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ABSTRACT: 

Cognitive training holds promise to improve cognitive ability in many people, young, old, both 
healthy, and those with psychiatric or neurological illness, but this field largely lacks a mechanistic 
understanding of the process by which training demonstrates transfer to improve underlying 
cognitive abilities. In Chapter 1, we examine how mapping the neural correlates of training and 
transfer is critical for developing a mechanistic explanation of how training drives transfer. In the 
current study, we trained 45 young adults with Mind Frontiers, an adaptive cognitive training game 
that targets executive function, attention, and reasoning. We investigate how both brain structure 
and resting state networks are associated with training gain and transfer. In Chapter 2, we 
investigate how both pre-existing and training-induced differences in brain structure are predictive 
of training and transfer. In Chapter 3, we assess how both pre-existing, and training-induced 
differences in resting state network connectivity in the default mode, cingulo-opercular, frontal-
parietal, and subcortical networks predict training gain and transfer. In Chapter 4, we examine the 
relationship of the structural and resting state data in predicting training and transfer. We assess 
the extent to which these predictors overlap and dissociate with one another over predictions of 
training gain and transfer. To make our predictions, we utilize a simple machine learning paradigm 
that we developed to maximize the reliability and interpretability of our findings. We found 
extensive overlap in structural predictions of training gain and transfer in low level visual and 
auditory areas, suggesting that greater fidelity in low level sensory systems may contribute to 
greater signal to noise ratios during training, enabling better training quality and transfer. 
Furthermore, our resting state results also highlight the importance of training quality through 
demonstrating the importance of the cingulo-opercular network, which is critical for both the 
regulation of the default mode network and deployment of sustained attention during training. 
These results suggest that greater training fidelity through lessened distraction may play an 
important role in maximizing the benefits of an intervention. 
 

 

 

 

 

 

 

 

 

 



	
	

iii	

 

Table of Contents 

Chapter 1: Investigations into Cognitive Training.……………………………….…........…….....1 

Chapter 2: Brain Volume and Thickness Predictions of Cognitive Skill Training and Transfer to 
Working Memory, Fluid Intelligence, and Perceptual Speed Using Machine Learning………...16 
 
Chapter 3: Machine Learning Predictions of Cognitive Skill Training and Transfer to Working 
Memory, Fluid Intelligence, and Perceptual Speed Using Resting State Functional 
Connectivity………………………………………………………………………………..….…52 
 
Chapter 4: Comparing Resting State and Brain Structural Predictions of Cognitive Skill Training 
and Transfer to Working Memory, Fluid Intelligence, and Perceptual Speed Using Machine 
Learning..…………………………………………………………………………………...……97 
 
 

 

 

	



1	
	

 

Chapter 1 
 

Investigations into Cognitive Training  
 

1.1 Introduction 

Cognitive neuroscience is entering into a new era of discovery science, and this transition 

is exemplified by the recent promise to apply this advancing understanding of the brain and mind 

towards the development of training paradigms that aim to improve general cognitive performance. 

Cognitive enhancement has captured the attention and imagination of researchers, companies, 

lawmakers, and the public at large, and with good reason. These tools could have an enormous 

impact not only on clinical populations, but also on healthy individuals in a wide range of 

scenarios, prompting calls for funding from not only the NIH and NSF, but also many branches of 

military research, such as the Office of Naval Research (ONR), Intelligence Advanced Research 

Projects Association (IARPA), and the Department of Defense (DOD). In the past decade, many 

studies have successfully demonstrated that cognitive training can lead to improvement of 

cognitive performance in untrained tasks. The largest cognitive training study, ACTIVE, with over 

2800 older adults, demonstrated lasting benefits from training with either reasoning, processing 

speed, or memory focused training paradigms (Ball et al. 2002), and a recent 10-year follow-up 

study found these individuals still had significantly less age-related decline in reasoning, 

processing speed, and memory compared to age matched controls (Rebok et al. 2014). In a more 

recent study, with a time-intensive cognitive training intervention, with better measurements of 

cognitive improvement, 100 young adults and 100 older adults trained with several perceptual 

speed, working memory, and episodic memory training tasks (Schmiedek et al. 2010). Both the 
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young adults and older adults demonstrated significant improvements to several cognitive 

constructs, though the younger adults benefited from the training in some domains which the older 

adults showed no improvement. Although these large high quality studies have demonstrated the 

success of cognitive training, the field has been rife with failures to replicate as well. For example, 

one of the most controversial findings is that training with the dual n-back, a common working 

memory task, leads to improvement in fluid intelligence (Jaeggi et al. 2008); we and others have 

failed to replicate this effect in studies not facing the same methodological constraints (Redick et 

al. 2012; Shipstead et al. 2012; Oelhafen et al. 2013). 
Irrespective of the fact that the cognitive training field is relatively new and so far has been 

unable to create effects that replicate reliably, a booming cognitive training industry has emerged 

seeking to take advantage of the limited science that has been done on the topic. This has led to a 

proliferation of cognitive training products with both varying degrees of claims and scientific 

backing. Recently, a large contingent of the cognitive neuroscience and cognitive training 

community released a statement that the industry is grossly overstating the claims that their 

products have beneficial effects for their customers 

(http://longevity3.stanford.edu/blog/2014/10/15/the-consensus-on-the-brain-training-industry-

from-the-scientific-community-2/). In 2015, one of the largest cognitive training companies, 

Lumosity, was ordered by the FTC to cease and desist these inaccurate claims on the effect of their 

products, and they have been made to pay a 2 million USD fine as well, with 48 million USD in 

fines to be filed in the future if they fail to comply (https://www.ftc.gov/news-events/press-

releases/2016/01/lumosity-pay-2-million-settle-ftc-deceptive-advertising-charges). In an era when 

the scientific community has not yet been able to develop reliably effective training, and the public 
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is becoming increasingly invested in unscientific and unvetted training programs, it has become 

increasingly urgent to resolve the reliability issues facing cognitive training. 

The most important reason that cognitive training studies have faced poor reliability is 

methodological constraints, such as underpowered samples, lack of adequate control groups, 

measurements of transfer using single tasks as opposed to cognitive constructs, and lack of 

adequate theoretical guidance. One way to contribute to the development of a robust theory is to 

investigate the neural correlates of training and transfer, which can be used to identify how brain 

characteristics are manifested in individual differences in training and transfer outcomes. Recent 

studies have successfully identified structural, metabolic, and functional correlates of training and 

transfer. For example, we found that both the volume and level of iron deposition in the striatum 

before training was a significant predictor of training-induced improvement in a complex skill task 

(Erickson et al. 2010; Vo et al. 2011). Others have found that pre-post changes in activity levels 

in the striatum also predicted transfer to working memory after updating training (Dahlin et al. 

2008), and that such training has significant impact on levels of dopamine released in the striatum 

as well (Bäckman et al. 2011). We found that training-induced changes in activity in the postcentral 

gyrus predicted the individual differences in improvement in an untrained working memory task 

(Nikolaidis et al. 2014), and most recently we found that training-induced changes in functional 

connectivity of the subcortical and motor networks predicted individual differences in learning of 

a complex training task (Nikolaidis et al. 2015). Nevertheless, a complete picture of how cognitive 

training and transfer are related to underlying brain structure and function has yet to be established. 

In the skill acquisition literature, detailed anatomical, functional, and network 

characteristics of training-induced learning are available in both humans and animals (Hikosaka et 

al. 2002; Graybiel 2005; Doyon et al. 2009; Patel et al. 2013). For example, in motor learning it 
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has been well established that the acquisition of skills depends on the interaction between the basal 

ganglia and cortex (Hikosaka et al. 2002). At the beginning of training, these two networks interact 

very closely, and the basal ganglia, especially the striatum, play a critical role in formulating the 

appropriate representations of the skill. As learning progresses and the skill becomes automated, 

the basal ganglia becomes less important for the performance of the skill. This effect has been 

strongly demonstrated by studies showing that after removing the striatum, automated responses 

can still be performed, but new ones cannot be acquired (Eichenbaum and Cohen 2008). To 

develop a fuller theory of cognitive training and transfer, it will be important to place cognitive 

training into the context of skill acquisition. In this way, the critical question for cognitive training 

changes from assessing the relationship of training to transfer, to exploring the relationship 

between skill acquisition and skill generalization. Previous work on skill acquisition and 

generalization has demonstrated that modifications of the training that impact the acquisition of 

skills can have significant effects on their generalization to new contexts, stimuli, and skills as well  

(Singley and Anderson 1989; Schmidt et al. 1992; Bjork and Linn 2006; Anguera et al. 2007; Boot 

et al. 2010; Seidler 2010; Soderstrom and Bjork 2015). 

In the current set of studies, we investigate the neural correlates of training and transfer by 

recruiting 45 individuals to perform 30 hours of training with Mind Frontiers, pre and post 

intervention neuropsychological testing, as well as structural and resting state functional MRI. 

Mind Frontiers (MF) is a cognitive training paradigm that was developed through a collaboration 

between our lab at the University of Illinois at Urbana Champaign and Aptima Inc. This paradigm 

utilizes six training tasks that have previous success in cognitive training studies, and specifically 

tap into complementary aspects of working memory, executive function, and reasoning (Baniqued 

et al. 2015). These six tasks have been gamified and unified into a composite “Wild West” themed 
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adaptive cognitive training game. The behavioral results from this study have been published 

previously (Baniqued et al. 2015), and here Baniqued et al. demonstrated that training with MF 

significantly improves performance on composite scores of working memory, fluid intelligence, 

and perceptual speed. They also found that training gain in three of the training tasks predicted 

transfer to working memory, but not transfer to perceptual speed and fluid intelligence. This is 

important because it shows both dose dependent transfer of training to working memory, as well 

as transfer to perceptual speed and fluid intelligence that was independent of training gain. This 

suggests that multiple, and possibly dissociable learning mechanisms are driving training-induced 

transfer to these three cognitive domains. 

In the current study, we investigate contributions of pre-existing brain structural volumes, 

thicknesses, and resting state connectivity to predictions of both training gain and transfer. 

Furthermore, we assess how training-induced changes in these neural characteristics predict 

training and transfer as well. By examining how pre-existing and training-induced differences in 

brain structure and connectivity contribute to prediction, we may gain a more detailed picture of 

the mechanisms by which training and transfer occur, as well as the relationship between 

characteristics that drive the skill learning and generalization that occurred during training. In the 

first study, we investigate how structural volumes and thicknesses predict transfer to working 

memory, perceptual speed, and fluid intelligence, as well as training gain in the three training tasks 

that were positively correlated with working memory transfer. Our second study assesses how 

resting state network connectivity in the frontal parietal network, cingulo-opercular network, 

default mode network, and subcortical network predict training gain and transfer. In the final study, 

we assess the overlap and dissociations in the structural and resting state network predictions of 

training and transfer. Each of these studies will help characterize the neural correlates of training 
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and transfer in the context of skill acquisition and generalization. While pre-existing differences 

in structure and network connectivity have been demonstrated to predict training gain and transfer, 

how these characteristics relate to training-induced changes in structure and connectivity has not 

been well established. In the current study we plan to compare the neural correlates that most 

reliably predict training and transfer in both of these cases. Furthermore, by performing predictions 

with both structural and resting state characteristics, the current study will offer a unique insight 

into the processes by which pre-existing and training-induced differences drive learning and 

transfer. Most previous studies have focused on one category of neural correlate or the other, yet 

multimodal assessments of structure and function, such as those performed in the current study, 

are essential to establishing a firmer understanding of cognitive training.   

We employ common techniques from machine learning to make these predictions. While 

Ordinary Least Squares (OLS) is the most common optimization method used in general linear 

models (GLMs), OLS suffers from likelihood to overfit solutions to a given sample, which reduces 

reproducibility of its findings (Hastie et al. 2009). Furthermore, OLS is more likely to produce 

unreliable models in the face of collinear input variables compared to machine learning methods, 

especially in the case of small samples, which are common in cognitive neuroscience research. 

Recently, problems with poor reproducibility in cognitive training and psychology have become 

an issue for which many researchers are seeking solutions (Alexander et al. 2012; Hulme and 

Melby-Lervåg 2012; Melby-Lervåg and Hulme 2013). It is possible that the common application 

of OLS based GLM methods to highly collinear datasets with small sample sizes may be a 

significant contributor to this reproducibility issue. To address these specific issues of variable 

collinearity and model reproducibility, techniques such as ridge regression have been developed 

(Marquardt and Snee 1975). While OLS selects models solely based on model coefficients that 
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minimize squared error, ridge regression also adds a penalty for using large model coefficients. By 

minimizing the model’s dependence on large coefficients, ridge regression makes models more 

conservative in estimating the importance of individual variables. Many other machine learning 

techniques offer similar advantages of resilience to collinear variables and reduced overfitting, 

such as lasso, support vector machines (SVMs), and random forests (Kotsiantis et al. 2007; Hastie 

et al. 2009). While these advantages have led to a surge in the use of machine learning methods in 

scientific fields, and recently in neuroscience (Hinton 2011; Varoquaux and Thirion 2014), the 

application of these methods has inherited computer science traditions that tend to value predictive 

accuracy over other traits that are critically important to scientists, such as interpretability and 

replicability of findings. It is both important and impressive that machine learning methods are 

able to predict and detect, with a high degree of accuracy, subtle disease states and characteristics 

in neuroimaging data that would be impossible for even an expert radiologist (Shen et al. 2010; 

Dosenbach et al. 2011; Shirer et al. 2011; Liu et al. 2013). However, by focusing on this feature 

we miss the fact that the real significance of machine learning to the cognitive neuroscience 

community is not its predictive power, but its ability to extract statistically reliable structure from 

the overwhelmingly complex data we acquire in neuroimaging. In the current set of studies, we 

introduce a simple, though computationally expensive, methodological change to common 

machine learning practice that focuses on maximizing our finding’s interpretability and reliability.  

Typically, machine learning approaches use a technique called grid search to cross validate 

over the feature and hyperparameter (lambda) sets and choose the set that gives the highest 

performance. Cross validation (CV) is a method by which the data is split into training sets which 

create models and test sets to which the models are applied. Grid search is performed through 

nested CV, meaning that within each CV loop, the training data is split again into inner CV training 
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and test data. In this inner CV loop, hyperparameters and feature sets are tested and the best 

performing sets are then applied to the outer CV loop. This means that depending on what the 

innermost CV loop chooses as the optimal point in model space, the outer CV loop will have a 

different set of features and lambda values. In a similar way that OLS is more likely to induce 

overfitting because it prioritizes reducing the squared error term above any other considerations of 

model composition or sparsity, we can think about grid search optimization of model parameters 

as being more likely to overfit because it maximizes out of sample accuracy of a single model 

above any other considerations of model reliability or reproducibility. Previous work has shown 

that when there is noise present in the outcome variables, as is inevitably the case for training and 

transfer scores, cross validation can lead to overfitting (Ng 1997). As a conceptual example, in a 

model space with multiple local minima, the deepest minima could by chance represent a narrow 

range of models that are predictive of the outcome variable while other shallower minima contain 

large groups of models more reliably predictive of the outcome variable. Grid search optimization 

is formulated such that it chooses the deeper minima (Mosteller and Tukey 1968), and this can 

occur at the expense of reproducibility of the data’s predictive power (Ng 1997). Given that data 

are then often compared based on the relative predictive accuracy of this deepest minima, one may 

conclude that one dataset is more or less informative based on incomplete and inaccurate 

information offered by grid search optimization. Obtaining the highest predictive accuracy is an 

important and worthwhile endeavor in many scientific projects that contain unwieldy or extremely 

large datasets, but in the current work, where feature sets have been created, cleaned, and 

preprocessed through well-established methods and guided by prior knowledge, we are more 

concerned with establishing reliable relationships than we are with achieving the highest accuracy 
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possible. Furthermore, a field currently undergoing a reproducibility crisis needs more emphasis 

placed on testing the reliability of its own findings rather than reporting large effect sizes. 

Another important issue with grid search optimized parameters is that it reduces the 

interpretability of findings and unnecessarily complicates the detailed investigation of model 

performance. In grid search there are two sets of CV loops. In the inner loop, models are trained 

on a range of parameters and the combination of parameters that, on average, performs best on the 

inner loop test sets is chosen as the model to apply to the outer CV loop. There are no constraints 

placed on characteristics of different models that are ‘optimal’ for a given outer CV loop, and thus 

these models can vary not only in terms of hyperparameter value but also which features are chosen 

to build the model. Therefore, after looping through all outer CV loops, each test set has been 

predicted with a variety of combinations of feature sets and hyperparameter values, but a single 

accuracy and error rate is reported. Given that different hyperparameter values imply dramatically 

different treatment to the data, it may be inaccurate to combine sets of models with a range of 

hyperparameter values. While this approach is likely to achieve higher prediction accuracy due to 

its focus on performance, we suggest that grid search optimization leads to unnecessary 

obfuscation of the process by which the data is able to predict its outcome variable. If a dataset 

contains a reliable signal with regards to a specific question, the signal should not be able to be 

masked or dramatically changed by small modifications in the model parameters and feature sets. 

To avoid these issues of reproducibility and interpretability, we explore a large coverage of model 

space and report of significant regions of model space where models are more predictive of the 

outcome variable than a distribution of null models. We then apply a cluster correction algorithm 

to the model space map to extract regions where large groups of models can predict the question 

with high reliability. Exploring model space in this way, enables us not only to assess the 
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relationship between model complexity and predictive accuracy, but also how these characteristics 

interact with regularization strength. Furthermore, within each significant cluster of models we 

identify features that have been chosen in >90% of the models in the clusters, which we call 

consensus features. An important advantage of this approach is that we are able to find features 

that are included in models that are all reliable contributors to our question, and therefore we are 

more confident in interpreting the relevance of these features.  

The most important step in the application of machine learning is called feature 

engineering. This involves using both statistical insight and domain expertise to collect, clean, and 

curate datasets that are relevant to the question of interest (O’Neil and Schutt 2013). In the case of 

the current projects, we leverage vetted methods of collecting information from structural and 

resting state MRI to extract variables that are of highest quality and relevance to training and 

transfer. In our structural data, we use the longitudinal pipeline from Freesurfer, a method of 

accurately and robustly extracting brain volume and thickness information that has been 

specifically designed to account for variance at multiple time points (Destrieux et al. 2010; Fischl 

2012). Extensive previous research has demonstrated such regional brain volumes and thicknesses 

are tied to skill acquisition and cognitive training (Kennedy and Raz 2005; Erickson et al. 2010; 

Basak et al. 2011; Lövdén et al. 2013; Metzler-Baddeley et al. 2016). In our functional data, we 

apply a well-established functional connectivity preprocessing stream that has been developed for 

the analysis of large scale resting state data (http://fcp-indi.github.io/). We then extract several 

highly reliable resting state networks that were previously identified in a sample of 512 individuals, 

and were then replicated in a second sample of 512 (Power et al. 2011). Furthermore, we choose 

networks specifically known to be involved in working memory, reasoning, and learning, such as 

the frontal parietal network (FPN), cingulo-opercular network (CON), default mode network 
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(DMN), and subcortical network (SUB) (Graybiel 2005; Dosenbach et al. 2006, 2008; Uddin et 

al. 2009; Sambataro et al. 2010; Elton and Gao 2014; Geerligs et al. 2015). Feature engineering 

not only allows for greater confidence in the results of a given prediction, but critically, it is the 

most important step to increasing the interpretability of machine learning results. By creating 

feature sets that represent dissociable or competing hypotheses and implications, the significant 

prediction of an outcome with one dataset but not another yields important information regarding 

the relevance of each competing hypothesis for the question at hand. For example, in our structural 

project, Chapter 2, we predict training and transfer using both structural volumes and thickness 

variables. Both of these variable types have been used extensively in the learning and cognitive 

training literatures (Lustig et al. 2009; Erickson et al. 2010; Basak et al. 2011; Herholz and Zatorre 

2012; Metzler-Baddeley et al. 2016), but how thickness and volume offer complementary versus 

redundant information on these questions is poorly understood. By using these data types both 

independently and in combination, we may gain insight into this methodological question as well. 

In our resting state analyses, Chapter 3, we utilize two complementary networks known to be 

involved in dissociable aspects of cognitive control, the FPN and CON (Dosenbach et al. 2008; 

Zanto and Gazzaley 2013; Sestieri et al. 2014). Describing which of these networks is more 

informative and which components of these networks play important roles in the predictive success 

of our models, will offer important insight into how both dissociable aspects of cognitive control 

and the unique role of these networks drive learning and transfer. 

Aside from the collection, cleaning, and curating of features, the selection of a machine 

learning method is one of the most important decisions when applying a machine learning pipeline. 

In the current work, we apply one of the simplest linear models available, ridge regression. This 

method is not as high performing as other more commonly applied methods, such as support vector 
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machines (SVMs), but what ridge regression loses in predictive power it gains in interpretability, 

as models from other more powerful methods, such as random forests, neural networks, or SVMs 

are considerably more difficult to interpret (Kotsiantis et al. 2007). Furthermore, these other 

approaches have access to more sophisticated methods of signal extraction, and while the 

neuroimaging data we use in the current set of studies would benefit from more robust signal 

extraction methods that are sensitive to higher order relationships in the data’s covariance 

structure, these methods may be less likely to replicate findings from previous analyses which have 

overwhelmingly relied on GLMs. By the same token, the findings from a neural network or other 

advanced analysis of these data are less likely to be replicated by follow-up GLM analyses, limiting 

the impact of the current work. Ridge regression on the other hand, while one of the simpler and 

weaker of tools in the machine learning toolbox, may be the tool most apt for application in this 

context, given that its simplicity makes it not only more approachable, but also more likely to 

replicate previous work, and to be replicated by follow up analyses as well. 
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Abstract: Research in cognitive training has demonstrated transfer of training to general cognitive 
ability, but there have been many failed attempts to replicate significant findings. At this point, a 
mechanistic understanding of how training drives transfer is not well characterized, and the neural 
underpinnings of training and transfer even less so. In the current study, we trained 45 young adults 
with a multimodal training game that targets complimentary aspects of reasoning, attention, and 
working memory. We use both pre-existing and training-induced differences in structural volumes 
and thicknesses to predict both training gains and transfer. To make these predictions we utilize a 
machine learning pipeline that we designed to extract the most reliable findings across models. We 
find that transfer is best predicted by a broad range of visual and auditory sensory processing and 
attention regions, suggesting that individual differences in these low level areas, as opposed to 
regions involved in higher level cognitive processes, may predispose individuals for greater 
benefits from training. We discuss how these findings support and contrast the neural overlap 
hypothesis of transfer. 
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2.1 Introduction 

Cognitive neuroscience holds the potential not only to reveal how the brain gives rise to 

the mind, but also how to train the mind to improve its function through the recent emergence of 

a field known as cognitive training. While there have been many successful demonstrations of 

improvement of cognitive performance through training (Ball et al. 2002; Green and Bavelier 

2003; Dahlin, Neely, et al. 2008; Dye et al. 2009; Thorell et al. 2009; Boot et al. 2010; Rebok et 

al. 2014), we and others have failed to replicate some of these findings (Melby-Lervåg and Hulme 

2012; Redick et al. 2012; Shipstead et al. 2012; Oelhafen et al. 2013). The reliability of the 

successful demonstrations of transfer is further called into question due to methodological 

limitations such as small sample sizes and the use of single tasks to represent transfer. To create 

reliably effective training regimes, it is critical to not only overcome these methodological 

restraints, but also to investigate the mechanisms that drive transfer of training. Rather than 

exploring group differences, a more mechanistic explanation of training and transfer is available 

through the investigation of individual differences in neural correlates of training and transfer. 

While recent work has attempted to characterize the neural correlates of transfer by exploring how 

individual differences in brain structure and function contribute to training and transfer (Olesen et 

al. 2004; Anguera et al. 2007, 2013; Dahlin, Neely, et al. 2008; Vo et al. 2011; Voss et al. 2011; 

Oelhafen et al. 2013; Nikolaidis et al. 2014, 2015), the neural correlates of cognitive training have 

not yet been well characterized. In the skill acquisition literature, highly detailed descriptions of 

training-induced learning are available in both humans and animals (Hikosaka et al. 2002; Graybiel 

2005, 2008; Doyon et al. 2009; Patel et al. 2013), and developing a more accurate description of 

the mechanisms of cognitive training and transfer will require a description of the phenomenon of 
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human learning that encompasses both cognitive training and skill learning. Cognitive training is 

often described as a process of transferring training towards the improvement of underlying latent 

abilities, but another description that is more in line with the skill learning literature is also 

possible. In this characterization, cognitive training can also be seen as a process of acquiring 

cognitive skills, and transfer is the phenomenon of those acquired skills generalizing to other 

contexts, domains, and stimuli (Singley and Anderson 1989; Schmidt et al. 1992; Bjork and Linn 

2006; Anguera et al. 2007; Seidler 2010). In this way, a critical question for cognitive training is 

establishing the relationship and distinctions between skill acquisition and generalization. Some 

work in the motor and verbal acquisition and transfer literatures have identified specific steps of 

the learning process, such as the associative learning phase, as well as experimental manipulations, 

such as modified feedback or spaced learning, which if properly probed causes knowledge to 

generalize to new contexts (Landauer and Bjork 1978; Bahrick 1979; Singley and Anderson 1989; 

Schmidt et al. 1992; Hikosaka et al. 2002; Seidler 2010). In order to develop mechanisms of 

transfer, it will be critical to characterize the neural similarities and distinctions between the 

process of skill acquisition and skill generalization. 

To explore the neural correlates of training gain and transfer, we recruited 45 individuals 

to perform pre and post intervention neuropsychological testing, structural MRI, and 30 hours of 

training with Mind Frontiers. Mind Frontiers (MF) is a recently developed cognitive training 

program that utilizes six training tasks that each tap into aspects of working memory, executive 

function, and reasoning (Baniqued et al. 2015). In MF, participants perform six tasks that have 

demonstrated previous success in cognitive training, but which have been gamified and unified 

into a “Wild West” themed adaptive training game. The behavioral data for the current study has 

been published previously (Baniqued 2015), and in this study, the authors found that training with 
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MF demonstrated transfer to composite scores of working memory, fluid intelligence, and 

perceptual speed. In the current study, we investigate the unique and overlapping contributions of 

pre-existing brain structural volumes and thicknesses to both training and transfer. By examining 

how individuals are predisposed to greater learning and greater transfer, we may gain a more 

detailed picture of the cognitive and neural mechanisms utilized to maximize training gain and 

transfer. We also will assess how training-induced changes in brain structural volumes and 

thicknesses predict to both training and transfer, which enables us to gain a better understanding 

of how training may target different types of cognitive processing to lead to either training gain or 

transfer. 

To make these predictions, we employ common techniques from machine learning. These 

techniques, have important advantages over the Ordinary Least Squares (OLS) method that is used 

in general linear models (GLMs). OLS suffers from problems of low reproducibility due to its 

likelihood to overfit solutions to a given sample (Hastie et al. 2009). In the face of collinear input 

variables, OLS is likely to maximize model fit in such a way that reduces model generalizability, 

thus reducing the likelihood of reproducing such findings, especially in the case of the relatively 

small samples that are common in cognitive neuroscience research. To address these difficulties, 

techniques such as ridge regression, which we use here, have been developed (Marquardt and Snee 

1975). Rather than exclusively minimize the squared error term, this method minimizes a second 

term, which penalizes the model for using large model coefficients. This makes models more 

conservative in estimating the importance of individual variables, which makes the model both 

less likely to overfit and more likely to generalize to other datasets. The advantage of reduced 

overfitting is not unique to ridge regression, but rather is common among many machine learning 

methods such as lasso, support vector machines (SVMs), and random forests (Hastie et al. 2009). 
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This and other advantages have led to a dramatic increase in the use of machine learning techniques 

across scientific disciplines, and recently in both cognitive and clinical neuroscience (Hinton 2011; 

Varoquaux and Thirion 2014). Researchers have used these techniques to explore the structural 

and functional correlates of psychiatric illness (Shen et al. 2010), aging (Dosenbach et al. 2010; 

Meier et al. 2012; Vergun et al. 2013), and Alzheimer’s disease (Ye et al. 2011). While these 

techniques have been informative in various domains of cognitive and clinical neuroscience, they 

have not yet been applied to understanding how regional brain volumes and thicknesses contribute 

to skill acquisition and generalization.  

In the current study we applied machine learning to explore how both pre-existing 

structural characteristics and training-induced changes in these brain regions contribute to both 

training gain and transfer to working memory, fluid intelligence, and perceptual speed. To save 

computational time and maximize predictive accuracy, most applications of machine learning 

search for the most predictive set of features and regularization values using a technique called 

grid search. In the current work our goal was to maximize the reliability and interpretability of our 

findings rather than prediction accuracy. Therefore, we applied ridge regression across a range of 

model sizes and regularization values, allowing us to fully explore the model space of each 

analysis. We applied cluster correction to this model space to find regions where all neighboring 

models were significant predictors, and extracted predictors most reliably found across all 

significant models. Using this method, we were able to examine the extent to which pre-existing 

differences in brain structure that predispose individuals to demonstrate greater task independent 

learning across both trained and untrained domains. Furthermore, by assessing how training-

induced changes predict training and transfer we can identify how training-induced changes in the 

brain may reflect specific skill versus general skill learning. Investigating these questions allows 
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us to extend prior work by performing a more detailed examination of how pre existing and 

training-induced differences in brain structure reflect on the neural overlap hypothesis of training 

and transfer.  

We expected to find regions that were predictive of both WM transfer and training gain, 

but which did not predict transfer to GFRT or PS. The neural overlap hypothesis of training and 

transfer asserts that in order for training to transfer to other domains, brain mechanisms trained 

must be shared with the transfer task (Jonides 2004; Dahlin et al. 2009; Buschkuehl and Jaeggi 

2010; Klingberg 2010; Nikolaidis et al. 2014). Baniqued et al. demonstrated dissociation in the 

positive relationship of training gain to WM transfer but no relationship to GFRT or PS transfer, 

and we expected that a similar dissociation in the shared neural predictors should occur as well. 

Given the sparse literature on the neural correlates of transfer, it is difficult to predict which regions 

this would involve. On the one hand, overlapping predictors may be in regions unique to WM and 

the training tasks, or they may represent regions involved in cognitive processing bottlenecks that 

prevent transfer. Furthermore, given that regional brain volumes are calculated using both cortical 

surface area and thickness, and both volume and thickness, but not surface area have been widely 

associated with learning, we expected thickness to be the dataset more predictive of training and 

transfer. While both of these datasets have been investigated separately, they have rarely been 

compared to one another in association with skill learning. Finally, given previous demonstrations 

of the importance of subcortical regions in the acquisition and generalization of skills, we expected 

that predictions with subcortical regions should out-perform those without. We find that a broad 

range of regions associated with working memory and basic visual and auditory processing are 

associated with both transfer to working memory and improvement in training, but that the training 

task that most closely mirrors the WM transfer tasks shares the least amount of predictors in 
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common. In contrast, training-induced plasticity in regions associated with working memory was 

reliably predictive of gains in the inductive reasoning training and working memory transfer. We 

discuss how these findings compare with the neural overlap hypothesis of transfer.  

 

2.2 Methods 

2.2.1 Participants 

 We recruited participants from the University of Illinois and surrounding community 

through flyers and online advertisements seeking participants for a “cognitive training study.” 

Online pre-screening for demographic information and videogame experience was completed over 

email. Subsequent phone screening required participants: 1) between 18 and 30 years old, 2) 75% 

right handed according to the Edinburgh Handedness Inventory, 3) normal or corrected-to-normal 

hearing and vision, 4) no major psychological or medical conditions, 5) no non-removable metal 

in the body, and 6) played no more than 5 hours of video games per week in the past six months. 

A total of 45 participants trained with Mind Frontiers and had complete behavioral and neural data. 

 

2.2.2 Study Design 

 A complete description of the study design can be found in Baniqued et al. 2015. Briefly, 

participants completed three initial cognitive testing sessions, and an MRI session before 

beginning the intervention, in which they completed four to five training sessions per week for 

four to five weeks, for a total of 20 sessions. After training, subjects returned to lab for a final MRI 

session and another round of cognitive testing.  

 Participants trained with Mind Frontiers, which was comprised of six computerized 

adaptive training tasks that were selected based on their known psychometric properties with 
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reasoning/Gf, working memory, visuospatial reasoning, inductive reasoning, and task switching. 

See Table 2.1 for a description of each training task. 

 

2.2.3 Cognitive Assessment Protocol 

For a full listing of all neuropsychological tasks administered, see Baniqued et al. 2015. 

Here we briefly describe each of the tasks that were included to create the reasoning, working 

memory, and perceptual speed composite variables we predicted. The tests below were obtained 

from the Virginia Cognitive Aging Project Battery (Salthouse 2005), and two different versions 

were used for pre- and post-testing, with the sequence counterbalanced across subjects. 

2.2.3.1 GFRT 

The GFRT composite was comprised of standardized reaction times in these four tasks. 
Descriptions for these and other tasks in section 2.3 are reproduced from Baniqued et al. 2015. 

Matrix Reasoning: Select the pattern that completes a missing space on a 3 x 3 grid. Number of 
correctly answered items is the primary measure. Reaction time on correct trials was also analyzed. 
Source: Ravens 1962; Crone et al. 2009. 

Paper Folding: Identify pattern of holes that results from a punch through folded paper. Number 
of correctly answered items is the primary measure. Reaction time on correct trials was also 
analyzed. Source:  Ekstrom et al. 1976. 
 
Spatial Relations: Identify 3D object that would match a 2D object when folded. Number of 
correctly answered items is the primary measure. Reaction time on correct trials was also 
analyzed. Source: Bennett et al. 1947. 
 
Letter Sets: Determine which letter set is different from the other four. Number of correctly 
answered items is the primary measure. Reaction time on correct trials was also analyzed. 
Source: Ekstrom et al. 1976. 

2.2.3.2 Perceptual Speed 

The Perceptual Speed composite was comprised of standardized accuracy scores in these three 
tasks. 
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Digit Symbol Substitution: Write corresponding symbol for each digit using a coding table. The 
primary measure is the number of correctly answered items within two minutes. Source: 
Wechsler 1997.  
 
Pattern Comparison: Determine whether pairs of line patterns are the same or different. The 
primary measure is the number of correctly answered items within 30 seconds, averaged across 
two sets of problems. Source: Salthouse and Babcock 1991.  
  
Letter Comparison: Determine whether pairs of letter strings are the same or different. The 
primary measure is the number of correctly answered items within 30 seconds, averaged across 
two sets of problems. Source: Salthouse and Babcock 1991.  
 

2.2.3.3 Working memory 

The WM composite was comprised of the d’ scores of the 2-back, 3-back, Dual 2-back, and Dual 
3-back. 
 
Single N-back: Determine whether the current letter presented matches the letter presented two 
or three items back. The primary measure of d-prime was computed separately for the 2-back 
and 3-back conditions. Reaction times on correct trials were also analyzed. Source: Kirchner 
1958; Kane et al. 2007. 
 
Dual N-back (administered in the MRI): Determine whether simultaneously presented auditory 
and visual stimuli match stimuli presented one, two, or three items ago. The primary measure of 
d-prime was computed separately for the two-back and three-back conditions. Reaction times on 
correct trials were also analyzed. Source: Jaeggi et al. 2003, 2007. 

 

 
2.2.4 Analysis of Behavioral Results  

 Training with Mind Frontiers produce significant gains in performance not only across all 

training tasks, but also to three cognitive constructs, working memory (WM), reasoning reaction 

time (GFRT), and perceptual speed (PS). The gain scores for the training and transfer tasks were 

calculated by taking the difference between post- and pre-test scores, and dividing by the standard 

deviation of the pre-test score. In the current study, we use these transfer scores as predictors, as 

well as training-induced gain scores from three of the training games: Supply Run (SR), Sentry 

Duty (SD), and Safe Cracker (SC). These three training games were chosen because improvement 
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during training was positively correlated with transfer to the working memory but not perceptual 

speed or fluid intelligence (Baniqued 2015), indicating that training-induced gains in these tasks 

may play a role in WM transfer. 

 

 

2.2.5 Structural MRI Analysis Details 

2.2.5.1 MPRAGE Acquisition Parameters 

All structural, high-resolution, T1-weighted MPRAGE images were collected on a 3 T 

Siemens Trio scanner, collected in ascending order parallel to the anterior and posterior 

commissures with the following parameters: Dataset 1: Echo time (TE) = 2.32 ms, repetition time 

(TR) = 1900 ms, field of view (FOV) = 230 mm, voxel size 0.9mm3, and flip angle = 8°. 

 

2.2.5.2 Structural MRI Preprocessing 

 All preprocessing of structural images was performed with FSL and Freesurfer. After being 

skull stripped, each structural image was linearly registered to the MNI 2mm brain template with 

12 degrees of freedom (Smith 2004). We used the Freesurfer longitudinal stream to improve the 

robustness of the longitudinal analysis of cortical volume and thickness (Fischl 2012, Jovich 2009). 

This scheme creates within-subject anatomical templates that allow for less bias of analysis 

towards a particular time point (Thomas & Baker 2013). This process has been described 

elsewhere in detail (Metzler-Baddeley 2016, Fischl 2012), but briefly, this involves Talairach 

transformation, white matter and gray matter segmentation, automated topology correction, and 

intensity normalization. After this semi-automated procedure, images are all inspected manually 

to assess performance of the Freesurfer pipeline. Cortical thickness and volumes and subcortical 

volumes were calculated using Freesurfer using the Destrieux atlas, which parcellates the cortex 
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into 74 gyral-sulcal regions per hemisphere (Destrieux et al. 2010). Previous studies have explored 

the association between either cortical thickness or brain volume with learning, but the relative 

information available in these two metrics with regards to individual differences in learning is 

poorly understood. Furthermore, contributions of subcortical and white matter volumes are rarely 

addressed in the same sample as cortical volumes and thicknesses. To address these questions, we 

used the brain volumes and cortical thickness data to create five separate datasets: Thickness (TH), 

in which we only include the 150 cortical thickness variables; Volume (VO), which only includes 

the 148 cortical volume features; Whole Brain (WB), which contains the VO dataset as well as 63 

additional subcortical, white matter, and cerebellar volumes; Volume + Thickness (VO-TH), 

which contains the combined VO and TH datasets; Whole Brain + Thickness  (WB-TH), which 

contains both the WB and TH datasets. We extracted thickness and volume data from both the pre-

training structural images (Pre), and to assess change in thickness and volume, we subtracted the 

pre thicknesses and volumes from the post data (Change). To explore differential contributions of 

variables from both the Pre and Change datasets, we predicted each of the six scores with ten 

different datasets, five Pre datasets and five Change datasets. 
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Figure 2.1:  
This figure provides a visual flowchart of the methods used in the current work. Analysis begins with the structural 
features extracted from Freesurfer (1), and then it continues through model building (2A), cross validation (2A), and 
repeating our analysis across feature and lambda space (2B). Finally, we create the null model distribution by shuffling 
the Y labels (3), and we assess the difference between the model space and the null model space in the form of a Z-
map (4). We apply a cluster correction to this Z map and extract consensus features (4).  
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2.2.6 Machine Learning Methods 

2.2.6.1 Predicting training gain and transfer 

We used either pre-training (Pre) or pre-post differences (Change) in cortical thicknesses 

and brain volumes to make predictions with the Sci-Kit Learn ridge regression (Buitinck et al. 

2013) (Figure 2.1: Section 1). While this algorithm does not achieve predictive accuracies as high 

as other more advanced methods, such as random forests and support vector machines (SVMs), 

ridge regression offers an important advantage in terms of ease of interpretability and 

comparability to other analyses in this domain using linear models (Kotsiantis, Zaharakis, & 

Pintelas, 2007). 

Over each leave-one-subject-out cross-validation (LOSO-CV) loop, we trained models of 

a range of sizes, and we used these models to predict scores of the left-out subject (Figure 2.1: 

Section 2A). Within each cross validation loop, we ranked all features in the training group by 

absolute correlation strength. We created feature sets of the top 1 to n features, by groups of 5 to 

save processing time, and predicted each left out subject using each of these feature sets. We 

calculated R2 values by squaring the correlation of predicted and actual score values. 

In order to assess the true predictive accuracy and overfitting in our models, we created a 

distribution of null models (Figure 2.1: Section 3). To create these null models, we randomized 

the score values for the subjects, and repeated the procedure outlined above to predict these values. 

We repeated this procedure 20 times to create a distribution of null models, and we compared the 

mean and standard deviation of this null model distribution to our actual model to determine 

whether our model predicted significantly better than chance.  

  

2.2.6.2 Assessing Reliability of Prediction 
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Rather than using cross validation to select an optimal hyperparameter (lambda) value for 

each model, we repeated our predictions and null model testing at a range of lambda values (Figure 

2.1: Section 2B). While computationally intensive, this method allows us to more fully explore the 

space of possible models, extract clusters of predictive models, and assess both the reliability of 

our models, and the consistency of parameters selected in different models.  

 We assessed how our model performed over the full model space compared to the 

distribution of null models, and we transformed the difference in prediction accuracy between the 

model and null model distribution to a Z score distribution, representing the number of standard 

deviations that the model outperforms chance (Figure 2.1: Section 4). To get a more accurate 

assessment of average model prediction in a region and account for variation in neighboring 

models, we first smoothed the data using a 2 x 3 FWHM Gaussian kernel before applying cluster 

correction. We set a cluster threshold of one standard deviation so that all the weakest models that 

predicted less than 1 standard deviation above the null distribution were removed, and then to 

remove small noisy predicting clusters we removed all clusters of models with less than 12 models. 

Finally, in order to only assess datasets that were most reliably predictive of the outcome variable, 

we removed clusters for datasets for which at least one cluster did not occupy at least 3% of model 

space. We performed cluster correction to not only assess the relative predictive accuracy and 

reliability of each dataset across a range of models, but also to extract individual features that were 

reliably included in 90-100% of models in a given cluster, also known as consensus features (CFs).  

In this way, we extract only the features that most reliably belong to models that 

significantly predict our outcome variable. This is an important step because it allows us to look 

for common individual predictors across outcome variables. While a mass univariate analysis, such 

as the feature ranking commonly performed in machine learning pipelines (including this one), 
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detects individual variables that are each correlated with the outcome variable, it does not offer 

any information on conditional relationships between each feature and the outcome variable. This 

leads to variables that are correlated with the outcome variable but also redundant with one another 

(Guyon 2003). By exploring the model space more fully, and identifying sets of CFs that are the 

most reliable predictors of our outcome variable, we are able to identify features that may not be 

good predictors on their own, but that reliably predict the residual variance that is left after the 

strongest predictors have been included in the model. CFs allow us to analyze the feature selection 

process and make inferences based on the features that are selected. For a review on feature 

selection and how redundant and superficially ‘uninformative’ features can play an important role 

in predicting residual variance, see Guyon 2003. 

 

 

 
Game Description Source 

Supply Run 
(working memory) 

Townspeople request items that belong to a certain category. There are five objects in 
each category, which correspond to stereotypical occupations of the “Wild West.” Once 
the store is reached, the last item from each category must be selected. Difficulty level 
is manipulated by the number of requests and the number of categories. 

Updating 
WM 
(Dahlin, 
Nyberg, et 
al. 2008) 

Sentry Duty 
(working memory) 

Sentries lift their lanterns while saying a word of the phonetic alphabet. The current 
word spoken and lantern lifted is compared to the word spoken/lantern lifted n times 
previously. There may be an audio match, a visual match, an audio and visual match, or 
no match between the current sentry and the one who spoke n times ago. Difficulty is 
manipulated by how far back the comparison is (e.g., 1-back, 2-back, 3-back). 

Dual n-
back(Jaeggi 
et al. 2008; 
Redick et 
al. 2012) 

Safe Cracker 
(reasoning) 

Safe combinations are determined by completing the next item in a series. Series may 
be letter-, number-, or day/month- based, and all are governed by some pattern or rule 
that must be determined and applied to select the next item in the series. Difficulty is 
manipulated by the difficulty of the patterns and the number of problems to solve within 
the given time limit. 

Inductive 
Reasoning  
(Willis and 
Schaie 
1986)  

 
Table 2.1:  
Description of the three training tasks investigated in the current study. Partially reproduced from Baniqued et al. 
2015. 
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Figure 2.2:  
A view of the 74 regions in an inflated hemisphere, displaying both sulcal and gyral regions. Numerical indices refer 
to anatomical regions defined in Table 2.2. Views from top left to bottom right: Anterior (Ant), Superior (Sup), 
Lateral (Lat), Lateral Fossa (Lat fossa), Medial (Med), Posterior (Post), and Inferior (Inf). The Lateral Fossa view 
offers a better view of the gyral and sulcal regions in the insula and temporal cortices. Reproduced from Destrieux et 
al. 2010. 
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# Label # Label # Label 
1 Fronto-marginal gyrus and sulcus 47 Anterior segment of the of the insula 93 Right Lateral Ventricle 
2 Inferior occipital gyrus (O3) and sulcus 48 Inferior segment of the insula 94 Right Inferior Lateral Vent 
3 Paracentral lobule and sulcus 49 Superior segment of the insula 95 Right Cerebellum WM 
4 Central operculum 50 Anterior transverse collateral sulcus 96 Right Cerebellum Cortex 
5 Transverse frontopolar gyri and sulci 51 Posterior transverse collateral sulcus 97 Right Thalamus Proper 
6 Anterior cingulate cortex (ACC) 52 Inferior frontal sulcus 98 Right Caudate 

7 
Middle-anterior cingulate cortex and sulcus 
(aMCC) 53 Middle frontal sulcus 99 Right Putamen 

8 
Middle-posterior part of the cingulate gyrus 
and sulcus (pMCC) 54 Superior frontal sulcus 100 Right Pallidum 

9 Posterior-dorsal  cingulate gyrus (dPCC) 55 Sulcus intermedius primus (of Jensen) 101 Right Hippocampus 

10 
Posterior-ventral part of the cingulate gyrus 
(vPCC) 56 

Intraparietal sulcus (interparietal sulcus) 
and transverse parietal sulci 102 Right Amygdala 

11 Cuneus (O6) 57 Middle occipital sulcus and lunatus sulcus 103 Right Accumbens area 

12 Opercular part of the inferior frontal gyrus 58 
Superior occipital sulcus and transverse 
occipital sulcus 104 Right Ventral DC 

13 Orbital part of the inferior frontal gyrus 59 Anterior occipital sulcus and preoccipital  105 Right vessel 
14 Triangular inferior frontal gyrus 60 Lateral occipito-temporal sulcus 106 Right choroid plexus 

15 Middle frontal gyrus (F2) 61 
Medial occipito-temporal sulcus (collateral 
sulcus) and lingual sulcus 107 5th Ventricle 

16 Superior frontal gyrus (F1) 62 Lateral orbital sulcus 108 WM hypointensities 

17 
Long insular gyrus and central sulcus of the 
insula 63 Medial orbital sulcus (olfactory sulcus) 109 Left WM hypointensities 

18 Short insular gyri 64 Orbital sulci (H-shaped sulci) 110 Right WM hypointensities 

19 
Middle occipital gyrus (O2, lateral occipital 
gyrus) 65 Parieto-occipital sulcus (or fissure) 111 Non-WM hypointensities 

20 Superior occipital gyrus (O1) 66 Pericallosal sulcus (S of corpus callosum) 112 Left non-WM hypointensities 

21 
Lateral occipito-temporal gyrus (fusiform 
gyrus, O4-T4) 67 Postcentral sulcus 113 Right non-WM hypointensities 

22 
Lingual gyrus, ligual part of the medial 
occipito-temporal gyrus, (O5) 68 Inferior part of the precentral sulcus 114 Optic Chiasm 

23 Parahippocampal gyrus 69 Superior part of the precentral sulcus 115 CC Posterior  

24 Orbital gyri 70 
Suborbital sulcus (sulcus rostrales, 
supraorbital sulcus) 116 CC Mid Posterior 

25 Angular gyrus 71 Subparietal sulcus 117 CC Central 
26 Supramarginal gyrus 72 Inferior temporal sulcus 118 CC Mid Anterior 
27 Superior parietal lobule (lateral part of P1) 73 Superior temporal sulcus (parallel sulcus) 119 CC Anterior 
28 Postcentral gyrus 74 Transverse temporal sulcus 120 Brain Seg Volume 
29 Precentral gyrus 75 Left Lateral Ventricle 121 Brain Seg Volume No Vent 
30 Precuneus (medial part of P1) 76 Left Inferior Lateral Vent. 122 Brain Seg Volume No Vent Surface 
31 Straight gyrus, Gyrus rectus 77 Left Cerebellum White Matter 123 Left Hem. Cortex Volume 
32 Subcallosal area, subcallosal gyrus 78 Left Cerebellum Cortex 124 Right Hem. Cortex Volume 
33 Anterior transverse temporal gyrus (of Heschl) 79 Left Thalamus Proper 125 Cortex Volume  
34 Lateral aspect of the superior temporal gyrus 80 Left Caudate 126 Left Hem. Cortical White Matter Volume 

35 Planum polare of the superior temporal gyrus 81 Left Putamen 127 
Right Hem. Cortical White Matter 
Volume 

36 
Planum temporale or temporal plane of the 
superior temporal gyrus 82 Left Pallidum 128 Cortical White Matter Volume 

37 Inferior temporal gyrus (T3) 83 3rd Ventricle 129 Subcortical Gray Volume 
38 Middle temporal gyrus (T2) 84 4th Ventricle 130 Total Gray Volume 

39 
Horizontal ramus of the anterior segment of the 
lateral sulcus (or fissure) 85 Brain Stem 131 Supra Tentorial Volume 

40 
Vertical ramus of the anterior segment of the 
lateral sulcus (or fissure) 86 Left Hippocampus 132 Supra Tentorial Volume No Vent 

41 
Posterior ramus (or segment) of the lateral 
sulcus (or fissure) 87 Left Amygdala 133 Supra Tentorial Volume No Vent Volume 

42 Occipital pole 88 CSF 134 Mask Volume 
43 Temporal pole 89 Left Accumbens area 135 Brain Seg Volume to eTIV 
44 Calcarine sulcus 90 Left Ventral DC 136 Mask Volume to eTIV 
45 Central sulcus (Rolando’s fissure) 91 Left vessel  137 Estimated Total Intra Cranial Vol 

46 
Marginal branch (or part) of the cingulate 
sulcus 92 Left choroid plexus   

 
 
Table 2.2:  
Items 1-74 correspond to the cortical regions labeled in Figure 2.2. Items 75-137 correspond to the volumes for white 
matter, subcortical, whole brain variables, as well as indicators of brain underdevelopment or atrophy, such as ventricle 
volume and white matter hyperintensities. Columns 1, 3, 5, labeled ‘#’ correspond to the structural assignment, and 
columns 2, 4, 6, labeled ‘Label’ are the shortened structural labels from the Destrieux atlas. 
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2.3 Results  

2.3.1 Prediction Accuracies 

We found that transfer to fluid intelligence reaction times (GFRT) was significantly 

predicted by clusters of models in both the Pre VO and Pre WB datasets (Table 2.1). The addition 

of subcortical regions not only nearly tripled the number of models that were significant predictors 

(VO Model % Sig = 6.0%; WB Model % Sig = 16.0%), but it also doubled the average predictive 

accuracy of the cluster of models (VO Avg.  R2 = 8.6%; VO Upper 95% CI R2 = 12.2%; WB Avg. 

R2  = 16.7%; WB Upper 95% CI R2 = 30.0%), supporting the notion that subcortical regions may 

be particularly informative in predicting transfer. The thickness variables were not predictive of 

transfer to GFRT in any dataset, and may have been prevented successful prediction in the case of 

the VO-TH datasets. Transfer to GFRT was not predicted by any of the Change datasets. On the 

other hand, transfer to Perceptual Speed (PS) was significantly predicted by both Pre and Change 

WB-TH datasets. Clusters in both Pre and Change datasets were equally predictive (Table 2.3 & 

2.4). The Change VO-TH dataset was the best predictor compared to the Change WB-TH and Pre 

WB-TH datasets (Change VO-TH Model % Sig = 7.2%; Avg.  R2 = 9.6%; Upper 95% CI R2 = 

14.6%; Table 2.4). Similarly, the WM transfer score was predicted by both the Pre and Change 

WB-TH (Pre WB-TH Model % Sig = 3.1%; Avg.  R2 = 6.2%; Upper 95% CI R2 = 13.9%; Table 

2.3; Change WB-TH Model % Sig = 6.4%; Avg.  R2 = 5.5%; Upper 95% CI R2 = 9.4% Table 2.4).  

Training gain in Safe Cracker (SC) was predicted by the change dataset only, with 

predictions in the Change TH (Model % Sig = 3.1%; Avg.  R2 = 5.6%; Upper 95% CI R2 = 7.2%; 

Table 2.4) being more than doubled in the Change WB-TH datasets (Model % Sig = 6.5%; Avg.  

R2 = 10.3%; Upper 95% CI R2 = 15.8% Table 2.4), demonstrating the importance of unified 

volumetric and thickness changes in this prediction. Training gain in Sentry Duty (SD) was best 
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predicted by Pre TH (Model % Sig = 6.8%; Avg.  R2 = 11.2%; Upper 95% CI R2 = 17.7% Table 

2.3). The addition of the volume data decreased the relative size of the cluster passing significance 

threshold, indicating a relatively smaller set of models passed threshold. This suggests that the 

volume data may not have been additionally informative for predicting SD gain. SD was not 

predicted by any Change dataset. Gain in the Supply Run (SR) task was predicted by the Pre TH 

dataset (Model % Sig = 5.3%; Avg.  R2 = 8.9%; Upper 95% CI R2 = 13.4% Table 2.3), but not by 

any of the Pre datasets containing volume information, nor any Change dataset. 

 

 

Outcome Pre 
Structure 

Total 
Model 
Space 

Cluster 
Model Space 

Model 
Avg R2 

Model 
Upper 95% 

R2 

CFs Per 
Cluster  Null 

Avg R2 
Null Upper 
95% Avg R2 

GFRT         
 VO 5.95% 3.44% 8.61% 12.24% 11, 5 0.17% 0.40% 

 WB 16.01% 5.46% 16.70% 30.04% 2, 21, 23 0.16% 0.55% 
PS         
 WB-TH 3.13% 3.13% 6.80% 8.71% 3 0.01% 0.02% 
WM         
 VO-TH 3.51% 3.51% 6.45% 10.05% 8 0.09% 0.19% 

 WB-TH 3.11% 3.11% 6.17% 13.86% 16 0.07% 0.23% 
SC - - - - - - - - 
SD         
 TH 6.77% 6.77% 11.20% 17.70% 0 0.17% 0.47% 

 VO-TH 3.70% 3.70% 11.02% 19.81% 3 0.07% 0.31% 
SR         
 TH 5.27% 3.14% 8.94% 13.36% 20, 22 0.05% 0.14% 

 
Table 2.3:  
This table summarizes the performance of the Pre Structure datasets that were significantly predictive of each training 
gain and transfer score (Column 1- ‘Outcome’ Corresponds to the Training gain/Transfer Score, Column 2- ‘Pre 
Structure’ corresponds to the dataset used). The third column, ‘Total Model Space’, displays the percentage of model 
space that is populated by all clusters of models that significantly predict the outcome variable, and the fourth column, 
‘Cluster Model Space’, shows the percentage of model space covered by the largest cluster. The fifth column, ‘Model 
Avg R2’, shows the average percentage of out-of-sample variance in the outcome variable that is predicted by the 
largest cluster, which should be compared to column eight, ‘Null Avg R2’, which shows the out-of-sample variance 
predicted by the null models over the same area in model space. Column six ‘Model Upper 95% R2’, displays the 
upper 95% confidence interval of percentage of out-of-sample variance predicted by the cluster, and this should be 
compared to column nine, ‘Null Upper 95% Avg R2’, which contains the upper 95% confidence interval for the null 
models. Column seven, ‘CFs Per Cluster’, displays the number of consensus features per significant clusters. Outcome 
and dataset abbreviations follow the convention of the text. Scores: GFRT- fluid intelligence reaction time, PS- 
perceptual speed, WM- working memory, SC- Safe Cracker, SD- Sentry Duty, SR- Supply Run. Datasets: VO- 
volume, WB- whole brain volume, TH- thickness, VO-TH- combined volume and thickness datasets, WB-TH 
combined whole brain volume and thickness datasets. 
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Outcome Change 
Structure 

Total 
Model 
Space 

Cluster 
Model 
Space 

Model 
Avg R2 

Model 
Upper 95% 

R2 

CFs 
per 

Cluster 

Null 
Avg R2 

Null Upper 
95% Avg R2 

GFRT - - - - - - - - 
PS         

 VO-TH 7.22% 5.04% 9.56% 14.60% 3, 62 0.04% 0.09% 
 WB-TH 3.56% 3.56% 8.90% 16.00% 3 0.01% 0.04% 

WM         
 WB-TH 6.42% 3.05% 5.54% 9.37% 9, 31 0.04% 0.09% 

SC         
 TH 3.05% 3.05% 5.64% 7.17% 16 0.03% 0.06% 

 WB-TH 6.48% 4.12% 10.28% 15.83% 0 0.21% 0.51% 
SD - - - - - - - - 
SR - - - - - - - - 

 
 
Table 2.4:  
This table summarizes the performance of the Change Structure datasets that were significantly predictive of each 
training gain and transfer score (Column 1- ‘Outcome’ Corresponds to the Training gain/Transfer Score, Column 2- 
‘Pre Structure’ corresponds to the dataset used). The third column, ‘Total Model Space’, displays the percentage of 
model space that is populated by all clusters of models that significantly predict the outcome variable, and the fourth 
column, ‘Cluster Model Space’, shows the percentage of model space covered by the largest cluster. The fifth column, 
‘Model Avg R2’, shows the average percentage of out-of-sample variance in the outcome variable that is predicted by 
the largest cluster, which should be compared to column eight, ‘Null Avg R2’, which shows the out-of-sample variance 
predicted by the null models over the same area in model space. Column six ‘Model Upper 95% R2’, displays the 
upper 95% confidence interval of percentage of out-of-sample variance predicted by the cluster, and this should be 
compared to column nine, ‘Null Upper 95% Avg R2’, which contains the upper 95% confidence interval for the null 
models. Column seven, ‘CFs Per Cluster’, displays the number of consensus features per significant clusters. Outcome 
and dataset abbreviations follow the convention of the text. Scores: GFRT- fluid intelligence reaction time, PS- 
perceptual speed, WM- working memory, SC- Safe Cracker, SD- Sentry Duty, SR- Supply Run. Datasets: VO- 
volume, WB- whole brain volume, TH- thickness, VO-TH- combined volume and thickness datasets, WB-TH 
combined whole brain volume and thickness datasets. 
 
 
 
 
2.3.2 Consensus Features 

 Among the CFs in the Pre VO dataset that predicted GFRT, we see that the most predictive 

features are the volumes of the left inferior precentral sulcus, and opercular portion of the left 

inferior frontal gyrus, which both demonstrate weak negative trending correlations with transfer 

to GFRT (r = -0.24, p = 0.11;  r = -0.22, p = 0.14 respectively). In the CFs from the Pre WB dataset, 

the strongest predictors of GFRT transfer were again the left inferior precentral sulcus, as well as 

the right cerebellum white matter volume, which was positively correlated with transfer to GFRT 

(r = 0.35, p = 0.01). Transfer to PS was predicted by both the Pre and Change VO-TH datasets. 

Among the CFs of the Pre VO-TH dataset, we found that the lingual gyrus demonstrated a positive 
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correlation with transfer to PS (r = 0.35, p = 0.020), and volume in the right medial collateral and 

lingual sulcus was positively correlated with transfer (r = 0.35, p = 0.017). In the Change VO-TH 

dataset, the change in thickness of left triangular inferior frontal gyrus demonstrated a positive 

trend with PS (r = 0.24, p = 0.11), and the change in volume of the left opercular inferior frontal 

gyrus was correlated with PS (r = 0.31, p = 0.037). WM transfer was predicted by the Pre VO-TH 

dataset, with thickness of the right dorsal posterior cingulate cortex negatively correlated with WM 

(dPCC; r = -0.31, p = 0.040), and volume of the left pericallosal sulcus (r = -0.25, p = 0.080) 

trending negatively with WM transfer. The Pre WB-TH dataset was also able to predict transfer to 

WM, and both the volume of the left vertical ramus of the lateral sulcus and thickness of the left 

paracentral lobule and sulcus were negatively correlated with WM transfer (r = -0.30, p = 0.044; r 

= -0.27, p = 0.072 respectively). In the Change WB-TH dataset, the change in both the thickness 

and volume of the left vertical ramus of the lateral sulcus (r = 0.41, p = 0.0046; r = 0.43, p = 0.002), 

and volume of the right posterior collateral sulcus (r = 0.41, p = 0.0043) were positively correlated 

with WM transfer. 

 Training gain in SC was predicted by the Change TH and Change WB-TH datasets. In the 

Change TH dataset, we found that changes in thickness of the left precentral gyrus and right 

postcentral gyrus were positively correlated with improvement in SC (r = 0.26, p = 0.083; r = 0.38, 

p = 0.0099 respectively). The Change WB-TH dataset did not yield any CFs. Training gain in SD 

was predicted by the Pre TH and Pre VO-TH datasets, but the Pre TH dataset did not contain any 

CFs. In the Pre VO-TH dataset, no region demonstrated either significant or trending correlation 

with SD. Training gain in SR was only predicted by the Pre TH dataset, and both thickness in the 

left superior parietal lobe (r = 0.26, p = 0.081) and the right posterior ramus of the lateral sulcus (r 
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= 0.29, p = 0.050) were positively associated with SR training gain. These correlations did not pass 

Bonferroni correction for multiple comparisons. 

 

2.3.3 Consensus Similarities Across Training and Transfer 

 CFs allow us to assess the reliability of a feature’s role in prediction. Every consensus 

feature is one which not only was selected for all cross validation loops for a given feature set size 

and lambda value, but it also was a consensus feature for 90-100% of the models in a given cluster. 

Given that transfer to WM was positively correlated to training gain in the SD, SR, and SC tasks, 

we first tested the extent to which we would see overlap here. While we saw extensive overlap in 

CFs between WM and the SC and SR training gain, we saw the least overlap between WM and 

SD, regardless of the fact that they are both n-back based. The only overlap was in the initial 

thickness of the intermedius primus portion of the right intraparietal sulcus, which is known to 

play a role in visuospatial working memory (Coull and Frith 1998; Silk et al. 2010). We could not 

assess any overlap between change predictions in these two scores’ CFs because training gain in 

SD was not predicted by change in any set of volumes or cortical thickness.  

Transfer to WM and gain in SR were extensively overlapping in their feature sets, with 

both sharing a predominantly left hemisphere set of cortical thicknesses. Many of these regions 

have been previously identified by several studies to demonstrate functional activation changes 

after either motor or cognitive training, including the right insula (Arima 2011; Puttemans 2005; 

Ronsse 2011; Zhang 2011), left middle occipital gyrus (Petersson 2001; Thomas 2009), left 

inferior frontal gyrus (Arima 2011; Thomas 2009; Zhang 2011), and left fusiform gyrus (Chein 

2005; Eickhoff 2009). We found that cortical thickness of auditory processing regions, such as the 

supramarginal gyrus and transverse temporal gyrus, which are involved in phonological storage of 
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working memory (Celsis et al. 1999), were predictive of gain in both SR and WM. Furthermore, 

cortical thickness of several visual processing regions, such as the cuneus, occipital pole, and 

calcarine sulcus, as well as the insula and inferior frontal gyrus, which are  involved in attention 

and executive processing, were also commonly predictive in both SR and WM (Aron et al. 2003; 

Menon and Uddin 2010). Training gain in SR was not predicted by change in any set of volumes 

or cortical thickness, so we were not able to compare the extent of overlap in these features; 

however, transfer to WM and SC were both successfully predicted by the Change WB-TH dataset. 

We found that several CFs in the combined change in cortical thicknesses and volumes of 

sensory processing were shared between clusters of models predicting both SC and WM. Changes 

in the cortical thickness of the left superior frontal gyrus, which is involved in visuospatial working 

memory (Rypma et al. 1999; Boisgueheneuc et al. 2006), left anterior transverse temporal gyrus, 

which contains the primary auditory cortex (Destrieux et al. 2010), and right collateral sulcus and 

lingual sulcus, which are involved in visual processing (Newman-Norlund et al. 2006; Ilg et al. 

2008; Ronsse et al. 2011) were identified as CFs in models that predicted both transfer to WM and 

training-induced gains in SC. Similarly, models that predicted transfer to WM and gains in SC 

both contained changes in cortical volume in sensory processing and attention regions such as the 

left and right collateral sulci, which are involved in object recognition and visual attention (Awh 

et al. 2000), and the left cingulate sulcus which is critical for attention (Vogt et al. 1992; Nebel et 

al. 2005; Colla et al. 2008). Several of these regions have been implicated in general skill 

acquisition by demonstrating training-induced changes in functional activation after both motor 

and cognitive skill training. For example, both right and left lingual gyri, left posterior cingulate 

cortex, and right fusiform gyrus have demonstrated changes in activity both after motor training 

(Penhune and Doyon 2002; Kim et al. 2004; Ronsse et al. 2011; Zhang et al. 2011), and cognitive 
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training (Puttemans 2005; Newman-Norlund et al. 2006; Wong et al. 2007; Ilg et al. 2008; 

Raboyeau et al. 2010; Schmidt-Wilcke et al. 2010). We could not assess overlapping predictions 

between initial volumes and cortical thickness because SC was not predicted by any Pre dataset. 

Furthermore, as GFRT and WM were predicted by completely non-overlapping sets of data, we 

could not assess overlapping CFs between these predictions either, nor could we assess 

overlapping predictions between GFRT and the training gain scores (SR, SD, SC). 

 

2.3.4 Comparing Predictions 

 Given that previous work has both examined how regional cortical thickness and regional 

brain volumes relate to cognitive performance and learning, we wanted to compare how our 

predictions would fare when each of these datasets was used independently, and whether 

predictions would be improved by combining thickness and volume information. On average we 

saw that the thickness data was about twice as informative as the volume data. Significant clusters 

of models emerged in 3/12 (25%) of the TH dataset predictions, while only 3/24 (12.5%) of VO 

dataset analyses contained significant predictors. Furthermore, only 7/48 (14.5%) of all analyses 

using the VO data contained significantly predictive clusters of models, while 11/36 (30.5%) of 

the analyses using the TH data contained significant clusters. Only transfer to GFRT is uniquely 

predicted by the volume datasets, whereas all other transfer and training variables are predicted by 

TH and combinations of TH and VO. It is important to note that cortical volumes are calculated 

using cortical thickness and surface area, so these data are necessarily collinear. Regardless of the 

collinearity of these data, the WB-TH and VO-TH datasets are the most informative, predicting  

of41.7% and 25% of their analyses respectively.  

 



40	
	

2.4 Discussion 

We assessed the extent to which the CFs in the training and transfer tasks demonstrated 

overlap, and while we did not find any CFs that were common between training gain and transfer 

to either PS or GFRT, an interesting pattern of common CFs emerged in the models predicting 

WM and training gain. Behaviorally, WM transfer is positively associated with gain scores in these 

three training tasks, but WM transfer shares pre CFs with SR and change CFs with SC, and shares 

no CFs with SD. Training in these three tasks all tap into working memory in different ways. SR 

is largely a running span task requiring participants to repeatedly add and remove an item in 

working memory. SD is a dual n-back task, which taps into both the updating and storage 

component of working memory, as well as the executive component due to the presence of lures.  

This task is the most similar to the WM transfer tasks, which are also n-back tasks. SC is an 

inductive reasoning task, in a fashion similar to the Ravens Advanced Progressive Matrices task. 

This task requires subjects to take in a large amount of information all at once. Participants must 

use their short term memory storage ability while quickly and repeatedly comparing distinct pieces 

of information in the larger set in order to extract patterns, and compare the answer choices on 

screen to the pattern extracted. The cognitive training and transfer literature suggests that transfer 

occurs through a neural, cognitive, or behavioral “overlap” between the transfer and training tasks 

(Jonides 2004; Dahlin, Neely, et al. 2008; Buschkuehl and Jaeggi 2010). Therefore, we expected 

to see extensive commonalities in the CFs of SD gain and WM transfer, and to a less extent 

between WM transfer and SR and SC gain. We found the clusters of models that predicted SR and 

SC had many of the same CFs in sensory and attention processing regions as the clusters of models 

predicting WM. Surprisingly, we found little overlap between WM transfer and gain in SD, the 

training task that most resembles the n-back task. These results support a refinement of the neural 
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overlap hypothesis of transfer such that training that shares neural correlates with processing 

limitations in the transfer tasks will drive improvement in these untrained domains. This suggests 

that changes predicting SD may reflect changes that were skill specific and did not drive transfer 

to WM. On the other hand, changes predicting WM transfer may reflect the training’s widening of 

the sensory and attention processing bottlenecks that allowed for WM transfer. For example, given 

that training gain in SC and SR may be more dependent on changes in rapid and accurate 

processing of information in memory, rather than improvement in the size of memory capacity 

primarily targeted by SD, our results suggest that training gain in SR and SC targeted the same 

low level sensory and attention processing that would generalize to the WM transfer tasks as well. 

SR and WM both share a large set of mostly left lateralized Pre TH CFs which have been 

reliably associated with motor and cognitive training (see Patel 2013 for a review), and that have 

been implicated in auditory and visual processing and attention. These results suggest that pre-

existing differences in cortical thickness in regions involved in low level sensory processing and 

awareness may play an important role in the outcome of an intervention, and that this effect extends 

not only to the training-induced gain, but also to the transfer of that training to untrained domains. 

Previous work has suggested that improving these low level sensory processes may be key to 

generating transfer to higher cognition in older adults (Mahncke et al. 2006), and the current work 

suggests that young adults may benefit from this approach as well. Finally, training-induced 

changes in cortical volume and thickness share a common set of CFs in predictions of gain in SC 

and WM. Similarly to regions shared between SR and WM, SC and WM share many regions 

involved in working memory, such as the superior frontal gyrus and left lingual gyrus (Courtney 

et al. 1996; Rypma and D’Esposito 1999), as well as sensory processing such as the transverse 

temporal gyrus and right lingual gyrus, which are involved in auditory and visual processing 
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respectively (Paulesu et al. 1993; Macaluso et al. 2000). Rather than sharing regions associated 

with high level reasoning, such as the dorsolateral prefrontal cortex and superior parietal lobe, 

these regions may be reflective of changes in structure that are due to improvements in rapid access 

and comparison of information. 

We found that cortical volumes were predictive of transfer to GFRT, but that the inclusion 

of white matter and subcortical regions doubled not only the average predictive accuracy of the 

model-cluster, but also the size of the model cluster. Brain volume has been extensively studied in 

intelligence, and there are several convergent pieces of evidence that suggest that ‘bigger is better’ 

concerning brain volumes, but to our knowledge this the first result demonstrating that brain 

volumes can also predict future transfer to fluid intelligence. We found that individuals with larger 

right cerebellum white matter were better able to derive improvements in reasoning speed from 

the training. While the cerebellum used to be considered mostly a motor processing center, more 

recently it has demonstrated to play a role in working memory and other cognitive functions 

(Desmond and Fiez 1998), as well as being a central hub of the skill acquisition process (Hikosaka 

et al. 2002). Furthermore, both the striatum and cerebellum play critical roles in the acquisition of 

cognitive skills, with previous work demonstrating that greater striatal volumes predict greater 

skill learning (Erickson et al. 2010). Given that the cerebellum plays an especially important role 

in the speed of motor processing (Ghez and Fahn 1985), it may be possible that greater cerebellar 

volumes also improve the capacity of individuals to decrease decision making reaction times with 

training, and to transfer those speeded response patterns to other tasks. In this way GFRT transfer 

may be more reflective of improvements in gains in the speed of processing in decision making 

and pattern recognition, rather than gain in capacity or accuracy in these higher cognitive functions. 

As participants trained for 30 hours with the six training tasks, it is likely that significant gains 
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were made in the low level processing of a variety of types of information, and our results in WM 

and PS suggest that speed of processing in low level sensory domains may have been critical across 

all transfer scores.  

Transfer to PS was best predicted by Pre CFs in the right collateral and lingual sulci. This 

region is important for visual processing and plays a key role in the ventral attention stream 

(Newman-Norlund et al. 2006; Ilg et al. 2008; Ronsse et al. 2011). Individuals with greater 

increases in the left opercular inferior frontal gyrus, a region important for attention (Aron et al. 

2003; Menon and Uddin 2010), also demonstrated the greatest gains in PS. These results suggest 

that individuals that benefited from better initial visual processing and for whom the training had 

more of an impact on attention processing also demonstrated greater transfer. Transfer to WM was 

best predicted by the pre training and training-induced change in the volume of the left lateral 

sulcus, the location of the primary auditory cortex. This may suggest that individuals with the 

smallest primary auditory cortical volume would transfer the most benefit from auditory working 

memory training to WM, and they may be also the same individuals that demonstrated greatest 

volumetric increases with training. The initial volume of the right dPCC, a region implicated in 

attention and a central hub of the DMN, was surprisingly negatively correlated with transfer to 

WM. Previous work has demonstrated that individuals with MCI and AD have atrophied PCC 

volumes compared to healthy age-matched controls (Han et al. 2010), and as in the case of the 

primary auditory cortex, individuals with the smallest PCC may see the most benefit from 

cognitive training and transfer to WM. Finally, we found that WM was positively correlated with 

training-induced increases in right transverse collateral sulcus volume, which encompasses both 

the fusiform and lingual gyri, both of which are critical for visual processing, attention, and object 

recognition (Macaluso et al. 2000; Weiner and Zilles 2015). Which suggests that individuals for 
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whom the training-induced the greatest increases in the volume of visual processing regions, it 

also demonstrated the greatest generalization of their training to untrained tasks.  

Taken together, these results suggest that training-induced changes to low level sensory 

(auditory and visual) processing may have allowed for higher quality training and skill acquisition 

and subsequent greater information flow between cognitive systems, which enabled the skills 

trained in MF to generalize to untrained tasks. Previous work has suggested that improved low 

level sensory processing results in improvements in higher cognitive performance through the 

strengthening of the signal-to-noise ratio of relevant cortical activity (Mahncke et al. 2006). These 

clearer signals may support the subcortical regions in unitization of skill representation and may 

thus be beneficial both for the acquisition and transfer of skills. In the face of the sensory 

degradation that occurs with aging, the brain adapts by lengthening the time window of processing, 

which not only makes processing slower, but also prevents the accurate representation of 

spatiotemporally complex signals (Mahncke et al. 2006). In this way, individuals with better 

sensory processing may benefit from a secondary benefit of faster reaction times, and the current 

work suggests that these individuals may not only demonstrate greater training-induced benefits 

to processing speed, but also gains to higher cognitive function such as working memory.    

While we identified sets of regions that were reliably associated with learning and transfer 

across the brain, the novel analysis pipeline we applied may raise a few questions that are important 

to address. We did not find significant clusters of models in many datasets, suggesting that the 

majority of model-clusters did not have high predictive accuracy and were sparsely found in model 

space. There are many reasons that may affect both the percentage of variance our models account 

for and the proportion of model-space for which our models are significant predictors. For 

example, ridge regression, is both a linear method and it employs one of the simplest regularization 
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methods, and thus is not able to capture complex interdependencies in the data’s covariance 

structure, as is more common with advanced methods such as support vector machines (SVMs), 

random forests, and neural networks (Smola and Schölkopf 2004; Hastie et al. 2009). As predictive 

accuracy was not a high priority in the current project, but rather reliability and interpretability of 

findings, we decided it was better to pursue a simple linear model that would underperform 

compared to more advanced models that have been described as both non-transparent and difficult 

to interpret (Kotsiantis 2007). Freesurfer’s longitudinal pipeline has been demonstrated to be 

sensitive to longitudinal changes, and this pipeline is known to have high precision, and 

reproducibility (Destrieux et al. 2010; Fischl 2012; Metzler-Baddeley et al. 2016). We chose the 

Destrieux atlas because of its sensitivity to individual differences in gyral and sulcal folding, which 

have been demonstrated to be superior to volumetric approaches (Fischl 1995, Van Essen 2005). 

Nevertheless, most of the literature finding large effects in investigating the relationships between 

brain structure and skill and motor learning uses voxel based morphometry (VBM), but this 

method has limitations as well. Multiple reviews of the skill learning literature have discussed 

methodological problems with the use of VBM in assessing structure-cognition relationships, 

especially in low reproducibility of effects (Lövdén et al. 2013; Thomas and Baker 2013). It is 

important to note that the reason we were able to assess the reliability of our models across cross 

validation loops, many model sizes, and lambda values is because our feature set was not 

exceedingly large. Using the full dataset from VBM would be far too computationally expensive 

to have performed the current analysis, therefore while the Destrieux atlas may not have been the 

most common choice for our data, it was the most practical choice. 
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2.5 Conclusion 

In the current work we demonstrated that individual differences in brain structure, and 

training-induced changes in these regions contribute significantly to greater gains in training tasks 

and transfer to untrained domains. We found support and further refinement of the neural overlap 

hypothesis in the current work, and we demonstrated the utility of reliability-maximizing machine 

learning in establishing associations between brain structure and learning. Future work 

investigating the structural correlates of training and transfer should take advantage of multivariate 

methods, such as voxel-wise PCA, for identifying structural networks of the brain for prediction. 

Furthermore, it would be highly informative to follow this work with resting state analyses 

comparing how networks involved in attention, executive function, and skill learning may be 

involved in the skill learning and generalization process. 
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Abstract: Cognitive training studies have demonstrated transfer of training to underlying cognitive 
abilities, but many attempts to replicate these effects have failed. Understanding individual 
differences in the brain networks that contribute to training and transfer is essential to developing 
a mechanistic understanding of these learning phenomena. We trained 45 young adults with Mind 
Frontiers, a multimodal training game that taps complimentary aspects of reasoning, attention, and 
working memory. We predicted gains in training and untrained transfer domains using both pre-
existing and training-induced differences in the Default Mode, Cingulo-Opercular, Frontal-
Parietal, and Subcortical networks. We utilize a machine learning pipeline that we designed to 
extract the most reliably predictive models, network connections, and nodes. We find that 
networks involved in the development and deployment of sustained attention and regulation of 
internal cognition are reliable predictors of both skill acquisition and generalization of Mind 
Frontiers training to fluid intelligence, working memory, and perceptual speed. 
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3.1 Introduction 
 

Cognitive training holds a great deal of potential for offering an ecologically valid and 

healthy approach to both remediating symptoms of many psychiatric disorders and enhancing 

cognition in healthy participants. Recent attempts to improve cognitive function through training 

have been successful (Ball et al. 2002; Green and Bavelier 2003; Dahlin, Neely, et al. 2008; Jaeggi 

et al. 2008; Dye et al. 2009a; Thorell et al. 2009; Anguera et al. 2013; Rebok et al. 2014; Baniqued 

et al. 2015), but there have also been large scale failures to replicate many of these effects (Melby-

Lervåg and Hulme 2012; Redick et al. 2012; Shipstead et al. 2012; Oelhafen et al. 2013). The low 

reliability of these effects may be due in part to methodological constraints such as small sample 

sizes, estimation of enhancement through the use of single tasks, or the use of single training tasks. 

The investigation of how individual differences are associated with positive training outcomes 

may offer important insight into the mechanisms by which improvements during training transfer 

to other domains.  

Some previous work has investigated how brain structure and function relate to individual 

differences in training and transfer (Olesen et al. 2004; Anguera et al. 2007, 2013; Dahlin, Neely, 

et al. 2008; Vo et al. 2011; Voss et al. 2011; Oelhafen et al. 2013; Nikolaidis et al. 2014, 2015), 

but the neural correlates of transfer have not yet been well established. In a closely related field, 

skill learning, neural correlates have been increasingly well defined in both animals and humans 

(Hikosaka et al. 2002; Graybiel 2005; Doyon et al. 2009; Patel et al. 2013). To gain a fuller 

mechanistic understanding of the process by which training transfers to new domains, it will be 

critical to establish a common theory that encompasses the learning that occurs in both skill 

learning and cognitive training. Therefore, the critical effort in cognitive training may be reframed 

as establishing both the relationships and distinctions between the neural correlates of skill 
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acquisition and skill generalization. Previous work has demonstrated that skill acquisition and 

generalization are closely linked, and modifications that impact skill acquisition can have impacts 

on generalization of learning as well (Singley and Anderson 1989; Schmidt et al. 1992; Bjork and 

Linn 2006; Boot et al. 2010; Seidler 2010). Creating targeted cognitive training interventions that 

utilize mechanisms of training and transfer will depend on the characterization of the neural 

similarities and distinctions between the process of skill acquisition and generalization. 

In order to explore the relationship between training and transfer, we recruited 45 subjects 

for a cognitive training study in which they performed pre and post neuropsychological 

assessments, resting state fMRI (rsfMRI), and 30 hours of training with Mind Frontiers. Mind 

Frontiers (MF) is a cognitive training study with six different training games that target 

complementary aspects of executive function, reasoning, working memory, and attention 

(Baniqued et al. 2015). The training comprises six adaptive training tasks that have been gamified 

and united into a common “Wild West” themed game, and which have all shown previous success 

in cognitive training. We recently published the behavioral results from this study, in which we 

found that MF training led to significant improvements in constructs of perceptual speed, fluid 

intelligence, and working memory. In the current study, we investigate how pre-training resting 

state network connectivity predicts training gain and transfer. By examining how resting state 

connectivity in specific networks predicts training gain and transfer, we may gain a better 

understanding of not only the mechanisms by which these behavioral effects occur, but also how 

training and transfer are affected by common neural mechanisms. We will also assess how 

training-induced changes in these resting state networks predict both training and transfer, which 

will allow us to gain a better understanding of the path through which training drives common 

changes in both resting state connectivity and transfer. 
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The executive, attention, and reasoning cognitive functions critical for the performance of 

the training tasks in MF are known to depend critically on the frontal parietal (FPN) and cingulo-

opercular networks (CON) (Kelly et al. 2008; Uddin et al. 2009; Sestieri et al. 2014). These 

networks are not only important for the performance of these cognitive processes, but they also 

may be important for the acquisition of skills that largely depend on these abilities, and by the 

same token may be involved in their training-induced improvement. For example, previous work 

has demonstrated that greater training-induced synchrony between frontal and parietal regions was 

associated with greater transfer to attention and multitasking (Anguera et al. 2013). Furthermore, 

while it has been well established that subcortical regions, such as the striatum, are critical for the 

acquisition of skills (Hikosaka et al. 2002; Graybiel 2005; Erickson et al. 2010), these regions have 

also been established as critical for the generalization of trained skills to untrained domains 

(Dahlin, Neely, et al. 2008), providing support for the notion that training-induced transfer is 

related to skill acquisition and generalization. In order to examine how these networks may play a 

role in both the acquisition and generalization of trained skills, we assessed functional network 

connectivity in the FPN, CON, and subcortical (SUB) networks. Motor skills are known to be 

acquired through the network interaction of the motor and subcortical regions (Hikosaka et al. 

2002), and given that nearly all of cortex projects to the striatum (Postuma 2005), it is possible 

that higher cognitive skills are acquired through a similar pattern of interaction with these 

subcortical regions. To assess how this may play a role in driving improvements in training tasks 

and transfer to other domains, we assessed functional connectivity between the SUB and FPN 

networks (SUBxFPN), as well as between the SUB and CON networks (SUBxCON). Finally, the 

functional scans we collected were during the resting state, in which the default mode network 

(DMN) is dominant. Prior work has established a close anti-correlated relationship between the 
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DMN and the executive control CON and FPN networks (Fox et al. 2005). In fact, less distinction 

between these networks has been associated with a wide range of cognitive symptomology, 

ranging from Alzheimer’s disease (Brier et al. 2012) and aging (Sambataro et al. 2010; Geerligs 

et al. 2015), to schizophrenia (Tu et al. 2012) and poor performance in higher cognitive functions 

(Zanto and Gazzaley 2013). Therefore, it may be the case that the connectivity of the DMN and 

its associated control networks (CON and FPN) may reflect on the performance of these higher 

cognitive functions and their responsiveness to training-induced improvement. As in the case of 

the SUB network, we also assessed functional connectivity in the DMN, as well as functional 

connectivity between the DMN and FPN (DMNxFPN), and CON (DMNxCON) networks. We use 

pre-training connectivity in these four networks and four internetworks, as well as training-induced 

changes in these networks, to predict improvement in three cognitive training tasks and transfer to 

perceptual speed, fluid intelligence, and working memory. 

We employ common techniques from machine learning to achieve these predictions. 

Machine learning methods, such as the ridge regression we apply, are more likely to develop 

models that reproduce their effects in new data compared to ordinary least squares (OLS), which 

is used in most general linear model (GLM) based analyses. OLS suffers from problems of low 

reproducibility because it exclusively optimizes reducing squared error, which increases the 

likelihood of creating models that overfit a given sample, and therefore tend to not replicate well 

to other samples (Hastie et al. 2009). The tendency of OLS to overfit is especially problematic in 

the case of small samples, or high collinearity between variables, two characteristics that are 

commonplace in cognitive neuroscience research. Ridge regression addresses this problem by 

penalizing the model parameters, which prevents a model from making strong assumptions on the 

importance of a variable for the sake of improving within-sample predictive accuracy, thereby 
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reducing chance for overfitting (Marquardt and Snee 1975). Aside from ridge regression, many 

other methods, such as support vector machines, lasso, and random forests have the same 

advantage that they produce models that are less likely to overfit compared to OLS (Hastie et al. 

2009), although these methods are more computationally intensive. The statistical advantages 

offered by these techniques, in concert with increases in computing power has led to a surge in the 

use of these methods in many scientific fields, and more recently these methods have begun to be 

applied in neuroscience as well (Varoquaux and Thirion 2010; Hinton 2011). Recent work has 

investigated how functional network connectivity can be used to detect strokes (Varoquaux and 

Thirion 2010) and disease states (Craddock et al. 2009), predict skill performance and learning 

rate (Nikolaidis et al. 2015), and predict brain-age and chronological age (Dosenbach et al. 2011; 

Meier et al. 2012). In the current study, we apply such techniques to the question of cognitive 

training and make methodological advancements that enhance the ability of these methods to make 

reliable predictions. 

We compare how predictors of training and transfer are shared across four resting state 

networks and the connectivity between these networks. Many applications in machine learning 

focus on selecting model parameters to maximize accuracy, but in the current work, our goal was 

to maximize the reliability and interpretability of our findings. We applied ridge regression across 

a wide range of model parameters: lambda regularization values and feature sets to map the 

predictive ability of our dataset over the entire model space. We applied a cluster correction 

algorithm to this space to identify regions of model space where clusters of models were reliable 

predictors of our outcome variables. This enabled us to search for consensus features, which are 

those that are included not only in every cross validation loop in a given point in model space, but 

also across all models within the cluster of significant models. By identifying consensus features, 
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we were able to find features that were highly reliable predictors of our outcome variable, and 

remained predictive even with varied feature sets and regularization values. We found that the 

CON and its regulation of the DMN were the most reliable and significant predictors of both skill 

acquisition and generalization. Critically, we found that both the SUB, which is involved in skill 

learning, and the SUBxCON network, which is involved in the development and deployment of 

the sustained attention skills of the CON, was predictive of transfer to fluid intelligence, working 

memory, and perceptual speed. We discuss these and other findings in the greater context of 

learning, skill acquisition, and cognitive training.  

 
 

3.2 Methods 

3.2.1 Participants 

 We recruited participants from the University of Illinois and surrounding community 

through flyers and online advertisements seeking participants for a “cognitive training study.” 

Online pre-screening for demographic information and videogame experience was completed over 

email. Subsequent phone screening required participants: 1) between 18 and 30 years old, 2) 75% 

right handed according to the Edinburgh Handedness Inventory, 3) normal or corrected-to-normal 

hearing and vision, 4) no major psychological or medical conditions, 5) no non-removable metal 

in the body, and 6) played no more than 5 hours of video games per week in the past six months. 

A total of 45 participants trained with Mind Frontiers and had complete behavioral and neural data. 

 

3.2.2 Study Design 

 A complete description of the study design can be found in Baniqued et al. 2015. Briefly, 

participants completed three initial cognitive testing sessions, and an MRI session before 
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beginning the intervention, in which they completed four to five training sessions per week for 

four to five weeks, for a total of 20 sessions. After training, subjects returned to lab for a final MRI 

session and another round of cognitive testing.  

 Participants trained with six computerized adaptive training tasks that were selected based 

on their known psychometric properties with reasoning/Gf, working memory, visuospatial 

reasoning, inductive reasoning, and task switching. See Table 3.1 for a description of each training 

task. 

 

3.2.3 Cognitive Assessment Protocol 

For a full listing of all neuropsychological tasks administered see Baniqued et al. 2015. 

Here we briefly describe each of the tasks that were included to create the reasoning, working 

memory, and perceptual speed composite variables we predicted. The tests below were obtained 

from the Virginia Cognitive Aging Project Battery (Salthouse 2005), and two different versions 

were used for pre- and post-testing, with the sequence counterbalanced across subjects. 

3.2.3.1 GFRT 

The GFRT composite was comprised of standardized reaction times in these four tasks. 
Descriptions for these and other tasks in section 2.3 are reproduced from Baniqued et al. 2015. 

Matrix Reasoning: Select the pattern that completes a missing space on a 3 x 3 grid. Number of 
correctly answered items is the primary measure. Reaction time on correct trials was also analyzed. 
Source: Ravens 1962; Crone et al. 2009. 

Paper Folding: Identify pattern of holes that results from a punch through folded paper. Number 
of correctly answered items is the primary measure. Reaction time on correct trials was also 
analyzed. Source:  Ekstrom et al. 1976. 
 
Spatial Relations: Identify 3D object that would match a 2D object when folded. Number of 
correctly answered items is the primary measure. Reaction time on correct trials was also analyzed. 
Source: Bennett et al. 1947. 
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Letter Sets: Determine which letter set is different from the other four. Number of correctly 
answered items is the primary measure. Reaction time on correct trials was also analyzed. Source: 
Ekstrom et al. 1976. 

3.2.3.2 Perceptual Speed 

The Perceptual Speed composite was comprised of standardized accuracy scores in these three 
tasks. 

Digit Symbol Substitution: Write corresponding symbol for each digit using a coding table. The 
primary measure is the number of correctly answered items within two minutes. Source: Wechsler 
1997.  
 
Pattern Comparison: Determine whether pairs of line patterns are the same or different. The 
primary measure is the number of correctly answered items within 30 seconds, averaged across 
two sets of problems. Source: Salthouse and Babcock 1991.  
  
Letter Comparison: Determine whether pairs of letter strings are the same or different. The primary 
measure is the number of correctly answered items within 30 seconds, averaged across two sets of 
problems. Source: Salthouse and Babcock 1991.  
 

3.2.3.3 Working memory 

The WM N-back composite was comprised of the d’ scores of the 2-back, 3-back, Dual 2-back, 
and Dual 3-back. 
 
Single N-back: Determine whether the current letter presented matches the letter presented two or 
three items back. The primary measure of d-prime was computed separately for the 2-back and 3-
back conditions. Reaction times on correct trials were also analyzed. Source: Kirchner 1958; Kane 
et al. 2007. 
 
Dual N-back (administered in the MRI): Determine whether simultaneously presented auditory 
and visual stimuli match stimuli presented one, two, or three items ago. The primary measure of 
d-prime was computed separately for the two-back and three-back conditions. Reaction times on 
correct trials were also analyzed. Source: Jaeggi et al. 2003, 2007. 

 

 
3.2.4 Behavioral Results Analysis 

 Training with Mind Frontiers produced significant gains in performance not only across all 

training tasks, but also to three cognitive constructs, working memory (WM), reasoning reaction 
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time (GFRT), and perceptual speed (PS). The gain scores for the training and transfer tasks were 

calculated by taking the difference between post- and pre-test scores, and dividing by the standard 

deviation of the pre-test score. In the current study, we use these transfer scores as predictors, as 

well as training-induced gain scores from three of the training games: Supply Run (SR), Sentry 

Duty (SD), and Safe Cracker (SC). These three training games were chosen because improvement 

during training was positively correlated with transfer to the working memory construct (Baniqued 

2015), indicating that training-induced gains in these tasks may play a role in WM transfer. 

 

 

3.2.5 MRI Preprocessing & Analysis 

3.2.5.1 MPRAGE Acquisition and Processing 

All structural, high-resolution, T1-weighted MPRAGE images were collected on a 3 T 

Siemens Trio scanner, collected in ascending order parallel to the anterior and posterior 

commissures with the following parameters: Echo time (TE) = 2.32 ms, repetition time (TR) = 

1900 ms, field of view (FOV) = 230 mm, voxel size 0.9mm3, and flip angle = 8°. All preprocessing 

of structural images was performed with FSL. After being skull stripped, each structural image 

was linearly registered to the MNI 2mm brain template with 12 degrees of freedom (Smith 2004). 

 

3.2.5.2 RS Acquisition and Processing 

For all functional scans, we used an echo-planar imaging (EPI) sequence with Blood 

Oxygenation Level Dependent (BOLD) contrast (FoV Read: 220, 2.4 × 2.4 × 3.5 mm voxel size, 

TR = 2000 ms, TE = 25 ms, and flip angle = 80). BOLD repetitions: 180 volumes.  
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Preprocessing of the functional data was performed with C-PAC (http://fcp-

indi.github.io/), which is an open source, configurable, and automated processing pipeline for 

resting functional MRI. This package utilizes tools from a variety of publicly available packages, 

such as FSL, AFNI, and ANTS. After being skull stripped with FSL, each structural image was 

registered to the MNI 2mm brain template and functional images were registered to the anatomical 

image using ANTS. These transformations were combined to register the functional images to the 

MNI 2mm brain template. Slice timing and motion correction using Friston’s 24 parameter motion 

model were applied to the functional data to remove effects of motion from the dataset. To account 

for motion related artifacts further, we also performed motion scrubbing such that TRs with 

excessive motion (greater than 0.5mm frame displacement) were removed, along with 2 

subsequent TRs. We excluded subjects with less than 120 volumes. 

We performed nuisance signal regression by regressing out mean signal of the white matter 

and CSF. We also used CompCorr, with 4 parameters, WM, CSF, and global as a method to 

remove excessive noise due to signal from the white matter, CSF, and global signal. Finally, we 

applied a temporal band pass filter from 0.01 to 0.1 Hz, and a spatial smoothing kernel of 6mm 

FWHM. 

 

3.2.5.3 Connectivity 

We chose the nodes for the default mode (DMN), frontal parietal (FPN), cingulo-opercular 

(CON), and subcortical (SUB) networks from the Petersen 264 node network atlas (Power et al. 

2011). The CON contained nodes in the supramarginal gyrus, superior frontal gyrus, insular cortex, 

central opercular cortex, cingulate gyrus, and paracingulate gyrus. The DMN was made up of 

nodes in the frontal pole, middle frontal gyrus, PCC, lateral occipital cortex, temporal pole, 
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precuneous, superior lateral occipital cortex, middle temporal gyrus, and angular gyrus. The FPN 

contained nodes in the precentral gyrus, middle frontal gyrus, posterior supramarginal gyrus, 

inferior temporal gyrus, frontal pole, superior parietal lobe, and superior lateral occipital cortex. 

The SUB network contained nodes in the thalamus, brain stem, putamen, and pallidum. For a full 

listing of network regions and their anatomical assignments, see (Power et al. 2011). 

To create the internetworks, we assessed only the connections between each of the 

networks and excluded all within network connections. For example, for the SUBxFPN network, 

we exclusively extracted correlations between the SUB and FPN, and excluded all intranetwork 

connections. To extract and process each network’s connectivity information, we calculated node-

averaged timecourses within each subject’s network of interest and we used these timecourses to 

create correlation matrices that would become features for our machine learning pipeline.  
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Figure 3.1: 
This figure provides a visual flowchart of the methods used in the current work. Analysis begins with the structural 
features extracted from our resting state scans (1), and then it continues through model building (2A), cross validation 
(2A), and repeating our analysis across feature and lambda space (2B). Finally we create the null model distribution 
by shuffling the Y labels (3), and we assess the difference between the model space and the null model space in the 
form of a Z-map (4). We apply a cluster correction to this Z map and extract consensus features (4).  
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3.2.6 Machine Learning Methods 

3.2.6.1 Predicting training gain and transfer 

To make our predictions we used either pre-training or pre-post differences in network 

connectivity. We used Sci-Kit Learn to perform ridge regression (Figure 3.1: Section 1) (Buitinck 

et al. 2013). While this algorithm does not achieve predictive accuracies as high as other more 

advanced methods, such as random forests and support vector machines (SVMs), ridge regression 

offers an important advantage in terms of ease of interpretability and comparability to other 

analyses in this domain using linear models (Kotsiantis, Zaharakis, & Pintelas, 2007). 

Over each leave-one-subject-out cross-validation (LOSO-CV) loop, we trained models of 

a range of sizes, and we used these models to predict scores of the left-out subject (Figure 3.1: 

Section 2A). Within each cross validation loop, we ranked all features in the training group by 

absolute correlation strength. We created feature sets of the top 1 to n features, by groups of 5 to 

save processing time, and predicted each left out subject using each of these feature sets. We 

calculated R2 values by squaring the correlation of predicted and actual score values. 

In order to assess the true predictive accuracy and overfitting in our models, we created a 

distribution of null models (Figure 3.1: Section 3). To create these null models, we randomized 

the score values for the subjects, and repeated the procedure outlined above to predict these values. 

We repeated this procedure 20 times to create a distribution of null models. The performance 

accuracy of our models was compared to the mean performance of our null models. 
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3.2.6.2 Assessing Reliability of Prediction 

Rather than using cross validation to select an optimal hyperparameter (lambda) value for 

each model, we repeated our predictions and null model testing at a range of hyperparameter values 

(Figure 3.1: Section 2B). While computationally intensive, this method allows us to more fully 

explore the space of possible models, extract clusters of predictive models, and assess the 

reliability of our models independent of lambda value.  

 We assessed how our model performed over the full model space compared to the 

distribution of null models, and we transformed the difference in prediction accuracy between the 

model and null model distribution to a Z score distribution, representing the number of standard 

deviations that the model outperforms chance (Figure 3.1: Section 4). To get a more accurate 

assessment of average model prediction in a region and account for variation in neighboring 

models, we first smoothed the data using a 2 x 3 FWHM Gaussian kernel before applying cluster 

correction. We then removed all models that predicted less than 1 standard deviation above the 

null distribution to remove weakly predicting models, and then to remove small noisy predicting 

clusters we removed all clusters of models with less than 12 models. Finally, in order to only assess 

datasets that were reliable predictors of the outcome variable, we applied a threshold that the 

clusters in each dataset must cover at least 2% of the total model space for the clusters to be 

investigated further. We performed cluster correction to not only assess the relative predictive 

accuracy and reliability of each dataset across a range of models, but also to extract individual 

features that were reliably included in 90-100% of models in a given cluster, also known as 

consensus features. In this way, we extract only the features that most reliably belong to models 

that significantly predict our outcome variable. This is an important step because it allows us to 

look for common individual predictors across outcome variables. While a mass univariate analysis, 
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such as the feature ranking commonly performed in machine learning pipelines (including this 

one), detects individual variables that are each correlated with the outcome variable, it does not 

offer any information on conditional relationships between each feature and the outcome variable, 

thereby identifying mostly groups of redundant variables (Guyon 2003). By exploring the model 

space more fully, and identifying sets of consensus features that are the most reliable predictors of 

our outcome variable, we are also able to identify features that may not be good predictors on their 

own, but that reliably predict the residual variance that is left after the strongest predictors have 

been included in the model. For a review on feature selection and how redundant and superficially 

‘uninformative’ features can play an important role in predicting residual variance, see Guyon 

2003. 

 

3.2.6.3 Assessing Consensus Features 

Consensus features allow us to analyze the feature selection process and make inferences 

based on the features that are selected. We generate a cluster-level table that describes the 

consensus features found in at least 90% of the models of a given cluster (Tables 3.4 & 3.5). 

Among consensus features, some of the nodes are dramatically over-represented, suggesting that 

edges leading to these nodes may be more important for prediction than others. We term these high 

degree nodes ‘consensus hubs’. Similar to hubs in the graph theoretical sense, these consensus 

hubs have a strong influence on the rest of the consensus features.  
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Figure 3.2:  
Display of the approximate position of the nodes in 2mm MNI Template Space. SUB (Blue), CON (Green), and 
FPN (Red). From left to right- The 3 top row views are: Lateral view of Left Hemisphere, Top side view, Lateral 
View Right Hemisphere. The 3 mid row views are: Medial Left Hemisphere, Bottom side view, Medial Right 
Hemisphere, and the 2 bottom row views are: Front Side view, Back Side view 
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Figure 3.3:  
Displays the approximate position and distribution of the Default Mode Network in 2mm MNI Template Space. 
From left to right- The 3 top row views are: Lateral view of Left Hemisphere, Top side view, Lateral View Right 
Hemisphere. The 3 mid row views are: Medial Left Hemisphere, Bottom side view, Medial Right Hemisphere, and 
the 2 bottom row views are: Front Side view, Back Side view 
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Figure 3.4:  
This displays a summary of all eight networks investigated in the current study. Each rounded box corresponds to a 
single network, which are depicted in Figures 3.2 & 3.3. As shown here, relationships between single networks are 
assessed to create internetworks, which are represented by the dashed lines between rounded boxes, and the gray ovals 
label their corresponding internetwork. 
 
 
 

Game Description Source 
Supply Run 
(working memory) 

Townspeople request items that belong to a certain category. There are five objects in 
each category, which correspond to stereotypical occupations of the “Wild West.” Once 
the store is reached, the last item from each category must be selected. Difficulty level 
is manipulated by the number of requests and the number of categories. 

Updating 
WM 
(Dahlin, 
Nyberg, et 
al. 2008) 

Sentry Duty 
(working memory) 

Sentries lift their lanterns while saying a word of the phonetic alphabet. The current 
word spoken and lantern lifted is compared to the word spoken/lantern lifted n times 
previously. There may be an audio match, a visual match, an audio and visual match, or 
no match between the current sentry and the one who spoke n times ago. Difficulty is 
manipulated by how far back the comparison is (e.g., 1-back, 2-back, 3-back). 

Dual n-
back(Jaeggi 
et al. 2008; 
Redick et 
al. 2012) 

Safe Cracker 
(reasoning) 

Safe combinations are determined by completing the next item in a series. Series may 
be letter-, number-, or day/month- based, and all are governed by some pattern or rule 
that must be determined and applied to select the next item in the series. Difficulty is 
manipulated by the difficulty of the patterns and the number of problems to solve within 
the given time limit. 

Inductive 
Reasoning  
(Willis and 
Schaie 
1986)  

Table 3.1: 
Description of the three training tasks investigated in the current study. Partially reproduced from Baniqued et al. 
2015. 
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3.3 Results 

3.3.1 Predicting Training and Transfer 

We found that transfer to perceptual speed (PS), was best predicted by Pre CON, with both 

the greatest reliability across model space (Model % Sig: 15.95%), as well as the highest average 

and upper 95% confidence interval performance (Avg R2 = 9.95%; Upper 95% CI R2 = 20.52%). 

Among the Change networks, PS was best predicted by the SUBxCON network, showing high 

reliability across model space (Model % Sig: 10.66%) and high predictive accuracy (Avg R2 = 

12.04%; Upper 95% CI R2 = 21.45%). The importance of the CON network for PS was also 

evidenced by the fact that the majority of networks significantly predictive of PS contained the 

nodes of the CON. Transfer to fluid intelligence reaction time (GFRT), was significantly predicted 

by clusters in a large number of networks, but the Pre DMNxFPN was the most accurate predictor 

of GFRT (Model % Sig: 3.59%; Avg R2 = 12.03%; Upper 95% CI R2 = 24.28%), and the SUB 

was the most reliable predictor (Model % Sig: 12.04%), but with relatively poorer model accuracy 

(Avg R2 = 8.79%; Upper 95% CI R2 = 14.32%).  Among the Change networks, GFRT was best 

predicted by the Change SUBxCON and SUBxFPN networks, which both showed comparably 

high model reliability and accuracy (Table 3.3). Transfer to working memory (WM), was 

significantly predicted in a large number of networks, but the most predictive network was the Pre 

SUBxFPN, which demonstrated superior reliability and model accuracy (Model % Sig: 16.82%; 

Avg R2 = 12.01%; Upper 95% CI R2 = 25.24%). Among the change networks, WM was also very 

clearly predicted most successfully by the change in DMNxFPN network, which was both a 

reliable and accurate predictor of transfer (Model % Sig: 7.58%; Avg R2 = 10.30%; Upper 95% 

CI R2 = 16.13%). The DMN connectivity seemed to have a particularly important role for 
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predicting WM transfer, given that a majority (62.5%) of datasets predictive of WM contained 

DMN nodes. 

The training gain scores to SC were predicted by almost all networks, but the Pre DMN 

was the most predictive in terms of both model reliability and accuracy (Model % Sig: 13.42%; 

Avg R2 = 6.02%; Upper 95% CI R2 = 8.81%). The Change SUBxCON was the best predictor of 

SC gain, with both high model reliability and greatest model accuracy (Model % Sig: 9.42%; Avg 

R2 = 8.96%; Upper 95% CI R2 = 13.71%). The training gain scores in SD were best predicted by 

both the Pre FPN and DMNxCON networks, with significant clusters of models covering equal 

sized portions of model space and demonstrating comparable accuracy (Table 3.2). Similarly, 

among the Change networks, there was no single dataset with superior performance, and the SUB, 

FPN, and DMNxCON networks were all about equally predictive (Table 3.3). Finally, training 

gain in SR was best predicted by the Pre SUBxCON, demonstrating high model space coverage 

and model accuracy (Model % Sig: 6.09%; Avg R2 = 9.90%; Upper 95% CI R2 = 25.20%). 

Importantly, among Change networks, the DMN was overwhelmingly the best performer in 

predictions of SR, demonstrating strong ties between training-induced changes in this network and 

gain in SR (Model % Sig: 23.30%; Avg R2 = 10.65%; Upper 95% CI R2 = 16.57%). 

 

3.3.2 Comparing Predictions with Pre and Change Networks 

Investigating how Pre networks predict training and transfer is important to gain an 

understanding of what types of pre-existing characteristics determine whether someone is likely 

to improve in a training task and transfer that learning to other domains. On the other hand, 

providing evidence for relationships between training-induced network plasticity and training gain 

and transfer allows us to gain a better understanding of the effect of the training on the brain 
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networks involved in training, and the extent to which these effects may be driving training gain 

and transfer. Investigating the overlap between networks that predict at Pre and those that predict 

with Change is critical for assessing to what extent pre-existing differences in network connectivity 

may have an influence on training-induced changes in these networks. We found a high degree of 

overlap between the networks that were predictive with the Pre training network connectivity and 

those that were predictive with Change in network connectivity. In predictions of PS transfer, both 

Pre and Change SUB, CON, FPN and SUBxCON networks were significantly predictive, and in 

predictions of GRFT, the SUB, FPN, SUBxCON, and DMNxFPN networks were all predictive of 

transfer with both Pre and Change network values. WM transfer was predicted by both Pre and 

Change SUB, DMN, SUBxFPN, and DMNxFPN networks. In predictions of SC training gain, the 

FPN, DMNxCON, and DMNxFPN networks were all predictive, and in predictions of SD training 

gain, the SUB, FPN, DMN, and DMNxCON networks were significant in both Pre and Change 

networks. Training gain in SR was predicted by both the SUB, FPN, DMN, SUBxCON, and 

DMNxCON Pre and Change networks. The overlap between the Pre and Change networks may 

also be informative in assessing how network overlap may show similarities between training gain 

and transfer. 

 

3.3.3 Comparing Predictions between Training and Transfer 

Training is thought to lead to transfer through the overlapping behavioral, cognitive, or 

neural mechanisms that are shared between the training and transfer tasks (Jonides 2004; Dahlin, 

Neely, et al. 2008; Buschkuehl and Jaeggi 2010; Klingberg 2010). To assess the extent to which 

this is the case in our dataset, we looked for predictive overlap between network predictors of 

transfer and training tasks. We found that transfer to PS and training gain in SC, SD, and SR were 
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all predicted by Pre SUB, FPN, and DMNxCON networks, while GFRT transfer and training gain 

in these three games were predicted by SUB and FPN. Transfer to WM and training gain in SC, 

SD, and SR were predicted by Pre SUB, DMN, and DMNxCON network connectivity. All three 

transfer scores, along with training gain in both SD and SR, were predicted by the Pre SUBxCON 

internetwork, and both GFRT and WM, as well as SC and SR were predicted by Pre SUBxFPN 

connectivity. In comparing predictive overlap between Change networks, we found that transfer 

to PS and WM and training gain in all three games were predicted by changes in the FPN network, 

while improvement in GFRT and training games was predicted by changes in the FPN and 

DMNxCON networks.  

In past behavioral results, we found that transfer to WM was significantly correlated with 

gain in the SC, SD, and SR tasks, but that gains in these tasks was not associated with transfer to 

either PS or GFRT (Baniqued 2015). Based on the ‘overlap’ theory of transfer, we would expect 

therefore that there are network predictors of WM that are shared with SC, SD, and SR which are 

not shared with PS and GFRT. We found that these three training tasks, as well as WM, were all 

predicted by the Pre DMN network connectivity, but the other transfer constructs, PS and GFRT, 

were not. Overall, the most reliably predictive pre-training network was the SUB network, which 

was predictive of all training and transfer scores, and is thought to be directly involved in skill 

learning. The most reliable predictor among training-induced changes in network connectivity was 

the FPN, which was predictive of all training gain and transfer scores, and is strongly involved in 

executive function (Dosenbach et al. 2008). Furthermore, prior work has implied that the FPN is 

critical for skill generalization that occurs during transfer (Zanto and Gazzaley 2013).  
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3.3.4 Consensus Features 

Applying cluster correction to model space allows us to find clusters of models that are all 

significant predictors of our outcome variable, demonstrating that the dataset in question is reliably 

informative regarding individual differences in the outcome variable. A further test of the 

reliability of this dataset pertains to the individual features identified in the model clusters. If each 

model in a significant cluster contains a largely non-overlapping set of variables, we can assume 

that this dataset may not be as reliable of a predictor than one in which the significant cluster 

contains sets of features that are included in >90% of the models in the cluster. We call these 

features that are reliable predictors across the model cluster consensus features (CFs). To extract 

CFs, we identified which features were included in all CV loops within a given point in model 

space, and then assessed the extent to which that feature was a consensus feature for all other points 

in model space within a cluster.  

A summary of the CFs can be found in Tables 3.4 and 3.5. Exploring CFs gives us a 

reduced group of networks with reliable features predictors. We found that GFRT had the largest 

set of CFs in the Pre SUBxFPN and Change DMNxFPN internetworks. While PS had the largest 

set of CFs in Pre CON, the Change DMN had a much larger group of CFs reliably predicting PS. 

WM had a large set of CFs in both the Pre and Change DMN, as well as the Change SUBxFPN 

internetwork. Both SC and SR showed similar prediction patterns in the Pre networks, with the 

DMN and DMNxCON having a large set of CF predictors. In the Change networks we see that 

SC, SR, and SD all contain their largest set of CFs in the DMNxCON internetwork.  

We compared the sets of CFs and found that while WM transfer had many shared CFs with 

SC and SR, WM and SD shared very few CFs, which is surprising given that both the SD and WM 

tasks are n-back based. We found that the Pre DMN network shared 26 CFs between SC and WM, 
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28 between SR & WM, 23 CFs between SC and SR, but only 1 between SD and WM. In the 

Change DMN, PS shared 18 CFs with SD, 20 CFs with SR, and SR & SD shared 31 CFs, but PS 

did note share any CFs with SC. Furthermore, we also found that the Pre DMNxCON network 

shared 11 CFs between SC and WM, 9 CFs between SR and WM, and 55 CFs between SC and 

SR, but no CFs between SD and WM. We also found some overlap between transfer to GFRT and 

the training gain scores in the Change DMNxCON network, for example 5 between GFRT and 

SC, 9 between GFRT and SR, 3 between GFRT and SD, and 31 SR and SD. We found that the 

training gain in SC and SD had 54 overlapping CFs, SC and SR 17, and SD and SR had 8 

overlapping CFs. 

 

3.3.5 Consensus Hubs 

In a functional connectivity matrix, the strength of each edge represents the variance shared 

by the timecourses in two nodes. We propose that if many edges that are CFs emanate from the 

same node, this node’s position within the functional network may play a particularly important 

role in the prediction, and we call these nodes consensus hubs (CHs). Therefore, following the 

identification of CFs, we found network nodes that were included in either more than 10 CFs. For 

networks with less of CFs, nodes present in over 40% of the CFs were deemed CHs. We present a 

summary of all the CHs found in both the Pre and Change network analyses in Tables 3.6 & 3.7, 

and we display the percentage of CFs emanating from that node that were negatively correlated 

with the predicted score over the total number of CFs present in that node. We found a majority of 

the Pre network CHs were nodes in the DMN and CON networks, and that these CHs were 

predominantly informative of training gain in SC and SR. In the Change network CHs, the DMN 
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and CON networks had an even larger majority, but unlike Pre, these CHs were evenly distributed 

among each of the training scores.  

 We found considerable overlap in the consensus hubs that were predictive in the PS and 

training gain scores. We found that the five consensus hubs where pre-training connectivity was 

predictive of PS were also predictive of training gain in SC, SR, or SD. It is worth noting that these 

consensus hubs most often played roles in different networks. For example, both the connectivity 

of the insula and superior frontal gyrus were predictive within the CON for PS, but these same 

regions were consensus hubs in the DMNxCON network for SC. It is also important to note that 

some of these consensus hubs had opposing correlations with their predictor variable. For example, 

while 88.9% of the CFs that make up the superior frontal gyrus consensus hub were negatively 

correlated with PS, 90.9% of the CFs for this hub in the DMNxCON were positively correlated 

with SC. We also found consensus hubs where change in that node’s connectivity was commonly 

found in the CFs across multiple networks. Predictions from the Change DMN identified the 

middle temporal gyrus and temporal pole as both predictive of PS and SD, suggesting that the 

training may have had a common impact on these regions to drive gains in both PS and SD. The 

right insula connectivity in the Pre CON and Pre DMNxCON networks was predictive of GFRT 

transfer and SC gain respective 
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Outcome Pre Network 
Total 
Model 
Space 

Cluster 
Model Space 

Model 
Average R2 

Model 
Upper 95% 

R2 

Null 
Average R2 

Null Upper 
95% R2 

GFRT SUB 12.04% 5.81% 8.79% 14.32% 0.13% 0.30% 
  CON 5.56% 2.87% 6.64% 11.35% 0.07% 0.26% 
  FPN 3.49% 3.49% 7.18% 12.10% 0.20% 0.40% 
  DMN - - - - - - 
  SUBxCON 6.09% 3.41% 5.64% 11.18% 0.05% 0.13% 
  SUBxFPN 9.13% 5.31% 5.60% 11.41% 0.03% 0.08% 
  DMNxCON - - - - - - 
  DMNxFPN 3.59% 3.59% 12.03% 24.28% 0.02% 0.07% 
         

PS SUB 2.80% 2.80% 7.66% 12.35% 0.17% 0.44% 
  CON 15.95% 6.27% 9.95% 20.52% 0.02% 0.05% 
  FPN 13.17% 6.45% 6.34% 12.48% 0.12% 0.30% 
  DMN - - - - - - 
  SUBxCON 11.20% 8.42% 7.62% 16.50% 0.20% 0.57% 
  SUBxFPN - - - - - - 
  DMNxCON 4.50% 4.50% 2.65% 4.67% 0.01% 0.02% 
  DMNxFPN - - - - - - 
         

WM SUB 4.09% 4.09% 12.02% 22.01% 0.16% 0.50% 
  CON - - - - - - 
  FPN - - - - - - 
  DMN 7.71% 4.83% 6.56% 10.81% 0.07% 0.18% 
  SUBxCON 4.48% 2.24% 5.97% 11.25% 0.03% 0.09% 
  SUBxFPN 16.82% 9.33% 12.01% 25.24% 0.07% 0.16% 
  DMNxCON 8.42% 5.06% 5.62% 10.37% 0.01% 0.04% 
  DMNxFPN 9.59% 9.59% 7.34% 13.08% 0.07% 0.22% 
         

SC SUB 11.61% 6.88% 5.06% 10.21% 0.34% 0.72% 
  CON - - - - - - 
  FPN 12.53% 8.98% 4.40% 9.31% 0.09% 0.20% 
  DMN 13.42% 5.16% 6.02% 8.81% 0.10% 0.32% 
  SUBxCON - - - - - - 
  SUBxFPN 5.51% 3.03% 6.05% 12.01% 0.19% 0.48% 
  DMNxCON 5.50% 3.48% 5.48% 7.94% 0.02% 0.05% 
  DMNxFPN 3.35% 3.35% 4.58% 7.61% 0.02% 0.06% 
         

SD SUB 2.15% 2.15% 3.88% 6.94% 0.04% 0.13% 
  CON 6.27% 3.94% 2.86% 5.43% 0.03% 0.07% 
  FPN 7.85% 7.85% 6.99% 14.74% 0.10% 0.24% 
  DMN 2.41% 2.41% 3.54% 6.37% 0.07% 0.24% 
  SUBxCON 2.51% 2.51% 4.14% 8.47% 0.06% 0.17% 
  SUBxFPN - - - - - - 
  DMNxCON 5.68% 3.09% 7.92% 14.68% 0.07% 0.23% 
  DMNxFPN - - - - - - 
         

SR SUB 6.02% 6.02% 3.94% 8.32% 0.01% 0.05% 
  CON - - - - - - 
  FPN 6.13% 6.13% 3.75% 7.83% 0.09% 0.30% 
  DMN 2.89% 2.89% 6.55% 10.29% 0.01% 0.02% 
  SUBxCON 6.09% 3.41% 9.90% 25.20% 0.05% 0.17% 
  SUBxFPN 3.77% 3.77% 1.88% 4.09% 0.04% 0.12% 
  DMNxCON 2.23% 2.23% 4.94% 8.23% 0.03% 0.09% 
  DMNxFPN - - - - - - 

 
Table 3.2: This table summarizes the performance of the Pre network datasets in predictions of each training gain and transfer score (Column 1- 
‘Outcome’ Training gain/Transfer Score, Column 2- ‘Pre Network’ Dataset). The third column, ‘Total Model Space’, displays the percentage of 
model space that is populated by all clusters of models that significantly predict the outcome variable, and the fourth column, ‘Cluster Model 
Space’, shows the percentage of model space covered by the largest cluster. The fifth column, ‘Model Average R2’, shows the average percentage 
of out-of-sample variance in the outcome variable that is predicted by the largest cluster, which should be compared to column seven, ‘Null Average 
R2’, which shows the out of sample variance predicted by the null models over the same area in model space. Column six, ‘Model Upper 95% R2’, 
displays the upper 95% confidence interval of percentage of out-of-sample variance predicted by the cluster, and this should be compared to column 
eight, ‘Null Upper 95% R2’, which contains the upper 95% confidence interval for the null models. Outcome and dataset abbreviations follow the 
convention of the text. Scores: GFRT- fluid intelligence reaction time, PS- perceptual speed, WM- working memory, SC- Safe Cracker, SD- Sentry 
Duty, SR- Supply Run. Datasets: SUB- subcortical, CON- cingulo-opercular network, FPN- frontal-parietal network, DMN- default mode network, 
SUBxCON- subcortical and cingulo-opercular internetwork, SUBxFPN- subcortical and frontal-parietal internetwork, DMNxCON- default mode 
and cingulo-opercular internetwork, DMNxFPN- default mode and frontal-parietal internetwork.  
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Outcome Change 
Network 

Total Model 
Space 

Cluster 
Model 
Space 

Model 
Average R2 

Model 
Upper 95% 

R2 

Null 
Average R2 

Null Upper 
95% R2 

GFRT SUB 4.09% 4.09% 6.10% 12.65% 0.08% 0.21% 
  CON - - - - - - 
  FPN 7.53% 7.53% 4.39% 10.05% 0.08% 0.25% 
  DMN 9.88% 9.88% 3.14% 5.93% 0.08% 0.23% 
  SUBxCON 5.65% 3.23% 7.74% 15.12% 0.08% 0.24% 
  SUBxFPN 6.40% 3.97% 7.39% 11.81% 0.04% 0.12% 
  DMNxCON 8.80% 4.62% 5.69% 11.47% 0.02% 0.06% 
  DMNxFPN 5.36% 3.31% 5.23% 8.72% 0.08% 0.31% 
         
PS SUB 6.88% 4.30% 3.97% 8.06% 0.03% 0.07% 
  CON 4.12% 4.12% 9.66% 18.38% 0.12% 0.36% 
  FPN 5.27% 5.27% 7.37% 13.93% 0.18% 0.34% 
  DMN 12.15% 8.61% 4.74% 10.39% 0.05% 0.10% 
  SUBxCON 10.66% 7.08% 12.04% 21.45% 0.05% 0.17% 
  SUBxFPN - - - - - - 
  DMNxCON - - - - - - 
  DMNxFPN - - - - - - 
         
WM SUB 3.66% 3.66% 5.54% 11.75% 0.03% 0.12% 
  CON - - - - - - 
  FPN 3.12% 3.12% 4.35% 8.60% 0.17% 0.51% 
  DMN 6.61% 4.22% 6.10% 9.00% 0.01% 0.03% 
  SUBxCON - - - - - - 
  SUBxFPN 4.57% 2.48% 5.07% 12.28% 0.07% 0.14% 
  DMNxCON - - - - - - 
  DMNxFPN 7.58% 7.58% 10.30% 16.13% 0.01% 0.05% 
         
SC SUB - - - - - - 
  CON - - - - - - 
  FPN 3.28% 3.28% 8.17% 12.14% 0.04% 0.11% 
  DMN - - - - - - 
  SUBxCON 7.26% 5.11% 8.96% 13.71% 0.02% 0.07% 
  SUBxFPN - - - - - - 
  DMNxCON 9.42% 7.41% 2.87% 6.67% 0.02% 0.06% 
  DMNxFPN 3.59% 3.59% 6.73% 10.09% 0.01% 0.06% 
         
SD SUB 6.88% 6.88% 9.17% 14.59% 0.07% 0.18% 
  CON - - - - - - 
  FPN 8.71% 8.71% 6.75% 12.89% 0.07% 0.20% 
  DMN 3.12% 3.12% 8.35% 18.26% 0.03% 0.08% 
  SUBxCON - - - - - - 
  SUBxFPN - - - - - - 
  DMNxCON 7.59% 5.00% 6.88% 14.00% 0.04% 0.14% 
  DMNxFPN - - - - - - 
         
SR SUB 4.95% 4.95% 4.47% 8.82% 0.08% 0.20% 
  CON 7.89% 2.69% 8.63% 20.15% 0.05% 0.14% 
  FPN 2.15% 2.15% 9.92% 14.64% 0.14% 0.31% 
  DMN 23.30% 18.15% 10.65% 16.57% 0.04% 0.15% 
  SUBxCON 9.95% 9.95% 6.42% 12.27% 0.07% 0.26% 
  SUBxFPN - - - - - - 
  DMNxCON 2.95% 2.95% 6.37% 10.37% 0.11% 0.25% 
  DMNxFPN 3.24% 3.24% 4.48% 8.35% 0.03% 0.05% 

 
Table 3.3: This table summarizes the performance of the Change network datasets in predictions of each training gain and transfer score (Column 
1- ‘Outcome’ Training gain/Transfer Score, Column 2- ‘Pre Network’ Dataset). The third column, ‘Total Model Space’, displays the percentage of 
model space that is populated by all clusters of models that significantly predict the outcome variable, and the fourth column, ‘Cluster Model 
Space’, shows the percentage of model space covered by the largest cluster. The fifth column, ‘Model Average R2’, shows the average percentage 
of out-of-sample variance in the outcome variable that is predicted by the largest cluster, which should be compared to column seven, ‘Null Average 
R2’, which shows the out of sample variance predicted by the null models over the same area in model space. Column six, ‘Model Upper 95% R2’, 
displays the upper 95% confidence interval of percentage of out-of-sample variance predicted by the cluster, and this should be compared to column 
eight, ‘Null Upper 95% R2’, which contains the upper 95% confidence interval for the null models. Outcome and dataset abbreviations follow the 
convention of the text. Scores: GFRT- fluid intelligence reaction time, PS- perceptual speed, WM- working memory, SC- Safe Cracker, SD- Sentry 
Duty, SR- Supply Run. Datasets: SUB- subcortical, CON- cingulo-opercular network, FPN- frontal-parietal network, DMN- default mode network, 
SUBxCON- subcortical and cingulo-opercular internetwork, SUBxFPN- subcortical and frontal-parietal internetwork, DMNxCON- default mode 
and cingulo-opercular internetwork, DMNxFPN- default mode and frontal-parietal internetwork.   
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Network- Pre GFRT PS WM SC SD SR 
SUB-# CFs 2 5 1 1, 15 9 1 
SUB-Consensus Hubs 0 0 0 1 1 0 
CON-# CFs 1, 8 5, 6, 26 - - 0 - 
CON-Consensus Hubs 1 2 - - 0 - 
FPN-# CFs 2 5, 15, 1  - 2, 22 4 0 
FPN-Consensus Hubs 0 1 - 1 0 0 
DMN-# CFs - - 24, 120 4, 142, 66 3 130 
DMN-Consensus Hubs - - 4 4 0 6 
SUBxCON-# CFs 5 7 0 - 0 15, 14 
SUBxCON-Consensus Hubs 0 1 0 - 0 1 
SUBxFPN-# CFs 5, 13 - 1, 1 40 - 27 
SUBxFPN-Consensus Hubs 1 -   0 - 0 
DMNxCON-# CFs - 7 27, 26 58, 155 1 190 
DMNxCON-Consensus 
Hubs - 1 0 6 0 8 

DMNxFPN-# CFs 11 - 4 23 - - 
DMNxFPN-Consensus Hubs 0 - 0 0 - - 

 
 

Table 3.4: This summarizes, in alternating order, the number of consensus features found across each analysis, 
and the number of consensus hubs found within those consensus features for all Pre datasets. Rows labeled ‘# 
CFs’ display the number of consensus features in each cluster. Rows labeled ‘Consensus Hubs’ display the 
number of consensus hubs the overall analysis. Cells marked with a ‘-‘ were analyses for which the dataset did 
not successfully predict the outcome variable, and those marked with ‘0’ are analyses that did not contain any 
consensus features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



81	
	

Network- Change GFRT PS WM SC SD SR 
SUB-# CFs 1, 1 1, 1 3 - 0 4 
SUB-Consensus Hubs 0 0 0 - 0 0 
CON-# CFs - 8 - - - 10, 11, 5 
CON-Consensus Hubs - 1 - - - 0 
FPN-# CFs 1 4 0 40 1 6 
FPN-Consensus Hubs 0 0 0 1 0 0 
DMN-# CFs 0 3, 177 0, 22 0 158 143, 74 
DMN-Consensus Hubs 0 13 0 0 12 7 
SUBxCON-# CFs 7, 2 3, 2 0 3, 9 0 0 
SUBxCON-Consensus 
Hubs 0 0 0 0 0 0 

SUBxFPN-# CFs 12 0 2, 38 0 0 0 
SUBxFPN-Consensus 
Hubs 0 0 3 0 0 0 

DMNxCON-# CFs 29 0 0 2, 151 208  70 
DMNxCON-Consensus 
Hubs 2 0 0 8 14 2 

DMNxFPN-# 0, 208 0 1 62 0 7 
DMNxFPN-Consensus 
Hubs 10 0 0 0 0 0 

 
Table 3.5: This summarizes, in alternating order, the number of consensus features found across each analysis, 
and the number of consensus hubs found within those consensus features for all Change datasets. Cells marked 
with a ‘-‘ were analyses for which the dataset did not successfully predict the outcome variable, and those marked 
with ‘0’ are analyses that did not contain any consensus features. 
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Network- Pre  Score Degree Node # Region % Neg. Corr 
SUB SC 7 Node #233 Right Pallidum        57.1% 
 SD 7 Node #230 Right Putamen        85.7% 
CON GFRT 4 Node #60 Right Insular Cortex       100% 
 PS 4 Node #52 Right Insular Cortex       100% 
 PS 9 Node #49 Right Superior Frontal Gyrus      88.9% 
FPN PS 6 Node #195 Left Angular Gyrus       100% 
 SC 6 Node #175 Right Middle Frontal Gyrus      66.7% 
DMN WM 12 Node #120 Left Middle Temporal Gyrus      75.0% 
 WM 13 Node #105 Right Paracingulate Gyrus       23.1% 
 WM 11 Node #118 Left Middle Temporal Gyrus      45.5% 
 WM 12 Node #75 Right Frontal Pole       8.3% 
 SC 11 Node #74 Left Lateral Occipital Cortex      0.0% 
 SC 10 Node #89 Right Precuneous Cortex       20.0% 
 SC 10 Node #96 Right Lateral Occipital Cortex      60.0% 

 SC 11 Node #117 Left Middle Temporal Gyrus      9.1% 

 SR 11 Node #109 Left Paracingulate Gyrus      27.2% 

 SR 14 Node #105 Right Paracingulate Gyrus       0.0% 

 SR 17 Node #121 Right Superior Frontal Gyrus      100% 

 SR 11 Node #104 Left Frontal Pole        0.0% 

 SR 13 Node #116 Right Middle Temporal Gyrus      0.0% 

 SR 15 Node #129 Left Middle Temporal Gyrus       0.0% 
SUBxCON PS 6 Node #53 Right Superior Frontal Gyrus      100% 
 SR 4 Node #223 Left Thalamus        100% 
SUBxFPN GFRT 6 Node #202 Left Paracingulate Gyrus       16.7% 
DMNxCON PS 3 Node #56 Right Central Opercular Cortex      33.3% 
 SC 13 Node #60 Right Insular Cortex      61.5% 

 SC 10 Node #58 Left Central Opercular Cortex 20.0% 

 SC 13 Node #55 Left Central Opercular Cortex 15.4% 

 SC 11 Node #48 Right Ant. Supramarginal Gyrus 27.3% 

 SC 11 Node #49 Right Superior Frontal Gyrus 9.1% 

 SC 11 Node #52 Right Insular Cortex      63.6% 

 SR 16 Node #52 Right Insular Cortex       12.5% 

 SR 22 Node #53 Right Superior Frontal Gyrus      18.2% 

 SR 21 Node #54 Right Juxt. Lobule Cortex      9.5% 

 SR 15 Node #55 Left Central Opercular Cortex      53.3% 

 SR 16 Node #56 Right Central Opercular Cortex      68.8% 

 SR 20 Node #57 Left Insular Cortex       40.0% 

 SR 12 Node #59 Left Cingulate Gyrus       58.3% 

 SR 10 Node #60 Right Insular Cortex       30.0% 

 
Table 3.6: 
This table displays all consensus hubs (CHs) in each analysis. The first column, ‘Network-Pre’, displays the name of 
the corresponding Pre network of the CH, and the second column, ‘Score’, shows the score predicted. The third 
column, ‘Degree’, corresponds to the number of consensus features emanating from the CH. Column four and five, 
‘Node #’ and ‘Region’, give the node number and anatomical label from the Power et al. 2011 functional network 
parcellation. The sixth column, ‘% Neg. Corr’, shows the percentage of edges emanating from the CH that are 
negatively correlated with the score variable in column 2.  
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Network-
Change 

Score Degree Node # Region % Neg. Corr 

CON  PS 4 Node #57  Left Insular Cortex  75.0% 
FPN SC 11 Node #181 Right Frontal Pole  36.4% 
DMN PS 11 Node #75 Right Frontal Pole  58.3% 
 PS 14 Node #78 Left Frontal Pole  85.7% 

 PS 15 Node #86 Left Lateral Occipital Cortex 46.7% 

 PS 16 Node #89 Right Precuneous Cortex  50.0% 

 PS 14 Node #91 Left Cingulate Gyrus  78.6% 

 PS 11 Node #92 Right Cingulate Gyrus  81.2% 

 PS 11 Node #98 Left Superior Frontal Gyrus 90.1% 

 PS 14 Node #114 Left Frontal Pole  57.1% 

 PS 11 Node #116 Right Middle Temporal Gyrus 72.7% 

 PS 10 Node #118 Middle Temporal Gyrus  90% 

 PS 13 Node #124 Left Lingual Gyrus  76.9% 

 PS 16 Node #125 Right Parahippocampal Gyrus  31.3% 

 PS 10 Node #128 Right Temporal Pole  60.0% 

 SD 10 Node #81 Left Temporal Pole  100% 

 SD 11 Node #92 Right Cingulate Gyrus  100% 

 SD 14 Node #101 Right Frontal Pole  100% 

 SD 11 Node #102 Right Frontal Pole  100% 

 SD 18 Node #104 Left Frontal Pole  100% 

 SD 11 Node #107 Left Paracingulate Gyrus  100% 

 SD 10 Node #116 Right Middle Temporal Gyrus 100% 

 SD 15 Node #122 Right Cingulate Gyrus  100% 

 SD 15 Node #126 Left Temporal Fusiform Cortex 100% 

 SD 13 Node #128 Right Temporal Pole  100% 

 SD 14 Node #129 Left Middle Temporal Gyrus 100% 

 SD 12 Node #130 Right Angular Gyrus  100% 

 SR 15 Node #121 Right Superior Frontal Gyrus 6.7% 

 SR 14 Node #98 Left Superior Frontal Gyrus 50.0% 

 SR 13 Node #83 Left Middle Temporal Gyrus 69.2% 

 SR 12 Node #123 Right Superior Temporal Gyrus 91.7% 

 SR 12 Node #125 Right Parahippocampal Gyrus  75.0% 

 SR 13 Node #116 Right Middle Temporal Gyrus 100% 

 SR 10 Node #105 Right Paracingulate Gyrus  100% 

SUBxFPN WM 7 Node #226 Left Brain-Stem   71.4% 
 WM 8 Node #227 Left Putamen   50.0% 

 WM 5 Node #179 Right Inferior Temporal Gyrus 100% 

DMNxCON GFRT 6 Node #48 Right Supramarginal Gyrus  50.0% 
 GFRT 6 Node #51 Left Juxt Lobule Cortex 16.7% 

 SC 33 Node #53 Right Superior Frontal Gyrus 75.8% 

 SC 29 Node #57 Left Insular Cortex  82.8% 

 SC 15 Node #49 Right Superior Frontal Gyrus 86.7% 

 SC 15 Node #50 Left Superior Frontal Gyrus 100% 

 SC 15 Node #55 Left Central Opercular Cortex 93.3% 

 SC 12 Node #113 Left Anterior Cingulate Cortex 100% 

 SC 11 Node #59 Left Anterior Cingulate Cortex 81.2% 

 SC 10 Node #60 Right Insular Cortex 90.0% 

Table 3.7      
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Table 3.7 
(cont.): 

This table displays all consensus hubs (CHs) in each analysis. The first column, ‘Network-Change’,  displays the name 
of the corresponding Change network of the CH, and the second column, ‘Score’, shows the score predicted. The third 
column, ‘Degree’, corresponds to the number of consensus features emanating from the CH. Column four and five, 
‘Node #’ and ‘Region’, give the node number and anatomical label from the Power et al. 2011 functional network 
parcellation. The sixth column, ‘% Neg. Corr’, shows the percentage of edges emanating from the CH that are 
negatively correlated with the score variable in column 2. 
 
 
 
 
 

 

 

 

 

 
 
 

 

 SD 18 Node #51 Left Juxt Lobule Cortex 94.4% 
 

 SD 14 Node #52 Right Insular Cortex  100% 

 SD 12 Node #54 Right Juxt Lobule Cortex 100% 

 SD 12 Node #55 Left Central Opercular Cortex 100% 

 SD 11 Node #56 Right Central Opercular Cortex 100% 

 SD 16 Node #57 Left Insular Cortex  93.8% 

 SD 24 Node #58 Left Central Opercular Cortex 100% 

 SD 22 Node #59 Left Cingulate Gyrus  95.5% 

 SD 15 Node #60 Right Insular Cortex  100% 

 SD 12 Node #99 Left Superior Frontal Gyrus 100% 

 SD 11 Node #109 Left Paracingulate Gyrus  100% 

 SD 11 Node #110 Right Paracingulate Gyrus  100% 

 SD 13 Node #111 Left Anterior Cingulate Gyrus  100% 

 SD 12 Node #113 Left Anterior Cingulate Gyrus  100% 

 SR 14 Node #50 Left Superior Frontal Gyrus 100% 

 SR 13 Node #57 Left Insular Cortex 76.9% 

DMNxFPN GFRT 24 Node #197 Left Frontal Pole  8.3% 
 GFRT 20 Node #180 Right Frontal Pole  20.0% 

 GFRT 14 Node #187 Left Middle Frontal gyrus 28.6% 

 GFRT 13 Node #188 Left Frontal Pole  38.5% 

 GFRT 11 Node #189 Right Frontal Pole  45.5% 

 GFRT 10 Node #104 Left Frontal Pole  10.0% 

 GFRT 10 Node #123 Right Superior Temporal Gyrus 50.0% 

 GFRT 10 Node #181 Right Frontal Pole  40.0% 

 GFRT 10 Node #196 Right Middle Frontal Gyrus 50.0% 

 GFRT 10 Node #202 Left Paracingulate Gyrus  10.0% 
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3.4 Discussion 

 

 Several converging sets of evidence in the current study suggest that the cingulo-opercular 

network (CON) plays a critical role not only in the acquisition of cognitive skills, but also in their 

transfer to untrained tasks. The CON plays a key role in executive function, maintaining on task 

awareness and suppressing internal off-task distractions (Dosenbach et al. 2007, 2008). 

Furthermore, while this network is largely separate from the FPN, CON plays an important role in 

the flexible control of goal directed behavior through stable task maintenance (Dosenbach et al. 

2008; Zanto and Gazzaley 2013; Sestieri et al. 2014). In this way, CON provides the sustained 

attention that is critical during long and challenging cognitive training sessions. This type of 

sustained attention is not an inflexible innate ability, but rather a cognitive skill that can be 

enhanced with training (Tang et al. 2007; Tang and Posner 2009; Xue et al. 2011). 

 The development and deployment of all skills depends critically on the interaction between 

the basal ganglia and relevant cortical regions. While skill learning is thoroughly established in 

the motor learning literature (Karni et al. 1995; Driemeyer et al. 2008; Doyon et al. 2009), many 

cognitive skill training studies have been performed as well (Basak et al. 2008; Erickson et al. 

2010; Vo et al. 2011; Nikolaidis et al. 2014, 2015; Knowlton et al. 2015), and a recent quantitative 

meta analysis found remarkably similar sets of neural correlates across both motor and cognitive 

skill acquisition (Patel et al. 2013). Just as the performance and acquisition of other skills depend 

on an interaction between the basal ganglia and the relevant cortical regions, the performance and 

acquisition of sustained attention skills depend not only on the CON, but also its relationship to 

the subcortical regions (SUB). We found the SUB network was also predictive of all three transfer 

domains, suggesting that prior to learning, brain mechanisms of skill learning offer insight into 
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which individuals will show the greatest skill generalization; however, the development and 

deployment of these sustained attention skills does not rely only on the SUB network, but also on 

its relationship to CON. Critically, we found that the Pre SUBxCON internetwork was predictive 

of all transfer scores. This may suggest that the pre-training sustained attention processing was 

critical for benefiting the most from training. The importance of the pre-training connectivity of 

these two networks in generalizing training to untrained tasks suggests that there are individual 

differences in the process of skill learning that predispose trainees towards greater transfer; 

however, to address the full implications of this finding, we must also consider the role of the 

DMN in the process of training and transfer. 

From a network perspective, the CON plays an important role as the primary regulator of 

the DMN (Fox et al. 2005; Sestieri et al. 2014), which is involved in internally oriented cognition 

and distraction (Buckner 2012). It is important to note that the current analyses were performed 

during resting state, in which the DMN should be prominent. During resting state, activity in the 

DMN rises and activity in its anti-correlated networks, such as the FPN and CON, are suppressed. 

Previous studies found that DMN abnormalities are associated with many disorders, such as autism 

(Kennedy et al. 2006), Alzheimer’s Disease (Greicius et al. 2004; Buckner et al. 2005; Brier et al. 

2012), schizophrenia (Liang et al. 2006), and attention deficit hyperactivity disorder (Tian et al. 

2006). The role of the DMN in these disorders is specifically manifested as decreased attention 

and executive function due primarily to the decreased coordination between the DMN and its anti-

networks (Uddin et al. 2009). Direct evidence of the relationship between these networks and 

cognition has demonstrated that individual differences in the variability of the negative correlation 

between DMN and task positive attentional networks, such as the CON, were predictive of 

individual differences in behavioral variability in executive attention as well (Kelly et al. 2008). 
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This suggests that behavioral performance is mediated by the relationship between the CON and 

DMN networks.  

In the current work, we found that pre-training DMN connectivity was predictive of 

transfer to WM, and training gain in SC, SD, and SR, but was not predictive of transfer to PS or 

GFRT. WM transfer relies on the quick and accurate storage and maintenance of information, and 

individual differences in DMN connectivity are likely to be critical for both WM training and 

transfer because internally oriented thinking could be particularly disruptive for WM storage. The 

ability to both learn training tasks that rely on working memory and to generalize those skills to 

WM may depend on the DMN not playing a suppressive role on WM performance during learning. 

Given that skills are acquired through the interaction of negative feedback loops between cortex 

and striatum (Hikosaka et al. 2002; Doyon et al. 2003), and that the DMN and executive regions 

are anti-correlated, the DMN could also play an obstructive role in learning by prohibiting 

feedback from relevant cortical regions to the striatum. This notion is further supported by our 

findings that SR, the training task most dependent on accurate storage of information and thus 

most likely to be disrupted by DMN processing, showed strong relationships between consensus 

hub connectivity and training gain, with each CH demonstrating either 100% positive or negative 

correlations with SR gain. CHs in the Pre DMN were uniquely present in predictions of WM, SC, 

and SR, and Change DMN CHs were all 100% negatively associated with training gain in SD, 

supporting the notion that DMN connectivity may play a role in obstructing working memory 

training. Finally, we found that a very large group of CHs in the Change DMNxCON internetwork, 

and the greater decreases in connectivity of these CON regions were all associated with greater 

improvements in SC and SD. These results provide evidence that training-induced plasticity in the 
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DMN and its relationship with the CON, the DMN’s regulator network, are important contributors 

to successful training and transfer. 

The compilation of results from the SUB, CON, and DMN networks suggest that the 

regulation of distraction and the development and deployment of sustained attention plays a critical 

role for not only skill learning but also for skill generalization. One prominent theory in this 

domain is that attention processes and their associated brain regions provide a “scaffold” by which 

other cognitive processes are able to perform the task at hand and unitize the skill based stimulus 

response associations required for task performance (Petersen et al. 1998). In this way, the 

acquisition of skills depends critically on the deployment of sustained attention, and the current 

results suggest that skill generalization may depend on this ability as well. Sustained attention need 

not necessarily play a direct role in transfer, but rather may aid in generalization through improving 

the learning process. For example, previous cognitive training studies have demonstrated the 

importance of non-specific training that maximizes user engagement (Green and Bavelier 2003; 

Dye et al. 2009b), and highly engaging learning tasks are thought to offer superior learning 

opportunities as well (Kirriemuir and McFarlane 2003). Given the impact of these engaging states 

on learning, it is possible that sustained attention skills impact training gain and generalization 

through the regulation of the default mode network and subsequent facilitation of flow states 

during learning.  

Based on previous work, we might have expected that the FPN would play the most critical 

role in the acquisition and transfer of skills. The FPN is thought to be the network most critical for 

the processing of intelligence (Jung and Haier 2007), and the interaction of regions in the FPN, 

such as the superior parietal lobe and dorsal lateral prefrontal cortex, is critical for processing WM 

as well (Koenigs et al. 2009; Andrews et al. 2011; Beatty et al. 2015). Given that the FPN is known 
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to be critical for many of the executive functions performed in the training here, and some have 

suggested it plays a particularly important role in the transfer of training (Zanto and Gazzaley 

2013), we thought that the FPN may play a key role not only in the acquisition of the training tasks 

but also in transfer to WM and GFRT. While we found that the Pre FPN was a reliably strong 

predictor of each of the three training tasks, surprisingly it was only a strong predictor of PS 

transfer, weakly predicting GFRT transfer and failing to predict WM transfer. Critically, Change 

FPN was the only network which significantly predicted every training and transfer score. Thus 

the beneficial impact of the intervention may have manifested most clearly in resting state changes 

to the FPN, which largely agrees with the cognitive functions targeted and improved by the 

training. Given that the Pre FPN was mostly predictive of training gain, but that Change was 

predictive of both training and transfer, changes in the FPN connectivity can be an important 

marker of intervention progress. Although the Change FPN demonstrated reliable predictive 

accuracy across all training and transfer tasks, the exceedingly low numbers of CHs and complete 

lack of shared CHs between predictions raises questions regarding its mechanistic importance in 

training and transfer.  

While the neural correlates of training and skill acquisition have been well developed, a 

similar understanding of transfer and skill generalization are not yet well established. The 

predominant theory on the neural correlates of transfer, the neural overlap hypothesis, while being 

relatively non-specific and non-mechanistic, is a good starting point and has received some 

experimental support (Dahlin, Neely, et al. 2008; Dahlin et al. 2009; Anguera et al. 2013; 

Nikolaidis et al. 2014). This theory states that the neural correlates of transfer correspond to brain 

regions or networks that are commonly recruited in both the training and transfer tasks, and that 

these correlate regions will play a role in transferring the learning from the training task to the 
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transfer domain. In the current study, several sets of results offer interesting insight into the nature 

of the neural overlap between training and transfer, and how this hypothesis is represented at 

different levels of analysis. We found considerable overlap in the predictive abilities of the pre and 

change datasets, demonstrating that for most networks in which pre-intervention connectivity was 

predictive of the behavioral effect of the training, the impact of training in those same networks 

would reflect these same learning phenomena.  

Finally, there are several important clarifications and additional considerations that must 

be discussed. First, while resting state connectivity and task based connectivity are largely 

reflections of one another (Kelly et al. 2008; Smith et al. 2009), we should be cautious when 

making extrapolations and comparisons from one to the other. In the current work we demonstrate 

that specific networks and regions play important roles in the training and transfer process, but we 

cannot strongly assert that these roles carried over into the actual performance of cognitive tasks 

or future tasks. While the current results suggest that training may have induced changes in task 

processing, we would need to acquire scans during task performance to make this specific claim; 

however, we can be confident in concluding that general pre-existing conditions of the resting 

state, and training-induced changes in this resting state are tied to learning and transfer. We argue 

that measurement is advantageous because it may reflect task independent processing and network 

relationships. Furthermore, while examining the neural correlates of training and transfer offers an 

important insight into mechanisms of these learning phenomena, it is important to remember that 

cross sectional or pre-post longitudinal analyses offer a coarse representation of the complexity of 

the neural correlates of training. The process we are attempting to characterize is highly variable, 

not only across time, but also across individuals. Each training study therefore includes individuals 

at different stages of a learning process that is not yet well characterized in time. Repeated MRI 
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over the course of learning of complex cognitive skills would be highly informative in charting 

the neural correlates of this learning process. Finally, it is important for us to express that while 

several of the results herein demonstrate the involvement of common neural mechanisms for 

training and transfer, these results do not necessitate common cognitive mechanism as well. For 

example, both visual and motor training may utilize the same attention networks, and both motor 

and attention networks may be upregulated in a motor training task.  

 
 
 
 
 
 
 
 
 
 
 
 
3.5 Conclusion 
 

We found that both pre-existing and training-induced differences in resting state 

connectivity are informative of both improvements in cognitive training games and transfer to 

underlying cognitive abilities. Our results highlight the importance of sustained attention via the 

CON in regulating the DMN, resulting in greater generalization of training to cognitive function 

through enhancing task engagement and training quality. Future attempts to unite cognitive 

training with other interventions shown to improve attention, such as exercise and meditation, may 

be especially promising in enhancing cognition. 
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Abstract:  
Cognitive training holds great potential for targeted improvement and remediation of cognitive 
ability, and while there have been many strong demonstrations of the success of these approaches, 
attempts to replicate some of these effects have failed. One necessary requirement for the 
successful and reliable application of cognitive training is the development of a mechanistic theory 
of how training drives transfer, yet this is currently not well established. Furthermore, the neural 
correlates that drive these cognitive mechanisms are even less well characterized. In the current 
study, we address both the cognitive and neural mechanisms of transfer by training 45 young adults 
with a multimodal training game that targets complimentary aspects of working memory, attention, 
and reasoning. Using both pre existing and training-induced changes in brain structure and resting 
state network connectivity, we assess the extent to which these two neuroimaging modalities 
contribute to predictions of training and transfer, and compare the reliable effects across structure 
and function. We find that transfer to working memory shares many structural and functional 
predictors with training improvement in an inductive reasoning and working memory updating 
game, but not with a working memory n-back based game, even though the transfer to working 
memory was measured with the n-back. We discuss these findings in the context of skill learning, 
skill generalization, and the neural overlap hypothesis of training and transfer. 
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4.1 Introduction 
 

The possibility of improving cognition through guided training may hold potential for 

improving quality of life for many people either afflicted with neurological or psychiatric illness, 

or healthy individuals who could benefit from improved cognitive performance. The cognitive 

training field has focused on the study and development of these training programs and many 

studies have found significant improvements in cognitive performance after training (Ball et al. 

2002; Green and Bavelier 2003; Dahlin, Neely, et al. 2008; Jaeggi et al. 2008; Dye et al. 2009; 

Thorell et al. 2009; Anguera et al. 2013; Rebok et al. 2014; Baniqued et al. 2015), but we and 

others have failed to replicate some of these effects in follow-up studies (Melby-Lervåg and Hulme 

2012; Redick et al. 2012; Shipstead et al. 2012; Oelhafen et al. 2013). A major problem facing this 

field is not only methodological constraints in the design and implementation of these studies, such 

as small sample sizes, but also in the underdeveloped theory of mechanisms by which these 

training paradigms lead to improvement in cognitive performance. The study of cognitive training 

in the context of individual differences in brain structure and function leads to important insight 

into the mechanisms by which training may impact cognition. While several studies have 

investigated the neural correlates of cognitive training and transfer (Olesen et al. 2004; Anguera 

et al. 2007, 2013; Dahlin, Neely, et al. 2008; Vo et al. 2011; Voss et al. 2011; Oelhafen et al. 2013; 

Nikolaidis et al. 2014, 2015), a comprehensive theory of the neural underpinnings of training and 

transfer has yet to become established. In contrast, the skill learning literature has established a 

deep mechanistic understanding of training in both the human and animal literature (Hikosaka et 

al. 2002; Graybiel 2005; Doyon et al. 2009; Patel et al. 2013). In order to understand how cognitive 

training leads to transfer it is critical that cognitive training is explained within the greater context 

of skill learning. In this way, an important question for cognitive training changes from how 
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training leads to transfer, to how skill acquisition leads to skill generalization. Previous work on 

establishing the relationship between skill acquisition and generalization have demonstrated that 

these phenomena are closely linked (Landauer and Bjork 1978; Bahrick 1979; Singley and 

Anderson 1989; Schmidt et al. 1992; Bjork and Linn 2006; Anguera et al. 2007; Seidler 2010), 

and modifications to training that affect acquisition can have subsequent effects of skill 

generalization as well. In order to develop a robust mechanistic theory of cognitive training and 

transfer, it is critical to establish the neural mechanisms that explain the relationship between skill 

acquisition and skill generalization. 

In order to contribute to the establishment of such a theory, we recruited 45 young adults 

who trained with Mind Frontiers, an adaptive cognitive training program that targets 

complementary aspects of executive function, attention, working memory, and reasoning 

(Baniqued et al. 2015). Participants recruited to our cognitive training study completed pre and 

post training neuropsychological testing, structural MRI and resting state fMRI, as well as 30 hours 

of cognitive training. Mind Frontiers (MF) includes a comprehensive battery of six adaptive 

cognitive tasks that have demonstrated previous success in cognitive training, and which were 

gamified and united into a common “Wild West” theme videogame. The behavioral results from 

this study have been published previously (Baniqued et al. 2015), in which we found that training 

with MF induced transfer to constructs of Perceptual Speed (PS), fluid intelligence reaction times 

(GFRT), and working memory (WM). More recently we demonstrated that individual differences 

in regional brain volumes and cortical thickness in sensory processing and attention regions predict 

both training and transfer to these constructs (Nikolaidis et al. 2016a). We have also found that 

network connectivity of the cingulo-opercular network, default mode network, and subcortical 

network are highly relevant for both training and transfer, suggesting that the deployment of higher 
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quality sustained attention may play an important role in deriving maximum benefits from training 

(Nikolaidis et al. 2016b).  

In the current study, we assess how the functional network and structural correlates of 

training gain and transfer are related. By assessing how pre-existing differences in functional and 

structural correlates of training gain and transfer are related, we gain a fuller understanding of the 

brain mechanisms by which skill acquisition and generalization are obtained. Brain structure and 

resting state networks are two highly interactive systems, with structural volume measurements 

changing due to many functional characteristics, like blood flow to a region. Most analyses have 

treated these modalities separately due to the difficulty of processing both the functional and 

structural data in a given study for one project. Structural and network topography may reflect on 

one another. Given that resting state networks are both functionally and metabolically linked over 

time and may respond in sync to external stimuli, their structural volumes may be linked as well. 

We plan on assessing both how training-induced changes in functional networks and structural 

characteristics relate to one another and to training gain and transfer. The extent to which training-

induced changes in networks and structure overlap has not been well established. It is known that 

structural regions can exhibit volumetric changes in as little as two hours of training (Kwok et al. 

2011), and this raises the important point that structural volume measurements are a combination 

of many different functionally and structurally relevant signals, such as synaptogenesis, neuronal 

swelling, dentritic arborization, and enhanced blood flow (Lövdén et al. 2013; Zatorre et al. 2013). 

It has been well established that structural regions undergo volumetric changes according to the 

partial renormalization hypothesis (Lövdén et al. 2013). This hypothesis states that with learning, 

relevant cortical regions will first undergo an expansion, which is soon to be followed by a process 

of pruning that occurs as training continues. Given the time-course of these structural changes, it 
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is likely that they may follow similar functional changes, such as expansion followed by 

winnowing of activated regions as skills are unitized and become automated. It is possible that 

training-induced changes in functional networks may be reflected in concomitant changes in 

structural regions as well, and therefore it is critical to investigate these two sets of data 

concurrently, as the reciprocal relationship between structure and function directly reflect the 

learning process.  

To assess how both pre-existing and training-induced differences in brain structure and 

functional connectivity contribute to individual differences in training gain and transfer, we apply 

common machine learning techniques to structural MRI volumes and thicknesses, as well as 

resting state network connectivity. Unlike machine learning methods, ordinary least squares (OLS) 

is likely to produce models that overfit and fail to replicate to new samples (Hastie et al. 2009). 

This is especially true in cases of collinear variables or low sample sizes, which are common 

characteristics in cognitive neuroscience. OLS optimizes the model to reduce the squared error 

term, and does not place any constraints on the models it creates to do so. To overcome these 

issues, more advanced statistical techniques such as ridge regression have been developed 

(Marquardt and Snee 1975). Ridge regression places constraints on the size of the largest model 

parameters, which prevents the model from taking strong positions on the importance of a given 

variable in predicting an outcome. This allows ridge regression to not only produce models that 

are more likely to replicate than OLS, but it also produces better results in scenarios with collinear 

models. The benefit of greater replicability is not unique to ridge regression, but common to many 

machine learning methods such as lasso, elastic net, support vector machines, and random forests 

(Hastie et al. 2009). This has led to increased use of these methods in the scientific literature, and 

more recently these methods have made their way to neuroscience as well (Hinton 2011; 
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Varoquaux and Thirion 2014). Researchers have used machine learning and neuroimaging to 

classify disease states (Shen et al. 2010; Ye et al. 2011), predict aging (Dosenbach et al. 2010; 

Meier et al. 2012), and complex skill performance and learning (Nikolaidis et al. 2015). Recently, 

we have applied such models to both structural (Nikolaidis et al. 2016a) and functional network 

characteristics (Nikolaidis et al 2016b) to predict training gain and transfer as well. In the current 

work, we attempt to consolidate these findings and explore the relationship between the two in 

depth. 

In the current study, we focus on investigating the most reliable structural and functional 

network predictors of training gain and transfer. Typically machine learning approaches optimize 

model parameters to maximize performance, but in the current study, we explore how well the 

data predict the outcome independent of model parameters, allowing us to assess the reliability of 

our predictions. We focus on the reliability of our findings in the current study by running our 

models over a wide range of model parameters, and assessing the range of models over which our 

data is predictive of our outcome variables. This allows us to define the full model space, and 

assess the extent to which small permutations in the feature set or regression method  affect the 

predictive ability of our data. Furthermore, this allows us to find clusters of models that are nearby 

in model space which are all predictive of our outcome variable. We parse these clusters looking 

for features that all significant models include as predictors of the outcome variable, called 

consensus features. We find that structural and functional predictors of transfer to working 

memory are greatly overlapping with predictors of gain in Safe Cracker, a reasoning game, and 

Supply Run, a working memory updating game, but no overlap with Sentry Duty. Given that both 

Sentry Duty and our working memory transfer tasks were based in the n-back, the neural overlap 

hypothesis would have predicted the greater similarity in predictors between Sentry Duty gain and 
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working memory transfer. We address these findings in the context of skill learning and assess 

refinements to the neural overlap hypothesis. 

 

 
4.2 Methods 

4.2.1 Participants 

 We recruited participants from the University of Illinois and surrounding community 

through flyers and online advertisements seeking participants for a “cognitive training study.” 

Online pre-screening for demographic information and videogame experience was completed over 

email. Subsequent phone screening required participants: 1) between 18 and 30 years old, 2) 75% 

right handed according to the Edinburgh Handedness Inventory, 3) normal or corrected-to-normal 

hearing and vision, 4) no major psychological or medical conditions, 5) no non-removable metal 

in the body, and 6) played no more than 5 hours of video games per week in the past six months. 

A total of 45 participants trained with Mind Frontiers and had complete behavioral and neural data. 

 

4.2.2 Study Design 

 A complete description of the study design can be found in Baniqued et al. 2015. Briefly, 

participants completed three initial cognitive testing sessions, and an MRI session before 

beginning the intervention, in which they completed four to five training sessions per week for 

four to five weeks, for a total of 20 sessions. After training, subjects returned to lab for a final MRI 

session and another round of cognitive testing.  

 Participants trained with six computerized adaptive training tasks that were selected based 

on their known psychometric properties with reasoning/Gf, working memory, visuospatial 
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reasoning, inductive reasoning, and task switching. See Table 1.1 for a description of each training 

task. 

 

4.2.3 Cognitive Assessment Protocol 

For a full listing of all neuropsychological tasks administered, see Baniqued et al. 2015. 

Here we briefly describe each of the tasks that were included to create the reasoning, working 

memory, and perceptual speed composite variables we predicted. The tests below were obtained 

from the Virginia Cognitive Aging Project Battery (Salthouse 2005), and two different versions 

were used for pre- and post-testing, with the sequence counterbalanced across subjects. 

4.2.3.1 GFRT 

The fluid intelligence reaction time (GFRT) composite was comprised of standardized reaction 
times in these four tasks. Descriptions for these and other tasks in section 2.3 are reproduced from 
Baniqued et al. 2015. 

Matrix Reasoning: Select the pattern that completes a missing space on a 3 x 3 grid. Number of 
correctly answered items is the primary measure. Reaction time on correct trials was also analyzed. 
Source: Ravens 1962; Crone et al. 2009. 

Paper Folding: Identify pattern of holes that results from a punch through folded paper. Number 
of correctly answered items is the primary measure. Reaction time on correct trials was also 
analyzed. Source:  Ekstrom et al. 1976. 
 
Spatial Relations: Identify 3D object that would match a 2D object when folded. Number of 
correctly answered items is the primary measure. Reaction time on correct trials was also analyzed. 
Source: Bennett et al. 1947. 
 
Letter Sets: Determine which letter set is different from the other four. Number of correctly 
answered items is the primary measure. Reaction time on correct trials was also analyzed. Source: 
Ekstrom et al. 1976. 

4.2.3.2 Perceptual Speed 

The Perceptual Speed (PS) composite was comprised of standardized accuracy scores in these 
three tasks. 
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Digit Symbol Substitution: Write corresponding symbol for each digit using a coding table. The 
primary measure is number of correctly answered items within two minutes. Source: Wechsler 
1997.  
 
Pattern Comparison: Determine whether pairs of line patterns are the same or different. The 
primary measure is number of correctly answered items within 30 seconds, averaged across two 
sets of problems. Source: Salthouse and Babcock 1991.  
  
Letter Comparison: Determine whether pairs of letter strings are the same or different. The primary 
measure is number of correctly answered items within 30 seconds, averaged across two sets of 
problems. Source: Salthouse and Babcock 1991.  
 

4.2.3.3 Working memory 

The Working memory (WM) N-back composite was comprised of the d’ scores of the 2-back, 3-
back, Dual 2-back, and Dual 3-back. 
 
Single N-back: Determine whether the current letter presented matches the letter presented two or 
three items back. The primary measure of d-prime was computed separately for the 2-back and 3-
back conditions. Reaction times on correct trials were also analyzed. Source: Kirchner 1958; Kane 
et al. 2007. 
 
Dual N-back (administered in the MRI): Determine whether simultaneously presented auditory 
and visual stimuli match stimuli presented one, two, or three items ago. The primary measure of 
d-prime was computed separately for the two-back and three-back conditions. Reaction times on 
correct trials were also analyzed. Source: Jaeggi et al. 2003, 2007. 

 

 
4.2.4 Behavioral Results Analysis 

 Training with Mind Frontiers produced significant gains in performance not only across all 

training tasks, but also to three cognitive constructs, working memory (WM), reasoning reaction 

time (GFRT), and perceptual speed (PS). The gain scores for the training and transfer tasks were 

calculated by taking the difference between post- and pre-test scores, and dividing by the standard 

deviation of the pre-test score. In the current study, we use these transfer scores as predictors, as 

well as training-induced gain scores from three of the training games: Supply Run (SR), Sentry 

Duty (SD), and Safe Cracker (SC). These three training games were chosen because improvement 
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during training was positively correlated with transfer to the working memory construct (Baniqued 

et al.  2015), indicating that training-induced gains in these tasks may play a role in WM transfer. 

 

4.2.5 MRI Processing and Analysis Details 

4.2.5.1 MPRAGE Acquisition Parameters 

All structural, high-resolution, T1-weighted MPRAGE images were collected on a 3 T 

Siemens Trio scanner, collected in ascending order parallel to the anterior and posterior 

commissures with the following parameters: Dataset 1: Echo time (TE) = 2.32 ms, repetition time 

(TR) = 1900 ms, field of view (FOV) = 230 mm, voxel size 0.9mm3, and flip angle = 8°. 

 

4.2.5.2 Structural MRI Preprocessing 

 All preprocessing of structural images was performed with FSL and Freesurfer. After being 

skull stripped, each structural image was linearly registered to the MNI 2mm brain template with 

12 degrees of freedom (Smith 2004). We used the Freesurfer longitudinal stream to improve the 

robustness of the longitudinal analysis of cortical volume and thickness (Fischl 2012, Jovich 2009). 

This scheme creates within-subject anatomical templates that allow for less bias of analysis 

towards a particular time point (Thomas & Baker 2013). This process has been described 

elsewhere in detail (Metzler-Baddeley 2016, Fischl 2012), but briefly, this involves Talairach 

transformation, white matter and gray matter segmentation, automated topology correction, and 

intensity normalization. After this semi-automated procedure, images are all inspected manually 

to assess performance of the Freesurfer pipeline. Cortical thickness and volumes and subcortical 

volumes were calculated using Freesurfer using the Destrieux atlas, which parcellates the cortex 

into 74 gyral-sulcal regions per hemisphere (Destrieux et al. 2010). Previous studies have explored 

the association between either cortical thickness or brain volume with learning, but the relative 
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information available in these two metrics with regards to individual differences in learning is 

poorly understood. Furthermore, contributions of subcortical and white matter volumes are rarely 

addressed in the same sample as cortical volumes and thicknesses. To address these questions, we 

used the brain volumes and cortical thickness data to create five separate datasets: Thickness, in 

which we only include the 150 cortical thickness variables; Volume, which only includes the 148 

cortical volume features; Whole Brain, which contains the Volume dataset as well as 63 additional 

subcortical, white matter, and cerebellar volumes; Thickness + Volume, which contains the 

combined Thickness and Volume datasets; Thickness + Whole Brain, which contains both the 

Thickness and Whole Brain datasets. We extracted thickness and volume data from both the pre-

training structural images (Pre), and to assess change in thickness and volume, we subtracted the 

pre thicknesses and volumes from the post data (Change). To explore differential contributions of 

variables from both the Pre and Change datasets, we predicted each of the six scores with ten 

different datasets, five Pre datasets and five Change datasets. 

 

4.2.5.3 RS Acquisition and Processing 

For all functional scans, we used an echo-planar imaging (EPI) sequence with Blood 

Oxygenation Level Dependent (BOLD) contrast (FoV Read: 220, 2.4 × 2.4 × 3.5 mm voxel size, 

TR = 2000 ms, TE = 25 ms, and flip angle = 80). BOLD repetitions: 180 volumes.  

Preprocessing of the functional data was performed with C-PAC (http://fcp-

indi.github.io/), which is an open source, configurable, and automated processing pipeline for 

resting functional MRI. This package utilizes tools from a variety of publicly available packages, 

such as FSL, AFNI, and ANTS. After being skull stripped with FSL, each structural image was 

registered to the MNI 2mm brain template and functional images were registered to the anatomical 
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image using ANTS. These transformations were combined to register the functional images to the 

MNI 2mm brain template. Slice timing and motion correction using Friston’s 24 parameter motion 

model were applied to the functional data to remove effects of motion from the dataset. To account 

for motion related artifacts further, we also performed motion scrubbing such that TRs with 

excessive motion (greater than 0.5mm frame displacement), were removed, along with 2 

subsequent TRs. We excluded subjects with less than 120 volumes. 

We performed nuisance signal regression by regressing out the mean signal of the white 

matter and CSF. We also used CompCorr, with 4 parameters, WM, CSF, and global as a method 

to remove excessive noise due to signal from the white matter, CSF, and global signal. Finally, we 

applied a temporal band pass filter from 0.01 to 0.1 Hz, and a spatial smoothing kernel of 6mm 

FWHM. 

 

4.2.5.4 Connectivity 

We chose the nodes for the default mode (DMN), frontal parietal (FPN), cingulo-opercular 

(CON), and subcortical (SUB) networks from the Petersen 264 node network atlas (Power et al. 

2011). The CON contained nodes in the supramarginal gyrus, superior frontal gyrus, insular cortex, 

central opercular cortex, cingulate gyrus, and paracingulate gyrus. The DMN was made up of 

nodes in the frontal pole, middle frontal gyrus, PCC, lateral occipital cortex, temporal pole, 

precuneous, superior lateral occipital cortex, middle temporal gyrus, and angular gyrus. The FPN 

contained nodes in precentral gyrus, middle frontal gyrus, posterior supramarginal gyrus, inferior 

temporal gyrus, frontal pole, superior parietal lobe, and superior lateral occipital cortex. The SUB 

network contained nodes in the thalamus, brain stem, putamen, and pallidum. For a full listing of 

network regions and their anatomical assignments, see Power et al. 2011. 



109	
	

To create the internetworks, we assessed only the connections between each of the 

networks and excluded all within network connections. For example, for the SUBxFPN network, 

we exclusively extracted correlations between the SUB and FPN, and excluded all intranetwork 

connections. To extract and process each network’s connectivity information, we calculated node-

averaged timecourses within each subject’s network of interest and we used these timecourses to 

create correlation matrices that would become features for our machine learning pipeline.  

 

4.2.5.5 Structural and Resting State Network Overlap. 

The structural and functional data in our sample were transformed to two different atlases, 

each with a corresponding standard space. We used correspondence between the regional labeling 

of the two atlases, the Harvard-Oxford cortical atlas locations and labeling, and visual inspection 

of both atlas maps to identify whether a given structural region corresponded to the same region 

in a given network from Power et al. 2011. Power et al.’s resting state atlas was computed at the 

voxel level (Figure 4.4), and clustering was applied to every voxel depending on its global 

connectivity pattern. The clustering that emerged matched the node clustering that was applied as 

well, demonstrating the strength of reliability of these functional connectivity networks. 

Furthermore, given that these networks were computed at both the voxel and nodal level, we can 

be confident that structural regions that correspond to a given functional atlas region will play a 

role in that same resting state network. This is the basis upon which we can compare the structural 

and resting state network results in the current work. 
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Figure 4.1:  
This figure provides a visual flowchart of the methods used in the current work. Analysis begins with the structural 
features extracted from Freesurfer, or the resting state connectivity features (1), and then it continues through model 
building (2A), cross validation (2A), and repeating our analysis across feature and lambda space (2B). Finally, we 
create the null model distribution by shuffling the Y labels (3), and we assess the difference between the model space 
and the null model space in the form of a Z-map (4). We apply a cluster correction to this Z map and extract consensus 
features (4).  
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4.2.6 Machine Learning Methods 

4.2.6.1 Predicting training gain and transfer 

To make our predictions we used either pre-training or pre-post differences in cortical 

thicknesses, brain volumes, or resting state connectivity. We used Sci-Kit Learn to perform ridge 

regression (Figure 4.1: Section 1)(Buitinck et al. 2013). While this algorithm does not achieve 

predictive accuracies as high as other more advanced methods, such as random forests and support 

vector machines (SVMs), ridge regression offers an important advantage in terms of ease of 

interpretability and comparability to GLMs (Kotsiantis, Zaharakis, & Pintelas, 2007). 

Over each leave-one-subject-out cross-validation (LOSO-CV) loop, we trained models of 

a range of sizes, and we used these models to predict scores of the left-out subject (Figure 4.1: 

Section 2A). Within each cross validation loop, we ranked all features in the training group by 

absolute correlation strength. We created feature sets of the top 1 to n features, by groups of 5 to 

save processing time, and predicted each left out subject using each of these feature sets. We 

calculated R2 values by squaring the correlation of predicted and actual score values. 

In order to assess the true predictive accuracy and overfitting in our models, we created a 

distribution of null models (Figure 4.1: Section 3). To create these null models, we randomized 

the score values for the subjects, and repeated the procedure outlined above to predict these values. 

We repeated this procedure 20 times to create a distribution of null models. The performance 

accuracy of our models were compared to the mean performance of our null models. 

  

4.2.6.2 Assessing Reliability of Prediction 

Rather than using cross validation to select an optimal lambda value for each model, we 

repeated our predictions and null model testing at a range of lambda values (Figure 4.1: Section 
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2B). While computationally intensive, this method allows us to more fully explore the space of 

possible models, extract clusters of predictive models, and assess the reliability of our models 

independent of hyperparameter value.  

 We assessed how our model performed over the full model space compared to the 

distribution of null models, and we transformed the difference in prediction accuracy between the 

model and null model distribution to a Z score distribution, representing the number of standard 

deviations that the model outperforms chance (Figure 4.1: Section 4). To get a more accurate 

assessment of average model prediction in a region and account for variation in neighboring 

models, we first smoothed the data using a 2 x 3 FWHM Gaussian kernel before applying cluster 

correction. We then removed all models that predicted less than 1 standard deviation above the 

null distribution to remove weakly predicting models, and then to remove small noisy predicting 

clusters we removed all clusters of models with less than 12 models. Finally, we removed clusters 

for datasets for which at least one cluster did not occupy at least 2% of the total model space, in 

order to only assess datasets that were most reliably predictive of the outcome variable. We 

performed cluster correction to not only assess the relative predictive accuracy and reliability of 

each dataset across a range of models, but also to extract individual features that were reliably 

included in 90-100% of models in a given cluster, also known as consensus features. In this way, 

we extract only the features that most reliably belong to models that significantly predict our 

outcome variable. This is an important step because it allows us to look for common individual 

predictors across outcome variables. While a mass univariate analysis, such as the feature ranking 

commonly performed in machine learning pipelines (including this one), detects individual 

variables that are each correlated with the outcome variable, it does not offer any information on 

conditional relationships between each feature and the outcome variable, thereby identifying 
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mostly groups of redundant variables (Guyon 2003). By exploring the model space more fully, 

and identifying sets of consensus features that are most the reliable predictors of our outcome 

variable, we are also able to identify features that may not be good predictors on their own, but 

that reliably predict the residual variance that is left after the strongest predictors have been 

included in the model. For a review on feature selection and how redundant and superficially 

‘uninformative’ features can play an important role in predicting residual variance, see Guyon 

2003. 

 

4.2.6.3 Assessing Consensus Features 

 
Consensus features (CFs) allow us to analyze the feature selection process and make 

inferences based on the features that are selected. CFs represent features that were reliably included 

in many models across both feature set sizes and model regularization parameters (lambda). For 

more detailed results of the consensus features in the structural and functional datasets, refer to 

Nikolaidis et al. 2016a, 2016b. Among consensus features in the resting state datasets, some of the 

nodes are dramatically over-represented, suggesting that edges leading to these nodes may be more 

important for prediction than others. We term these high degree nodes ‘consensus hubs’. Similar 

to hubs in the graph theoretical sense, these consensus hubs (CHs) have a strong influence on the 

rest of the consensus features.  
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Figure 4.2:  
Display of the approximate position of the nodes in 2mm MNI Template Space. SUB (Blue), CON (Green), and 
FPN (Red). From left to right- The 3 top row views are: Lateral view of Left Hemisphere, Top side view, Lateral 
View Right Hemisphere. The 3 mid row views are: Medial Left Hemisphere, Bottom side view, Medial Right 
Hemisphere, and the 2 bottom row views are: Front Side view, Back Side view. 
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Figure 4.3:  
Displays the approximate position and distribution of the Default Mode Network in 2mm MNI Template Space. 
From left to right- The 3 top row views are: Lateral view of Left Hemisphere, Top side view, Lateral View Right 
Hemisphere. The 3 mid row views are: Medial Left Hemisphere, Bottom side view, Medial Right Hemisphere, and 
the 2 bottom row views are: Front Side view, Back Side view. 
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Figure 4.4: 
Left: A view of the 74 regions in an inflated hemisphere, displaying both sulcal and gyral regions. Numerical indices 
refer to anatomical regions defined in Table 4.1. Views from top left to bottom right: Anterior (Ant), Superior (Sup), 
Lateral (Lat), Lateral Fossa (Lat fossa), Medial (Med), Posterior (Post), and Inferior (Inf). The Lateral Fossa view 
offers a better view of the gyral and sulcal regions in the insula and temporal cortices. Reproduced from (Destrieux 
et al. 2010). Right: A view of the all networks and most nodes from the resting state analysis. The top and bottom 
images correspond to lateral and medial views of a single hemisphere respectively. Red: DMN, Yellow: FPN, 
Purple: CON, Brown: SUB. Other networks included in Table 4.2: White: UNCERTAIN, Blue: VISUAL, Light 
Green: DAN (Dorsal Attention Network), Cyan: MOTOR, Black: SALIENCE, Teal: VAN (Ventral Attention 
Network). Reproduced from Power et al. 2011. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



117	
	

 
#         List of anatomical parcellations Network #         List of anatomical parcellations Network 

Network 1 Fronto-marginal gyrus (of Wernicke) and sulcus DMN 38 Middle temporal gyrus (T2) DMN 
 2 Inferior occipital gyrus (O3) and sulcus VISUAL 39 Horizontal ramus of anterior lateral sulcus DMN 

3 Paracentral lobule and sulcus MOTOR 40 Vertical ramus  of anterior lateral sulcus SALIENCE 
4 Subcentral gyrus (central operculum) and sulci CON 41 Posterior ramus of lateral sulcus CON 
5 Transverse frontopolar gyri and sulci FPN 42 Occipital pole VISUAL 
6 Anterior cingulate cortex (ACC) MULTIP

LE 
43 Temporal pole DMN 

7 Middle anterior cingulate cortex (mACC) CON 44 Calcarine sulcus VISUAL 
8 Middle posterior cingulate cortex (pMCC) CON 45 Central sulcus (Rolando's fissure) MOTOR 
9 Posterior dorsal cingulate cortex (dPCC) DMN 46 Marginal branch of cingulate sulcus DMN 

10 Posterior-ventral cingulate gyrus (vPCC) DMN 47 Anterior insula circular sulcus CON 
11 Cuneus (O6) VISUAL 48 Inferior  insula circular sulcus FPN 
12 Opercular part of the inferior frontal gyrus CON 49 Superior  insula circular sulcus CON 
13 Orbital part of the inferior frontal gyrus DMN 50 Anterior transverse collateral sulcus UNCERTA

IN 
 

14 Triangular part of the inferior frontal gyrus FPN 51 Posterior transverse collateral sulcus VISUAL 
15 Middle frontal gyrus (F2) FPN 52 Inferior frontal sulcus FPN 
16 Superior frontal gyrus (F1) MULTIP

LE 
53 Middle frontal sulcus SALIENCE 

17 Long insular gyrus and central sulcus of insula CON 54 Superior frontal sulcus MULTIPL
E 18 Short insular gyri CON 55 Sulcus intermedius primus (of Jensen) DMN 

19 Middle occipital gyrus (O2 lateral occipital 
gyrus) 

VISUAL 56 Intraparietal and transverse parietal sulci FPN 
20 Superior occipital gyrus (O1) DAN 57 Middle occipital sulcus and lunatus sulcus VISUAL 
21 Lateral occipito-temporal gyrus, fusiform gyrus VISUAL 58 Superior occipital, transverse occipital sulci VISUAL 
22 Ligual medial occipito-temporal gyrus (O5) VISUAL 59 Anterior occipital sulcus FPN 
23 Parahippocampal medial occipito-temporal gyrus 

(T5) 
DMN 60 Lateral occipito-temporal sulcus UNCERTA

IN 
 

24 Orbital gyri DMN 61 Medial collateral sulcus and lingual sulcus UNCERTA
IN 

 
25 Angular gyrus DMN 62 Lateral orbital sulcus FPN 
26 Supramarginal gyrus CON 63 Medial orbital sulcus (olfactory sulcus) DMN 
27 Superior parietal lobule (lateral part of P1) DAN 64 Orbital sulci (H-shaped sulci) MULTIPL

E 28 Postcentral gyrus MOTOR 65 Parieto-occipital sulcus VISUAL 
29 Precentral gyrus CON 66 Pericallosal sulcus UNCERTA

IN 
 

30 Precuneus (medial part of P1) DMN 67 Postcentral sulcus FPN 
31 Straight gyrus, Gyrus rectus DMN 68 Inferior part of the precentral sulcus MOTOR 
32 Subcallosal area, subcallosal gyrus DMN 69 Superior part of the precentral sulcus MOTOR 
33 Anterior transverse temporal gyrus (of Heschl) DMN 70 Suborbital sulcus DMN 
34 Lateral aspect of the superior temporal gyrus DMN 71 Subparietal sulcus DMN 
35 Planum polare of the superior temporal gyrus CON 72 Inferior temporal sulcus VAN 
36 Temporal plane of superior temporal gyrus CON 73 Superior temporal sulcus DMN 
37 Inferior temporal gyrus (T3) CON 74 Transverse temporal sulcus CON 

 
Table 4.1: 
A listing of the 74 Destrieux atlas regions and their resting state network assignment in the Power et al. networks. The 
first and fourth columns, labeled ‘#’, correspond to each regions unique numbering according to the Destrieux Atlas 
and Figure 4.4 (Left). The second and fifth columns, labeled ‘List of anatomical parcellations’, correspond to 
shortened versions of assigned names of each structural region. The third and sixth columns, labeled ‘Network’ 
correspond to the assigned network for that region based on the full listing of 264 nodes from the Power et al atlas 
and their respective anatomical labels, as well as visual inspection and naming conventions from the Harvard-Oxford 
Cortical Atlas in FSL. DMN- Default mode network, CON- Cingulo-opercular network, FPN-Frontal-parietal 
network, DAN- Dorsal attention network, VAN- Ventral attention network. 
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Figure 4.5:  
This displays a summary of the eight networks originally investigated in Nikolaidis et al. 2016b. Each rounded box 
corresponds to a single network, which are depicted in Figures 4.2 & 4.3. As shown here, relationships between single 
networks are assessed to create internetworks, which are represented by the dashed lines between rounded boxes, and 
the gray ovals label their corresponding internetwork. Reproduced from Nikolaidis et al. 2016b. 
 
 

Game Description Source 
Supply Run 
(working memory) 

Townspeople request items that belong to a certain category. There are five objects in 
each category, which correspond to stereotypical occupations of the “Wild West.” Once 
the store is reached, the last item from each category must be selected. Difficulty level 
is manipulated by the number of requests and the number of categories. 

Updating 
WM 
(Dahlin, 
Nyberg, et 
al. 2008) 

Sentry Duty 
(working memory) 

Sentries lift their lanterns while saying a word of the phonetic alphabet. The current 
word spoken and lantern lifted is compared to the word spoken/lantern lifted n times 
previously. There may be an audio match, a visual match, an audio and visual match, or 
no match between the current sentry and the one who spoke n times ago. Difficulty is 
manipulated by how far back the comparison is (e.g., 1-back, 2-back, 3-back). 

Dual n-
back 
(Jaeggi et 
al. 2008; 
Redick et 
al. 2012) 

Safe Cracker 
(reasoning) 

Safe combinations are determined by completing the next item in a series. Series may 
be letter-, number-, or day/month- based, and all are governed by some pattern or rule 
that must be determined and applied to select the next item in the series. Difficulty is 
manipulated by the difficulty of the patterns and the number of problems to solve within 
the given time limit. 

Inductive 
Reasoning  
(Willis and 
Schaie 
1986)  

Table 4.2: 
Description of the three training tasks investigated in the current study. Partially reproduced from Baniqued et al. 
2015. 
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4.3 Results 
 

4.3.1 Shared Network Consensus Features and Consensus Hubs 

We investigated overlap between the resting state and structural predictors of training and 

transfer. We assessed the network assignment of each of the consensus features (CFs) and 

compared the strongest structural CFs to the resting state predictors in those same networks. Using 

the small set of strong CF predictors from the structural data, we assessed which network each of 

these CFs belonged to, and compared the CHs in these networks with these structural CFs. In the 

DMN, initial thickness of the dorsal posterior cingulate cortex, a hub of the DMN critical for 

internally oriented attention, and the initial volume of the right middle frontal sulcus, a region 

involved in working memory maintenance (Zhang et al. 2003), were negatively correlated with 

gain in SD. Initial connectivity of the DMN was also predictive of WM, SC, and SR, with several 

CHs in each analysis, but none in predicting SD. We found that consensus hubs in the DMN’s 

middle temporal gyrus, a region previously associated with transfer of motor skill (Anguera et al. 

2007), were present in prediction of WM, SC, and SR . We also found that the right paracingulate 

gyrus, a region implicated in attention and executive processing (Fornito et al. 2004; Wang et al. 

2009, was a CH in predictions of both SR and WM. The frontal pole, which is also involved in 

attention and executive function(Wang et al. 2009), was a prominent CH in the predictions of WM. 

SC predictions also included CHs in both the right and left lateral occipital cortices, which play an 

important role in object recognition (Grill-spector et al. 1999) and the right precuneous which is a 

central node of the DMN and plays a role in internal visual-spatial imagery (Cavanna and Trimble 

2006).  

 Pre-training volume of the left opercular inferior frontal gyrus (IFG), a region in the FPN 

and implicated in inhibition and working memory (Aron et al. 2003; Zhang et al. 2003), was 
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predictive of transfer to GFRT. Similarly, we found that connectivity to the right middle frontal 

gyrus and inferior frontal gyrus was a CH of SC, the inductive reasoning training task. 

Furthermore, pre-training connectivity of the node between the right middle frontal gyrus and 

inferior frontal gyrus, both of which are involved in working memory (Aron et al. 2003; Zhang et 

al. 2003), was identified as a CH in predictions of SC. In the Pre SUBxFPN network, the left 

paracingulate gyrus, a node of the FPN involved in executive function (Fornito et al. 2004), was 

identified as a CH in predicting GFRT and 83.3% of the associations in this node were positively 

correlated with GFRT.  

The pre-training thickness of the right insula, a critical region of the CON that plays a role 

in regulating the DMN (Menon and Uddin 2010; Uddin et al. 2011), was positively correlated with 

training gain in SD, and thickness of the posterior ramus of the lateral sulcus, a region of the CON 

that contains both the primary auditory and secondary somatosensory cortex, was also positively 

associated with training gain in SR. Pre training connectivity in the CON also demonstrated that 

the right insula was a consensus hub in predicting both GFRT and PS, with 100% of these node’s 

connections being negatively correlated with transfer. The right superior frontal gyrus, a region 

involved in sustained attention and sensitive to working memory load was also a CH in predicting 

PS (Rypma and D’Esposito 1999; Dosenbach et al. 2006), and 88.9% of this CH’s consensus 

features were negatively associated with transfer to PS. Furthermore we found many CON CH’s 

that were associated with training gain to SC and SR (Nikolaidis et al. 2016b). In the Pre 

DMNxCON internetwork both SC and SR identified left central opercular cortex, right superior 

frontal gyrus, and two nodes in the right insula as CHs.  

 We found that training-induced changes in the structural regions of the FPN, in the 

thickness of the left triangular inferior frontal gyrus and the volume of the left opercular inferior 
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frontal gyrus were both positively correlated with transfer to PS. In assessing corresponding 

training-induced changes in connectivity, while we did not find CHs in the inferior frontal gyrus, 

we found many CHs in the two regions on the superior and anterior bound of the inferior frontal 

gyrus, the middle frontal gyrus and the frontal pole. We found that change in connectivity of the 

frontal pole, in the FPN and DMNxFPN, were reliably positively correlated with gain in SC and 

GFRT (Nikolaidis et al. 2016b), suggesting that increases in the connectivity between the frontal 

pole and the DMN reflected greater generalized learning through training. Furthermore, we found 

that the middle frontal gyrus nodes in both the right and left hemispheres were CHs predicting 

GFRT as well, further supporting the notion that training-induced behavioral benefits are reflected 

in the interaction between frontal executive regions and the DMN. 

  

4.3.2 Assessing CH and CF Overlap between WM Transfer and Training Scores 

 Given that WM and the three training scores were correlated, we assessed the amount of 

overlap between their respective predictors in both the structural and resting state datasets. In the 

structural data, we found a large set of overlapping consensus features at Pre that were included in 

clusters predicting WM and SC, and several of these regions are part of the DMN or CON. In the 

DMN, both the left fronto-marginal gyrus, which is involved in higher order pursuit of goal related 

activity (Ramnani and Miall 2004), and right precuneous, which is involved in internally oriented 

cognition, were CFs for both WM and SC (Cavanna and Trimble 2006). In the CON the left short 

insular gyrus, which plays an important role in regulating the DMN (Menon and Uddin 2010), and 

the right middle cingulate cortex which plays a role in attentional monitoring (Alexander and 

Brown 2012), were CFs for both WM and SC. Furthermore, WM and SC also overlapped in their 

predictions in training-induced change in several regions of the DMN, including the left superior 
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frontal gyrus a region critical for high load working memory processing (Rypma and D’Esposito 

1999; Boisgueheneuc et al. 2006), the left anterior transverse temporal gyrus which contains the 

primary auditory cortex, and the marginal branch of the left cingulate, a part of the precuneous and 

involved in internally oriented processing (Cavanna and Trimble 2006). We also found several 

CFs common between WM and SR predictions, including regions in the FPN that are important 

for working memory such as the left supramarginal gyrus (Silk et al. 2010), and left inferior frontal 

gyrus (Rypma and D’Esposito 1999; Zhang et al. 2003), as well as regions in the DMN and CON 

such as the left anterior transverse temporal gyrus (DMN), which contains the primary auditory 

cortex (DMN), and the left inferior frontal sulcus (CON), which is also involved in working 

memory (Gruber 2001; Barbey et al. 2013). We found very little overlap in CFs between 

predictions of WM and SD, though SD is the training task that most closely mirrors WM. Only a 

small section of the right intraparietal sulcus (DMN), which is involved in working memory and 

attention (Silk et al. 2010) was shared as a CF between the two predictions.  

In the resting state datasets, the WM and SC scores shared 26 CFs in the Pre DMN, 

including several connections to the frontal pole, precuneous, and paracingulate gyrus. The WM 

and SR scores shared 28 CFs in the Pre DMN which also included several connections to regions 

involved in executive function such as the frontal pole (Pochon et al. 2002), and the paracingulate 

gyrus (Fornito et al. 2004), as well as the lateral occipital cortex which is involved in object 

recognition and visual working memory (Grill-spector et al. 1999; Silk et al. 2010), while WM 

and SD shared only a single CF. Furthermore, in the DMNxCON internetwork, predictions of WM 

and SC shared 11 CFs, with several connections to the paracingulate gyrus, insula, and frontal 

pole, WM and SR shared 9 CFs with several emanating from the insula, and WM and SD had no 

common CFs. It is important to note that in internetworks such as the DMNxCON, all CHs that 
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are identified are comprised exclusively of connections between that CH and the other network. 

This means that the paracingulate gyrus, and frontal pole’s most reliably predictive connections 

were those to the CON, while the insula’s connectivity was reliably predictive. The CHs identified 

by the overlap between scores in the DMN and DMNxCON networks are remarkably conserved, 

and point to the importance of pre existing connectivity in these executive regions of the DMN 

and CON for gains in both working memory updating and inductive reasoning training, as well as 

transfer to WM. In a similar fashion as the structural data, we found that WM and SD shared only 

a single overlapping consensus feature in the DMN. Given the psychological similarity between 

WM and SD, as well as the correlation between the two improvement scores, the neural overlap 

hypothesis would have predicted common neural correlates between WM and SD. 

 
 
 
4.4 Discussion 
 

While the structural CFs that predicted training and transfer were predominantly regions 

involved in lower level sensory processing and attention (Nikolaidis et al. 2016a), we found 

overlap in the structural and resting state correlates of several structural regions associated with 

higher cognitive function. Pre-existing and training-induced differences in regions of the FPN, 

including the inferior frontal gyrus, a region implicated in inhibitory processing and working 

memory (Aron et al. 2003; Zhang et al. 2003; Colom et al. 2013), were predictive of training gain 

and transfer in the structural and resting state datasets. This suggests that the functional network 

connectivity and structural size of this region may both reflect propensity for greater training gain 

and transfer due to more effective integration of this executive function area before training. 

Furthermore, we found that training and transfer scores were predicted by pre-training thickness 

and network connectivity of the right insula. This region is a hub of the CON and is known to play 
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a critical role in the regulation of the DMN (Menon and Uddin 2010; Uddin et al. 2011; Sestieri et 

al. 2014). We proposed that the development and deployment of sustained attention skills may be 

critical to enhancing learning and transfer during training through an increase in flow states 

(Nikolaidis et al. 2016b), and the current work suggests that pre-training structural thickness of the 

insula may contribute to the ability of the CON to regulate the DMN as well. Interestingly, prior 

work has demonstrated the importance of DMN’s middle temporal gyrus in motor transfer 

(Anguera et al. 2007), and in the current work we found that this region was a DMN CH for WM, 

SC, and SR, all of which are metrics of higher learning. This region is known to play a role in 

semantic memory and visual perception (Vandenberghe et al. 1996; Visser et al. 2012), but it also 

plays a role in multimodal sensory integration (Onitsuka et al. 2004). Given that this region plays 

a role both in generalization of motor and cognitive skills and in the integration of multimodal 

sensory information, interactions between this region and the striatum and other cortical regions 

may play a particularly important role in broadening the initially unitized representations of skills 

into more generalized skills that can be deployed in other contexts.  

We found markedly less overlap in the predictions for SD & WM compared to other 

training tasks, although SD and WM are both n-back based and thus likely share similar cognitive 

and neural processes. This raises important questions for the most simplistic interpretation of the 

neural overlap hypothesis. This simple version states that if initially the training and transfer tasks 

share the same neural correlates, which is highly likely with SD and WM given the overwhelming 

similarity between them, then training in one will lead to transfer in the other. It was the case in 

the current results that although WM and SD were very similar tasks, and likely shared underlying 

neural architecture, and even behaviorally paralleled one another in training-induced gain, our 

functional and structural results suggest that the underlying neural mechanisms during WM 
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transfer and gain to SD are quite different. In fact so completely different that one wonders whether 

if SD had been removed would transfer to WM still manifest? To assess why it may be the case 

that two tasks could share underlying neural similarity but not drive transfer to one another, it is 

important to consider the skill acquisition process that occurs during training. In the case of training 

with SD, there are several complex skills that are being concurrently developed. Participants must 

take in independent streams of auditory and visual information, store these representations, and 

repeatedly access them on each trial to both update the stored set, and to the assess whether the 

items n trials previously match the stimuli of the current trial. There are many levels of processing 

that may be preventing individuals from performing better at this task, such as a limited capacity 

for auditory and visual information in working memory, high levels of susceptibility to lure trials 

due to poor interference resolution, or poor storage accuracy due to low quality sensory 

representations. As level gain in SD is specifically measured by increasing sizes of the n-back 

level, training gain in SD is primarily a reflection of increased storage capacity. However, the tasks 

used to assess WM transfer did not depend on improvement of storage capacity, as they largely 

were dependent on low levels of storage, 2 and 3 back. Instead, improvements in the d’ 

measurements used as transfer metrics depend critically on both the speed and accuracy of storage 

and retrieval, as well as the resolution of interferences during lure trials. 

A modified instantiation of the neural overlap theory may explain the current result in the 

context of skill acquisition and generalization, and we have suggested this to be the case previously 

as well (Nikolaidis et al. 2016a). Rather than transfer and training tasks overlapping in their 

dominant brain activity, perhaps instead the neural overlap needs to occur in brain regions and 

networks which form a processing bottleneck for greater performance on transfer tasks. More 

specifically, perhaps the improvement of skills in those bottleneck domains will lead to 
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improvement of the transfer tasks not through improvement of a specific aspect of WM, such as 

storage capacity or accuracy in manipulation of information, but rather through the development 

of faster or more accurate low level processing through training on these tasks. Rather than 

depending on improvement in the size of memory capacity, perhaps training gains in SC and SR 

are more dependent on rapid and accurate processing of information in memory, which are in turn 

dependent on the low level sensory and attention processing correlates found in our previous 

structural analysis (Nikolaidis et al. 2016a), and in the regulation of default mode activity by the 

CON, as found in our previous resting state analysis (Nikolaidis et al. 2016b). 

 

4.5 Conclusion 

We find that support for overlapping structural and resting state network correlates of 

training and transfer. Furthermore, both structural and resting state correlates of training gain and 

transfer demonstrated the same dissociation in predictive overlap between working memory and 

the training tasks, suggesting that a refinement of the neural overlap hypothesis that takes into 

consideration skill learning within processing bottlenecks could be critical to training-induced 

transfer. 
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