over 90%. This suggests that we do not need too many training

samples to construct a good predictive model.

3.8.3 Impact of Distance between Speaker and Recorder

Now, we inspect how fingerprinting accuracy degrades as the distance be-

tween the audio source (i.e., smartphone) and recorder (i.e., laptop/PC) is

varied. For this experiment we use a separate external microphone as the

signal capturing capacity of the microphone embedded inside a laptop de-

grades drastically as distance increases. We use the relatively inexpensive

($44.79) Audio-Technica ATR-6550 shotgun microphone for this experiment

45

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

1 2 3 4 5

A
v

g
.

F
-s

co
re

 (
%

)

Training set size (# of samples per device)

k-NN
GMM

Figure 3.10: Impact of varying training set size on accuracy.

and vary the distance between the external microphone and smartphone from

0.1 meter to 5 meters. Figure 3.11 summarizes how F-scores changes as the

distance between the smartphone and microphone is varied. We see that as

distance increases, F-score decreases. This is expected, because the longer

the distance between the smartphone and microphone, the harder it becomes

to capture the minuscule deviations between audio samples. However, we see

that even up to two meters we can achieve an F-score of around 93%. This

suggests that our device fingerprinting approach works only up to a certain

distance using off-the-shelf inexpensive commercial microphones. However,

using specialized microphones, such as parabolic microphones (usually used

in capturing animal sounds from a far distance), could help increase the

fingerprinting precision even at longer distances.

3.8.4 Impact of Ambient Background Noise

In this section we investigate how ambient background noise impacts the

performance of our fingerprinting technique. For this experiment we consider

scenarios where there is a crowd of people using their smartphones and we

are trying to fingerprint those devices by capturing audio signals (in this case

ringtones) from the surrounding environment. Table 3.14 highlights the four

different scenarios that we consider. To emulate such environment, external

speakers (2 pieces) are placed between the smartphone and microphone while

46

 60

 65

 70

 75

 80

 85

 90

 95

 100

0.1 1 2 3 4 5

A
v

g
.

F
-s

co
re

 (
%

)

Distance (in meters)

k-NN
GMM

Figure 3.11: Impact of varying the distance between smartphone and
microphone.

recording is taking place. The external speakers are constantly replaying the

respective ambient noise in the background. We consider a distance of two

meters from the audio source to recorder as shown in Figure 3.12.

Figure 3.12: Experimental setup for determining the impact of ambient
background noise.

The ambient background sounds were obtained from PacDV [114] and

SoundJay [115]. We also compute the signal-to-noise (SNR) ratio between

the original ringtone and the different ambient background noise. The RMS

(root-mean-square) value of the different background noise varied from ap-

proximately 13% (17.77 dB) to 18% (14.92 dB) of the RMS value of the

47

ringtone under consideration. Table 3.14 shows our findings (values are re-

ported as percentages). We can see that even in the presence of various

background noise we can achieve an F-score of over 91%.

Table 3.14: Impact of ambient background noise.

Environments
SNR

k-NN GMM

(dB)
Features [13,14]∗ Features [13,14]∗

AvgPr AvgRe AvgF1 AvgPr AvgRe AvgF1
Shopping Mall 15.85 88.8 85.3 87 95.1 93.3 94.2

Restaurant/Cafe 17.77 90.5 89.7 90.1 92.5 90.7 91.6
City Park 15.43 91.7 90 90.8 95.2 94.1 94.6

Airport Gate 14.92 91.3 89.5 90.4 94.5 93.3 93.9

∗ Feature numbers taken from Table 3.7

3.9 Limitations

Our approach has a few limitations. First, we experimented with 52 devices

manufactured by different vendors; it is possible that a larger target device

pool would result in lower accuracy. That said, distinctions across different

device types are more clear; additionally, audio fingerprints may be used

in tandem with other techniques, such as accelerometer fingerprinting [83],

to better discriminate between devices. Secondly, most of the experiments

took place in a lab setting. However, we studied the impact of ambient

background noise and still found our approach to be applicable. Lastly, all

the phones used in our experiments were not in mint condition and some of

the idiosyncrasies of individual microphones and speakers may have been the

result of uneven wear and tear on each device; we believe, however, that this

is likely to occur in the real world as well.

3.10 Summary

In this chapter we show that it is feasible to fingerprint smartphones through

onboard acoustic components like microphones and speakers. As microphone

and speaker are one of the most standard components present in almost all

smartphones available today, this creates a key privacy concern for users.

To demonstrate the feasibility of this approach, we collect fingerprints from

48

52 different phones covering a total of five different brands of smartphones.

Our studies show that it is possible to successfully fingerprint smartphones

through microphones and speakers, not only under controlled environments,

but also in the presence of ambient noise. We believe our findings are im-

portant steps towards understanding the full consequences of fingerprinting

smartphones through acoustic channels.

49

CHAPTER 4

FINGERPRINTING SMARTPHONES VIA
MOTION SENSORS

Motion sensors play a critical role in making smartphones smart. It is be-

cause of motion sensors that users can enjoy sophisticated applications such

as 3-D gaming, augmented reality and fitness monitoring. Motions sensors

provide consumers with a more interactive user experience. Gesture and ac-

tivity based applications are quickly gaining popularity among consumers.

However, these same sensors can be used as side-channels to uniquely track

smartphones. Disturbingly, access to motions sensors is deemed non-sensitive

and thus requires no explicit user permission for accessing them. As a result,

JavaScript embedded in any public web page can easily and surreptitiously

access these sensors while the user is browsing the web page. This would

enable any website to fingerprint the manufacturing imperfections of these

sensors and thereby track physical devices across multiple visits.

4.1 Overview

First, we start with an overview of our approach and describe the attack sce-

nario. Motion sensors such as accelerometers and gyroscopes are available

not only to installed applications but also to HTML5 [116]. And interest-

ingly, websites do not require any explicit permission to access these motion

sensors. So our attack scenario consists of setting up a web page to surrep-

titiously collect accelerometer and gyroscope data as shown in Figure 4.1.

All that is needed is a small block of JavaScript to access and transmit the

sensor data to our server. From the collected data we then aim to “pull out”

the imperfections in sensor circuitry. Manufacturing imperfections result in

each sensor having unique characteristics in their produced signal. These

characteristics can be captured in the form of a fingerprint and be used to

track users across multiple websites. However, practical fingerprinting faces

50

several challenges. During a typical web browsing session, a smartphone is ei-

ther held in a user’s hand, resulting in noisy motion inputs, or is resting on a

flat surface, minimizing the amount of sensor input. Additionally, web APIs

for accessing motion sensor data have significantly lower resolution than what

is available to the operating system and native applications. We show that,

using machine learning techniques, it is possible to combine a large number

of features from both the accelerometer and gyroscope sensor and produce

highly accurate classification despite these challenges. In some cases, we can

improve the classifier accuracy by using an inaudible sound, played through

the speakers, to stimulate the motion sensors. We evaluate our techniques

in a variety of lab settings; additionally, we collected data from volunteer

participants over the web, capturing a wide variety of smartphone models

and operating systems. In our experiments, a web browsing session lasting

in the orders of 25–30 seconds is sufficient to generate a fingerprint that can

be used to recognize the phone in the future with only 5–6 seconds worth of

web browsing session.

Figure 4.1: Fingerprinting motion sensors through HTML5.

4.2 Data Collection Setup and Data Processing

In this section we will depict our data collection process. We will also describe

our data processing steps.

4.2.1 Data Collection Setup

Given that mobile accounts for a third of all global web pages served [117],

our data collection process consists of developing our own web page to collect

sensor data.1 We obtain IRB approval for collecting sensor data. Our web

1http://datarepo.cs.illinois.edu/DataCollectionHowPlaced.html

51

page contains a JavaScript to access motion sensors like accelerometer and

gyroscope. We create an event listener for device motion in the following

manner:

window.addEventListener(‘devicemotion’,motionHandler)

Once the event listener is registered, the motionHandler function can access

accelerometer and gyroscope data in the following manner:

function motionHandler(event){

// Access Accelerometer Data

ax = event.accelerationIncludingGravity.x;

ay = event.accelerationIncludingGravity.y;

az = event.accelerationIncludingGravity.z;

// Access Gyroscope Data

rR = event.rotationRate;

if (rR != null){

gx = rR.alpha;

gy = rR.beta ;

gz = rR.gamma;

}

}

However, since we collect data through the browser the maximum ob-

tainable sampling frequency is lower than the available hardware sampling

frequency (restricted by the underlying OS). Table 4.1 summarizes the sam-

pling frequencies obtained from the top 5 mobile browsers [118].2 We use

a Samsung Galaxy S3 and iPhone 5 to test the sampling frequency of the

different browsers. Table 4.1 also highlights the motion sensors that are ac-

cessible from the different browsers. We see that Chrome provides the best

sampling frequency on both platforms while the default Android browser is

the most restrictive browser in terms of not only sampling frequency but

also access to different motion sensors. Chrome being the most popular mo-

bile browser [119], we collect data using the Chrome browser. One thing

to remember is that the sample rate available at any instance of time de-

pends on multiple factors such as the current battery life and the number of

applications running in the background.

2Computed the average time to obtain 100 samples. http://datarepo.cs.illinois.edu/
SamplingFreq.html

52

Table 4.1: Sampling frequency from different browsers.

OS Browser
Sampling Accessible

Frequency (∼Hz) Sensors∗

Android 4.4

Chrome 100 A,G
Android 20 A
Opera 100 A,G

UC Browser 20 A,G
Standalone App [120] 200 A,G

iOS 8.1.3
Safari 100 A,G

Chrome 100 A,G
Standalone App [121] 100 A,G

∗ ‘A’ means accelerometer and ‘G’ refers to gyroscope

Now, since our fingerprinting approach aims to capture the inherent im-

perfections of motion sensors, we need to keep the sensors stationary while

collecting data. Therefore, by default, we have the phone placed flat on

a surface while data is being collected, unless explicitly stated otherwise.

This mimics the scenario where the user has placed his/her smartphone on

a desk while browsing a web page. We, however, do test our approach for

the scenario where the user is holding the smartphone in his/her hand while

sitting down quietly. Also, as gyroscopes react to audio stimulation we collect

data under three different background audio-settings. Table 4.2 describes the

three types of audio stimulation. For the latter two audio stimulations the

corresponding audio file is played in the background of the browser while

data is being collected. Under each setting we collect 10 samples where each

sample is about 5 to 6 seconds worth of data (so, total data collection time

is in the range of 1 minute per setting). Our web page collects all sensor

data is in the background without interfering with the user’s browsing expe-

rience and then sends the data to our back-end server for analysis. For the

purpose of labeling our data we plant a unique random number inside the

cookie. This provides us with ground truth data, thus, making it possible to

correlate data samples coming from the same physical device.3

Screenshots of our data collection website is provided in Figure 4.2. As

you can see from the figure users are first asked to place the device on a flat

surface before proceeding to the next step of the data collection process.

3It is possible that users cleared this cookie, but we do not expect this to happen with
enough frequency to significantly affect our data.

53

Table 4.2: Types of background audio stimulation.

Type Description
No-audio No audio stimulation present

Sine 20 kHz sine wave played through the speaker
Song A popular song played through the speaker

(a) Instruction page (b) Settings for data collection

Figure 4.2: Screenshots of our data collection website. Users are first
asked to place the device on a flat surface before selecting a specific
background audio-stimulation.

4.2.2 Data Processing

Data from motion sensors can be thought of as a stream of timestamped

real values. For both accelerometer and gyroscope we obtain values along

three axes. So, for a given timestamp, t, we have two vectors of the following

form: ~a(t) = (ax, ay, az) and ~ω(t) = (ωx, ωy, ωz). The accelerometer values

include gravity, i.e., when the device is stationary lying flat on top of a sur-

face we get a value of 9.81 ms−2 along the z-axis. We convert the acceleration

vector into a scalar by taking its magnitude: |~a(t)| =
√
a2x + a2y + a2z. This

technique discards some information, but has the advantage of making the

accelerometer data independent of device orientation; i.e., if the device is sta-

tionary the acceleration magnitude will always be around 9.81 ms−2, whereas

54

the reading on each individual axis will vary greatly (by +/- 1g) depending

on how the device is held. For the gyroscope we consider data from each

axis as a separate stream, since there is no corresponding baseline rotational

speed. In other words, if the device is stationary the rotation rate along all

three axes should be close to 0 rads−1, irrespective of the orientation of the

device. Thus, our model considers four streams of sensor data in the form of

{|~a(t)|, ωx(t), ωy(t), ωz(t)}.
For all data streams, we also look at frequency domain characteristics.

But since the browser, running as one of many applications inside the phone,

makes API calls to collect sensor data the OS might not necessarily respond in

a synchronized manner.4 This results in non-equally spaced data points. We,

therefore, use cubic-spline interpolation [122] to construct new data points

such that {|~a(t)|, ωx(t), ωy(t), ωz(t)} become equally-spaced.

4.3 Temporal and Spectral Features

To summarize the characteristics of a sensor data stream, we explore a total

of 25 features consisting of 10 temporal and 15 spectral features (listed in

Table 4.3). As we have four data streams, we have a total of 100 features

to summarize the unique characteristics of the motion sensors. A brief de-

scription of each feature follows, but since many of the features overlap with

the features described in Section 3.4, we refrain ourselves from describing the

overlapping features.

Mean Signal Value: This feature computes the arithmetic mean of a

signal amplitude. In the case of a set of N values {x1, x2, . . . , xN}, the mean

value is given by the following formula:

µ =
1

N
(x1 + x2 + · · ·+ xN) (4.1)

The mean value provides an approximation of the average signal strength.

Signal Standard Deviation: This feature computes the dispersion in

signal strength. For a set of N values {x1, x2, . . . , xN}, the standard deviation

4Depending on current load and priority of other running applications, OS might
prioritize such API calls differently.

55

Table 4.3: Explored temporal and spectral features.

Domain Feature
1

Time

Mean
2 Standard Deviation
3 Average Deviation
4 Skewness
5 Kurtosis
6 RMS
7 Max
8 Min
9 ZCR
10 Non-Negative count
11

Frequency

Spectral RMS
12 Low-Energy-Rate
13 Spectral Centroid
14 Spectral Entropy
15 Spectral Irregularity
16 Spectral Spread
17 Spectral Skewness
18 Spectral Kurtosis
19 Spectral Rolloff
20 Spectral Brightness
21 Spectral Flatness
22 Spectral Roughness
23 Spectral Flux
24 Spectral Attack Time
25 Spectral Attack Slope

is given by the following formula:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (4.2)

where µ refers to the mean signal strength. Standard deviation measures the

spread of a signal strength.

Average Deviation: This feature measures the average distance from

mean. In the case of a set of N values {x1, x2, . . . , xN}, the average deviation

is computes using the following formula:

AvgDev =
1

N

N∑
i=1

|xi − µ| (4.3)

where µ refers to the mean signal strength.

56

Skewness: This feature measures asymmetry around mean. For a set of

N values {x1, x2, . . . , xN}, the skewness is computed as:

γ1 =
1

N

(
N∑
i=1

(
xi − µ
σ

)3

)
(4.4)

where µ and σ respectively represents the mean and standard deviation of

signal strength.

Kurtosis: This feature measures the flatness or spikiness of a distribution.

For a set of N values {x1, x2, . . . , xN}, the kurtosis is computed as:

β1 =
1

N

(
N∑
i=1

(
xi − µ
σ

)4

)
(4.5)

where µ and σ respectively represents the mean and standard deviation of

signal strength.

Spectral Roughness: Spectral roughness computes the average of the

dissonance between all possible pairs of peaks in a spectrum [123, 124].

Spectral Flux: Spectral flux is a measure of how quickly the power spec-

trum of a signal changes. It is calculated by taking the average Euclidean

distance between the power spectrum of two contiguous frames [124].

Spectral Attack Time: This features computes the average rise time

to spectral attacks where spectral attacks are local maxima in the spec-

trum [124].

Spectral Attack Slope: This features computes the average slope to spec-

tral attacks where spectral attacks are local maxima in the spectrum [124].

4.4 Classification Algorithms and Evaluation Metrics

Let us briefly discuss the classification algorithms and evaluation metrics used

for fingerprinting smartphones before we proceed to the evaluation section.

57

4.4.1 Classification Algorithms

Once we have features extracted from the sensor data, we use supervised

learning algorithms to identify the source sensor. Any supervised learning

classifier has two main phases: training phase and testing phase. During

training, features from all smartphones (i.e., labeled data) are used to train

the classifier. In the test phase, the classifier predicts the most probable

class for a given (unseen) feature vector. We evaluate the performance of the

following classifiers — Support Vector Machine (SVM), Naive-Bayes classi-

fier, Multiclass Decision Tree, k-Nearest Neighbor (k-NN), Quadratic Dis-

criminant Analysis classifier and Random Forest (MATLAB’s Treebagger

model [125]). In general, we found that ensemble based approaches like ran-

dom forest outperforms other classifiers. We report the maximum achievable

accuracies from these classifiers.

For training and testing the classifiers we randomly split the dataset in

such a way that 50% of data from each device goes to the training set while

the remaining 50% goes to the test set. To prevent any bias in the selection

of the training and testing set, we randomize the training and testing set 10

times and report the average F-score. We also compute the 95% confidence

interval, but we found it to be less than 1% in most cases and hence do not

report them in such cases. For analyzing and matching fingerprints we use a

desktop machine with an Intel i7-2600 3.4 GHz processor with 12 GiB RAM.

We found that the average time required to match a new fingerprint was

around 10–100 ms.

4.4.2 Evaluation Metrics

For evaluation metrics we use the same set of standard multiclass classifi-

cation metrics as described in Section 3.5.2. That is we first compute pre-

cision and recall, and then take the harmonic mean of precision and recall

to compute F-score. We use the F-score to report the effectiveness of our

fingerprinting approach.

58

4.5 Experimental Setup

Our experimental setup consists of collecting data from both lab setting and

public setting. In the lab setting we collect data from lab phones in our

office. For the public setting we request participants to visit our web page

with their smartphone from wherever they desire.

4.5.1 Lab Setting

We kick off our data collection by gathering data from 30 lab phones. Ta-

ble 4.4 lists the distribution of the different smartphones from which we

collect sensor data.

Table 4.4: Types of lab phones used.

Maker Model Quantity

Apple
iPhone 5 4
iPhone 5s 3

Samsung
Nexus S 14

Galaxy S3 4
Galaxy S4 5

Total 30

For the lab setting we collect data under all three audio stimulations (as

described in Table 4.2). Also, data is collected for both when the device in

placed flat on top of a surface as well as when it is placed in the hand of the

user while sitting down.

4.5.2 Public Setting

Next, we expand our data collection process to cover real world public set-

tings. We invite people to voluntarily participate in our study. Participants

are asked to visit our web page and follow a few simple steps to provide us

with sensor data. We recruit participants through institutional mass email

and online social networks. We asked participants to provide data under

two settings: no-audio setting and the inaudible sine-wave setting (we avoid

the background song setting to make the experience less bothersome for the

user). Each setting collected sensor data for about one minute, requiring

a total of two minutes of participation. Over the course of two weeks, we

59

received data from a total of 76 devices. However, some participants did

not follow all the steps and as a result we were able to use only 63 of the

76 submissions. Figure 4.3 shows the distribution of the different devices

that participated in our study.5 We can see from Figure 4.3 that our public

dataset covers a diverse set of smartphones covering majoring vendors like

Apple and Samsung.

Samsung Galaxy S4
iphone 5s

Google Nexus 4
Google Nexus 5

Samsung Galaxy S3
iphone 5
iphone 6
iphone 4

HTC One
iphone 4s

Motorola Moto
Samsung Galaxy S5

Google Nexus 6
LG G3

LG L90
Samsung Galaxy Note 2
Samsung Galaxy Note 3
Samsung Galaxy Note 4

Motorola Droid

0% 10% 20%
19.74%

11.84%

9.21%

9.21%

6.58%

6.58%

5.26%

5.26%

5.26%

3.95%

3.95%

2.63%

2.63%

1.32%

1.32%

1.32%

1.32%

1.32%

1.32%

Figure 4.3: Distribution of participant device models.

4.5.3 Analytic Tools

To extract spectral features we use the following signal-analytic tools and

modules: MIRtoolbox [91] and Libxtract [126]. For feature selection we use

the FEAST toolbox [127]. Lastly, for classifiers we use MATLAB’s Machine

Learning Toolbox [125].

4.6 Feature Exploration

We perform feature exploration to determine if inclusion of too many fea-

tures worsens performance due to their varying accuracies and potentially

conflicting signatures. We, therefore, explore all the features and determine

5We used https://web.wurfl.io/ to obtain the make and model of a smartphone.

60

the subset of features that optimize our fingerprinting accuracy. For tem-

poral features, no transformation of the data stream is required, but for

spectral features we first convert the non-equally spaced data stream into a

fixed-spaced data stream using cubic spline interpolation. We interpolate at

a sampling rate of 8 kHz.6 Then, we use MIRtoolbox and Libxtract to extract

spectral features. Once feature extraction is complete, we look at feature se-

lection where we explore different combinations of features to maximize our

fingerprinting accuracy. We use the FEAST toolbox [127] and utilize the

Joint Mutual Information criterion (JMI criterion is known to provide the

best tradeoff in terms of accuracy, stability, and flexibility with small data

samples [128]) for ranking the features.

Figure 4.4 shows the results of our feature exploration for the 30 lab smart-

phones. We see that when using only accelerometer data the F-score seems

to flatten after considering the top 10 features. For gyroscope data we see

that using all 75 features (25 per data stream) achieves the best result. And

finally when we combine both accelerometer and gyroscope features, we see

that the F-score plateaus after considering the top 70 features (from a total

of 100 features). Among these top 70 features we found that 21 of them

came from accelerometer features and the remaining 49 came from gyro-

scope features. In terms of the distribution between temporal and spectral

features, we found that spectral features dominated with 44 of the top 70

features being spectral features. We use this subset of features in all our later

evaluations.

4.7 Experimental Evaluations

In this setting we evaluate how well we can fingerprint smartphones using

onboard motion sensors. We will first look at fingerprinting smartphones

from our lab setting, followed by smartphones from our public setting and

finally we will look at fingerprinting all smartphones in our collection.

6Although up-sampling the signal from ∼100 Hz to 8 kHz does not increase the accu-
racy of the signal, it does make direct application of standard signal processing tools more
convenient.

61

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30

A
v

g
.

F
-s

co
re

 (
%

)

Number of features

Using accelerometer data only

No-audio
Sine

Song
 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

A
v

g
.

F
-s

co
re

 (
%

)

Number of features

Using gyroscope data only

No-audio
Sine

Song

 95

 96

 97

 98

 99

 100

 0 10 20 30 40 50 60 70 80 90 100 110

A
v
g
.
F

-s
co

re
 (

%
)

Number of features

Using both accelerometer and gyroscope data

No-audio
Sine

Song

Figure 4.4: Exploring the number optimal features for different sensors.
a) For accelerometer using more than the top 10 features leads to
diminished returns, b) For gyroscope all 75 features contribute to obtaining
improved accuracy, c) For the combined sensor stream using more than 70
features leads to diminished returns.

4.7.1 Results from Lab Setting

First, we look at fingerprinting smartphones under lab setting to demonstrate

the basic viability of the attack. For this purpose we keep smartphones

stationary on top of a flat surface. Table 4.5 summarizes our results. We

see that we can almost correctly identify all 30 smartphones under all three

scenarios by combining accelerometer and gyroscope features. Even when

devices are kept in the hand of the user, we can successfully identify devices

with an F-score of greater than 93%. While the benefit of the background

audio stimulation is not clear from this table, we will later on show that

audio stimulation do in fact enhance fingerprinting accuracy in the presence

of countermeasure techniques like sensor calibration and data obfuscation

(more on this in Chapter 7). Overall these results indicate that it is indeed

possible to fingerprint smartphones through motion sensors.

62

Table 4.5: Average F-score under lab setting.

Device
Stimulation

Avg. F-score (%)
Placed Accelerometer Gyroscope Accelerometer+Gyroscope

On Desk
No-audio 96 95 99

Sine 98 99 100
Song 93 98 100

In Hand
No-audio 88 83 93

Sine 88 94 98
Song 84 89 95

4.7.2 Results from Public Setting

Next, we apply our fingerprinting approach on the public dataset. Table 4.6

shows our findings. Compared to the results from our lab setting, we see a

slight decrease in F-score but even then we were able to obtain an F-score of

95%. Again, the benefit of the audio stimulation is not evident from these

results, however, their benefits will become more visible in the Chapter 7

when we discuss countermeasure techniques.

Table 4.6: Average F-score under public setting where smartphones are
kept on top of a desk.

Stimulation
Avg. F-score (%)

Accelerometer Gyroscope Accelerometer+Gyroscope
No-audio 86 87 95

Sine 85 87 92

4.7.3 Results from Combined Setting

Finally, we combine our lab data with the publicly collected data to give

us a combined dataset containing 93 different smartphones. We apply the

same set of evaluations on this combined dataset. Table 4.7 highlights our

findings. Again, we see that combining features from both sensors provides

the best result. In this case we obtained an F-score of 96%. All these results

suggest that smartphones can be successfully fingerprinted through motion

sensors.

63

Table 4.7: Average F-score under both lab and public setting where
smartphones are kept on top of a desk.

Stimulation
Avg. F-score (%)

Accelerometer Gyroscope Accelerometer+Gyroscope
No-audio 85 89 96

Sine 89 89 95

4.8 Sensitivity Analysis

In this section we will look at how robust our fingerprints are as we vary the

size of the device population and training set. We also study how our sensor

fingerprints react to temperature change. Finally, we investigate temporal

stability of motion sensors.

4.8.1 Impact of Device Number

We evaluate the accuracy of our classifier while varying the number of de-

vices. We pick a subset of n devices from our dataset and perform the

training and testing steps for this subset. For each value of n, we repeat

the experiment 10 times, using a different random subset of n devices each

time. In this experiment we only consider the use of both accelerometer and

gyroscope features, since they produce the best performance (as evident from

our previous results), and focus on the no-audio and sine wave background

scenarios. Figure 4.5 shows that the F-score generally decreases with large

number of devices, which is expected because an increased number of unique

labels makes classification more difficult. But even then scaling from 10 de-

vices to 93 devices the F-score decreases by only 4%. Extrapolating from

the graph, we expect classification to remain accurate even for significantly

larger datasets.

4.8.2 Impact of Training Set Size

We also consider how varying the training set size impacts the fingerprint-

ing accuracy. For this experiment we vary the ratio of training and testing

set size. For this experiment we only look at data from our lab setting as

many of the devices from our public setting did not have exactly 10 samples.

64

 95

 96

 97

 98

 99

 100

 5 10 15 20 25 30

A
v

g
.

F
-s

co
re

 (
%

)

Number of devices

Lab setting
No-audio
Sine

 86
 88
 90
 92
 94
 96
 98

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65

A
v

g
.

F
-s

co
re

 (
%

)

Number of devices

Public settingNo-audio
Sine

 86
 88
 90
 92
 94
 96
 98

 100

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

A
v

g
.

F
-s

co
re

 (
%

)
Number of devices

Combined settingNo-audio
Sine

Figure 4.5: Average F-score for different numbers of smartphones. F-score
generally tends to decrease slightly as more devices are considered.

We also consider the setting where there is no background audio stimulation

and use the combined features of accelerometer and gyroscope. Figure 4.6

shows our findings. While an increased training-set size improves classifi-

cation accuracy, even with mere two training samples (each consisting of

5–6 seconds worth of sensor data) we can achieve an F-score of 98%; with

increased training set sizes producing an F-score of over 99%.

4.8.3 Impact of Temperature

Here we analyze how temperature impacts the fingerprint of smartphone sen-

sors. For this purpose we collect sensor data under different temperatures.

We took one set of readings outside our office building on September 03, 2015

(with temperatures in the range of 91◦F to 93◦F) while we took another set

of readings on October 9, 2015 (with temperatures in the range of 61◦F to

63◦F). In both cases we also took readings inside the office where tempera-

65

 95

 96

 97

 98

 99

 100

2:8 3:7 4:6 5:5 6:4 7:3 8:2

A
v

g
.

F
-s

co
re

 (
%

)

Training Set Size : Test Set Size

Using both accelerometer and gyroscope data

No-audio

Figure 4.6: Average F-score for different ratio of training and testing
data. With only two training data we achieved an F-score of 98%.

ture was set to around 74◦F on the thermostat. As these set of experiments

were conducted at a later period of time compared to our other experiments,

we were only able to collect data from 17 smartphones (as described in Ta-

ble 4.8).7 Therefore, the results described in this section are in the context

of the smartphones specified in Table 4.8.

Table 4.8: Types of phones used for analyzing temperature effect.

Maker Model Quantity

Apple
iPhone 5 4
iPhone 5s 3

Samsung
Nexus S 3

Galaxy S3 2
Galaxy S4 5

Total 17

Table 4.9 summarizes our findings. We refer to September 03, 2015 as

a hot day and October 09, 2015 as a cold day. From Table 4.9 we see

that temperatures do lower F-score where warmer temperatures cause more

discrepancies in the generated fingerprints compared to colder temperatures

(as indicated by the red and blue blocks in the table).

7We only had access to these 17 smartphones at the time of conducting this experiment.

66

Table 4.9: Impact of temperature on motion sensor fingerprinting.

Test (Avg. F-score in %)
No-audio

Inside (hot) Outside (hot) Inside (cold) Outside (cold)
Inside (hot) 100∗ 89 90 92

Outside (hot) 90 100∗ 81 75
Inside (cold) 89 77 100∗ 97

Train

Outside (cold) 86 82 99 100∗

Test (Avg. F-score in %)
Sine wave

Inside (hot) Outside (hot) Inside (cold) Outside (cold)

Inside (hot) 100∗ 80 92 91
Outside (hot) 83 99∗ 82 72
Inside (cold) 88 72 100∗ 90

Train

Outside(cold) 85 69 92 100∗

∗ 50% of the dataset is used for training and remaining 50% for testing

4.8.4 Temporal Stability

We now take a closer look at how the fingerprints evolve over time. For this

purpose we reuse data collected from Section 4.8.3. As we collected data

inside our lab in two different dates (one on September 03, 2015 and the

other on October 09, 2015) we can analyze how sensor fingerprints change

over time and how they impact our F-score. Table 4.10 summarizes our

findings. We see that over time fingerprints do change to some extent, but

even then we can achieve an F-score in the range of 88–92%.

Table 4.10: Fingerprinting sensors at different dates.

Test (Avg. F-score in %)
No-audio

Sept. 03, 2015 Oct. 09,2015
Sept. 03, 2015 100∗ 90

Train
Oct. 09,2015 89 100∗

Test (Avg. F-score in %)
Sine wave

Sept. 03, 2015 Oct. 09,2015
Sept. 03, 2015 100∗ 92

Train
Oct. 09,2015 88 100∗

∗ 50% of the dataset is used for training and remaining
50% for testing

67

4.9 Summary

In this chapter, we show that motion sensors such as accelerometer and gy-

roscope can be used to uniquely identify smartphones. The more concerning

matter is that these sensors can be surreptitiously accessed by a web page

publisher without users’ awareness. We do, however, experiment with only

93 devices; a larger target device pool could lower our accuracy. In the next

chapter, we will look at how our fingerprinting approach scales with large

number of smartphones.

68

CHAPTER 5

LARGE-SCALE MOTION SENSOR
FINGERPRINTING

In this chapter we extend our work on motion sensor fingerprinting for a large

pool of smartphones. We also develop a generic model to estimate prediction

accuracies for larger-scale user populations.

5.1 Overview

An important question that we want to address is whether our fingerprinting

approach can be effective at scale. To answer this question we first perform a

larger-scale evaluation of our approach by collecting motion sensor data from

a total of 610 devices. We rerun our classifications on this large dataset and

show that high classification accuracy is still feasible. We then use the data

we collected to develop a model to predict classification accuracies for even

larger datasets, by fitting a parametric distribution to model inter- and intra-

cluster distances. These distributions are then used to predict the accuracy

of a k-NN classifier, used with state-of-the-art distance metric learning tech-

niques. Our evaluation reveals that even with 100 000 devices an accuracy

of 10–16% can be achieved depending on training set size, which suggests

that motion sensor fingerprinting can be effective when combined with even

a weak browser fingerprint. Note that because k-NN underperforms other

classifiers, such as a random forest (or bagged trees), our estimate of accuracy

is quite conservative.

5.2 Data Collection

After our initial recruitment of users through institutional mass email and

social media like Facebook and Twitter (as described in Section 4.5.2), we

extend our data collection through Amazon’s Mechanical Turk [129]. Users

69

are asked to visit our web page while placing their smartphone on a flat

surface. Thus, mimicking the scenario where the user has placed his/her

smartphone on a desk while browsing a web page. We only collect data for

the no-audio setting (as described in Table 4.2), so our web page collects 10

samples consecutively where each sample is 5–6 seconds worth of sensor data;

total participation time is in the range of 1 minute. In total, we had a total of

610 participants over a period of three months.1 We obtained data from 108

different brands (i.e., make and model) of smartphones with different models

of iPhone comprising nearly half of the total devices as shown in Appendix B.

Since some participation was voluntary for users not using Mechanical

Turk, we had many devices for which we had fewer than 10 samples. Fig-

ure 5.1 shows the distribution of the different number of samples per device.

Also, we received data from participants at various sampling rates ranging

from 20 Hz to 120 Hz. This maybe caused by various factors such as the cur-

rent battery life or the number of applications running in the background.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

3.93 3.11 3.61 3.44 3.77 2.95 2.46
3.93

7.21

65.57

Number of samples per device

%
 o

f
D

e
v
ic

e
s

Figure 5.1: Distribution of the number of data samples per smartphone.

1This 610 devices included 30 lab phones, 63 public phones and 517 Mechanical Turk
participant phones.

70

5.3 Classification Algorithms and Metrics

Classification Algorithms: In Chapter 4 we saw that ensemble based

approaches such as random forest (i.e., bagged decision trees) out perform

other multiclass classifiers. We, therefore, only explore the performance of

the following two classifiers in this chapter: k -Nearest Neighbor (k -NN) and

random forest (MATLAB’s Treebagger model) [125].

Evaluation metrics: We use F-score (described in Section 3.5.2) to report

real world large-scale evaluation results. To evaluate large-scale simulation

results we use Accuracy as our evaluation metric.2 Accuracy is defined as

the portion of test traces that are correctly classified.

Accuracy, Acc =
of samples correctly classified

Total test samples
(5.1)

5.4 Fingerprinting Large Number of Smartphones

We had a total of 610 participants in our data collection study. To evaluate

the performance of the classifiers, we first split our dataset into training and

testing set. As we have devices with different number of data samples (see

Figure 5.1), we evaluate F-score for different number of training samples. To

prevent any bias in the selection of training and testing set, we randomly

select training and testing samples and rerun our experiments 10 times to

report the average F-score.3 Table 5.1 summarizes the average F-score for

different number of training samples per device.

From Table 5.1 we see that we can achieve high classification accuracy

even for this larger dataset. With five training samples, which correspond

to about 25 seconds of data, accuracy is 86%, increasing to 90% with 9

training samples. Even with a single 5 seconds worth of data sample, we

can obtain 33% accuracy, which may be sufficient if a small amount of extra

information can be obtained through other browser fingerprinting techniques,

however weak.

2Accuracy can be thought of as a relaxed version of F-score.
3We also compute the 95% confidence interval for F-score, but we found it to be less

than 1% in most cases.

71

Table 5.1: Average F-score for different size of training set.

Training Number Avg. F-score (%)
samples of Random

per device devices Forest∗

1 586 33
2 567 65
3 545 78
4 524 83
5 501 86
6 483 88
7 468 89
8 444 89
9 400 90

∗ 100 bagged decision trees

5.5 Large-Scale Simulation

Although we have shown that we can reliably fingerprint up to a few hundred

devices, in real world scenarios the fingerprinted population will be much

larger. It is not feasible for us to collect data on much larger datasets;

instead, we develop a model to predict how well a classifier will perform

as the number of devices grows. However, although random forest provides

the best classification performance, on our dataset, its operation is hard

to model, as different trees use a different random sample of features. We

therefore base our analysis on nearest-neighbor classifier (k-NN), which uses

a distance metric that we can model parametrically. Note that k-NN does not

perform as well as random forest; as a result, our estimates are a conservative

measure of the actual attainable classification accuracies.

5.5.1 Distance Metric Learning

The k-NN algorithm relies on a distance metric to identify neighboring points.

It is possible to compute simple Euclidean distance between feature vectors;

however, this is unlikely to yield optimal results as some features will tend

to dominate. Learning a better distance (or similarity) metric between data

points has received much attention in the field of machine learning, pattern

recognition and data mining for the past decade [130]. Handcrafting a good

distance metric for a specific problem is generally difficult and this has led

72

to the emergence of metric learning. The goal of a distance metric learning

algorithm is to take advantage of prior information, in form of labels, to au-

tomatically learn a transformation for the input feature space. A particular

class of distance function that exhibits good generalization performance for

distance-based classifiers such as k -NN, is Mahalanobis metric learning [131].

The aim is to find a global, linear transformation of the feature space such

that relevant dimensions are emphasized while irrelevant ones are discarded.

The linear transformation performs arbitrary rotations and scalings to con-

form to the desired geometry. After projection, Euclidean distance between

data points is measured.

State-of-the-art Mahalanobis metric learning algorithms include Large Mar-

gin Nearest Neighbor (LMNN) [132], Information Theoretic Metric Learning

(ITML) [133] and Logistic Discriminant Metric Learning (LDML) [134]. A

brief description of these metric learning algorithms is provided by Köstinger

et al. [131]. To understand how these metric learning algorithms improve the

performance k -NN classifier, we first plot the mutual information (MI) of

each feature before and after each transformation. Figure 5.2 shows the

amount of mutual information per feature under both untransformed and

transformed settings. Figure 5.2 shows a clear benefit of the distance met-

ric learning algorithms. All the transformations provide higher degree of

mutual information compared to the original untransformed data. Among

the three transformations we see that LDML on average provides slightly

higher amount mutual information per feature. Distribution of the top 12

features for both original and LDML-transformed feature space is provided

in Appendix A.

To show that LDML provides the best transformation on our dataset we

rerun the k -NN classifier on the transformed feature space. Table 5.2 high-

lights the average F-score for different metric learning algorithms. We see

that for our dataset, LDML seems to be the best choice. We, therefore, use

LDML algorithm to transform our feature space before applying k -NN for

the rest of this chapter.

However, even with LDML, k-NN generally underperforms random forest,

as seen in Table 5.3: our F -score drops from 78% to 50% with 3 training

samples and from 86% to 54% with 5 training samples. The only exception

occurs for one training sample where k-NN with LDML performs slightly

better than random forest.

73

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

M
I

(i
n

 b
it
s
)

Features sorted by MI

Original Untransformed Data

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

M
I

(i
n

 b
it
s
)

Features sorted by MI

LMNN Transformed Data

(a) (b)

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

M
I

(i
n

 b
it
s
)

Features sorted by MI

ITML Transformed Data

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

M
I

(i
n

 b
it
s
)

Features sorted by MI

LDML Transformed Data

(c) (d)

Figure 5.2: Comparing mutual information for different metric learning
algorithms. Mutual information per feature for (a) untransformed data (b)
LMNN transformation (c) ITML transformation, and (d) LDML
transformation.

Table 5.2: Performance of different metric learning algorithms.

Avg. F-score for k -NN∗

Untransformed LMNN ITML LDML
35 41 46 50

∗ k = 1 with 3 training samples per device

5.5.2 Intra- and Inter-Device Distance Modeling

To predict how k-NN will operate on larger datasets, we proceed to derive

a distribution for distances between samples from different devices (inter-

device), and a second distribution for distances between different samples

from the same device (intra-device), after applying the LDML transformation

to the feature space. Since each data sample is a point in an n-dimensional

feature space, we compute the Euclidean distance between any two data

74

Table 5.3: Average F-score of k-NN after LDML.

Training Number Avg. F-score (%)
samples of

k -NN
∗

k -NN+LDML
∗ Random

per device devices Forest
+

1 586 24 38 33
2 567 31 43 65
3 545 35 50 78
4 524 36 52 83
5 501 38 54 86
6 483 38 54 88
7 468 38 53 89
8 444 37 52 89
9 400 35 50 90

∗ k = 1
+ 100 bagged decision trees

samples using the following equation:

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (5.2)

where p and q represent two feature vectors in an n-dimensional space de-

fined as follows, p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn). We then group

distances between feature vectors from the same device into one class Cintra

and distances between feature vectors from different devices into another

class Cinter. Class Cintra and Cinter can be defined as follows:

Cintra = {x : x = d(p, q), p ∈ Di, q ∈ Di,∀i ∈ D}

Cinter = {x : x = d(p, q), p ∈ Di, q ∈ Dj, i 6= j,∀i, j ∈ D}

where D refers to the set of all devices; we consider only devices with at

least two training samples, we have 567 such devices. We can now fit an

individual distribution for each class. To do this we utilize MATLAB’s fitdist

function [135]. To avoid overfitting, we split our devices into four equal

subsets. We then fit and compare distributions from each subset. Figure 5.3

shows the top five estimated inter-device distance (Cinter) distributions for

each subset of devices. Here, the distributions are ranked based on Akaike

Information Criterion (AIC) [136]. From Figure 5.3 we can see that the top

75

five distributions are more or less consistent across all four subsets.

For 141 devices

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Probability Density Function

empirical

inverse gaussian

birnbaumsaunders

lognormal

generalized extreme value

burr

For 141 devices

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Probability Density Function

empirical

birnbaumsaunders

inverse gaussian

lognormal

generalized extreme value

loglogistic

For 141 devices

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Probability Density Function

empirical

inverse gaussian

birnbaumsaunders

lognormal

generalized extreme value

burr

For 141 devices

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Probability Density Function

empirical

inverse gaussian

birnbaumsaunders

lognormal

generalized extreme value

burr

Figure 5.3: Estimated inter-device distance distributions for 4 subsets of
devices where each subset contains 141 devices.

We see similar outcomes when we plot the intra-device distance (Cintra)

distributions. Figure 5.4 shows the top five estimated distributions for each

subset of devices. Again we can see that certain parametric distributions are

present across all four subsets.

Next, we plot the same inter-device distance distribution but this time

we consider data from all 567 devices. Figure 5.5(a) highlights the top five

distributions. Comparing Figure 5.3 and Figure 5.5(a), we see that the most

representative inter-device distance distribution is an Inverse Gaussian dis-

tribution. Similarly, we find that the most likely intra-device distance dis-

tribution (Cintra) is a Generalized extreme value distribution as shown in

Figure 5.5(b). Figure 5.5(c) shows the difference between intra- and inter-

device distance distribution.

76

For 141 devices

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Probability Density Function

empirical

gamma

generalized extreme value

burr

nakagami

weibull

For 141 devices

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Probability Density Function

empirical

generalized extreme value

tlocationscale

logistic

normal

extreme value

For 141 devices

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Probability Density Function

empirical

generalized extreme value

burr

gamma

lognormal

loglogistic

For 141 devices

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Probability Density Function

empirical

gamma

burr

generalized extreme value

lognormal

birnbaumsaunders

Figure 5.4: Estimated intra-device distance distributions for 4 subsets of
devices where each subset contains 141 devices.

5.5.3 Simulating k-NN for Large Number of Devices

Now that we have representative distributions for intra- and inter-device dis-

tance, we can simulate a k -NN classifier. The pseudo code for simulating

k -NN classifier is provided in Algorithm 2. The algorithm works as follows.

Let us assume that there are D devices and for each device we have N train-

ing samples. Now, for any given test sample, a k -NN classifier, first computes

N×D distances of which N distances are with samples from the same device

and N×(D − 1) distances are with all samples belonging to (D − 1) other

devices. We emulate these distances by drawing N and N×(D − 1) dis-

tances from our representative intra- and inter-device distance distributions,

respectively. k -NN classifier then inspects the class label for the k nearest

neighbors. We can emulate this step by sorting the distances and picking the

k lowest distances. Lastly, k -NN classifier outputs the class label with the

majority vote. To emulate this step we assign each distance a label of either

0 (meaning distance from same device) or 1 (meaning distance from different

77

For 567 devices

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Value

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Probability Density Function

empirical

inverse gaussian

birnbaumsaunders

lognormal

generalized extreme value

burr

For 567 devices

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Value

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Probability Density Function

empirical

generalized extreme value

tlocationscale

logistic

normal

generalized pareto

(a) (b)

For 567 devices

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Distance Distributions

Distance

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Intra Cluster : generalized extreme value

Inter Cluster : inverse gaussian

(c)

Figure 5.5: Estimated distributions for (a) inter-device distance (Cinter)
(b) intra-device distance (Cintra). (c) Difference between intra- and
inter-device distance distribution.

device). We then check if label-0 dominates over label-1, if so we count that

as a successful classification. This whole process repeats multiple times to

provide us with an average classification accuracy.

Next, we run our k -NN simulator for a large number of devices. Given

that we have our intra- and inter-device distance distributions (Distrintra

and Distrinter) we can simulate the fingerprinting accuracy for any number

of devices (D). The only two parameters that we need to explore are – the

number of training samples per device (N) and number of nearest neighbors

(k). Given that a user spends on average anywhere between 10 to 20 seconds

78

Algorithm 2 Simulating k -NN classifier.

Input: k, N , D, Distrintra, Distrinter, Runs
k – number of nearest neighbors (odd integer)
N – number of training samples per device
D – number of devices
Distrintra – intra-device distance distribution
Distrinter – inter-device distance distribution
Runs – number of runs

Output: Acc
Acc – Average classification accuracy

d← {} #list of (distance,label) tuple
Acc← 0
for i := 1 to Runs do

#add N intra-distances and label each with 0
for j := 1 to N do
d← d+ {(random(Distrintra), 0)}

end for
#add N×(D − 1) inter-distances and label each with 1
for j := 1 to N×(D − 1) do
d← d+ {(random(Distrinter), 1)}

end for
d← sort(d) #in ascending order of distance
l← label(d, k) #return label for top k elements
imposters← sum(l) #sum top k labels
if imposters < k/2 then
Acc← Acc+ 1 #correct decision

end if
end for
Acc← Acc/Runs
return Acc

on a web page [137, 138] values of N ≤ 5 seem most realistic (each of our

data sample is around 5 seconds worth of web session). We, therefore, vary

N from 2 to 5 in our experiments. Also, we explore all odd integer values

of k ≤ N (in practice a rule of thumb in machine learning is to limit k to

the square root of the size of the training set [139], i.e., 1 ≤ k ≤
√
N).

Figure 5.6 shows how our simulation results compare with our real world

results for different values of N and k.

From Figure 5.6 we can see that as k increases the simulation results also

start to deviate from real world results. However, setting k = 1 provides the

79

best overlap between real world and simulation results.4 Also, we can see

that for k = 1 the average classification accuracy is in the range of 10–16%

when we scale up to 100 000 devices. This accuracy is unlikely to be sufficient

if motion sensors are the unique source of a fingerprint, but it suggests that

combining motion sensor data with even a weak browser-based fingerprint is

likely to be effective at distinguishing users in large populations. Addition-

ally, these classification accuracies are conservative and potentially provide a

lower bound on performance, as random forests provide significantly better

performance.

5.6 Summary

We demonstrated that sensor fingerprinting is feasible on a much larger

scale than what we previously studied. We show that 90% accuracy can

be achieved for up to 400 devices, and at least 10–16% accuracy can be re-

alized with 100 000 devices, as predicted according to our model. While this

accuracy alone might not be sufficient to uniquely identify a smartphone but

combining our approach with any other browser-based fingerprints is likely

to provide sufficient discrimination among a large pool of smartphones.

4Differences between our k-NN model and the actual k-NN classifier on real data
arise from an imperfect fit of the distribution as well as the fact that our model makes
an assumption that intra- and inter-phone distances are identically and independently
distributed.

80

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real world, N=2, k=1
Simulation, N=2, k=1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real world, N=3, k=3
Simulation, N=3, k=3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real world, N=3, k=1
Simulation, N=3, k=1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real world, N=4, k=3
Simulation, N=4, k=3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real world, N=4, k=1
Simulation, N=4, k=1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real world, N=5, k=3
Simulation, N=5, k=3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real world, N=5, k=1
Simulation, N=5, k=1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real world, N=5, k=5
Simulation, N=5, k=5

Figure 5.6: Comparing real world results with simulation results.
Simulation results closely match real world results for k = 1.

81

CHAPTER 6

USAGE PATTERNS OF MOTION
SENSORS IN THE WILD

In this chapter we look at how many of the top websites access motion

sensors. We also cluster the usage patterns into broad groups to determine

how motion sensors are being utilized in the web today.

6.1 Data Collection Framework

Figure 6.1 provides an overview of our methodology to automatically cap-

ture and cluster JavaScripts accessing motion sensor data through mobile

browsers. To automate this process, we use Selenium Web Driver [140] to

run an instance of Chrome browser with a user agent set for a smartphone

client. In order to collect unfolded JavaScripts, we attach a debugger be-

tween the V8 JavaScript engine [141] and the web page. Specifically, we

observe script.parsed function, which is invoked when new code is added

with <iframe> or <script> tag. We implement the debugger as a Chrome

extension and monitor all JavaScript snippets parsed on a web page. The

debugger collects script snippets that access sensor data, i.e., scripts that

invoke sensor APIs.

6.2 Feature Extraction

Once scripts are collected, we aim to cluster them into a broad groups to

identify their usage pattern. To analyze and quantify the similarity be-

tween JavaScript snippets, we parse them to produce Abstract Syntax Trees

(ASTs). ASTs have been used in prior literatures for JavaScript malware

detection [142]. ASTs allow us to retain the structural and logical proper-

ties of the code while ignoring fine details like variable names, which are not

82

AST Parser
(example: var answer = 6 * 7;)

ExpressionStatement

AssignmentExpression
'='

Identifier
'answer'

BinaryExpression
'* '

Literal
'6'

Literal
'7'

Feature Set
ExpressionStatement:1
AssignmentExpression:1

Identifier:1
BinaryExpressionLiteral:1

Literal:2
?

Script Checker

Cluster features

Script Snippet

Selenium Web Driver Chrome Browser

Chrome V8 engine

Java Script

Figure 6.1: Overview of our JavaScript analysis setup.

useful for our analysis. We use the Esprima JavaScript parser [143] to visu-

alize AST for each JavaScript snippet. We transform ASTs into normalized

node sequences by performing pre-order traversal on each tree. It should be

mentioned that we start parsing each AST from the point where sensor data

is first accessed. Each variable length sequence is composed of node types

that appear in the tree. Since there are 88 distinct node types in JavaScript

language, we transform the variable length normalized node sequences into

88-dimensional summary vectors. In other words, each JavaScript snippet

is represented as a point in a 88-dimensional space, where each dimension

corresponds to a node type. Finally, we attempt to perform unsupervised

clustering on these summary vectors (as shown in Figure 6.1).

6.3 Measurement Study Results

We provide real world results in terms of how many websites access motion

sensor data and also in terms of what are the main use cases for accessing

motion sensors.

83

6.3.1 Websites Accessing Motion Sensors

We run our experiment for the top 100 000 Alexa websites [21]. Among these

websites we find that 1130 websites contain some form of JavaScript code

that accesses at least one of the motion sensors. It is worth mentioning that

a few of the scripts were downloaded from ad networks as the web pages

were loaded. Table 6.1 shows a breakdown of the detected websites into

their corresponding ranking groups. We see that majority (1022 out of the

1130) of our detected websites come from the top 10 000–100 000 websites.

However, even 6 of the top 100 websites seem to access motion sensors.

Table 6.1: Top websites accessing motion sensors.

Rank # of sites
1–100 6

101–1000 12
1001–10000 90

10001–100000 1022

6.3.2 Types of Usage for Motion Sensors

Our next goal is to cluster these 1130 websites into individual groups based

on their usage of sensor data, so that we can identify the major reasons

as to why websites access motion sensors. To cluster the JavaScript snip-

pets into a small number of groups we first perform feature reduction to

remove irrelevant features. Many of the 88 features had a value of zero for

all Javascript snippets, so we first throw out these features. This reduces

the size of the feature vector to 31. We then use the MATLAB Toolbox

provided by Laurens van der Maaten [144] to further map the features into a

low dimensional space. We find that Stochastic Proximity Embedding (SPE)

method [145] provides the best outcome in terms of both reducing dimen-

sionality and providing good clusters. Our final reduced feature space had

three dimensions. Figure 6.2 shows a scatter plot along the three dimensions

for all the JavaScripts. We can clearly see that the JavaScripts form clusters.

To determine the number of clusters that is a good fit for our data we

run k -means clustering algorithm [146] for different number of clusters and

perform Silhouette analysis [147]. Silhouette analysis can be used to study

the separation distance between the resulting clusters. Silhouette coefficient

84

−1

0

1

2

−1
−0.5

0
0.5

1
1.5

−0.5

0

0.5

1

1.5

D
im

ensio
n 1

Dimension 2

D
im

e
n

s
io

n
 3

Figure 6.2: Scatter plot for JavaScript snippets accessing motion sensors
along reduced dimensions.

Table 6.2: Silhouette coefficient for different number of clusters.

Clusters 3 4 5 6 7 8 9 10
Csilhouette 0.51 0.59 0.59 0.62 0.63 0.65 0.64 0.38

ranges from +1, indicating point are very distant from neighboring clusters,

through 0, indicating points are very close to the decision boundary between

two neighboring clusters, to -1, indicating points are probably assigned to

the wrong cluster. Table 6.2 summarizes the average silhouette coefficients

(Csilhouette) for different number of clusters. We see that silhouette coefficient

peaks for 8 clusters. The corresponding silhouette plot for 8 clusters in given

in Figure 6.3. We see that on average samples in cluster 1,2,4,6 and 7 have

silhouette coefficient value greater than 0.6 while the samples in cluster 3,5

and 8 have silhouette coefficient close to 0.5. We also see some samples

with negative silhouette coefficients and this is likely caused by JavaScripts

reusing code snippets belonging to different libraries. Here, our goal is not to

generate a perfect clustering of all the JavaScripts rather to broadly cluster

them to identify the major usage patterns for accessing motion sensors.

85

−0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

Silhouette Coefficient

C
lu

s
te

r

Figure 6.3: Silhouette plot for the estimated 8 clusters.

Once we have the general clusters, we then go back to the JavaScripts to

understand their usage of motion sensor data. This part of the analysis was

carried out manually. However, since we generated 8 clusters we randomly

sampled multiple JavaScripts from each cluster to verify if they were per-

forming similar functionality with the sensor data.1 We were able to identify

8 generic use cases for the motion sensors. Table 6.3 and 6.4 summarizes

our findings. We see that majority of the detected scripts periodically send

sensor data to some third party sites. We were not able to pinpoint the exact

use case for sending motion sensor data to third party sites as we did not

have access to third party code. The next big usage for motion sensor data is

that they are used in generating random numbers. Other use cases include —

parallax viewing, gesture detection, motion captcha, specific ad generation

and orientation detection. We were not able to concretely identify the use

case for cluster 3 as we found that it contains multiple scripts all performing

different tasks; some were doing touch analytics using accelerometer to de-

tect tilt while others were doing something similar to parallax scrolling. We

intend to perform a more thorough in-depth analysis of this usage patterns

in the future.

1We randomly sampled around 15 JavaScripts per cluster.

86

Table 6.3: Generic use cases for accessing motion sensor data.

Cluster # % of scripts Use Case
6 40.5 Transmit sensor data
4 16.6 Random number generator
8 9.7 Detect device orientation
5 8.9 Parallax scrolling/viewing
2 7.1 Gesture detections
1 7.0 Motion captcha
3 6.0 Miscellaneous
7 4.2 Specific Ad generation

Table 6.4: Description of use cases for accessing motion sensor data.

Clus. # Use Case Description
6 Periodically sends motion sensor data to third party sites (can be marked suspicious)
4 Crypto libraries use sensor data to add entropy to random numbers [148]
8 Detects device orientation periodically to readjust components in the website
5 Parallax Engine that reacts to the orientation of a smart device [149]
2 A jQuery plug-in for gesture events such as ‘pinch’, ‘rotate’, ‘swipe’, ‘tap’ and ‘shake’ [150]
1 A jQuery CAPTCHA plug-in based on the HTML5 Canvas element [151]
3 We were not able to point the exact use case for this cluster.
7 Checks to see if accelerometer is present so that certain ad URLs can be requested

6.4 Summary

Our measurement study reveals that motion sensors are already being used

by over 1% of the top 100 000 websites, and distressingly, sensor data is often

sent to servers for storage and analysis, which could serve as a vehicle for

fingerprinting. Thus, we can conclude that motion sensor fingerprinting is a

realistic threat to mobile users’ privacy.

87

CHAPTER 7

COUNTERMEASURES FOR MOTION
SENSOR FINGERPRINTING

Up until now we have focused on showing how easy it is to fingerprint smart-

phones through onboard sensors. We now shift our focus on providing a

systematic approach to defend against such fingerprinting techniques. Ac-

cessing the microphone requires explicit user permission; moreover, users are

aware of the obvious privacy threats associated with providing access to mi-

crophone. We, therefore, feel promoting general awareness about not giving

applications and/or websites access to microphone, unless it is deemed really

useful, seems to be the most practical line of defense against fingerprinting

smartphones through acoustic side-channels.

In this chapter, we only focus on developing countermeasures for finger-

printing motion sensors like accelerometers and gyroscopes as accessing them

does not require any explicit user permission. In the absence of explicit user

permission websites can surreptitiously access the motion sensors without

interfering with the user’s browsing experience. As a result users might

not be aware that websites maybe fingerprinting their smartphones in the

background while they are browsing certain web pages. Such surreptitious

nature poses a greater threat to user privacy. We start off by investigating

the following three countermeasure techniques: sensor calibration and data

obfuscation and sensor quantization. We first study the effectiveness of the

countermeasures in lowering fingerprinting accuracy and then study how such

mitigation techniques impact the utility of the motion sensors.

7.1 Sensor Calibration

Bojinov et al. [73] observe that accelerometers have calibration errors, and

use these calibration differences as a mechanism to distinguish between them.

In particular, they consider an affine error model: aM = g · a + o, where

88

a is the true acceleration along an axis and aM is the measured value of

the sensor. The two error parameters are the offset o (bias away from 0)

and the gain g which magnifies or diminishes the acceleration value. Our

classification uses many features, but we find that the mean signal value

is the most discriminating feature for each of the sensor streams, which is

closely related to the offset. We therefore explore whether calibrating the

sensors will make them more difficult to fingerprint. Note that calibration

has a side effect of improving the accuracy of sensor readings and is therefore

of independent value. We perform calibration only on the sensors in our lab

phones (30 smartphones as described in Table 4.4) because we felt that the

calibration process is too time consuming for the volunteers.1 Moreover, we

could better control the quality of the calibration process when carried out

in the lab.

First, let us briefly describe the sensor coordinate system where the sensor

framework uses a standard 3-axis coordinate system to express data values.

For most sensors, the coordinate system is defined relative to the device’s

screen when the device is held in its default orientation (shown in Figure 7.1).

When the device is held in its default orientation, the positive x-axis is

horizontal and points to the right, the positive y-axis is vertical and points

up, and the positive z-axis points toward the outside of the screen face.2 We

compute offset and gain error in all three axes.

7.1.1 Calibrating Accelerometers

Considering both offset and gain error, the measured output of the accelerom-

eter (aM = [aMx , a
M
y , a

M
z]) can be expressed as:

 aMx

aMy

aMz

 =

 Ox

Oy

Oz

+

Sx 0 0

0 Sy 0

0 0 Sz

 ax

ay

az

 (7.1)

where S = [Sx, Sy, Sz] and O = [Ox, Oy, Oz] respectively represents the gain

and offset errors along all three axes (a = [ax, ay, az] refers to the actual

1Requiring around 12 minutes in total for calibrating both the accelerometer and
gyroscope.

2Android and iOS consider the positive and negative direction along an axis differently.

89

Figure 7.1: Calibrating accelerometer along three axes. We collect
measurements along all 6 directions (±x,±y,±z).

acceleration). In the ideal world [Sx, Sy, Sz] = [1, 1, 1] and [Ox, Oy, Oz] =

[0, 0, 0], but in reality they differ from the desired values. To compute the

offset and gain error of an axis, we need data along both the positive and

negative direction of that axis (one measures positive +g while the other

measures negative −g). In other words, six different static positions are used

where in each position one of the axes is aligned either along or opposite to

earth’s gravity. This causes a = [ax, ay, az] vector to take one of the following

six possible values {[±g, 0, 0], [0,±g, 0], [0, 0,±g]}. For example, if aMz+ and

aMz− are two values of accelerometer reading along the positive and negative

z-axis, then we can compute the offset (Oz) and gain (Sz) error using the

90

following equations:

Sz =
aMz+ − aMz−

2g
, Oz =

aMz+ + aMz−
2

(7.2)

We take 10 measurements along all six directions (±x,±y,±z) from all our

lab devices as shown in Figure 7.1. From these measurements we compute

the average offset and gain error along all three axes using equation (7.2).

Figure 7.2 shows a scatter-plot of the errors along z− axis for 30 smart-

phones (each color code represents a certain make and model). We can see

that the devices are scattered around all over the plot which signifies that

different devices have different amount of offset and gain error. Such unique

distinction makes fingerprinting feasible.

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

G
ai

n
 e

rr
o

r
(S

)

Offset error (O)

Accelerometer data

For Z-axis

Nexus S
iPhone 5

Galaxy S4
Galaxy S3
iPhone 5s

Figure 7.2: Accelerometer offset and gain error from 30 smartphones.

7.1.2 Calibrating Gyroscopes

Calibrating gyroscope is a harder problem as we need to induce a fixed an-

gular change to determine the gain error even though the offset error can

be computed while keeping the device stationary.3 Similar to accelerom-

eter we can also represent the measured output of the gyroscope (ωM =

3However, we found that a gyroscope’s offset was impacted by orientation.

91

[ωMx , ω
M
y , ω

M
z]) using the following equation:

 ωMx

ωMy

ωMz

 =

 Ox

Oy

Oz

+

Sx 0 0

0 Sy 0

0 0 Sz

 ωx

ωy

ωz

 (7.3)

where again S = [Sx, Sy, Sz] and O = [Ox, Oy, Oz] respectively represents the

gain and offset errors along all three axes. Here, ω = [ωx, ωy, ωz] represents

the ideal/actual angular velocity. Ideally all gain and offset errors should

be equal to 1 and 0 respectively. But in the real world when the device is

rotated by a fixed amount of angle, the measured angle tends to deviate from

the actual angular displacement (shown in Figure 7.3(a)). This impacts any

system that uses gyroscope for angular-displacement measurements.

α

α

Smartphone
α

Actual rotation = α

Measured rotation =

Smartphone

180
o

(a) (b)

Figure 7.3: a) Offset and gain error in gyroscope impact systems that use
them for angular-displacement measurements, b) Calibrating the gyroscope
by rotating the device 180◦ in the positive x-axis direction.

To calibrate gyroscope we again need to collect data along all six different

directions (±x,±y,±z) individually, but this time instead of keeping the

device stationary we need to rotate the device by a fixed amount of angle

(θ). In our setting, we set θ = 180◦ (or π rad). For example, Figure 7.3(b)

shows how we rotate the smartphone by 180◦ around the positive x-axis. The

angular displacement along any direction can be computed from gyroscope

92

data in the following manner:

ωMi = Oi + Siω, i ∈ {±x,±y,±z}∫ t

0

ωMi dt =

∫ t

0

Oi dt+ Si

∫ t

0

ω dt

θMi = Oit+ Siθ (7.4)

where t refers to the time it takes to rotate the device by θ angle with a fixed

angular velocity of ω. Now, for any two measurements along the opposite

directions of an axis we can compute the offset and gain error using the

following equations:

Oi =
θMi+ + θMi−
t1 + t2

, Si =
θMi+ − θMi− −Oi(t1 − t2)

2π
(7.5)

where i ∈ {x, y, z} and t1 and t2 represents the timespan of the positive

and negative measurement respectively. We take 10 measurements along all

six directions (±x,±y,±z) and compute the average offset and gain error

along all three axes. However, since it is practically impossible to manually

rotate the device at a fixed angular velocity, the integration in equation

(7.4) will introduce noise and therefore, the calculated errors will at best be

approximations of the real errors. We also approximate the integral using

trapezoidal rule [152] which will introduce more error.

We next visualize the offset and gain errors obtained from the gyroscopes of

30 smartphones (only showing for z− axis where each color code represents

a certain make and model). Figure 7.4 shows our findings. We see similar

result compared to accelerometers where devices are scattered around at

different regions of the plot. This suggests that gyroscopes exhibit different

range of offset and gain error across different units.

7.1.3 Fingerprinting Calibrated Data

In this section we look at how calibrating sensors impact fingerprinting accu-

racy. For this setting, we first correct the raw values by removing the offset

and gain errors before extracting features from them. That is, the calibrated

value aC = (aM − o)/g. We then generate fingerprints on the corrected data

and train the classifiers on the new fingerprints. Table 7.1 shows the average

93

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

G
ai

n
 e

rr
o

r
(S

)

Offset error (O)

Gyroscope data

For Z-axis

Nexus S
iPhone 5

Galaxy S4
Galaxy S3
iPhone 5s

Figure 7.4: Gyroscope offset and gain error from 30 smartphones.

F-score for calibrated data under three scenarios (described in Table 4.2),

considering both cases where the devices were kept on top of a desk and in

the hand of a user. When we compare the results from uncalibrated data

(Table 4.5) to those from calibrated data, we see that the F-score reduces by

approximately 16–25% for accelerometer data but not as much for the gyro-

scope data. This suggests that we were able to calibrate the accelerometer

much more precisely than the gyroscope, as expected given the more complex

and error-prone manual calibration procedure for the gyroscope. Another in-

teresting observation is that audio stimulation provides small improvement

in classifier accuracy. This suggests that audio stimulation does not influence

the dominant features removed by the calibration, but does significantly im-

pact secondary features that come into play once calibration is carried out.

Overall, our results demonstrate that calibration is a promising technique,

especially if more precise measurements can be made. Manufacturers should

be encouraged to perform better calibration to both improve the accuracy of

their sensors and to help protect users’ privacy.

7.2 Data Obfuscation

Rather than removing calibration errors, we can instead add extra noise to

hide the miscalibration. This approach has the advantage of not requiring a

calibration step, which requires user intervention and is particularly difficult

94

Table 7.1: Average F-score for calibrated data under lab setting.

Device
Stimulation

Avg. F-score (%)
Placed Accelerometer Gyroscope Accelerometer+Gyroscope

On Desk
No-audio 71 97 97

Sine 75 98 98
Song 77 99 99

In Hand
No-audio 69 85 91

Sine 70 90 93
Song 69 89 93

for the gyroscope sensor. As such, the obfuscation technique could be de-

ployed with an operating system update. Obfuscation, however, adds extra

noise and can therefore negatively impact the utility of the sensors (in con-

trast to calibration, which improves their utility). We explore the following

techniques for adding noise –

• Uniform noise: highest entropy while having a bound.

• Laplace noise: highest entropy which is inspired by Differential Pri-

vacy [153, 154].

• White noise: affecting all aspects of a signal.

7.2.1 Uniform Noise

In this section we randomly choose offset and gain errors from a uniform

range where we deduce the base ranges from our lab phones. We consider

three variations of adding uniform noise to sensor data.

Basic Obfuscation: First, we consider small obfuscation values in the

range that is similar to what we observed in the calibration errors in the pre-

vious section. Adding noise in this range is roughly equivalent to switching to

a differently (mis)calibrated phone and therefore should cause minimal im-

pact to the user. To add obfuscation noise, we compute aO = aM × gO + oO,

where gO and oO are the obfuscation gain and offset, respectively. Based

on Figures 7.2 and 7.4, we choose a range of [-0.5,0.5] for the accelerometer

offset, [-0.1,0.1] for the gyroscope offset, and [0.95,1.05] for the gain. For each

session, we pick uniformly random obfuscation gain and offset values from

the range; by varying the obfuscation values we make it difficult to fingerprint

95

repeated visits. Table 7.2 summarizes our findings when we apply obfusca-

tion to all the sensor data obtained from our 30 lab smartphones. Compared

to unaltered data (Table 4.5), data obfuscation seems to provide significant

improvement in terms of reducing the average F-score. Depending on the

type of audio stimulation, F-score reduces by almost 7–24% when smart-

phones are kept stationary on the desk and by 23–42% when smartphones

are kept stationary in the hand of the user. The impact of audio stimulation

in fingerprinting motion sensors is much more visible in these results. We

see that F-score increases by almost 18–21% when a song is being played in

the background (compared to the no-audio scenario); again, we expect this

to be a consequence of audio-stimulation significantly impacting secondary

features that come into play once primary features are obfuscated.

Table 7.2: Average F-score for obfuscated data under lab setting.

Device
Stimulation

Avg. F-score (%)
Placed Accelerometer Gyroscope Accelerometer+Gyroscope

On Desk
No-audio 43 73 75

Sine 49 76 76
Song 71 88 93

In Hand
No-audio 46 46 51

Sine 42 49 57
Song 55 63 72

Next, we apply similar techniques to the public (see Section 4.5.2 for more

detail) and combined dataset (combining data from sections 4.5.1 and 4.5.2).

We apply the same range of offset and gain errors to the raw sensor values

before generating fingerprints. Table 7.3 and Table 7.4 summarizes our re-

sults for both presence and absence of audio stimulation. We see that F-score

reduces by approximately 20–41% (compared to Table 4.6 and Table 4.7).

We expect one of the reasons for the lower accuracy is the usage of a larger

dataset, suggesting that for even larger datasets the impact of obfuscation is

likely to be even more pronounced. In Section 7.5 we analyze the impact of

obfuscation on a larger dataset.

Increasing Obfuscation Range: We now look at how the fingerprinting

technique reacts to different ranges of obfuscation. Starting with our base

ranges of [−0.5, 0.5] and [−0.1, 0.1] for the accelerometer and gyroscope off-

sets, respectively, and [0.95, 1.05] for the gain, we linearly scale the ranges

96

Table 7.3: Average F-score for obfuscated data under public setting (63
phones) where smartphones were kept on top of a desk.

Stimulation
Avg. F-score (%)

Accelerometer Gyroscope Accelerometer+Gyroscope
No-audio 27 52 57

Sine 40 65 66

Table 7.4: Average F-score for obfuscated data under both lab and public
setting (93 phones) where smartphones were kept on top of a desk.

Stimulation
Avg. F-score (%)

Accelerometer Gyroscope Accelerometer+Gyroscope
No-audio 26 50 55

Sine 41 69 75

and observe the impact on F-score. We scale all ranges by the same amount,

increasing the ranges symmetrically on both sides of the interval midpoint.

For this experimental setup we only consider the combined dataset as

this contains the most number of devices (93 in total). We also restrict

ourselves to the setting where we combine both the accelerometer and gyro-

scope features because this provides the best result (as evident from all our

past results). Figure 7.5 highlights our findings. As we can see increasing

the obfuscation range does reduce F-score but it has a diminishing return.

For 10x increment, the F-score drops down to approximately 40% and 55%

for no-audio and audio stimulation respectively. Beyond 10x increment (not

shown) the reduction in F-score is minimal (at most 10% reduction at 50x

increment). This result suggests that simply obfuscating the raw values is

not sufficient to hide all unique characteristics of the sensors. So far we have

only manipulated the signal value but did not alter any of the frequency fea-

tures and as a result the classifier is still able to utilize the spectral features

to uniquely distinguish individual devices.

Enhanced Obfuscation: Given that we know that the spectral features

are not impacted by our obfuscation techniques, we now focus on adding

noise to the frequency of the sensor signal. Our data injection procedure

is described in Algorithm 3. The main idea is to probabilistically insert a

modified version of the current data point in between the past and current

timestamp where the timestamp itself is randomly selected. Doing so will

influence cubic interpolation of the data stream which in turn will impact

97

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10

A
v
g
.
F

-s
co

re
 (

%
)

Obfuscaton Range (’×’ times the base range)

Using both accelerometer and gyroscope data

No-audio
Sine

Figure 7.5: Impact of obfuscation range as the range is linearly scaled up
from 1x to 10x of the base range.

the spectral features extracted from the data stream.

Algorithm 3 Obfuscated Data Injection.

Input: Time series Data (D,T), Probability Pr, Offset O,
Gain G, Offset Range Orange, Gain Range Grange

Output: Modified time series Data (MD,MT)
offset ← Null
gain← Null
Random(range) : randomly selects a value in range
j ← 1
for i = 1 to length(D) do

#New data insertion
if i > 1 and Random([0, 1]) < Pr then

offset ← Random(Orange)
gain← Random(Grange)
MT [j]← Random([T [i],MT [j − 1])
MD[j]← D[i]× gain + offset
j ← j + 1

end if
#Original Data
MD[j]← (D[i]×G+O
MT [j]← T [i]
j ← j + 1

end for
return (MD,MT)

98

To evaluate our approach we first fix an obfuscation range. We choose

10x of the base range from the previous section as our fixed obfuscation

range. We then vary the probability of data injection from [0,1]. Figure 7.6

shows our findings. We can see that even with relatively small amount of

data injection (in the order of 20–40%) we can reduce the average F-score

to approximately 15–20% depending on the type of background stimulation

applied.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

A
v
g
.
F

-s
co

re
 (

%
)

Probability of injecting new data samples

Using both accelerometer and gyroscope data

No-audio
Sine

Figure 7.6: Impact of randomly inserting new data points.

7.2.2 Laplace Noise

Next, we adopted an approach inspired by differential privacy [153, 154]

where we randomly selected offset and gain error from a Laplace distribution.

From the definition of differential privacy [153], we know that a randomized

function K gives ε-differential privacy if for all datasets D1 and D2 differing

on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ eε Pr[K(D2) ∈ S] (7.6)

We can remap this setting into our own problem where we can think of each

device as a single dataset, and K as the process of selecting random offset

and gain error. S then becomes the outcome of applying random noise to raw

sensor data. By changing ε we can control to what extent two device-output

99

distributions are alike. If we assume all features are affected by changing

only the offset and gain errors along all three axes for both accelerometer

and gyroscope then the probability of a randomly drawn sample belonging

to a particular device (P) can be approximated as below:

P + (D − 1)× P ′ = 1

P + (D − 1)× P/eε ≤ 1

P (D − 1 + eε) ≤ eε

P ≤ eε

D − 1 + eε
(7.7)

where D refers to the total number of devices and P ′ refers to the probability

of a randomly drawn sample belonging to any other device. We can think of

P as the probability of correct classification. Figure 7.7 shows how the upper

bound of the probability of correct classification varies for different values of

ε (setting D = 93 as we had 93 devices). We can see that as we increase the

privacy budget, the maximum attainable correct classification also increases.

This is excepted because increasing ε means the probability distributions

from different devices vary more from each other which potentially increases

the chance for distinguishing devices.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
ro

b
.
o
f

co
rr

ec
t

cl
as

si
fi

ca
ti

o
n

Privacy Budget (ε)

Figure 7.7: Approximation of the probability of correct classification
under differential privacy approach where noise is modeled through only
offset and gain errors along all three axes for both accelerometer and
gyroscope.

In our setting we have offset and gain errors along 6 axes (xyz -axes for

100

both accelerometer and gyroscope), giving us a total of 12 dimensions. We

equally distribute our privacy budget ε along all 12 dimensions and select

noise along the i − th dimension using the following Laplace distribution:

Lap(0, βi) where βi = Si/(ε/12) and Si = max(i− th Dimensional values)−
min(i−th Dimensional values), i ∈ {1, 2, ..., 12}. Figure 7.8 shows that as we

increase ε (i.e., as we lower the scale parameter of the Laplace distribution),

F-score also increases. But even with a relatively high privacy budget of

ε = 10 we see that F-score reduces from around 96% to 47–65% depending

on the type of background stimulation we apply. Interestingly, if we compare

Figure 7.8 with Figure 7.7 we can see that the upper bound for classification

accuracy holds for all ε ≥ 4 but not for lower values of ε (i.e., ε < 4). This

suggests that assuming all features are influenced by only changing the offset

and gain errors along 6 axes does not hold and there are certain features that

are unaffected by any change in offset and gain errors.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

A
v
g
.
F

-s
co

re
 (

%
)

Epsilon (ε)

Using both accelerometer and gyroscope data

No-audio
Sine

Figure 7.8: Impact of randomly selecting offset and gain error from a
Laplace distribution inspired by differential privacy.

7.2.3 White Noise

From Figure 7.8 we see that even when ε = 1 we can still achieve an F-score

of 26–41%. We looked at the dominant features after applying random off-

set and gain error, and found that spectral features like spectral irregularity,

spectral attack slope and spectral entropy are the top features in terms of

101

mutual information. This is understandable because changing the offset and

gain have minimal impact on spectral features; we therefore next add Gaus-

sian white noise to the signal after applying random offset and gain error

from a Laplace distribution. For this experimental setup we fixed ε = 6 (as

this provides at least 0.5 privacy budget along all dimensions) and varied

the signal-to-noise ratio (SNR) from 0.5 to 10. Figure 7.9 highlights F-scores

for different values of SNRs. We can see that F-score drops from 40–55%

to 20–30% when Gaussian white noise is added to the signal for ε = 6 and

SNR= 10. For lower SNR we see that the F-score reduces even further but

that comes at the cost to mixing a large amount of noise to the original signal

which could adversely affect the utility of the motion sensors as we will in

Section 7.4.

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9 10

A
v
g
.
F

-s
co

re
 (

%
)

SNR (powersignal/powernoise)

Using both accelerometer and gyroscope data

No-audio
Sine

Figure 7.9: Impact of Gaussian white noise on F-score.

7.3 Sensor Quantization

The basic idea behind quantization is that human brain cannot discriminate

minute changes in angle or magnitude. As a result if the raw values of a

sensor are altered slightly, it should not adversely impact the functionality

of the sensor. We perform quantization in the polar coordinate system as it

is easy to perceive (shown in Figure 7.10).

So, our first task is to covert the accelerometer data into its equivalent

102

Figure 7.10: Convertion from Cartesian coordinate system (x, y, z) to
Polar coordinate system (r, θ, φ).

polar vector form as shown below:

radius, r =
√
a2x + a2y + a2z

inclination, θ = cos−1
az
r

azimuth, ψ = tan−1
ay
ax

where < ax, ay, az > represent the accelerometer data in the Cartesian coor-

dinate system. Since gyroscope provides rotational rate in rads−1, we do not

perform any conversion for gyroscope data. Next we pass our sensor data

through the following quantization function:

function quatization(val,type,bin_size){

// val: raw sensor value

// type: data type (angle or magnitude)

// bin_size: quantization size

return round(val/bin_size)*bin_size;

}

For angle related data (θ,ψ and gyroscope data) we set binsize = 6◦ while

for magnitude (i.e., radius) we set binsize = 1 ms−2. In other words, we place

angles into 6 degree bins and for accelerometer magnitude we map it to the

nearest integer. After performing quantization on the accelerometer data, we

103

remap it to the Cartesian coordinate system using the following equations:

ax = r sin θ cosψ

ay = r sin θ sinψ

az = r cos θ

7.3.1 Fingerprinting Quantized Data

We now evaluate how quantization defends against sensor fingerprinting. Fig-

ure 7.11 summarizes our findings for the no-audio setting where the devices

are kept on top a desk while browsing our web page. We see that compared

to original raw data (Tables 4.5, 4.6 and 4.7) F-score reduces by 32% for

lab setting and around 50% for public and combined setting. Compared to

basic obfuscation (Tables 7.2, 7.3 and 7.4) we see that quantization performs

slightly better in lowering F-score. Quantization method has similar out-

comes to Laplace noise when ε is set to 10 (see Figure 7.8 for more details).

However, we see that quantization is not as effective as enhanced obfusca-

tion (comparing with Figure 7.6) or white noise (comparing with Figure 7.9)

in lowering F-score. This is understandable because quantization does not

affect any of the spectral properties of the signal, whereas both enhanced

obfuscation and white noise alter spectral properties of the signal.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Lab Public Combined

A
v
g
.
F

-s
co

re
 (

%
)

Different Setting

Using both accelerometer and gyroscope data

67

46 46

Figure 7.11: Impact of sensor quantization on F-score.

104

7.4 Determining Feasible Countermeasures

In the previous section we explored many possible countermeasures and

showed that all the countermeasures are effective in lowering fingerprint-

ing accuracy. However, as there are many legitimate application of motion

sensors we would like to deploy a countermeasure that has negligible impact

on the utility of the motion sensors. We, therefore, first explore how our

countermeasures impact the utility of a simple yet popular accelerometer-

based application known as Step Counter [155] (also known as Pedometer)

that uses accelerometer readings to determine the number of steps taken by

a user. Such analysis will enable us to shortlist the countermeasures that can

be readily deployed without impacting the utility of the motion sensors. To

carry out this analysis we prototype a Step Counter application where we

use a web page to collect sensor data. In our experimental setting, we ask

the participant to take 20 steps while holding the phone in his/her hand and

this whole process in repeated 10 times.

To get an understanding of how the different countermeasure streams look

we plot the magnitude of the accelerometer for the first three seconds in

Figure 7.12. We can see from the figure that certain mitigation techniques

such as Enhanced obfuscation and White noise disrupt the original signal

significantly. We will later on see that these two schemes have significant

adverse effect on the utility of the motion sensors. If we remove these two

schemes the plot clears up as shown in Figure 7.13. We can see that all the

renaming schemes retain the structural properties of the original signal and

thus should not significantly impact the utility of the motion sensors.

To quantitatively analysis the impact of the different countermeasures we

replay the step motion data 100 times under each countermeasure scheme and

compute the average number of steps taken by the user. Table 7.5 highlights

our findings for different forms of countermeasures. In the following sections

we briefly discuss how each countermeasure scheme impacts the utility of the

motion sensors in detail.

7.4.1 Utility under Calibration

From Table 7.5 we see that calibration does not have a significant effect on

accuracy. In general, we would expect calibration to improve accuracy but

105

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
−10

−5

0

5

10

15

20

Time (msec)

A
c
c
e
le

ro
m

e
te

r
M

a
g
n
it
u
d
e

Raw

Calibration

Basic Obfuscation

Increased−Range Obfuscation

Enhanced Obfuscation

Laplace Noise

White Noise

Quantization

Figure 7.12: Accelerometer magnitude for different mitigation schemes.

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
−10

−5

0

5

10

15

20

Time (msec)

A
c
c
e
le

ro
m

e
te

r
M

a
g
n
it
u
d
e

Raw

Calibration

Basic Obfuscation

Increased−Range Obfuscation

Laplace Noise

Quantization

Figure 7.13: Accelerometer magnitude after removing disruptive
countermeasures.

our calibration process is imperfect (manually done) and it is possible that

it introduces very minor errors.

7.4.2 Utility under Obfuscation

Impact of Uniform Noise on Utility: Basic obfuscation introduces

errors that are commensurate with calibration errors of actual devices and

thus also has minimal impact on accuracy. Increasing the obfuscation range

introduces errors that are still within acceptable range. However, introducing

new data points makes the accelerometer readings significantly less reliable,

and we observe this effect in the computed step counts.

106

Table 7.5: Privacy vs. Utility tradeoff for different countermeasures.

Stream Type
Step Count Avg.

Mean Std. Deviation F-score (%)

Original Stream 20 0 96a

Calibrated Stream 20.1 0.3 97b

Obfuscated Stream

Basic Obfuscationc 20.1 0.6 55a

Increased-Range Obfuscationd 20.6 1.4 40a

Enhanced Obfuscatione 42.9 15.1 15a

Laplace Noisef 20.5 1.1 40a

White Noiseg 73.9 9.1 20a

Quantized Streamh 20.4 0.7 46a

a For 93 devices
b For 30 lab phone
c Base range: offset = [−0.5, 0.5], gain = [0.95, 1.05]
d 10x of base range e 10x of base range with 0.4 injection probability
f For ε = 6.0
g For ε = 6.0 and SNR = 5
h Angles quantized to 6◦ bins and magnitudes rounded to the nearest integer

Impact of Laplace Noise on Utility: We rerun our step counter appli-

cation on sensor data where we select offset and gain error from a Laplace

distribution while varying ε. Figure 7.14 shows how step count evolves for

different levels of privacy budget (ε). We see that as we increase ε, step

count converges to the expected value with negligible deviation. For ε ≥ 6

the confidence interval is negligible, i.e., for ε ≥ 6 the impact of noise is

minimal. Notably, on Figure 7.8, we can see that for ε = 6, we get signifi-

cantly lower classification accuracy than using low levels of uniform noise (see

Figure 7.5). This suggests that Laplace noise may achieve a better tradeoff

between privacy and utility; however, from Table 7.5 we see that Laplace

noise performs slightly worse (slightly higher standard deviation) compared

to basic obfuscation and quantization.

Impact of White Noise on Utility: Given that we see adding white

noise provides low F-scores we wanted to see what kind on impact it would

have on sensor utility. To evaluate this we rerun our step counter application

on sensor data after applying Gaussian white noise. Figure 7.15 highlights

the computed step counts for different SNRs. We see that adding white

noise has drastic consequences as it increases the number of steps counted

significantly, even at high signal-to-noise ratios.

107

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10

A
v
g
.
st

ep
 c

o
u
n
t

Epsilon (ε)

Measured Step Count
Expected Step Count

Figure 7.14: Impact of Laplace noise on utility.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200

 0 1 2 3 4 5 6 7 8 9 10

A
v
g
.
st

ep
 c

o
u
n
t

SNR (powersignal/powernoise)

Measured Step Count
Expected Step Count

Figure 7.15: Impact of Gaussian white noise on sensor utility.

7.4.3 Utility under Quantization

From Table 7.5 we see that quantization has minimal impact on the utility

of the step counter. This suggests even if we quantize the sensor data into

bigger bins we can still obtain acceptable utility from the motion sensors.

Thus, a simple yet effective defense against sensor fingerprinting is to lower

the resolution of motion sensors.

108

7.4.4 Deployment Considerations

We envision our obfuscation technique as an update to the mobile operating

system. From Table 7.5 we see that calibration represents one side of the

tradeoff spectrum with high utility but low privacy; enhanced obfuscation

and white noise provide the opposite side of the spectrum with low utility

and high privacy. The remaining four techniques provide better tradeoff

between privacy and utility. However, we see that basic obfuscation and

quantization provide slightly better utility (i.e., closer to real mean with

smaller standard deviation) compared to Laplace noise and increased-range

obfuscation. Due to limited budget (both in terms of participation time and

reward money) we give more emphasis on basic obfuscation and quantization

in the following sections to conduct a large-scale user study under a more

realistic web setting.

7.5 Effectiveness of Countermeasures at Large-Scale

Given that we have identified that basic obfuscation and quantization have

minimal impact on the utility of the motion sensors, we now want to verify

their effectiveness against fingerprinting large-scale smartphones in a real

world setting. For this setup we run our fingerprinting technique under three

setting: baseline, obfuscation and quantization. We merge our lab and public

dataset with the data collected from Amazon’s Mechanical Turk (i.e., merged

dataset that we use in Chapter 5). For each setting we then evaluate F-score

for both random forest and k -NN (with LDML). Table 7.6 shows our results

for devices with at least 3 training samples (there are 545 such devices).

We can see that both countermeasure schemes significantly reduce the F-

score with obfuscation performing slightly better than quantization. Next, we

see how the countermeasure schemes react to different numbers of devices. To

evaluate this we first model intra- and inter-device distances for both obfus-

cated and quantized datasets. We adopt techniques similar to Section 5.5.2

where we derive parametric distributions to model intra- and inter-device

distances. We then use our proposed k-NN simulator (Algorithm 2) to pre-

dict classification accuracy for large pool of devices. Figure 7.16 highlights

our findings. We only evaluate accuracy for k = 1 as this was shown to have

the best overlap with real world results (see Section 5.5.3 for more details).

109

We also plot the corresponding real world results for a k-NN classifier. We

see that irrespective of the device number classification accuracy reduces sig-

nificantly under both countermeasure schemes. And the estimated accuracy

reduces to almost zero for any number of devices greater than 1000. These

results indicate that simple countermeasures can thwart device fingerprinting

significantly.

Table 7.6: Comparing obfuscation and quantization with baseline for 545
devices.

Scheme
Avg. F-score(%)

k -NN with LDML Random Forest
Baseline 50 78

Quantization 17 32
Obfuscation 7 26

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real World, Baseline, N=2, k=1
Real World, Quantized, N=2, k=1

Real World, Obfuscated, N=2, k=1
Simulation, Baseline, N=2, k=1

Simulation, Quantized, N=2, k=1
Simulation, Obfuscated, N=2, k=1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real World, Baseline, N=3, k=1
Real World, Quantized, N=3, k=1

Real World, Obfuscated, N=3, k=1
Simulation, Baseline, N=3, k=1

Simulation, Quantized, N=3, k=1
Simulation, Obfuscated, N=3, k=1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real World, Baseline, N=4, k=1
Real World, Quantized, N=4, k=1

Real World, Obfuscated, N=4, k=1
Simulation, Baseline, N=4, k=1

Simulation, Quantized, N=4, k=1
Simulation, Obfuscated, N=4, k=1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Number of devices

Real World, Baseline, N=5, k=1
Real World, Quantized, N=5, k=1

Real World, Obfuscated, N=5, k=1
Simulation, Baseline, N=5, k=1

Simulation, Quantized, N=5, k=1
Simulation, Obfuscated, N=5, k=1

Figure 7.16: Comparing large-scale classification accuracy for obfuscation
and quantization.

110

7.6 Large-Scale User Study of Privacy vs. Utility

The above countermeasures degrade the readings from the motion sensors

somewhat and we wanted to better understand the impact of the counter-

measures on the utility of the sensors to web applications, specially user-

interactive applications. Of course, motion sensors have a wide range of uses,

from simple orientation detection to activity classification, step counting, and

other health metrics. Many of these, however, are deployed in application

form, whereas we wanted to focus on the threat of fingerprinting by web

pages. We performed a survey of web pages to identify how motions sen-

sors are actually used. We found that one of the most common application

of motion sensors was to detect orientation change in order to adjust page

layout (see Section 6.3.2 for more detail); such a drastic change in the grav-

ity vector will be minimally impacted by countermeasures. We did, however,

find several instances where web pages used the motion sensors as a means of

gesture recognition in the form of tilt-based input controlling a video game.

To study the impact of countermeasures on the utility of such tilt-based

controls, we carried out a user study where participants were asked to play

a game using tilt control while we applied privacy countermeasures to their

motion sensor data. We then evaluated the impact of the countermeasures

through both objective metrics of in-game performance, as well as subjective

ratings given by the participants. Our study was approved by our institu-

tional research board (IRB).

7.6.1 Study Design

After receiving some information about the study, our participants were in-

vited to play a game using their personal smartphone (Figure 7.17(a)).4 The

objective of the game is to roll a ball to its destination through a maze, while

avoiding traps (hitting a trap restarts the level from the beginning). The

game had five levels, which the participants played in order of increasing dif-

ficulty. Each level was played three times with different privacy countermea-

sures applied: baseline (no countermeasures), obfuscation, and quantization.

The order of countermeasure settings was randomized for each participant

and for each level, and not revealed to the participants. After completing

4https://web.engr.illinois.edu/∼das17/PrivacyVsUtility.html

111

a level three times, the participants were asked to rate each of the three

settings in terms of difficulty of controlling the game on a scale of 1 to 5 (

1 meaning ‘very easy’ whereas 5 referred to ‘very hard’). Participants also

were invited to provide free-form feedback (Figure 7.17(c)). Their ratings

and feedback, along with the settings and metrics regarding the time spent

on each game, and the number of times the game was restarted due to traps,

were then sent to our server for analysis.

(a) Instruction page (b) Level 1 (c) Feedback form (d) Next Level form

(e) Level 2 (f) Level 3 (g) Level 4 (h) Level 5

Figure 7.17: Game interface. The object is to roll the ball to the flag
while avoiding traps by tilting the smartphone. The user is then asked for
feedback about the relative difficulty of each level using different privacy
settings.

After completing a level, a user is invited to play the next level. Users were

required to play levels in order of increasing difficulty, but participants were

allowed to replay previous levels. We identified such repeat plays by setting

a cookie in a user’s browser and discarded repeat plays in our analysis.

112

7.6.2 Study Results

We recruited users through institutional mailing lists, social media, as well as

Amazon’s Mechanical Turk. We collected data from 201 users via Amazon’s

Mechanical Turk and 206 users that were recruited through other means over

a period of one month, for a total of 407 users (covering 144 different device

models as shown in Appendix C); several users’ data had to be discarded due

to irregularities in data collection. Note that not all users played through all

five levels, as shown in Table 7.7. Note that Mechanical Turk users had to

complete five levels to receive their reward, but in some cases we were not

able to receive some of their data due to network congestion at our server.

Table 7.7: Number of users that completed the first n levels recruited
through Amazon’s Mechanical Turk and other means.

Levels
MTurk non-MTurk Total

completed

1 0 26 26
1–2 1 14 15
1–3 0 34 34
1–4 91 67 158
1–5 107 63 170

Total 199 204 403

We found that, when considering the entire dataset, the choice of privacy

protection method did not significantly influence the subjective ratings as-

signed to the level (χ2 test, p = 0.34) nor the objective metrics of the game

duration (pairwise t-tests, p = 0.10 and 0.75 comparing baseline to obfusca-

tion and quantization, respectively) or the number of restarts due to traps

(pairwise t-tests, p = 0.11 and 0.47). However, as expected, all difficulty

metrics were significantly impacted by which level the person was playing,

as shown in Figure 7.18.

Furthermore, we observed a significant training effect between the first and

second time a user played the level (each level is played a total of 3 times

using different privacy methods), as seen in Figure 7.19. Interestingly, this

was not reflected in the subjective ratings (as verified by a χ2 test for each

level), suggesting that participants corrected for the training effect during

their reporting. There was a smaller training effect between the second and

third time a level was played; the improved performance was statistically

113

1 2 3 4 5
Level

1

2

3

4

5

Ra
tin

g

1 2 3 4 5
Level

0

20

40

60

80

100

Se
co

nd
s

Durations

1 2 3 4 5
Level

0

5

10

15

20
Nu

m
be

r o
f R

es
ta

rt
s

Figure 7.18: Subjective and objective difficulty metrics increase across
game levels. Box plots show the median (horizontal line) and the
interquartile range (box), while whiskers show the range between the 5th
and 95th percentile, with the outliers being individually represented. The
notch in the box denotes the 95% confidence interval around the median.

significant only for durations of levels 4 and 5 and for the number of restarts

on level 5; which makes sense given the difficulty of these levels.

We therefore compared the difficulty of metrics for different privacy meth-

ods across only the second and third attempts at a level, discarding the first

attempt as training. We show the results for all levels in Figure 7.20. Signif-

icance tests fail to detect any differences between the difficulty metrics when

privacy methods are applied on any level.5

7.6.3 Limitations

Although the study failed to detect a significant impact of privacy methods

on utility, it does not definitively show that no impact exists—failure to reject

5The raw p-value comparing the number of restarts on level 5 between baseline and
obfuscated case is 0.025 but note that this is not significant at a p < 0.05 level after the
Bonferroni correction is applied.

114

1 2 3 4 5
Level

0

10

20

30

40

50

60

Se
co

nd
s

Durations

1 2 3 4 5
Level

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f R
es

ta
rt

s

Figure 7.19: Game durations and number of restarts, as each level is
played three times. A large training effect is observed between the first and
second attempt, with a smaller effect between the second and third.

a null hypothesis does not demonstrate that the null hypothesis is true. In

particular, given the large variance in game performance across users, as seen

in, e.g., Figure 7.18, we would like to compare how different privacy methods

change a single user’s performance; however, given the low impact of privacy

protection we have observed so far, we would need to modify our study to

reduce or eliminate the training effect. Additionally, we tested our privacy

methods in a short game, and perhaps in games with a longer duration

some effects would materialize. However, we feel our results are promising

in showing that users may not have to lose much utility to employ privacy

protection methods.

115

L1

1 2 3 4 5
Rating

0

20

40

60

80

100 Ratings
baseline
obfuscation
quantization

0 20 40 60 80 100 120 140
Duration (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF of Durations

baseline
obfuscation
quantization

0 5 10 15 20 25 30
Restarts

0.0

0.2

0.4

0.6

0.8

1.0 CDF of Restarts

baseline
obfuscation
quantization

L2

1 2 3 4 5
Rating

0

20

40

60

80

100 Ratings
baseline
obfuscation
quantization

0 20 40 60 80 100 120 140
Duration (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF of Durations

baseline
obfuscation
quantization

0 5 10 15 20 25 30
Restarts

0.0

0.2

0.4

0.6

0.8

1.0 CDF of Restarts

baseline
obfuscation
quantization

L3

1 2 3 4 5
Rating

0

20

40

60

80

100 Ratings
baseline
obfuscation
quantization

0 20 40 60 80 100 120 140
Duration (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF of Durations

baseline
obfuscation
quantization

0 5 10 15 20 25 30
Restarts

0.0

0.2

0.4

0.6

0.8

1.0 CDF of Restarts

baseline
obfuscation
quantization

L4

1 2 3 4 5
Rating

0

20

40

60

80

100 Ratings
baseline
obfuscation
quantization

0 20 40 60 80 100 120 140
Duration (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF of Durations

baseline
obfuscation
quantization

0 5 10 15 20 25 30
Restarts

0.0

0.2

0.4

0.6

0.8

1.0 CDF of Restarts

baseline
obfuscation
quantization

L5

1 2 3 4 5
Rating

0

20

40

60

80

100 Ratings
baseline
obfuscation
quantization

0 20 40 60 80 100 120 140
Duration (s)

0.0

0.2

0.4

0.6

0.8

1.0 CDF of Durations

baseline
obfuscation
quantization

0 5 10 15 20 25 30
Restarts

0.0

0.2

0.4

0.6

0.8

1.0 CDF of Restarts

baseline
obfuscation
quantization

Figure 7.20: Impact of privacy method on subjective and objective
ratings, when considering second and third attempts only. Shown are the
histogram of subjective ratings and CDFs of game durations and number of
restarts for all 5 levels. No significant difference found in any of the metrics.

7.7 Summary

We evaluate the tradeoff between privacy and utility as realized by two differ-

ent fingerprinting mitigation strategies. While many applications of sensor

116

data are unlikely to be affected, our user study shows that even for sensitive

applications that use motion sensors as control input, there is no significant

impact of privacy mitigation techniques on the usability of motion sensors in

this context, according to both subjective and objective metrics.

117

CHAPTER 8

CONCLUSION

The widespread adoption of smartphone and their increased computing ca-

pabilities are creating new threats for user privacy. As a result, we are in the

middle of a war over user privacy on the web. While users are slowly becom-

ing more concern about their privacy on smartphones, there are still may

issues which have not been well studied and hence not well known to general

users. In this dissertation we show that onboard sensors such as microphone,

accelerometer and gyroscope can be exploited as side-channels to uniquely

fingerprint smartphones. Fingerprinting smartphones enable publishers to

track users across multiple applications or websites. Publishers can then sell

this behavioral information to the ad networks. To make things worse some

of these sensors such as accelerometer and gyroscope can be accessed surrep-

titiously without any explicit user permission, so a user might not even be

aware of such fingerprinting mechanism.

In this dissertation we first look at how onboard acoustic hardware such

as microphones and speakers can be used to track smartphones. Microphone

and speaker are fundamental components present in any smartphone, thus

fingerprinting smartphones through microphones and speakers creates a se-

rious privacy concern for users. We found that the manufacturing imperfec-

tions of microphones and speakers are substantial and prevalent enough that

we can reliably track phones by looking at the spectral properties of the trans-

mitted and/or recorded audio signals. Surprisingly, you only need to extract

a few spectral features from the audio signal to track the device responsible

to generating and/or recording the audio signal. We found MFCCs as the

dominant features (at times the only set of features) required to uniquely

fingerprint smartphones. With 50 smartphones we were able to uniquely fin-

gerprint them with an average F-score of 98%. We also show the feasibility

of our approach even in the presence of ambient background noise. Our re-

sults indicate that fingerprinting smartphones through onboard microphone

118

and speaker is a privacy concern and as a word caution we would recom-

mend users to be careful about providing applications or websites access to

microphone.

We next investigate if motion sensors can also be exploited to generate a

unique fingerprint for the device. Interestingly, motion sensor data is consid-

ered less sensitive and as a result no explicit permission is required to access

the motion sensors such as accelerometer and gyroscope. HTML5 enables

websites to directly access motion sensors without the user even knowing

about it. We develop our own web page to collect sensor data from both

our lab phones and participants through institutional mass email and social

media. We then show that it is indeed possible to fingerprint smartphones by

exploiting the manufacturing imperfections of onboard motion sensors. Both

accelerometer and gyroscope can be used individually to fingerprint smart-

phones but we obtain the best result when we combine features from both

the accelerometer and gyroscope. We were able to fingerprint 93 devices with

an average F-score of 96% when devices were kept stationary on top of a flat

surface. We also show that we can obtain similar fingerprinting accuracy

even when the device is kept in the hand of the user while the user is sit-

ting down silently. Finally, we showcase that even though our fingerprinting

technique is influenced by various environmental factors such as temperature

and temporal wear and tear, we can still retain an F-score of greater than

75%.

Given that we were able to showcase that motion sensor fingerprinting is

feasible with around 100 devices, we next extend our data collection process

to gather data from a total of 610 devices; bulk of which comes from par-

ticipants recruited through Amazon’s Mechanical Turk. We then rerun our

fingerprinting technique over this large dataset and show that we can still

identify devices with an F-score of 86% with only 25 seconds (equivalent to

5 training samples) worth of motion sensor data from each device. To es-

timate accuracy with even a larger device population, we derive intra- and

inter-device distance distribution from this large dataset and use these distri-

butions to emulate k-NN classifier. A conservative estimation of classification

accuracy was found to be in the range of 10–16% with 100 000 devices. This

result suggests that motion sensors alone might not to sufficient to distinguish

users in large populations, but when combined with other browser-based fin-

gerprints they are likely to generate unique fingerprints even among large

119

populations.

To get a better understanding of our websites access motion sensors we

conduct a large-scale measurement study where we analyze how many of the

top 100 000 Alexa websites access motion sensors. We found that around 1%

of these websites access motion sensor data. We also determine 8 broad use

cases for accessing motion sensor data; distressingly, most of the websites

accessing motion sensor data send such data to a third party website. This

raises suspicion as to how third party websites are utilizing sensor data.

Finally, we focus heavily on devising countermeasures against motion sen-

sor fingerprinting as such sensors can be accessed by applications and/or

websites without any user permission. We propose three major countermea-

sure schemes – sensor calibration, data obfuscation and sensor quantization.

We also explore different variations of data obfuscation. All of our coun-

termeasures are effective in reducing fingerprinting accuracy, however, some

countermeasures adversely impact the utility of the motion sensors. We found

that manually calibrating certain sensors like gyroscope was not feasible and

certain data obfuscation schemes require prior knowledge of the underlying

application to be effective. Through a simple ‘step counter’ application we

were able to showcase that basic data obfuscation and sensor quantization

were the most promising countermeasures that could be readily applied to

existing browsers. To showcase that these two countermeasures are benign to

applications that interactively use motion sensors, we conduct a large-scale

user study where users were asked to play a game by tilting their smartphone.

After analyzing both subjective and objective feedback from a total of 403

users we were able to show that our proposed privacy mitigation techniques

did not have any significant impact on the usability of motion sensors.

As a final statement we want to convey that as smartphones are becoming

more intelligent by employing more sensors, we should also become more

aware of their potential privacy risks. In this context, our work not only

provides foundation towards understanding the privacy risks of fingerprinting

smartphones through acoustic and motion sensors, but also provides simple

yet effective mitigations against some of these fingerprinting techniques that

can be readily adopted by web browsers today.

120

REFERENCES

[1] “2 Billion Consumers Worldwide to Get Smart(phones) by
2016.” [Online]. Available: http://www.emarketer.com/Article/
2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694 (Date
last accessed 05-June-2016).

[2] “IPhone and Android Apps Breach Privacy.” [On-
line]. Available: http://online.wsj.com/article/
SB10001424052748704694004576020083703574602.html (Date last
accessed 05-June-2016).

[3] K. Mahaffey and J. Hering, “App Attack: Surviving the Explo-
sive Growth of Mobile Apps,” 2010. [Online]. Available: https:
//media.blackhat.com/bh-us-10/presentations/Mahaffey Hering/
Blackhat-USA-2010-Mahaffey-Hering-Lookout-App-Genome-slides.
pdf

[4] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: Detecting Pri-
vacy Leaks in iOS Applications,” in Proceedings of the 17th Annual
Network and Distributed System Security Symposium, ser. NDSS ’11,
2011.

[5] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks: Au-
tomatically Detecting Potential Privacy Leaks in Android Applications
on a Large Scale,” in Proceedings of the 5th International Conference
on Trust and Trustworthy Computing, ser. TRUST’12, 2012, pp. 291–
307.

[6] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An Information-flow Tracking System
for Realtime Privacy Monitoring on Smartphones,” in Proceedings of
the 9th USENIX Conference on Operating Systems Design and Imple-
mentation, ser. OSDI’10, 2010, pp. 1–6.

121

[7] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang, “Ap-
pIntent: Analyzing Sensitive Data Transmission in Android for Pri-
vacy Leakage Detection,” in Proceedings of the 20th ACM SIGSAC
Conference on Computer Communications Security (CCS), 2013, pp.
1043–1054.

[8] “Changes to the rules on using cookies and similar technologies for
storing information.” [Online]. Available: http://www.allaboutcookies.
org/privacy-concerns/new-european-laws.html (Date last accessed 05-
June-2016).

[9] “Do Not Track. Universal Web Tracking Opt Out.” [Online]. Available:
http://donottrack.us/ (Date last accessed 05-June-2016).

[10] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens,
and B. Preneel, “FPDetective: dusting the web for fingerprinters,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer and
Communications Security (CCS), 2013, pp. 1129–1140.

[11] P. Eckersley, “How Unique is Your Web Browser?” in Proceedings of
the 10th International Conference on Privacy Enhancing Technologies
(PETS), 2010, pp. 1–18.

[12] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting canvas in
HTML5,” in Proceedings of Web 2.0 Security and Privacy Workshop
(W2SP), 2012.

[13] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include:
large-scale evaluation of remote javascript inclusions,” in Proceedings of
the 19th ACM SIGSAC conference on Computer and Communications
Security (CCS), 2012, pp. 736–747.

[14] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, “The Web never forgets: Persistent tracking mechanisms in
the wild,” in Proceedings of the 21st ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2014, pp. 674–689.

[15] “Mobile apps overtake PC Internet usage in U.S.” [Online].
Available: http://money.cnn.com/2014/02/28/technology/mobile/
mobile-apps-internet/ (Date last accessed 05-June-2016).

[16] “We Spend More Time On Smartphones Than Traditional
PCs: Nielsen.” [Online]. Available: http://www.ibtimes.com/
we-spend-more-time-smartphones-traditional-pcs-nielsen-1557807
(Date last accessed 05-June-2016).

122

[17] “U.S. Mobil App Report.” [Online]. Available: http://www.ella.net/
pdfs/comScore-US-Mobile-App-Report-2014.pdf (Date last accessed
05-June-2016).

[18] “Percentage of all global web pages served to mobile phones from 2009
to 2016.” [Online]. Available: http://www.statista.com/statistics/
241462/global-mobile-phone-website-traffic-share/ (Date last accessed
05-June-2016).

[19] T. Hupperich, D. Maiorca, M. Kührer, T. Holz, and G. Giacinto, “On
the Robustness of Mobile Device Fingerprinting: Can Mobile Users
Escape Modern Web-Tracking Mechanisms?” in Proceedings of the 31st
Annual Computer Security Applications Conference (ACSAC). ACM,
2015, pp. 191–200.

[20] J. Spooren, D. Preuveneers, and W. Joosen, “Mobile Device Finger-
printing Considered Harmful for Risk-based Authentication,” in Pro-
ceedings of the 8th European Workshop on System Security (EuroSec).
ACM, 2015, pp. 6:1–6:6.

[21] “Does Alexa have a list of its top-ranked websites?” [On-
line]. Available: https://support.alexa.com/hc/en-us/articles/
200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites (Date
last accessed 05-June-2016).

[22] A. Das, N. Borisov, and M. Caesar, “Fingerprinting Smart
Devices Through Embedded Acoustic Components,” CoRR, vol.
abs/1403.3366, 2014. [Online]. Available: http://arxiv.org/abs/1403.
3366

[23] A. Das, N. Borisov, and M. Caesar, “Do You Hear What I Hear?: Fin-
gerprinting Smart Devices Through Embedded Acoustic Components,”
in Proceedings of the 21st ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2014, pp. 441–452.

[24] A. Das, N. Borisov, and M. Caesar, “Exploring Ways To
Mitigate Sensor-Based Smartphone Fingerprinting,” CoRR, vol.
abs/1503.01874, 2015. [Online]. Available: http://arxiv.org/abs/1503.
01874

[25] A. Das, N. Borisov, and M. Caesar, “Tracking Mobile Web Users
Through Motion Sensors: Attacks and Defenses,” in Proceedings of
the 23rd Annual Network and Distributed System Security Symposium
(NDSS). Internet Society, 2016.

123

[26] A. Das, N. Borisov, E. Chou, and M. H. Mughees, “Smartphone Fin-
gerprinting Via Motion Sensors: Analyzing Feasibility at Large-Scale
and Studying Real Usage Patterns,” CoRR, vol. abs/1605.08763, 2016.
[Online]. Available: http://arxiv.org/abs/1605.08763

[27] “Apple dictates the ranking of top 10 MEMS manufacturers in
2014.” [Online]. Available: https://technology.ihs.com/527700/
apple-dictates-the-ranking-of-top-10-mems-manufacturers-in-2014
(Date last accessed 05-June-2016).

[28] “MEMS microphone market.” [Online]. Available: http:
//www.digikey.com/supply-chain-hq/us/en/articles/semiconductors/
mems-microphone-market-revenues-soar-42-in-2012/1497 (Date last
accessed 05-June-2016).

[29] “MEMS microphone shipments to climb 30 percentage in
2013.” [Online]. Available: http://electroiq.com/blog/2013/02/
mems-microphone-shipments-to-climb-30-percent-this-year/ (Date
last accessed 05-June-2016).

[30] “MEMS Microphone Model.” [Online].
Available: http://www.comsol.com/blogs/
mems-microphone-model-presented-asa-166-san-francisco/ (Date
last accessed 05-June-2016).

[31] “How MEMS Microphones Fucntion.” [Online]. Available: http:
//www.eeherald.com/section/design-guide/mems-microphone.html
(Date last accessed 05-June-2016).

[32] J. Chang and Y. Peng, “Speaker, yoke thereof and method for man-
ufacturing yoke,” Jan 2012, US Patent 8,094,867.http://www.google.
com/patents/US8094867.

[33] I. Shahosseini, E. Lefeuvre, M. Woytasik, J. Moulin, X. Leroux,
S. Edmond, E. Dufour-Gergam, A. Bosseboeuf, G. Lemarquand, and
V. Lemarquand, “Towards high fidelity high efficiency MEMS micros-
peakers,” in IEEE Sensors, 2010, pp. 2426–2430.

[34] S.-S. Je, F. Rivas, R. Diaz, J. Kwon, J. Kim, B. Bakkaloglu, S. Ki-
aei, and J. Chae, “A Compact and Low-Cost MEMS Loudspeaker for
Digital Hearing Aids,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 3, no. 5, pp. 348–358, 2009.

[35] M. Cheng, W. Huang, and S. R. Huang, “A silicon microspeaker
for hearing instruments,” J. of Micromechanics and Microengineering,
vol. 14, no. 7, pp. 859–866, Jul 2004.

124

[36] “STMicroelectronics.” [Online]. Available: http://www.st.com/web/
en/home.html (Date last accessed 05-June-2016).

[37] “Invensense.” [Online]. Available: http://www.invensense.com/ (Date
last accessed 05-June-2016).

[38] “Research and Markets: Global MEMS Mar-
ket 2015-2019.” [Online]. Available: http://www.
businesswire.com/news/home/20150216005540/en/
Research-Markets-Global-MEMS-Market-2015-2019 (Date last
accessed 05-June-2016).

[39] “iPhone 4 Teardown.” [Online]. Available: https://www.ifixit.com/
Teardown/iPhone+4+Teardown/3130 (Date last accessed 05-June-
2016).

[40] “iPhone 5 Teardown.” [Online]. Available: https://www.ifixit.com/
Teardown/iPhone+5+Teardown/10525 (Date last accessed 05-June-
2016).

[41] “iPhone 6 Teardown.” [Online]. Available: https://www.ifixit.com/
Teardown/iPhone+6+Teardown/29213 (Date last accessed 05-June-
2016).

[42] “Inside the Samsung Galaxy SIII.” [Online]. Available:
http://www.chipworks.com/en/technical-competitive-analysis/
resources/blog/inside-the-samsung-galaxy-siii/ (Date last accessed
05-June-2016).

[43] “Inside the Samsung Galaxy S4.” [Online]. Available: http:
//www.chipworks.com/en/technical-competitive-analysis/resources/
blog/inside-the-samsung-galaxy-s4/ (Date last accessed 05-June-
2016).

[44] “Nexus 4 Teardown.” [Online]. Available: https://www.ifixit.com/
Teardown/Nexus+4+Teardown/11781 (Date last accessed 05-June-
2016).

[45] “Nexus 5 Teardown.” [Online]. Available: https://www.ifixit.com/
Teardown/Nexus+5+Teardown/19016 (Date last accessed 05-June-
2016).

[46] “MEMS-based accelerometers.” [Online]. Available: http://www.
wikid.eu/index.php/MEMS-based accelerometers (Date last accessed
05-June-2016).

125

[47] STMicroelectronics, “Everything about STMicroelectronics 3-axis dig-
ital MEMS gyroscopes.” [Online]. Available: http://www.st.com/web/
en/resource/technical/document/technical article/DM00034730.pdf
(Date last accessed 05-June-2016).

[48] “MEMS gyroscopes.” [Online]. Available: http://www.findmems.com/
wikimems-learn/introduction-to-mems-gyroscopes (Date last accessed
05-June-2016).

[49] A. Ross and A. Jain, “Information fusion in biometrics,” Pattern Recog-
nition Letters, vol. 24, no. 13, pp. 2115 – 2125, 2003.

[50] S. COLE and S. Cole, Suspect Identities: A History of Fingerprinting
and Criminal Identification. Harvard University Press, 2009.

[51] L. Langley, “Specific emitter identification (SEI) and classical param-
eter fusion technology,” in Proceedings of the IEEE WESCON, 1993,
pp. 377–381.

[52] M. Riezenman, “Cellular security: better, but foes still lurk,” IEEE
Spectrum, vol. 37, no. 6, pp. 39–42, 2000.

[53] Z. Li, W. Xu, R. Miller, and W. Trappe, “Securing Wireless Systems via
Lower Layer Enforcements,” in Proceedings of the 5th ACM Workshop
on Wireless Security (WiSe), 2006, pp. 33–42.

[54] N. T. Nguyen, G. Zheng, Z. Han, and R. Zheng, “Device fingerprinting
to enhance wireless security using nonparametric Bayesian method,”
in Proceedings of the 30th Annual IEEE International Conference on
Computer Communications (INFOCOM), 2011, pp. 1404–1412.

[55] N. Patwari and S. K. Kasera, “Robust Location Distinction Using
Temporal Link Signatures,” in Proceedings of the 13th Annual ACM
International Conference on Mobile Computing and Networking (Mo-
biCom), 2007, pp. 111–122.

[56] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless Device Identi-
fication with Radiometric Signatures,” in Proceedings of the 14th ACM
International Conference on Mobile Computing and Networking (Mo-
biCom), 2008, pp. 116–127.

[57] R. M. Gerdes, T. E. Daniels, M. Mina, and S. F. Russell, “Device iden-
tification via analog signal fingerprinting: A matched filter approach,”
in Proceedings of the 13th Network and Distributed System Security
Symposium (NDSS), 2006.

126

[58] S. Moon, P. Skelly, and D. Towsley, “Estimation and removal of clock
skew from network delay measurements,” in Proceedings of the 18th
Annual IEEE International Conference on Computer Communications
(INFOCOM), vol. 1, 1999, pp. 227–234.

[59] T. Kohno:2005, A. Broido, and K. C. Claffy, “Remote Physical Device
Fingerprinting,” IEEE Trans. Dependable Secur. Comput., vol. 2, no. 2,
pp. 93–108, 2005.

[60] L. C. C. Desmond, C. C. Yuan, T. C. Pheng, and R. S. Lee, “Identify-
ing Unique Devices Through Wireless Fingerprinting,” in Proceedings
of the First ACM Conference on Wireless Network Security (WiSec),
2008, pp. 46–55.

[61] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. Van Randwyk, and
D. Sicker, “Passive Data Link Layer 802.11 Wireless Device Driver
Fingerprinting,” in Proceedings of the 15th Conference on USENIX
Security Symposium, 2006.

[62] F. Guo and T. cker Chiueh, “Sequence Number-Based MAC Address
Spoof Detection,” in Proceedings of 8th International Symposium on
Recent Advances in Intrusion Detection (RAID), 2005.

[63] G. Lyon, “Nmap: a free network mapping and security scanning tool.”
[Online]. Available: http://nmap.org/ (Date last accessed 05-June-
2016).

[64] F. Yarochkin, M. Kydyraliev, and O. Arkin, “Xprobe project.” [On-
line]. Available: http://ofirarkin.wordpress.com/xprobe/ (Date last ac-
cessed 05-June-2016).

[65] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fingerprinting
Information in JavaScript Implementations,” in Proceedings of IEEE
Web 2.0 Security & Privacy Workshop (W2SP), 2011.

[66] L. Olejnik, C. Castelluccia, and A. Janc, “Why Johnny Can’t Browse
in Peace: On the Uniqueness of Web Browsing History Patterns,” in
5th Workshop on Hot Topics in Privacy Enhancing Technologies (Hot-
PETs), 2012.

[67] N. Nikiforakis, W. Joosen, and B. Livshits, “PriVaricator: Deceiving
Fingerprinters with Little White Lies,” in Proceedings of the 24th Inter-
national Conference on World Wide Web (WWW), 2015, pp. 820–830.

[68] “Apple places kill date on apps that use ‘UDID’ device
identifiers.” [Online]. Available: http://www.zdnet.com/article/
apple-places-kill-date-on-apps-that-use-udid-device-identifiers/ (Date
last accessed 05-June-2016).

127

[69] “Android TelephonyManager.” [Online]. Available: http://developer.
android.com/reference/android/telephony/TelephonyManager.html#
getDeviceId() (Date last accessed 05-June-2016).

[70] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the Beast:
Diverting modern web browsers to build unique browser fingerprints,”
in Proceedings of the 37th IEEE Symposium on Security and Privacy
(S&P) , 2016.

[71] A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. Freiling, “Finger-
printing Mobile Devices Using Personalized Configurations,” Proceed-
ings on Privacy Enhancing Technologies, no. 1, 2016.

[72] W. B. Clarkson, “Breaking assumptions: Distinguishing between seem-
ingly identical items using cheap sensors,” Ph.D. dissertation, Prince-
ton, NJ, USA, 2012.

[73] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile Device
Identification via Sensor Fingerprinting,” CoRR, vol. abs/1408.1416,
2014, http://arxiv.org/abs/1408.1416.

[74] Z. Zhou, W. Diao, X. Liu, and K. Zhang, “Acoustic Fingerprinting Re-
visited: Generate Stable Device ID Stealthily with Inaudible Sound,”
in Proceedings of the 21st ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2014, pp. 429–440.

[75] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A Review of Audio
Fingerprinting,” J. VLSI Signal Process. Syst., vol. 41, no. 3, pp. 271–
284, Nov 2005.

[76] G. Tzanetakis and P. Cook, “Musical genre classification of audio sig-
nals,” IEEE Transactions on Speech and Audio Processing, vol. 10,
no. 5, pp. 293–302, 2002.

[77] G. Guo and S. Li, “Content-based audio classification and retrieval
by support vector machines,” IEEE Transactions on Neural Networks,
vol. 14, no. 1, pp. 209–215, Jan 2003.

[78] J. Campbell, J.P., “Speaker recognition: a tutorial,” Proceedings of the
IEEE, vol. 85, no. 9, pp. 1437–1462, Sep 1997.

[79] F. Bimbot, J.-F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-
Chagnolleau, S. Meignier, T. Merlin, J. Ortega-Garcia, D. Petrovska-
Delacretaz, and D. A. Reynolds, “A Tutorial on Text-Independent
Speaker Verification,” EURASIP Journal on Advances in Signal Pro-
cessing, vol. 4, pp. 430–451, 2004.

128

[80] M. Mckinney and J. Breebaart, “Features for Audio and Music Classifi-
cation,” in Proceedings of the 2003 International Symposium on Music
Information Retrieval, 2003, pp. 151–158.

[81] T. Li, M. Ogihara, and Q. Li, “A Comparative Study on Content-
based Music Genre Classification,” in Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and Development
in Informaion Retrieval, ser. SIGIR ’03, 2003, pp. 282–289.

[82] J. Haitsma and T. Kalker, “A Highly Robust Audio Fingerprinting
System,” in Proceedings of the 2002 International Symposium on Music
Information Retrieval, 2002, pp. 107–115.

[83] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “Accel-
Print: Imperfections of Accelerometers Make Smartphones Trackable,”
in Proceedings of the 21st Annual Network and Distributed System Se-
curity Symposium (NDSS), 2014.

[84] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recognizing
Speech from Gyroscope Signals,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, 2014, pp. 1053–1067.

[85] M. Frank, B. Dong, A. Porter Felt, and D. Song, “Mining Permis-
sion Request Patterns from Android and Facebook Applications,” in
Proceedings of the 2012 IEEE 12th International Conference on Data
Mining (ICDM), 2012, pp. 870–875.

[86] P. Kelley, S. Consolvo, L. Cranor, J. Jung, N. Sadeh, and D. Wetherall,
“A Conundrum of Permissions: Installing Applications on an Android
Smartphone,” in Financial Cryptography and Data Security, 2012, pp.
68–79.

[87] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS), 2011, pp. 627–638.

[88] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “An-
droid Permissions: User Attention, Comprehension, and Behavior,” in
Proceedings of the 8th Symposium on Usable Privacy and Security, ser.
SOUPS ’12, 2012, pp. 3:1–3:14.

[89] “My Talking Tom.” [Online]. Available: https://play.google.com/
store/apps/details?id=com.outfit7.mytalkingtomfree (Date last ac-
cessed 05-June-2016).

[90] “WAVE PCM soundfile format.” [Online]. Available: http://soundfile.
sapp.org/doc/WaveFormat/ (Date last accessed 05-June-2016).

129

[91] “MIRtoolbox.” [Online]. Available: https://www.jyu.fi/hum/
laitokset/musiikki/en/research/coe/materials/mirtoolbox (Date
last accessed 05-June-2016).

[92] “Netlab: Algorithms for Pattern Recognition.” [Online]. Avail-
able: http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/
netlab/book/ (Date last accessed 05-June-2016).

[93] “Audacity is free, open source, cross-platform software for recording
and editing sounds.” [Online]. Available: http://audacity.sourceforge.
net/ (Date last accessed 05-June-2016).

[94] “Hertz, the WAV recorder.” [Online]. Available: https:
//play.google.com/store/apps/details?id=uk.ac.cam.cl.dtg.android.
audionetworking.hertz (Date last accessed 05-June-2016).

[95] M. A. Bartsch and G. H. Wakefield, “Audio Thumbnailing of Popular
Music Using Chroma-based Representations,” IEEE Transactions on
Multimedia, vol. 7, no. 1, pp. 96–104, Feb 2005.

[96] C. Chen, Signal Processing Handbook, ser. Electrical and Computer
Engineering, 1988.

[97] F. Gouyon, F. Pachet, and O. Delerue, “On the Use of Zero-Crossing
Rate for an Application of Classification of Percussive Sounds,” in Pro-
ceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-
00, 2000.

[98] H. Misra, S. Ikbal, H. Bourlard, and H. Hermansky, “Spectral entropy
based feature for robust ASR,” in IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 1, 2004, pp. 193–196.

[99] K. Jensen, Timbre Models of Musical Sounds, ser. PhD Dissertation.
University of Copenhagen, 1999.

[100] G. Peeters, “A large set of audio features for sound de-
scription (similarity and classification) in the CUIDADO
project,” Icram, Tech. Rep., 2004. [Online]. Available: http:
//recherche.ircam.fr/equipes/analyse-synthese/peeters/ARTICLES/
Peeters 2003 cuidadoaudiofeatures.pdf

[101] P. N. Juslin, “Cue utilization in communication of emotion in music
performance : Relating performance to perception,” Journal of Ex-
perimental Psychology: Human Perception and Performance, vol. 26,
no. 6, pp. 1797–1813, 2000.

[102] J. Johnston, “Transform coding of audio signals using perceptual noise
criteria,” IEEE Journal on Selected Areas in Communications, vol. 6,
no. 2, pp. 314–323, Feb 1988.

130

[103] B. Logan, “Mel Frequency Cepstral Coefficients for Music Modeling,”
in In International Symposium on Music Information Retrieval, 2000.

[104] T. Fujishima, “Realtime chord recognition of musical sound: A system
using common Lisp Music,” in International Computer Music Confer-
ence (ICMA), 1999, pp. 464–467.

[105] C. Harte, M. Sandler, and M. Gasser, “Detecting Harmonic Change in
Musical Audio,” in Proceedings of the 1st ACM Workshop on Audio
and Music Computing Multimedia, ser. AMCMM ’06, 2006, pp. 21–26.

[106] R. Duda, P. Hart, and D. Stork, Pattern classification. Wiley, 2001.

[107] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likeli-
hood from Incomplete Data via the EM Algorithm,” J. of the Royal
Statistical Society. Series B, vol. 39, no. 1, pp. 1–38, 1977.

[108] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verifica-
tion using adapted gaussian mixture models,” Digital Signal Process-
ing, vol. 10, no. 1-3, pp. 19–41, 2000.

[109] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Information Processing and Manage-
ment, vol. 45, no. 4, pp. 427–437, 2009.

[110] I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature
Selection,” Journal of Machine Learning Research, vol. 3, no. 26, pp.
1157–1182, Mar 2003.

[111] Y. Yang and J. O. Pedersen, “A Comparative Study on Feature Se-
lection in Text Categorization,” in Proceedings of the Fourteenth In-
ternational Conference on Machine Learning, ser. ICML ’97, 1997, pp.
412–420.

[112] “Audio 4 Smartphones – Wolfson Microelectronics.” [Online].
Available: http://www.wolfsonmicro.com/documents/uploads/misc/
en/Audio4Smartphones.pdf (Date last accessed 05-June-2016).

[113] “5 of the best DACs.” [Online]. Available: http://www.stuff.tv/music/
5-best-dacs-how-make-your-digital-music-sound-amazing/feature
(Date last accessed 05-June-2016).

[114] “Ambient Sound Effects.” [Online]. Available: http://www.pacdv.
com/sounds/ambience sounds.html (Date last accessed 05-June-2016).

[115] “SOUNDJAY-Ambient Sound Effects.” [Online]. Available: http://
www.soundjay.com/ambient-sounds.html (Date last accessed 05-June-
2016).

131

[116] “DeviceOrientation Event Specification.” [Online]. Available: https:
//www.w3.org/TR/orientation-event/ (Date last accessed 05-June-
2016).

[117] “Percentage of all global web pages served to mobile phones.”
[Online]. Available: http://www.statista.com/statistics/241462/
global-mobile-phone-website-traffic-share/ (Date last accessed 05-
June-2016).

[118] “Top Mobile Browsers from Jan 2014 toJan 2015.”
[Online]. Available: http://gs.statcounter.com/#mobile
browser-ww-monthly-201401-201501 (Date last accessed 05-June-
2016).

[119] “Browser Trends September 2014: Chrome Is the Top Mo-
bile Browser.” [Online]. Available: http://www.sitepoint.com/
browser-trends-september-2014-chrome-top-mobile-browser/ (Date
last accessed 05-June-2016).

[120] “Android Sensors Overview.” [Online]. Available: http://developer.
android.com/guide/topics/sensors/sensors overview.html (Date last
accessed 05-June-2016).

[121] “Corona SDK API reference.” [Online]. Available: http://docs.
coronalabs.com/api/library/system/setAccelerometerInterval.html
(Date last accessed 05-June-2016).

[122] S. McKinley and M. Levine, “Cubic Spline Interpolation,” College of
the Redwoods, vol. 45, no. 1, pp. 1049–1060, 1998.

[123] W. A. Sethares, “Adaptive Tunings,” in Tuning, Timbre, Spectrum,
Scale. Springer, 1998, pp. 147–164.

[124] O. Lartillot, “MIRtoolbox 1.5 — Users Manual.” [Online]. Avail-
able: https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/
materials/mirtoolbox/MIRtoolbox1.5Guide (Date last accessed 05-
June-2016).

[125] “Supervised Learning (Machine Learning) Workflow and Algo-
rithms.” [Online]. Available: http://www.mathworks.com/help/stats/
supervised-learning-machine-learning-workflow-and-algorithms.html
(Date last accessed 05-June-2016).

[126] “LibXtract Documentation.” [Online]. Available: http://libxtract.
sourceforge.net/ (Date last accessed 05-June-2016).

[127] A. Pocock and G. Brown, “FEAST,” 2014. [Online]. Available: http:
//mloss.org/software/view/386/

132

[128] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional Likeli-
hood Maximisation: A Unifying Framework for Information Theoretic
Feature Selection,” Machine Learning Research, vol. 13, pp. 27–66,
2012.

[129] “Amazon Mechanical Turk.” [Online]. Available: https://www.mturk.
com/mturk/welcome (Date last accessed 05-June-2016).

[130] A. Bellet, A. Habrard, and M. Sebban, “A Survey on Metric Learning
for Feature Vectors and Structured Data,” CoRR, vol. abs/1306.6709,
2013, http://arxiv.org/abs/1306.6709.

[131] M. Köstinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof,
“Large scale metric learning from equivalence constraints,” in Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, 2012, pp. 2288–2295.

[132] K. Weinberger and L. Saul, “Distance Metric Learning for Large Mar-
gin Nearest Neighbor Classification,” The Journal of Machine Learning
Research, vol. 10, pp. 207–244, 2009.

[133] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-
theoretic Metric Learning,” in Proceedings of the 24th International
Conference on Machine Learning (ICML). ACM, 2007, pp. 209–216.

[134] M. Guillaumin, J. Verbeek, and C. Schmid, “Is that you? Metric learn-
ing approaches for face identification,” in Proceedings of the 12th In-
ternational Conference on Computer Vision (ICCV). IEEE, 2009, pp.
498–505.

[135] “Fit probability distribution object to data.” [Online]. Available: http:
//www.mathworks.com/help/stats/fitdist.html (Date last accessed 05-
June-2016).

[136] H. Akaike, Information Theory and an Extension of the Maximum
Likelihood Principle. Springer New York, 1998, pp. 199–213.

[137] “How Long Do Users Stay on Web Pages?” [Online]. Available: https:
//www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/
(Date last accessed 05-June-2016).

[138] “What You Think You Know About the Web Is
Wrong.” [Online]. Available: http://time.com/12933/
what-you-think-you-know-about-the-web-is-wrong/ (Date last
accessed 05-June-2016).

133

[139] “Refining a k-Nearest-Neighbor classification.” [Online]. Avail-
able: https://www3.nd.edu/∼steve/computing with data/
17 Refining kNN/refining knn.html (Date last accessed 05-June-
2016).

[140] “Selenium Web Driver.” [Online]. Available: http://www.seleniumhq.
org/projects/webdriver (Date last accessed 05-June-2016).

[141] “Open source V8 JavaScript engine.” [Online]. Available: https://
github.com/v8/v8/wiki (Date last accessed 05-June-2016).

[142] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “ZOZZLE: Fast
and Precise In-browser JavaScript Malware Detection,” in Proceedings
of the 20th USENIX Conference on Security (SEC). USENIX Asso-
ciation, 2011.

[143] “ECMAScript parsing infrastructure for multipurpose analysis.” [On-
line]. Available: http://esprima.org (Date last accessed 05-June-2016).

[144] L. van der Maaten, “Matlab Toolbox for Dimensionality Reduction.”
[Online]. Available: http://lvdmaaten.github.io/drtoolbox/ (Date last
accessed 05-June-2016).

[145] D. K. Agrafiotis, “Stochastic Proximity Embedding,” Journal of com-
putational chemistry, vol. 24, no. 10, pp. 1215–1221, 2003.

[146] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions
on Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[147] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53–65, 1987.

[148] “Stanford Javascript Crypto Library.” [Online]. Available: https:
//github.com/bitwiseshiftleft/sjcl/blob/master/sjcl.js (Date last ac-
cessed 05-June-2016).

[149] “Parallax.js.” [Online]. Available: https://github.com/wagerfield/
parallax (Date last accessed 05-June-2016).

[150] “jGestures.” [Online]. Available: https://jgestures.codeplex.com/
(Date last accessed 05-June-2016).

[151] “MotionCAPTCHA.” [Online]. Available: https://github.com/
josscrowcroft/MotionCAPTCHA (Date last accessed 05-June-2016).

[152] “Trapezoid Rule.” [Online]. Available: http://www.mathwords.com/
t/trapezoid rule.htm (Date last accessed 05-June-2016).

134

[153] C. Dwork, “Differential Privacy,” in Proceedings of the 33rd In-
ternational Colloquium on Automata, Languages and Programming
(ICALP). Springer Verlag, 2006, pp. 1–12.

[154] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise
to Sensitivity in Private Data Analysis,” in Proceedings of the 3rd Con-
ference on Theory of Cryptography (TCC), 2006, pp. 265–284.

[155] “Wearables vs. Smartphone Apps: Which Are Better to Count
Steps?” [Online]. Available: http://www.livescience.com/
49756-smartphone-apps-wearables-step-counts.html (Date last
accessed 05-June-2016).

135

APPENDIX A

FEATURE DISTRIBUTIONS FOR
MOTION SENSOR DATA

We collected motion sensor data from a total of 610 devices. This large

dataset enabled us to derive a distribution for each feature. Figure A.1 shows

the distributions for the top 12 features selected based on JMI criterion [127].

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

Feature Value

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

18

20

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

10

12

14

16

18

20

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

Feature Value

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

Feature Value

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Figure A.1: Distributions for the top 12 original features.

136

Similarly, Figure A.2 shows the distributions for the top 12 (out of 100)

features after LDML transformation is performed on the original dataset.

Compared to the original untransformed features we can see that the top

features under LDML have a higher degree of variation and hence higher

entropy.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Feature Value

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

−2.5 −2 −1.5 −1 −0.5 0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Feature Value

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Feature Value

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

3

3.5

4

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0

0.5

1

1.5

2

2.5

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−3.5 −3 −2.5 −2 −1.5 −1 −0.5
0

0.5

1

1.5

2

2.5

3

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.5

1

1.5

2

2.5

3

3.5

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Feature Value

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Feature Value

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Figure A.2: Distributions for the top 12 features selected based on JMI
criterion after LDML transformation is performed.

137

APPENDIX B

DEVICE MODELS IN OUR DATASET

We collected sensor data from a total of 610 devices which covered 108 dif-

ferent make and models of devices. Figure B.1 shows the distribution of the

different device models. We can see that different models of iPhones comprise

around 47% of all devices.

Samsung SM-N900V (Galaxy Note 3)
LG F320L (G2)

Samsung SM-N910C (Galaxy Note 4)
LG VS985 (G3)

BLU Studio 5.0 HD LTE
Samsung SM-G870A (Samsung Galaxy S5 Active)

Samsung GT-I9195 (Galaxy S4 Mini)
Samsung SGH-I317 (Galaxy Note II)

Samsung SM-S975L (Galaxy S4)
Motorola XT1049

Sony D6708 (Xperia Z3)
inFocus M2

Samsung SM-G730A (Samsung Galaxy S III Mini)
Samsung SGH-I777 (Galaxy S II)

Samsung GT-I9500 (Galaxy S4)
Samsung SM-N920V 4G (Galaxy Note 5)

Sony C6916 (Xperia Z1s LTE-A)
Samsung SHW-M440S (Galaxy S III)

Samsung SGH-I337M (Galaxy S4)
Apple iPhone 3GS

HTC One M7
HTC 831C (One M8)

Samsung SM-G850A (Samsung Galaxy Alpha)
Samsung SGH-I257M (Galaxy S4 Mini)

LG D850 (G3)
Samsung GT-N7100 (Galaxy Note II)

Samsung SC-04F (S5 LTE-A)
HTC One dual Sim

OnePlus A0001 (One A0001)
Samsung SCH-I747 (Galaxy S III)

Samsung SM-N900 (Galaxy Note 3)
Samsung SCH-I535 (Galaxy S III)

Samsung SGH_T999 (Galaxy S III)
Generic Android 4.2

Samsung SM-N900P (Galaxy Note 3)
Samsung SGH-I337M (Parrot)

LG D855 (G3)
HTC PJ401 (One S)

Samsung GT-I9082 (Galaxy Grand Duos)
Samsung SPH-L900 (Galaxy Note II)

Samsung SCH-R970
Samsung SM-N910P (Galaxy Note 4)

Samsung SM-G925F (Galaxy S6 Edge)
Samsung SM-G925A (Galaxy S6 Edge)

Samsung SCH-I545 (Galaxy S4)
Xiaomi 2014818 (Hongmi 2 4G / Redmi 2 Dual SIM)

Samsung SM-G860P (Galaxy S5 Active)
Samsung SM-N910V (Galaxy Note 4)

HTC M9 (One M9)
Samsung SM-G920T (Galaxy S6)

Samsung SGH-T889 (Galaxy Note II)
LG VS985

Samsung SGH-T999 (Galaxy S III)
LG LG-H811 (LG G4)

Samsung SM-N900T (Samsung Galaxy Note)
Mozilla Firefox for Android

Huawei MT2L03 (Ascend Mate 2)
LG US990 (G3)

Samsung SM-G925P (Galaxy S6 Edge)
HTC M7 (One)

Samsung SM-G920V (Galaxy S6)
Samsung SM-N900P (Samsung Galaxy Note3)

Samsung SM-N900T (Galaxy Note 3)
Samsung SGH-I537 (Galaxy S4 Active)

Motorola XT1080 (Droid Ultra)
Samsung Galaxy Nexus

Motorola XT1049 (Moto X)
Samsung SM-N910A (Galaxy Note 4)
Samsung SM-N920V (Galaxy Note 5)

Samsung SGH-M919 (Galaxy S4)
Samsung SM-N910T (Galaxy Note 4)

Samsung SPH-L710 (Galaxy S III)
Samsung SM-G900A (Galaxy S5)

Samsung SM-N900A (Galaxy Note 3)
Samsung SCH-M919 (Galaxy S4)

Generic Android 5.0
Samsung SM-G870A (Galaxy S5 Active)

LG D851 (G3)
Samsung SPH-L720 (Galaxy S4)

Google Nexus 6
Motorola XT1060 (Moto X)

Motorola XT1097 (Moto X (2nd Gen))
Motorola XT1058 (Moto X)

Motorola XT1254 (Droid Turbo)
Samsung GT-I9300 (Galaxy S III)

HTC M8 (One M8)
Apple iPhone 4S

Samsung SM-G925T (Galaxy S6 Edge)
Samsung SM-G900T (Galaxy S5)

Samsung SGH-I337 (Samsung Galaxy S4)
Samsung SM-G900A (Samsung Galaxy S5)

Apple iPhone 4
Google Nexus 4

Samsung SM-G900P (Galaxy S5)
Samsung SM-G920P (Galaxy S6)
Samsung SGH-I337 (Galaxy S4)

Unknown
Google Nexus 5

Nexus S
Samsung SCH i545 (Galaxy S4)

Samsung SM-G900V (Galaxy S5)
Generic Android 6.0

Apple iPhone
Apple iPhone 5

Apple iPhone 6 Plus
Generic Android 5.1

Apple iPhone 5S
Apple iPhone 6

0% 10% 20%
% of Devices

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.16%

0.16%
0.33%

0.33%
0.33%

0.33%
0.33%

0.33%
0.33%

0.33%
0.33%

0.33%
0.33%

0.33%
0.33%

0.33%
0.49%

0.49%
0.49%

0.49%
0.49%

0.49%
0.49%
0.66%

0.66%
0.66%

0.66%
0.66%

0.66%
0.66%

0.66%
0.82%

0.82%
0.82%

0.82%
0.98%

1.15%
1.15%

1.31%
1.48%

1.48%
1.80%

1.80%
2.13%

2.62%
2.62%

2.62%
3.77%

5.57%
6.89%

7.87%

8.69%
20.16%

Figure B.1: Distribution of the different make and model of smartphones
that provided sensor data for our study.

138

APPENDIX C

DEVICE MODELS IN OUR USER STUDY

In total 407 users participated in our user study covering 144 different device

models. Figure C.1 shows the distribution of the different device models that

participated. 41% of the devices were different models of iPhones.

Samsung SM-N920P (Galaxy Note 5)
Alcatel 6045O (One Touch Idol 3 Dual SIM)

Samsung SM-N900V (Galaxy Note 3)
HTC 0PAJ5 (One E8)

LG LGL21G (Destiny)
Apple iPad Air 2
LG F320L (G2)

Samsung SGH-T399 (Galaxy Light)
Samsung SM-N910C (Galaxy Note 4)

HTC 0PM92 (Desire 626s)
Samsung SPH-L720 (Galaxy S4)

Apple iPhone 4
HTC M7 (One)

LG L22C (Power)
Samsung SM-G920F (Galaxy S6)

LG LS740 (Volt)
Sony D6708 (Xperia Z3)

LG H443 (Escape2)
Sony C6903 (Xperia Z1)

LG VS980 (G2)
Samsung SGH-T399N (Galaxy Light)

RCA RCT6773W22
Samsung GT-I8552 (Galaxy Grand Quattro)

Nokia Lumia 630
Samsung SM-N920V 4G (Galaxy Note 5)

LG D802T (G2)
Motorola XT1505 (Moto E (2nd Gen))

Motorola XT1096 (Moto X)
Sony Xperia D6653 (Xperia Z3)

LG H810 (G4)
Motorola XT1097 (Moto X (2nd Gen))

Samsung SM-G928A (Galaxy S6 Edge Plus)
Samsung SPH-L710T (Galaxy S III)

LG H811 (G4)
LG D631 (G Pro2 Lite)

Samsung SM-G7102 (Galaxy Grand 2)
Samsung SGH-I257M (Galaxy S4 Mini)
Samsung SGH-I317M (Galaxy Note II)

Samsung SGH-T999 (Galaxy S III)
Samsung SHV-E300S (Galaxy S4)

Samsung SM-T520 (Galaxy Tab Pro 10.1)
Sony Xperia D6633 (Xperia Z3 Dual)

Asus ASUS_Z008D (ZenFone 2)
LG V495 (G Pad F 7.0)

ZTE Z958
LG D415 (Optimus L90)

Samsung SGH_T999 (Galaxy S III)
Motorola XT1031 (Moto G)

Motorola XT1528 (Moto E (2nd Gen))
HTC M9u (One M9)

Apple iPod Touch Gen 6
Asus Z00A (ZenFone 2)

Samsung SM-G531M (Galaxy Grand Prime)
LG VS450PP (Optimus Exceed 2)

Samsung SM-G360T (Galaxy Core Prime TD-LTE)
BLU Studio X

Samsung SM-G386T (Galaxy Avant)
LG L16C (Sunrise)

Samsung SM-S975L (Galaxy S4)
Samsung SM-G900H (Galaxy S5)

LG H634
Amazon KFARWI (Fire HD 6 (4th Gen))

Alcatel 5054N (One Touch Fierce XL)
Samsung SM-G900F (Galaxy S5)

Motorola XT1575 (Moto X Style/Pure)
Motorola XT1058 (Moto X)

BlackBerry STV100-1 (Priv)
Samsung SM-N900A (Galaxy Note 3)

HTC 6525LVW (HTC One M8)
Samsung SM-T320 (Galaxy Tab Pro 8.4)

Motorola XT1565 (Droid Maxx 2)
SonyEricsson C6602 (Xperia Z)

Samsung SCH-I747 (Galaxy S III)
LG D851 (G3)

Motorola XT1526 (Moto E (2nd Gen))
LG VS920 4G (Revolution 2)

Motorola XT1045 (Moto G LTE)
Amazon KFTHWI (Kindle Fire HDX 7 3rd Gen)

Asus Z002 (ZenFone 6)
Samsung SM-G935T (Galaxy S7 Edge)

LG LS665 (Tribute 2)
Vodafone Smart Ultra 6

Samsung SM-G531H (Galaxy Grand Prime Value Edition)
HTC 0P4E1 (Zara)

HTC PN07120 (One)
Motorola XT1585 (Droid Turbo 2)
Huawei MT2L03 (Ascend Mate 2)

OnePlus A0001 (One)
OnePlus One A2005 (2)

Samsung SM-N920T (Galaxy Note 5)
Apple iPad 2

Samsung SM-N910P (Galaxy Note 4)
LG MS330 (K7)

Motorola MotoG3
Motorola XT1030 (Droid Mini)

Motorola XT1095 (Moto X (2nd Gen))
Samsung SM-G925V (Galaxy S6 Edge)

Samsung SM-N9005 (Galaxy Note 3)
Generic Android 4.3

Samsung SM-N915V (Galaxy Note Edge)
Asus ASUS_Z00AD (ZenFone 2)
Samsung SM-G920T (Galaxy S6)

Samsung SCH i545 (Galaxy S4)
Samsung SM-G935F (Galaxy S7 Edge)

Samsung SGH-I337 (Galaxy S4)
LG LS990 (G3)

Samsung SM-G925A (Galaxy S6 Edge)
HTC Desire 626s

Samsung SCH-M919 (Galaxy S4)
Samsung SM-G900T (Galaxy S5)

Samsung SM-N910A (Galaxy Note 4)
Samsung SM-N920V (Galaxy Note 5)

Samsung SM-G930T (Galaxy S7)
Generic Android 6.0

LG H345 (Leon)
Motorola XT1080 (Droid Ultra)

Samsung SHV-E330S (Galaxy S4)
Apple iPad Air

Samsung SM-N910V (Galaxy Note 4)
Generic Android 5.0

Motorola XT1064 (Moto G (2nd Gen))
Samsung SM-N910T (Galaxy Note 4)

Google Nexus 6
Google Nexus 7
Google Nexus 4

Samsung SM-G900A (Galaxy S5)
Samsung SM-G920A (Galaxy S6)

Motorola XT1254 (Droid Turbo)
Samsung SM-G900P (Galaxy S5)

Google Nexus 6P
Apple iPhone

Samsung SM-G870A (Galaxy S5 Active)
Samsung SM-G920V (Galaxy S6)

Mozilla Firefox for Android
Apple iPhone 4S

Apple iPhone 6S Plus
Google Nexus 5X

Google Nexus 5
Samsung SM-G900V (Galaxy S5)

Apple iPhone 6 Plus
Apple iPhone 5

Apple iPhone 5S
Apple iPhone 6S

Apple iPhone 6

0% 10% 20%
% of Devices

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.25%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.49%

0.74%

0.74%

0.74%

0.74%

0.74%

0.74%

0.98%

0.98%

0.98%

0.98%

0.98%

0.98%

1.23%

1.23%

1.23%

1.23%

1.72%

1.72%

1.97%

1.97%

1.97%

2.21%

2.21%

3.93%

4.91%

4.91%

5.9%

15.72%

Figure C.1: Distribution of the different make and model of smartphones
that participated in our user study.

139

