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Abstract

A central result in algebraic combinatorics is the Littlewood-Richardson rule that governs products in the

cohomology of Grassmannians. A major theme of the modern Schubert calculus is to extend this rule and

its associated combinatorics to richer cohomology theories.

This thesis focuses on K-theoretic Schubert calculus. We prove the first Littlewood-Richardson rule in

torus-equivariant K-theory. We thereby deduce the conjectural rule of H. Thomas and A. Yong, as well

as a mild correction to the conjectural rule of A. Knutson and R. Vakil. Our rule manifests the positivity

established geometrically by D. Anderson, S. Griffeth and E. Miller, and moreover in a stronger ‘squarefree’

form that resolves an issue raised by A. Knutson. Our work is based on the combinatorics of genomic

tableaux, which we introduce, and a generalization of M.-P. Schützenberger’s jeu de taquin. We further

apply genomic tableaux to obtain new rules in non-equivariant K-theory for Grassmannians and maximal

orthogonal Grassmannians, as well as to make various conjectures relating to Lagrangian Grassmannians.

This is joint work with Alexander Yong.

Our theory of genomic tableaux is a semistandard analogue of the increasing tableau theory initiated by

H. Thomas and A. Yong. These increasing tableaux carry a natural lift of M.-P. Schützenberger’s promotion

operator. We study the orbit structure of this action, generalizing a result of D. White by establishing

an instance of the cyclic sieving phenomenon of V. Reiner, D. Stanton and D. White. In joint work with

J. Bloom and D. Saracino, we prove a homomesy conjecture of J. Propp and T. Roby for promotion on

standard tableaux, which partially generalizes to increasing tableaux. In joint work with K. Dilks and

J. Striker, we relate the action of K-promotion on increasing tableaux to the rowmotion operator on plane

partitions, yielding progress on a conjecture of P. Cameron and D. Fon-der-Flaass. Building on this relation

between increasing tableaux and plane partitions, we apply the K-theoretic jeu de taquin of H. Thomas and

A. Yong to give, in joint work with Z. Hamaker, R. Patrias and N. Williams, the first bijective proof of a

1983 theorem of R. Proctor, namely that that plane partitions of height k in a rectangle are equinumerous

with plane partitions of height k in a trapezoid.
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Chapter 1

Introduction

This thesis studies the combinatorics of Young tableaux and their relations to the Schubert calculus of the

Grassmannian and related spaces. In this introductory chapter, we recall relevant known work from the

literature. Our main references for this chapter are the textbooks [Fu97, Sta99, Man01, Mac95, Mac98].

1.1 The Grassmannian

Let X = Grk(Cn) be the Grassmannian of k-dimensional linear subspaces of Cn. The defining action of

GLn(C) on Cn passes to an action on X. We may restrict this action to the Borel subgroup B of invertible

upper triangular matrices or further to the maximal torus T of invertible diagonal matrices.

It is easy to see that a k-dimensional linear subspace of Cn is T-stable exactly when it is a coordinate

hyperplane. Hence the action of T on X has exactly
(
n
k

)
fixed points. Letting {e1, . . . , en} denote the

standard basis of Cn, we may usefully index a T-stable hyperplane H and its corresponding T-fixed point

p ∈ X by the binary sequence recording which ei are in H. For example, if n = 6 and H = 〈e2, e4〉, then we

label H as 010100.

Alternatively, we may substitute these binary sequences by partitions inside a k × (n − k) rectangle in

the following way. Starting at the upper right corner of the k × (n − k) rectangle, construct a lattice path

from the binary sequence by reading each 0 as the segment (−1, 0) and each 1 as the segment (0,−1). Since

the number of 0’s is k and the number of 1’s is n − k, this lattice path necessarily ends at the lower left

corner of the rectangle. The region of the rectangle northwest of this path is naturally (the Young diagram

of) a partition. Continuing the example above, we obtain the partition (3, 2) as the index for H:

.
1

1

0 0

0

0

Leaving our focus on T-stable sets, a general k-dimensional linear subspace of Cn can be specified by

giving k vectors that span it, say as a k × n matrix of rank k. This assignment of a matrix A to a linear
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subspace H is not unique, as we may replace A by any other matrix of the same shape whose rows span H.

The set of such potential replacements is precisely the set of matrices related to A by row operations. Thus,

a canonical matrix representative for H is given by choosing A = AH to be in reduced row-echelon form.

For example, if Ĥ = 〈(2, 1, 0, 4), (2, 1, 1, 5)〉, then

AĤ =

1 1
2 0 2

0 0 1 1

 ,
as may be found by performing row reductions on

2 1 0 4

2 1 1 5

 .
The matrix AH then has k pivot columns, each containing a single 1 and k − 1 0’s (for AĤ , columns 1

and 3). To the left of each pivot 1, the remaining entries of each row are 0’s. Deleting the pivot columns

of AH , these forced 0’s naturally form the (mirror image of the) shape of a partition λH . (In AĤ , only the

0 in position (2, 2) is left of a pivot 1 and not in a pivot column; hence λĤ = .) All other entries of AH

are arbitrary complex numbers, which specify the subspace H. Since T acts on H by scaling the columns

of AH , H is T-stable if and only if these arbitrary complex numbers are in fact 0. In this case, λH is the

partition previously associated to the stable subspace H.

Fixing a set of k columns to be the pivots, we obtain the set of all H such that AH has those pivots.

By the above discussion, this set is an affine cell in the Grassmannian. Each such cell contains a single

T-fixed point. Indexing the cell by the corresponding partition λ, we call it the Schubert cell X◦λ. The

dimension of X◦λ is the number of free entries in AH , i.e. kn− k2 − |λ|, where |λ| is the size of the partition

λ. The cell containing Ĥ, for example, is X◦λĤ
, given by fixing columns 1 and 3 to be pivots, and hence is a

3-dimensional affine cell consisting of all H for which AH is of the form

1 ? 0 ?

0 0 1 ?

 ,
where the ?’s denote arbitrary independently-chosen complex numbers. The unique T-fixed point in X◦λĤ

is

1 0 0 0

0 0 1 0

 .
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For λ = (0), X◦λ is a dense open subset of X, so dimX = kn − k2 − 0 = k(n − k). Thus in general the

codimension of X◦λ inside X is |λ|. Note that the Schubert cells X◦λ are exactly the orbits of B on X, acting

on matrix representatives by rightward column operations.

The closure of X◦λ in X is the Schubert variety Xλ. It is not hard to see that as a set

Xλ =
⊔
λ⊂µ

Xµ,

where λ ⊂ µ denotes containment of Young diagrams. A key feature of the Schubert varieties is that, since the

Schubert cells give a cell decomposition of X, their Poincaré duals—the Schubert classes {σλ}λ⊆k×(n−k)—

are a Z-linear basis for the cohomology ring H?(X) with σλ in degree |λ|.

Thus understanding the structure of H?(X) as a graded Z-module reduces to understanding the set of

partitions contained in the rectangle k × (n− k). Let [n]q be the q-integer [n]q = 1 + q + q2 + · · ·+ qn−1.

Observe that setting q 7→ 1 recovers the ordinary integer n. Further define [n]!q := [n]q[n − 1]q . . . [1]q and[
n
k

]
q

:=
[n]!q

[k]!q [n−k]!q by analogy with the standard formulas for factorials and binomial coefficients. Then it is

an easy induction that the generating function for partitions in k × (n− k) by size (and hence the Poincaré

polynomial of X) is
[
n
k

]
q
. (Taking q 7→ 1, this recovers that the total number of such partitions is

(
n
k

)
.)

Having made completely explicit the Z-module structure of H?(X), a natural next step in elucidating

X is to determine the multiplication on H?(X). Since we have a basis {σλ}, it suffices to determine the

structure coefficients cνλ,µ defined by

σλ ` σµ =
∑
ν

cνλ,µσν .

These numbers cνλ,µ are the celebrated Littlewood-Richardson coefficients. Not only are they the

Schubert structure coefficients of H?(X), but they are also multiplicities in tensor products of GLn(C)-

representations and in induction products of Sn-representations, in addition to governing exact sequences

of abelian p-groups and eigenvalues of sums of Hermitian matrices.

Thus we would like a way to determine cνλ,µ. From the geometric and representation-theoretic interpre-

tations of Littlewood-Richardson coefficients, it is immediate that cνλ,µ ∈ Z≥0. Hence it would be desirable if

our algorithm for computing cνλ,µ manifested this nonnegative integrality: Instead of a rule requiring addition

and subtraction of rational numbers, we would prefer a rule of the form:

“The structure coefficient cνλ,µ is the cardinality of an explicit set of combinatorial objects.”

One advantage of such a rule is that it is thereby possible to show cνλ,µ > 0 without determining the exact

value of cνλ,µ. These counting formulas are known as Littlewood-Richardson rules. The development
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of these rules has lead to significant new combinatorics of more general impact, and has deepened our

understanding of the common combinatorial laws that govern diverse situations. In the next section, we

review several Littlewood-Richardson rules whose extensions will be the main subject of this thesis.

1.2 Cohomological Schubert calculus

In this section, we describe three combinatorial rules for computing cνλ,µ.

1.2.1 Rule H.1: Ballot semistandard Young tableaux

The following is essentially the original Littlewood-Richardson rule stated in 1934 by D.E. Littlewood and

A.R. Richardson [LiRi34], though not rigorously proven until work of M.-P. Schützenberger in the 1970’s.

D.E. Littlewood and A.R. Richardson considered cνλ,µ in its representation-theoretic avatar. The connection

to H?(X) is due to L. Lesieur [Le47].

For Young diagrams λ ⊆ ν, the skew partition ν/λ is the set-theoretic difference ν\λ. A semistandard

Young tableau T of shape ν/λ is a filling of the boxes of ν/λ by positive integers such that the labels

of each row weakly increase from left to right and the labels of each column strictly increase from top to

bottom. If λ = ∅, we say T is of straight shape; otherwise T is a skew tableau.

Example 1.1. For ν = and λ = , one semistandard Young tableau of shape ν/λ is

U =
1 1

1 2 2

6

3

. ♦

The reading word of T is the word read(T ) formed by reading down the columns of T from right to left.

The content of a word w is the vector content(w) = (a1, a2, . . . ), where ai records the number of entries i

in w. We say a semistandard tableau T is ballot (sometimes called lattice or Yamanouchi) if the content

of every initial segment of read(T ) is a partition, i.e. if as we read read(T ), we have always read at least as

many i’s as (i+ 1)’s. The content of a semistandard tableau T is content(T ) := content(read(T )).

Example 1.2. Continuing Example 1.1 above, content(U) is (3, 2, 1, 0, 0, 1, 0, 0, . . . ) and its reading word is

read(U) = 1122163. The tableau U is not ballot, since read(U) contains a 6 but no 5. Replacing the 6 by

either 2 or 3 yields a ballot semistandard tableau. ♦
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Theorem 1.1 (Littlewood-Richardson rule (H.1)).

cνλ,µ = #{Ballot semistandard tableaux of shape ν/λ and content µ}

Example 1.3. To calculate c
(3,2,1)
(2,1),(2,1), we find all semistandard fillings of with content (2, 1):

1

1

2

1

2

1

2

1

1

.

Of these, only the first two are ballot. Hence c
(3,2,1)
(2,1),(2,1) = 2. ♦

1.2.2 Rule H.2: Puzzles

For this rule, we use the translation of Section 1.1 to work with binary strings of length n with k 1’s in place

of partitions inside k × (n − k). Consider the n-length equilateral triangle oriented as ∆. A puzzle is a

filling of ∆ with the following puzzle pieces:

1 1

1

0 0

0

0 0

1

1

A filling requires that the common edges of adjacent puzzle pieces share the same label. The pieces may

be rotated but not reflected. To avoid complicating the picture with too many edge labels, we will illustrate

these three puzzle pieces as

respectively.

Let ∆λ,µ,ν be ∆ with the boundary given by

• λ as read ↗ along the left side;

• µ as read ↘ along the right side; and

• ν as read → along the bottom side.

Theorem 1.2 (Littlewood-Richardson rule (H.2), A. Knutson–T. Tao–C. Woodward [KnTaWo04]).

cνλ,µ = #{Puzzles with boundary ∆λ,µ,ν}.
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Example 1.4. As in Example 1.3, we calculate c
(3,2,1)
(2,1),(2,1). We may assume n = 6 and k = 3. Then the

large triangle ∆λ,µ,ν is

0

1

0

1

0

1

1

0

1

0

1

0

1 0 1 0 1 0

There are only two ways to tile ∆λ,µ,ν with the puzzle pieces, subject to the boundary conditions:

Thus we recover the fact that c
(3,2,1)
(2,1),(2,1) = 2. ♦

1.2.3 Rule H.3: Rectification of standard Young tableaux

In this section, we return to treating λ, µ, ν as partitions and recall another Littlewood-Richardson rule in

terms of tableaux. A standard Young tableau of shape ν/λ is a semistandard tableau of shape ν/λ in

which each of the numbers 1, 2, . . . , |ν/λ| appears exactly once.

For b a box of the shape ν/λ, we write b→ for the box immediately east of b, b↓ for the box immediately
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south of b, etc. An inner corner of the shape ν/λ is a box b ∈ λ such that b→ /∈ λ and b↓ /∈ λ. An outer

corner of ν/λ is a box b ∈ ν/λ such that b→ /∈ ν/λ and b↓ /∈ ν/λ.

Given a standard Young tableau T of skew shape ν/λ, M.-P. Schützenberger’s jeu de taquin is an

algorithm to produce a standard Young tableau of some straight shape θ with |θ| = |ν/λ|. Choose any inner

corner c of ν/λ and fill it with •. Say the SE-neighbors of a label in box b are the entries of the boxes

b→ and b↓, if they exist. Repeatedly switch the positions of • and its smallest SE-neighbor until no such

SE-neighbor exists, that is until • is in an outer corner of ν/λ. Now delete •. It is not hard to see that the

result is a new standard Young tableau T̃ of some shape ν̃/λ̃ where |ν̃| = |ν| − 1 and |λ̃| = |λ| − 1. Choose

an inner corner of T̃ to fill with • and repeat this process. After |λ| iterations, the tableau produced will

be a standard Young tableau of some straight shape θ with |θ| = |ν/λ|. We call this tableau rect(T ), the

rectification of T .

Example 1.5. Let

T =
1

2

3 4

and choose the upper inner corner. Then we obtain

• 1

2

3 4

−→ 1

2

3 4

,

leaving only one choice of new inner corner:

1

• 2

3 4

−→ 1

2 •

3 4

−→ 1

2 4

3

.

Finally we have

• 1

2 4

3

−→ 1 •

2 4

3

−→ 1 4

2

3

= rect(T ). ♦

Theorem 1.3 (Confluence (cf. [Man01, Corollary 1.5.19])). The tableau rect(T ) does not depend on the

choices of inner corners.
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Example 1.6. If we rectify T from Example 1.5, first choosing the lower inner corner, we obtain

1

• 2

3 4

−→ 1

2 •

3 4

−→ 1

2 4

3

,

leaving only one choice of inner corner:

• 1

2 4

3

−→ 1

2 4

3

.

Finally we have

• 1

2 4

3

−→ 1 •

2 4

3

−→ 1 4

2

3

= rect(T ),

as in Example 1.5 and in agreement with Theorem 1.3. ♦

Theorem 1.4 (Littlewood-Richardson rule (H.3)). Let M be any fixed standard Young tableau of shape µ.

Then

cνλ,µ = #{standard Young tableaux T : rect(T ) = M}.

Example 1.7. As in Examples 1.3 and 1.4, we calculate c
(3,2,1)
(2,1),(2,1). There are 6 standard Young tableaux

of shape (3, 2, 1)/(2, 1), which rectify as follows:

1

2

3

−→ 1

2

3

1

3

2

−→ 1 3

2

2

1

3

−→ 1 2

3
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2

3

1

−→ 1 2

3

3

1

2

−→ 1 3

2

3

2

1

−→ 1 2 3

Letting either M =
1 2

3
or M =

1 3

2
be the fixed standard Young tableau of shape (2, 1), we count

that two of these six tableaux rectify to M . Thus c
(3,2,1)
(2,1),(2,1) = 2. ♦

For later use, we note that there is also a notion of reverse jeu de taquin, where we start with a • in

an outer corner and repeatedly switch it with its larger NW-neighbor. If a (skew) tableau T can be reached

from a (skew) tableau T ′ by a sequence of forward and reverse jeu de taquin slides, we say that T and T ′ are

jeu de taquin equivalent. By Theorem 1.3, each tableau is jeu de taquin equivalent to a unique tableau

of straight shape.

1.2.4 Bijections between the Littlewood-Richardson rules

Fix partitions λ, µ, ν and let M be a standard Young tableau of shape µ. Since the cardinality of each set

is cνλ,µ, we have

#{puzzles with boundary ∆λ,µ,ν} = #{ballot semistandard tableaux of shape ν/λ and content µ}

= #{standard Young tableaux T : rect(T ) = M}.

In this section, we show how to biject these three sets, that is how to biject the tableaux of rule (H.1)

with the tableaux of rule (H.3) and the puzzles of rule (H.2). We omit here the proofs that these maps are

bijections or even well-defined, as both these facts will follow from more general arguments in later chapters.

Puzzles to Ballot Tableaux

This bijection perhaps appeared first in [Pu08], though it is based on a bijection discovered by T. Tao and
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given in [Va06, Figure 11]. Consider a puzzle P ∈ {puzzles with boundary ∆λ,µ,ν} and look at the 1’s along

the bottom edge (the ν-edge). We will produce disjoint trails of puzzles pieces, one for each of these 1’s. We

will then read these trails to construct TP ∈ {ballot semistandard tableaux of shape ν/λ and content µ}.

Think of P as the floorplan of a palace, where the puzzle pieces are the (triangular and rhombic) rooms

and the 1 labeled edges are doorways. We enter the palace through one of the doors on the ν-edge. Whenever

we enter a room, we will leave it by a different door than we came in by. Thus we traverse from bottom

to top and from left to right. When we enter the base of , we choose to exit through the door on our

right, while when we enter the lower left door of , we choose to exit through the door on our left. Since

we cannot get stuck on this walk, and move always northeast, we will eventually exit the palace through a

door on the µ-side. Record the shapes and orientations of the rooms visited on this trip; this is the track

associated to the initial door on the ν-side of P .

Example 1.8. For P the puzzle

there are three doors on the ν-side of P . The track for the leftmost door is .

Entering instead through the middle door, we get the track , while the rightmost door gives

the short track . ♦

We now convert P into a ballot semistandard tableau TP of shape ν/λ with content µ. The track for

the ith door from the left tells how to label labels i in ν/λ. Each in the track is preceded by a (possibly

empty) sequence of consecutive ’s. Replace the track by the integer vector (ai1, a
i
2, . . . , a

i
k) whose entries

are the lengths of these sequences. Now we produce the tableau TP by placing aij instances of i in the

(i+ j)th row.
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It is perhaps not clear that this process can always be carried out or that the result will be a tableau

with the desired properties; we will later prove these facts in greater generality. For now, we satisfy ourselves

with an example.

Example 1.9. Continuing Example 1.8, we convert the three tracks into the vectors (1, 0, 1), (1, 0), and (0).

Hence we place one 1 in each of the first and third rows, and one 2 in the second row, obtaining the tableau

1

2

1

. Note that this is one of the ballot tableaux of Example 1.3. The reader may check that this

process also converts the other puzzle of Example 1.4 to the other ballot tableau of Example 1.3. ♦

Ballot Tableaux to Rectifying Standard Tableaux

For a straight shape µ, the superstandard tableau Tµ of shape µ is the filling of µ along rows by consecutive

positive integers.

Example 1.10. For µ = (4, 2, 1), Tµ =
1 2 3 4

5 6

7

. ♦

Let S ∈ {ballot semistandard tableaux of shape ν/λ and content µ}. We will produce from S a standard

Young tableau of shape ν/λ that rectifies to Tµ. Although we will not prove this yet, the map that this

process defines is a bijection.

For each i, there is at most one i in any column of S, since S is semistandard. The standardization

Φ(S) of S is the tableau formed by replacing the 1’s of S with the integers 1, 2, . . . , µ1 from left to right,

replacing the 2’s of S with the integers µ1 + 1, µ1 + 2, . . . µ1 + µ+ 2, etc. It is not hard to see that Φ(S) is a

standard Young tableau of the desired shape and content. We will later show that Rect(Ψ(S)) = Tµ.

Example 1.11. For S =
1

2

1

, we have Φ(S) =
1

3

2

. We confirmed in Example 1.7 that

Φ(S) rectifies to
1 2

3
= T(2,1). ♦

1.3 Symmetric functions and the Schur polynomials

Consider the polynomial ring R = Z[x1, . . . , xn]. The symmetric group Sn naturally acts on R by permuting

variables. For example, the transposition (12) acts on the polynomial x21x3+x1x2x4 to produce x22x3+x1x2x4.

Let Λn := RSn , the Sn invariants. It is easy to see that Λn is a subring of R; we call it the ring of
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symmetric polynomials in n variables. Λn is moreover a graded ring, inheriting the grading by degree

from R. The homogeneous pieces are denoted Λ
(m)
n .

For m ≤ n, we can map Λn onto Λm by setting the last n −m variables equal to 0. The inverse limit

of the {Λn} with respect to these restriction maps is called the ring of symmetric functions Λ, although

its elements are not functions, but rather formal power series in infinitely many variables. The distinction

between Λn and Λ will be of little consequence for us, and we will use whichever is more convenient. Note

that f ∈ Λ is a finite sum of homogeneous elements.

For a composition α, we define a monomial xα := xα1
1 xα2

2 . . . . For a partition λ, let

mλ :=
∑
α

xα,

where the sum is over all distinct compositions that can be obtained by rearranging the parts of α. If xα is

a monomial of the symmetric function f , then necessarily xβ is also a monomial of f for every β that can

be obtained by rearranging the parts of α. Thus f can be written uniquely as a finite positive sum of the

monomial symmetric functions mλ. Therefore {mλ} is a Z-linear basis of Λ and the dimension of Λ(m)

is the number of partitions of m.

We may consider a second action of Sn on R where a permutation acts by permuting variables and then

multiplying by the sign of the permutation. The invariants of this action are the alternating polynomials

in n variables, vnΛn. These are precisely the polynomials where setting any two variables equal yields 0.

The sum of two alternating polynomials is alternating, but the product is not. Hence vnΛn is not a subring

of R, though it is a module over Λ. As with Λn, vnΛn is graded by degree, though for technical reasons one

might prefer to shift the degree by
(
n
2

)
.

Let vn :=
∏

1≤i<j≤n(xi − xj) be the Vandermonde determinant. This is an alternating polynomial

and moreover divides every other alternating polynomial. The quotients are necessarily symmetric. Hence

every alternating polynomial can be written as vn times a symmetric polynomial. (This fact justifies the

notation vnΛn for the module of alternating polynomials.)

For a weak composition α (i.e., a finite sequence of nonnegative integers), define

ãα :=
∑
σ∈Sn

sgn(σ)xσ(α).

Note that if xα is a term of the alternating polynomial f , then so is every other term of ãα. Moreover if

α has any repeated parts, then clearly ãα = 0. Hence vnΛn has a natural basis of polynomials ãθ, for θ

ranging over strict partitions, that is partitions with distinct parts.
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Every strict partition may be written uniquely as δ+λ, where δ = (n−1, n−2, . . . , 0) and λ is a partition.

We write aλ := ãδ+λ, to obtain a basis of vnΛ indexed by partitions. That is, the dimension of the space

of alternating polynomials of degree m
(
n
2

)
equals the dimension of the space of symmetric polynomials of

degree m. Indeed, we can even identify the isomorphism; it is just multiplication by vn = ãδ = a(0). If we

shifted the grading of vnΛn as suggested above (so that vn is in degree 0), then multiplication by vn is an

isomorphism Λn → vnΛn of graded Λ-modules.

The basis of Λ that we get by pulling back the aλ basis of vnΛn is not the basis of monomial symmetric

functions, but rather something more interesting. We call these polynomials

sλ :=
aλ
vn
,

the Schur polynomials.

The Schur basis is our favorite basis of Λ, so we will study it in some more detail. The most basic

question one might wish to resolve about sλ is the following: What are the terms of the polynomial sλ?

Theorem 1.5. sλ =
∑
T∈SSYT(λ) x

content(T ).

Proving the above formula requires some combinatorial machinery that we will not otherwise need, so we

omit the proof here. What will be useful to us instead is merely to prove combinatorially that the polynomial

of the right side of Theorem 1.5 is in fact symmetric.

First we need to extend the jeu de taquin of Section 1.2.3 to semistandard tableaux. To do so, it suffices

to decide how to break ties of the form
• i

i
. We declare that in this case, we treat the left i as smaller:

• i

i
7→ i i

•
.

We can now define infusion for semistandard tableaux. Let T ∈ SSYT(α) where α is possibly a skew

shape. Let U ∈ SSYT(β/α) be a semistandard tableau on a disjoint alphabet from T . We will here write

the labels of U as circled numbers to distinguish them from the uncircled labels of T . Consider the layered

tableau (T,U) that is the union of T and U . Then

inf(T,U) = (U?, T ?)

is obtained as follows: Consider the largest number M that appears in T . The rightmost box of T that

contains M is an inner corner I for U . Replace this M by • and apply jeu de taquin to U at this inner
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corner, until the • reaches an outer corner of U . Place M in this outer corner. Now consider the largest

number M ′ that appears in T ′, the remainder of T . The rightmost box of T ′ that contains M ′ is an inner

corner I ′ for U ′, the modified U . Now apply jeu de taquin to U ′ at I ′. We continue in this manner as many

times as there are boxes of T . The “inner” tableau of circled numbers is U? and the “outer” tableau of

uncircled numbers is T ?. If α is a straight shape, then U? = rect(U). Furthermore:

Proposition 1.1. Infusion is an involution: inf(U?, T ?) = (T,U).

Example 1.12. Let (T,U) be the layered tableau

1 1 3

2 1

1 2

.

Then to produce inf(T,U), we first perform jeu de taquin on U at the 2 in T , then place 2 in the vacated

outer corner of U :

1 1 3

2 1

1 2

7→ 1 1 3

1 1

2 2

.

Next we perform jeu de taquin at the right 1 and then at the left 1, producing in turn

1 1 3

1 1

2 2

and then
1 1 3

2 1

1 2

=: inf(T,U).

The reader may check that performing infusion on the layered tableau inf(T,U) recovers (T,U). ♦

Next we define the Bender-Knuth involutions originally introduced in [BeKn72]. Given a semistan-

dard tableau Ω, consider the subtableau T consisting of those boxes containing i and the subtableau U

consisting of those boxes containing i+ 1. Circle the labels of U . Now define BKi(Ω) to be obtained from Ω

by replacing the subtableau (T,U) with (U?, T ?), switching the labels i and i+ 1, and removing circlings.

Example 1.13. Let Ω =
1 1 1 2

2 3
. Then BK1(Ω) =

1 1 2 2

2 3
, BK2(Ω) =

1 1 1 3

2 3
,

and BK3(Ω) =
1 1 1 2

2 4
. ♦

Proposition 1.2. BKi is an involution. Moreover, BKi is a bijection from {Ω ∈ SSYT(ν/λ) : content(Ω) =

(γ1, . . . , γi, γi+1, . . .)} to {Ω ∈ SSYT(ν/λ) : content(Ω) = (γ1, . . . , γi+1, γi, . . .)}.
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Proof. The first sentence is immediate from Proposition 1.1. The second sentence follows from the definition

of BKi and the first sentence.

Corollary 1.1.
∑
T∈SSYT(λ) x

content(T ) is a symmetric function.

Proof. Immediate from the above proposition since the symmetric group is generated by the adjacent trans-

positions (i(i+ 1)).

The last fact that we need about Schur functions is that multiplying Schur functions is the same as

computing in the cohomology of Grassmannians:

Theorem 1.6. For partitions λ, µ, ν, we have

sλ · sµ =
∑
ν

cνλ,µsν .

1.4 The Robinson-Schensted-Knuth correspondence

The Robinson-Schensted-Knuth (RSK) correspondence is an algorithm for converting a string w of

positive integers into a pair of tableaux (P (w), Q(w)) of the same shape, of which the first is semistandard

and the second standard. (In fact the full RSK algorithm is somewhat more general, but we will only need

the case defined here and some extensions of that to be described later.) RSK is usually described as a

“bumping” algorithm, but we can define half of it through jeu de taquin. We will start with the latter

description, since we have already developed some ideas about jeu de taquin.

Let w be a word of n positive integers. Arrange the letters of w along the antidiagonal from southwest

to northeast. More precisely, we fill the skew shape δn+1/δn to produce the semistandard skew tableau Tw.

Now P (w) := rect(Tw).

To find the standard tableau Q(w), we will have to construct P (w) instead by bumping. Let T be a

semistandard tableau and i a positive integer. The bump of i into T is the semistandard tableau T W i

constructed as follows. If i is at least as large as every label of the first row of T , place i at the end of the

first row; the result is T W i. Otherwise find the leftmost label j of the first row that is larger than i and

replace it with i. If j is at least as large as every label of the second row, place j at the end of the second

row; the result is T W i. Otherwise find the leftmost label k of the second row that is larger than j and

replace it with j. Continue by inserting k into the third row, etc. The algorithm is guaranteed to terminate,

since there are only finitely many rows in T .
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Example 1.14. Let

T =
1 1 1 2 3 5

2 3 4

4 4

.

We will construct T W 1. First we insert 1 into the first row of T , bumping out 2 and obtaining

1 1 1 1 3 5

2 3 4

4 4

.

Then we insert 2 into the second row, bumping out 3 to obtain

1 1 1 1 3 5

2 2 4

4 4

.

Next we insert 3 into the third row, bumping out the left 4 to obtain

1 1 1 1 3 5

2 2 4

3 4

.

Finally we insert 4 into the fourth row. Since the fourth row is empty, 4 is at least as large as every label in

the fourth row. Hence we place 4 in the fourth row to find the tableau

1 1 1 1 3 5

2 2 4

3 4

4

,

which is T W 1.

In contrast, T W 5 is just obtained by appending a 5 to the end of the first row of T . ♦

Let T0 be the empty tableau of shape ∅. One can show that

P (w) = T0 W w := (· · · ((T0 W w1) W w2) W . . . ) W wn,

where w = w1w2 . . . wn. Observe that the shape of T is always contained in the shape of T W i and that
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T W i always has exactly one more box than T . We define Q(w) to be the standard tableau that has k in

the box

shape(T0 W w(k))/shape(T0 W w(k−1)),

where w(k) denotes the first k letters of w.

Example 1.15. Let w = 21143. We have

(P (w(1)), Q(w(1))) =

(
2
,

1
)
,

(P (w(2)), Q(w(2))) =

 1

2
,

1

2

 ,

(P (w(3)), Q(w(3))) =

 1 1

2
,

1 3

2

 ,

(P (w(4)), Q(w(4))) =

 1 1 4

2
,

1 3 4

2

 ,

(P (w), Q(w)) = (P (w(5)), Q(w(5))) =

 1 1 3

2 4
,

1 3 4

2 5

 .

Observe that Q(w) is standard, while P (w) is semistandard. ♦

Given a pair of tableau (P,Q) of this form, it is not hard to see that one can reconstruct the word w

by reversing the bumping algorithm on P according to the order dictated by Q. Hence RSK is a bijection

between words and pairs of such tableaux.

1.4.1 Knuth equivalence

Since RSK is a bijection from words to pairs of tableaux (P,Q), if we follow RSK by forgetting the Q tableau

and remembering only the P tableau, the map is many-to-one. In fact, for a fixed P of shape λ, the size of

the fiber over P is fλ, the number of standard Young tableaux of shape λ. We say two words are Knuth

equivalent if they correspond to the same P tableau.

In [Kn70], D. Knuth studied this notion in detail. We think of words as elements of the free monoid

(Z>0)? on the alphabet of positive integers. D. Knuth identified cubic relations such that two words are

equivalent in the quotient of (Z>0)? by these relations if and only if the two words are Knuth equivalent.
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Definition 1.1. The plactic monoid is the quotient

(Z>0)?
/
〈yzx = yxz, acb = cab〉x<y≤z

a≤b<c

Theorem 1.7. Two words are Knuth equivalent if and only if they represent the same element of the

plactic monoid. Two skew tableaux are jeu de taquin equivalent if and only if their reading words are Knuth

equivalent.

A consequence of Theorem 1.7 is that every Knuth equivalence class contains the reading word of a

unique tableau of straight shape; hence one may choose to identify the elements of the plactic monoid with

the semistandard tableaux of straight shape. Theorem 1.7 can be used to great effect in some instances

to determine rectifications of skew tableaux without performing jeu de taquin. We will use this trick, for

example, in Section 7.5. In Chapter 9, we will do something similar with a related monoid corresponding to

another type of tableau.

1.5 Organization

The remainder of this thesis is organized as follows.

In Chapter 2 (joint work with J. Bloom and D. Saracino [BlPeSa16]), we prove a conjecture of J. Propp–

T. Roby [PrRo13b] on homomesy of semistandard tableaux under promotion, a composition of Bender-Knuth

involutions. Our solution uses much of the tableau combinatorics described in this introduction, but little

to none of the geometry.

In Chapter 3 (joint work with A. Yong [PeYo16]), we lift the geometric discussion of this introduction

to the K-theory of Grassmannians. We develop there the analogous combinatorics of tableaux and puzzles

governing K-theoretic Schubert calculus. We describe known rules that extend the rules (H.2) and (H.3)

(described in Sections 1.2.2 and 1.2.3), and give the first combinatorial rule extending (H.1) to K-theory.

In Chapter 4 (joint work with A. Yong [PeYo15b]), we turn to torus-equivariant K-theory of Grass-

mannians, where we prove the first Littlewood-Richardson rule. Our rule extends the rule (H.1) for the

cohomological coefficients and transparently exhibits the positivity established geometrically in [AnGrMi11].

In Section 4.13, we prove a conjectural rule of H. Thomas–A. Yong [ThYo13, Conjecture 4.7] for the same

coefficients (generalizing the (H.3) rule).

In Chapter 5 (joint work with A. Yong [PeYo15c]), we exhibit a counterexample to a conjectural puzzle

rule for these coefficients due to A. Knutson–R. Vakil [CoVa05], and prove a mild correction to it. The

resulting puzzle rule generalizes the rule (H.2).
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In Chapter 6 (joint work with A. Yong [PeYo16]), we extend the results of Chapter 3 to the K-theory of

maximal orthogonal Grassmannians and provide some conjectures about the K-theoretic Schubert calculus

of Lagrangian Grassmannians. Our rule for maximal orthogonal Grassmannians extends a cohomological

rule given in another context by J. Stembridge [Ste89].

Chapter 7 (primarily derived from [Pe14]) uses the K-theoretic combinatorics developed in Chapter 3

to introduce and study a K-theoretic analogue of promotion, for which we prove an instance of the cyclic

sieving phenomenon of V. Reiner–D. Stanton–D. White [ReStWh04]. Our main theorems generalize results

of J. Stembridge [Ste95] and D. White [Wh07]. In Section 7.7 (joint work with J. Bloom and D. Saracino

[BlPeSa16]), we obtain a related instance of homomesy, partially generalizing a result from Chapter 2.

Chapter 8 (joint work with K. Dilks and J. Striker [DiPeSt15]) relates K-promotion to the operation

of rowmotion on plane partitions, and uses this connection to prove new results about both actions. In

particular, we prove a new case of a plane partition conjecture of P. Cameron and D. Fon-der-Flaass [CaFo95].

Finally, in Chapter 9 (joint work with Z. Hamaker, R. Patrias, and N. Williams [HPPW16]), we give

the first bijective proof of a 1983 theorem of R. Proctor on plane partitions by continuing to exploit the

connection to K-theoretic combinatorics initiated in Chapter 8. Our proof relies heavily on the results

described in Section 3.1.4.
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Chapter 2

Homomesy in promotion of
semistandard tableaux

This chapter describes joint work with Jonathan Bloom and Dan Saracino, previously published in [BlPeSa16].

2.1 Introduction

Let G be a group acting on a set X of combinatorial objects, with finite orbits, and ξ : X → C any complex-

valued function. The triple (X,G, ξ) is homomesic if for any orbits O1,O2, the average value of the statistic

ξ is the same, that is

1

|O1|
∑
x∈O1

ξ(x) =
1

|O2|
∑
y∈O2

ξ(y).

If X is finite, this implies that the average value of ξ on any orbit is the average value of ξ on X. The

concept of homomesy was first isolated by J. Propp and T. Roby [PrRo13a, PrRo15], although instances of

homomesy were previously conjectured in [Pa09] and proved in [ArStTh13].

Let SSYTk(m × n) denote the set of semistandard Young tableaux of shape m × n, i.e., m rows and n

columns, with entries bounded above by k. There is a promotion operator P on SSYTk(m× n), defined

as follows: Delete all 1’s, rectify, decrement all labels by 1, and fill all empty boxes with k. By Theorem 1.3,

the operator is well-defined.

Example 2.1. Let k = 6 and T = 1 1 2 3

3 3 4 4

5 5

. Then P(T ) = 1 2 2 3

2 3 6 6

4 4

. ♦

For T ∈ SSYTk(m× n) and S a set of boxes in the m× n rectangle, define σS(T ) to be the sum of the

entries of T in the boxes of S. Further let 〈P〉 be the cyclic group generated by P. With this language the

main result of this chapter, which proves a conjecture of J. Propp and T. Roby [PrRo13b], is the following.

Theorem 2.1. If S is fixed under 180◦ rotation, then (SSYTk(m× n), 〈P〉, σS) is homomesic.

This result looks remarkably similar to certain homomesies discovered by J. Propp and T. Roby [PrRo15].

These latter results relate to rowmotion (a.k.a. Fon-der-Flaass map, Panyushev complementation, etc.) and
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promotion of order ideals in rectangular posets m × n. We do not know any concrete relation between

Theorem 2.1 and any of the results of [PrRo15]. Note that ‘promotion’ in this order ideal context is quite

different from the promotion we use for tableaux; the coincidence of terminology reflects the relation worked

out in [StWi12] between tableau promotion for 2-row rectangles and order ideal promotion in the type A

positive root poset. D. Einstein and J. Propp [EiPr14] have shown that tableau promotion on SSYTk(m×n) is

naturally conjugate to a piecewise-linear lift of order ideal promotion to the rational points with denominator

dividing n in the order polytope of m×(k−m). We will study poset promotion and rowmotion in Chapter 8,

uncovering further relations to tableau promotion.

This chapter is structured as follows. In Section 2.2, we define promotion and evacuation for semistandard

Young tableaux and prove various important properties. Although most of these results for standard Young

tableaux may be readily found in the literature (see e.g. [Sta09]), analogous statements and proofs for

semistandard Young tableaux were previously hard to find, if not completely missing from the literature. In

Section 2.3, we prove Theorem 2.1 via growth diagrams. In Section 2.4, we describe cominuscule posets and

prove an extension of Theorem 2.1 for them.

2.2 Basic facts about promotion and evacuation

Both promotion and evacuation have been extensively studied in the context of standard Young tableaux

(SYT). See [Sta09] for a comprehensive survey. It has been widely believed that most results about promotion

and evacuation generalize to the semistandard setting; however, explicit statements and proofs have been

mostly lacking from the literature. The purpose of this section is to provide explicit definitions of promotion

and evacuation for semistandard Young tableaux, and to prove some of their most important combinatorial

properties.

For partitions µ ⊂ λ, we denote by SSYTk(λ/µ) the set of all semistandard Young tableaux of skew

shape λ/µ with ceiling k, i.e., all entries are ≤ k. If µ = ∅, we write simply SSYTk(λ) and refer to λ as a

straight-shape. If λ is an n×m rectangle, we write SSYTk(n×m) for SSYTk(λ).

2.2.1 Promotion

For the remainder of this section we will fix an arbitrary partition λ. We will need an alternative definition

of promotion based on Bender-Knuth involutions.

Theorem 2.2. For any T ∈ SSYTk(λ), we have P(T ) = BKk−1 ◦ BKk−2 ◦ · · · ◦ BK1(T ).

Example 2.2. Using the tableau T from Example 2.1 we obtain
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T =
1 1 2 3

3 3 4 4

5 5

BK1−−−−−−→ 1 2 2 3

3 3 4 4

5 5

BK2−−−−−−→ 1 2 2 3

2 3 4 4

5 5

BK3−−−−−−→ 1 2 2 3

2 3 4 4

5 5

BK4−−−−−−→ 1 2 2 3

2 3 5 5

4 4

BK5−−−−−−→ 1 2 2 3

2 3 6 6

4 4

,

which we see is the same as P(T ). ♦

2.2.2 Evacuation

We now define evacuation for semistandard Young tableaux.

Definition 2.1. For T ∈ SSYTk(λ), define a sequence ε1(T ), ε2(T ), . . . , εk(T ) as follows. Let ε1(T ) = P(T ).

For j ≥ 2, obtain εj(T ) by freezing the entries k, . . . , k − (j − 2) in εj−1(T ) and promoting the remaining

portion. We define the evacuation E(T ) of T to be εk(T ).

Using the characterization of promotion by Bender-Knuth involutions, we see that evacuation has the

following alternative description:

E = BK1 · (BK2BK1) · · · · · (BKk−3 · · ·BK1) · (BKk−2 · · ·BK1) · (BKk−1 · · ·BK1).

For rectangular T ∈ SSYTk(m×n), let rot(T ) denote the element of SSYTk(m×n) obtained by rotating

T by 180◦ and then replacing each entry i by k + 1− i.

We will also need the dual evacuation of T , which we denote by E ′(T ). This is defined analogously to

evacuation except that here we use the inverse of promotion and freeze elements from smallest to largest. It

is easy to see that in the context of rectangular semistandard Young tableaux,

E ′(T ) = rot(E(rot(T ))). (2.1)

Dual evacuation also has a characterization in terms of Bender-Knuth involutions:

E ′ = BKk−1 ·(BKk−2BKk−1) · · · · ·(BK3 · · ·BKk−2BKk−1) ·(BK2 · · ·BKk−2BKk−1) ·(BK1 · · ·BKk−2BKk−1).

Example 2.3. Using the T from Example 2.1, we illustrate each step in the definition of evacuation below.
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The shading at each step denotes the boxes that are frozen.

T = 1 1 2 3

3 3 4 4

5 5

−→ 1 2 2 3

2 3 6 6

4 4

−→ 1 1 1 2

2 3 6 6

3 5

−→ 1 1 4 4

2 2 6 6

4 5

−→ 1 1 4 4

3 3 6 6

4 5

−→ 1 1 4 4

3 3 6 6

4 5

−→ 2 2 4 4

3 3 6 6

4 5

,

So

E(T ) = 2 2 4 4

3 3 6 6

4 5

. ♦

2.2.3 A fundamental theorem on promotion and evacuation

The following theorem contains the results we will need about promotion and evacuation. For the special

case of standard tableaux, proofs of parts (a), (b), and (c) are readily available in the literature (see, e.g.,

[Sta09, Theorem 2.1]) and are essentially due to M.-P. Schützenberger.

Theorem 2.3. Let T ∈ SSYTk(λ). Then

(a) E2(T ) = T ,

(b) E ◦ P(T ) = P−1 ◦ E(T ),

(c) if λ is rectangular, Pk(T ) = T ,

(d) if λ is rectangular, E(T ) = rot(T ).

Proof of parts (a)-(c). We take part (d) as given. (Part (d) is proved below without reference to (a)–(c).)

We imitate the proof of [Sta09, Theorem 2.1] (based on an idea of Haiman [Ha92]), using the formulation of

promotion in terms of Bender-Knuth involutions.

Let G be the quotient of the free group with generators x1, . . . , xk−1 by the relations

x2i = 1, 1 ≤ i ≤ k − 1

xixj = xjxi, if |i− j| > 1.

(2.2)
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Let

y = xk−1xk−2 · · ·x1

z = x1 · (x2x1) · · · · · (xk−3 · · ·x1) · (xk−2 · · ·x1) · (xk−1 · · ·x1)

z′ = xk−1 · (xk−2xk−1) · · · · · (x3 · · ·xk−2xk−1) · (x2 · · ·xk−2xk−1) · (x1 · · ·xk−2xk−1).

Since the Bender-Knuth involutions BK1, . . . ,BKk−1 satisfy the defining relations (2.2) of G, letting xi act

as BKi defines a permutation representation of G on SSYTk(λ). Under this representation y acts as P, z

acts as E and z′ acts as E ′. By [Sta09, Lemma 2.2], the following hold in G:

z2 = (z′)2 = 1

yk = z′z

zy = y−1z.

(2.3)

This proves (a) and (b).

Now assume T ∈ SSYTk(m× n) is rectangular. By (2.3), Pk = E ′ ◦ E . Additionally,

E ′ ◦ E(T ) = E ′(rot(T )) = rot(E(T )) = T,

where the first and third equalities follow from (d) and the second equality from (2.1). This proves (c).

For the proof of (d) we will need the Robinson-Schensted-Knuth (RSK) correspondence, as described in

Section 1.4. The main ingredient for our proof of (d) is the following standard fact, which is a special case

of part 4 of the Duality Theorem of [Fu97, p. 184].

Fact 2.1. Fix k > 0 and let w = w1 · · ·wn be a word in the letters {1, . . . , k} and rot(w) = (k+1−wn)(k+

1− wn−1) . . . (k + 1− w1). Then P (rot(w)) = E(P (w)).

For any tableau P we let Rread(P ) denote its row reading word, the word formed by reading the rows

from right to left and from top to bottom.

Proof of (d). As T is rectangular, we have Rread(rot(T )) = rot(Rread(T )). Hence Fact 2.1 yields

rot(T ) = P (Rread(rot(T ))) = P (rot(Rread(T ))) = E(P (Rread(T ))) = E(T ),

where the first and last equalities are the standard fact that the insertion tableau of a row reading word is

just the underlying tableau.
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2.3 Proof of Theorem 2.1

Definition 2.2. Let T ∈ SSYTk(m× n). For a box B in T , we define Dist(T,B) to be the multiset

Dist(T,B) = {σ{B}(Pi(T )) : 0 ≤ i ≤ k − 1}.

Lemma 2.1. If T ∈ SSYTk(m× n) and B is a box in T , then Dist(T,B) = Dist(E(T ), B).

We delay the proof of Lemma 2.1, first showing how Theorem 2.1 follows immediately.

Proof of Theorem 2.1. If T ∈ SSYTk(m × n), then it follows from Theorem 2.3(b, c), that the orbits of T

and E(T ) under promotion are of the same size `, and that `|k. By Lemma 2.1 and Theorem 2.3(b) we have

the following multiset equalities

{σ{B}(Pi(T )) : 0 ≤ i < `} = {σ{B}(Pi ◦ E(T )) : 0 ≤ i < `} = {σ{B}(E ◦ Pi(T )) : 0 ≤ i < `}.

Theorem 2.3(d) now implies that Dist(T,B) = {k+1−i : i ∈ Dist(T,B′)}, where B′ is the box corresponding

to B under 180◦ rotation. This last statement immediately implies Theorem 2.1. Specifically, the average

value of σS on any orbit is (k+1)|S|
2 .

The remainder of this section is devoted to a proof of Lemma 2.1, using the growth diagrams of S. Fomin.

(For additional information on growth diagrams, cf. [Sta99, Appendix 1] or [Sta09, §5].) For T ∈ SSYTk(λ),

the growth diagram of T is built as follows. Let T≤j denote the Ferrers diagram consisting of those boxes

of T with entry i ≤ j. Identify T with a particular multichain in the Young lattice, explicitly with the

sequence of Ferrers diagrams (T≤j)0≤j≤k. Note that this sequence uniquely encodes T . Now write this

sequence of Ferrers diagrams horizontally from left to right. Below this sequence, draw, in successive rows,

the sequences of Ferrers diagrams associated to Pi(T ) for i ≥ 1. Above this sequence, draw, in successive

rows, the sequences of Ferrers diagrams associated to Pi(T ) for i ≤ −1. This gives a doubly infinite array.

Now offset each row one position to the right of the row immediately above it. Example 2.4 shows an

example of this construction. The rank of a partition in the growth diagram is the number of partitions

appearing strictly left of it in its row, or equivalently the number of partitions appearing strictly below it in

its column.

Example 2.4. Let T ∈ SSYT5(2 × 3) be the semistandard Young tableau
1 2 3

3 4 4
. Then the growth
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diagram of T is ...

∅

∅

∅

∅

∅ ∅

∅

...

where the top displayed row corresponds to T and the bottom displayed row to P5(T ) = T . Each row

encodes a chain of length 5, since we consider T ∈ SSYT5(2× 3). ♦

Proof of Lemma 2.1. Let T and B be as in the statement of the lemma, and consider the growth diagram

of T . We darken all shapes in the growth diagram that contain the box B (as in Example 2.5). Consider

any row and the tableau R it encodes. Now look at the column containing the rightmost Ferrers diagram

in this row. It is well known that, for standard T , this column is the multichain of shapes that encodes

E(R). (See [Sta99, p. 427].) In fact the same is true for semistandard T . To verify this, we observe that, for

1 ≤ j ≤ k, the shape with rank k− j in the indicated column is Pj(R)≤k−j , and we only need to verify that

this is E(R)≤k−j , i.e., that Pj(R)≤k−j = εj(R)≤k−j . But in fact more than this is true. The placements

of the integers 1, . . . , k − j in Pj(R)≤k−j are exactly the same as the placements of these integers in εj(R).

This follows from the fact that for any V in SSYTk(λ), and every positive integer m ≤ k, the placements of

1, . . . ,m+ 1 in V determine the placements of 1, . . . ,m in P(V ).

It now follows from Theorem 2.3(b) that if a column of the growth diagram encodes a tableau V , then

the column to the left of this column encodes P(V ).

Returning to the growth diagram of T , note that if we fix any set {Ri : i ∈ I} of k consecutive rows, then
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as multisets Dist(T,B) = {rank(Di) : i ∈ I}, where Di is the leftmost darkened shape in Ri. Similarly if we

fix any set {Cj : j ∈ J} of k consecutive columns, then Dist(E(T ), B) = {rank(Dj) : j ∈ J}, where Dj is the

bottommost darkened shape in Cj . We call a darkened shape row-minimal if it is the leftmost darkened

shape in some row, and column-minimal if it is the bottommost darkened shape in some column. We call

a darkened shape minimal if it is either row-minimal or column-minimal.

To see that Dist(T,B) = Dist(E(T ), B), let R0, . . . , Rk be any set of k+1 consecutive rows of the growth

diagram in descending order. Let D0 and Dk be the row-minimal shapes in rows R0 and Rk, respectively,

and note that the column containing Dk is k columns to the right of the column containing D0. Now list

all the minimal shapes in row R0 from left to right, followed by all the minimal shapes in row R1, and so

on, concluding with just the single minimal shape Dk from row Rk. Consider all these shapes to be vertices.

Note that two successive vertices Dj , Di in this list may have the same rank, r, if Dj is column-minimal and

Di is row-minimal (in the next row). Whenever this occurs we insert a new vertex of rank r+ 1 to the right

of Dj and above Di. If the elements of the augmented list of vertices are v0, v1, . . . , we define a path P in

the first quadrant of the xy-plane by replacing each vi by the point (i, rank(vi)), and connecting successive

points with up-steps (1, 1) and down-steps (1,−1).

By the preceding paragraph Dist(T,B) is the multiset of ranks of row-minimal shapes in rows R1 through

Rk. By the construction of P this is the multiset M1 of heights of right endpoints of down-steps in P . Since

P starts and ends at the same height, M1 equals the multiset M2 of heights of left endpoints of up steps

in P . By the construction of P , M2 is the multiset of ranks of column-minimal shapes in rows R0 through

Rk−1, i.e., M2 is Dist(E(T ), B). This concludes the proof.

Example 2.5. As in Example 2.4, let

T = 1 2 3
3 4 4

,

where we have shaded the box B. If we now shade all the Ferrers diagrams containing B, we obtain the
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following shaded growth diagram:

...

∅

∅

∅

∅

∅ ∅

∅

...

We have Dist(T,B) = {2, 3, 3, 4, 4} = Dist(E(T ), B), and we obtain the path

.

♦

Remark 2.1. Note that the same proof shows that Lemma 2.1 remains true for T ∈ SSYTk(λ) even when

λ is not rectangular.

Remark 2.2. Growth diagrams are closely related to the Bender-Knuth involutions of Section 2.2. We

illustrate with an example. Consider a path through the below growth diagram that starts at the left side

and reaches the right by a sequence of ‘hops’, either one Ferrers diagram up or one Ferrers diagram to

the right. This path encodes a semistandard tableau in an obvious way. In this example, the solid line
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encodes the tableau A = 1 1 3
2 3 5

, while the dotted line encodes B = 1 1 2
2 3 5

. It follows easily from the

definitions, that ‘bending’ the path at a corner (or at either end) corresponds to applying a single Bender-

Knuth involution, BKi. In this example, B = BK2(A) and A = BK2(B). Note that this observation gives

an alternative way of seeing that the central column encodes the evacuation of the top row....

∅

∅

∅

∅

∅ ∅

∅

...

2.4 Linear extensions of cominuscule posets

In this section, all posets are assumed finite. A linear extension of a poset P is an order-preserving

bijection onto a chain d := 1 < 2 < · · · < d, where d = |P |. Observe that standard Young tableaux of

shape λ may be identified with linear extensions of λ, where we think of λ as a poset in which each box is

covered by those immediately below it and to its right. We write SYT(P ) for the set of linear extensions of

a poset P . (Note that we do not generally have a notion corresponding to semistandard tableaux.) There

are analogous definitions of promotion and evacuation in this setting (cf. [Sta09]), which we denote by P

and E respectively. If S is a set of elements in the poset P and T : P → d is a linear extension, we define

similarly to before:

σS(T ) :=
∑
s∈S

T (s).
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We now prove a generalization of Theorem 2.1 to the larger class of cominuscule posets. Although we

define this class algebraically, it may also be described purely combinatorially. In defining this class of

posets, we mostly follow the notation and exposition of [ThYo09a]. We recommend [BiLa00] and [ThYo09a]

for further details and references regarding these well-studied posets and associated geometry.

Let G be a complex connected reductive Lie group with maximal torus T . Let W denote the Weyl group

N(T )/T . Let Φ = Φ+ t Φ− denote the root system of G, as partitioned into positive and negative roots,

with ∆ denoting the choice of simple roots. The set Φ+ of positive roots has a poset structure (Φ+, <)

defined as the transitive closure of the covering relation αl β if and only if β − α ∈ ∆.

We say a simple root µ is cominuscule if for every α ∈ Φ+, µ appears with multiplicity at most 1 in the

simple root expansion of α. For µ cominuscule, let Λµ ⊆ (Φ+, <) be the subposet of positive roots for which

µ appears in the simple root expansion. We call such a poset cominuscule. These posets govern much of

the geometry of the so-called cominuscule varieties, which “next to Pn, may be considered as the simplest

examples of projective varieties” [BiLa00, §9]. In the case G = GLn(C), every simple root is cominuscule,

the corresponding cominuscule varieties are complex Grassmannians, and the corresponding cominuscule

posets are rectangles. We will study the geometry of (co)minuscule varieties in Chapter 6.

The cominuscule posets are completely classified: there are three infinite families (rectangles, shifted

staircases, propellers) and two exceptional examples. These are all illustrated in Figure 2.1. We will prove

additional results on cominuscule posets in Chapter 9.

The parabolic subgroups of W are in canonical bijection with the subsets of ∆. For µ cominuscule, let

wµ denote the longest element of the parabolic subgroup Wµ ≤ W corresponding to the subset ∆\{µ}. It

is not hard to show that wµ acts as an involution on Λµ. Following [ThYo09a, §2.2], we denote this action

on Λµ by rotate. For rectangles, propellers, and the Cayley poset, this action is exactly 180◦ rotation. For

shifted staircases and the Freudenthal poset, it is reflection across the antidiagonal.

The following theorem generalizes Theorem 2.1 to include nonrectangular cominuscule posets.

Theorem 2.4. Let P be a cominuscule poset, S ⊆ P a set of elements fixed under rotate, and C = 〈c〉,

the cyclic group with c acting on SYT(P ) by promotion. Then

(SYT(P ), C, σS)

is homomesic.

Proof. Let T ∈ SYT(P ) with P cominuscule. By [ThYo15, Lemma 5.2], E(T ) may be formed by applying

rotate and reversing the alphabet (so i becomes |P |+ 1− i).
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(a) Rectangle (b) Shifted staircase (c) Propeller

(d) Cayley poset (e) Freudenthal poset

Figure 2.1: The five families of cominuscule posets. The boxes are the elements of the poset, and each box is
covered by any box immediately below it or immediately to its right. Rectangles may have arbitrary height
and width. Shifted staircases have arbitrary width, and height equal to their width; hence a shifted staircase
of width n contains

(
n+1
2

)
elements. Propellers consist of two rows of arbitrary but equal length, overlapping

by two boxes in the center. The Cayley and Freudenthal posets are unique, containing 16 and 27 elements,
respectively.

The theorem then follows from a poset analogue of Lemma 2.1. For this the growth diagram proof of

Lemma 2.1 may be copied nearly verbatim, using the cardinality of the promotion orbit in place of k.
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Chapter 3

K-theoretic Schubert calculus

This chapter derives from joint work with Alexander Yong from [PeYo16].

3.1 Introduction

Recall X = Grk(Cn) denotes the Grassmannian of k-dimensional linear subspaces of Cn. Textbook

discussion of Schubert calculus revolves around classes of Xλ in the cohomology ring H?(X,Z); see, e.g.,

[Fu97]. As discussed in Chapter 1, these classes form a Z-linear basis of H?(X,Z). Their structure constants

σ ` σµ =
∑
ν

cνλ,µσν

with respect to the cup product are given by the classical Littlewood-Richardson rules (described in Sec-

tion 1.2) that govern the multiplication of Schur functions.

There has been significant attention on K-theoretic Schubert calculus, which provides a richer setting

for study; see, e.g., [Br05, Bu05, Va06, Kn14] and the references therein. The Grothendieck ring K0(X)

is the free abelian group generated by isomorphism classes [V ] of algebraic vector bundles over X under the

relation

[V ] = [U ] + [W ]

whenever there is a short exact sequence

0→ U → V →W → 0.

The product structure on K0(X) is given by the tensor product of vector bundles, i.e.,

[U ] · [V ] = [U ⊗ V ].
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Since X is a smooth projective variety, the structure sheaf OXλ has a resolution

0→ VN → VN−1 → · · · → V1 → V0 → OXλ → 0

by locally free sheaves. Therefore it makes sense to define the class [OXλ ] by

[OXλ ] :=

N∑
j=0

(−1)j [Vj ] ∈ K0(X).

Now, {[OXλ ]} forms a Z-linear basis of K0(X). Thus, define structure constants by

[OXλ ] · [OXµ ] =
∑
ν

aνλ,µ[OXν ]. (3.1)

A. Buch [Bu02] gave a combinatorial rule for aνλ,µ, thereby establishing

(−1)|ν|−|λ|−|µ|aνλ,µ ≥ 0.

A number of other rules have been discovered since, see, e.g., [Va06, BKSTY08, ThYo09b] and the references

therein, as well as the references above. In this chapter, we will prove yet another combinatorial rule and

develop some related combinatorics. Our work here will pay dividends in later chapters, when we apply

these ideas to other situations in which no combinatorial rule was known.

3.1.1 A. Buch’s combinatorial rule for aνλ,µ

We briefly recall the original combinatorial rule for aνλ,µ found by A. Buch [Bu02, Theorem 5.4]. Another

proof of this original rule has recently been given in [IkSh14]. One proof of our new rule will be by bijection

with this rule.

We first recall some definitions from [Bu02]. A set-valued tableau T of (skew) shape ν/λ is a filling of

the boxes of ν/λ with non-empty finite subsets of N with the property that any tableau obtained by choosing

exactly one label from each box is a (classical) semistandard tableau. The column reading word of T ,

denoted colword(T ) is obtained by reading the entries of T from bottom to top along columns and from left

to right. The entries in a non-singleton box are read in increasing order. Such a word (w1, w2, . . . , wN ) is a

reverse lattice word if the content of (wL, wL+1, . . . , wN ) is a partition for every 1 ≤ L ≤ N , that is to say

if its reverse is ballot. Finally, the shape µ ? λ is the skew shape obtained by placing µ and λ in southwest
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to northeast orientation with µ’s northeast corner incident to λ’s southwest corner. In other words

µ ? λ = (µ1 + λ1, . . . , µ1 + λ`(λ), µ1, µ2, . . . , µ`(µ))/(µ
`(λ)
1 ).

Example 3.1. If λ = and µ = , then µ ? λ = . ♦

Theorem 3.1 (A. Buch [Bu02, Theorem 5.4]). (−1)|λ|+|µ|−|ν|aνλ,µ equals the number of set-valued tableaux

T of shape µ ? λ and content ν such that colword(T ) is reverse lattice.

Let Buchν(µ ? λ) be the set of tableaux from Theorem 3.1.

Example 3.2. Let λ = (2, 1), µ = (1, 1) and ν = (3, 2, 1). Then Buchν(µ ? λ) consists of the two tableaux

B1 =

1 1

2

1, 2

3

and B2 =

1 1

2

1

2, 3

.

Hence aνλ,µ = −2. ♦

3.1.2 History of K-theoretic combinatorics

There is interest in finding K-analogues of elements of the classical Young tableau theory; see, e.g., [Le00,

Bu02, BKSTY08, ThYo09b, BuSa13, GMPPRST16, PaPy14, IkSh14, HKPWZZ15, LiMoSh16]. Although

these ideas were originally studied for geometric reasons, the combinatorics has been part of a broader

conversation in algebraic and enumerative combinatorics, e.g., Hopf algebras [LaPy07, PaPy16, Pa15], cyclic

sieving [Pe14, Rh15, PrStVi14], Demazure characters [RoYo15, Mo16+], homomesy [BlPeSa16], longest

increasing subsequences of random words [ThYo11], plane partitions [DiPeSt15, HPPW16], and poset edge

densities [ReTeYo16].

In [ThYo09b], H. Thomas and A. Yong introduced a jeu de taquin theory for increasing tableaux.

These tableaux are fillings of Young diagrams ν/λ with [`] := 1, 2, . . . , ` where ` ≤ |ν/λ| and the entries

increase in rows and columns (labels may be repeated). If ` = |ν/λ|, these are standard Young tableaux

and increasing tableau results closely parallel those for standard Young tableaux. An outcome was a new

Littlewood-Richardson rule for aνλ,µ (after [Bu02]) and its minuscule extension (see [ThYo09a, BuRa12,

ClThYo14, BuSa13]). We recall this jeu de taquin for increasing tableau in Section 3.1.4.

In [ThYo13], H. Thomas and A. Yong conjectured a jeu de taquin-based Littlewood-Richardson rule for

torus-equivariant K-theory of Grassmannians. In [PeYo15b], A. Yong and the author proved this conjecture
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by defining genomic tableaux as a semistandard analogue of increasing tableaux. These ideas will be the

main topic of Chapter 4.

increasing tableaux genomic tableaux

standard Young tableaux semistandard Young tableaux

K-semistandardization

K-standardization

semistandardization

standardization

Our goal is a theory of genomic tableaux parallel to that of [ThYo09b] for increasing tableaux. The

Schubert calculus application in [PeYo15b, PeYo15c] used edge-labeled genomic tableaux. In this chapter,

we give a logically independent development of genomic tableau combinatorics in the basic (i.e., non-edge

labeled) case. Our first application is to give a new Littlewood-Richardson-type rule for (ordinary) K-theory

of Grassmannians. Recently M. Gillespie and J. Levinson have applied genomic tableaux to the real geometry

of Schubert curves [GiLe16], while in forthcoming work R. Kaliszewski and J. Morse relate genomic tableaux

to the theory of Macdonald polynomials [KaMo16+].

3.1.3 Genomic tableau results

Let S be a semistandard Young tableau of a shape ν/λ. Place a total order on those boxes with entry i

using left to right order. A gene G (of family i) is a collection of consecutive boxes in this order, where no

two lie in the same row; we write family(G) = i. A genomic tableau T is a semistandard tableau together

with a partition of its boxes into genes. We indicate the partition by color-coding the boxes. The content

of T is the number of genes of each family. Note, a semistandard tableau T is a genomic tableau where each

gene is a single box. Moreover, the content of T agrees with the usual notion for semistandard tableaux.

Example 3.3. T =

1 2

1 1 2

2

has content (2, 1) since there are two genes of family 1 and one of family

2. ♦

A genotype G of a genomic tableau T is a choice of a single box from each gene.1 We depict G by

erasing the entries in all unchosen boxes of T .

1The genomic analogy is that boxes of a gene are alleles and the other genes of the same family are paralogs.
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Example 3.4. Continuing Example 3.3,

1 1

2

1

1

2

1 1 2

1

1 2

2

1 1

1 2

1

are the six genotypes of T . ♦

Suppose U is any filling of a subset of boxes of a shape. The sequence seq(U) of U is the reading

word obtained by reading its entries along rows from right to left and from top to bottom (ignoring empty

boxes). Now, seq(U) is a ballot sequence if the number of i’s that appear is always weakly greater than

the number of (i+ 1)’s that appear, at any point in the sequence. A genomic tableau T is ballot if seq(G)

is a ballot sequence for every genotype G of T . Notice if each gene of T is a single box, there is a unique

genotype (namely, the underlying semistandard tableau of T ) and the concept of a ballot tableau coincides

with the same notion for semistandard tableaux.

Example 3.5. The genotypes of Example 3.4 respectively have sequences: 112, 112, 211, 121, 211, and 211.

Since 211 is not a ballot sequence, T is not ballot. ♦

Our combinatorial results are:

1. A K-analogue of the (semi)standardization maps between standard and semistandard tableaux. This

relates genomic tableaux to increasing tableaux.

2. Using (1), we acquire genomic analogues of Knuth equivalence, jeu de taquin, infusion and Bender-

Knuth involutions.

3. Using (2), we describe a new basis {Uλ} of Λ where each Uλ is a generating series over genomic tableaux

of shape λ. This is a deformation of the Schur basis.

Using the above results, we prove the following.

Theorem 3.2 (Genomic Littlewood-Richardson rule). aνλ,µ = (−1)|ν|−|λ|−|µ| times the number of ballot

genomic tableaux of shape ν/λ and content µ.

Actually, in the case |ν| = |λ| + |µ|, aνλ,µ = cνλ,µ and Theorem 3.2 recovers the original rule (H.1) of

D.E. Littlewood-A.R. Richardson for multiplication of Schur functions [LiRi34], as described in Section 1.2.1.

Example 3.6. The tableau

1

1

2

is the unique witness of a
(3,2,1)
(2,1),(1,1) = −1. ♦
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Using the tableau results outlined in Section 3.1.3, the proof of Theorem 3.2 is derived from the corre-

sponding Littlewood-Richardson rule in [ThYo09b] by extending the discussion from Section 1.2.4.

3.1.4 The Thomas-Yong rule: Jeu de taquin for increasing tableaux

Let T be a filling of ν/λ with letters from the alphabet A. For a ∈ A, let Ta be the set of boxes of T that

share an edge with a distinct box containing a. For two letters a, b ∈ A, we may obtain a new filling of

ν/λ by switching the letters to obtain swapa,b(T ); the entry of box b ∈ ν/λ of swapa,b(T ) is determined as

follows:

swapa,b(T )(b) :=


a, if T (b) = b and b ∈ Ta;

b, if T (b) = a and b ∈ Tb;

T (b), otherwise.

Suppose T is an increasing tableau of shape ν/λ and I a set of inner corners. Let BulletI be the operator

that adds •’s to the boxes in I. The slide of T into I is

jdtI(T ) := DelBullets ◦ swapM,• ◦ · · · ◦ swap2,• ◦ swap1,• ◦ AddBulletsI(T ),

where M is the largest label of T and DelBullets deletes all •’s together with their boxes.

Example 3.7.

• 1

1 2

• 3

swap1,•−−−−→
1 •
• 2

• 3

swap2,•−−−−→
1 2

2 •
• 3

swap3,•−−−−→
1 2

2 •
3 •

DelBullets−−−−−−→
1 2

2

3

♦

When T is standard and |I| = 1, this process recovers M.-P. Schützenberger’s jeu de taquin, as described

in Section 1.2.3. If O is a set of outer corners of T , we also have a notion of reverse slide of T into O:

jdtO(T ) := DelBullets ◦ swap1,• ◦ · · · ◦ swapM−1,• ◦ swapM,• ◦ AddBulletsO(T ),

Two increasing tableaux T and T ′ are called jeu de taquin equivalent if they are related by a sequence

of (forward or reverse) slides.

If T is an increasing tableau of skew shape, a rectification of T is a increasing tableau T ′ that can be

reached from T by a sequence of forward slides for some choices of sets of inner corners. Interestingly this
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rectification is not generally unique, i.e. the analogue of Theorem 1.3 does not hold for increasing tableaux.

A unique rectification target (URT) is an increasing tableau of straight shape that is the not jeu de

taquin equivalent to any other increasing tableau of straight shape. In particular, if U is a URT and U is a

rectification of T , then U is the only rectification of T ; in this case only, we may safely write Rect(T ) = U .

Let Tλ be the superstandard tableau of shape λ, that is the standard filling of λ by row with consecutive

numbers.

Example 3.8. For λ = (4, 2, 1), Tλ =

1 2 3 4

5 6

7

. ♦

Theorem 3.3 ([ThYo09b, Theorem 1.2]). For any λ, Tλ is a unique rectification target.

Let Inc(ν/λ) denote the set of increasing tableaux of shape ν/λ.

Theorem 3.4 ([ThYo09b, Theorem 1.4] and [BuSa13, Corollary 3.19]). Let U be any unique rectification

target of shape µ (for example Tµ). Then

aνλ,µ = (−1)|ν|−|λ|−|µ|#{T ∈ Inc(ν/λ) : Rect(T ) = U}.

As described for semistandard tableaux in Section 1.3, there is an infusion operator on layered pairs of

increasing tableaux of disjoint alphabets. Let T ∈ Inc(α) where α is possibly a skew shape. Let U ∈ Inc(β/α)

be an increasing tableau on a disjoint alphabet from T . We here write the labels of U as circled numbers to

distinguish them from the uncircled labels of T . Consider the layered tableau (T,U) that is the union of T

and U . Then

inf(T,U) = (U?, T ?)

is obtained as follows: Consider the largest number M that appears in T . The set of boxes of T containing

M is a set I of inner corners for U . Replace these M ’s by •’s and apply jeu de taquin to U at I, until the •’s

reach outer corners of U . Place M in these outer corners. Now consider the largest number M ′ that appears

in T ′, the remainder of T . The boxes of T ′ containing M ′ are inner corners I ′ for U ′, the modified U . Now

apply jeu de taquin to U ′ at I ′. We continue in this manner as many times as there are distinct labels in

T . The “inner” tableau of circled genes is U? and the “outer” tableau of uncircled genes is T ?. Just as for

semistandard tableaux:

Proposition 3.1 ([ThYo09b, Theorem 3.1]). Infusion is an involution on layered pairs of increasing

tableaux:

inf(U?, T ?) = (T,U).
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3.2 K-(semi)standardization maps

Let

Genµ(ν/λ) = {genomic tableaux of shape ν/λ with content µ = (µ1, µ2 . . . , µ`(µ))},

and

Incν/λ = {increasing tableaux of shape ν/λ}.

Define an order on the genes of T ∈ Genµ(ν/λ) by G1 < G2 if family(G1) < family(G2) or if family(G1) =

family(G2) with all boxes of G1 west of all boxes of G2.

Lemma 3.1. The order < on genes of T is a total order.

Proof. When showing two genes G1 and G2 are comparable in the order <, the only concern is if family(G1) =

family(G2) = k. By definition, a gene of family k consists of boxes of entry k that are consecutive in the

left to right order on such boxes. Hence either all boxes of G1 are west of the boxes of G2 or vice versa.

The K-standardization map,

Φ : Genµ(ν/λ)→ Incν/λ,

is defined by filling the kth gene in the <-order with the entry k. Since any T ∈ Genµ(ν/λ) is also a

semistandard tableau (by forgetting the gene structure) and since no two boxes of the same gene can be

in the same row, it follows that Φ(T ) ∈ Incν/λ. Note that when each gene is a single box, Φ is the usual

standardization map.

Example 3.9. If T is the genomic tableau

1 2

1 1 2

2

then Φ(T ) =

2 3

1 2 3

3

. ♦

A horizontal strip is a skew shape with no two boxes in the same column. Following [ThYo09b], a

Pieri filling is an increasing tableau of horizontal strip shape where, in addition, labels weakly increase

from southwest to northeast.

Let

Pk(µ) :=

1 +
∑
i<k

µi, 2 +
∑
i<k

µi, . . . ,
∑
j≤k

µj

 .

That is,

P1(µ) = {1, 2, . . . , µ1}, P2(µ) = {µ1 + 1, . . . , µ1 + µ2}, etc.

We say S ∈ Incν/λ is µ-Pieri-filled if for each k ≤ `(µ), the entries of S in Pk(µ) form a Pieri filling of a

horizontal strip.
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Example 3.10. The increasing tableau

2 3

1 4

1 3

is not (2, 2)-Pieri-filled, as the entries 3 and 4 do not

form a Pieri filling. However, it is (2, 1, 1)-Pieri-filled. ♦

Let

PFµ(ν/λ) = {S ∈ Incν/λ that are µ-Pieri-filled}.

Theorem 3.5. Φ : Genµ(ν/λ)→ PFµ(ν/λ) is a bijection.

Proof. We begin by defining the K-semistandardization map

Ψ : PFµ(ν/λ)→ Genµ(ν/λ).

This extends the classical semistandardization map from standard Young tableaux to semistandard Young

tableaux. Suppose S ∈ PFµ(ν/λ). Construct a filling T of ν/λ by placing into each box the unique positive

integer k such that i ∈ Pk(µ), where i is the entry of the corresponding box of S. Clearly, T is a semistandard

tableau.

Declare boxes of T to be in the same gene if and only if the corresponding boxes of S contain the same

value. Since S is an increasing tableau, each gene of T has at most one box in any row. Since the entries of

S in Pk(µ) form a Pieri filling, given any two genes G1, G2 of family k in T , every box G1 appears west of

every box of G2 (or vice versa). Hence T ∈ Genµ(ν/λ).

We now show that Φ is well-defined, i.e.,

im Φ ⊆ PFµ(ν/λ).

Fix

T ∈ Genµ(ν/λ)

and set

S := Φ(T ) ∈ Incν/λ.

Let γ ⊆ ν/λ be the set of boxes that contain k in T . By (column) semistandardness of T , γ is a horizontal

strip. Since Φ puts the labels of Pk(µ) into γ (in S) so as to increase southwest to northeast, the resulting

filling is µ-Pieri-filled.
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By construction we have that

Φ ◦Ψ = idPFµ(ν/λ) and Ψ ◦ Φ = idGenµ(ν/λ).

It is straightforward from the definitions that Ψ are Φ are injective maps. Therefore, we conclude that Φ

and Ψ are mutually inverse bijections.

3.3 Genomic words and Knuth equivalence

A genomic word is a word s of colored positive integers such that all i’s of a fixed color are consecutive

among the set of all i’s. A genotype of s is a subword that selects one letter of each color. Say s is ballot

if every genotype of s is ballot.

Example 3.11. 212112 is a genomic word, whereas 212112 is not because the subword of 1’s is 111 and the

1’s are not consecutive. ♦

Let genomicseq(T ) be the colored row reading word (taken in right to left and top to bottom order) of

a genomic tableau T .

Lemma 3.2. For a genomic tableau T , genomicseq(T ) is a genomic word.

Proof. The follows from the semistandardness of T together with the condition that the boxes of each gene

of family i are consecutive in the left-to-right order on i’s in T .

We extend the K-standardization map Φ to genomic words by Φ(s) := seq(Φ(T̂ (s))) where T̂ (s) is the

antidiagonal of disconnected boxes filled from northeast to southwest by the given genomic word.

Lemma 3.3.

(I) Every genomic word s is genomicseq(T ) for some genomic tableau T .

(II) T is ballot if and only if genomicseq(T ) is ballot.

(III) If genomicseq(T ) = s, then Φ(s) = seq(Φ(T )).

Proof. For (I), in particular, one can take T = T̂ (s). (II) is clear. (III) is straightforward.

Example 3.12. If T is the genomic tableau

1 2

1 1 2

2

, then genomicseq(T ) = 212112. By selecting

one green letter, one red letter, and one blue letter from 212112 we arrive at three possible genotypes of

genomicseq(T ): 211, 121 and 112. Thus genomicseq(T ) is not ballot. ♦
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Genomic Knuth equivalence is the equivalence relation ≡G on genomic words obtained as the tran-

sitive closure of

uiiv ≡G uiv, (G.1)

uijiv ≡G ujijv, (G.2)

ujikv ≡G ujkiv, (G.3)

upqjv ≡G uqpjv, (G.4)

where i ≤ j < k, p < j ≤ q, and red, blue, green are distinct colors. This equivalence relation is a

genomic version of the K-Knuth equivalence introduced by A. Buch–M. Samuel [BuSa13, §5]. It furthermore

generalizes Knuth equivalence [Kn70] in the sense that it agrees with this older notion on words where each

letter is of a distinct color, obviating (G.1) and (G.2).

Theorem 3.6. If x ≡G y, then x is ballot if and only if y is ballot.

Proof. Let x be a genomic word. It suffices to show that (G.1)–(G.4) do not change the ballotness of x.

(G.1) and (G.2) preserve the set of genotypes and therefore ballotness.

(G.3) clearly preserves ballotness unless k = i + 1. In this case, since i ≤ j < k, this means i = j.

Suppose therefore

x = ujjkv, and that y = ujkjv.

Clearly if x is not ballot, then y is not ballot. Conversely, assume x is ballot. It is enough to show that

ujk is ballot. Since x is ballot, the initial segment uj is ballot. Now, deleting the last letter of a ballot

word leaves a ballot word. Since the last letter in the case at hand is j it follows that the subsequence of

uj formed by deleting every j is ballot. In particular, every genotype of uj has strictly more j’s than k’s.

Thus ujk (and hence y) is ballot.

(G.4) is only a concern if q = p+ 1. In this case, since p < j ≤ q, we must also have j = q. Thus,

x = upqqv and y = uqpqv.

If y is ballot, then x is ballot. Conversely, assume x is ballot. It suffices to show that uqp is ballot. Since it

is an initial segment of x, upqq is ballot. Given any two genes of family q in any genomic word, one appears

entirely right of the other. Thus q does not appear in u, and hence every genotype of upq has strictly more

p’s than q’s. Thus uqp is ballot.
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3.4 Genomic jeu de taquin

If T ∈ Genµ(ν/λ), an inner corner of T is a maximally southeast box of λ. Let I be any set of inner corners

of T . We obtain a genomic tableau jdt(T )I as follows: Place a • in each box of I; let T • denote the result.

Two boxes of a tableau are neighbors if they share a horizontal or vertical edge. For each gene G, define

the operator swapG,• as follows. Every box of G with a neighbor containing a • becomes a box containing a

•, while simultaneously every box with a • and a G neighbor becomes a box of G. The remaining boxes are

unchanged by swapG,•.

Index the genes of T as

G1 < G2 < · · · < G|µ|

according to the total order on genes from Lemma 3.1. Then

jdt(T )I := DelBullets ◦ swapG|µ|,• ◦ · · · ◦ swapG2,• ◦ swapG1,•(T
•).

(This algorithm reduces to M.-P. Schützenberger’s jeu de taquin for semistandard tableaux in the case each

gene contains only a single box.)

Example 3.13. Suppose T • is the genomic tableau

•
• 1 2

1 1 2

2

. Then

switch•1(T •) =

•
• 1 2

1 1 2

2

, switch1
• ◦ switch1•(T •) =

•
1 • 2

1 • 2

2

, and

switch2
• ◦ switch1• ◦ switch1•(T •) =

2

1 2 •
1 2 •
2

. So jdt(T )I =

2

1 2

1 2

2

. ♦

Define jeu de taquin equivalence ∼G on genomic tableaux as the symmetric, transitive closure of

the relation T ∼G jdt(T )I . We now state the genomic analogue of [BuSa13, Theorem 6.2] (restated as

Theorem 3.8 below):

Theorem 3.7. Let T,U be genomic tableaux. Then T ∼G U if and only if genomicseq(T ) ≡G genomicseq(U).

Proof. K-Knuth equivalence [BuSa13, §5] is the the symmetric, transitive closure of the following K-
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Knuth relations (our conventions are reversed from those of [BuSa13]; this has no effect on the applicability

of their results): For words u,v and integers 0 < i < j < k,

uiiv ≡K uiv, (K.1)

uijiv ≡K ujijv, (K.2)

ujikv ≡K ujkiv, (K.3)

uikjv ≡K ukijv. (K.4)

Define jdt-equivalence (∼K) on increasing tableaux as the symmetric, transitive closure of the relation

T ∼K jdtI(T ). The key relationship between these two equivalence relations is:

Theorem 3.8. [BuSa13, Theorem 6.2] T ∼K U if and only if seq(T ) ≡K seq(U).

Let Gen(ν/λ) be the set of all genomic tableaux of shape ν/λ.

Lemma 3.4. For T ∈ Gen(ν/λ) and set of inner corners I, Φ(jdt(T )I) = jdtI(Φ(T )).

Proof. From the definitions, this is an easy induction on the number of genes of T .

Lemma 3.5. For any genomic words u and v, we have u ≡G v if and only if Φ(u) ≡K Φ(v).

Proof. Immediate from the definitions of ≡K and ≡G.

By Lemma 3.4, T ∼G U if and only if Φ(T ) ∼K Φ(U). By Theorem 3.8, the latter relation is equivalent

to

seq(Φ(T )) ≡K seq(Φ(U)).

By Lemma 3.5 and Lemma 3.3(III), we see that

seq(Φ(T )) ≡K seq(Φ(U))

is equivalent to

genomicseq(T ) ≡G genomicseq(U).

Corollary 3.1. If T ∼G U , then T is ballot if and only if U is ballot.

Proof. By Theorem 3.7 and Theorem 3.6.
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Let Tµ be the highest weight tableau of shape µ, i.e., the semistandard tableau whose i-th row uses

only the label i. Note Tµ may be also regarded as a genomic tableau in a unique manner. Let Sµ := Φ(Tµ) be

the row superstandard tableau of shape µ (this is the tableau whose first row has entries 1, 2, 3, . . . , µ1,

and whose second row has entries µ1 + 1, µ2 + 2, . . . , µ1 + µ2 etc.).

Corollary 3.2 (of Lemma 3.4). For T ∈ Gen(ν/λ), T ∼G Tµ if and only if Φ(T ) ∼K Sµ.

Proof. This is immediate from Lemma 3.4 because Sµ = Φ(Tµ).

3.5 Three proofs of the Genomic Littlewood-Richardson rule

(Theorem 3.2)

3.5.1 Proof 1: Bijection with increasing tableaux

Our first proof uses the results of Sections 3.2–3.4 to prove Theorem 3.2. Let

Ballotµ(ν/λ) := {T ∈ Genµ(ν/λ) : T is ballot}.

Also, let

IncRectµ(ν/λ) := {T ∈ Inc(ν/λ) : Rect(T ) = Sµ}.

Lemma 3.6. Let T ∈ Genµ(ν/λ). Then T ∈ Ballotµ(ν/λ) if and only if Φ(T ) ∈ IncRectµ(ν/λ).

Proof. Suppose T is ballot. By iterating application of jdtI (under arbitrary choices of nonempty sets I of

inner corners) starting with T , we have that T ∼G R for some straight-shaped tableau R (a priori, R might

depend on the choices of I). By Corollary 3.1, R is ballot. Since genomic jeu de taquin preserves tableau

content, R = Tµ. Hence, by Lemma 3.4, Φ(T ) rectifies to Sµ.

Conversely, suppose Φ(T ) rectifies to Sµ. Then by Lemma 3.4, T rectifies to Tµ. But Tµ is a ballot

genomic tableau. Hence by Corollary 3.1, T is also ballot.

Lemma 3.7. IncRectµ(ν/λ) ⊆ PFµ(ν/λ).

Proof. This is part of [ThYo09b, Proof of Theorem 1.2].

In view of Lemmas 3.6 and 3.7, we may define

φ : Ballotµ(ν/λ)→ IncRectµ(ν/λ)
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as the restriction

Φ|Ballotµ(ν/λ)

and define

ψ : IncRectµ(ν/λ)→ Ballotµ(ν/λ)

as the restriction

Ψ|IncRectµ(ν/λ).

Now Φ and Ψ are mutually inverse bijections (cf. Theorem 3.5). Thus φ and ψ are mutually inverse bijections

between IncRectµ(ν/λ) and Ballotµ(ν/λ). Hence the theorem follows from the Kjdt rule of [ThYo09b] for

aνλ,µ.

3.5.2 Proof 2: Bijection with set-valued tableaux

In our next proof, we relate genomic tableaux to the original rule for aνλ,µ found by A. Buch [Bu02, Theo-

rem 5.4] and described in Section 3.1.1.

We define a map

Ξ : Buchν(µ ? λ)→ Ballotµ(ν/λ)

as follows. Let T ∈ Buchν(µ ? λ). Start with an empty shape λ. Read the columns of the µ portion of T

from top to bottom and right to left. Suppose a set

S = {s1 < . . . < st}

gives the entries of a box in row i of the µ shape. Then place a new gene of family i in the rows s1, . . . , st

(as far left as possible in each case). Then Ξ clearly has a (putative) inverse

Θ : Ballotµ(ν/λ)→ Buchν(µ ? λ)

that records in row i and column 1 of the µ shape the rows that the leftmost gene of family i sits in. Similarly,

in row i and column 2 we record the rows that the second leftmost gene of family i sits in, etc.

Theorem 3.9. Ξ : Buchν(µ ? λ) → Ballotµ(ν/λ) and Θ : Ballotµ(ν/λ) → Buchν(µ ? λ) are well-defined

and mutually inverse bijections.
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Example 3.14. Continuing Example 3.2, we have

Ξ(B1) =
1

1
2

and Ξ(B2) =
1

2
2

.

The reader can check that these are the unique two elements of Ballotµ(ν/λ). ♦

Proof of Theorem 3.9. Let T ∈ Buchν(µ ? λ) and set U := Ξ(T ).

(Ξ is well-defined): By definition, the number of genes of family i is µi. Hence the content of U is µ, as

required. Next, observe that since in each row of T the entries increase weakly from left to right, no two

genes of the same family interweave. Also note that no two labels of the same gene are in the same column

since otherwise we would obtain that colword(T ) is not reverse lattice, since labels in the same box are read

in increasing order, a contradiction.

The hypothesis that colword(T ) is reverse lattice precisely guarantees that when adding the boxes in

the rows of S one takes a Young diagram to a larger Young diagram. Thus U is a tableau of (skew) Young

diagram shape. Note that since S is a set, no row of U contains two boxes of the same gene.

We next verify the semistandardness conditions. Suppose U violates the horizontal semistandardness

requirement. That is, there is a box x directly left and adjacent to a box y in U such that labU (x) > labU (y).

Let x′ and y′ be the boxes in T that added x and y during the execution of Ξ. Since labU (x) > labU (y), by

Ξ’s definition, the row of x′ is strictly south of the row of y′. Moreover, since x is left of y we know that x′

is read before y′ in colword(T ). Therefore, y′ is strictly north and strictly west of x′. However, since T is a

(set-valued) semistandard tableau, the labels of y′ in T are all strictly smaller than those of x′. This implies

that y is in a row strictly north of that of x, a contradiction. The argument that U satisfies the vertical

semistandardness requirement is similar.

It remains to check that U is ballot. To do this, make an arbitrary but fixed choice of genotype GU of

U . The labels of family i and i + 1 may be blamed on labels in rows i and i + 1 of T . Suppose the sets of

labels in those rows are

Q1, Q2, . . . , Qt, Qt+1, . . . , Qt+s (row i) and R1, R2, . . . , Rt (row i+ 1)

where s ≥ 0. Since we know U is semistandard, the labels associated to rows i and i + 1 separately form

a Pieri strip. Here Q1 is associated to the rightmost gene of family i (in U) and Qt+s is associated to the

leftmost gene of family i (in U). Similarly, R1 is associated to the rightmost gene of family i+ 1 (in U) and
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Rt is associated to the leftmost gene of family i+ 1 (in U). By the vertical semistandardness of T , we have

maxQi < minRi for 1 ≤ i ≤ t.

This clearly implies that the mth rightmost label of family i+ 1 in GU is strictly south and weakly west of

the mth rightmost label of family i in GU , for 1 ≤ m ≤ t. Since this is true for each i, GU is ballot.

(Ξ is injective): Clear.

(Θ is well-defined:) This is proved with the same arguments (said in reverse) as those given in the well-

definedness of Ξ.

(Θ is injective): Clear.

The theorem follows since Ξ and Θ are mutually inverse injections.

Composing Theorem 3.9 with the bijection of Section 3.5.1 permits one to biject the above rule of A. Buch

with the K-theoretic jeu de taquin rule of [ThYo09b].

3.5.3 Proof 3: Bijection with puzzles

A third proof of Theorem 3.2 is by extending the bijection given in Section 1.2.4 between the tableaux

of (H.1) and the puzzles of (H.2). In Chapter 5, we describe and prove a bijection between more general

genomic tableaux and (a slight modification of) the Knutson-Vakil puzzles of [CoVa05, §5]. It is not hard to

see that this restricts to a bijection between the tableaux of Theorem 3.2 and the ordinary K-theory puzzles

discovered by T. Tao [Va06, §3.3]. Since the latter are known to calculate aνλ,µ, Theorem 3.2 follows. We

describe the rule here but omit the details of the bijection, in favor of the full argument in Chapter 5.

Consider the n-length equilateral triangle oriented as ∆. Impose boundary conditions according to λ, µ, ν

(thought of as binary sequences) to produce ∆λ,µ,ν as in Section 1.2.2. A K-puzzle is a filling of ∆λ,µ,ν

with the following puzzle pieces:

1 1

1

0 0

0

0 0

1

1 0 1

0 1

1 0

Henceforth, we color code these pieces as black, white, gray, and blue respectively, dropping the numerical

labels. A filling requires that the common edges of adjacent puzzle pieces share the same label. The first

three may be rotated but the fourth (K-piece) may not. A K-puzzle is a puzzle filling of ∆.

Theorem 3.10 (T. Tao [Va06, §3.3]). (−1)|ν|−|λ|−|µ|aνλ,µ = #{K-puzzles of ∆λ,µ,ν}.
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Example 3.15. Continuing Example 3.14 and assuming the Grassmannian in question is Gr3(C6) , the

bijection of Chapter 5 matches Ξ(B1) and Ξ(B2) to the puzzles

and

respectively, where we use the color-coding of puzzle pieces described above. It is straightforward to check

that these are the only K-puzzles in the sense of [Va06, §3.3] for this structure constant. ♦

3.6 Infusion, Bender-Knuth involutions, and the genomic Schur

function

We first define genomic infusion. Let T ∈ Gen(α) and U ∈ Gen(β/α) where α is possibly a skew shape.

We think of a layered tableau (T,U) that is the union of T and U . For convenience, the labels of T will be

circled. Then

geninf(T,U) = (U?, T ?)

is obtained by the following procedure. Consider the largest gene G (under the < order) that appears in

T . The boxes of this gene are inner corners I with respect to U . Now apply jdtI(U), leaving some outer

corners of β. Place into these outer corners G . Now consider the second largest gene G
′

that appears in

T . These will form inner corners I ′ with respect to U ′ := jdtI(U). Now apply jdtI′(U
′) again leaving some

outer corners of which we will fill with G
′
. We continue in this manner until we have exhausted all genes

of T . The “inner” tableau of uncircled genes is U? and the “outer” tableau of circled genes is T ?. Clearly,

if α is a straight shape, then U? is a genomic rectification of U where the order of rectification is imposed

by T . Furthermore:

Proposition 3.2. Genomic infusion is an involution, i.e.,

geninf(U?, T ?) = (T,U).

Proof. This follows from the fact that K-infusion as defined in [ThYo09b, §3.1] is an involution [ThYo09b,
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Theorem 3.1], combined with Lemma 3.4.

Next we define genomic Bender-Knuth involutions. Given a genomic tableau V consider the genomic

subtableau T consisting of genes of family i and consider the genomic subtableau U consisting of genes of

family i+1. Now define genBKi(V ) to be obtained by replacing inside V the subtableau (T,U) with (U?, T ?),

switching the labels i and i+ 1, keeping all other boxes of V the same (and removing any circlings).

Proposition 3.3. genBKi is an involution. Moreover, genBKi defines a bijection from the set of genomic

tableaux of a shape ν/λ of content γ = (γ1, . . . , γi, γi+1, . . .) to the set of genomic tableaux of shape ν/λ of

content γ = (γ1, . . . , γi+1, γi, . . .).

Proof. The first sentence is immediate from Proposition 3.2. The second sentence follows from the definition

of genBKi and the first sentence.

From these genomic Bender-Knuth involutions, one can define genomic versions of M.-P. Schützenberger’s

promotion and evacuation operators. (The classical theory was described in Section 2.2.) We do not analyze

these notions further in this thesis.

We explore the genomic Schur function, which we define as

Uν/λ :=
∑

T∈Gen(ν/λ)

xT

where

xT :=
∏
i

x# genes of family i in T
i .

Example 3.16. The polynomial U31(x1, x2) is computed by the tableaux

1 1 1
2

1 1 2
2

1 2 2
2

1 2 2
2

1 1 2
2

Hence U31(x1, x2) = x31x2 + x21x
2
2 + x1x

3
2 + x1x

2
2 + x21x2 = s31(x1, x2) + s21(x1, x2). ♦

Theorem 3.11. Uν/λ ∈ Λ.

Proof. The argument is an extension of the combinatorial proof of symmetry of Schur functions, as given in

Corollary 1.1. Here we use Proposition 3.3 in place of Proposition 1.2.

Since

Uν/λ = sν/λ + lower degree terms,
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λ\µ
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 2 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 2 0 1 2 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 3.1: Transition matrix between the {Uλ(x1, x2, x3)} to {sµ(x1, x2, x3)} bases.

by Theorem 3.11 we have that {Uλ}, where λ ranges over all (straight) partitions, is a basis of Λ.

While in small examples Uν/λ is Schur-positive (cf. Table 3.1), this is not true in general:

Example 3.17. One may check that 38 tableaux contribute to U333(x1, x2, x3, x4). Expanding this poly-

nomial in the Schur basis yields

U333(x1, x2, x3, x4) = s333(x1, x2, x3, x4) + s3221(x1, x2, x3, x4)

+ s2221(x1, x2, x3, x4)− s2222(x1, x2, x3, x4). ♦

Also, the structure coefficients for the U -basis do not possess any positivity or alternating positivity

properties:

Example 3.18. Using Table 3.1, one can check that U22 · U1 = U32 + U221 − U22 − U111. ♦

At present, we are unaware of any geometric significance of these polynomials.
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Chapter 4

A Littlewood-Richardson rule in
torus-equivariant K-theory

This chapter derives from joint work with A. Yong [PeYo15b].

4.1 Introduction

4.1.1 Overview

Recall X = Grk(Cn) denotes the Grassmannian of k-dimensional subspaces of Cn and that the (classical)

Schubert structure constants cνλ,µ are defined by σλ ·σµ =
∑
ν c

ν
λ,µσν , where {σθ} are the cohomological

Schubert classes. Combinatorially, cνλ,µ is computed, in a manifestly nonnegative manner, by Littlewood-

Richardson rules as described in Section 1.2.

In the modern Schubert calculus, there is significant attention on the problem of generalizing the above

work to richer cohomology theories. The structure coefficients for the multiplication of the Schubert structure

sheaves in K-theory were studied in Chapter 3, where we gave several combinatorial rules that are positive

after accounting for a predictable alternation of sign. In [KnTa03], A. Knutson-T. Tao introduced certain

other puzzles to give a rule for torus-equivariant Schubert calculus that is positive in the sense of [Gr01].

In this chapter, we turn to a unification of these problems. Let KT(X) denote the Grothendieck ring of

T-equivariant vector bundles over X. This ring has a natural KT(pt)-module structure and an additive basis

given by the classes of Schubert structure sheaves; for background, we refer the reader to, e.g., [KoKu90,

AnGrMi11] and the references therein. The analogues of Littlewood-Richardson coefficients are the Laurent

polynomials Kν
λ,µ ∈ Z[t±1

1 , . . . , t±1
n ] ∼= KT(pt) defined by

[OXλ ] · [OXµ ] =
∑

ν⊆k×(n−k)

Kν
λ,µ[OXν ],

where [OXλ ] is the class of the structure sheaf of Xλ. These coefficients may be algebraically computed

using double Grothendieck polynomials; see [LaSc82, FuLa94]. The problem addressed by this paper is to

prove a combinatorial rule for Kν
λ,µ.
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We summarize past contributions to the problem: A. Knutson-R. Vakil conjectured a formula for Kν
λ,µ

in terms of puzzles (reported in [CoVa05, §5]). V. Kreiman [Kre05] proved a rule for the case λ = ν,

corresponding to a certain localization (cf. Section 4.4). C. Lenart-A. Postnikov [LePo07] gave a rule for

the case λ = (1) (in a broader context applicable to any generalized flag variety); we use this result. Later,

W. Graham-S. Kumar [GrKu08] determined the coefficients in the case X = Pn−1. “Positivity” of Kν
λ,µ

(in a more general context) was geometrically established by D. Anderson-S. Griffeth-E. Miller [AnGrMi11].

More recently, A. Knutson [Kn10] obtained a puzzle rule in KT(X) for the different problem of multiplying

the class of a Schubert structure sheaf by that of an opposite Schubert structure sheaf. Finally, H. Thomas

and A. Yong conjectured the first Young tableau rule for Kν
λ,µ [ThYo13, Conjecture 4.7]; they showed their

conjectural rule is [AnGrMi11]-positive; see [ThYo13, §4.1]. No combinatorial rule for structure coefficients

of KT(X) with respect to any fixed basis has earlier been proved.

This paper introduces and proves an [AnGrMi11]-positive rule for the structure coefficients Kν
λ,µ (Theo-

rem 4.1); in fact, our rule exhibits a further property of the coefficients which seems at present not to have

a geometric explanation. The rule allows us to deduce the aforementioned conjecture of [ThYo13]. Indeed,

we complete the strategy set out in loc. cit. and our Theorem 4.1 is a generalization of the rule of [ThYo13]

for T-equivariant cohomology. The first step of our proof is to relate our combinatorial rule to a K-theoretic

generalization of a recurrence proven by A. Molev-B. Sagan [MoSa99] and A. Knutson-T. Tao [KnTa03] (who

also credit A. Okounkov). A similar step was employed by A. Buch [Bu15] who gave a rule for the equivariant

quantum cohomology of Grassmannians, cf. [BuMi11]. (The case of non-equivariant quantum cohomology

had been previously handled geometrically by [Co09] and combinatorially by [BKPT14], cf. [BuKrTa03].)

In Chapter 5, we use our new rule to also resolve the 2005 puzzle conjecture of A. Knutson-R. Vakil.

More precisely, we first show that their conjecture is false by explicit counterexample. On the other hand,

our rule suggests a mild correction of their conjecture, which we then prove.

The main innovation of this paper is genomic tableaux and a generalization of M.-P. Schützenberger’s

jeu de taquin [Sc77]. We anticipate additional applications of these ideas. C. Monical has reported use

of genomic tableaux in the study of Lascoux polynomials (see, e.g., [RoYo15] and references therein) and

K-theoretic analogues of Demazure atoms, extending results of [HLMvW11]. These tableaux also give a new

rule for (non-equivariant) K-theory of Grassmannians; the announcement [PeYo15a] outlines applications

to analogous problems when X is replaced by Lagrangian or maximal orthogonal Grassmannians. A full

development of these results within a theory of genomic tableaux will be found in our forthcoming work

[PeYo16]. Moreover, closely related to the equivariant Schubert calculus of X, the combinatorial rule of

A. Molev-B. Sagan [MoSa99] solves a triple Schubert calculus problem in H?(GLn(C)/B ×X × GLn(C)/B)
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(see [KnTa03, §6]). Our methods should extend to give a K-theoretic analogue, cf. [KnTa03, §6.2]. Finally,

we remark that A. Buch (private communication) has shown us a short argument that turns our rule into

an [AnGrMi11]-positive rule for the structure coefficients with respect the basis of KT(X) dual to {[Oλ]}.

4.1.2 Genomic tableaux

A genomic tableau is a Young diagram filled with (subscripted) labels ij where i ∈ Z>0 and the j’s that

appear for each i form an initial segment of Z>0. It is edge-labeled of shape ν/λ if each horizontal edge

of a box weakly below the southern border of λ (viewed as a lattice path from (0, 0) to (k, n − k)) is filled

with a subset of {ij}.

Let x→ be the box immediately east of x, x↑ the box immediately north of x, etc. For a box x, let x

denote the upper horizontal edge of x and x denote the lower horizontal edge. We write family(ij) = i. We

distinguish two orders on subscripted labels. Say ij < k` if i < k. Write ij ≺ k` if i < k or i = k with j < `.

Note that ≺ is a total order, while < is not.

A genomic tableau T is semistandard if the following four conditions hold:

(S.1) label(x) ≺ label(x→);

(S.2) every label is <-strictly smaller than any label South1 in its column;

(S.3) if ij , k` appear on the same edge then i 6= k;

(S.4) if ij is West of ik, then j ≤ k.

Refer to the multiset {ij} (for fixed i and j) collectively as a gene. The content of T is (c1, c2, c3, . . .)

where ci is the number of genes of family i. Suppose x is in row r. A label ij is too high if i ≥ r and ij ∈ x,

or alternatively if i > r and ij ∈ x or ij ∈ x.

Example 4.1. For λ = (4, 2, 2, 1) and ν = (6, 5, 4, 3, 2) consider the genomic tableau T :

12 13

12 21 22

21 32

11 32

21 32

21 32 42

31 41

The content of T is (3, 2, 2, 2). The tableau T is not
semistandard, since the second column from the
left fails (S.2). If we deleted the 32 from the edge,
the result would be semistandard. No label is too
high.

♦
1Throughout, we write “West”, “west” and “NorthWest” to mean “strictly west”, “weakly west” and “strictly north and

strictly west” respectively, etc.
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4.1.3 The ballot property

A genotype G of T is a choice of one label from each gene of T . Let word(G) be obtained by reading

G down columns from right to left. (If there are multiple labels on an edge, read them from smallest to

largest in ≺-order.) Then G is ballot if in every initial segment of word(G), there are at least as many

labels of family i as of family i+ 1, for each i ≥ 1. We say T is ballot if all of its genotypes are ballot. Let

BallotGen(ν/λ) be the set of ballot, semistandard, edge-labeled genomic tableaux of shape ν/λ where no

label is too high.

Example 4.2. Let T = 12

11 21

and U = 11

11 21

. Then T is ballot: the one genotype (itself) has reading word

is 122111, which is a ballot sequence. U is not ballot: it has two genotypes
11 21

and 11

21

and the word for

the former is 2111, which is not ballot. ♦

4.1.4 Tableau weights and the main theorem

Let T ∈ BallotGen(ν/λ). For a box x, Man(x) is the “Manhattan distance” from the southwest corner

(point) of k× (n− k) to the northwest corner (point) of x (the length of any north-east lattice path between

the corners).

For a gene G, let NG be the number of genes G′ with family(G′) = family(G) and G′ � G. For instance,

in Example 4.1, N11
= 2 since the genes 12 and 13 are of the same family as 11 (namely family 1) but

11 ≺ 12, 13.

If ` = ij ∈ x and x is in row r, then

edgefactor(`) := edgefactorx(ij) := 1− tMan(x)

tr−i+Nij+1+Man(x)
. (4.1)

The edge weight edgewt(T ) is
∏
` edgefactor(`); the product is over edge labels of T .

A nonempty box x in row r is productive if label(x) < label(x→). If ij ∈ x, set

boxfactor(x) :=
tMan(x)+1

tr−i+Nij+1+Man(x)
. (4.2)

The box weight of a tableau T is boxwt(T ) :=
∏

x boxfactor(x), where the product is over all productive

boxes of T . The weight of T is wtT := (−1)d(T )×boxwt(T )×edgewt(T ). Here d(T ) =
∑
G(|G|− 1), where

the sum is over all genes G and |G| is the (multiset) cardinality of G. Set

Lνλ,µ :=
∑
T

wtT,
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where the sum is over all T ∈ BallotGen(ν/λ) that have content µ.

Theorem 4.1 (Main Theorem). Kν
λ,µ = Lνλ,µ.

This provides the first proved rule for Kν
λ,µ that is manifestly [AnGrMi11]-positive. That is, let zi :=

ti
ti+1
− 1. For j > i, we have

ti
tj

=

j−1∏
k=i

(zk + 1) and 1− ti
tj

= −

(
j−1∏
k=i

(zk + 1)− 1

)
. (4.3)

Therefore, (−1)#edge labels × boxwt(T ) × edgewt(T ) is z-positive. Since clearly d(T ) = |ν| − |λ| − |µ| +

#edge labels, we have that (−1)|ν|−|λ|−|µ|Lνλ,µ =
∑
T (−1)|ν|−|λ|−|µ| wtT is z-positive. This positivity is the

same as that of [AnGrMi11, Corollary 5.3] after the substitution zi 7→ eαi − 1 where αi is the i-th simple

root for the root system An−1.

Example 4.3. To compute K
(2,2)
(2),(2,1) for Gr2(C4), the required tableaux are

T1 =
11 12

, T2 =
11 12

, T3 =
11 12

, T4 =
11 21

, T5 =
11 21

21 21 21 21

12 12

21

Then

• edgewt(T1) = 1− t1
t2

, boxwt(T1) = t3
t4

and d(T1) = 0;

• edgewt(T2) = 1− t2
t3

, boxwt(T2) = t3
t4

and d(T2) = 0;

• edgewt(T3) = (1− t1
t2

)(1− t2
t3

), boxwt(T3) = t3
t4

and d(T3) = 1;

• edgewt(T4) = (1− t3
t4

), boxwt(T4) = t2
t4

and d(T4) = 0; and

• edgewt(T5) = (1− t1
t2

)(1− t3
t4

), boxwt(T5) = t2
t4

and d(T5) = 1.

Hence

K
(2,2)

(2),(2,1)=

(
1− t1

t2

)
t3
t4

+

(
1− t2

t3

)
t3
t4

−
(
1− t1

t2

)(
1− t2

t3

)
t3
t4

+

(
1− t3

t4

)
t2
t4

−
(
1− t1

t2

)(
1− t3

t4

)
t2
t4
.

Observe that, after rewriting using (4.3), each term is z-negative, in agreement with the discussion above;
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that is,

(−1)|(2,2)|−|(2)|−|(2,1)|K
(2,2)
(2),(2,1) = −(−z1)(z3 + 1)− (−z2)(z3 + 1) + (−z1)(−z2)(z3 + 1)

−(−z3)(z2 + 1)(z3 + 1) + (−z1)(−z3)(z2 + 1)(z3 + 1)

= z1(z3 + 1) + z2(z3 + 1) + z1z2(z3 + 1)

+z3(z2 + 1)(z3 + 1) + z1z3(z2 + 1)(z3 + 1)

is z-positive (without any cancellation needed). ♦

There is a stronger positivity property exhibited by the rule of Theorem 4.1. The work of [AnGrMi11]

generalizes the positivity of W. Graham [Gr01]: the equivariant Schubert structure coefficients are polynomi-

als with nonnegative integer coefficients in the simple roots αi. In [Kn10], A. Knutson observes W. Graham’s

geometric argument further implies the coefficients can be expressed as polynomials with nonnegative integer

coefficients in the positive roots such that each monomial is square-free. Moreover, A. Knutson raises the

issue of finding a “proper analogue” in equivariant K-theory for this square-free property. For X, we have:

Corollary 4.1 (Strengthened [AnGrMi11]-positivity). Let zij := ti
tj
−1. Then (−1)|ν|−|λ|−|µ|Kν

λ,µ is express-

ible as a polynomial with nonnegative integer coefficients in the zij’s such that each monomial is square-free.

Proof. The nonnegativity of the coefficients is immediate from each zij being positive in the zi’s. It remains

to show each monomial in our expression Lνλ,µ is square-free.

Consider a T ∈ BallotGen(ν/λ). Every edgefactor(`) is of the form −zij , while every boxfactor(x) is

of the form zij + 1. Define an (i, j)-label to be either an edge label with edgefactor(`) = −zij or a label `

in a productive box x with boxfactor(x) = zij + 1.

Suppose `, `′ are (i, j)-labels of T . Say ` ∈ x or x and `′ ∈ y or y. Since both are (i,−)-labels, Man(x) =

Man(y). Hence x and y are boxes of the same diagonal. We may assume x northwest of y. Let ` be an

instance of mn and `′ and instance of pq. Since both are (−, j)-labels, row(x)−m+Nmn = row(y)−p+Npq .

By (S.1) and (S.2), m+ r(y)− r(x) ≤ p, so Nmn = r(y)− r(x) +m− p+Npq ≤ p− p+Npq = Npq . Hence

by ballotness of T , x = y and moreover m = p. Therefore by (S.2) and (S.3), ` = `′, and thus T contains at

most one (i, j)-label and each monomial in our expression is square-free.

We do not know a geometric explanation for Corollary 4.1. However, based on this result, one speculates

that for any G/P , if for each positive root α we set zα := eα− 1, then the corresponding Schubert structure

coefficients for KT (G/P ) may be expressed in a square-free manner with nonnegative coefficients in the zα’s.
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4.1.5 Organization

The first key to the proof is to reformulate Theorem 4.1 in terms of the more technical bundled tableaux

that are appropriate for the inductive argument; this is presented in Section 4.2. In Section 4.3, we outline

this inductive argument that the rule of Theorem 4.1 satisfies the key recurrence alluded to above. The base

case is in Section 4.4. Both the plan of induction and the base case may be considered routine.

The core of the argument lies in Sections 4.5–4.12. The central innovation of this paper is a genomic

generalization of M.-P. Schützenberger’s jeu de taquin. This permits us to establish a combinatorial map of

formal sums of tableaux. This part of the argument is developed as a sequence of four main ideas:

(1) To show well-definedness of the map, we identify and characterize the class of good tableaux that arise

via genomic jeu de taquin (Sections 4.5, 4.6 and 4.7).

(2) To establish surjectivity, we develop reverse genomic jeu de taquin (Sections 4.8 and 4.9).

(3) To prove that the map respects the coefficients of the key recurrence, we define and prove properties

of a reversal tree (Sections 4.10 and 4.11).

(4) The map is weight-preserving. However, a significant subtlety is that it is not generally weight-

preserving on individual tableaux. To establish this property of the map, we need involutions that pair

tableaux (Section 4.12).

In Section 4.13, we recall the conjecture of [ThYo13] and prove it from Theorem 4.1; this argument is

essentially independent of the rest of the chapter.

4.2 Bundled tableaux and a reformulation of Theorem 4.1

A tableau T ∈ BallotGen(ν/λ) is bundled if every edge label is the westmost label of its gene. For example,

in Example 4.3, only T3 is not bundled (the eastmost 21 is to blame). We denote the set of bundled tableaux

of shape ν/λ by Bundled(ν/λ).

Define a surjection Bun : BallotGen(ν/λ) � Bundled(ν/λ). This sends T to Bun(T ) by deleting each

edge label of T that is not maximally west in its gene. If B ∈ Bundled(ν/λ), then any T ∈ Bun−1(B)

differs from B by having (possibly 0) additional edge labels. Let Eij be the edges where ij appears in

some T ∈ Bun−1(B) but not in B, i.e., the set of edges of B where adding an ij would yield an element of

BallotGen(ν/λ). We say B has a virtual label ij on each edge of Eij . We denote a virtual label ij by ij .
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Example 4.4. All virtual labels are depicted below:

13

21

12

21

31

11 31

11 21

12 12

∈ Bundled((6, 4, 3, 2, 1)/(5, 3, 2, 1))

♦

For B ∈ Bundled(ν/λ), let

wt(B) =
∑

T∈Bun−1(B)

wt(T ). (4.4)

Let Bνλ,µ denote the set of tableaux in Bundled(ν/λ) with content µ.

Proposition 4.1. Lνλ,µ =
∑
B∈Bνλ,µ

wt(B).

Proof. Immediate from (4.4) and the definition of Lνλ,µ.

Compute w̃t(B) as a product: an edge label ` contributes a factor of edgefactor(`) and each productive

box x contributes a factor of boxfactor(x). Each virtual label ` ∈ x contributes 1−edgefactorx(`) (where

the latter is calculated as if ` were instead `). Multiply by (−1)d(T ) where d(T ) =
∑
G(|G| − 1) and here

|G| is interpreted to be the multiset cardinality of non-virtual G in T .

Example 4.5. For B from Example 4.4, w̃t(B) = (−1)1 ·
(

1− t2
t8

)
· t2t4

t4
t6
t6
t9
t8
t8
t11
t11
· t3t5

t4
t9
t5
t7

t8
t10

t9
t11

. ♦

Lemma 4.1. wt(B) = w̃t(B).

Proof. Let m be the number of virtual labels in B and ai be the non-virtual weight of the i-th virtual label

(listed in some given order). By the weights’ definitions, the lemma follows from the “inclusion-exclusion”

identity
∏
i∈[m] ai =

∑
S⊆[m](−1)|S|

∏
i∈S(1− ai).

4.3 Structure of the proof of Theorem 4.1

Let

λ+ := {ρ ) λ : ρ/λ has no two boxes in the same row or column}

and

ν− := {δ ( ν : ν/δ has no two boxes in the same row or column}.

For a set D of boxes, let wtD :=
∏

x∈D
tMan(x)

tMan(x)+1
.
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Proposition 4.2 (Key recurrence).

∑
ρ∈λ+

(−1)|ρ/λ|+1Kν
ρ,µ = Kν

λ,µ(1− wt ν/λ) +
∑
δ∈ν−

(−1)|ν/δ|+1Kδ
λ,µ wt δ/λ. (4.5)

Proof. The Chevalley formula in equivariant K-theory [LePo07, Corollary 8.2] implies:

[OXλ ][OX�
] = [OXλ ](1− wtλ) +

∑
ρ∈λ+

(−1)|ρ/λ|+1[OXρ ] wtλ.

Thus, the coefficient of [OXν ] in
(
[OXλ ][OX�

]
)

[OXµ ] is

Kν
λ,µ(1− wtλ) +

∑
ρ∈λ+

(−1)|ρ/λ|+1Kν
ρ,µ wtλ.

On the other hand, the coefficient of [OXν ] in
(
[OXλ ][OXµ ]

)
[OX�

] is

Kν
λ,µ(1− wt ν) +

∑
δ∈ν−

(−1)|ν/δ|+1Kδ
λ,µ wt δ.

The proposition then follows from associativity and commutativity:

(
[OXλ ][OX�

]
)

[OXµ ] =
(
[OXλ ][OXµ ]

)
[OX�

].

To prove Kν
λ,µ = Lνλ,µ, we induct on |ν/λ|. Proposition 4.3 is the base case: Kλ

λ,µ = Lλλ,µ; this is proved

using the description of Lλλ,µ from Section 4.1.

The remaining cases use the description of Lνλ,µ from Proposition 4.1. Assume Kτ
θ,µ = Lτθ,µ when

|τ/θ| ≤ h. Suppose we are given λ, ν with |ν/λ| = h + 1. We show that Lνλ,µ satisfies (4.5). Since

Proposition 4.2 asserts Kν
λ,µ also satisfies (4.5) we will be done by induction.

Fix λ, µ, ν with λ ( ν. Define the formal sum

Λ+ :=
∑
ρ∈λ+

(−1)|ρ/λ|+1
∑

T∈Bνρ,µ

T.

Similarly define

Λ := (1− wt ν/λ)
∑

T∈Bνλ,µ

T and Λ− :=
∑
δ∈ν−

(−1)|ν/δ|+1(wt δ/λ)
∑

T∈Bδλ,µ

T.
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In Section 4.7.2, we define an operation slideρ/λ that takes as input T ∈ Λ+ and returns a formal sum

of tableaux with coefficients from Z[t±1
1 , . . . , t±1

n ]. The construction of slideρ/λ and proof of its correctness

are found in Sections 4.5–4.7. Specifically, Corollary 4.2 shows the tableaux in the formal sum are from

Bνλ,µ ∪
(⋃

δ∈ν− B
δ
λ,µ

)
.

In Section 4.11 we prove that

slide(Λ+) :=
∑
ρ∈λ+

(−1)|ρ/λ|+1
∑

T∈Bνρ,µ

slideρ/λ(T ) = Λ + Λ−;

see Proposition 4.13 for the precise statement. Finally Proposition 4.14 shows that wtΛ+ = wt slide(Λ+),

so
∑
ρ∈λ+(−1)|ρ/λ|+1Lνρ,µ = Lνλ,µ(1−wt ν/λ)+

∑
δ∈ν−(−1)|ν/δ|+1Lδλ,µ wt δ/λ. This completes the proof that

the Laurent polynomials Lνλ,µ defined by the rule of Proposition 4.1 equal Kν
λ,µ. Hence we have completed

our proof of Theorem 4.1.

4.4 The base case of the recurrence

A different rule for the case Kλ
λ,µ was given by V. Kreiman [Kre05]. We give an independent proof of the

following:

Proposition 4.3 (Base case of the recurrence). Kλ
λ,µ = Lλλ,µ.

Proof. We use the original (unbundled) definition of Lλλ,µ from Section 4.1.

One says that π ∈ Sn is a Grassmannian permutation if there is at most one k such that π(k) >

π(k + 1). The Grassmannian permutation for λ ⊆ k × (n − k) is the (unique) Grassmannian permutation

πλ ∈ Sn defined by πλ(i) = i+ λk−i+1 for 1 ≤ i ≤ k and π(i) < π(i+ 1) for i 6= k.

Let w′, v′ ∈ Sn be the Grassmannian permutations for the conjugate diagrams λ′, µ′ ⊆ (n− k)× k. The

following identity relates Kλ
λ,µ to the localization of the class [OXλ ] at the T-fixed point eµ, expressed as a

specialization of a double Grothendieck polynomial:

Lemma 4.2. Kλ
λ,µ = Gv′(tw′(1), . . . , tw′(n); t1, . . . , tn), where f(t1, . . . , tn) is obtained by applying the sub-

stitution tj 7→ tn−j+1 to f(t1, . . . , tn).

Proof. This lemma is known to experts, but for completeness we give details and references. Suppose Xw is

a Schubert variety in GLn(C)/B. We have in KT(GLn(C)/B),

[OXv ][OXw ] = Kw
v,w[OXw ] +

∑
θ 6=w

Kθ
v,w[OXθ ]. (4.6)
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It is known that Kθ
v,w = 0 unless v ≤ θ in Bruhat order; this follows for instance from the equivariant

K-theory localization formula of M. Willems [Wi06] together with the mutatis mutandis modification of the

proof of [KnTa03, Proposition 1].

Now, let [OXv ]|ew denote the localization of the class [OXv ] at the T-fixed point ew := wB/B. Localization

is a Z[t±1
1 , . . . , t±1

n ]-module homomorphism from KT(GLn(C)/B) to KT(ew) ∼= Z[t±1
1 , . . . , t±1

n ]. Applying the

localization map to (4.6) gives

[OXv ]|ew [OXw ]|ew = Kw
v,w[OXw ]|ew .

All terms in the summation vanish because [OXπ ]|eρ = 0 unless ρ ≤ π in Bruhat order. This vanishing

condition appears in [Wi06] for generalized flag varieties; it also follows in the case at hand from, e.g., from

the later work [WoYo12, Theorem 4.5] (see specifically the proof). For similar reasons, [OXw ]|ew 6= 0. Hence

dividing by this shows Kw
v,w = [OXv ]|ew .

Consider the natural projection GLn(C)/B � X. The pullback of of each Schubert variety in X is a

distinct Schubert variety in GLn(C)/B (see, e.g., [Br05, Example 1.2.3(6)]). Thus the Schubert basis of X is

sent into the Schubert basis of GLn(C)/B. Hence we obtain an injection KT(X) ↪→ KT(GLn(C)/B). Thus,

if λ, µ ⊆ k × (n − k) and w, v ∈ Sn are respectively their Grassmannian permutations, then Kλ
λ,µ = Kw

w,v.

The lemma now follows from [WoYo12, Theorem 4.5] (after chasing conventions).

Since v′ is Grassmannian, by [KnMiYo09, Theorem 5.8] Gv′(X;Y ) =
∑
T SVSSYTwt(T ), where the sum

is over all set-valued semistandard Young tableaux T of shape µ′ with entries bounded above by n−k. Here

SVSSYTwt(T ) = (−1)|L(T )|−|µ′|∏
`∈L(T )(1−

x`
y`+col(x)−row(x)

), where L(T ) is the set of labels in T and x is the

box containing `.

Let SVSSYTeqwt(T ) be the result of the substitution xj 7→ tw′(j), yj 7→ tj . Define A to be the set of

T ∈ BallotGen(λ/λ) that have content µ. Define B to be the set of set-valued semistandard tableaux U of

shape µ′ where SVSSYTeqwt(U) 6= 0.

Lemma 4.3. There is a bijection ξ : A → B, with wt(T ) = SVSSYTeqwt(ξ(T )) for all T ∈ A.

Proof. Index columns of k × (n − k) by 1, 2, . . . , n − k from right to left. To construct ξ(T ), begin with a

Young diagram of shape µ′. For each label in T , we add a label to ξ(T ) as follows: If ij appears in column

c in T , place a label c in position (µi + 1− j, i) in ξ(T ).

We have a candidate inverse map ξ−1 : B → A: For each label c in (matrix) position (r, i) in U ∈ B, we

place an iµi+1−r at the bottom of column c of λ/λ.

Example 4.6. Let n = 7, k = 3, λ = (4, 2, 1) and µ = (3, 2, 0). Then T , together with the column labels
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1, 2, 3, 4, and ξ(T ) are depicted below:

T =

4 3 2 1

11, 21

12, 22

12 13
7→ ξ(T ) =

1 3

2, 3 4

4

.

We compute that wt(T ) = (−1)1
(

1− t1
t6

)(
1− t3

t6

)(
1− t5

t7

)(
1− t6

t7

)(
1− t1

t4

)(
1− t3

t4

)
, where the first

four factors correspond to the labels 1j of T from left to right and the last two factors correspond to the

labels 2j of T from left to right. Now,

SVSSYTwt(ξ(T )) = (−1)1

(
1− x4

y2

)(
1− x3

y2

)(
1− x2

y1

)(
1− x1

y1

)(
1− x4

y4

)(
1− x3

y4

)
,

where the factors correspond to the entries of ξ(T ) as read up columns from left to right (i.e., consistent

with the order of factors of wt(T ) above).

Since λ′ = (3, 2, 1, 1) we have w′ = 2357146 (one-line notation). So substituting, we get

SVSSYTeqwt(ξ(T )) = (−1)1

(
1− t7

t2

)(
1− t5

t2

)(
1− t3

t1

)(
1− t2

t1

)(
1− t7

t4

)(
1− t5

t4

)
.

The reader can check SVSSYTeqwt(ξ(T )) = wt(T ), in agreement with the lemma. ♦

(ξ−1 is well-defined and is weight-preserving): Let U ∈ B. That ξ−1(U) is an edge-labeled genomic

tableau is immediate from the column strictness of U . Ballotness follows from the row increasingness of U .

We now check that no label of ξ−1(U) is too high. Suppose c is a bad label in U in (matrix) position

(r, i), i.e., one such that the label iµi+1−r placed in column c of λ/λ is too high. Observe that every label

c′ North of c and in the same column of U is also bad: this is since c′ corresponds to placing another label

of family i in the weakly shorter column c′ East of column c (since c′ < c). Thus we may assume c is in

the northmost row of U , i.e., r = 1. Now if i = 1, then since c is bad, it must be that λ′n−k−c+1 = 0, so

w′(c) = c + 0. Now c contributes a factor of 1 − xc
yc

to SVSSYTwt(U) and hence a factor of 1 − tc+0

tc
= 0 to

SVSSYTeqwt(U). That is, SVSSYTeqwt(U) = 0, so U /∈ B, a contradiction. Otherwise, we may also assume

i > 1 is smallest such that a label in (r = 1, i) is bad. Since no label c′ in (r = 1, i− 1) of U is bad, it must

be that c is “barely” bad, i.e.,

λ′n−k−c+1 = i− 1 (4.7)

(column c is one box too short). However, c contributes a factor of 1− xc
yc+i−1

to SVSSYTwt(U) and hence a

factor of 1−
tc+λ′

n−k−c+1

tc+i−1
to SVSSYTeqwt(U). This latter factor is 0 precisely by (4.7). Hence again U 6∈ B, a
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contradiction. Thus U has no bad labels and thus no label of ξ−1(U) is too high, as desired.

The sign appearing in wt ξ−1(U) records the difference between |µ| and the number of labels in ξ−1(U),

while the sign in SVSSYTeqwt(U) records the difference between |µ| and number of labels in U . Since the

number of labels in U is clearly the same as the number of labels in ξ−1(U), these signs are equal.

We check that the weight assigned to a label c of U in position (r, i) is the same as the edgefactor

assigned to the corresponding label iµi+1−r at the bottom of column c in ξ−1(U). The label c is assigned

the weight

SSYTeqfactor(r,i)(c) := 1− xc
yc+i−r

= 1−
tc+λ′n−k+1−c

tc+i−r
.

Hence we must show the equality of these two quantities:

SSYTeqfactor(r,i)(c) = 1−
tn+1−c−λ′n−k+1−c

tn+1−c+r−i
and

edgefactorx(iµi+1−r) = 1−
tMan(x)

tλ′n−k+1−c−i+r+Man(x)
,

where x is the southern edge of λ in column c.

Now, counting the rows and columns separating x from the southwest corner of k × (n− k), we have

Man(x) = (n− k − c) + (k − λ′n−k+1−c + 1) = n+ 1− c− λ′n−k+1−c.

Thus, the numerators of the quotients of SSYTeqfactor(c) and edgefactor(c) are equal. To see that the

denominators are also equal, observe

Man(x) + λ′n−k+1−c − i+ r =
(
n+ 1− c− λ′n−k+1−c

)
+ λ′n−k+1−c − i+ r

= n+ 1− c− i+ r.

(ξ is well-defined and weight-preserving): Let T ∈ A. We must show ξ(T ) is strictly increasing along

columns. This is clear since T satisfies (S.3) and (S.4).

Now we show that ξ(T ) is weakly increasing along rows. Suppose we have a in position (r, i) and b in

position (r, i+1). This a comes from an iµi+1−r in column a in T , while this b comes from an (i+1)µi+1+1−r

in column b. By ballotness of T , each iµi+1−r must be weakly right of each (i+ 1)µi+1+1−r. Thus a ≤ b.

Hence ξ(T ) is a set-valued semistandard tableau of shape µ′. The same computations showing ξ−1 is

weight preserving shows 0 6= wt(T ) = SSYTeqwt(ξ(T )) and so the desired conclusions hold.

The proposition now follows immediately from Lemmas 4.2 and 4.3.
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4.5 Good tableaux

In this section, we give an intrinsic description of the tableaux that will appear during our generalized jeu de

taquin process (defined in Section 4.7). Since we will use box labels •G , we distinguish labels ij as genetic

labels. As a visual aid, we mark genetic labels F southeast of a •G with F ≺ G as F !. For a gene G, let

G+ (respectively, G−) denote the successor (respectively, predecessor) of G in the total order ≺ on genes.

For example, 1+
1 = 21 if µ1 = 1, and 1+

1 = 12 if µ1 > 1. Let Gmax be the maximum gene that can appear,

namely `(µ)µ`(µ) where `(µ) is the number of nonzero rows of µ. Declare G+
max := (`(µ) + 1)1.

A G-good tableau is an edge-labeled filling T of ν/λ by genetic labels ij (such that i ∈ Z>0 and

the j’s that appear for each i form an initial segment of Z>0) and box labels •G , satisfying the conditions

(G.1)–(G.13) below:

(G.1) no genetic label is too high;

(G.2) no •G is southeast of another (in particular, •G ’s are in distinct rows and columns);

(G.3) the labels ≺-increase along rows (ignoring any •G ’s), except for possibly three consecutive labels

H •G F !
with H > F ;

(G.4) the labels <-increase down columns (ignoring any •G ’s), except that unmarked F may appear adjacent

and above F ! when both are box labels;

(G.5) if ij , k` appear on the same edge, then i 6= k;

(G.6) if ij is West of ik, then j ≤ k;

(G.7) each edge label is maximally west in its gene;

(G.8) each genotype G obtained by choosing one label of each gene of T is ballot in the sense defined in

Section 4.1.3.

(G.9) if F appears northwest of •G , then F ≺ G;

(G.10) if F ! ∈ x or F ! ∈ x, then •G appears in x’s row;

(G.11) •G does not appear in a column containing a marked label;

(G.12) if ` and `′ are genetic labels of the same family with ` NorthWest of `′, then there are boxes x, z in row

r with x West of z, ` ∈ x or x, and `′ ∈ z or z; further, •G appears in some box y of r that is East of x
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and west of z. Pictorially, the scenarios are:

? · · · • · · · ?`
`′x y z

? · · ·· · ·· · · •`
`′x y = z

? · · · • · · · `′`

x y z

` · · · • · · · ?
`′x y z

` · · ·· · ·· · · •̀′
x y = z

Furthermore, if y = z = x→ in the last scenario, then y→ does not contain a marked label nor another

instance of the gene of `′.

We place a virtual label H on each edge x where H ∈ x would

(V.1) not be marked (hence if H appears southeast of a •G , then H � G);

(V.2) not be maximally west in its gene (hence violating condition (G.7)); and

(V.3) satisfy the conditions (G.1), (G.4), (G.5), (G.6), (G.8), (G.9) and (G.12).

(G.13) If E ! ∈ x or E ! ∈ x, then there is F or F on x with NE = NF and family(F) = family(E) + 1.

A tableau is good if it is G-good for some G.

Example 4.7. The tableau 21 •22 1!
2

11

22
is 22-good. Although the labels in the second row do not increase left

to right, they satisfy (G.3). Furthermore, notice the 11 and 1!
2 satisfy (G.12), as do the 21 and 22.

The tableau

11 •21

•21
1!

1
21

is also good. Although the label 11 appears twice in the same column, the lower

instance is marked in accordance with (G.4). ♦

Example 4.8. The following tableaux are not good:

11 •12
12

21

21

•21
1!

1

21

31

•21
12

•21
1!

1
21

•12
12

11

The first fails conditions (G.1) and (G.7) because of the edge label 21. The second fails (G.8), as the unique

genotype is not ballot. Although the marked 1!
1 in the third tableau has a label of family 2 on the lower

edge of its box, the tableau fails (G.13) as 1 = N11
6= N21

= 0. It also fails (G.11) by having both a •21
and

a marked label in the second column. The fourth tableau fails (G.12). ♦

Lemma 4.4. If T ∈ Bundled(ν/λ), then T is G-good for every G. Moreover the virtual labels of the G-good

tableau T (as defined by (V.1)–(V.3)) are the same as the virtual labels of the bundled tableau T (as defined

in Section 4.2).
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Proof. Since T is bundled, (S.1), (S.2), (S.3) and (S.4) hold. These conditions respectively imply (G.3),

(G.4), (G.5) and (G.6). (G.1), (G.7) and (G.8) are part of the definition of a bundled tableau. For (G.12), if

` is NorthWest of `′ and both are from the same family, (S.1) or (S.2) is violated. The remaining conditions

are vacuous since T has no •G ’s. Hence T is G-good.

The claim about virtual labels is then clear from the definitions.

Lemma 4.5 (Strong form of (G.10)). Assume T is G-good. Let x be a box of T in row r.

(I) If F ! ∈ x, then label(x) is marked.

(II) If F ! ∈ x, then there is a y West of x in r such that •G ∈ y. Every box label of r between x and y is

marked.

Proof. (I): Since F ! ∈ x, x (and hence also x) is southeast of a •G . By (G.11), •G /∈ x. Hence some E ∈ x.

By (G.4), E < F . Therefore the E ∈ x is marked.

(II): Since F ! ∈ x, there is a •G northwest of x. By (G.10), there is a •G in x’s row. If this latter •G is

East of x, these two •G ’s are distinct and violate (G.2). Hence the •G in x’s row is in some box y West of x.

If E is a box label between x and y (and in the same row), it is southeast of the label(y) = •G . By (G.3)

E ≺ F . Hence this E is also marked.

Lemma 4.6 (Strong form of (G.13)). Let T be G-good. Suppose E ! ∈ x or E ! ∈ x with family(G) −

family(E) = k > 0. For each 0 < h < k, there is H! ∈ x with NH = NE and family(H) = family(E) + h.

Also, there is a G′ or G′ ∈ x with NG′ = NE and family(G′) = family(G).

Proof. This follows by repeated application of (G.13). Note that none of the H’s of the statement can be

virtual since they must be marked.

Lemma 4.7. If E < F are genes of a good tableau T with NE = NF , then no F or F is East of any E.

Proof. First suppose that some F is East of some E . Let G be a genotype of T with F ∈ G that is East

of some E ∈ G. Then F appears before E in word(G). By (G.6), the initial segment W of word(G) ending

at F contains NF + 1 labels of family(F) and at most NE labels of family(E). Thus T ’s (G.8) is violated

for some family(E) ≤ i < family(F), a contradiction. Finally, if some F is East of some E , then by

(V.3) the tableau T ′ obtained by replacing that F by F satisfies (G.6) and (G.8). Now we derive the same

contradiction as before, using T ′ in place of T .

Lemma 4.8. If E ! appears in a good tableau T , then it is maximally west in its gene.
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Proof. Suppose E ! ∈ x or E ! ∈ x. By (G.13), there is an F or F ∈ x with NE = NF and E < F . Thus we

are done by Lemma 4.7.

Lemma 4.9. Suppose column c of good tableau T contains labels H and J with H < J and NH = NJ .

Then for every i such that family(H) < i < family(J ), there is a label I of family i in column c such that

NH = NI .

Proof. Suppose not. By (G.8), there is some I ∈ T of family i such that NH = NJ = NI . If this I is not

in column c, we contradict Lemma 4.7.

Lemma 4.10. Suppose E and F satisfy NE = NF and family(F) = family(E) + 1. Let T be a G-good

tableau with F ∈ x and either E ! ∈ x or E ! ∈ x. Then •G ∈ x← and family(F) = family(G).

Proof. If •G 6∈ x←, then by Lemma 4.5, D! ∈ x←. By (G.3) and (G.4), D ≺ E . Also E ≺ G since E ! ∈ T .

Thus by (G.6) and Lemma 4.6, there is a Ẽ ! ∈ x← or Ẽ ! ∈ x← with family(E) = family(Ẽ) and NẼ = ND.

By (G.13), there is F̃ or F̃ ∈ x← with family(F) = family(F̃) and NẼ = NF̃ . Thus, by Lemma 4.7,

F 6= F̃ , contradicting F ∈ x. Finally, family(F) = family(G) by Lemma 4.6.

Lemma 4.11. If T is G-good, then no H is southEast of another.

Proof. If some H is SouthEast of another H, by (G.12) there is a •G in between the two H’s. If two H’s are

box labels of the same row, then by (G.3) we reach the same conclusion that there is a •G in between the

two H’s. In either case, since this •G is southeast of the western H we have H ≺ G by (G.9). Since this •G

is northwest of the eastern H, this eastern H is marked. This contradicts Lemma 4.8. Finally, suppose two

H’s are edge labels on the bottom of the same row. This contradicts (G.7).

Lemma 4.12. Let T be a G-good tableau. Suppose family(F) ≤ family(G), •G ∈ y and F ∈ z or z. Then

z is not SouthEast of y.

Proof. Suppose z is SouthEast of y. First assume F < G. Consider the box a that is in y’s column and

z’s row. By Lemma 4.5, either a contains a marked label (contradicting (G.11)) or •G ∈ a Southeast of y

(contradicting (G.2)).

Now assume family(F) = family(G). (We do not assume F � G.) Consider the box b of T that is in

y’s row and z’s column. By (G.2), b contains a genetic label. By (G.4), label(b) < F . Hence label(b) is

marked in T . By Lemma 4.6, b then contains a (possibly virtual) label of the same family as F and G. This

contradicts (G.4).
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Lemma 4.13. Let U be a G+-good tableau. Suppose that •G+ ∈ x and that either G ∈ y or G ∈ y. Then y

is not NorthWest of x.

Proof. Suppose otherwise. Consider the box b that is in y’s column and x’s row. By (G.2) it contains a

genetic label. By (G.4) either label(b) > G or else G! ∈ b. If G! ∈ b, then b is southeast of a •G+ by

definition. This contradicts (G.2). If G < label(b), we contradict (G.9).

Lemma 4.14. Let c be a column of a G-good tableau T . Suppose •G ∈ c and either G ∈ c or G ∈ c. Further

suppose that E ! ∈ y, where y is a box of column c→. Then G ∈ y.

Proof. Since E ! appears in T , E ≺ G. Since E appears East of some G, by (G.6) this implies E < G.

Hence by Lemma 4.6, there is either G′ ∈ y or G′ ∈ y with family(G′) = family(G). It remains to show

G′ = G, for then by (G.7), G ∈ y.

Suppose G′ 6= G. Then by (G.4), (G.5) and (G.6), G′ = G+. By Lemma 4.6, NE = NG+ ; thus

family(E−) = family(E) by (G.8). Also by (G.8), every instance of E− must be read before any G or

G . By (G.4), E− /∈ c→. By (G.6), E− does not appear East of c→. But by assumption either G ∈ c or

G ∈ c, so E− must appear in c.

Consider the box y←. By Lemma 4.5, either •G ∈ y← or some D! ∈ y←. The latter is impossible by

(G.11), since •G ∈ c. Hence •G ∈ y←.

Now E− cannot appear South of y← in c, for then it would be marked, in violation of (G.11). We have

E− /∈ y←, since •G ∈ y←. By (G.12), E− cannot appear North of y← in c. This contradicts that E− must

appear in c, and therefore the assumption G′ 6= G.

4.6 Snakes of good tableaux

In this section, we give structural results about certain subsets of a good tableau; these will play a critical

role in the definition of our generalized jeu de taquin (given in Section 4.7).

4.6.1 Snakes

Let T be a G-good tableau. Let G = gk and consider the set of boxes in T that contain either •G or G. This

set decomposes into edge-connected components R that we call presnakes. A short ribbon is a connected

skew shape without a 2× 2 subshape and where each row and column contains at most two boxes.

Lemma 4.15. Each presnake R is a short ribbon. Any row of R with two boxes is •G G . Any column of

R with two boxes is •G
G

.
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Proof. Since T is G-good, there is no G!. So any column of R has at most one G by (G.4) and at most one

•G by (G.2). Hence any column of R has at most two boxes. By (G.9) if •G and G are in the same column,

the •G is to the north. The description of rows of R holds by (G.2), (G.3) and (G.9). That R is a skew

shape with no 2× 2 subshape then follows immediately.

A snake S is a presnake R extended by (R.1)–(R.3):

(R.1) If the box immediately right of the northmost •G in R contains G+ with family(G+) = family(G),

then adjoin this box to R.

(R.2) If the box immediately left of the southmost G in R contains a marked label, adjoin this box to R.

(R.3) If x in the northmost row of R contains •G , label(x→) is marked and either G or G ∈ x→, then adjoin

x→ to R.

The entries of S are its box labels and labels appearing on the bottom edges of its boxes.

Example 4.9. Below are snakes for G = 22:

•22
23

•22 22

,

22

22 , •22
22

2!
1 22

,

31 32

•22
1!

3 .22

On the other hand,

•22
31

•22 22
22

is not a snake, even if 31 = 2+
2 ((R.1) does not apply). ♦

Example 4.10 (Snakes can share a row).

12

•22
1!

1 22
2!

1, 31 32
contains two snakes as colored. ♦

Example 4.11 (Snakes can share a column). •11
12

•11
12

11

has two snakes as colored. ♦

Lemma 4.16. Every snake S is a short ribbon.

Proof. S is built by adjoining boxes to a presnake R. By Lemma 4.15, R is a short ribbon. In view of

Lemma 4.15, (R.1) and (R.3) only apply if the northmost row of R is a single box with •G . So adjoining a

box to the right maintains shortness. Similarly, (R.2) maintains shortness.

Lemma 4.17 (Disjointness and relative positioning of snakes). Suppose S, S′ are snakes obtained from

distinct presnakes R,R′ respectively. Up to relabeling of the snakes, one of the following holds:

(I) S is entirely SouthWest of the S′ (that is, if b, b′ are respectively boxes of these snakes, then b is

SouthWest of b′).
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(II) S consists of a single box containing •G with neither G nor G on its lower edge; further, this box

appears West of and in the same row as the southmost row of S′, and all intervening box labels are

marked; cf. Example 4.10.

(III) S involves an (R.1) extension, adjoining a G+ in some box w, while S′ = {•G ∈ w↑} or S′ = {•G ∈

w↑,G+ ∈ w↑→}; cf. Example 4.11.

In particular, S and S′ are box disjoint.

Proof. By Lemma 4.15, (G.2) and/or (G.4), R and R′ share at most one row and do not share a column.

Moreover, one sees that R is southWest of R′ (say). By (R.1)–(R.3), S and S′ share a row if and only if R

and R′ do.

Case 1: (R and R′ share a row r): The northmost row of R and the southmost row of R′ are in row r. We

must show that (II) holds and that S, S′ are box disjoint.

By (G.2), (G.9) and Lemma 4.11, R has in row r only a •G ∈ x while R′ has in r only G ∈ y. Since

S 6= S′, y 6= x→. By (G.3), label(y←) ≺ G, so we have some marked label F ! ∈ y←. Therefore R′ extends

to S′ by (R.2).

Claim 4.1. No G or G appears in columns west of y←.

Proof. Since F ≺ G, we are done by (G.4) and (G.6) if family(F) = family(G). Thus assume F < G. By

Lemma 4.6, there is either G′ ∈ y← or G′ ∈ y← such that family(G′) = family(G) and NF = NG′ . By

(G.6), G′ � G because G ∈ y. If G′ = G, then since NF = NG′(=G), the G ∈ y and F ! ∈ y← combine to

contradict Lemma 4.7. Thus G′ ≺ G and we are done by (G.6) and (G.4).

By Claim 4.1, R = {•G ∈ x} without G or G ∈ x. Observe that R cannot extend to S by (R.1), since

(R.1) requires G+ ∈ x→, which contradicts (G.3) in view of G ∈ y. It cannot be extended by (R.2) since

G 6∈ x. If R were extended by (R.3), there would be a G or G in x→ in violation of Claim 4.1. Thus

R = S = {x}.

By Lemma 4.5(II), all labels strictly between x and y are marked. Hence (II) holds. Since y← 6∈ S, we

see by (R.1)–(R.3) that S and S′ are box disjoint.

Case 2: (R and R′ do not share a row): We may assume S and S′ share a column, for if they do not, then

clearly (I) and box-disjointness both hold. Since R and R′ do not share a column, S and S′ can only share a

column if R is extended East by (R.1) or (R.3) or if R′ is extended West by (R.2). Let x be the northeastmost

box of R and y be the southwestmost box of R′.

71



Subcase 2.1: (R is extended by (R.1)): Since label(x→) = G+ and family(G+) = family(G), by (G.6) R′

cannot contain any G’s and therefore R′ = {•G ∈ y}. Hence (R.2) does not extend R′. By assumption, x→

and y are in the same column. Hence by (G.4) and (G.11), y = x→↑. By (G.6), R′ is not extended by (R.3),

since G+ ∈ x→ and (R.3) requires G ∈ y→ or G ∈ y→. If R′ is extended by (R.1), we obtain the second

scenario described by (III) (and S, S′ are box disjoint). If R′ is not extended by any of (R.1)–(R.3), then

we have the first scenario described by (III) (and S, S′ are box disjoint).

Subcase 2.2: (R is extended by (R.3)): Let c be x→’s column. We have F ! ∈ x→ and either G ∈ x→ or

G ∈ x→. Moreover NF = NG . Hence by Lemma 4.7, no G appears East of c. Thus R′ = {•G ∈ y}. By

(G.11), y /∈ c. Thus S and R′ do not share a column. Since •G ∈ y, R′ is not extended by (R.2). Thus S

and S′ do not share a column.

Subcase 2.3: (R′ is extended by (R.2); R is not extended by either (R.1) or (R.3)): Here G ∈ y and F ! ∈ y←.

By Lemma 4.6, either family(F) = family(G) or else we have G′ ∈ y← or G′ ∈ y← such that family(G′) =

family(G). Hence by (G.4) and (G.11), R cannot contain a box in the column of y←. Hence R,S′ do not

share a column. Hence by the assumption of the subcase, S and S′ do not share a column.

4.6.2 Snake sections

We decompose each snake S into three snake sections denoted head(S), body(S) and tail(S) as follows:

Definition-Lemma 4.1.

(I) If a snake S has at least two rows and its southmost row has two boxes, then head(S) is the southmost

row of S, tail(S) is the northmost row and body(S) is the remaining rows.

(II) If a snake S has at least two rows and its southmost row has exactly one box, then head(S) is empty,

tail(S) is the northmost row and body(S) is the other rows.

(III) If S has exactly one row, then S is one of the following (edge labels not depicted):

(i) S = G = body(S); (ii) S = •G = head(S); (iii) S = •G G = head(S);

(iv) R = •GG
+

= head(S); (v) S = F
! G = head(S);

(vi) S = •G F
!

= tail(S) (with G or G on the lower right edge).

Proof. It is only required to verify that in (III) all possible one-row snakes are shown. This is done by

combining Lemma 4.15 and (R.1)–(R.3).
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Lemma 4.18 (Properties of head, body, tail).

(I) If head(S) = {x}, then •G ∈ x.

(II) If head(S) = {x, x→}, then head(S) = F
! G , •G G or •GG

+
.

(III) body(S) is a short ribbon consisting only of •G’s and G’s (with no edge label G’s or G ’s).

(IV) If tail(S) = {x}, then tail(S) = •G and S has at least two rows.

(V) If tail(S) = {x, x→} = •G G or •GG
+

, then S has at least two rows, G /∈ x and G /∈ x.

(VI) If tail(S) = {x, x→} and G or G ∈ x→, then tail(S) = •G F
!

G or •G F
!
.G

(VII) If S has at least two rows, then G ∈ x↓ where x is the westmost box of tail(S).

Proof. If S has one row, then by Definition-Lemma 4.1(III) these claims are clear (or irrelevant). Thus

assume S has at least two rows.

(I): Under the assumption that S has at least two rows, the claim is vacuous since by Definition-Lemma 4.1(I,II)

we know | head(S)| 6= 1.

(II): Either the southmost row of S is F
! G if (R.2) was used, or it is • G if (R.2) was not used; cf.

Lemma 4.15.

(III): That body(S) is a short ribbon is clear, since S is a short ribbon by Lemma 4.16. Boxes of body(S)

only contain G or •G because (R.1)–(R.3) adjoin boxes only to the northmost or southmost row (and if the

southmost row of S has two boxes, then by definition that row is not part of body(S)). By (G.12), an edge

label G or G can only appear in the northmost or southmost row of S. In those cases, the row is not part

of body(S) by Definition-Lemma 4.1(I,II).

(IV): tail(S) is the northmost row of S and, since | tail(S)| = 1, it is the northmost row of the presnake

of S. Thus we are done by Lemma 4.15.

(V): tail(S) is the northmost row and by Lemma 4.15, G ∈ x↓ (x↓ is in the presnake of S) so G, G 6∈ x by

(G.4).

(VI): x is in the presnake of S and so by Lemma 4.15, •G ∈ x. By (G.2), •G 6∈ x→. By (G.4), label(x→) < G

and so label(x→) is marked, since it is southeast of the •G ∈ x.

(VII): x and x↓ are part of the presnake of S. Now apply Lemma 4.15.
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4.7 Genomic jeu de taquin

4.7.1 Miniswaps

We first define miniswaps on snake sections of a G-good tableau. The output is a formal sum of tableaux.

Below, interpret • = •G before the miniswap and • = •G+ after the miniswap. We depict G whenever

it exists. Labels and virtual labels from other genes are not depicted unless relevant to the miniswap’s

definition. For a box x, define

β(x) := 1−
tMan(x)

tMan(x)+1
and β̂(x) := 1− β(x) =

tMan(x)

tMan(x)+1
.

Note that if x = α/β, then β̂(x) = wtα/β, as defined in Section 4.3. If a snake section is empty, then mswap

acts trivially, so below we assume otherwise.

Miniswaps on head(S)

(Case H1: head(S) = {x} and G ∈ x):

head(S) = • 7→ mswap(head(S)) = β(x) · G + γ · •G
G

Set γ := 0 if row(x) = family(G) (that is, if G ∈ x would be too high); otherwise set γ := 1.

(Case H2: head(S) = {x} and G ∈ x):

head(S) = • 7→ mswap(head(S)) = • + β(x) · GG

(Case H3: head(S) = {x} and Cases H1/H2 do not apply):

head(S) = • 7→ mswap(head(S)) = •

(Case H4: head(S) = {x, x→}, G ∈ x→, and G ∈ x):

head(S) = • G 7→ mswap(head(S)) = 0G

(Case H5: head(S) = {x, x→}, G ∈ x→, and G 6∈ x):
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(Subcase H5.1: H ∈ x→, family(H) = family(G) + 1 and NH = NG):

head(S) = • G 7→ mswap(head(S)) = • G!

H H

(Subcase H5.2: H ∈ x→, family(H) = family(G) + 1 and NH = NG):

head(S) = • G 7→ mswap(head(S)) = • G!
+ β̂(x) · G •H H

(Subcase H5.3: Subcases H5.1/H5.2 do not apply):

head(S) = • G or • G 7→ mswap(head(S)) = β̂(x) · G •G

(Case H6: head(S) = {x, x→}, G+ ∈ x→, and G ∈ x):

head(S) = • G+
7→ mswap(head(S)) = β(x) · G G

+
+ α · G •G G+

Set α := 0 if the second tableau has two •G+ ’s in the same column; otherwise set α := β̂(x).

(Case H7: head(S) = {x, x→}, G+ ∈ x→, and G ∈ x):

head(S) = • G+
7→ mswap(head(S)) = • G+

+ β(x) · G G
+

+ α · G •G G+

Set α := 0 if the third tableau has two •G+ ’s in the same column; otherwise set α := β̂(x).

(Case H8: head(S) = {x, x→}, G+ ∈ x→, and Cases H6 and H7 do not apply):

head(S) = • G+
7→ mswap(head(S)) = • G+

(Case H9: head(S) = {x, x→}, F ! ∈ x, and G ∈ x→):

head(S) = F
! G 7→ mswap(head(S)) = F

! G!

Lemma 4.19. Every nonempty head(S) falls into exactly one of H1–H9.

Proof. Since head(S) 6= ∅, | head(S)| ∈ {1, 2} by Lemma 4.16. If head(S) = {x}, then by Lemma 4.18(I),

•G ∈ x. Then x contains exactly one of G, G or neither; these are respectively Cases H1, H2 and H3. If

head(S) = {x, x→}, see Lemma 4.18(II): one possibility is F ! ∈ x and G ∈ x→; this is H9. Otherwise, •G ∈ x
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and x→ contains G or G+. The cases where G ∈ x→ are covered by H4–H5. The cases where G+ ∈ x→ are

covered by H6–H8.

Miniswaps on body(S)

Let body•G (S) = {x ∈ body(S) : •G ∈ x}.

(Case B1: body(S) = S): By Definition-Lemma 4.1, S = G . Define

body(S) = G 7→ mswap(body(S)) = G .

(Case B2: The southmost row of body(S) contains two boxes): Replace each G in body(S) with •G+ and each

•G with G, emitting a weight
∏

x∈body•(S) β̂(x). That is (cf. Lemma 4.18(III)),

body(S) = • G
• G

• G

7→ mswap(body(S)) =
∏

x∈body•G (S) β̂(x) · G •
G •

G •

(Case B3: Cases B1/B2 do not apply): Replace each G in body(S) with •G+ and each •G with G, emitting

−
∏

x∈body•(S) β̂(x). That is (cf. Lemma 4.18(III)),

body(S) = • G
• G
G

7→ mswap(body(S)) = −
∏

x∈body•G (S) β̂(x) · G •
G •
•

Lemma 4.20. Every nonempty body(S) falls into exactly one of B1–B3.

Proof. If B1 applies, then by Definition-Lemma 4.1, S = G . The lemma follows.

Miniswaps on tail(S)

(Case T1: tail(S) = {x}):

tail(S) = • 7→ mswap(tail(S)) = −β̂(x) · G

(Case T2: tail(S) = {x, x→} and G ∈ x→):

tail(S) = • G 7→ mswap(tail(S)) = β̂(x) · G •

(Case T3: tail(S) = {x, x→} and G+ ∈ x→):

tail(S) = • G+
7→ mswap(tail(S)) = −β̂(x) · G G

+
+ α · G •G+
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Set α := 0 if the second tableau has two •G+ ’s in the same column; otherwise set α := β̂(x).

(Case T4: tail(S) = {x, x→}, G ∈ x→): Let Z = {` ∈ x→ : F ≺ ` ≺ G}.

(Subcase T4.1: H ∈ x→, family(H) = family(G) + 1 and NH = NG):

tail(S) =
• F !

7→ mswap(tail(S)) =
• F !

Z,G,H Z,G!,H

(Subcase T4.2: H ∈ x→, family(H) = family(G) + 1 and NH = NG):

tail(S) =
• F !

7→ mswap(tail(S)) =
• F !

+ β̂(x) ·
G •

Z,G, H Z,G!, H

F , Z

(Subcase T4.3: Subcases T4.1/T4.2 do not apply):

tail(S) = • F !
7→ mswap(tail(S)) = β̂(x) · G •

Z,G

F , Z

(Case T5: tail(S) = {x, x→}, G ∈ x→, G /∈ x): Let Z = {` ∈ x→ : F ≺ ` ≺ G}.

tail(S) =
• F !

7→ mswap(tail(S)) = β̂(x) · G •
Z, G

F , Z

(Case T6: tail(S) = {x, x→}, G ∈ x→, G ∈ x):

tail(S) = • F !
7→ mswap(tail(S)) = 0G G

Lemma 4.21. Every nonempty tail(S) falls into exactly one of T1–T6.

Proof. Since tail(S) 6= ∅, | tail(S)| ∈ {1, 2} by Lemma 4.16. If | tail(S)| = 1, then by Lemma 4.18(IV),

tail(S) = •G ; this is covered by T1. Suppose tail(S) = {x, x→}. By Lemma 4.15, (R.1)–(R.3) and

Definition–Lemma 4.1, tail(S) = •G G (handled by T2), tail(S) = •GG
+

(handled by T3) or tail(S) =

•G F !
with G or G ∈ x→ (handled by T4, T5 or T6).

4.7.2 Swaps and slides

We define swapG(T ) and slide{xi}(T ) for a good tableau T . Define swapG on a single snake S by applying

mswap simultaneously to head(S), body(S), and tail(S) (where the conditions on each mswap refer to the

original S).

Lemma 4.22. On the edges shared by two adjacent snake sections, the modifications to the labels given by
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the two miniswaps are compatible.

Proof. Suppose the lower of the two adjacent sections is head(S). The only miniswap that introduces a

label to the northeast edge (i.e., x if head(S) = {x} or x→ if head(S) = {x, x→}) is H1. However in that

case head(S) = S and the compatibility issue is moot. Since body miniswaps do not affect edge labels, the

remaining check is when a tail miniswap involves x where x is the left box of tail(S). This only occurs in

T6. In this case tail(S) = S, so compatibility is again moot.

Lemma 4.23 (Swap commutation). If S1, S2 are distinct snakes in a G-good tableau T , then applying swapG

to S1 commutes with applying swapG to S2.

Proof. By definition, the locations of virtual labels in one snake are unaffected by swapping another snake.

Hence if the snakes do not share a horizontal edge, there is no concern. If they do, this is the situation of

Lemma 4.17(III). The northmost row r of the lower snake (say S1) is {x, x→} with G+ ∈ x→. Hence by

(G.4), G, G 6∈ x→. By inspection, no miniswap involving r affects x→. Now, the upper snake S2 has a single

row, which by the previous sentence is either an H3 or H8 head, irregardless of whether we have acted on r

already. Therefore, swapG acts trivially on S2 whether we act on S1 or S2 first.

Lemma 4.23 permits us to define the swap operation swapG on a G-good tableau as the result of applying

swapG to all snakes (in arbitrary order). Extend swapG to a Z[t±1
1 , . . . , t±1

n ]-linear operator.

An inner corner of ν/λ is a maximally southeast box of λ. An outer corner of ν/λ is a maximally

southeast box of ν/λ.

Let T ∈ Bundled(ν/λ) and {xi} be a subset of the inner corners of ν/λ. Define T (11) to be T with •11

placed in each xi.

Lemma 4.24. Each T (11) is 11-good.

Proof. (G.2) is clear. By Lemma 4.4, T is good; (G.1), (G.3)–(G.8) and (G.12) are unaffected by adding

•11
’s to inner corners. (G.9)–(G.11) and (G.13) hold vacuously.

The slide of T at {xi} is

slide{xi}(T ) := swapGmax
◦ swapG−max

◦ · · · ◦ swap11
(T (11)), (4.8)

with all •G+
max

’s deleted. If Σ is a formal Z[t±1
1 , . . . , t±1

n ]-linear sum of tableaux we write V ∈ Σ to mean V

occurs in Σ with nonzero coefficient. The following proposition shows (4.8) is well-defined.

Proposition 4.4 (Swaps preserve goodness). If T is a G-good tableau, then each U ∈ swapG(T ) is G+-good.
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Proof. We omit the lengthy proof, which appears as [PeYo15b, Appendix A].

Lemma 4.25 (Swaps preserve content). If T is a G-good tableau of content µ, then each U ∈ swapG(T ) has

content µ.

Proof. No miniswap eliminates genes in a section. We consider each miniswap that introduces a new gene to

a section; this gene must be G. We show that G appears elsewhere in T . The first case is H2, which produces

a G in its section, where there was only a G previously. G only appears if some G is west of it in T . The

same analysis applies verbatim to H7 and T5. The remaining cases are T1 and T3. By Lemma 4.18(IV, V),

the snake on which these miniswaps act has at least two rows. Moreover, there is a G directly below the •G

under consideration. In particular, G already appeared in T .

Lemma 4.26. No label is strictly southeast of a •G+
max

in any U ∈ swapGmax
◦ swapG−max

◦ · · · ◦ swap11
(T (11)).

In particular, all •G+
max

’s are at outer corners of ν/λ.

Proof. By Proposition 4.4, U is G+
max-good. Let x be a box of U and •G+

max
∈ x. There is no •G+

max
strictly

southeast of x by (G.2). By definition, there is no label Q in T (11) with family(Q) ≥ family(G+
max). Hence

by Lemma 4.25, there are no such labels in U . Therefore, any genetic label ` southeast of x is marked.

Clearly, we may assume ` is in x’s row or column. If ` is in x’s column, we contradict (G.11). If ` is in x’s

row, we contradict Lemma 4.6.

Clearly,

Lemma 4.27. If T is a good tableau with no genetic label southeast of a •, then deleting all •’s gives a

bundled tableau.

Corollary 4.2. Given ρ ∈ λ+ and a tableau T ∈ Bνρ,µ, any tableau U ∈ slideρ/λ(T ) is in either Bνλ,µ or

Bδλ,µ for some δ ∈ ν−.

Proof. By Lemma 4.4, T is a good tableau. By Lemma 4.24, adding •11
to each box of ρ/λ gives a good

tableau T (11). By Proposition 4.4, each swap gives a formal sum of good tableaux. By Lemma 4.26, after all

swaps, •G+
max

’s are at outer corners with no labels strictly southeast. By Lemma 4.27, deleting these •G+
max

’s

gives a bundled tableau (namely U). U has shape ν/λ or δ/λ for δ ∈ ν−, since there is at most one •G+
max

deleted in any row or column by (G.2). Content preservation is Lemma 4.25.

4.7.3 Examples

We give a number of examples of computing slide{xi}(T ). It is convenient to encode the computations in a

diagram. Each non-terminal tableau has its snakes differentiated by color. The notation above each arrow
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indicates the types of the snakes from southwest to northeast, for example H5.3/∅/T2 means the head of

the snake is H5.3, the body is empty and the tail is T2. The notation below arrows indicates the product

of the coefficients coming from each miniswap (we will assume for this purpose that the lower left corner of

T coincides with the lower left corner of k × (n − k)). Each U ∈ slide{xi}(T ) is a terminal tableau of the

diagram. Moreover, [U ]slide{xi}(T ) is the sum of the products of the coefficients over all directed paths

from T to U .

Example 4.12.

T (11) =
•11

11
21

•21
1!

1
21

H5.1/∅/∅
1 21 •31

11 11

T4.3/∅/∅
t1
t2

21

11 11
Delete •’s

♦

Example 4.13.

T (11) =
•11

11

21

21

•21 1!
1

21

21

11 •21

21

11

11 •31

21

11

11

21

11

21 •31

•31

11 11

21

11 11

H5.2/∅/∅

1

t2
t3

H3/∅/∅
∅/B1/∅

1

Delete •’s

∅/B3/T5

−1 · t2t3

Delete •’s

♦

Example 4.14.

T (11) =
•11

12 13
11

11 12 13

11 •12
13

12

11 12 13

11 12 •13
13

11 12 13

H6/∅/∅

1− t1
t2

t1
t2

1

∅/B1/∅

t2
t3

1

∅/B1/∅

1− t2
t3

H6/∅/∅

1− t3
t4

H1/∅/∅

♦
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Example 4.15.

T (11) =

•11
12

•11 11

•11
11

11 12

11•12

11•12

11•12

11•12

11•12

12

11 12

11•21

11•21

11•21

11•21

11•21

12

11 12

11

11

11

11

11

12

H5.3/B2/T3

t1
t2
· t3t4 ·

(
− t5t6

)

t1
t2
· t3t4 ·

t5
t6

1

∅/B1/∅
H3/∅/∅
H3/∅/∅

H1/∅/∅
H3/∅/∅
H3/∅/∅

1− t6
t7

1

Delete •’s

Delete •’s

♦

Example 4.16.

T (11) =
•11 11 12

21 22

•12 1!
1 12

21 22

•21 1!
1 1!

2
21 22

21 •22 1!
2

11

22

21 22 •31

11 12 12

21 22

11 12 12

H5.1/∅/∅
1

H9/∅/∅
H3/∅/∅

1

∅/∅/T4.3
t1
t2

∅/∅/T4.3
t2
t3

Delete •’s

♦

81



Example 4.17.

T (11) =
12

•11
12

11 11

12

•12
12

11

12

11 12
11

12

11 •12
11 12

12

12 •21
11

12

12

11 12
11

12

11 •21
11

12

12

12
11

12

12

11 12
11

12

11
11

12

H7/∅/∅

1

1− t2
t3

t2
t3

t2
t3

∅/B1/∅
H5.3/∅/∅

1

∅/B1/∅
∅/B1/∅

∅/B1/∅
H1/∅/∅ 1− t3

t4

1

Delete •’s

Delete •’s

Delete •’s

♦

Example 4.18.

T (11) =
•11

12

•11
12

11 11

•12 12

•12
12

11

•12
12

11 12
11

12 •21

12 •21
11

12 •21

11 •21
11

12

12
11

12

11
11

H8/∅/∅
H7/∅/∅

1

1− t2
t3

H5.3/∅/T2
t2
t3
· t4t5

∅/B3/T2

−1 · t4t5

Delete •’s

Delete •’s

♦

4.8 Ladders

Let U be a G+-good tableau. Consider the boxes of U containing •G+ or unmarked G. This set decomposes

into maximal edge-connected components, which we call ladders.
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Example 4.19. 12

11 22

21 32

21 •22

•22 2!
1

•22

This 22-good tableau has three ladders; we
have given each ladder a separate color.
(All virtual labels are depicted.)

31

31 31

♦

Lemma 4.28. A row r of a ladder L is one of the following (edge labels other than G and virtual labels are

not shown):

(L1) • (L2) G (L3) •G (L4) G •

Proof. By (G.2), at most one •G+ occurs in each row. By Lemma 4.11, at most one G appears in each row.

Thus r has at most two boxes. If it has one box, r is clearly L1, L2 or L3. If r has two boxes, then it has one

box label G and one box label •G+ . Since the G is not marked, it is West of the •G+ . By (G.4) and (G.7),

no edge label G is possible in this two-box scenario. Thus L4 is the only two box possibility.

Lemma 4.29. A ladder L is a short ribbon where each column with 2 boxes is G
•

.

Proof. In each column, there is at most one •G+ by (G.2) and at most one G by (G.4). If the column consists

of •G+ and G, then the G is North of the •G+ , since otherwise the G is marked. Therefore the columns are

as described.

If L has a 2× 2 subsquare the North box of each column must contain G, violating (G.3). Each row has

at most two boxes by Lemma 4.28. That L is a skew shape is now immediate from the descriptions of L’s

rows and columns.

Lemma 4.30 (Relative positioning of ladders). Suppose U is G+-good, and that L,M are distinct ladders

of U . Then, up to relabeling of the ladders, L is entirely SouthWest of M (that is, if b, b′ are boxes of L,M

respectively, then b is SouthWest of b′).

Proof. Suppose not. There are three cases to consider:

Case 1: (b ∈ L is NorthWest of b′ ∈ M): By definition, b and b′ contain either •G+ or G. By (G.2) and

Lemmas 4.11, 4.12 and 4.13, we see that no combination of these choices is possible.

Case 2: (b is North and in the same column as b′): If •G+ ∈ b and •G+ ∈ b′, we violate (G.2). If •G+ ∈ b and

G ∈ b′, then the latter would be marked. Hence G ∈ b. Since G ∈ b′ or •G+ ∈ b′, we have by (G.4) and

(G.9) that b↓ = b′ and so b, b′ are in the same ladder, contradicting L 6= M .
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Case 3: (b is West and in the same row as b′): By (G.2), at least one of b, b′ contains G. By Lemma 4.11,

at least one of b, b′ contains •G+ . If G ∈ b and •G+ ∈ b′, then by (G.3) and (G.9), b′ = b→, contradicting

L 6= M . If •G+ ∈ b and G ∈ b′, then the latter is marked.

4.9 Reverse genomic jeu de taquin

Let r be a ladder row in a G+-good tableau U and let x be the westmost box in r. We define the reverse

miniswap operation revmswap on r. The cases below are labeled in accordance with the classification of

Lemma 4.28. Below, each • on the left of the “7→” is a •G+ , while on the right it is a •G .

(Case L1):

(Subcase L1.1: G ∈ x↑):

r = • 7→ revmswap(r) = G

(Subcase L1.2: G /∈ x↑):

r = • 7→ revmswap(r) = •

(Case L2):

(Subcase L2.1: •G+ ∈ x↓ or G! ∈ x↓):

r = G 7→ revmswap(r) = •

(Subcase L2.2: •G+ /∈ x↓, G! /∈ x↓, G! /∈ x, x contains the westmost G):

r = G 7→ revmswap(r) = G + • .G

(Subcase L2.3: •G+ /∈ x↓, G! /∈ x↓, G! /∈ x, x does not contain the westmost G):

r = G 7→ revmswap(r) = G + • .G

(Case L3):

r = •
G
7→ revmswap(r) = • .G

(Case L4):

(Subcase L4.1: G+ ∈ x→ with family(G+) = family(G), and either •G+ ∈ x↓ or G! ∈ x↓):

r = G •
G+ 7→ revmswap(r) = • G+
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(Subcase L4.2: G+ ∈ x→ with family(G+) = family(G), •G+ /∈ x↓, G! /∈ x↓ and x contains the westmost

G):

r = G •
G+ 7→ revmswap(r) = • G+

G

(Subcase L4.3: G+ ∈ x→ with family(G+) = family(G), •G+ /∈ x↓, G! /∈ x↓ and x does not contain the

westmost G):

r = G •
G+ 7→ revmswap(r) = • G+

G

(Subcase L4.4: there is no G+ ∈ x→ with family(G+) = family(G), and x contains the westmost G): Let

A be the labels in x, Z = {E ∈ A : NG = NE}, Z] = Z ∪ {G}, F = minZ], A′′ = Z]\{F}, and A′ = A\Z.

r =
G •
A

7→ revmswap(r) =
• F

.

A′

A′′

(Subcase L4.5: there is no G+ ∈ x→ with family(G+) = family(G), and x does not contain the westmost

G): Let A,Z,Z],F and A′ be as in L4.4; also let A′′′ = Z\{F}.

r =
G •
A

7→ revmswap(r) =
• F

.

A′

A′′′, G

Lemma 4.31. Every ladder row falls into exactly one of the above cases.

Proof. This is tautological, given Lemma 4.28.

Lemma 4.32. No revmswap affects an edge that is shared by two rows of the same ladder L.

Proof. No revmswap affects the upper (virtual) edge labels of the right box of a ladder row. Hence it suffices

to analyze those cases that affect the lower (virtual) edge labels of the left box of a ladder row. These are

L2.2, L2.3, L3, L4.2 and L4.3. In each case there can be no ladder row of L below, by Lemma 4.29. Hence

that edge is not shared.

Thus it makes sense to define revswapG+ on a ladder L, by applying revmswap to each row of L simul-

taneously (where the conditions on each revmswap refer to the original ladder L).

Lemma 4.33. If L1, L2 are distinct ladders in a G+-good tableau U , then applying revswapG+ to L1 com-

mutes with applying revswapG+ to L2.

Proof. This follows, since by definition L1 and L2 do not share any edges.

Lemma 4.33 permits us to define the reverse swap revswapG+ on a G+-good tableau by applying

revswapG+ to all ladders (in arbitrary order). We extend this to a Z[t±1
1 , . . . , t±1

n ]-linear operator.
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Lemma 4.34 (Reverse swaps preserve content). If U is G+-good and of content µ, then each T ∈ revswapG+(U)

has content µ.

Proof. Let H be a gene in U . We must show H ∈ T . Let ` be the westmost instance of H in U . If ` is not

part of a ladder, H appears in the same location in T and we are done. Thus suppose ` is in a ladder row

r. Consider the reverse miniswap applied to r. If it is anything but L2.1 or L4.1, then there is an H in that

row of T . If it is L2.1 or L4.1, let x be the box containing `. By definition, U has •H+ ∈ x↓ or H! ∈ x↓. In

the former case, the miniswap applied at x↓ is L1.1, so H appears in x↓ in T . In the latter case, x↓ is not in

a ladder, so H appears in x↓ in T .

Conversely suppose H is not a gene in U . We must show it does not appear in T . If it appeared in T ,

it must be created by some miniswap. Clearly no miniswap but L1.1 could possibly introduce a new gene.

But if we apply L1.1 at some box x of U , introducing H ∈ x in T , then U has H ∈ x↑ by definition, so H was

indeed a gene of U .

Proposition 4.5 (Reverse swaps preserve goodness). If U is G+-good, each T ∈ revswapG+(U) is G-good.

Proof. We omit this lengthy proof, which appears as [PeYo15b, Appendix B].

Lemma 4.35. Let T be a G-good tableau and U ∈ swapG(T ).

(I) If labelU (x) = G, then labelT (x) ∈ {•G ,G}.

(II) If labelU (x) = •G+ , then labelT (x) ∈ {•G ,G,F !,G+}.

(III) If labelU (x) = G!, then labelT (x) = G.

Proof. By inspection of the miniswaps.

Lemma 4.36. Let U be a G+-good tableau and T ∈ revswapG+(U).

(I) If labelU (x) = G!, then labelT (x) = G.

(II) If labelU (x) = G, then labelT (x) ∈ {G, •G}.

(III) If labelU (x) = •G+ , then labelT (x) ∈ {•G ,G,G+,F !}. If moreover labelT (x) = G+, then labelT (x←) =

•G, while if moreover labelT (x) = F !, then NF = NG, labelT (x←) = •G and either G ∈ x or G ∈ x.

Proof. By inspection of the reverse miniswaps.

For a good tableau T of shape ν/λ, define a T -patch of ν/λ as one of the following:

(Pat.1) A row of a snake of T (including both upper and lower edges of the row).
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(Pat.2) A box not in a snake (the box excludes the edges).

(Pat.3) A horizontal edge not bounding a box of a snake.

Clearly, the set {P} of T -patches covers ν/λ. Given a tableau W of shape ν/λ, let W |P be the tableau

obtained by restricting W to P .

Proposition 4.6. Let T,U be good. Then U ∈ swapG(T ) if and only if T ∈ revswapG+(U).

Proof. (⇒) Suppose U ∈ swapG(T ). We show T ∈ revswapG+(U).

Claim 4.2. Every ladder row r of U is contained in a distinct T -patch.

Proof. Distinctness is clear. We now argue containment. If r has one box, containment is trivial. Otherwise,

r has two boxes, and we are in case L4 of the ladder row classification of Lemma 4.28. So, in U , each box

of r contains •G+ or G. One considers all possibilities, under Lemma 4.35, for the entries in T of the boxes

of r. Since T is good, these boxes of T either form a row of a snake section or are G G
+

. We are done by

(Pat.1) in the former case. The latter case cannot occur, since by inspection of the miniswaps, this cannot

swap to L4.

By the definitions, notice that revswapG+(U) 6= 0. Moreover:

Claim 4.3. For each T -patch P , there exists W ∈ revswapG+(U) such that W |P = T |P (ignoring virtual

labels).

Proof. If P is type (Pat.2), then by definition T |P = U |P , since P is not part of a snake. In particular

U |P does not contain G or •G+ . So U |P is not part of a ladder of U . Hence for any W ∈ revswapG+(U),

W |P = U |P = T |P as desired.

If P is type (Pat.3), then T |P = U |P , since P is not part of a snake. Moreover, by definition, no box y

bounded by the edge P is part of a snake in T . Therefore, •G ,G 6∈ y in T . Hence •G+ ,G 6∈ y in U . So P does

not bound a box of a ladder of U . Thus for any W ∈ revswapG+(U), W |P = U |P = T |P .

Finally if P is type (Pat.1), by inspection of the miniswaps, combined with Claim 4.2, U |P contains at

most one ladder row r, and possibly a non-ladder box y. Since revswapG+ does not affect y, it suffices to

indicate the reverse miniswap on r to give our desired W |P = T |P . We refer to the list of outputs described

in Section 4.7.

H1: Use L2.2 or L3 respectively on the two mswap outputs.

H2: Use L1.2 or L2.3 respectively on the two mswap outputs.

H3: Use L1.2: By T ’s (G.2) and (G.9) and Lemma 4.35(I) applied to T , we have G /∈ x↑ in U .
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H4: This case does not arise, since here U does not exist.

H5.1: Use L1.2.

H5.2: For the first output, use L1.2. For the second output, use L4.4 or L4.5. We must show in the latter

cases that Z = ∅. Otherwise if E ∈ Z, then E ∈ x in T . Since NE = NG in both T and U , this contradicts

Lemma 4.7 for T .

H5.3: Use L4.4 or L4.5. The argument that these apply is the same as for H5.2.

H6: Use L2.2 for the first output and L4.2 for the second. By Lemma 4.35(II) and T ’s (G.2) and (G.4),

•G+ /∈ x↓; by Lemma 4.35(I) and T ’s (G.2) or (G.4), G! 6∈ x↓; that the G ∈ x is westmost follows from T ’s

(G.7) and [PeYo15b, Lemma A.3] applied to T .

H7: Use L1.2 for the first output: By Lemma 4.35(I) and T ’s (G.2) and (G.9), U has G /∈ x↑. Use L2.3

for the second output and L4.3 for the third: By Lemma 4.35(II) and T ’s (G.2) or (G.4), •G+ /∈ x↓; by

Lemma 4.35(I) and T ’s (G.2) or (G.4), G! /∈ x↓; that the G ∈ x is not westmost follows from T ’s G ∈ x.

H8: Use L1.2: By T ’s (G.2) and (G.9) and Lemma 4.35(I), U has G /∈ x↑.

H9: Here r does not exist.

B1: Use L2.2 or L2.3: By Lemma 4.35(II) and T ’s (G.2) or (G.4), •G+ 6∈ x↓; by Lemma 4.35(III) and T ’s

(G.4), G! /∈ x↓.

B2: Use L4.4 or L4.5; applicability is as for H5.2.

B3: If we are not in the bottom row, we may use L4.4 or L4.5 as for B2. Otherwise, use L1.1.

T1: Use L2.1: By Lemma 4.18(IV, VII), T has G ∈ x↓, so the hypothesis holds by inspection of the miniswaps.

T2: Use L4.4 or L4.5; applicability is as for H5.2.

T3: Use L2.1 or L4.1; applicability is as for T1.

T4.1: Use L1.2: By T ’s (G.2) and (G.12) and Lemma 4.35(I), U has G /∈ x↑ and G /∈ x.

T4.2: Use L1.2 on the first output; applicability is as for T4.1. Use L4.4 on the second output; applicability

is as for H5.2.

T4.3: Use L4.4; applicability is as for H5.2.

T5: Use L4.5; applicability is as for H5.2.

T6: This case does not arise, since here U does not exist.

By definition, revswapG+(U) is obtained by acting on ladder rows of U independently. By Claim 4.3, it

follows that revswapG+(U) is also obtained by acting on the T -patches of U independently. Thus (⇐) holds

by Claim 4.2.

(⇐) Suppose T ∈ revswapG+(U). We show U is in swapG(T ).
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Recall swapG(T ) is a formal sum, given by independently replacing each snake section in each prescribed

way. Trvially, by (Pat.1), each snake section is a union of T -patches. Moreover, if a snake section σ consists

of more than one T -patch, then σ is a body with at least two rows, and hence either B2 or B3. Therefore

mswap(σ) has a unique output in this case. Since swapG acts trivially on the T -patches of types (Pat.2) and

(Pat.3), by Lemma 4.23, it follows that swapG(T ) is also given by acting independently on the T -patches of

T . It remains to show that locally at P , we may swap T |P to obtain U |P .

To make these local verifications, we use:

Claim 4.4.

(I) Every ladder row of U sits in a distinct T -patch of type (Pat.1).

(II) Every T -patch P of type (Pat.1) not coming from an H9 snake section, contains a ladder row of U .

Proof. (I): By Lemma 4.36, every ladder row of U is contained in a T -patch of type (Pat.1). Consider a

T -patch P of type (Pat.1); P consists of at most two boxes. If P does not consist of two boxes, clearly at

most one ladder row of U can be contained in it. If P consists of two boxes, they are joined by a vertical

edge. Since distinct ladder rows do not share a vertical edge, it follows that distinct ladder rows of U are

contained in distinct T -patches.

(II): By inspection of the reverse miniswaps.

If P is type (Pat.2) or (Pat.3), then by Claim 4.4, P does not intersect any ladder row of U . Thus

T |P = U |P . By definition, P is not part of any snake in T . Hence for any V ∈ swapG(T ), V |P = T |P = U |P

as desired.

Finally suppose P is a patch of type (Pat.1). If it comes from an H9 snake section, then V ∈ swapG(T ),

V |P = T |P = U |P . Otherwise, by Claim 4.4, P contains a unique ladder row in U . We consider each ladder

row type in turn and indicate the miniswaps on T |P that give our desired V |P = U |P . We refer to the list of

outputs described at the beginning of Section 4.9. The following case analysis completes the proof of (⇒).

L1.1: Use B3: Since labelU (x↑) = G, we apply at x↑ either L2.1, L4.1, L4.4 or L4.5. In each case labelT (x↑) =

•G+ . Hence x and x↑ are part of the southmost two rows of a snake of T . We claim x← is not part of this

snake. Note that by assumption x← is not part of any ladder of U . Thus labelU (x←) = labelT (x←) and

labelT (x←) /∈ {•G ,G}. If x← is part of x’s snake in T , then labelT (x←) = F ! ≺ G and southeast of some

•G . Hence in U , x← is southeast of some •G+ ; this contradicts U ’s (G.2) in view of U ’s •G ∈ x. Thus x is

the unique box of the southmost row of its snake and by Definition-Lemma 4.1, it is the southmost row of

a B3 snake section.
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L1.2: Use H2, H3, H7, H8, T4.1 or T4.2: Since labelT (x↓) = G, labelU (x↓) ∈ {•G+ ,G}. Hence by

Lemma 4.29, x↓ is not in x’s snake in T . Since labelT (x) = •G , x↑ is not in x’s snake in T . Hence x is in a

one-row snake. Since L1.2 applies, labelU (x→) 6= G, so labelT (x→) 6= G. Thus x’s snake in T is type (ii),

(iv) or (vi) in Definition-Lemma 4.1(III). Type (ii) uses H2 or H3; type (iv) uses H7 or H8; type (vi) uses

T4.1 or T4.2.

L2.1: Use T1 or T3: By assumption, labelU (x↓) ∈ {•G+ ,G!}. Hence by inspection of the reverse miniswaps,

labelT (x↓) = G. Since labelT (x) = •G , x↑ is not in x’s snake. Hence by Definition-Lemma 4.1(I,II), x is in

its snake’s tail. By T ’s (G.3), labelT (x→) � G, so labelU (x→) 6= F !. Thus either T1 or T3 applies.

L2.2: Use B1 for the first output. By assumption and U ’s (G.9), U has no •G+ adjacent to x. Moreover

by U ’s (G.4), no box adjacent to x is in any ladder. Hence T has no •G adjacent to x. If F ! ∈ x← in T ,

then (possibly marked) F ∈ x← in U . If labelU (x←) = F !, then we contradict unmarked G ∈ x in U .

If labelU (x←) is unmarked, then U has no •G+ northwest of x←. By U ’s (G.3) and (G.4), U has no G

northwest of x←. But since F ! ∈ x← in T , T has a •G+ northwest of x←. Hence by [PeYo15b, Lemma A.3],

U has a •G+ or G northwest of x←, a contradiction.

Use H1 or H6 for the second output. Since x→ is not in any ladder of U , labelU (x→) = labelT (x→).

Moreover by U ’s (G.3), labelU (x→) � G, so labelT (x→) � G. If labelT (x→) = G+, H6 applies. Otherwise,

H1 applies.

L2.3: Use B1 for the first output; applicability is as for the first output of L2.2. Use H2 or H7 for the

second output. Since x→ is not in any ladder of U , labelU (x→) = labelT (x→). Moreover by U ’s (G.3),

labelU (x→) � G, so labelT (x→) � G. If labelT (x→) = G+, H7 applies. Otherwise, H2 applies.

L3: Use H1. By U ’s (G.12), labelU (x→) /∈ {G,G+}. Moreover by U ’s (G.13) and (G.12), labelU (x→)

is not marked, so labelU (x→) � G+. Thus labelU (x→) � G+. Since x→ is not in any ladder of U ,

labelT (x→) � G+.

L4.1: Use T3. By inspection of the reverse miniswaps, T has G ∈ x↓. Hence x’s snake in T has at least two

rows. Hence x is part of its snake’s tail.

L4.2: Use H6.

L4.3: Use H7.

L4.4: If Z 6= ∅, use T4.2 or T4.3. Otherwise use H5.3, B2, B3 or T2. If Z 6= ∅, some T4 applies. If it is T4.1,

T has H ∈ x→ with family(H) = family(G) + 1 and NH = NG . Hence U also has H ∈ x→, contradicting

Lemma 4.7 for U . If Z = ∅, there is nothing to check.

L4.5: If Z 6= ∅, use T5. Otherwise use H5.3, B2, B3 or T2.

The following proposition characterizes good tableaux in terms of forward swapping.
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Proposition 4.7. A tableau U is G-good if and only if U ∈ swapG− ◦ · · · ◦ swap12
◦ swap11

(T (11)) for some

bundled tableau T and choice of inner corners of T to initially place •11
’s in.

Proof. (⇒) Given a G-good tableau U , let T (11) be any tableau appearing in revswap12
◦ · · ·◦revswapG− ◦ revswapG(U).

By Proposition 4.5, T (11) is a 11-good tableau. By T (11)’s (G.2) and (G.9), the •11
’s of T (11) are at inner cor-

ners and there is no genetic label northwest of a •11
. Let T be obtained by removing the •11

’s of T (11). Then

it is clear T is a bundled tableau. Now U ∈ swapG− ◦ · · · ◦ swap12
◦ swap11

(T (11)) holds by Propositions 4.4

and 4.6.

(⇐) Immediate from Lemma 4.24 and Proposition 4.4.

4.10 The reversal tree

4.10.1 Walkways

An i-walkway W in an (i+ 1)1-good tableau T is an edge-connected component of the collection of boxes

x in T such that:

(W.1) •(i+1)1 ∈ x; or

(W.2) ik ∈ x and x is not southeast of a •(i+1)1 (equivalently, ik ∈ x is not marked).

Lemma 4.37 (Structure of an i-walkway). Let W be an i-walkway.

(I) Each column c of W has at most two boxes; if c has two boxes, the southern box contains •(i+1)1 .

(II) W has no 2× 2 subsquare.

(III) W is an edge-connected skew shape.

(IV) The •(i+1)1 ’s are at outer corners of W .

(V) The box and upper edge labels of family i form a ≺-interval in the set of genes.

Therefore, each i-walkway looks like:

? ? ? ?
? ? ? ? ? •

? ? •
.

where each ? is a genetic label and the blank box contains either •(i+1)1 or a genetic label.

Proof of Lemma 4.37: (I): By (G.2), at most one box of c comes from (W.1). By (G.4), at most one box of

c comes from (W.2). Thus the first assertion of (I) holds. The second assertion holds by (W.2).
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(II): Suppose W contains a 2 × 2 subsquare. Then the two southern boxes of the subsquare contain

•(i+1)1 ’s by (I), contradicting (G.2).

(III): W is edge-connected by definition. In view of (II), it remains to show there are no two boxes y, z

of W with y NorthWest of z. Suppose otherwise. By (G.2), at least one of y, z contains a genetic label. If

•(i+1)1 ∈ y and ik ∈ z, we violate (W.2). If •(i+1)1 ∈ z and ik ∈ y, consider the box b in y’s column and

z’s row. By (G.2), b contains a genetic label. By (G.4), label(b) > ik. Since •(i+1)1 ∈ z, this contradicts

(G.9). Finally, if ik ∈ y and ih ∈ z, then we contradict (G.12).

(IV): Immediate from (W.2) and (G.2).

(V): By the edge-connectedness of W we know that W occupies consecutive columns. Thus we are done

by (G.4)–(G.6).

4.10.2 Walkway reversal

Let U ∈ Bαλ,µ for some α ∈ {ν} ∪ ν−. Obtain U (0) from U by placing •(`(µ)+1)1 in each box of ν/α. The

root of the reversal tree TU is U (0). The children {U (1)} of U (0) are the tableaux in the formal sum

revswap`(µ)+1
◦ · · · ◦ revswap(`(µ)+1)1

(U (0)). By Proposition 4.5, each U (1) is `(µ)1-good. We define the

children {U (2)} of a U (1) by reverse swapping successively through labels of family `(µ)− 1, etc. Similarly,

all tableaux thus obtained are also good. (A tableau may have a copy of itself as a child; this occurs only if

U (0) has no •(`(µ)+1)1 ’s.) After `(µ)− i steps, a descendant U ′ = U (`(µ)−i) is an (i+ 1)1-good tableau.

Lemma 4.38. Let U ′ be an (i + 1)1-good tableau. If ` is a box or edge label that is not in an i-walkway,

then ` appears in the same location in every T ∈ revswapi+1
◦ · · · ◦ revswap(i+1)1

(U ′).

Proof. The case analysis is as follows:

Case 1: (` ∈ x is a box label in U ′):

Subcase 1.1: (family(`) 6= i): During the reversal process revswapi+1
◦ · · · ◦ revswap(i+1)1

, the label ` is

never part of any ladder consisting of H and •H+ where H ∈ {i1, . . . , iµi}. Thus revswapH+ does not move

`.

Subcase 1.2: (family(`) = i): Since x is not part of an i-walkway, by (W.2) it is southeast of a •(i+1)1 in

U ′. By inspection of the reverse miniswaps, this remains true for each tableau V appearing in the reversal

process revswapi+1
◦ · · · ◦ revswap(i+1)1

. The box x is never part of a ladder during this process, for when

we apply revswapH+ , where H is `’s gene, •H+ is northwest of x and so `! ∈ x. The case then follows.

Case 2: (` is an edge label in U ′): Let x and x↓ be the boxes adjacent to the edge.

Subcase 2.1: (x and x↓ do not contain a label of family i in U ′): As above, x and x↓ are not part of a ladder
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consisting of H and •H+ , where H ∈ {i1, . . . , iµi}. Hence neither is the ` in question, and so this ` remains

fixed throughout the reversal process.

Subcase 2.2: (x or x↓ contains a label H of family i in U ′): By (G.4), at most one of x or x↓ contains such a

label. Without loss of generality, suppose it is x (the argument in the other case is the same). Since ` ∈ x

is not part of an i-walkway, neither is x. By the arguments of Subcase 1.2, x is never part of a ladder, since

H! ∈ x. Thus x is unchanged.

Consider an i-walkway W of U ′. By Lemma 4.37(V), the genes of family i in W form an interval; let it

be (w1, . . . , wn) in increasing ≺-order.

Lemma 4.39 (Characterization of one-row walkway reversals). Let W be a 1-row i-walkway in an (i+ 1)1-

good tableau U ′. Let a and z be the westmost and eastmost boxes of W , respectively. Consider the region R

occupied by W .

(I) Suppose U ′ has •(i+1)1 ∈ z and no label of family i in z. Then there exists a filling R of R with •i1 ∈ a

and w1 /∈ a such that for any V ∈ revswapi+1
◦ · · · ◦ revswap(i+1)1

(U ′), V |R = R.

(II) Suppose U ′ has •(i+1)1 ∈ z and a label of family i in z. Then there exists a filling R of R with •i1 ∈ a

and either w1 ∈ a or w1 ∈ a such that for any V ∈ revswapi+1
◦ · · · ◦ revswap(i+1)1

(U ′), V |R = R.

(III) Suppose U ′ has a label of family i in z. Then there exist two fillings R,R′ of R such that

(i) R has w1 ∈ a;

(ii) R′ has •i1 ∈ a and either w1 ∈ a or w1 ∈ a;

(iii) R and R′ are otherwise identical; and

(iv) for any V ∈ revswapi+1
◦ · · · ◦ revswap(i+1)1

(U ′), V |R ∈ {R,R′}.

Proof. We argue (I)–(III) separately, by induction on the number of boxes of W . The base cases (where W

consists of a single box a = z) are clear by Lemma 4.28 and inspection of the reverse miniswaps. Assume W

has at least two boxes and let W be W with a removed.

(I): By induction, W reverses uniquely to some R, which has a •w2 ∈ a→ and w2 /∈ a→. (By a technical

modification of the hypotheses, we may apply the inductive hypothesis to this partial walkway here and

below.) This extends uniquely by L4.4 or L4.5 (followed by some number of applications of L1.2) to an R

with the claimed properties.

(II): The unique reversal R of W has a •w2
∈ a→ and w2 ∈ a→. (By (V.2), w2 /∈ a→.) We obtain the

desired unique reversal R by applying L4.2 or L4.3 to {a, a→} in R ∪ {a}.
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(III): There are precisely two reversals of W : R and R
′
. The former reversal has w2 ∈ a→, while the

latter has •w2
∈ a→ and w2 ∈ a→. (By (V.2), w2 /∈ a→.) Applying L4.2 or L4.3 (as appropriate) to {a, a→}

in R
′ ∪ {a} returns R′ as described. Applying L2.2 or L2.3 (as appropriate) to a in R∪ {a} returns precisely

R and R′. (We apply L4.2 to R
′ ∪ {a} exactly when we apply L2.2 to R ∪ {a}.)

Lemma 4.40 (Characterization of multirow walkway reversals). Let W be an i-walkway with at least two

rows in an (i + 1)1-good tableau U ′. Let a and z be the westmost and eastmost boxes, respectively, in its

southmost row. Thus •(i+1)1 ∈ z. Let R be the region occupied by W .

(I) Suppose a = z. Then there exists a filling R of R with w1 ∈ a such that for any V ∈ revswapi+1
◦ · · · ◦

revswap(i+1)1
(U ′), V |R = R.

(II) Suppose a 6= z and labelW (z←) = labelW (z↑). Then there exists a filling R of R with •i1 ∈ a and no

label of family i on a such that for any V ∈ revswapi+1
◦ · · · ◦ revswap(i+1)1

(U ′), V |R = R.

(III) Suppose a 6= z and labelW (z←) 6= labelW (z↑). Then there exist two fillings R,R′ of R such that

(i) R has w1 ∈ a;

(ii) R′ has •i1 ∈ a and either w1 ∈ a or w1 ∈ a;

(iii) R and R′ are otherwise identical; and

(iv) for any V ∈ revswapi+1
◦ · · · ◦ revswap(i+1)1

(U ′), V |R ∈ {R,R′}.

Proof. (I): Let W be W with the two boxes in the westmost column of W removed. If W = ∅, then

W = {•(i+1)1 ∈ z, w1 ∈ z↑}; here we obtain the desired result by use of L1.1 and L2.1. Hence assume W 6= ∅.

Clearly,

labelW (z↑→) ∈ {w2, •(i+1)1}. (4.9)

Depending on whether W has multiple rows, by induction or by Lemma 4.39, there are at most two reversals

of W .

Case 1: (W has a unique reversal R): By (4.9) and induction/Lemma 4.39, we have two scenarios possible:

Subcase 1.1: (R has •w2
∈ z↑→ and no labels of family i appear on z↑→): Here we extend to a unique reversal

of W by applying L4.4 or L4.5 at z↑ and L1.1 at z. This results in w1 ∈ z = a.

Subcase 1.2: (R has w2 ∈ z↑→): We extend to a unique reversal of W by applying L2.1 at z↑ and L1.1 at z.

This results in w1 ∈ z = a, as desired.

Case 2: (W has two reversals R and R
′
): By (4.9) and induction/Lemma 4.39, R and R

′
differ only in z↑→:

R has w2 ∈ z↑→ whereas R
′

has •w2
∈ z↑→ and w2 ∈ z↑→. By L2.1 and L1.1 in the R case and by L4.1 and

L1.1 in the R
′

case, both extend to the same reversal R of W ; here R has w1 ∈ z = a, as claimed.
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(II): We have some cases.

Case 1: (The southmost row of W has exactly two boxes {a = z←, z}): Let W be W with {a, z, z↑} removed. If

W is empty, the result is clear, so we may assume otherwise. Thus (4.9) still holds. Depending on whether

W has multiple rows or not, either by induction or by Lemma 4.39, it follows there are at most two reversals

of W .

Subcase 1.1: (W has a unique reversal R): By (4.9) and induction/Lemma 4.39, two scenarios are possible:

Subcase 1.1.1: (R has •w2 ∈ z↑→ and no label of family i on z↑→): We extend to a unique reversal R of W

by applying L4.5 at {z↑, z↑→} and either L4.4 or L4.5 (as required) at {a, z}; R has •w1
∈ a and no label of

family i on a.

Subcase 1.1.2: (w2 ∈ z↑→): We extend to a unique reversal R of W by applying L2.1 at z↑ and either L4.4

or L4.5 (as required) at z. This again results in •w1
∈ a and no label of family i on a.

Subcase 1.2: (W has two reversals R and R
′
): By (4.9) and induction/Lemma 4.39, R and R

′
differ only in

z↑→: R has a w2 ∈ z↑→ whereas R
′

has a •w2
∈ z↑→ and w2 ∈ z↑→. By L2.1 and L4.4 or L4.5 in the R case

and by L4.1 and L4.4 or L4.5 in the R
′

case, both extend to the same reversal R of W . R has •w1
∈ z = a.

In each of the Subcases above, we are done after applying a sequence of L1.2’s at a.

Case 2: (The southmost row of W contains at least three boxes): Let W be W with a removed. By induction,

W has a unique reversal R with •w2
in a→ and no label of of family i on a→. Now we uniquely extend R to

a reversal R of W by applying L4.4 or L4.5 at {a, a→}; R has •w1 ∈ a and no label of of family i on a, and

the result follows after applying a sequence of L1.2’s at a.

(III): Let W be W with the southmost row and z↑ removed. Recall labelW (z) = •(i+1)1 and suppose

W has wq−1 ∈ z← and wq ∈ z↑. If W is empty, we are done by applying L2.1 at z↑ and L1.1 at z, followed

by application of Lemma 4.39(III) to the southmost row. Thus assume W is not empty. By induction or

Lemma 4.39, there are at most two reversals of W :

Case 1: (W has a unique reversal R): Observe that exactly one of the following two cases holds.

Subcase 1.1: (R has •wq+1
∈ z↑→ and no label of family i on z↑→): Apply L4.4 at z↑ and L1.1 at z.

Subcase 1.2: (R has wq+1 ∈ z↑→): Apply L2.1 at z↑ and L1.1 at z.

Case 2: (W has two reversals R and R
′
): By induction/Lemma 4.39, R and R

′
differ only in z↑→: R has

wq+1 ∈ z↑→ whereas R
′

has a •wq+1
∈ z↑→ and wq+1 ∈ z↑→. Apply L2.1 and L1.1 in the R case. Apply L4.1

and L1.1 in the R
′

case.

In each of the cases above, the indicated reverse miniswaps leave us with the southmost row having

w1 ∈ a and wq ∈ z. We complete the reversal using Lemma 4.39(III), yielding the desired conclusion.
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Proposition 4.8. The children of a node U ′ in TU are obtained by replacing each walkway W with R or

R,R′ (as defined in Lemmas 4.39 and 4.40) independently in all possible ways.

Proof. That nothing changes outside the walkways is Lemma 4.38. Independence follows from walkways

being edge-disjoint.

Proposition 4.9. TU is a tree.

Proof. Let U ′ and U ′′ be distinct i1-good nodes of TU . By induction and Lemmas 4.39 and 4.40, U ′ and

U ′′ differ in the placement of a label of family strictly larger than i. This label is unaffected by later reverse

swaps, so U ′ and U ′′ cannot have the same child.

Proposition 4.10 (Characterization of reversal tree leaves).

(I) Let L be a leaf of TU . Then if we ignore the •11
’s, either L = U or L ∈ Λ+ and has shape ν/ρ for

some ρ ∈ λ+. Moreover, [U ]slideρ/λ(L) 6= 0.

(II) If M ∈ Λ+ has shape ν/ρ and [U ]slideρ/λ(M) 6= 0, then M appears as a leaf of TU .

Proof. (I): By Proposition 4.5, L is 11-good. By (G.9), there are no labels northwest of a •11
. By (G.2),

•11 ’s appear in distinct rows and columns. This proves the second sentence. The third sentence then follows

from Proposition 4.6.

(II): Immediate from Proposition 4.6.

4.11 The recurrence coefficients

Given U ∈ Bαλ,µ, where α ∈ {ν} ∪ ν−, let leaf(TU ) be the collection of leaves of the tree TU defined in

Section 4.10.

Let W be an i-walkway of shape ν/λ with •(i+1)1 ’s in ν/α. Let S be a reversal of W , as defined by

Lemmas 4.39 and 4.40. Let a be the southwestmost box of W , b be the northeastmost box of W and z

the eastmost box of W ’s southmost row. By Lemma 4.37(V), the labels of family i of S form an interval

(w1, . . . , wn) with respect to ≺. Let α? denote α with its southmost row deleted, and set λ? := λ ∩ α?. Let

∆(S,W ) := (#•i1 ’s in S)− (#•(i+1)1 ’s in W ). For a tableau T , let T̃ denote T excluding boxes containing

w1 and outer corners containing •w+
1

.

Claim 4.5.
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(I.i) If S has w1 /∈ a→ and w1 or w1 ∈ a, while W has either at least two rows or wn ∈ b, then

[W ]slideρ/λ(S) = (−1)∆(S,W )−1(1− wtα/(α? ∪ λ)) wtα?/λ?.

(I.ii) If S has w1 /∈ a→ and w1 or w1 ∈ a, while W has exactly one row and wn ∈ b, then [W ]slideρ/λ(S) =

(−1)∆(S,W ) wtα/λ.

(II) If S has •i1 ∈ a, w1 ∈ a→ and w1 /∈ a, then [W ]slideρ/λ(S) = (−1)∆(S,W ) wtα/λ.

(III) If S has w1 ∈ a, then [W ]slideρ/λ(S) = (−1)∆(S,W ) wtα?/λ?.

Proof. We simultaneously induct on the number of genes of family i in S. (We gloss over some technical

reindexing in the arguments below.) We check the base case of one gene directly from the swapping rules of

Section 4.7. Now let us assume that S has at least two genes of family i and the claims hold for situations

with fewer genes of family i.

In the illustrative examples below that accompany the general analysis, we use for simplicity 1, 2, . . .

to represent w1, w2, . . . respectively. Also, for simplicity, our examples assume a is the southwest corner of

k × (n− k), i.e., β(a) = 1− t1
t2

.

Case (I.i).1: (a→ 6= z): Consider S = • 4 5
• 2 3
1

and W = 3 4 5
1 2 •

. Then

swap1(S) = (1− t1
t2

) • 4 5
1 2 3

+ t1
t2

• 4 5
1 • 3

:= (1− t1
t2

)S′ + t1
t2
S′′.

2

Inductively by (III), [W ]slide(S̃′) = t4
t7

. Inductively by (I.i), [W ]slide(S̃′′) = (1− t2t3 ) t4t7 . Hence [W ]slide(S) =(
1− t1

t2

)
t4
t7

+ t1
t2

(
1− t2

t3

)
t4
t7

=
(

1− t1
t3

)
t4
t7

, as desired. In general,

[W ]slide(S)=
(

1− β̂(a)
)

(−1)∆(S,W )−1 wtα?/λ? + β̂(a)(−1)∆(S,W )−1

(
1− wtα/(α? ∪ λ)

β̂(a)

)
wtα?/λ?

=(−1)∆(S,W )−1(1− wtα/(α? ∪ λ)) wtα?/λ?.

Case (I.i).2: (a→ = z): Let S =
•

• 2 3
• 2
1

and W =
3

2 3 •
1 •

. Then

swap1(S) =

(
1− t1

t2

) •
• 2 3

1 2
:=

(
1− t1

t2

)
S′.

By (III), [W ]slide(S̃′) = t3
t5
t6
t7

. Hence [W ]slide(S) = (1− t1
t2

) t3t5
t6
t7

, as desired. In general,

[W ]slide(S)=
(

1− β̂(a)
)

(−1)∆(S,W )−1wtα?/λ?=(−1)∆(S,W )−1(1− wtα/(α? ∪ λ)) wtα?/λ?.
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Case (I.ii): Let S = • 2 3
1 and W = 1 2 •3 . Then swap1(S) = (1− t1

t2
) 1 2 3 + t1

t2
1 • 3

2 := (1− t1
t2

)S′+ t1
t2
S′′.

By Lemma 4.39, [W ]slide(S̃′) = 0. By (I.ii), [W ]slide(S̃′′) = t2
t3

. Hence [W ]slide(S) = t1
t2
t2
t3

= t1
t3

, as

desired. In general,

[W ]slide(S)= β̂(a)(−1)∆(S,W ) 1

β̂(a)
wtα/λ=(−1)∆(S,W ) wtα/λ.

Case (II).1: (a→ 6= z): Let S = • 4 5
• 1 2 3

and W = 3 4 5
1 2 3 •

. Then swap1(S) = t1
t2

• 4 5
1 • 2 3

:=

t1
t2
S′. By (II), [W ]slide(S̃′) = t2

t4
t5
t8

. Hence [W ]slide(S) = t1
t2
· t2t4

t5
t8

= t1
t4
t5
t8

, as desired. In general,

[W ]slide(S) = β̂(a) · (−1)∆(S,W ) 1

β̂(a)
wtα/λ = (−1)∆(S,W ) wtα/λ.

Case (II).2: (a→ = z and the northmost w1 ∈ S is not immediately below •i1): Let S = • 4 5
• 1 2 3
• 1

and

W = 3 4 5
1 2 3 •

1 •
. Then swap1(S) = t1

t2
t3
t4

• 4 5
1 • 2 3

1 •
:= t1

t2
t3
t4
S′. By (II), [W ]slide(S̃′) = − t4t6

t7
t10

.

Hence [W ]slide(S) = t1
t2
t3
t4
·
(
− t4t6

t7
t10

)
= − t1t2

t3
t6

t7
t10

, as desired. In general,

[W ]slide(S) =
∏

x:labelW (x)=1

β̂(x) · (−1)∆(S,W )
∏

y:labelW (y)>1

β̂(y) = (−1)∆(S,W ) wtα/λ.

Case (II).3: (a→ = z and the northmost w1 ∈ S is immediately below •i1): Let S = • 5 6
• 2 3 4
• 1

and

W = 4 5 6
1 2 3 •

1 •
. Then

swap1(S) = − t1t2
t3
t4

• 5 6
1 2 3 4

1 •
+ t1

t2
t3
t4

• 5 6
1 • 3 4

1 •
:= − t1t2

t3
t4
S′ + t1

t2
t3
t4
S′′.

2

By (III), [W ]slide(S̃′) = t7
t10

. By (I.i), [W ]slide(S̃′′) =
(

1− t4
t6

)
t7
t10

. Hence [W ]slide(S) = − t1t2
t3
t4

t7
t10

+

t1
t2
t3
t4

(
1− t4

t6

)
t7
t10

= − t1t2
t3
t6

t7
t10

, as desired. Depending whether (I.i) or (I.ii) applies inductively, we have in

general respectively

[W ]slide(S) = −
∏

x:labelW (x)=1

β̂(x) · Y (−1)∆(S,W )−1 +
∏

x:labelW (x)=1

β̂(x) · (1− Z)Y (−1)∆(S,W )−1

= (−1)∆(S,W )Y Z
∏

x:labelW (x)=1

β̂(x) = (−1)∆(S,W ) wtα/λ
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or

[W ]slide(S) =
∏

x:labelW (x)=1

β̂(x) · Z(−1)∆(S,W )

= (−1)∆(S,W )Z
∏

x:labelW (x)=1

β̂(x) = (−1)∆(S,W ) wtα/λ,

where Y is the weight of the boxes of W that contain genetic labels and are North of all w1’s and Z is the

weight of the boxes of W that contain genetic labels greater than w1 and are not North of all w1’s.

Case (III).1: (a 6= z): Let S = • 5 6
• 2 3 4

1 2

and W = 4 5 6
2 3 4 •

1 •
. Then swap1(S) = • 5 6

• 2 3 4
1 2

:= S′.

By (III), [W ]slide(S̃′) = t3
t6

t7
t10

. Hence [W ]slide(S) = t3
t6

t7
t10

, as desired. In general, [W ]slide(S) =

(−1)∆(S,W ) wtα?/λ?.

Case (III).2: (a = z and the northmost w1 ∈ S is not immediately below •i1): Let S = • 4 5
• 1 2 3
1

and

W = 3 4 5
1 2 3 •
•

. Then swap1(S) = − t2t3 • 4 5
1 • 2 3
•

:= − t2t3S
′. By (II), [W ]slide(S̃′) = − t3t5

t6
t9

. Hence

[W ]slide(S) = − t2t3 ·
(
− t3t5

t6
t9

)
= t2

t5
t6
t9

, as desired. In general,

[W ]slide(S) = −
∏

x:labelW (x)=1

β̂(x) · (−1)∆(S,W )−1
∏

y:labelW (y)>1

β̂(y) = (−1)∆(S,W ) wtα?/λ?.

Case (III).3: (a = z and the northmost w1 ∈ S is immediately below •i1): Let S = • 4 5
• 2 3 4
1

and W =

4 5 •
1 2 3 •
•

. Then swap1(S) = t2
t3

• 4 5
1 2 3 4
•

− t2
t3

• 4 5
1 • 3 4
•

:= t2
t3
S′ − t2

t3
S′′.

2

By (III), [W ]slide(S̃′) =

− t6t8 . By (I.i), [W ]slide(S̃′′) = −(1− t3
t5

) t6t8 . Hence [W ]slide(S) = t2
t3
·
(
− t6t8

)
− t2
t3
·
(
−(1− t3

t5
) t6t8

)
= − t2t5

t6
t8
,

as desired. Depending whether (I.i) or (I.ii) applies inductively, we have in general respectively

[W ]slide(S) =
∏

x:labelW (x)=1

β̂(x) · (−1)∆(S,W )Y −
∏

x:labelW (x)=1

β̂(x) · (−1)∆(S,W )(1− Z)Y

= (−1)∆(S,W )Y Z
∏

x:labelW (x)=1

β̂(x) = (−1)∆(S,W ) wtα?/λ?
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or

[W ]slide(S) = −
∏

x:labelW (x)=1

β̂(x) · (−1)∆(S,W )−1Z

= (−1)∆(S,W )Z
∏

x:labelW (x)=1

β̂(x) = (−1)∆(S,W ) wtα?/λ?,

where Y is the weight of the boxes of W containing genetic labels and are North of all w1’s and Z is the

weight of the boxes of W containing genetic labels greater than w1 and are not North of all w1’s.

Example 4.20. Let λ = (1), ν = (3, 2) and µ = (2, 1). Consider U = 11 12

11 21

∈ Λ. Below, we give the

reversal tree TU .

11 12

11 21

11 12

11 21

11 12

11 21

11 12

• 21
11

• 12

11 21
11

• 12

• 21
11

11

11 12

11 •
21

• 12

• 11
21

1

1

(
1− t1

t2

) (
1− t3

t5

)

(
1− t1

t2

)(
1− t3

t5

)

1− t2
t3

− t1t2
t3
t5

0 +1 +1 −1 −1

Each edge is labeled (in blue) by [U ′]swapiµi
◦ · · · ◦ swapi1(V ′) where U ′ is the parent of the i1-good tableau

V ′. This label agrees with the application of Claim 4.5 to each i-walkway of V ′. Below each leaf (in red) is

the coefficient in Λ+ (i.e., (−1)|ρ/λ|+1 if nonzero). ♦

Lemma 4.41. Suppose U ′ is an (i+1)1-good node of TU . Let Γ be the boxes of U containing labels of family

i. Then
∑
V ′(−1)1 + #•’s in V ′ [U ′]swapiµi

◦ · · · ◦ swapi1(V ′) = (−1)1 + #•’s in U ′ wtΓ, where the sum is over

all children V ′ of U ′ in TU .

Proof. Consider boxes of U ′ containing unmarked labels of family i or •(i+1)1 . By (W.1) and (W.2), these

boxes decompose into an edge-disjoint union of i-walkways W1,W2, . . . ,Wt. Let Γj be the boxes of Wj in

U containing labels of family i; thus Γ = Γ1 t Γ2 t · · · t Γt. Let Rj and R′j (if it exists) be the reversal(s)

defined by Lemmas 4.39 and 4.40 with respect to the walkway Wj . As computed by Claim 4.5, let aj be the
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coefficient of Wj obtained by sliding Rj . Let bj be the coefficient of Wj obtained by sliding R′j if it exists;

set bj := 0 if R′j does not exist. We now assert that

(−1)#•’s in Rjaj + (−1)#•’s in R′j bj = (−1)#•’s in Wj wtΓj . (4.10)

Suppose there is a unique reversal (i.e., bj = 0). This occurs under Lemma 4.39(I,II) and Lemma 4.40(I,II).

In these four cases, Rj is respectively the S from (II), (I.ii), (III) and (II) of Claim 4.5. Hence in each

of these cases, (4.10) is immediate from the apposite case of Claim 4.5 (note that for Lemma 4.40(I), the

southmost row of Wj has a single box and α?/λ? = α/λ = Γj). Suppose there are two reversals. This occurs

under Lemma 4.39(III) and Lemma 4.40(III), which show that Rj is the S from Claim 4.5(III) and R′j is

the S from Claim 4.5(I.i). Hence (4.10) also follows in these cases, by adding the two apposite coefficients

given by Claim 4.5.

Since by Proposition 4.8 all V ′ are obtained by independent replacements of Wj by Rj and R′j (if it

exists),

∑
V ′

(−1)1 + #•’s in V ′ [U ′]swapiµi
◦ · · · ◦ swapi1(V ′) = −

t∏
j=1

(
(−1)#•’s in Rjaj + (−1)#•’s in R′j bj

)

= −
t∏

j=1

(−1)#•’s in Wj wtΓj

= (−1)1 + #•’s in U ′ wtΓ.

Lemma 4.42. Let U ′ be an (i+1)1-good node of TU . Let Γ(i) be the set of boxes {x ∈ α/λ : family(labelU (x)) ≤

i}. Then

∑
T

(−1)1+#•’s in T [U ′]swapiµi
◦ swapi−µi ◦ · · · ◦ swap1+

1
◦ swap11

(T ) = wt(Γ(i))(−1)1+#•’s in U ′ ,

where the sum is over all T ∈ leaf(TU ) that are descendants of U ′.

Proof. We induct on i ≥ 0. In the base case i = 0, U ′ = T for T ∈ leaf(TU ) and the lefthand side equals

(−1)1+#•’s in T . This equals the righthand side since Γ(0) = ∅ so wtΓ(0) = 1.
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Now let i > 0. We have
∑
T (−1)1+#•’s in T [U ′]swapiµi

◦ swapi−µi ◦ · · · ◦ swap1+
1
◦ swap11

(T )

=
∑

V ′ a child of U ′

∑
T∈leaf(TU′ ) below V ′

(−1)1 + #•’s in T [U ′]swapiµi
◦ · · · ◦ swapi1◦

swap(i−1)µi−1
◦ · · · ◦ swap11

(T )

=
∑

V ′ a child of U ′

∑
T∈leaf(TU′ ) below V ′

(−1)1 + #•’s in T [U ′]swapiµi
◦ · · · ◦ swapi1(V ′)·

[V ′]swap(i−1)µi−1
◦ · · · ◦ swap11

(T ).

The previous equality is since TU is a tree (Proposition 4.9) and V ′ is the unique child of U ′ that is an

ancestor of T . The previous summation equals

∑
V ′ a child of U ′

[U ′]swapiµi
◦ · · · ◦ swapi1(V ′)

∑
T∈leaf(TU′ ) below V ′

(−1)1 + #•’s in T [V ′]swap(i−1)µi−1
◦ · · · ◦ swap11

(T )

=
∑

V ′ a child of U ′

[U ′]swapiµi
◦ · · · ◦ swapi1(V ′) · wt(Γ(i−1))(−1)1 + #•’s in V ′ (by induction)

= wt(Γ(i−1))
∑

V ′ a child of U ′

(−1)1 + #•’s in V ′ [U ′]swapiµi
◦ · · · ◦ swapi1(V ′)

= wt(Γ(i−1)) · (−1)1 + #•’s in U ′wt(Γ) (by Lemma 4.41)

=(−1)1 + #•’s in U ′wt(Γ(i)),

since by definition wt(Γ(i)) = wt(Γ) · wt(Γ(i−1)).

Proposition 4.11. For U ∈ Bαλ,µ,

∑
T∈leaf(TU )

(−1)|ρ(T )/λ|+1[U ]slideρ(T )/λ(T ) = wt(α/λ)(−1)|ν/α|+1 (4.11)

where ρ(T ) ∈ {λ} ∪ λ+ is the “inner shape” of T , i.e., T has shape ν/ρ(T ).

Proof. Take U ′ = U in Lemma 4.42.

Now assume U ∈ Bνλ,µ. The root of TU contains no •(`(µ)+1)1 ’s. One leaf of TU is U itself. This is the

unique leaf not in Λ+. Let leaf∗(TU ) be the collection of all other leaves.

Proposition 4.12. For U ∈ Bνλ,µ,

∑
T∈leaf∗(TU )

(−1)|ρ(T )/λ|+1[U ]slideρ(T )/λ(T ) = 1− wt(ν/λ) (4.12)
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where ρ(T ) ∈ λ+ is the “inner shape” of T , i.e., T has shape ν/ρ(T ).

Proof. This is immediate from Proposition 4.11, since ν = α and the contribution from the excluded leaf is

1.

Example 4.21. In Example 4.20, summing the weights below the left child of U gives 1− t1
t2
t3
t5

, in agreement

with Lemma 4.41. Proposition 4.12 asserts in this case that

1− wt(ν/λ) = 1− t1
t5

=

(
1− t1

t2

)
+

(
1− t3

t5

)
−
(

1− t1
t2

)(
1− t3

t5

)
+
t1
t2

t3
t5
·
(

1− t2
t3

)
,

as the reader may verify. ♦

Recall Λ+ =
∑
ρ∈λ+(−1)|ρ/λ|+1

∑
T∈Bνρ,µ

T . For T ∈ Bνρ,µ, write T (11) (cf. Section 4.7.2) for T with •11

in each box of ρ/λ.

Now set

PG :=
∑
ρ∈λ+

(−1)|ρ/λ|−1
∑

T∈Bνρ,µ

swapG− ◦ swap(G−)− ◦ · · · ◦ swap11
(T (11)). (4.13)

In particular, P11
is Λ+ where each T is replaced by T (11). By Lemma 4.24 and Proposition 4.4, each PG is

a formal sum of G-good tableaux.

The main conclusion of this section is

Proposition 4.13. PG+
max

with all •G+
max

’s removed equals Λ + Λ−.

Proof. By Corollary 4.2 each tableau appearing in PG+
max

(with •G+
max

’s removed) is a tableau in Λ + Λ−.

On the other hand, given any U appearing in Λ + Λ−, we constructed the tree TU in Section 4.10. By

Proposition 4.10, the leaves of TU are exactly those tableaux T ∈ Λ+ such that U ∈ slideρ/λ(T ). It

remains to show that [U ]PG+
max

= 1 − wt(ν/λ) if U ∈ Λ and [U ]PG+
max

= (−1)|ν/δ|+1wt(δ/λ) if U ∈ Λ− and

the shape of U is δ/λ. These are precisely the statements of Propositions 4.12 and 4.11, respectively.

4.12 Weight preservation

4.12.1 Fine tableaux and their weights

A tableau is fine if it is good or can be obtained from a good tableau by swapping some subset of its snakes,

i.e. it appears in the formal sum of tableaux resulting from this partial swap.

Let T be fine and fix x ∈ T . Suppose ` ∈ x. Define edgefactor(`) as in Section 4.1.4; see (4.1). The

edge weight edgewt(T ) :=
∏
` edgefactor(`), where the product is over all (non-virtual) edge labels of T .
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Suppose T is obtained by swapping some of the snakes of the good tableau S and U is obtained from T

by swapping the remaining snakes. We define the positions in T of a virtual label H as follows. Consider

a box x in column c. If c intersects a snake in S that has been swapped in T , and that snake is not the upper

snake described in Lemma 4.17(III), then H ∈ x (in T ) if and only if H ∈ x (in U). Otherwise, H ∈ x (in

T ) if and only if H ∈ x (in S). Observe that if T is indeed good, this definition is clearly consistent with

the definition of virtual labels in a good tableau.

Suppose H ∈ x. If labelT (x) is marked and each F ∈ x with F ≺ G is marked, then

virtualfactorx∈T ( H ) := −edgefactorx∈T (H) =
tMan(x)

tr+NH+1−family(H)+Man(x)
− 1. (4.14)

Otherwise

virtualfactorx∈T ( H ) := 1− edgefactorx∈T (H) =
tMan(x)

tr+NH+1−family(H)+Man(x)
. (4.15)

The virtual weight virtualwt(T ) is
∏
`
virtualfactor( ` ), where the product is over all instances of

virtual labels.

Call x ∈ T productive if any of the following hold:

(P.1) labelT (x) < labelT (x→) or x→ /∈ T ;

(P.2) •ik+1
∈ x, ik ∈ x←, ik+1 ∈ x, and either family(label(x→)) 6= i or x→ 6∈ T ;

(P.3) H ∈ x, •G ∈ x→, and x→ does not contain a label of the same family as H; or

(P.4) ik ∈ x, ik+1 ∈ x→ and •ik+1
∈ x→↑, with x not SouthEast of a •ik+1

.

Define boxfactor(x) and box weight boxwt(T ) =
∏

x boxfactor(x) as in Section 4.1.4, specifically

(4.2), with the addendum that •H ∈ x is evaluated like H ∈ x.

Example 4.22.

• The right two boxes of 111221 are productive by (P.1). The left box is not productive.

• The left box of 11•1212 is not productive. The right box is productive by (P.2).

• The first and third boxes of 11•12 21 are productive by (P.3) and (P.1) respectively. The middle box

is not productive; a box with •12
is productive only if (P.2) holds.

• The right box of the second row in both
•12

11 12
and

•11

11 12
is productive by (P.1). The left box in the

second row is productive only in the first case, by (P.4).
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Finally the weight is

wt(T ) := (−1)d(T )edgewt(T ) · virtualwt(T ) · boxwt(T ),

where d(T ) =
∑
G (|G| − 1), the sum is over genes G, and |G| is the (multiset) cardinality of G (not including

virtual labels). We will view wt as a Z[t±1
1 , . . . , t±nn ]-linear operator of formal sums of tableaux.

By Lemma 4.4, bundled tableaux are good and hence also fine. Hence for a bundled tableau B, we

have two a priori distinct notions of wtB. The following lemma justifies our failure to distinguish these

notationally:

Lemma 4.43. For B a bundled tableau, wtB as a fine tableau equals wtB as a bundled tableau.

Proof. By definition, the two notions of edgewt(B) coincide, as do the two notions of d(B). Since B has

no •’s, only (P.1) is available to effect productivity. Hence the two notions of productive boxes coincide,

and thus, by definition, so too do the two notions of boxwt(B). As remarked above, the locations of virtual

labels are the same, whether we think of B as bundled or fine. By Lemma 4.1, wtB as a bundled tableau is

(−1)d(B)edgewt(B)boxwt(B)
∏
`

(1− edgefactor(`)) ,

where the product is over all instances of virtual labels and edgefactor(`) means the factor that would be

given by ` in ` ’s place. Since B is bundled, it has no marked labels. Hence virtualwt(B) is calculated

using only (4.15), not (4.14). Thus virtualwt(B) =
∏
`

(1− edgefactor(`)), and the lemma follows.

4.12.2 Main claim about weight preservation

Proposition 4.14.

(I) wtP11 = wtΛ+.

(II) For every G, wtPG = wtP11
.

(III) wtPG+
max

= wtΛ + wtΛ−.

Proof. We will first prove the easier statements (I) and (III).

(I): Suppose T ∈ Bνρ,µ for some ρ ∈ λ+. It is enough to show wtT = wtT (11). Certainly edgewt(T ) =

edgewt(T (11)) and d(T ) = d(T (11)). Adding •11 ’s preserves the virtual labels’ locations, so virtualwt(T ) =

virtualwt(T (11)).
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A productive box in T is also productive in T (11) and has the same boxfactor. Suppose x is a productive

box of T (11) that is not productive in T . It satisfies one of (P.1)–(P.4). If x satisfies (P.1), it is productive in

T . If it satisfies (P.2), then •11
∈ x and x← contains a label, contradicting x← ∈ ρ. If it satisfies (P.3), then

x→ ∈ ρ, contradicting that x contains a label. Finally if x satisfies (P.4), then •ik+1
∈ x→↑ and ik ∈ x. But

every • in T (11) is •11
. Hence ik+1 = 11, which is impossible since 10 is not a label in our alphabet. Thus

the productive boxes of T and T (11) are the same, and with the same respective boxfactors. Therefore,

wtT = wtT (11).

(III): Suppose U ∈ PG+
max

and let Ũ be given by deleting each •G+
max

. Proposition 4.13 states PG+
max

with

all •G+
max

’s removed equals Λ + Λ−. Thus, it suffices to show wtU = wt Ũ . Clearly, edgewt(U) = edgewt(Ũ)

and d(U) = d(Ũ). One checks that the virtual labels of U and the virtual labels of Ũ appear in the same

places. Hence virtualwt(U) = virtualwt(Ũ).

Suppose x is productive in U . Then it satisfies one of (P.1)–(P.4). If x satisfies (P.1) in U , then it satisfies

(P.1) in Ũ . Now x cannot satisfy (P.2) in U , since if it did, •G+
max
∈ x and x contains a label, contradicting

Lemma 4.26. If x satisfies (P.3) in U , then it satisfies (P.1) in Ũ . If x satisfies (P.4) in U , then •G+
max
∈ x→↑

but is not an outer corner, again contradicting Lemma 4.26. Thus if x is productive in U , it is productive in

Ũ . Conversely, if x is productive in Ũ , it satisfies (P.1), since there are no •G+
max

’s in Ũ . Hence x satisfies (P.1)

or (P.3) in U . Thus the productive boxes of U and Ũ are the same. These boxes have the same boxfactors.

Thus boxwt(U) = boxwt(Ũ).

(II): We induct on G with respect to ≺. The base case G = 11 is trivial. The inductive hypothesis is that

wtPG = wtP11
. Our inductive step is to show wtPG+ = wtPG .

Consider the set

SnakesG = {S is a snake in T : [T ]PG 6= 0}.

We emphasize that each S ∈ SnakesG refers to a particular instance of a snake in a specific tableau T ∈ PG .

In particular, SnakesG is not a multiset.

For B ⊆ SnakesG define swapsetB(T ) to be the formal sum of fine tableaux obtained by swapping each

snake of B that appears in T (done in any order, as permitted by Lemma 4.23).

We will construct m subsets Bi such that (D.1) and (D.2) below hold:

(D.1) We have a disjoint union SnakesG =
⊔

1≤i≤m Bi.

(D.2) For every 1 ≤ i ≤ m and J ⊆ {1, . . . , î, . . . ,m}, let BJ := ∪j∈JBj . Then

∑
T∈Γi

[T ]PG · wt(swapsetBJ (T )) =
∑
T∈Γi

[T ]PG · wt(swapsetBi ◦ swapsetBJ (T )), (4.16)
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where Γi := {T ∈ PG : T contains a snake from Bi}.

Claim 4.6. The existence of {Bi} satisfying (D.1) and (D.2) implies wt(PG+) = wt(PG).

Proof. By Lemma 4.23, snakes may be swapped in any order, so choose an arbitrary ordering of the blocks

Bi. By (D.1), PG+ := swapG(PG) = swapsetBm ◦ · · · ◦ swapsetB1
(PG). Thus

wt(PG+) = wt(swapG(PG))

= wt(swapsetBm ◦ · · · ◦ swapsetB1
(PG))

= wt(swapsetBm−1
◦ · · · ◦ swapsetB1

(PG))

Here we have just used (4.16) from (D.2) together with linearity of wt and swapsetBi and the triviality

swapsetBJ (T ) = swapsetBi ◦ swapsetBJ (T ) for T 6∈ Γi. Repeating this argument m − 1 further times, we

obtain the desired equality with wt(PG).

In order to provide the desired decomposition, we need to first construct certain “pairing” maps. These

are given in Section 4.12.3. Given these, the description of the decomposition satisfying (D.1) and (D.2) is

relatively straightforward and is found in [PeYo15b, Appendix C].

4.12.3 Pairing maps

Let Gνλ,µ(G) be the set of G-good tableaux of shape ν/λ and content µ. For Q ≺ G and T ∈ Gνλ,µ(G), let

RQ(T ) := {V ∈ revswapQ+ ◦ · · · ◦ revswapG(T )}.

Lemma 4.44. For any genes Q ≺ G and any tableau T ∈ Gνλ,µ(G)

RQ(T ) = {W ∈ Gνλ,µ(Q) : T ∈ swapG− ◦ · · · ◦ swapQ(W )}.

Proof. This is immediate from Proposition 4.6, noting that, by Lemmas 4.25 and 4.34 and Propositions 4.4

and 4.5, both forward and reverse swaps preserve goodness and content.

Let S1 be the subset of tableaux in Gνλ,µ(ik) with a box x such that for some ` ≥ k, •ik ∈ x, •ik ∈ x→↑,

i`+1 ∈ x→ and i` ∈ x, i.e. locally the tableau is C1 =

•ik
•ik i`+1
i`

(with possibly additional edge labels), where

x southwestmost depicted box. Let S ′1 be the subset of tableaux in Gνλ,µ(ik) with a box x such that i` ∈ x,

i`+1 ∈ x→, •ik ∈ x→↑, i` appears outside of x and no •ik appears West of x in x’s row. Locally the tableau

is C′1 =

•ik
i` i`+1 (with possibly additional edge labels).
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Lemma 4.45. If T ∈ S1 (respectively, S ′1), there is a unique C1 (respectively, C′1) that it contains.

Proof. Let x be the lower-left box of any fixed choice of C1 in T . Since i` ∈ x, the i`+1 ∈ x→ is westmost

in T by (G.6). Hence this configuration is unique. The argument for the other claim is the same, except we

replace “ i` ∈ x” with “i` ∈ x”.

For T ∈ S1, let φ1(T ) to be the same tableau with the unique C1 replaced by C′1. (By this we mean that

we delete the labels specified in C1 and add the labels specified in C′1; any additional edge labels in T are

unchanged.)

Lemma 4.46. φ1 : S1 → S ′1 is a bijection.

Proof. Let φ−1
1 : S ′1 → S1 be the putative inverse of φ1, defined by replacing C′1 in a T ∈ S ′1 by C1. We are

done once we show that φ1 and φ−1
1 are well-defined since the maps are clearly injective and are mutually

inverse.

Let x be the southwestmost box in the unique (by Lemma 4.45) C1 in T .

(φ1 is well-defined): Let T ∈ S1. We only need that φ1(T ) is good. Conditions (G.1) and (G.2) hold

trivially in φ1(T ). (G.3) holds if x← is empty. Suppose F ∈ x←. By T ’s (G.9), F ≺ ik. Hence F ≺ i`, and

(G.3) holds in φ1(T ). The i` ∈ x in T shows that φ1(T ) satisfies (G.4), (G.6) and (G.8). (G.5), (G.7),

(G.9), (G.11) hold trivially. Since i`+1 ∈ x→ is not marked, by Lemma 4.5(II) there is no marked label in T

in x’s row, so (G.10) and (G.13) hold for φ1(T ). For (G.12), suppose T has labels `, `′ that violate (G.12) in

φ1(T ). Since ` must be northWest of x, by T ’s (G.9), ` ≺ ik. Since `′ must be southeast of x, by T ’s (G.3),

(G.4) and (G.11), `′ � i`+1. Hence family(`) = family(`′) = i. If ` is North of x, then by (G.4) the box of

x’s row directly below ` contains a label that violates T ’s (G.9). By T ’s (G.4), `′ is not South of x→. Hence

`, `′ are box labels in the row of x, and no violation of φ1(T )’s (G.12) occurs.

(φ−1
1 is well-defined): Let T ′ ∈ S ′1. We must show that (G.7) and (G.13) hold in φ−1

1 (T ′) and that (G.1)–

(G.6) and (G.8)–(G.12) hold even if the virtual label is replaced by a nonvirtual one (cf. (V.1)–(V.3)). (G.1),

(G.3)–(G.10), (G.12) and (G.13) are trivial to verify. To verify (G.2) for φ−1
1 (T ′), it suffices to show T ′ has

no •ik South of x in the same column, or West of x in the same row. (G.9) for T ′ rules out the possibility

of •ik South of x in the same column of T ′. By definition, there is no •ik West of x in the same row. To see

(G.11) for φ−1
1 (T ′), we check there is no marked label F ! in the column of x. Such a label cannot appear

North of x in T ′ by Lemma 4.5 and (G.2), considering the •ik ∈ x→↑. By (G.4), it cannot appear South of

x in T ′ either.

Proposition 4.15. For each T ∈ S1, [T ]Pik = −[φ1(T )]Pik .
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Proof. Let T † := φ1(T ).

Special case k = 1: Let T̃ be the tableau obtained from T by deleting:

• all labels of family i and greater;

• all marked labels; and

• all boxes containing a deleted box label.

Notice that any label SouthEast of a deleted label or a •i1 will have been deleted.

As well we reindex the genes so that the subscripts of each family form an initial segment of Z>0. (This

reindexing is only possibly needed if T contained a marked label.) We leave •i1 ’s in place. In the same way,

produce T̃ † from T †. By definition of φ1, T̃ has one more •i1 than T̃ † and otherwise the two tableaux are

exactly the same (the family i labels of C1 and C′1 having been deleted).

Ignoring •i1 ’s, T̃ , T̃ † are of some common skew shape θ/λ. If we include the •i1 ’s, their respective total

shapes are some ω/λ and ω†/λ where ω, ω† ∈ θ+.

Claim 4.7. T̃ ∈ Gωλ,µ̃(i1) and T̃ † ∈ Gω†λ,µ̃(i1) where µ̃ is a partition (e.g., if T has no marked labels then

µ̃ := (µ1, µ2, . . . , µi−1)). Thus, T̃ and T̃ † (with •i1 ’s removed) are in Bθλ,µ̃.

Proof. We prove the claim for T̃ ; the proof for T̃ † is essentially the same.

Clearly, (G.1)–(G.7), (G.9) and (G.12) for T̃ are inherited from the assumption T is good. (G.10), (G.11)

and (G.13) are vacuous for T̃ . It remains to show (G.8) holds for T̃ (which moreover implies µ̃ is a partition).

Suppose T̃ fails (G.8). Then there is a least q such that T̃ has a ballotness violation between families q

and q + 1. That is, in some genotype G of T̃ there are more labels of family q + 1 than of family q in some

initial segment of word(G). Since we have deleted all labels of family i and greater, q < i− 1. By failure of

(G.8), either there exist labels qr and (q + 1)s of T̃ with Nqr = N(q+1)s such that (q + 1)s appears before

qr in word(G), or else there is a label (q + 1)s of T̃ with N(q+1)s > Nqv for all v. Let qr′ (if qr exists) and

(q + 1)s′ be the corresponding labels of T . We assert in the former case that Nqr′ ≤ N(q+1)s′
in T . In the

latter case, we assert N(q+1)s′
> Nqv′ in T for all v′. Either of these inequalities contradicts T ’s (G.8).

To see these assertions, suppose that qh is a gene of T that is entirely deleted in the construction of T̃ (i.e.

every instance of qh in T is marked). Consider an instance of qh in T in x or x. Since this qh is marked and

q < i− 1, by Lemma 4.6 we know T has some nonvirtual and marked (q + 1)!
z ∈ x with Nqh = N(q+1)z . By

T ’s (G.7), there is no (q+ 1)z West of x in T . By T ’s Lemma 4.7, there is no (q+ 1)z East of x in T . Hence

the (q + 1)!
z ∈ x is the only (q + 1)z in T . Since it is marked, the gene (q + 1)z is entirely deleted in T̃ . By

this argument, if qĥ is any other gene of T that is entirely deleted in the construction of T̃ , there is a distinct
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(q + 1)ẑ with Nqĥ = N(q+1)ẑ that is also entirely deleted in T̃ . Hence Nqr′ ≥ N(q+1)s′
or N(q+1)s′

> Nqv′ in

T for all v′, as asserted.

The last sentence of the claim follows from the first by Lemma 4.27, since no genetic label is southeast

of a •i1 .

In view of Claim 4.7, it makes sense to speak of TT̃ and of T
T̃ †

. By Proposition 4.11,

∑
L∈leaf(TT̃ )

(−1)|ρ(L)/λ|+1[T̃ ]slideρ(L)/λ(L) = (−1)1+# of •’s in T̃ · wt(θ/λ). (4.17)

Similarly, ∑
L∈leaf(T

T̃†
)

(−1)|ρ(L)/λ|+1[φ1(T̃ )]slideρ(L)/λ(L) = (−1)1+# of •’s in T̃ † · wt(θ/λ). (4.18)

In particular, these quantities differ by a factor of −1.

By inspection of the reverse miniswaps, revswapaq for 1 ≤ a ≤ i−1 does not affect any labels of family i or

greater or any labels that are marked in T . Hence one sees that revswap12
◦ · · ·◦revswap(i−1)µi−1

◦ revswapi1(T )

(respectively T †) is the same as revswap12
◦ · · · ◦ revswap(i−1)µi−1

◦ revswapi1(T̃ ) (respectively T̃ †) followed

by adding back the labels of T \ T̃ (respectively T † \ T̃ †). Therefore, by our comparison of (4.17) and (4.18)

above,

[T ]Pi1 = (−1)1+# of •’s in T̃ · wt(θ/λ) = −[T †]Pi1 ,

as desired.

Reduction to the k = 1 case: In the calculation of

revswapi2 ◦ revswapi3 ◦ · · · ◦ revswapik(T )

and

revswapi2 ◦ revswapi3 ◦ · · · ◦ revswapik(T †),

it is straightforward by inspection that each reverse miniswap involving either • of C1 or the • of C′1 is L1.2.

Therefore there exists an instance of C1 in each W ∈ Ri1(T ) and an instance of C′1 in each W ′ ∈ Ri1(T †).

By Lemma 4.45, these instances are unique. Extending φ1 linearly, since T and T † are the same outside of

the regions C1 and C′1, it is easy to see inductively that for all 2 ≤ q ≤ k,

φ1(revswapiq ◦ · · · ◦ revswapik(T )) = revswapiq ◦ · · · ◦ revswapik(T †).

110



In particular, φ1 bijects Ri1(T ) with Ri1(T †).

Let V ∈ Ri1(T ). By the k = 1 case above, [V ]Pi1 = −[φ1(V )]Pi1 . Moreover, when we apply swapi−k
◦ · · · ◦

swapi1 to V and φ1(V ), each miniswap involving a • of C1 or C′1 is H3. Hence, [T ]swapi−k
◦ · · · ◦ swapi1(V ) =

[T †]swapi−k
◦ · · · ◦ swapi1(φ1(V )). Thus by Lemma 4.44, [T ]Pik = −[T †]Pik .

Let S2 be the subset of tableaux in Gνλ,µ(ik) with a box x such that •ik ∈ x, •ik ∈ x→↑, ik+1 ∈ x→ and

ik ∈ x, i.e. locally the tableau is C2 =

•ik
•ik ik+1ik

(with possibly additional edge labels). Let S ′2 be the subset of

tableaux in Gνλ,µ(ik) with a box x such that ik ∈ x, ik+1 ∈ x→, •ik ∈ x→↑, no ik appears outside of x and no

•ik appears West of x in x’s row. Locally the tableau is C′2 =

•ik
ik ik+1 (with possibly additional edge labels).

Lemma 4.47. If T ∈ S2 (respectively, S ′2), there is a unique C2 (respectively, C′2) that it contains.

Proof. Let x be the southwestmost box of a C2 in T . By (G.7), the ik ∈ x is the westmost ik in T ; hence

this configuration is unique. The claim about C′2 is clear since the ik is unique.

For T ∈ S2, let φ2(T ) be T with the unique C2 replaced by C′2.

Lemma 4.48. φ2 : S2 → S ′2 is a bijection.

Proof. This may be proved almost exactly as Lemma 4.46.

Proposition 4.16. For each T ∈ S2, [T ]Pik = −[φ2(T )]Pik .

Proof. Let T † := φ2(T ). Let x be the southwestmost box of C2 in T . Then x is also the southwestmost box

of C′1 in T †.

Special case k = 1: The proof is verbatim the argument for the k = 1 case of Proposition 4.15.

Reduction to the k = 1 case: Suppose k > 1. Let Z be the set of boxes in an ik-good tableau that either

(1) contain •ik or (2) contain a label F with i1 � F � ik−1 and are not southeast of a •ik . Call an

edge connected component of Z an ik-walkway. We will now apply the development of i-walkways, from

Sections 4.10 and 4.11, in slightly modified form to the ik-walkways. To be more precise, Lemmas 4.37,

4.38, 4.39 and 4.40 are true after replacing “(i + 1)1” with “ik” and “i-walkway” with “ik-walkway”. In

addition, Claim 4.5 holds verbatim. The proofs are trivial modifications of those given.

Let W be the ik-walkway of T containing x (W includes all edges of boxes in W ). Let W † be the

analogous ik-walkway of T †. Note that W and W † have the same skew shape.

Claim 4.8. Let S, S′ and T be respectively the set of reversals of W , W † and W c (the complement of W )

under revswapi2 ◦ · · · ◦ revswapik . Then:
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(I) Ri1(T ) = {V ∈ Gνλ,µ(i1) : V |W ∈ S, V |W c ∈ T}

(II) Ri1(T †) = {V ′ ∈ Gνλ,µ(i1) : V ′|W † ∈ S′, V ′|(W †)c ∈ T}

Proof. We prove only (I), as the proof of (II) is similar (using T |W c = T †|W c). Fix 2 ≤ h ≤ k and let L be

a ladder of A ∈ Rih(T ). L contains only •ih and unmarked ih−1. Each of the boxes x of L is in Z: This is

clear if h = k and follows for smaller h by induction. Thus L ⊆ Z. Therefore, since L is edge connected, it

sits inside an edge connected component of Z. Thus, since W is one such component, reverse swapping acts

independently on W and W c.

Case 1: (W (and hence W †) has a single row): By construction, x is the eastmost box of W and W †.

By Lemma 4.39(II), for every V ∈ Ri1(T ), V |W = R′. By Lemma 4.39(III), for every V ′ ∈ Ri1(T †),

V ′|W † ∈ {R,R′} where this R′ is the same as in the previous sentence.

Since R′ is the unique reversal of W and is a reversal of W †, we have Ri1(T ) ⊆ Ri1(T †) by Claim 4.8. Let

ι : Ri1(T ) → Ri1(T †) be the inclusion map. Let f : Ri1(T ) → Ri1(T †) be the map given by replacing the

R′ occupying the region W with R. Again appealing to Claim 4.8 we see that these maps are well-defined,

injective and Ri1(T †) = im ι t im f .

By Claim 4.5(III), forward swapping R produces W † with coefficient 1. By Claim 4.5 (part (I.i) or (I.ii),

as appropriate) forward swapping R′ produces βW + (1 − β)W † for some β. Moreover, when applying

swapik−1
◦ · · · ◦ swapi1 to V ∈ Ri1(T ) or V ′ ∈ Ri1(T †), every snake lies entirely inside some edge-connected

component of Z. W is one of these components. Thus, for each V ∈ Ri1 , [T ]swapik−1
◦· · ·◦swapi1(V ) factors

as a contribution from the region W times a contribution from Z \W . That is, for the same α,

∑
V ∈Ri1 (T )

[T ]swapik−1
◦ · · · ◦ swapi1(V ) = αβ,

∑
V ′∈Ri1 (T †)

[T †]swapik−1
◦ · · · ◦ swapi1(V ′) = α

∑
V ′∈Ri1 (T †)

[T †]swapik−1
◦ · · · ◦ swapi1(V ′) = α(1− β).

Therefore,

[T ]Pik =
∑

V ∈Ri1 (T )

[V ]Pi1 · [T ]swapik−1
◦ · · · ◦ swapi1(V ) = [V ]Pi1αβ,
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while

[T †]Pik =
∑

V ′∈Ri1 (T †)

[V ′]Pi1 · [T †]swapik−1
◦ · · · ◦ swapi1(V ′)

=
∑

V ∈Ri1 (T )

[ι(V )]Pi1 · [T †]swapik−1
◦ · · · ◦ swapi1(ι(V ))

+
∑

V ∈Ri1 (T )

[f(V )]Pi1 · [T †]swapik−1
◦ · · · ◦ swapi1(f(V ))

=
∑

V ∈Ri1 (T )

[V ]Pi1 · [T †]swapik−1
◦ · · · ◦ swapi1(V )

−
∑

V ∈Ri1 (T )

[V ]Pi1swapik−1
◦ · · · ◦ swapi1(f(V ))

= [V ]Pik(α(1− β)− α).

Now, [T ]Pik = −[T †]Pik follows.

Case 2: (W (and hence W †) has at least two rows): There are three cases to consider, corresponding to the

case of Lemma 4.40.

In Cases (I) and (II) of Lemma 4.40, W and W † have a unique reversal R. By Claim 4.5(III) or

Claim 4.5(II) respectively, forward swapping R produces βW−βW † for some β. In Case (III) of Lemma 4.40,

W and W † share the same pair of reversals R,R′. By Claim 4.5(III) and (I.i), forward swapping R produces

βW − βW † for some β, while forward swapping R′ produces β′W − β′W † for some β′. Using these facts,

one may argue similarly to Case 1 to deduce [T ]Pik = −[T †]Pik .

Let S3 be the subset of tableaux in Gνλ,µ(ik) with a box x such that •ik ∈ x, ik ∈ x→ and ik ∈ x, i.e.

locally the tableau is C3 = •ik ik .ik (with possibly additional edge labels). Let S ′3 be the subset of tableaux

in Gνλ,µ(ik) with a box x such that •ik ∈ x, ik ∈ x→, no ik appears West of x→, ik−1 /∈ x←, and (i+ 1)h /∈ x→

where Nik = N(i+1)h . Locally the tableau is C′3 = •ik ik (with possibly additional edge labels).

Lemma 4.49. If T ∈ S3 (respectively, S ′3), there is a unique C3 (respectively, C′3) that it contains.

Proof. If C3 occurs in a good tableau, it is unique since the edge ik is westmost in its gene by (G.7). Similarly

C′3 is unique since the ik ∈ x→ is westmost by assumption.

Define φ3(T ) to be T with the unique C3 replaced by C′3.

Lemma 4.50. φ3 : S3 → S ′3 is a bijection.
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Proof. Define the (putative) inverse φ−1
3 by replacing C′3 with C3. Once we establish that φ3 and φ−1

3 are

well-defined, we are done, since φ3 and φ−1
3 are clearly mutually inverse.

Let T ∈ S3. Trivially, each (G.n) holds for φ3(T ). By T ’s (G.12), ik−1 /∈ x←. If (i+ 1)h ∈ x→ in φ3(T )

with Nik = N(i+1)h , then T would violate Lemma 4.7. By T ’s (G.4) and (G.7), the ik ∈ x→ is westmost in

φ3(T ).

Now let T ∈ S ′3. We check the goodness conditions for φ−1
3 (T ).

Claim 4.9. No label of family i appears in x’s column in T .

Proof. By T ’s (G.12), there are no labels of family i North of x and in its column. By T ’s (G.11), a label `

South of x and in its column is not marked, i.e., ` � ik. Since we assumed the ik ∈ x→ is westmost, ` 6= ik .

By T ’s (G.6), ` 6= il for l > k. Hence ik < `.

(G.4) and (G.5): By T ’s (G.9), all labels North of x and in its column are of family at most i. By T ’s (G.11),

all labels South of x and in its column are of family at least i. Hence by Claim 4.9, φ−1
3 (T )’s (G.4) and (G.5)

follow.

(G.8): If there is a genotype G of φ−1
3 (T ) that is not ballot, then it uses the ik ∈ x. Furthermore, since T

is ballot, some (i + 1)h with Nik = N(i+1)h appears in word(G) before the ik ∈ x. By Lemma 4.7 applied

to T , this (i + 1)h can only be South of x→ and in x→’s column or North of x and in x’s column. By T ’s

(G.9), it cannot be North of x and in its column. Suppose it appears South of x→ and in its column. By

assumption, (i + 1)h /∈ x→. Hence suppose it appears south of x→↓, and consider label(x↓). By (G.11)

family(label(x↓)) ≥ i. By Claim 4.9, family(label(x↓)) 6= i. By T ’s (G.3) and (G.4), label(x↓) ≺ (i+1)h.

Hence family(label(x↓)) = i + 1. But by Lemma 4.11, label(x↓) 6= (i + 1)h. Hence by T ’s (G.6),

(i+ 1)h−1 ∈ x↓. This creates a (G.8) violation in T , as this label is read before any ik−1.

(G.12): Since T is good, if φ−1
3 (T ) violates (G.12), the violation involves the ik ∈ x. Since by assumption

ik−1 /∈ x←, the last sentence of (G.12) does not apply. Suppose ij is SouthEast of x, then it is also SouthEast

of ik ∈ x→, which will lead to a violation of T ’s (G.12). Suppose ij is NorthWest of x, then to avoid a

violation of T ’s (G.12) with the ik ∈ x→, ij must be either in x’s row or in an upper edge of that row. Since

we have •ik ∈ x, this avoids violating φ−1
3 (T )’s (G.12).

All of the remaining (G.n)-conditions are trivial to verify.

Proposition 4.17. For T ∈ S3, [T ]Pik = [φ3(T )]Pik .

Proof. Let T † := φ3(T ). By inspection of the reverse miniswaps, and downward induction on Q, there is a

bijection fQ : RQ(T )→ RQ(T †) given by deletion of the ik ∈ x. If L ∈ R11
(T ), then L and f11

(L) have the

same number of •11 ’s. Hence, [L]P11 = [f11(L)]P11 ; cf. (4.13).
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Extend fQ linearly. By inspection of the miniswaps,

fik(swapi−k
◦ · · · ◦ swap11

(L)) = swapi−k
◦ · · · ◦ swap11

(f11(L)).

Hence by Lemma 4.44, [T ]Pik = [T †]Pik .

Let S4 be the subset of tableaux in Gνλ,µ(ik) with a box x such that •ik ∈ x, F ! ∈ x→, ik ∈ x and

ik ∈ x→, i.e. locally the tableau is C4 =
•ik F !

ik ik (with possibly additional edge labels). Let S ′4 be the subset

of tableaux in Gνλ,µ(ik) with a box x such that •ik ∈ x, F ! ∈ x→, ik ∈ x→, (i + 1)h 6∈ x→ if N(i+1)h = Nik ,

and ik−1 6∈ x←. Locally the tableau is C′4 =
•ik F !

ik (with possibly additional edge labels).

Lemma 4.51. If T ∈ S4 (respectively, S ′4), there is a unique C4 (respectively, C′4) that it contains.

Proof. This follows since by (G.7), T contains at most one edge label ik.

Set φ4 : S4 → S ′4 by replacing C4 with C′4.

Lemma 4.52. φ4 : S4 → S ′4 is a bijection.

Proof. Define a putative inverse φ−1
4 : S ′4 → S4 by replacing C′4 with C4. Clearly, φ4 and φ−1

4 are mutually

inverse. It remains to check well-definedness. Indeed, it is trivial to check each goodness condition holds for

φ4(T ). By Lemma 4.7 for T , there is not (i + 1)h ∈ x→ with N(i+1)h = Nik . By T ’s (G.12), ik−1 6∈ x←.

Thus φ4 is well-defined.

Claim 4.10. No label of family i appears in x’s column in T .

Proof. By T ’s (G.12), i` cannot appear North of x and in its column. If i` is South of x and in its column,

then by T ’s (G.6) and (G.7), ` < k, so this i` is marked, contradicting T ’s (G.11).

Now let T ∈ S ′4. We check the goodness conditions for φ−1
4 (T ):

(G.4) and (G.5): By T ’s (G.9), every label North of x and in its column has family at most i. By T ’s

(G.11), every label South of x and in its column has family at least i. Moreover, by Claim 4.10, no label of

family i appears in x’s column in T . Hence (G.4) and (G.5) hold in φ−1
4 (T ).

(G.8): Suppose φ−1
4 (T ) has a nonballot genotype G. By T ’s (G.8), G must use the ik ∈ x. Also by T ’s

(G.8), some (i + 1)h with N(i+1)h = Nik appears in word(G) before this ik ∈ x. By T ’s (G.9) and (G.8),

this (i+ 1)h appears South of x→ and in x→’s column. By T ’s (G.4) and the first hypothesis on S ′4, in fact

(i+1)h ∈ x→↓. By T ’s (G.3), family(label(x↓)) ≤ i+1. By (G.11) and the •ik ∈ x, family(label(x↓)) ≥ i.

By Claim 4.10, no label of family i appears in x’s column in T . Thus family(label(x↓)) = i+ 1. Then by

T ’s (G.3) and (G.6), (i+ 1)h−1 ∈ x↓. Hence by Claim 4.10, this contradicts Lemma 4.7 for T .
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(G.12): If there is an i` SouthEast of the ik ∈ x in φ−1
4 (T ), then we either violate T ’s (G.2), (G.4) or

(G.12). Now suppose there is an i` NorthWest of ik ∈ x in φ−1
4 (T ). By T ’s (G.12), this i` is West and either

in x’s row or on the upper edge of that row. If i` ∈ x←, then ` = k − 1 by T ’s (G.6). However then we

contradict the last hypothesis on S ′4. So the i` and ik satisfy (G.12).

The remaining goodness conditions are trivial to verify.

Proposition 4.18. For each T ∈ S4, [T ]Pik = [φ4(T )]Pik .

Proof. Let T † = φ4(T ). Let fQ : RQ(T ) → RQ(T †) be defined by deleting the ik ∈ x and replacing the

ik ∈ x→ by ik. Now the proof proceeds exactly as that for Proposition 4.17.

4.13 Proof of the conjectural KT rule from [ThYo13]

We briefly recap the conjectural rule for Kν
λ,µ from [ThYo13, Section 8]. An equivariant increasing

tableau is an edge-labeled filling of ν/λ using the labels 1, 2, . . . , |µ| such that each label is strictly smaller

than any label below it in its column and each box label is strictly smaller than the box label immediately

to its right. Any subset of the boxes of ν/λ may be marked by ?’s, except that if i and i+ 1 are box labels

in the same row, then the box containing i may not be ?-ed. Let EqInc(ν/λ, |µ|) denote the set of all such

equivariant increasing tableaux.

An alternating ribbon R is a filling of a short ribbon by two symbols such that adjacent boxes are

filled differently; all edges except the southwestmost edge are empty; and if this edge is filled, it is filled

with the other symbol than in the box above it. Let switch(R) be the alternating ribbon of the same shape

where each box is instead filled with the other symbol. If the southwestmost edge was filled by one of these

symbols, that symbol is deleted. If R consists of a single box with only one symbol used, then switch does

nothing to it. Define switch to act on an edge-disjoint union of alternating ribbons, by acting on each

independently.

Example 4.23. Let R =
♥ ♠

♥ ♠
.

♠
Then switch(R) =

♠ ♥
♠ ♥

. ♦

Given T ∈ EqInc(ν/λ, |µ|) and an inner corner x ∈ λ, label x with • and erase all ?’s. Call this tableau

V1. Consider the alternating ribbons {R1} made of • and 1. V2 is obtained by applying switch to each

R1. Now let {R2} be the collection of ribbons consisting of • and 2, and produce V3 by applying switch to

each R2. Repeat until the •’s have been switched past all the numerical labels in T ; the final placement of

numerical labels gives KEqjdtx(T ), the slide of T into x. The sequence V1, V2, . . . is the switch sequence
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of (T, x). Finally, define KEqrect(T ) by successively applying KEqjdtx in column rectification order, i.e.,

successively pick x to be the eastmost inner corner.

Lemma 4.53. For Vj in the switch sequence of (T, x):

(I) The numerical box labels strictly increase along rows from left to right (ignoring •’s).

(II) The numerical labels strictly increase down columns (ignoring •’s and reading labels of a given edge in

increasing order).

(III) Every numerical label southeast of a • is at least j.

(IV) Every numerical label northwest of a • is strictly less than j.

Proof. These are proved by simultaneous induction on j. In the inductive step, one considers any 2×2 local

piece of Vj and studies the possible cases that can arise as one transitions from Vj → Vj+1; we leave the

straightforward details to the reader.

A set of labels is a horizontal strip if they are arranged in increasing order from southwest to northeast,

with no two labels of the set in the same column.

Lemma 4.54. Let T ∈ EqInc(ν/λ, |µ|) and x ∈ λ be an inner corner. Then {i, i + 1, . . . , j} forms a

horizontal strip in Vk of the switch sequence of (T, x) if and only it does so in Vk+1.

Proof. This quickly reduces to consideration of the possibilities in a 2×2 local piece of Vk. Then we proceed

by straightforward case analysis using Lemma 4.53.

A label s ∈ T is special if it is an edge label or lies in a ?-ed box. At most one s appears in a column c.

In column rectification order, each slide KEqjdtx for x ∈ c moves an s in c at most one step North (and it

remains in c). A special label s in c passes through x if it occupies x at any point during c’s rectification

and initially s /∈ x. Let x1, . . . , xs be the boxes s passes through and let y1, . . . , yt be the numerically labeled

boxes East of xs in the same row. Set factorK(s) := 1−
∏s
i=1 β̂(xi)

∏t
j=1 β̂(yj). If s does not move during

the rectification of c, then factorK(s) := 0. Now set wtK(T ) :=
∏

s factorK(s), where the product is over

all special labels. Lastly, we define sgn(T ) := (−1)|µ|−#?’s in T−#labels in T .

Let µ[1] = (1, 2, 3, . . . , µ1), µ[2] = (µ1 + 1, µ1 + 2, . . . , µ1 + µ2), etc. Let Tµ be the superstandard

tableau of shape µ, i.e., row i is filled by µ[i]. The following is the conjecture of [ThYo13]:

Theorem 4.2. Kν
λ,µ =

∑
T sgn(T ) · wtK(T ), where the sum is over

Aνλ,µ := {T ∈ EqInc(ν/λ, |µ|) : KEqrect(T ) = Tµ}.
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We will prove Theorem 4.2 (after some preparation) by connecting to Theorem 4.1.

Let Bνλ,µ be the set of all T ∈ BallotGen(ν/λ) that have content µ. We need a semistandardization

map Φ: Aνλ,µ → Bνλ,µ. Given A ∈ Aνλ,µ, erase all ?’s and replace the labels 1, 2, . . . , µ1 with 11, 12, . . . , 1µ1

respectively. Next, replace µ1 + 1, µ1 + 2, . . . , µ1 +µ2 by 21, 22, . . . , 2µ2 respectively, etc. The result is Φ(A).

Note Φ is not bijective. Define a standardization map Ψ: Bνλ,µ → Aνλ,µ by reversing the above process in

the obvious way; Ψ(B) is ?-less.

Lemma 4.55. For B ∈ Bνλ,µ, Ψ(B) ∈ EqInc(ν/λ, |µ|).

Proof. That Ψ(B) has the desired shape and content is clear. Row strictness follows from (S.1), and column

strictness from (S.2).

Lemma 4.56. For B ∈ Bνλ,µ and for each i, µ[i] forms a horizontal strip in Ψ(B) and also in each tableau

of any switch sequence during the column rectification of Ψ(B).

Proof. By (S.2–4), the labels i1, . . . , iµi form a horizontal strip of B. The claim for Ψ(B) is then immediate

by definition of Ψ. The claim for the tableaux of the switch sequences then follows by Lemma 4.54.

Lemma 4.57. Let B ∈ Bνλ,µ. Then

(I) after column rectifying the eastmost j columns of Ψ(B), there are no edge labels in these eastmost j

columns; and

(II) while rectifying the next column, there is never an edge label north of a • and in the same column, in

any tableau of any switch sequence.

Proof. (I): Suppose there were such an edge label ` ∈ x after rectifying the eastmost j columns. Then ` ∈ x

in Ψ(B), since rectification never adds a label to any edge. Suppose x is in the ith row from the top of Ψ(B).

Then since no label of B is too high, ` ∈ µ[k] where k ≤ i. Let the boxes North of x and in the same column

be x1, . . . , xi = x from north to south. By Lemma 4.53(II), we have for each e that label(xe) ∈ µ[f(e)] for

some f(e) ≤ k. But then by Lemma 4.56, f : {1, 2, . . . , i} → {1, 2, . . . , k − 1} is injective, a contradiction.

(II): Let c be the column currently being rectified. For the columns East of c, the claim follows from

part (I), noting that rectification never adds a label to any edge. For column c itself, the claim is vacuous if

there is no • in c. If there is • ∈ c, the claim follows from noting that every label of column c North of this

• must have participated in some switch and that switch never outputs any edge labels.

An equivariant increasing tableau T is ballot if Φ(T ) is ballot in the sense of Section 4.1.3. That is, for

every T̃ obtained by selecting one copy of each label in T , every initial segment of T̃ ’s column reading word
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has, for each i ≥ 1, at least as many labels from µ[i] as from µ[i+ 1]. We extend this definition to tableaux

with •’s by ignoring the •’s.

Lemma 4.58. Let B ∈ Bνλ,µ. Then Ψ(B) is ballot, as is each tableau of any switch sequence during the

column rectification of Ψ(B).

Proof. Let A = Ψ(B). Since B is ballot and Φ(A) = B, A is ballot by definition. Suppose that some Vq is

ballot, but Vq+1 is not. Then there exist i and a Ṽq+1 with a ballotness violation between µ[i] and µ[i+ 1].

If q /∈ µ[i] ∪ µ[i + 1], then the labels of µ[i] and µ[i + 1] appear in the same locations in Vq and Vq+1,

contradicting that Vq is ballot.

If q ∈ µ[i + 1], then no µ[i]-label moves. For each ` ∈ µ[i + 1] appearing in Ṽq+1, there is an ` east of

that position in Vq. Hence we construct a nonballot Ṽq by choosing those corresponding `’s, the same labels

from µ[i] as in Ṽq+1, and all other labels arbitrarily. This contradicts that Vq is ballot.

Finally if q ∈ µ[i], then there is some x in column c of Vq with • ∈ x and q ∈ x→ such that the q moving

into x violates ballotness in the columns East of c. That is, locally the switch is

Vq ⊇ a b
• q
d e

7→ a b
q •
d e

⊆ Vq+1 or Vq ⊇ a •
• q
d e

7→ a q
q •
d e

⊆ Vq+1,

where the x is the left box of the second row. The q ∈ x→ is Westmost in Vq, since otherwise the nonballotness

of Vq+1 contradicts that Vq is ballot. In particular, q 6= d. Hence by Lemma 4.53(III), q < d.

Since Vq is ballot but Vq+1 is not, there is a q̄ ∈ µ[i+1] in c→ in Vq, and hence in Vq+1. By Lemma 4.53(II)

applied to Vq, this q̄ is below q in c→. By Lemma 4.57(I), there are no edge labels East of column c. So

in fact e and hence d both exist. Indeed by Lemma 4.53(II) and Lemma 4.56, e = q̄. By Lemma 4.56, q is

the only label of µ[i] that appears in c in Vq+1. Hence d 6∈ µ[i]. Thus by Lemma 4.53(I) applied to Vq, we

conclude d ∈ µ[i+ 1]. However this again contradicts that Vq is ballot.

For A ∈ EqInc(ν/λ, |µ|), let A(k) be the “partial” tableau that is the column rectification of the eastmost

k columns of A.

Lemma 4.59. Let B ∈ Bνλ,µ and let A = Ψ(B). For each i, the ith row of A(k) consists of a (possibly

empty) final segment from µ[i].

Proof. By Lemma 4.53(I, II), A(k) has strictly increasing rows and columns. By Lemma 4.56, the labels µ[i]

form a horizontal strip in A(k) for each i; moreover the labels of µ[i] appearing in A(k) are a final segment

of µ[i]. By Lemma 4.57(I), there are no edge labels in A(k). By Lemma 4.58, A(k) is ballot. The lemma

follows.
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Corollary 4.3. A rectifies to Tµ.

Proof. Immediate from Lemma 4.59.

Proposition 4.19. For B ∈ Bνλ,µ, Ψ(B) ∈ Aνλ,µ.

Proof. By Lemma 4.55, Ψ(B) ∈ EqInc(ν/λ, |µ|). By Corollary 4.3, Ψ(B) rectifies to Tµ.

Lemma 4.60. For A ∈ Aνλ,µ, µ[i] forms a horizontal strip in A and each A′ in the column rectification of

T .

Proof. This is true for Tµ, and hence true for A and each A′ by Lemma 4.54.

Lemma 4.61. For A ∈ Aνλ,µ, Φ(A) is semistandard.

Proof. Row-strictness of A implies that Φ(A) satisfies (S.1). Since by Lemma 4.60, µ[i] is a horizontal strip

in A for each i, (S.2)–(S.4) hold in Φ(A).

Lemma 4.62. For A ∈ Aνλ,µ, Φ(A) is ballot.

Proof. Suppose Φ(A) is not ballot. Then by definition, A is not ballot. We assert that every tableau in every

switch sequence in the column rectification of A is also not ballot, implying Tµ is not ballot, a contradiction.

Suppose V` is not ballot, but V`+1 is. We derive a contradiction. Since V` is not ballot, we pick a

nonballot Ṽ`. Suppose this nonballotness can be blamed on positions a1, . . . , as containing labels of µ[i] and

positions b1, . . . , bs+1 containing labels of µ[i+ 1] (for some i). Suppose a1, . . . , as and b1, . . . , bs+1 are left

to right in Ṽ`; no two aj ’s (respectively bj ’s) are in the same column by Lemma 4.60. We may assume b1

is southwestmost among all these positions, say in column c and that among all offending choices of i and

positions, we picked one so that c is eastmost.

Since V`+1 is supposed ballot, there is a label ` ∈ µ[i+ 1] in b1 of V` that moved to column c←. Locally,

the switch is x y
• `

7→ x y
` •

. By Lemma 4.60, µ[i+ 1] forms a horizontal strip in V`. Hence x, y /∈ µ[i+ 1].

Also, no label in column c is in µ[i] since otherwise we contradict that c is chosen eastmost. Now, there is

some label m ∈ µ[i] above the • in column c← of V` since V`+1 is ballot. Using Lemma 4.57(II), it follows

that m = x. Now, we have argued y /∈ µ[i] ∪ µ[i + 1]. However, by Lemma 4.53(I, II) applied to V`, there

are no other possibilities for y, a contradiction.

Proposition 4.20. For A ∈ Aνλ,µ, Φ(A) ∈ Bνλ,µ.

Proof. By construction, Φ(A) is an edge-labeled genomic tableau of shape ν/λ and content µ. By Lemma 4.61,

Φ(A) is semistandard. By Lemma 4.62, Φ(A) is ballot. Since A rectifies to Tµ, no label of Φ(A) is too

high.
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Given a label ` in A ∈ Aνλ,µ, let Φ(`) be the corresponding label in Φ(A) ∈ Bνλ,µ. Recall the definitions

of Section 4.1.4.

Lemma 4.63.

(I) If ` is an edge label, then factorK(`) = edgefactor(Φ(`)).

(II) If ` is in a ?-ed box, then factorK(`) = 1− boxfactor(Φ(`)).

Proof. These follow from the definitions of the factors combined with Lemma 4.59.

Lemma 4.64. If B ∈ Bνλ,µ, then

boxwt(B) =
∑

A∈Φ−1(B)

(−1)#?’s in A
∏

special box label ` of A

factorK(`).

Proof. A box x is productive in B if and only if it may be ?-ed in Ψ(B). We are done by Lemma 4.63(II)

and the “inclusion-exclusion” identity
∑
S⊂[N ](−1)|S|

∏
s∈S(1− zs) = z1z2 · · · zN .

Proof of Theorem 4.2. Recall Theorem 4.2 asserts Kν
λ,µ =

∑
A∈Aνλ,µ

sgn(A)wtK(A). To see this, observe

that by Propositions 4.19 and 4.20,

∑
A∈Aνλ,µ

sgn(A)wtK(A) =
∑

B∈Bνλ,µ

∑
A∈Φ−1(B)

sgn(A)wtK(A)

=
∑

B∈Bνλ,µ

∑
A∈Φ−1(B)

(−1)|µ|−#?’s in A−#labels in A
∏

edge label ` of A

factorK(`)
∏

special box label ` of A

factorK(`)

=
∑

B∈Bνλ,µ

∑
A∈Φ−1(B)

(−1)|µ|−#labels in A

 ∏
edge label ` of A

factorK(`)

 (−1)#?’s in A
∏

special box label ` of A

factorK(`).

The number of labels of A equals the number of labels of B for any A ∈ Φ−1(B). Combining this with

Lemma 4.63(I) shows the previous expression equals

=
∑

B∈Bνλ,µ

(−1)|µ|−#labels in B

 ∏
edge label ` of B

edgefactor(`)

 ∑
A∈Φ−1(B)

(−1)#?’s in A
∏

special box label ` of A

factorK(`).

By Lemma 4.64, this equals

=
∑

B∈Bνλ,µ

(−1)|µ|−#labels in Bedgewt(B)boxwt(B) := Lνλ,µ.
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Since by Theorem 4.1, Lνλ,µ = Kν
λ,µ, we are done.
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Chapter 5

The Knutson-Vakil puzzle conjecture

This chapter derives from joint work with A. Yong [PeYo15c].

5.1 Introduction

A. Knutson–R. Vakil [CoVa05, §5] conjectured a combinatorial rule for the structure coefficients of the torus-

equivariant K-theory ring of a Grassmannian. The structure coefficients are with respect to the basis of

Schubert structure sheaves. Their rule extends puzzles, combinatorial objects founded in work of A. Knutson-

T. Tao [KnTa03] and in their collaboration with C. Woodward [KnTaWo04]. The various puzzle rules play

a prominent role in modern Schubert calculus, see e.g., [BuKrTa03, Va06, CoVa05], recent developments

[Kn10, KnPu11, BKPT14, Bu15] and the references therein.

Here we use the results of Chapter 4 to prove a mild correction of the puzzle conjecture.

5.1.1 The puzzle conjecture

Recall that the structure coefficients Kν
λ,µ ∈ KT(pt) in the torus-equivariant K-theory of the Grassmannian

are defined by

[OXλ ] · [OXµ ] =
∑
ν

Kν
λ,µ[OXν ].

Consider the n-length equilateral triangle oriented as ∆. Let ∆λ,µ,ν be ∆ with the boundary given by λ, µ, ν

(thought of as binary strings) as in Section 1.2.2. A KV-puzzle is a filling of ∆λ,µ,ν with the following

puzzle pieces:

1 1

1

0 0

0

0 0

1

1
0 1

1 0

1

1

10

0
1

1
0

0
1

0

0

The double-labeled edges are gashed. A filling requires that the common (non-gashed) edges of adjacent

puzzle pieces share the same label. Two gashed edges may not be overlayed. The pieces on either side of

a gash must have the indicated labels. The first three may be rotated but the fourth (equivariant piece)
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may not [KnTa03]. We call the remainder KV-pieces; these may not be rotated. The fifth piece may only

be placed if the equivariant piece is attached to its left. There is a “nonlocal” requirement [CoVa05, §5] for

using the sixth piece: it “may only be placed (when completing the puzzle from top to bottom and left to

right as usual) if the edges to its right are a (possibly empty) series of horizontal 0’s followed by a 1.”

The weight wt(P ) of a KV-puzzle P is a product of the following factors. Each KV-piece contributes

a factor of −1. For each equivariant piece one draws a ↘ diagonal arrow from the center of the piece to the

ν-side of ∆; let a be the unit segment of the ν-boundary, as counted from the right. Similarly one determines

b by drawing a ↙ antidiagonal arrow. The equivariant piece contributes a factor of 1− ta
tb

.

Conjecture 5.1 (The Knutson-Vakil puzzle conjecture). Kν
λ,µ =

∑
P wt(P ) where the sum is over all

KV-puzzles of ∆λ,µ,ν .

We consider the structure coefficient K10010
01001,00101 for Gr2(C5). The reader can check that there are six

KV-puzzles P1, P2, . . . , P6 with the indicated weights. Henceforth, we color-code the six puzzle pieces black,

white, grey, green, yellow and purple, respectively.

wt(P1) = −1 wt(P2) = −1 wt(P3) = (−1)2(1− t3
t4

)

wt(P4) = (−1)2(1− t2
t3

) wt(P5) = (−1)2(1− t2
t3

) wt(P6) = (−1)3(1− t3
t4

)(1− t2
t3

)

Using double Grothendieck polynomials [LaSc82] (see also [FuLa94] and references therein), one computes

K10010
01001,00101 = − t2t4 = wt(P2) + wt(P3) + wt(P5) + wt(P6). This gives a counterexample to Conjecture 5.1.

Actually, this subset of four puzzles witnesses the rule of Theorem 5.1 below.

5.1.2 A modified puzzle rule

We define a modified KV-puzzle to be a KV-puzzle with the nonlocal condition on the second KV-piece

replaced by the requirement that the second KV-piece only appears in the combination pieces or .

Theorem 5.1. Kν
λ,µ =

∑
P wt(P ) where the sum is over all modified KV-puzzles of ∆λ,µ,ν .
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We have a few remarks. First, the rule of Theorem 5.1 is “positive” in the sense of D. Anderson-

S. Griffeth-E. Miller’s [AnGrMi11]; cf. the discussion in Section 4.1.4. Second, it is a natural objective

to interpret Theorem 5.1 via geometric degeneration; see [CoVa05, Kn10]. Third, the author has found a

tableau formulation similar to that of Chapter 4 to complement the puzzle rule of [Kn10] for the different

Schubert calculus problem in KT(X) of multiplying a class of a Schubert variety by that of an opposite

Schubert variety; further discussion may appear elsewhere.

To prove Theorem 5.1, we first give a variant of the main theorem of Chapter 4; see Section 5.2. In

Section 5.3, we then give a weight-preserving bijection between modified KV-puzzles and the objects of the

rule of Section 5.2.

5.2 A tableau rule for Kν
λ,µ

We need to briefly recall some definitions from Chapter 4; there the Schubert varieties Xλ are indexed by

Young diagrams λ contained in a k × (n− k) rectangle. An edge-labeled genomic tableau is a filling of

the boxes and horizontal edges of a skew diagram ν/λ with subscripted labels ij , where i is a positive integer

and the j’s that appear for each i form an initial interval of positive integers. Each box of ν/λ contains one

label, whereas the horizontal edges weakly between the southern border of λ and the northern border of ν

are filled by (possibly empty) sets of labels. A genomic edge-labeled tableau T is semistandard if

(S.1) the box labels of each row strictly increase lexicographically from left to right;

(S.2) ignoring subscripts, each label is strictly less than any label strictly south in its column;

(S.3) ignoring subscripts, the labels appearing on a given edge are distinct;

(S.4) if ij appears strictly west of ik, then j ≤ k.

Index the rows of ν from the top starting at 1. We say a label ij is too high if it appears weakly above the

north edge of row i. We refer to the collection of all ij ’s (for fixed i, j) as a gene. The content of T is the

composition (α1, α2, . . . ) where αi is greatest so that iαi is a gene of T .

Recall from Chapter 1 that a semistandard tableau S is ballot if, reading the labels down columns from

right to left, we obtain a word W with the following property: For each i, every initial segment of W contains

at least as many i’s as (i+ 1)’s. Given an edge-labeled genomic tableau T , choose one label from each gene

and delete all others; now delete all subscripts. We say T is ballot if, regardless of our choices from genes,

the resulting tableau (possibly containing holes) is necessarily ballot in the above classical sense. (In the

case of multiple labels on a edge, read them from least to greatest.)
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We now diverge slightly from the treatment of Chapter 4, borrowing notation from [ThYo13]. Given a

box x in an edge-labeled genomic tableau T , we say x is starrable if it contains ij , is in row > i, and ij+1

is not a box label to its immediate right. Let StarBallotGenµ(ν/λ) be the set of all ballot semistandard

edge-labeled genomic tableaux of shape ν/λ and content µ with no label too high, where the label of each

starrable box may freely be marked by ? or not. The tableau T illustrated in Figure 5.2 is an element of

StarBallotGen(10,5,3)((15, 8, 5)/(12, 2, 1)). There are three starrable boxes in T , in only one of which the

label has been starred.

Let Man(x) denote the length of any {↑,→}-lattice path from the southwest corner of k × (n − k) to

the northwest corner of x. For x in row r containing i?j , set starfactor(x) := 1 − tMan(x)+1

tr−i+µi−j+1+Man(x)
. For an

edge label ` = ij in the southern edge of x in row r, set edgefactor := 1 − tMan(x)

tr−i+µi−j+1+Man(x)
. Finally for

T ∈ StarBallotGenµ(ν/λ), define

ŵt(T ) := (−1)d̂(T ) ×
∏
`

edgefactor(`)×
∏
x

starfactor(x);

here the products are respectively over edge labels ` and boxes x containing starred labels, while d̂(T ) :=

#(labels in T ) + #(?’s in T )− |µ|. Let

L̂
ν

λ,µ :=
∑
T

ŵt(T ),

where the sum is over all T ∈ StarBallotGenµ(ν/λ).

We need a reformulation of Theorem 4.1; the proof is a simple application of the “inclusion-exclusion”

identity
∏
i∈[m] ai =

∑
S⊆[m](−1)|S|

∏
i∈S(1− ai).

Theorem 5.2. Kν
λ,µ = L̂

ν

λ,µ.

Example 5.1. Let k = 2, n = 5 and λ = (2, 0), µ = (1, 0) and ν = (3, 1). The four tableaux contributing to

L̂
ν

λ,µ are

11

11

ŵt(T2) = −1

11

11
11

ŵt(T3)=(−1)2(1− t3
t4

)

11

1?1

ŵt(T5)=(−1)2(1− t2
t3

)

11

1?1
11

ŵt(T6)=(−1)3(1− t3
t4

)(1− t2
t3

)

Our indexing of these tableaux alludes to the precise connection to the four puzzles P2, P3, P5 and P6 of

Section 5.1.1, as explained in the next section. ♦

126



Figure 5.1: A “generic” modified KV-puzzle P (k = 3, n = 20).

5.3 Proof of Theorem 5.1: Bijecting the tableau and puzzle rules

5.3.1 Description of the bijection

To relate the modifed KV-puzzle rule of Theorem 5.1 with the tableau rule of Theorem 5.2, we give a variant

of T. Tao’s “proof without words” [Va06] (and its modification by K. Purbhoo [Pu08]) from Section 1.2.4

that bijects cohomological puzzles (using the first three pieces) and a tableau Littlewood-Richardson rule.

An extension of this proof for equivariant puzzles (i.e., fillings that additionally use the equivariant piece)

was given by V. Kreiman [Kre10]; we also encorporate elements of his bijection in our analysis.

Figure 5.1 gives a “generic” example of a (modified) KV-puzzle P . We will define a track πi from the

ith 1 (from the left) on the ν-boundary of ∆λ,µ,ν to the ith 1 (from the top) on the µ-boundary. To do

this, we describe the flow through the (oriented, non-KV) puzzle pieces that use a 1 and four combination

pieces (possible ways one can use the KV-pieces under the rules for a modified KV-puzzle):

(A.1) : go northeast

(A.2) : go north then northeast
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(A.3) : go left to right

(A.4) : go northeast

(A.5) : go in through the north \ of the purple triangle, come out northeast from the purple gash into

the southwest \ of the green rhombus and pass northeast through this rhombus

(A.6) : come in through the left side and out the top

(A.7) : come in through the southwest side of the green rhombus and out the top of the yellow triangle

(A.8) : come in through the north \ of the purple triangle, out the gash into the \ of the , out the —

of into the bottom of the grey rhombus and out its top

(A.9) : come into the north \ of the purple triangle, out the gash into the southwest \ of the green

rhombus and out the northeast \ into the left side of the yellow triangle and then go out the — of that

triangle.

Thinking of the (combination) pieces in (A.1)–(A.9) as letters of an alphabet, we can encode the north-

most track in P (from Figure 5.1) as the word

3 2 2 2

.

Recall, if κ is a letter/word in some alphabet, then the Kleene star is κ∗ := {∅, κ, κκ, . . .}.

Proposition 5.1 (Decomposition of πi). The list of (combination) pieces that appear in πi, as read from

southwest to northeast, is a word from the following formal grammar:

boxes[edges startrow boxes]∗ edges (5.1)

where

boxes :=
∗

edges :=

[ ∗ ∗ ∗ ∗]∗
startrow := ∪ ∪ ∪

Proof. By inspection of the rules for modified KV-puzzles.
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The remaining filling of the puzzle is forced, which we explain in two steps. First there is the NWray of

each , i.e., the (possibly empty) path of upward pointing grey rhombi growing from the / of this .

Lemma 5.1. The NWray of ends either at the λ-boundary of ∆λ,µ,ν or with a piece from startrow. In

the latter case, the shared edge is the south-then-eastmost edge of the (combination) piece.

Proof. The north / of is labeled 1. By inspection, the only (combination) pieces that can connect to this

edge are and those from startrow (at the stated shared edge).

Second, pieces of the puzzle not in a track or NWray are 0-triangles (depicted white).

We correspond Young diagrams to {0, 1}-sequences. Trace the {←, ↓}-lattice path defined by the southern

boundary of λ (as placed in the northwest corner of k×(n−k)) starting from the northeast corner of k×(n−k)

towards the southeast corner of k × (n− k). Record each ← step with “0” and each ↓ step with “1”.

We now convert P into (we claim) an edge-labeled starred genomic tableau T := φ(P ) of shape ν/λ with

content µ. The placement of the labels of family i is governed by the decomposition (5.1) of πi. The initial

sequence of k ’s indicates the leftmost possible placement of box labels iµi , iµi−1, . . . , iµi−k+1 (from right

to left) in row i of T . Continuing to read the sequence, one interprets:

(B.1) ↔ “place (unstarred) box label of next smaller gene”

(B.2) ↔ “end placing box labels in current row”

(B.3) ↔ “skip to the next column left”

(B.4) ↔ “place lower edge label of the next smaller gene”

(B.5) ↔ “place lower edge label of the same gene last used”

(B.6) ↔ “go to next row”

(B.7) ↔ “go to next row and place ?-ed box label of the next smaller gene”

(B.8) ↔ “go to next row and place (unstarred) box label of the same gene last used”

(B.9) ↔ “go to next row and place ?-ed box label of the same gene last used”.

Applying φ to the puzzle P of Figure 5.1 gives the tableau T of Figure 5.2. Here, λ = 0510101010,

corresponding to the inner shape (12, 2, 1) (which is shaded in grey). Since µ = 07105102103, the content

of T is (10, 5, 3). Finally, since ν = 02107103105, the outer shape of T is (15, 8, 5). As another example,

φ connects the puzzles P2, P3, P5 and P6 of Section 5.1 respectively with the tableaux T2, T3, T5 and T6 of

Example 5.1.

129



18 19 110

12 13 22 23 24 25

1?2 22 32 33

1716161514

22

21311131
Figure 5.2: The tableau T := φ(P ) corresponding to the modified KV-puzzle P of Figure 5.1.

Conversely, given T ∈ StarBallotGenµ(ν/λ), construct a word σi using the correspondences (B.1)–(B.9),

for 1 ≤ i ≤ k. That is, read the occurrences (possibly zero) of family i in T from right to left and from the

ith row down. (Note about (B.6) in the degenerate case that there are no labels of family i in the next row:

use after reading the leftmost column in ν/λ that does not have any labels of family < i.)

Lemma 5.2. Each σi is of the form (5.1).

Proof. Since T is semistandard, in any row, all box labels of family i are contiguous and strictly right of any

(lower) edge labels of that family on that row. The lemma follows.

We describe a claimed filling P := ψ(T ) of ∆λ,µ,ν . There are k 1’s on each side of ∆λ,µ,ν ; to the ith 1

from the left on the ν-boundary of ∆λ,µ,ν , place puzzle pieces in the order indicated by σi. That is attach

the next (combination) piece using the northmost \ edge on its west side, if it exists. Otherwise attach at

the piece’s unique southern edge. We attach at the unique — or \ edge of the thus far constructed track.

Fill in the order i = 1, 2, 3, . . . , k. Now stack ’s northwest of each until (we claim) it reaches one of the

pieces of (A.6)–(A.9) at the southmost / edge, or the λ-boundary of ∆λ,µ,ν . Complete using white triangles.

Sections 5.3.2–5.3.4 prove φ and ψ are well-defined and weight-preserving maps between

P := {modified KV-puzzles of ∆λ,µ,ν} and T := StarBallotGenµ(ν/λ).

Semistandardness (specifically (S.4)) implies that knowing the locations of labels of family i, and which

labels are repeated or ?-ed, uniquely determines the gene(s) in each location. The injectivity of φ and ψ

is easy from this. Moreover, by construction (cf. Lemma 5.2), the two maps are mutually reversing. Thus,

Theorem 5.1 follows from Theorem 5.2.

5.3.2 Well-definedness of φ : P → T

Let P ∈ P be a modified KV-puzzle for ∆λ,µ,ν . For the track πi, let i,j refer to the jth black triangle seen

along πi (as read from southwest to northeast). Let S denote any of the (combination) pieces that appear

in startrow. Similarly, we let Si,j be the jth such piece on πi.
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Figure 5.1 illustrates the “ragged honeycomb” structure of modified KV-puzzles. To formalize this, first

note by inspection that the πi do not intersect. Second we have:

Claim 5.1. There is a bijective correspondence between the 1’s on the λ-boundary and the ’s in π1.

Specifically, the jth 1 on the λ-boundary is the terminus of the NWray of 1,j. Similarly, there is a

bijective correspondence between i+1,j and Si,j in that the former’s NWray terminates at the southmost /

edge of the latter.

Proof. Follows by combining Proposition 5.1 and Lemma 5.1.

Define Li to be the left sequence of πi: Start at the southwest corner of ∆λ,µ,ν and read the {→,↗}-

lattice path that starts along the ν-boundary and travels up the left boundary of πi. The {0, 1}-sequence

records the labels of the edges seen. Similarly, define Ri to be the right sequence of πi by travelling

up the right side of πi but only reading the → and ↗ edges. (In Figure 5.1, L1 = 0610101010(= λ) while

R1 = 021011102102.)

In view of Claim 5.1, the following is “graphically” clear by considering the n diagonal strips through P :

Claim 5.2. L1 = λ, Li+1 = Ri for 1 ≤ i ≤ k − 1, and Rk = ν.

Let T (i) be the tableau after adding labels of family 1, 2, . . . , i. We declare T (0) to be the empty tableau

of shape λ/λ. Let ν(i) be the outer shape of T (i) (interpreted as the {0, 1}-sequence for its lattice path).

Claim 5.3. Li = ν(i−1) and Ri = ν(i).

Proof. Both assertions follow by inspection of the correspondences (B.1)–(B.9). (Also the second follows

from the first, by Claim 5.2.)

It is straightforward from Claims 5.2 and 5.3 that T = φ(P ) is semistandard in the sense of (S.1)–(S.4)

of Section 5.2. By Proposition 5.1, no label of T is ?-ed unless it is the rightmost box label of its family in a

row (> i). Since labels of family i are placed in the boxes of row i or below, no label of T can be too high.

Since Rk = ν, the shape of T is ν/λ.

Claim 5.4. T has content µ.

Proof. Let β be the content of T . Then βi is the number of (distinct) genes of family i that appear in T ,

which, in terms of P , is the number of and in πi minus the number of purple KV-pieces in πi.

Thus the vertical height hi of πi (at its right endpoint) is βi + # . However, hi equals the number of

line segments strictly below the ith 1 on the µ-boundary; i.e., hi = n− i− (n− k − µi) = (k − i) + µi. By

Claims 5.1 and 5.1, # = (k − i), hence β = µ, as desired.
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Finally,

Claim 5.5. T is ballot.

Proof. The height of a (combination) piece is the distance of any northernmost point to the ν-boundary as

measured along any (anti)diagonal. The height h of i+1,j equals the number of ’s, ’s and ’s that

appear weakly before i+1,j in πi+1 minus the number of ’s before i+1,j in πi+1. There are exactly j

such ’s, while the number of ’s and ’s is the number of labels used and the number of ’s is the num-

ber of these labels that are repeats. That is h = j+(#distinct genes of family i+ 1 in row j + 1 and above)

where we do not include labels on the lower edges of row j + 1. Similarly, the height h′ of Si,j is given by

h′ = j + (#distinct genes of family i in row j and above) where we include labels on the lower edges of row

j. By Claim 5.1, h′ − h ≥ 0 and so ballotness follows.

5.3.3 Well-definedness of ψ : T → P

Let T ∈ T be a starred ballot genomic tableau of shape ν/λ and content µ. Let P = ψ(T ). Let πi be the

track associated to σi. As in Section 5.3.2, we define the {0, 1}-sequences Li and Ri associated to πi. Here,

T (i) is defined as the subtableau of T using the labels of family 1, 2, . . . , i. Hence T (0) is the empty tableau

of shape λ/λ. Let ν(i) be the outer shape of T (i).

Claim 5.6 (cf. Claim 5.3). Li = ν(i−1) and Ri = ν(i).

Proof. By inspection of the correspondences (B.1)-(B.9).

By the lattice path definition, each ν(j) is a length n sequence. So πi is a track that (by definition) starts

at the south border of ∆λ,µ,ν and terminates at the east border of ∆λ,µ,ν . Also, define i,j and Si,j as

before.

Claim 5.7. Si,j and i+1,j share a diagonal with the former strictly northwest of the latter.

Proof. The 1’s in Li+1 result solely from the ’s appearing in πi+1 while the 1’s appearing in Ri result

solely from the S (combination) pieces. Thus, that the pieces share a diagonal follows from Claim 5.6. For

the “northwest” assertion, repeat Claim 5.5’s argument but reverse the logic of the final sentence: since by

assumption T is ballot, it follows that h′ ≥ h.

Since Claims 5.6 and 5.7 combine to imply that the πi are non-intersecting, attaching NWrays to each

and filling with white 0-triangles as prescribed, we have a filling P of ∆λ̃,µ̃,ν satisfying the modified

KV-puzzle rule. It remains to check the λ- and µ-boundaries.
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Claim 5.8. λ̃ = λ.

Proof. Graphically, λ̃ = L1. On the other hand, by Claim 5.6, we know that L1 = λ.

Claim 5.9. µ̃ = µ.

Proof. This is given by reversing the logic of the proof of Claim 5.4; here we are given the content of T and

are determining the heights of the tracks πi.

5.3.4 Weight-preservation

We wish to show:

Claim 5.10. φ is weight-preserving, i.e., wt(P ) = ŵt(T ).

Proof. The ±1 sign associated to P and T is the same since each usage of a KV-piece in P corresponds to

a ?-ed label or a repetition of a gene in T .

Now consider the weight 1 − ta
tb

assigned to an equivariant piece p in P . Here a is the ordinal (counted

from the right) of the line segment s on the ν-boundary hit by the diagonal “right leg” emanating from p.

Then b equals a+h−1 where h is the height of the piece p. Suppose p lies in track πi, and corresponds either

to ij on the lower edge of box x in row r or to i?j ∈ x in row r. Consider the edge e on the left boundary

of πi that is on the same diagonal as s. If p is not attached to the first KV-piece, so it corresponds to an

edge label, then e’s index from the right in the string Li equals Man(x). Otherwise e’s index from the right

in the string Li equals Man(x) + 1.

Note that h equals the number of ’s, ’s and ’s appearing weakly before p in πi minus the number

of ’s appearing before p in πi. The number of such ’s equals 1 + r− i if p corresponds to an edge label

and equals r − i if p corresponds to a starred label. The number of such ’s and ’s minus the number

of such ’s equals µi − j + 1. Weight preservation follows.
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Chapter 6

Isotropic Grassmannians

This chapter derives from joint work with A. Yong [PeYo15a, PeYo16].

6.1 Shifted genomic tableaux

The shifted diagram of a strictly decreasing partition is given by taking the ordinary Young diagram and

indenting row i (from the top) i− 1 positions to the right. Let

D := {1′ < 1 < 2′ < 2 < · · · }.

A P -tableau is a filling of shifted shape ν/λ with entries from D such that:

(P.1) rows and columns weakly increase (left to right, top to bottom);

(P.2) each unprimed letter appears at most once in any column;

(P.3) each primed letter appears at most once in any row; and

(P.4) every primed letter k′ has an unprimed k southwest of it.

The Schur P -function Pλ is a generating function over these tableaux (for more history and development of

these functions, see e.g., [HoHu92] or[Ste89]).

Example 6.1. 1 2′ 3

2
is a P -tableau of shape λ = (3, 1). The tableau 2 3′ 4 4

3′ 6

7

is not a P -tableau

because it violates both (P.3) and (P.4). However, if the lower 3′ changes to 3, the result is a P -tableau. ♦

For α ∈ D, write |α| = k if α ∈ {k′, k}. We use initial letters of the Greek alphabet (α, β, γ, . . .) for

elements of D, reserving Roman letters for elements of Z.

For fixed k ∈ Z≥0, place a total order ≺ on those boxes with entry k′ in top to bottom order and on those

boxes with entry k using left to right order; declare the boxes containing k′ to precede those containing k.

A gene (of family k) in a P -tableau T is a set G of boxes of T such that:
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• each entry in G is k′ or k;

• the boxes of G are consecutive in the ≺-order; and

• no two boxes of G appear in the same row or the same column.

We write family(G) = k.

Example 6.2. Consider the following three colorings of the same P -tableau:

T1 =
1′ 1

1′

1

T2 =
1′ 1

1′

1

T3 =
1′ 1

1′

1

The red boxes in T1 do not form a gene, since they are not consecutive in ≺-order (in view of the blue 1).

In T2 and T3, the boxes of each color form valid genes. ♦

A genomic P -tableau is a P -tableau T together with a partition of its boxes into genes such that for

every primed box b, there is an box c that is weakly southwest of b from a different gene than b but of the

same family. The content of T is the number of genes of each family. A genotype G of T is a choice of a

single box from each gene. Depict G by erasing the entries in boxes that are not chosen. A P -tableau may

be identified with the genomic P -tableau where each box is its own gene.

Example 6.3. Let ν = (6, 4, 1) and λ = (4, 2). Then a genomic P -tableau T of shape ν/λ and its two

genotypes G1, G2 are

T = 1′ 2

1 2

3

, G1 = 1′ 2

1

3

, G2 = 1′

1 2

3

.

The content of T is µ = (2, 1, 1). ♦

Given a word w using the alphabet D, ŵ is the word obtained by writing w backwards, and replacing

each k′ with k while simultaneously replacing each k with (k + 1)′. Let

doubleseq(G) := seq(G)ŝeq(G).

Say doubleseq(G) is locally ballot at the letter α ∈ D, if |α| = 1 or if in doubleseq(G) the number of |α|’s

appearing strictly before that α is strictly less than the number of (|α|−1)’s appearing strictly before that α.

Declare doubleseq(G) to be ballot if it is locally ballot at each letter. Finally, G is ballot if doubleseq(G)

is ballot, and the genomic P -tableau T is ballot if every genotype of T is ballot.
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Example 6.4. Let G1 and G2 be as in Example 6.3. Then

doubleseq(G1) = 21′134′2′13′ and doubleseq(G2) = 1′2134′2′3′1.

The former is not ballot, as it starts with 2. Hence the genomic P -tableau T of Example 6.3 is not ballot.

G2 is also not ballot: doubleseq(G2) is locally ballot at every position except the 2 in second position;

although there is a 1′ before this 2, there is no 1. To emphasize the differences between ballotness in this

section versus ballotness in Section 3.3, note that deleting the primes gives 12134231, which is ballot in the

earlier sense. ♦

A Q-tableau is a filling of ν/λ with entries from D satisfying (P.1)–(P.3) and

(Q.4) no primed letters appear on the main diagonal.

(Observe that (Q.4) is a weakening of (P.4), so a P -tableau is a Q-tableau.)

A gene (of family k) in a Q-tableau T is a set G of boxes such that:

• each entry of G is k′ or k,

• the boxes of G are consecutive in the ≺-order, and

• no two boxes of G with the same label appear in the same row or the same column.

We write family(G) = k as before.

A genomic Q-tableau is aQ-tableau T together with a partition of its boxes into genes. The definition of

ballotness for genomic Q-tableaux is the same as for genomic P -tableaux. Let PGenµ(ν/λ) and QGenµ(ν/λ)

respectively denote the sets of genomic P - and Q-tableaux of shape ν/λ and content µ.

Lemma 6.1. PGenµ(ν/λ) ⊆ QGenµ(ν/λ).

Proof. Let T ∈ PGenµ(ν/λ). The definition of a gene in a Q-tableau differs from that for P -tableaux only

in that it allows k′ and k in the same row or column to be in the same gene. Hence each gene of T is a gene

in the Q-tableau sense. Thus T ∈ QGenµ(ν/λ).

6.2 Maximal orthogonal and Lagrangian Grassmannians

Let G/P be a generalized flag variety, where G is a complex, connected, reductive Lie group and P is a

parabolic subgroup containing a Borel subgroup B. Let B− be the opposite Borel to B with respect to a

choice of maximal torus T ⊆ B. The Schubert cells of G/P are the B−-orbits, and the Schubert varieties
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Vλ are their closures. Here λ ∈ W/WP where W is the Weyl group of G and WP is the parabolic subgroup

of W corresponding to P. The classes of Schubert structure sheaves {[OVλ ]} form a Z-linear basis of the

Grothendieck ring K0(G/P). Let tνλ,µ be the structure constants with respect to this basis. A. Buch

[Bu02, Conjecture 9.2] conjectured the sign-alternation:

(−1)codimG/P(Vν)−codimG/P(Vλ)−codimG/P(Vµ)tνλ,µ ≥ 0.

This was subsequently proved by M. Brion [Br02]. While the Grassmannian X is the most well-studied case

of G/P, we now turn to an investigation of the next two most important cases when P is maximal parabolic.

Fix a non-degenerate, symmetric bilinear form β(·, ·) on C2n+1. A subspace V ⊆ C2n+1 is isotropic

with respect to β if β(~v, ~w) = 0 for all ~v, ~w ∈ V . Let

Y = OG(n, 2n+ 1)

be the maximal orthogonal Grassmannian, i.e., the parameter space of all such isotropic n-dimensional

subspaces in C2n+1. Define the shifted staircase δn to be the shifted shape whose ith row is of length i

for 1 ≤ i ≤ n. The Schubert varieties Yλ of Y are indexed by shifted Young diagrams

λ = (λ1 > λ2 > · · · > λn)

contained in δn, i.e.,

λk ≤ n− k + 1 for 1 ≤ k ≤ n.

We have

codimY (Yλ) = |λ|.

Let bνλ,µ be tνλ,µ in this case. The first combinatorial rule for bνλ,µ was conjectured in [ThYo09b] and proved

in [ClThYo14], using [BuRa12].

The following is a new rule for these structure coefficients. This rule directly extends the rule of J. Stem-

bridge [Ste89, Theorem 8.3] for the ordinary cohomological structure constants of Y . (J. Stembridge’s rule

is stated in terms of projective representation theory of symmetric groups; the application to H?(Y ) is due

to P. Pragacz [Pr89].)
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Theorem 6.1 (OG Genomic Littlewood-Richardson rule).

bνλ,µ = (−1)|ν|−|λ|−|µ|times the number of ballot genomic P -tableaux of shape ν/λ with content µ.

Example 6.5. (cf. [ClThYo14, Example 1.3]) That

b
(5,3,1)
(3,1),(3,1)(OG(n, 2n+ 1)) = −6

is witnessed by:

1′ 1

1′ 2

1

1 1

1′ 2

1

1′ 1

1 2

2

1′ 1

1 1

2

1 1

1 2

2

1′ 1

1 1

2

♦

Fix a symplectic bilinear form ω(·, ·) on C2n. The Lagrangian Grassmannian

Z = LG(n, 2n)

is the parameter space of n-dimensional linear subspaces of C2n that are isotropic with respect to ω. The

Schubert varieties {Zλ} of Z are indexed by the same shifted Young diagrams λ as above; also, codimZ(Zλ) =

|λ|. Let cνλ,µ be tνλ,µ in this case.

There is a well-known relationship in the “cohomological case”, i.e., when |λ| + |µ| = |ν|, between the

structure constants for Y and Z:

cνλ,µ = 2`(λ)+`(µ)−`(ν)bνλ,µ, (6.1)

where `(π) denotes the number of nonzero parts of π. We are not aware of any generalization of (6.1);

cf. [BuRa12, Examples 4.9 and 5.8]. On the other hand, we propose the following extension of this relation-

ship:

Conjecture 6.1. For any strict partitions λ, µ, ν, we have |bνλ,µ| ≤ |cνλ,µ|.

This conjecture is true in the cohomological case since it is known that `(λ) + `(µ) ≥ `(ν) whenever

bνλ,µ > 0. Moreover, we have verified this conjecture by computer for n ≤ 7. In addition, by [BuRa12], this

conjecture holds whenever µ has a single part.
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Let QBallotµ(ν/λ) := {ballot genomic Q-tableaux of shape ν/λ with content µ}.

Conjecture 6.2. |cνλ,µ| ≤ #QBallotµ(ν/λ).

Example 6.6. Let λ = (3, 1), µ = (2, 1) and ν = (4, 3, 1). Then #QBallotµ(ν/λ) = 6:

1

1′ 2

1

1

1′ 2′

1

1

1 2

2

1

1 2′

2

1

1′ 2

2

1

1′ 2′

2

The third tableau above is the only one that is a genomic P -tableau; hence bνλ,µ = −1. Therefore Conjec-

tures 6.2 and 6.1 predict 1 ≤ |cνλ,µ| ≤ 6. Indeed, cνλ,µ = −5. ♦

We have computer verified Conjecture 6.2 for n ≤ 6. Moreover, the bound is sharp, as indicated in the

two propositions below.

Proposition 6.1. For µ = (p), |cνλ,µ| = #QBallotµ(ν/λ).

Proof. By applying Γ (defined in Section 6.3.1) to the tableaux in QBallot(p)(ν/λ) and retaining the primes,

one obtains precisely the KLG-tableaux of A. Buch–V. Ravikumar [BuRa12, §5]. By [BuRa12, Corollary 5.6],

the number of the latter is (−1)|ν|−|λ|−pcνλ,(p).

Proposition 6.2. For |ν| ≤ |λ|+ |µ|, |cνλ,µ| = #QBallotµ(ν/λ).

Proof. When |ν| < |λ|+ |µ|, cνλ,µ = 0 for geometric reasons. Clearly in this case also QBallotµ(ν/λ) = ∅.

Suppose |ν| = |λ|+|µ| and T ∈ QBallotµ(ν/λ). The number of boxes of ν/λ on the main diagonal is `(ν)−

`(λ). By pigeonhole, each gene of T is a single box. Hence these tableaux are exactly the tableaux of [Ste89,

Theorem 8.3] with condition (2) removed. Therefore by the discussion of [Ste89, p. 126], #QBallotµ(ν/λ)

is the coefficient of the Schur Q-function Qµ in the expansion of the skew Schur Q-function Qν/λ. It is well

known that these coefficients agree with the structure constants for Z in this case.

That is, we conjecturally have combinatorially-related upper and lower bounds for |cνλ,µ| in terms of

genomic tableaux. Let

PBallotµ(ν/λ) := {ballot genomic P -tableaux of shape ν/λ with content µ}.

Naturally, one seeks a set QBallot?µ(ν/λ) satisfying

PBallotµ(ν/λ) ⊆ QBallot?µ(ν/λ) ⊆ QBallotµ(ν/λ),
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such that #QBallot?µ(ν/λ) = |cνλ,µ|. Let

QBallot†µ(ν/λ) :=

{T ∈ QBallotµ(ν/λ) : no gene contains both primed and unprimed labels}.

Conjecture 6.3. #QBallot†µ(ν/λ) ≤ |cνλ,µ|.

This has also been computer-checked for n ≤ 6. It suggests that one should look to define QBallot?µ(ν/λ)

from QBallotµ(ν/λ) by imposing a condition on genes with both primed and unprimed labels.

6.3 Proof of OG Genomic Littlewood-Richardson rule

(Theorem 6.1)

Our proof of Theorem 6.1 proceeds parallel to the first proof of Theorem 3.2. (We are not aware of any

set-valued tableau or puzzle formulation of Theorem 6.1.)

6.3.1 Shifted K-(semi)standardization maps

Let T be a genomic P -tableau. Impose a total order on genes of T by G1 < G2 if b1 ≺ b2, for bi a box of Gi.

(Note that since the boxes of a gene form a ≺-interval, this order is well-defined.)

A shifted increasing tableau is a filling of a shifted shape that strictly increases along rows and down

columns (see [ThYo09b, §7] and [ClThYo14]). Define the shifted K-standardization map

Γ : PGenµ(ν/λ)→ Inc(ν/λ)

by filling the ith gene in <-order with the entry i.

Example 6.7. If T is the genomic P -tableau 1′ 2

1 2

3

in Example 6.3, then

Γ(T ) = 1 3

2 3

4

. ♦
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Recall

Pk(µ) :=

1 +
∑
i<k

µi, 2 +
∑
i<k

µi, . . . ,
∑
j≤k

µj

 .

and let S ∈ Inc(ν/λ) have largest entry n. Let

µ = (µ1, µ2, . . . , µh)

be a composition of n. The shifted K-semistandardization ∆µ(S) with respect to µ is defined as follows.

Replace each entry i in S with ki for the unique k such that i ∈ Pk(µ). For each kh, replace it with k′ if

there is a kj southwest of it with h < j; otherwise replace it with k. If the result is a P -tableau, define a

(putative) genomic P -tableau structure by putting all boxes that have the same entry in S into the same

gene. If the result is a P -genomic tableau, we say µ is admissible for S; otherwise ∆µ(S) is not defined.

Clearly, if ∆µ(S) is defined, it has content µ.

Example 6.8. Let S be the increasing tableau of Example 6.7. Let η = (2, 1, 1). We compute ∆η(S) in

stages: 11 23

12 23

34

=⇒ =⇒
1′ 2

1 2

3

1′ 2

1 2

3

Observe that we obtain the genomic P -tableau T of Example 6.3.

Compare this to the computation of ∆θ(S), where θ = (4):

11 13

12 13

14

=⇒
1′ 1′

1′ 1′

1

Since the tableau obtained is not a P -tableau (it violates (P.3)), ∆θ(S) is undefined. ♦

Example 6.9. Let V be the increasing tableau 1

1 2
and let κ = (2). Then in the construction of

∆κ(V ), we first obtain a valid P -tableau:

11

11 12
=⇒ 1′

1 1
.

However the putative genomic structure

1′

1 1

is invalid, so ∆κ(V ) is undefined. ♦
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An increasing tableau S is µ-Pieri-filled if µ is admissible for S and Γ(∆µ(S)) = S.

Remark 6.1. It is easy to check that for µ = (µ1, µ2, . . . , µh), an increasing tableau S is µ-Pieri-filled if and

only if for each k ≤ h, the entries of S in Pk(µ) form a Pieri filling of a ribbon in the sense of [ClThYo14,

§4].

Lemma 6.2. Let T ∈ PGenµ(ν/λ). Then µ is admissible for Γ(T ) and ∆µ(Γ(T )) = T . Hence Γ(T ) is

µ-Pieri-filled.

Proof. The construction of ∆µ(Γ(T )) is in stages. First we construct the underlying putative P -tableau

structure for ∆µ(Γ(T )). We will show that this is the same as the underlying P -tableau of T . Consider a

box b in ν/λ. Suppose the box b in T contains α ∈ D (the color being irrelevant for now). Then it is clear

that ∆µ(Γ(T )) has β ∈ b with |β| = |α|. The letter β is primed if and only if there is γ in box c southwest

of b in ∆µ(Γ(T )) with |γ| = |β| and the entry of c in Γ(T ) strictly greater than the entry of b in Γ(T ).

The entry of c in Γ(T ) is strictly greater than the entry of b in Γ(T ) exactly when b ≺ c. By definition,

this happens if and only if α is primed. Thus α = β. Therefore T and (the partially constructed tableau)

∆µ(Γ(T )) have the same underlying P -tableau structure.

In the next stage of constructing ∆µ(Γ(T )), we attempt to partition the boxes into genes to produce a

genomic P -tableau. By construction, T and ∆µ(Γ(T )) have the same partition of labels into genes; hence

∆µ(Γ(T )) is defined and the first claim of the lemma holds. The second claim follows from the first by

applying Γ.

Let PFµ(ν/λ) := {S : S is increasing of shape ν/λ and µ-Pieri filled}.

Theorem 6.2. Γ : PGenµ(ν/λ) → PFµ(ν/λ) and ∆µ : PFµ(ν/λ) → PGenµ(ν/λ) are mutually inverse

bijections.

Proof. Immediate by definition and Lemma 6.2.

6.3.2 Genomic P -Knuth equivalence

Given a colored sequence w of symbols from D, write ŵ for the sequence given by writing w backwards,

replacing each k′ with k and each k with (k + 1)′ and preserving the colors (cf. the uncolored definition

of ŵ after Example 6.3). A genomic P -word is a word s of colored symbols from D such that in the

concatenation sŝ all unprimed i’s of a fixed color are consecutive among the set of all unprimed i’s. Let

genomicseq(T ) denote the colored row reading word (right to left, and top to bottom) of a genomic P -tableau

T , as for genomic tableaux in Section 3.3.
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Lemma 6.3. Let T be a genomic P -tableau. Then genomicseq(T ) is a genomic P -word.

Proof. The follows from the fact that T is a P -tableau together with the condition that the boxes of each

gene of family i are consecutive in ≺-order.

A genotype of a genomic P -word w is an uncolored subword given by choosing one letter of each color.

A P -genotype of the double sequence wŵ is a word of the form xx̂ where x is any genotype of w. We say

wŵ is locally ballot at the letter α if every P -genotype of wŵ that includes that α is locally ballot there.

Finally wŵ is ballot if every P -genotype of wŵ is ballot, equivalently if wŵ is locally ballot at each letter.

In particular, the genomic P -tableau T is ballot exactly when genomicseq(T ) ̂genomicseq(T ) is.

Example 6.10. Let T be the genomic P -tableau 1′ 2

1 2

3

of Example 6.3. Then

genomicseq(T ) ̂genomicseq(T ) = 21′2134′2′3′13′.

It has exactly two P -genotypes:

21′134′2′13′ and 1′2134′2′3′1.

Neither P -genotype is ballot. ♦

We define the equivalence relation ≡GP of genomic P -Knuth equivalence on genomic P -words as the

transitive closure of the following relations:

uααv ≡GP uαv, (GP.1)

uαβαv ≡GP uβαβv, (GP.2)

uβαγv ≡GP uβγαv if α ≤ β < γ and β = |β|, or α < β ≤ γ and β = |β|′, (GP.3)

uαγβv ≡GP uγαβv if α ≤ β < γ and β = |β|′, or α < β ≤ γ and β = |β|, (GP.4)

uij ≡GP uj†i, where j† = j′ if i = j, and j† = j otherwise, (GP.5)

where red, blue, green represent distinct colors.

Theorem 6.3. If w1 ≡GP w2, then w1ŵ1 is ballot if and only if w2ŵ2 is ballot.

Proof. Let w be a genomic P -word. We need that (GP.1)–(GP.5) preserve ballotness of wŵ.

(GP.1) and (GP.2): These relations change w without changing the set of genotypes of wŵ. Hence they do

not affect ballotness of the latter.
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(GP.3): Suppose w = uβαγv and that w∗ = uβγαv is obtained by (GP.3).

(“⇒” for (GP.3)): We assume wŵ is ballot, and we must show w∗ŵ∗ is ballot, i.e., locally ballot (hence-

forth abbreviated “LB”) at each letter.

(Case 1: α = β): We have i := |α| = α and i < γ.

(Case 1.1: γ = |γ|): Let k := γ. Then

wŵ = uiikvv̂(k + 1)′(i+ 1)′(i+ 1)′û

and

w∗ŵ∗ = uikivv̂(i+ 1)′(k + 1)′(i+ 1)′û.

It suffices to show that w∗ŵ∗ is LB at k and (k + 1)′. LBness at the latter is clear from the ballotness of

wŵ.

If k > i+ 1, then LBness at k is also clear from the ballotness of wŵ. Hence assume k = i+ 1. The proof

is now the same is for the corresponding case of Theorem 3.6.

(Case 1.2: γ = |γ|′): Let k′ := γ. Then

wŵ = uiik′vv̂k(i+ 1)′(i+ 1)′û

and

w∗ŵ∗ = uik′ivv̂(i+ 1)′k(i+ 1)′û.

It suffices to show that w∗ŵ∗ is LB at k′ and k. LBness at the latter is clear from the ballotness of wŵ.

LBness at the former may be argued exactly as in Case 1.1.

(Case 2: β = γ): We have j′ := |β|′ = β and α < j′.

(Case 2.1: α = |α|): Let i = α. Then

wŵ = uj′ij′vv̂j(i+ 1)′jû

and

w∗ŵ∗ = uj′j′ivv̂(i+ 1)′jjû.

It suffices to show that w∗ŵ∗ is LB at j′ and j. That w∗ŵ∗ is LB at j′ follows from the LBness of wŵ at j′.

LBness at j is trivial.
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(Case 2.2: α = |α|′): Let i′ = α. Then

wŵ = uj′i′j′vv̂jijû

and

w∗ŵ∗ = uj′j′i′vv̂ijjû.

It suffices to check that w∗ŵ∗ is LB at j′ and j. This is clear from the ballotness of wŵ.

(Case 3: α < β < γ):

(Case 3.1: α = |α|): Let i = α. If γ > i + 1, ballotness is clear. Otherwise, by the assumptions of Case

3, β = (i+ 1)′ and γ = i+ 1. So

wŵ = u(i+ 1)′i(i+ 1)vv̂(i+ 2)′(i+ 1)′(i+ 1)û

and

w∗ŵ∗ = u(i+ 1)′(i+ 1)ivv̂(i+ 1)′(i+ 2)′(i+ 1)û.

It suffices to check that w∗ŵ∗ is LB at (i+ 1) and (i+ 2)′. The latter is clear from ballotness of wŵ. The

LBness at (i+ 1) follows from the LBness of wŵ at (i+ 1)′.

(Case 3.2: α = |α|′): Let i′ = α. If γ > i + 1, ballotness is clear. Otherwise we have either γ = (i + 1)′

or γ = i+ 1.

(Case 3.2.1: γ = (i+ 1)′): We have β = i. Then

wŵ = uii′(i+ 1)′vv̂(i+ 1)i(i+ 1)′û

and

w∗ŵ∗ = ui(i+ 1)′i′vv̂i(i+ 1)(i+ 1)′û.

It suffices to check LBness at the two green letters. These checks hold by the ballotness of wŵ.

(Case 3.2.2: γ = i+ 1): Here

wŵ = uβi′(i+ 1)vv̂(i+ 2)′iβ̂û

and

w∗ŵ∗ = uβ(i+ 1)i′vv̂i(i+ 2)′β̂û.

It suffices to check LBness at the two green letters. These checks are both direct from the ballotness of wŵ.
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(“⇐” for (GP.3)): Conversely, assume w∗ŵ∗ is ballot. We need to show that wŵ is ballot. As with the

arguments for ⇒, we need to establish LBness at each letter. In brief, it suffices to check this in each case

below at the green letters. In each of these situations, this is immediate from the assumption w∗ŵ∗ is ballot.

(Case 1: α = β): We have i := |α| = α and i < γ.

(Case 1.1: γ = |γ|): Let k := γ. Then

w∗ŵ∗ = uikivv̂(i+ 1)′(k + 1)′(i+ 1)′û

and

wŵ = uiikvv̂(k + 1)′(i+ 1)′(i+ 1)′û.

(Case 1.2: γ = |γ|′): Let k′ := γ. Then

w∗ŵ∗ = uik′ivv̂(i+ 1)′k(i+ 1)′û

and

wŵ = uiik′vv̂k(i+ 1)′(i+ 1)′û.

(Case 2: β = γ): We have j′ := |β|′ = β and α < j′.

(Case 2.1: α = |α|): Let i = α. Then

w∗ŵ∗ = uj′j′ivv̂(i+ 1)′jjû

and

wŵ = uj′ij′vv̂j(i+ 1)′jû.

(Case 2.2: α = |α|′): Let i′ = α. Then

w∗ŵ∗ = uj′j′i′vv̂ijjû

and

wŵ = uj′i′j′vv̂jijû.

(Case 3: α < β < γ):

(Case 3.1: α = |α|): Let i = α. If γ > i + 1, ballotness is clear. Otherwise, by the assumptions of Case
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3, we have β = (i+ 1)′ and γ = i+ 1. Thus

w∗ŵ∗ = u(i+ 1)′(i+ 1)ivv̂(i+ 1)′(i+ 2)′(i+ 1)û

and

wŵ = u(i+ 1)′i(i+ 1)vv̂(i+ 2)′(i+ 1)′(i+ 1)û.

(Case 3.2: α = |α|′): Let i′ = α. If γ > i + 1, ballotness is clear. Otherwise we have either γ = (i + 1)′

or γ = i+ 1.

(Case 3.2.1: γ = (i+ 1)′): We have β = i. Then

w∗ŵ∗ = ui(i+ 1)′i′vv̂i(i+ 1)(i+ 1)′û

and

wŵ = uii′(i+ 1)′vv̂(i+ 1)i(i+ 1)′û.

(Case 3.2.2: γ = i+ 1): Here

w∗ŵ∗ = uβ(i+ 1)i′vv̂i(i+ 2)′β̂û

and

wŵ = uβi′(i+ 1)vv̂(i+ 2)′iβ̂û.

(GP.4): This may be argued exactly as for (GP.3).

(GP.5): Suppose w = uij and that w∗ = uj†i is obtained by (GP.5). By symmetry, we may assume i ≤ j.

We must show wŵ is ballot if and only if w∗ŵ∗ is.

(Case 1: i < j): Then

wŵ = uij(j + 1)′(i+ 1)′û,

while

w∗ŵ∗ = uji(i+ 1)′(j + 1)′û.

Suppose wŵ is ballot. It suffices to check LBness of w∗ŵ∗ at the two blue letters. LBness at (j + 1)′

is clear from the assumed ballotness of wŵ. LBness at j, for j = i + 1, follows from the LBness of wŵ at

(i+ 1)′ (when j 6= i+ 1, the claim is clear).

Conversely suppose w∗ŵ∗ is ballot. It suffices to check LBness of wŵ at the two blue letters; this is

immediate.

147



(Case 2: i = j): Then

wŵ = uii(i+ 1)′(i+ 1)′û,

while

w∗ŵ∗ = ui′i(i+ 1)′iû.

It is straightforward that wŵ is ballot if and only if w∗ŵ∗ is.

Weak K-Knuth equivalence on words is the symmetric, transitive closure of these relations [BuSa13,

Definition 7.6]:

uaav ≡wK uav,

uabav ≡wK ubabv,

ubacv ≡wK ubcav if a < b < c,

uacbv ≡wK ucabv if a < b < c,

uab ≡wK uba.

Lemma 6.4. For genomic P -words u, v we have u ≡GP v if and only if Γ(u) ≡wK Γ(v).

Proof. This follows from applying ∆µ to the generating relations for weak K-Knuth equivalence for Pieri-

filled words.

6.3.3 Shifted jeu de taquin and the conclusion of the proof

The definitions of genomic jeu de taquin and K-jeu de taquin for shifted tableaux are analogous to the

unshifted case. For details of shifted K-jeu de taquin, see [ClThYo14]. We sketch the modifications necessary

for shifted genomic jeu de taquin and give an illustrative example. For each gene G of family k, define the

operator swapG,• as follows: If b is a box of G in the tableau T with a neighbor containing a •, replace the k

or k′ ∈ b with • and remove it from G. If c is a box of T containing a • and with a G neighbor, c is a box of

G in swapG,•(T ); c has entry k in swapG,•(T ) if either of its G neighbors in T have entry k or if c lies on the

main diagonal; otherwise c has entry k′ in swapG,•(T ). The other boxes of T are the same in swapG,•(T ).

Index the genes of T as

G1 < G2 < · · · < G|µ|
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according to the total order on genes from Section 6.3.1. Then

jdtI(T ) := DelBullets ◦ swapG|µ|,• ◦ · · · ◦ swapG2,• ◦ swapG1,•(T
•).

(This algorithm reduces to the classical jeu de taquin for semistandard P -tableaux in the case each gene

contains only a single box.)

Example 6.11. Suppose T • is the genomic tableau • 1′ 1

• 1′ 2

1

. Then

switch•1(T •) = 1′ • 1

1 • 2

1

, switch1
• ◦ switch1•(T •) = 1′ • 1

1 1 2

•

, and

switch2
• ◦ switch1• ◦ switch1• ◦ switch1•(T •) = switch1

• ◦ switch1• ◦ switch1•(T •)

= 1′ 1 •
1 1 2

•

.

So jdtI(T ) =
1′ 1

1 1 2
. ♦

Using this shifted genomic jeu de taquin, one can obtain shifted versions of genomic infusion and genomic

Bender-Knuth involutions, analogous to the discussion of Section 3.6. This leads to a definition of genomic

P -Schur functions, symmetric functions that deform the classical P -Schur functions just as the genomic

Schur functions of Section 3.6 deform the classical Schur functions. We do not pursue these ideas further

here.

Let Sµ denote the row superstandard tableau of shifted shape µ (that is, the tableau whose first row

has entries 1, 2, 3, . . . , µ1, and whose second row has entries µ1 + 1, µ2 + 2, . . . , µ1 + µ2 etc.).

Example 6.12. For µ = (4, 2), Sµ =
1 2 3 4

5 6
. ♦

Let

Tµ := ∆µ(Sµ)

be the unique genomic P -tableau whose underlying P -tableau is the highest weight tableau of shifted shape
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µ. We recall some results that we need.

Theorem 6.4 ([BuSa13, Theorem 7.8]). Let S be a shifted increasing tableaux. Then S rectifies to Sµ if

and only if seq(S) ≡wK seq(Sµ).

Let IncRectµ(ν/λ) := {shifted increasing tableaux of shape ν/λ that rectify to Sµ}.

Theorem 6.5 ([ClThYo14, Theorem 1.2]). bνλ,µ = (−1)|ν|−|λ|−|µ| ×#IncRectµ(ν/λ).

By Theorem 6.5, it is enough to biject IncRectµ(ν/λ) and PBallotµ(ν/λ). We claim that the maps Γ

and ∆µ give the desired bijections. It follows from Remark 6.1 and [ClThYo14, Proof of Theorem 1.1] that

∆µ is well-defined on IncRectµ(ν/λ).

Let S ∈ IncRectµ(ν/λ). By Theorem 6.4,

seq(S) ≡wK seq(Sµ).

By Lemma 6.4,

genomicseq(∆µ(S)) ≡GP genomicseq(∆µ(Sµ)) = genomicseq(Tµ).

Note genomicseq(Tµ) is ballot. Hence by Theorem 6.3, genomicseq(∆µ(S)) is ballot. Thus

∆µ(S) ∈ PBallotµ(ν/λ).

Conversely, if T ∈ PBallotµ(ν/λ), then its genomic rectification is also ballot by Theorem 3.7. Hence

its genomic rectification is Tµ. Therefore

Γ(T ) ∈ IncRectµ(ν/λ).

This completes the proof.
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Chapter 7

K-promotion and cyclic sieving of
increasing tableaux

This chapter is based on [Pe14], except for Section 7.7, which derives from joint work with J. Bloom and

D. Saracino [BlPeSa16].

7.1 Introduction

An increasing tableau, as described in Section 3.1.4 is a semistandard tableau such that all rows and columns

are strictly increasing. In this chapter, we also assume that the set of entries is an initial segment

of Z>0, that is there are no missing values. For λ a partition of N , we write |λ| = N . We denote by Inck(λ)

the set of increasing tableaux of shape λ with maximum value |λ| − k. Similarly SYT(λ) denotes standard

Young tableaux of shape λ. Notice Inc0(λ) = SYT(λ). We routinely identify a partition λ with its Young

diagram; hence for us the notations SYT(m× n) and SYT(nm) are equivalent.

A small Schröder path is a planar path from the origin to (2n, 0) that is constructed from three types of

line segment: upsteps by (1, 1), downsteps by (1,−1), and horizontal steps by (2, 0), so that the path never

falls below the horizontal axis and no horizontal step lies on the axis. The nth small Schröder number is

defined to be the number of such paths. A Dyck path is a small Schröder path without horizontal steps.

Our first result is an extension of the classical fact that Catalan numbers enumerate both Dyck paths

and rectangular standard Young tableaux of two rows, SYT(2× n). For T ∈ Inck(2× n), let maj(T ) be the

sum of all i in row 1 such that i+ 1 appears in row 2.

Theorem 7.1. There are explicit bijections between Inck(2 × n), small Schröder paths with k horizontal

steps, and SYT(n− k, n− k, 1k). This implies the identity

∑
T∈Inck(2×n)

qmaj(T ) = qn+(k
2)

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q
. (7.1)

In particular, the total number of increasing tableaux of shape 2× n is the nth small Schröder number.

The “flag-shaped” standard Young tableaux of Theorem 7.1 were previously considered by R. Stanley [Sta96]
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in relation to polygon dissections.

Suppose X is a finite set, Cn = 〈c〉 a cyclic group acting on X, and f ∈ Z[q] a polynomial. The triple

(X, Cn, f) has the cyclic sieving phenomenon [ReStWh04] if for all m, the number of elements of X fixed by

cm is f(ζm), where ζ is any primitive nth root of unity. D. White [Wh07] discovered a cyclic sieving for 2×n

standard Young tableaux. For this, he used a q-analogue of the hook-length formula (that is, a q-analogue

of the Catalan numbers) and a group action by jeu de taquin promotion. B. Rhoades [Rh10, Theorem 1.3]

generalized this result from Inc0(2 × n) to Inc0(m × n). Our main result is a generalization of D. White’s

result in another direction, from Inc0(2× n) to Inck(2× n).

We first define K-promotion for increasing tableaux. Define the SE-neighbors of a box to be the (at most

two) boxes immediately below it or right of it. Let T be an increasing tableau with maximum entry M .

Delete the entry 1 from T , leaving an empty box. Repeatedly perform the following operation simultaneously

on all empty boxes until no empty box has a SE-neighbor: Label each empty box by the minimal label of

its SE-neighbors and then remove that label from the SE-neighbor(s) in which it appears. If an empty box

has no SE-neighbors, it remains unchanged. We illustrate the local changes in Figure 7.1.

i
j

7→ i
j

j
i

7→ i j i
i

7→ i
i
7→ i

i

Figure 7.1: Local changes during K-promotion for i < j.

Notice that the number of empty boxes may change during this process. Finally we obtain the K-promotion

P(T ) by labeling all empty boxes by M + 1 and then subtracting one from every label. Figure 7.2 shows a

full example of K-promotion.

1 2 4
3 4 5

7→ 2 4
3 4 5

7→ 2 4
3 4 5

7→ 2 4
3 5

7→ 2 4 5
3 5

7→ 1 3 4
2 4 5

Figure 7.2: K-promotion.

Our definition of K-promotion is analogous to that of ordinary promotion, but uses the jeu de taquin

for increasing tableaux introduced by H. Thomas–A. Yong [ThYo09b] in place of ordinary jeu de taquin.

(The ‘K’ reflects the relations to K-theoretic Schubert calculus discussed in Section 3.1.4.) That is, we may

also describe K-promotion as follows: Delete the entry 1, rectify the resulting skew increasing tableau as

in Section 3.1.4, decrement each entry, and fill the empty outer corners with M . Observe that on standard

Young tableaux, promotion and K-promotion coincide.

K-evacuation [ThYo09b, §4] is defined as follows. Let T be a increasing tableau with maximum entry

M , and let [T ]j denote the Young diagram consisting of those boxes of T with entry i ≤ j. Then the

K-evacuation E(T ) is the increasing tableau encoded by the chain in Young’s lattice ([PM−j(T )]j)0≤j≤M .
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Like ordinary evacuation as described in Section 2.2.2, E is an involution.

Let the non-identity element of C2 act on Inck(2 × n) by K-evacuation. We prove the following cyclic

sieving, generalizing a result of J. Stembridge [Ste95].

Theorem 7.2. For all n and k, the triple
(
Inck(2× n), C2, f

)
has the cyclic sieving phenomenon, where

f(q) :=

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q
(7.2)

is the q-enumerator from Theorem 7.1.

We will then need:

Theorem 7.3. For all n and k, there is an action of the cyclic group C2n−k on T ∈ Inck(2 × n), where a

generator acts by K-promotion.

In the case k = 0, Theorem 7.3 is implicit in work of M.-P. Schützenberger (cf. [Ha92, Sta09]). The bulk

of this paper is devoted to proofs of Theorem 7.3, which we believe provide different insights. Finally we

construct the following cyclic sieving.

Theorem 7.4. For all n and k, the triple
(
Inck(2× n), C2n−k, f

)
has the cyclic sieving phenomenon.

An analogous result for hook-shapes has been found by T. Pressey, A. Stokke, and T. Visentin [PrStVi14].

Our proof of Theorem 7.2 is by reduction to a result of J. Stembridge [Ste95], which relies on results

about the Kazhdan–Luszig cellular representation of the symmetric group. Similarly, all proofs [Rh10, Pu13,

FoKa14] of B. Rhoades’ theorem for standard Young tableaux use representation theory or geometry. (Also

[PePyRh09], giving new proofs of the 2- and 3-row cases of B. Rhoades’ result, uses representation theory.) In

contrast, our proof of Theorem 7.4 is completely elementary. It is natural to ask also for such representation-

theoretic or geometric proofs of Theorem 7.4. In Section 7.5, we discuss obstacles to an approach based

on Kazhdan–Lusztig bases and briefly describe a different representation-theoretic argument discovered by

B. Rhoades [Rh15]. We do not know a common generalization of our Theorem 7.4 and B. Rhoades’ theorem

to Inck(m × n). One obstruction is that for k > 0, Theorem 7.3 does not generalize in the obvious way

to tableaux of more than 3 rows (cf. Example 7.1). We will relate this fact to results of P. Cameron and

D. Fon-der-Flaass on plane partitions [CaFo95] in Chapter 8.

This chapter is organized as follows. In Section 7.2, we prove Theorem 7.1. We include an additional

bijection (to be used in Section 7.6) between Inck(2 × n) and certain noncrossing partitions that we in-

terpret as generalized noncrossing matchings. In Section 7.3, we use the combinatorics of small Schröder
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paths to prove Theorem 7.3 and a characterization of K-evacuation necessary for Theorem 7.2. We also

provide a counterexample to the naive generalization of Theorem 7.3 to 4-row increasing tableaux. In Sec-

tion 7.4, we make connections with tropicalizations of Conway–Coxeter frieze patterns and demostrate a

frieze-diagrammatic approach to some of the key steps in the previous section. In Section 7.5, we prove

Theorem 7.2 by interpreting it representation-theoretically in the spirit of [Ste95] and [Rh10], and discuss

representation-theoretic approaches to Theorem 7.4. In Section 7.6, we use noncrossing partitions to give

another proof of Theorem 7.3 and to prove Theorem 7.4.

7.2 Bijections and Enumeration

Proposition 7.1. There is an explicit bijection between Inck(2× n) and SYT(n− k, n− k, 1k).

Proof. Let T ∈ Inck(2 × n). The following algorithm produces a corresponding S ∈ SYT(n − k, n − k, 1k).

Observe that every value in {1, . . . , 2n− k} appears in T either once or twice. Let A be the set of numbers

that appear twice. Let B be the set of numbers that appear in the second row immediately right of an

element of A. Note |A| = |B| = k.

Let T ′ be the tableau of shape (n− k, n− k) formed by deleting all elements of A from the first row of T

and all elements of B from the second. The standard Young tableau S is given by appending B to the first

column. An example is shown in Figure 7.3.

This algorithm is reversible. Given the standard Young tableau S of shape (n−k, n−k, 1k), letB be the set

of entries below the first two rows. By inserting B into the second row of S while maintaining increasingness,

we reconstruct the second row of T . Let A be the set of elements immediately left of an element of B in this

reconstructed row. By inserting A into the first row of S while maintaining increasingness, we reconstruct

the first row of T .

Corollary 7.1. For all n and k the identity (7.3) holds:

∑
T∈Inck(2×n)

qmaj(T ) = qn+(k
2)

[
n−1
k

]
q

[
2n−k
n−k−1

]
q

[n− k]q
. (7.3)

Proof. Observe that maj(T ) for a 2-row rectangular increasing tableau T is the same as the major index of

the corresponding standard Young tableau. The desired q-enumerator follows by applying the q-hook-length

formula to those standard Young tableaux (cf. [Sta99, Corollary 7.21.5]).

Proof of Theorem 7.1. The bijection between Inck(2× n) and SYT(n− k, n− k, 1k) is given by Proposition

7.1. The q-enumeration (7.1) is exactly Corollary 7.1.
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We now give a bijection between Inck(2 × n) and small Schröder paths with k horizontal steps. Let

T ∈ Inck(2×n). For each integer j from 1 to 2n−k, we create one segment of a small Schröder path PT . If j

appears only in the first row, then the jth segment of PT is an upstep. If j appears only in the second row of

T , the jth segment of PT is a downstep. If j appears in both rows of T , the jth segment of PT is horizontal.

It is clear that the tableau T can be reconstructed from the small Schröder path PT , so this operation gives

a bijection. Thus increasing tableaux of shape (n, n) are counted by small Schröder numbers.

A bijection between small Schröder paths with k horizontal steps and SYT(n − k, n − k, 1k) may be

obtained by composing the two previously described bijections.

1 2 4 5 6
2 3 6 7 8

(a) Increasing tableau T

1 4 5
2 6 8
3
7

(b) “Flag-shaped”
standard Young tableau

0 1 1 0 1 2 2 1 0

(c) Small Schröder path and its
height word

7

81

2

3

4 5

6

(d) Noncrossing partition

a

b

c d

e

f

(e) Polygon dissection

Figure 7.3: A rectangular increasing tableau T ∈ Inc5, 52 with its corresponding standard Young tableau of
shape (3, 3, 1, 1), small Schröder path, noncrossing partition of {1, . . . , 8} with all blocks of size at least two,
and heptagon dissection.

For increasing tableaux of arbitrary shape, there is unlikely to be a product formula like the hook-length

formula for standard Young tableaux or our Theorem 7.1 for the 2-row rectangular case. For example, we

compute that Inc2(4, 4, 4) = 22 · 3 · 7 · 19 and that there are 3 · 1531 increasing tableaux of shape (4, 4, 4) in

total. Summation formulas for counting increasing tableaux of rectangular shapes have recently been given

by T. Pressey, A. Stokke, and T. Visentin [PrStVi14].

The following bijection will play an important role in our proof of Theorem 7.4 in Section 7.6. A partition

of {1, . . . , N} is noncrossing if the convex hulls of the blocks are pairwise disjoint when the values 1, . . . , N

are equally spaced around a circle with 1 in the upper left and values increasing counterclockwise (cf. Figure

7.3(D)).
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Proposition 7.2. There is an explicit bijection between Inck(2 × n) and noncrossing partitions of 2n − k

into n− k blocks all of size at least 2.

Proof. Let T ∈ Inck(2× n). For each i in the second row of T , let si be the largest number in the first row

that is less than i and that is not sj for some j < i. Form a partition of 2n − k by declaring, for every i,

that i and si are in the same block. We see this partition has n − k blocks by observing that the largest

elements of the blocks are precisely the numbers in the second row of T that do not also appear in the first

row. Clearly there are no singleton blocks.

If the partition were not noncrossing, there would exist some elements a < b < c < d with a, c in a block

B and b, d in a distinct block B′. Observe that b must appear in the first row of T and c must appear in

the second row of T (not necessarily exclusively). We may assume c to be the least element of B that is

greater than b. We may then assume b to be the greatest element of B′ that is less than c. Now consider

sc, which must exist since c appears in the second row of T . By definition, sc is the largest number in the

first row that is less than c and that is not sj for some j < c. By assumption, b appears in the first row, is

less than c, and is not sj for any j < c; hence sc ≥ b. Since however b and c lie in distinct blocks, sc 6= b,

whence b < sc < c. This is impossible, since we took c to be the least element of B greater than b. Thus

the partition is necessarily noncrossing.

To reconstruct the increasing tableau, read the partition from 1 to 2n−k. Place the smallest elements of

blocks in only the first row, place the largest elements of blocks in only the second row, and place intermediate

elements in both rows.

The set Inck(2 × n) is also in bijection with (n + 2)-gon dissections by n − k − 1 diagonals. We do

not describe this bijection, as it is well known (cf. [Sta96]) and will not be used except in Section 7.6 for

comparison with previous results. The existence of a connection between increasing tableaux and polygon

dissections was first suggested in [ThYo11]. An example of all these bijections is shown in Figure 7.3.

Remark 7.1. A noncrossing matching is a noncrossing partition with all blocks of size two. Like Dyck

paths, polygon triangulations, and 2-row rectangular standard Young tableaux, noncrossing matchings are

enumerated by the Catalan numbers. Since increasing tableaux were developed as a K-theoretic analogue

of standard Young tableaux, it is tempting also to regard small Schröder paths, polygon dissections, and

noncrossing partitions without singletons as K-theory analogues of Dyck paths, polygon triangulations, and

noncrossing matchings, respectively. In particular, by analogy with [PePyRh09], it is tempting to think

of noncrossing partitions without singletons as “K-webs” for sl2, although their representation-theoretic

significance is unknown.
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7.3 K-Promotion and K-Evacuation

In this section, we prove Theorem 7.3, as well as a proposition important for Theorem 7.2. Let max(T )

denote the largest entry in a tableau T . For a tableau T , we write rot(T ) for the (possibly skew) tableau

formed by rotating 180 degrees and reversing the alphabet, so that label x becomes max(T ) + 1− x. Define

dual K-evacuation E∗ by E∗ := rot◦E ◦rot. (This definition of E∗ strictly makes sense only for rectangular

tableaux. For a tableau T of general shape λ, in place of applying rot, one should dualize λ (thought of as

a poset) and reverse the alphabet. We will not make any essential use of this more general definition.)

Towards Theorem 7.3, we first prove basic combinatorics of the above operators that are well-known in

the standard Young tableau case (cf. [Sta09]). These early proofs are all straightforward modifications of

those for the standard case. From these results, we observe that Theorem 7.3 follows from the claim that

rot(T ) = E(T ) for every T ∈ Inck(2 × n). We first saw this approach in [Wh10] for the standard Young

tableau case, although similar ideas appear for example in [Ha92, Sta09]; we are not sure where it first

appeared.

Finally, beginning at Lemma 7.2, we prove that for T ∈ Inck(2×n), rot(T ) = E(T ). Here the situation is

more subtle than in the standard case. (For example, we will show that the claim is not generally true for T

a rectangular increasing tableau with more than 2 rows.) We proceed by careful analysis of how rot, E , E∗,

and P act on the corresponding small Schröder paths.

Remark 7.2. It is not hard to see that K-promotion is reversible, and hence permutes the set of increasing

tableaux.

Lemma 7.1. K-evacuation and dual K-evacuation are involutions, P ◦E = E ◦P−1, and for any increasing

tableau T , (E∗ ◦ E)(T ) = Pmax(T )(T ).

Before proving Lemma 7.1, we briefly recall the K-theory growth diagrams of [ThYo09b, §2, 4], which

extend the standard Young tableau growth diagrams of S. Fomin (cf. [Sta99, Appendix 1]). For T ∈ Incλk,

consider the sequence of Young diagrams ([T ]j)0≤j≤|λ|−k. Note that this sequence of diagrams uniquely

encodes T . We draw this sequence of Young diagrams horizontally from left to right. Below this sequence,

we draw, in successive rows, the sequences of Young diagrams associated to Pi(T ) for 1 ≤ i ≤ |λ| − k.

Hence each row encodes the K-promotion of the row above it. We offset each row one space to the right.

We will refer to this entire array as the K-theory growth diagram for T . (There are other K-theory growth

diagrams for T that one might consider, but this is the only one we will need.) Figure 7.4 shows an example.

We will write Y Dij for the Young diagram [Pi−1(T )]j−i. This indexing is nothing more than imposing

“matrix-style” or “English” coordinates on the K-theory growth diagram. For example in Figure 7.4, Y D58
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denotes , the Young diagram in the fifth row from the top and the eighth column from the left.

∅

∅

∅

∅

∅

∅

∅

∅

∅

Figure 7.4: The K-theory growth diagram for the tableau T of Figure 7.3(A).

Remark 7.3. [ThYo09b, Proposition 2.2] In any 2× 2 square λ µ
ν ξ of Young diagrams in a K-theory growth

diagram, ξ is uniquely and explicitly determined by λ, µ and ν. Similarly λ is uniquely and explicitly

determined by µ, ν and ξ. Furthermore these rules are symmetric, in the sense that if λ µ
ν ξ and ξ µ

ν ρ are both

2× 2 squares of Young diagrams in K-theory growth diagrams, then λ = ρ.

Proof of Lemma 7.1. Fix a tableau T ∈ Incλk. All of these facts are proven as in the standard case

(cf. [Sta09, §5]), except one uses K-theory growth diagrams instead of ordinary growth diagrams. We

omit some details from these easy arguments. The proof that K-evacuation is an involution appears in

greater detail as [ThYo09b, Theorem 4.1]. For rectangular shapes, the fact that dual K-evacuation is an

involution follows from the fact that K-evacuation is, since E∗ = rot ◦ E ◦ rot.

Briefly one observes the following. Essentially by definition, the central column (the column containing

the rightmost ∅) of the K-theory growth diagram for T encodes the K-evacuation of the first row as well as

the dual K-evacuation of the last row. The first row encodes T and the last row encodes P |λ|−k(T ). Hence

E(T ) = E∗(P |λ|−k(T )).

By the symmetry mentioned in Remark 7.3, one also observes that the first row encodes the K-evacuation

of the central column and that the last row encodes the dual K-evacuation of the central column. This yields

E(E(T )) = T and E∗(E∗(P |λ|−k(T ))) = P |λ|−k(T ), showing that K-evacuation and dual K-evacuation are

involutions. Combining the above observations, yields (E∗ ◦ E)(T ) = P |λ|−k(T ).

Finally to show P ◦ E = E ◦P−1, it is easiest to append an extra ∅ to the lower-right of the diagonal line
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of ∅s that appears in the K-theory growth diagram. This extra ∅ lies in the column just right of the central

one. This column now encodes the K-evacuation of the second row. Hence by the symmetry mentioned

in Remark 7.3, the K-promotion of this column is encoded by the central column. Thus if S = P(T ), the

central column encodes P(E(S)). But certainly P−1(S) = T is encoded by the first row, and we have already

observed that the central column encodes E(T ). Therefore P(E(S)) = E(P−1(S)).

Let er(T ) be the least positive integer such that (E∗ ◦E)er(T )(T ) = T . We call this number the evacuation

rank of T . Similarly we define the promotion rank pr(T ) to be the least positive integer such that Ppr(T )(T ) =

T .

Corollary 7.2. Let T be a increasing tableau. Then er(T ) divides pr(T ), pr(T ) divides max(T ) · er(T ), and

the following are equivalent:

(a) E(T ) = E∗(T ),

(b) er(T ) = 1,

(c) pr(T ) divides max(T ).

Moreover if T is rectangular and E(T ) = rot(T ), then E(T ) = E∗(T ).

Proof. Since, by Lemma 7.1, we have (E∗ ◦ E)(T ) = Pmax(T )(T ), the evacuation rank of T is the order of

cmax(T ) in the cyclic group Cpr(T ) = 〈c〉. In particular, er(T ) divides pr(T ). Since T = (E∗ ◦ E)er(T )(T ) =

(Pmax(T ))er(T )(T ) = Pmax(T )·er(T )(T ), we have that max(T ) · er(T ) is a multiple of pr(T ).

The equivalence of (a) and (b) is immediate from dual evacuation being an involution. These imply (c),

since (E∗ ◦E)(T ) = Pmax(T )(T ). If pr(T ) divides max(T ), then Pmax(T )(T ) = T , so (E∗ ◦E)(T ) = T , showing

that (c) implies (b).

By definition, for rectangular T , E∗(T ) = (rot ◦ E ◦ rot)(T ), so if rot(T ) = E(T ), then E∗(T ) =

(E ◦ E ◦ E)(T ) = E(T ).

Thus to prove Theorem 7.3, it suffices to show the following proposition:

Proposition 7.3. Let T ∈ Inck(2× n). Then E(T ) = rot(T ).

We will also need Proposition 7.3 in the proof of Theorem 7.2, and additionally it has recently found

application in [BlPeSa16, Theorem 5.3] which demonstrates homomesy (as defined by [PrRo13a]) on Inck(2×

n). To prove Proposition 7.3, we use the bijection between Inck(2 × n) and small Schröder paths from

Theorem 7.1. These paths are themselves in bijection with the sequence of their node heights, which we call
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the height word. Figure 7.3(C) shows an example. For T ∈ Inck(2× n), we write PT for the corresponding

small Schröder path and ST for the corresponding height word.

Lemma 7.2. For T ∈ Inck(2× n), the ith letter of the height word ST is the difference between the lengths

of the first and second rows of the Young diagram [T ]i−1.

Proof. By induction on i. For i = 1, both quantities equal 0. The ith segment of PT is an upstep if and

only if [T ]i \ [T ]i−1 is a single box in the first row. The ith segment of PT is an downstep if and only if

[T ]i \ [T ]i−1 is a single box in the second row. The ith segment of PT is horizontal if and only if [T ]i \ [T ]i−1

is two boxes, one in each row.

Lemma 7.3. Let T ∈ Inck(2× n). Then Prot(T ) is the reflection of PT across a vertical line and Srot(T ) is

the word formed by reversing ST .

Proof. Rotating T by 180 degrees corresponds to reflecting PT across the horizontal axis. Reversing the

alphabet corresponds to rotating PT by 180 degrees. Thus rot(T ) corresponds to the path given by reflecting

PT across a vertical line.

The correspondence between reflecting PT and reversing ST is clear.

Lemma 7.4. Let T ∈ Inck(2 × n) and M = 2n − k. Let xi denote the (M + 2 − i)th letter of the height

word SPi−1(T ). Then SE(T ) = xM+1xM . . . x1.

Proof. Consider the K-theory growth diagram for T . Observe that Y Di,M+1 is the (M + 2 − i)th Young

diagram in the ith row. Hence by Lemma 7.2, xi is the difference between the lengths of the rows of

Y Di,M+1. But Y Di,M+1 is also the ith Young diagram from the top in the central column. The lemma

follows by recalling that the central column encodes E(T ).

We define the flow path φ(T ) of an increasing tableau T to be the set of all boxes that are ever empty

during the K-promotion that forms P(T ) from T .

Lemma 7.5. Let T ∈ Inck(2× n).

(a) The word ST may be written in exactly one way as 0w10w3 or 0w11w20w3, where w1 is a sequence of

strictly positive integers that ends in 1 and contains no consecutive 1s, w2 is a (possibly empty) sequence

of strictly positive integers, and w3 is a (possibly empty) sequence of nonnegative integers.

(b) Let w−1 be the sequence formed by decrementing each letter of w1 by 1. Similarly, let w+
3 be formed by

incrementing each letter of w3 by 1.
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If ST is of the form 0w10w3, then SP(T ) = w−1 1w+
3 0. If ST is of the form 0w11w20w3, then SP(T ) =

w−1 1w21w+
3 0.

Proof. It is clear that ST may be written in exactly one of the two forms. Write `i for the length of wi.

Suppose first that ST is of the form 0w10w3. By the correspondence between tableaux and height sequences,

[T ]`1+1 is a rectangle, and for no 0 < x < `1 + 1 is [T ]x a rectangle. Say [T ]`1+1 = (m,m). The flow path

φ(T ) contains precisely the first m boxes of the first row and the last n −m + 1 boxes of the second row.

Only the entry in box (2,m) changes row during K-promotion. It is clear then that SP(T ) = w−1 1w+
3 0.

Suppose now that ST is of the form 0w11w20w3. Then [T ]`1+1 = (p+ 1, p) for some p, and [T ]`1+`2+2 =

(m,m) for some m. The flow path φ(T ) contains precisely the first m boxes of the first row and the last

n− p+ 1 boxes of the second row. It is clear then that SP(T ) = w−1 1w21w+
3 0.

Notice that when T ∈ SYT(2 × n), ST can always be written as 0w10w3. Hence by Lemma 7.5(b), the

promotion SP(T ) takes the particularly simple form w−1 1w+
3 0.

For T ∈ Inck(2 × n), take the first 2n − k + 1 columns of the K-theory growth diagram for T . Replace

each Young diagram in the resulting array by the difference between the lengths of its first and second rows.

Figure 7.5 shows an example. We write aij for the number corresponding to the Young diagram Y Dij . By

Lemma 7.2, we see that the ith row of this array of nonnegative integers is exactly the first 2n − k + 2 − i

letters of SPi−1(T ). Therefore we will refer to this array as the height growth diagram for T , and denote it by

hgd(T ). Observe that the rightmost column of hgd(T ) corresponds to the central column of the K-theory

growth diagram for T .

0 1 1 0 1 2 2 1 0
0 1 1 2 3 3 2 1

0 1 2 3 3 2 1
0 1 2 2 1 0

0 1 1 0 1
0 1 1 2

0 1 2
0 1

0

Figure 7.5: The height growth diagram hgd(T ) for the tableau T shown in Figure 7.3(A). The ith row shows
the first 10 − i letters of SPi−1(T ). Lemma 7.6 says that row 1 is the same as column 9, read from top to
bottom.

We will sometimes write P(ST ) for SP(T ).

Lemma 7.6. In hgd(T ) for T ∈ Inck(2× n), we have for all j that a1j = aj,2n−k+1.

Proof. Let M = 2n− k. We induct on the length of the height word. (The length of ST is M + 1.)
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Case 1. The height word ST contains an internal 0.

Let the first internal 0 be the jth letter of ST . Then the first j letters of ST are themselves the height

word of some smaller rectangular increasing tableau T ′. Because of the local properties of K-theory growth

diagrams mentioned in Remark 7.3, we observe that the jth column of hgd(T ) is the same as the rightmost

column of hgd(T ′). The height word ST ′ is shorter than the height word ST , so by inductive hypothesis,

the first row of hgd(T ′) is the same as its rightmost column, read from top to bottom. Thus in hgd(T ), the

first j letters of row 1 are the same as column j.

According to Lemma 7.5(b), in each of the first j rows of hgd(T ), the letter in column j is less than or

equal to all letters to its right. Furthermore the letters in columns j + 1 through M + 1 are incremented,

decremented, or unchanged from one row to the next in exactly the same way as the letter in column j.

That is to say, for any g ≤ j ≤ h, agh − a1h = agj − a1j . Since a1j = a1,M+1 = 0, this yields agj = ag,M+1,

so column j is the same as the first j letters of column M + 1, read from top to bottom. Thus the first j

letters of row 1 are the same as the first j letters of column M + 1.

Now since aj,M+1 = 0, row j of hgd(T ) is itself the height word of some smaller tableau T †. Again by

inductive hypothesis, we conclude that in hgd(T ), row j is the same as the last M + 2− j letters of column

M + 1, read from top to bottom. But as previously argued, the letters in columns j + 1 through M + 1 are

incremented, decremented, or unchanged from one row to the next in the same way as the letter in column

j. Hence row j agrees with the last M + 2 − j letters of row 1, and so the last M + 2 − j letters of row 1

agree with the last M + 2 − j letters of column M + 1. Thus, as desired, row 1 of hgd(T ) is the same as

column M + 1, read from top to bottom.

Case 2. The height word ST contains no internal 0.

Notice that s1M = 1. Hence by Lemma 7.5(b), there will be an internal 0 in the K-promotion SP(T ),

unless ST is the word 010 or begins 011.

Case 2.1. The height word SP(T ) contains an internal 0.

Let the first internal 0 be in column j of hgd(T ). Then by Lemma 7.5(b), the first j − 1 letters of row 2

of hgd(T ) are all exactly one less than the letters directly above them in row 1. That is for 2 ≤ h ≤ j, we

have a2h = a1h − 1. Also observe a2,M+1 = 1.

The first j − 1 letters of row 2 are the height sequence of some tableau T ′ with ST ′ shorter than ST . So

by inductive hypothesis, the first j − 1 letters of row 2 of hgd(T ) are the same as the last j − 1 letters of

column j, read from top to bottom. That is to say a2h = ahj , for all 2 ≤ h ≤ j.

Since a2j = 0 and a2,M+1 = 1, and since the letters below the first row in columns j + 1 through M + 1
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are incremented, decremented, or unchanged in the same way as the letter in column j, it follows that for

2 ≤ h ≤ j, ahj = ah,M+1 − 1. Therefore the first j letters of row 1 are the same as the first j letters of

column M + 1.

Consider the height word S′ formed by prepending a 0 to the last M + 2 − j letters of row 1. The last

M + 2− j letters of row 2 are the same as the first M + 2− j letters of P(S′). But the last M + 2− j letters

of row 2 are the same as row j. Therefore by inductive hypothesis, the last M + 2 − j letters of column

M + 1 are the same as the last M + 2− j letters of S′, which are by construction exactly the last M + 2− j

letters of row 1. Thus row 1 is exactly the same as column M + 1.

Case 2.2. ST = 010.

Trivially verified by hand.

Case 2.3. ST begins 011.

Row 2 of hgd(T ) is produced from row 1 by deleting the initial 0, changing the first 1 into a 0, and

changing the final 0 into a 1. Let S′ be the word formed by replacing the final 1 of row 2 with a 0. Note that

a3,M+1 = 1. Therefore row 3 agrees with the first M −1 letters of P(S′). Therefore by inductive hypothesis,

the last M −1 letters of S′ are the same as the last M −1 letters of column M + 1. Hence the last M letters

of column M + 1 are the same as row 2, except for having a 1 at the beginning instead of a 0 and a 0 at the

end instead of a 1. But these are exactly the changes we made to produce row 2 from row 1. Thus row 1 is

the same as column M + 1.

Corollary 7.3. In the notation of Lemma 7.4, ST = x1x2 . . . xM+1.

Proof of Proposition 7.3. By Corollary 7.3, ST = x1x2 . . . x2n−k+1. Hence by Lemma 7.3, we have Srot(T ) =

x2n−k+1x2n−k . . . x1. However Lemma 7.4 says also SE(T ) = x2n−k+1x2n−k . . . x1. By the bijective corre-

spondence between tableaux and height words, this yields E(T ) = rot(T ).

This completes our first proof of Theorem 7.3. We will obtain alternate proofs in Sections 7.4 and 7.6.

We now show a counterexample to the obvious generalization of Theorem 7.3 to increasing tableaux of more

than two rows.

Example 7.1. If T is the increasing tableau

1 2 4 7
3 5 6 8
5 7 8 10
7 9 10 11

, then P11(T ) =

1 2 4 7
3 4 6 8
5 6 8 10
7 9 10 11

. (The underscores mark

entries that differ between the two tableaux.) It can be verified that the promotion rank of T is 33. ♦

Computer checks of small examples (including all with at most seven columns) did not identify such a

counterexample for T a 3-row rectangular increasing tableau. Indeed Conjecture 8.1 would imply that there
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are none. However it is not generally true that E(T ) = rot(T ) for T ∈ Inck(3× n).

Example 7.2. If T is the increasing tableau
1 2 4
3 4 6
5 7 8

then E(T ) = T , while rot(T ) =
1 2 4
3 5 6
5 7 8

. Nonetheless

the promotion rank of T is 2, which divides 8, so the obvious generalization of Theorem 7.3 holds in this

example. ♦

7.4 Tropical frieze patterns

In this section, we make connections with tropical frieze patterns, which we use to give an alternate proof

of Proposition 7.3 and Theorem 7.3.

Frieze patterns are simple cluster algebras introduced in [CoCo73]. They are infinite arrays of real

numbers bounded between two parallel diagonal lines of 1s, satisfying the property that for each 2 × 2

subarray a b
c d the relation d = (bc + 1)/a holds. Figure 7.6 shows an example. Notice that by this local

defining relation, the frieze pattern is determined by any one of its rows.

. . .

1 3 5 4 2 1

1 2 9
5

23
20

43
40 1

1 7
5

29
20

89
40 3 1

1 7
4

27
8 5 2 1

1 5
2 4 9

5
7
5 1

1 2 23
20

29
20

7
4 1

1 43
40

89
40

27
8

5
2 1

1 3 5 4 2 1

. . .

Figure 7.6: A classical Conway–Coxeter frieze pattern.

A tropical analogue of frieze patterns may be defined by replacing the bounding 1s by 0s and imposing

the tropicalized relation d = max (b+ c, 0) − a on each 2 × 2 subarray. Such tropical frieze patterns have

attracted some interest lately (e.g., [Pr05, Gu13, AsDu13, Gr15]).

One of the key results of [CoCo73] is that, if rows of a frieze pattern have length `, then each row is

equal to the row ` + 1 rows below it, as well as to the central column between these two rows, read from

top to bottom (cf. Figure 7.6). That the same periodicity occurs in tropical frieze patterns may be proved

directly by imitating the classical proof, or it may be easily derived from the classical periodicity by taking

logarithms. We do the latter.
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Lemma 7.7. If T F is a tropical frieze diagram with rows of length `, then each row is equal to the row `+1

rows below it, as well as to the central column between these two rows, read from top to bottom.

Proof. Pick a row R = (a0, a1, . . . , a`) of T F . Let e be the base of the natural logarithm.

For t ∈ R>0, construct the classical frieze pattern containing the row R′ = (ea0/t, . . . , ean/t). Now take

the logarithm of each entry of this frieze pattern and multiply each entry by t. Call the result Ft. Note that

Ft is not in general a frieze pattern; however, it does have the desired periodicity. Also observe that the

row R appears in each Ft as the image of R′. Now take limt→0 Ft. This limit also contains the row R. This

process converts the relation d = (bc + 1)/a into the relation d = max (b+ c, 0) − a, so limt→0 Ft = T F .

Since each Ft has the desired periodicities, so does T F .

Let T ∈ Inck(2 × n). Recall from Section 7.3 the K-theory growth diagram for T . Replace each Young

diagram by 1 less than the difference between the lengths of its first and second rows. Delete the first and

last number in each row (necessarily −1). We call the resulting array the jeu de taquin frieze pattern of T .

(It is obviously closely related to the height growth diagram.) Each row is an integer sequence encoding the

tableau corresponding to that row of the K-theory growth diagram. (Indeed it is the height word with all

terms decremented by 1, and the first and last terms removed.)

Remark 7.4. Observe that this map from increasing tableaux to integer sequences is injective. The image

is exactly those sequences such that

(1) the first and last terms are 0,

(2) every term is ≥ −1,

(3) successive terms differ by at most 1, and

(4) there are no consecutive −1s.

An integer sequence is the image of a standard Young tableau if it satisfies the stronger

(3′) successive terms differ by exactly 1,

in place of condition (3).

Example 7.3. For T =
1 2 3 5
4 5 6 7

, we obtain the jeu de taquin frieze pattern
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0 1 2 1 1 0

0 1 0 0 −1 0

0 −1 0 0 1 0

0 1 1 2 1 0

0 0 1 0 −1 0

0 1 0 0 1 0

0 −1 0 1 0 0

0 1 2 1 1 0

. ♦

The fact that the first row, last row, and central column are all equal is equivalent to Lemma 7.6 and

Theorem 7.3. The following lemma gives an alternate approach.

Lemma 7.8. A jeu de taquin frieze pattern is a subarray of a tropical frieze pattern.

Proof. It is clear that we have bounding diagonals of 0s. It suffices to verify the local defining relation d =

max (b+ c, 0)−a on 2×2 subarrays. This follows fairly easily from the algorithmic relation of Lemma 7.5.

The next corollary follows immediately from the above; although it can be proven directly, the derivation

from results on K-promotion seems more enlightening.

Corollary 7.4. Let T F be a tropical frieze diagram.

(a) If any row of T F satisfies the conditions (1), (2), (3′) of Remark 7.4, then every row of T F does.

(b) If any row of T F satisfies the four conditions (1), (2), (3), (4) of Remark 7.4, then every row of T F

does.

Remark 7.5. We speculate ahistorically that one could have discoveredK-promotion for increasing tableaux

in the following manner. First one could have found a proof of Theorem 7.3 for standard Young tableaux

along the lines of this section (indeed similar ideas appear in [KiBe96]), proving Corollary 7.4(a) in the

process. Looking for similar results, one might observe Corollary 7.4(b) experimentally and be lead to

discover K-promotion in proving it.

Are there other special tropical frieze patterns hinting at a promotion theory for other classes of tableaux?

For example, tropical friezes containing a row satisfying conditions (1), (2), (3) of Remark 7.4 seem experi-

mentally to be well-behaved, with all rows having successive terms that differ by at most 2.

We are able to prove the order of promotion on SYT(3 × n) in a similar fashion, using tropicalizations
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of the 2-frieze patterns of [MoOvTa12]. Unfortunately we have been unable to extend this argument to

Inck(3× n) for k > 0. Example 7.2 suggests that such an extension would be difficult.

7.5 Representation-theoretic interpretations

In [Ste95], J. Stembridge proved that, for every λ, (SYT(λ), C2, fλ(q)) exhibits cyclic sieving, where the

non-identity element of C2 acts by evacuation and fλ(q) is the standard q-analogue of the hook-length

formula. We briefly recall the outline of this argument. Considering the Kazhdan–Lusztig cellular basis for

the Specht module V λ, the long element w0 ∈ S|λ| acts (up to a controllable sign) on V λ by permuting

the basis elements. Moreover under a natural indexing of the basis by SYT(λ), the permutation is exactly

evacuation. The cyclic sieving then follows by evaluating the character of V λ at w0.

We can give an analogous proof of Theorem 7.2. However to avoid redundancy we do not do so here,

and instead derive Theorem 7.2 by direct reduction to J. Stembridge’s result.

Let F denote the map from Inck(2×n) to SYT(n−k, n−k, 1k) from Proposition 7.1. Theorem 7.2 follows

immediately from the following proposition combined with J. Stembridge’s previously-described result.

Proposition 7.4. For all T ∈ Inck(2× n), E(F(T )) = F(E(T )).

Proposition 7.4 was first suggested to the author by B. Rhoades, who also gave some ideas to the proof.

Before we prove this result, we introduce some additional notation. Observe that if S ∈ SYT(n−k, n−k, 1k),

then rot(S) has skew shape ((n− k)k+2)/((n− k− 1)k). Let T ∈ Inck(2× n). Let A be the set of numbers

that appear twice in T . Let C be the set of numbers that appear in the first row immediately left of an

element of A. Let d(T ) be the tableau of shape (n− k, n− k) formed by deleting all elements of A from the

second row of T and all elements of C from the first. A tableau `(T ) of skew shape ((n−k)k+2)/((n−k−1)k)

is given by attaching C in the kth column of d(T ). Figure 7.7 illustrates these maps. It is immediate from

comparing the definitions that rot(F(T )) = `(rot(T )).

Lemma 7.9. For all T ∈ Inck(2× n), F(T ) is the rectification of `(T ).

Proof. It is enough to show that F(T ) and `(T ) lie in the same plactic class. Consider the row reading word

of `(T ). Applying the Robinson-Schensted-Knuth algorithm (see Section 1.4) to the first 2(n − k) letters

of this word, we obtain the tableau d(T ). The remaining letters are those that appear in the first row of T

immediately left of a element that appears in both rows. These letters are in strictly decreasing order. It

remains to Schensted bump these remaining letters into d(T ) in strictly decreasing order, and observe that

we obtain the tableau F(T ).
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1 2 3 4 7
4 5 6 7 8

(a) Increasing tableau T

1 2 3
4 6 7
5
8

(b) Flag-shaped tableau F(T )

1 2 7
5 6 8

(c) d(T )

3
4

1 2 7
5 6 8

(d) `(T )

Figure 7.7: An illustration of the maps F , d, and ` on 2-row rectangular increasing tableaux.

Suppose we first bump in the letter i. By assumption i appears in the first row of T immediately left of

an element j that appears in both rows. Since i is the biggest such letter, j appears in the first row of d(T ).

Hence i bumps j out of the first row. We then bump j into the second row. The element that it bumps out

of the second row is the least element greater than it. This is precisely the element h immediately to the

right of j in the second row of T .

Repeating this process, since the elements we bump into d(T ) are those that appear in the first row of

T immediately left of elements that appear in both rows, we observe that the elements that are bumped

out of the first row are precisely those that appear in both rows of T . Hence the first row of the resulting

tableau consists exactly of those elements that appear only in the first row of T . Thus the first row of the

rectification of `(T ) is the same as the first row of F(T ).

Moreover, since the elements bumped out of the first row are precisely those that appear in both rows of

T , these are also exactly the elements bumped into the second row. Therefore the elements bumped out of

the second row are exactly those that appear in the second row of T immediately right of an element that

appears twice. Thus the second row of the rectification of `(T ) is also the same as the second row of F(T ).

Finally, since elements are bumped out of the second row in strictly decreasing order, the resulting

tableau has the desired shape (n− k, n− k, 1k). Thus F(T ) is the rectification of `(T ).

Proof of Proposition 7.4. Fix T ∈ Inck(2×n). Recall from Proposition 7.3 that E(T ) = rot(T ). Evacuation

of standard Young tableaux can be defined as applying rot followed by rectification to a straight shape.

Hence to prove E(F(T )) = F(E(T )), it suffices to show that F(rot(T )) is the rectification of rot(F(T )).

We observed previously that rot(F(T )) = `(rot(T )). Hence Lemma 7.9 completes the proof by showing

that `(rot(T )) rectifies to F(rot(T )).

B. Rhoades’ proof of cyclic sieving for SYT(m× n) under promotion follows the same general structure

as J. Stembridge’s proof for SYT(λ) under evacuation. That is, he considers the Kazhdan–Lusztig cellular
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representation V m×n with basis indexed by SYT(m × n) and looks for an element w ∈ Smn that acts (up

to scalar multiplication) by sending each basis element to its promotion. It turns out that the long cycle

w = (123 . . .mn) suffices.

Given our success interpreting Theorem 7.2 along these lines, one might hope to prove Theorem 7.4 as

follows. Take the Kazhdan–Lusztig cellular representation V (n−k,n−k,1k) and index the basis by Inck(2 ×

n) via the bijection of Proposition 7.1. Then look for an element w ∈ S2n−k that acts (up to scalar

multiplication) by sending each basis element to its K-promotion. With B. Rhoades, the author investigated

this approach. Unfortunately we found by explicit computation that id and w0 are generally the only elements

of S2n−k acting on V (n−k,n−k,1k) as permutation matrices (even up to scalar multiplications). This does not

necessarily mean that no element of the group algebra could play the role of w. However prospects for this

approach seem to us dim. We prove Theorem 7.4 in the next section by elementary combinatorial methods.

B. Rhoades [Rh15] however has recently given a representation-theoretic proof of Theorem 7.4 (and

some related results) by introducing yet another basis for the Specht module corresponding to the shape

(n− k, n− k, 1k). The basis is indexed by the noncrossing partitions of 2n− k into n− k blocks all of size

at least 2. Here the action of S2n−k is by the defining permutation representation on the 2n − k elements

being partitioned, but with any introduced crossings being resolved by intricate two-dimensional analogues

of skein relations. In general, this skein basis is distinct from both the standard Specht module basis and

the Kazhdan–Lusztig basis. B. Rhoades finishes the proof of Theorem 7.4 by showing that with respect to

this new basis, the long cycle w = (123 . . . (2n − k)) acts (up to scalars) by rotation, so the result follows

from some character evaluations.

7.6 Proof of Theorem 7.4

Recall definition (7.2) of f(q). Our strategy (modeled throughout on [ReStWh04, §7]) is to explicitly evaluate

f at roots of unity and compare the result with a count of increasing tableaux. To count tableaux, we use

the bijection with noncrossing partitions given in Proposition 7.2. We will find that the symmetries of these

partitions more transparently encode the promotion ranks of the corresponding tableaux.
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Lemma 7.10. Let ζ be any primitive dth root of unity, for d dividing 2n− k. Then

f(ζ) =



( 2n−k
d )!

(kd )!(n−kd )!(n−kd − 1)!nd
, if d|n

( 2n−k
d )!

(k+2
d − 1)!(n−k−1d )!(n−k−1d )!n+1

d

, if d|n+ 1

0, otherwise.

Proof. As in [ReStWh04, §7], we observe that

• for all j ∈ N, ζ is a root of [j]q if and only if d > 1 divides j, and

• for all j, j′ ∈ N with j ≡ j′ mod d,

lim
q→ζ

[j]q
[j′]q

=



j

j′
, if j ≡ 0 mod d

1, if j 6≡ 0 mod d.

The desired formula is then an easy but tedious calculation analogous to those carried out in [ReStWh04,

§7].

We will write π for the bijection of Proposition 7.2 from Inck(2× n) to noncrossing partitions of 2n− k

into n−k blocks all of size at least 2. For Π a noncrossing partition of N , we write R(Π) for the noncrossing

partition given by rotating Π clockwise by 2π/N .

Lemma 7.11. For any T ∈ Inck(2× n), π(P(T )) = R(π(T )).

Proof. We think of K-promotion as taking place in two steps. In the first step, we remove the label 1 from

the tableau T , perform K-jeu de taquin, and label the now vacated lower-right corner by 2n − k + 1. Call

this intermediate filling T ′. In the second step, we decrement each entry by one to obtain P(T ).

The filling T ′ is not strictly an increasing tableau, as no box is labeled 1. However, by analogy with the

construction of Proposition 7.2, we may associate to T ′ a noncrossing partition of {2, . . . , 2n− k + 1}. For

each i in the second row of T ′, let si be the largest number in the first row that is less than i and that is not

sj for some j < i. The noncrossing partition π(T ′) is formed by declaring i and si to be in the same block.

Claim 7.1. π(T ′) may be obtained from π(T ) merely by renaming the element 1 as 2n− k + 1.
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In T , there are three types of elements:

(A) those that appear only in the first row,

(B) those that appear only in the second, and

(C) those that appear in both.

Most elements of T ′ are of the same type as they were in T . In fact, the only elements that change type are

in the block of π(T ) containing 1. If that block contains only one element other than 1, this element changes

from type (B) to type (A). If the block contains several elements besides 1, the least of these changes from

type (C) to type (A) and the greatest changes from type (B) to type (C). All other elements remain the

same type. Observing that the element 1 was of type (A) in T and that 2n− k+ 1 is of type (B) in T ′, this

proves the claim.

By definition, π(P(T )) is obtained from π(T ′) merely by decrementing each element by one. However

by the claim, R(π(T )) is also obtained from π(T ′) by decrementing each element by one. Thus π(P(T )) =

R(π(T )).

It remains now to count noncrossing partitions of 2n− k into n− k blocks all of size at least 2 that are

invariant under rotation by 2π/d, and to show that we obtain the formula of Lemma 7.10. We observe that

for such rotationally symmetric noncrossing partitions, the cyclic group Cd acts freely on all blocks, except

the central block (the necessarily unique block whose convex hull contains the center of the circle) if it exists.

Hence there are no such invariant partitions unless n− k ≡ 0 or 1 mod d, in agreement with Lemma 7.10.

Arrange the numbers 1, 2, . . . , n,−1, . . . ,−n counterclockwise, equally-spaced around a circle. Consider

a partition of these points such that, for every block B, the set formed by negating all elements of B is also a

block. If the convex hulls of the blocks are pairwise nonintersecting, we call such a partition a noncrossing Bn-

partition or type-B noncrossing partition (cf. [Rei97]). Whenever we say that a type-B noncrossing partition

has p pairs of blocks, we do not count the central block. There is an obvious bijection between noncrossing

partitions of 2n− k that are invariant under rotation by 2π/d and noncrossing B(2n−k)/d-partitions. Under

this bijection a noncrossing partition Π with n − k blocks corresponds to a type-B noncrossing partition

with n−k
d pairs of blocks if d divides n− k (that is, if Π has no central block), and corresponds to a type-B

noncrossing partition with n−k−1
d pairs of blocks if d divides n − k − 1 (that is, if Π has a central block).

The partition Π has singleton blocks if and only if the corresponding type-B partition does.

Lemma 7.12. The number of noncrossing BN -partitions with p pairs of blocks without singletons and
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without a central block is
p∑
i=0

(−1)i
(
N

i

)(
N − i
p− i

)2
p− i
N − i

.

The number of such partitions with a central block is

p∑
i=0

(−1)i
(
N

i

)(
N − i
p− i

)2
N − p
N − i

.

Proof. It was shown in [Rei97] that the number of noncrossing BN -partitions with p pairs of blocks is(
N
p

)2
. In [ReStWh04], it was observed that [AtRe04, Lemma 4.4] implies that exactly N−p

N

(
N
p

)2
of these

have a central block. Our formulas for partitions without singleton blocks follow immediately from these

observations by Inclusion–Exclusion.

It remains to prove the following pair of combinatorial identities:

p∑
i=0

(−1)i
(
N

i

)(
N − i
p− i

)2
p− i
N − i

=
N !

(N − 2p)!p!(p− 1)!(N − p)

and
p∑
i=0

(−1)i
(
N

i

)(
N − i
p− i

)2
N − p
N − i

=
N !

(N − 2p− 1)!p!p!(N − p)
.

This is a straightforward exercise in hypergeometric series (cf., e.g., [AnAsRo01, §2.7]). For example, the

first sum is (
N

p

) p∑
i=0

(−1)i
(
p

i

)(
N − i− 1

p− i− 1

)
=

(
N

p

)(
N − 1

p− 1

)
2F1

(
−p, 1− p

1−N
; 1

)
,

which may be evaluated by the Chu–Vandermonde identity. This completes the proof of Theorem 7.4.

Recently, C. Athanasiadis–C. Savvidou [AtSa12, Proposition 3.2] independently enumerated noncrossing

BN -partitions with p pairs of blocks without singletons and without a central block.

Lemma 7.11 yields a second proof of Theorem 7.3. We observe that under the reformulation of Lemma

7.11, Theorem 7.4 bears a striking similarity to [ReStWh04, Theorem 7.2] which gives a cyclic sieving on

the set of all noncrossing partitions of 2n− k into n− k parts with respect to the same cyclic group action.

Additionally, under the correspondence mentioned in Section 7.2 between Inck(2× n) and dissections of

an (n+ 2)-gon with n− k − 1 diagonals, Theorem 7.4 bears a strong resemblance to [ReStWh04, Theorem

7.1], which gives a cyclic sieving on the same set with the same q-enumerator, but with respect to an action

by Cn+2 instead of C2n−k. S.-P. Eu–T.-S. Fu [EuFu08] reinterpret the Cn+2-action as the action of a Coxeter

element on the k-faces of an associahedron. We do not know such an interpretation of our action by C2n−k.

In [ReStWh04], the authors note many similarities between their Theorems 7.1 and 7.2 and ask for a unified
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proof. It would be very satisfying if such a proof could also account for our Theorem 7.4.

7.7 Homomesy of increasing tableaux under K-promotion

This section is based on joint work with J. Bloom and D. Saracino [BlPeSa16].

One might hope for Theorem 2.4 on homomesy of standard tableaux under promotion to generalize to

Inck(m× n) under K-promotion. However this is not the case:

Example 7.4. Consider

T =
1 2 3 5
2 4 5 7
3 6 8 9

and U =
1 4 5 6
2 6 7 8
3 7 8 9

and let S be the rotate-fixed set of black boxes. The K-promotion orbits OT ,OU of T,U respectively are

both of size 9. However it may be computed that

1

9

∑
A∈OT

σS(A) =
91

9
, while

1

9

∑
B∈OU

σS(B) = 10. ♦

Say a pair (m × n, k) is homomesic if for any S ⊆ m × n fixed under rotate, (Inck(m × n), C, σS) is

homomesic. It seems an interesting question to characterize homomesic pairs (m×n, k). Theorem 2.4 shows

that (m×n, 0) is homomesic for all m,n. Example 7.4 shows that (3×4, 3) is not homomesic. The following

theorem shows, however, that (2× n, k) is always homomesic.

Theorem 7.5. Let S ⊆ 2× n be a set of elements fixed under 180◦ rotation. Then for any k,

(Inck(2× n), C, σS)

is homomesic.

Proof. By Theorem 7.3, the order of P on Inck(2 × n) is 2n − k. The fact that in this case K-evacuation

is the same as 180◦ rotation plus alphabet reversal is Proposition 7.3. The theorem then follows from an

analogue of Lemma 2.1. For this the growth diagram proof of Lemma 2.1 may be copied nearly verbatim,

using the K-theory growth diagrams described in Section 7.3 and replacing every instance of k in the proof

with 2n− q (the order of P).
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Chapter 8

Resonance of plane partitions and
increasing tableaux

This chapter derives from joint work with K. Dilks and J. Striker [DiPeSt15].

8.1 Introduction

The introduction to this chapter is in two parts. The first subsection defines resonance and gives our

prototypical example on alternating sign matrices. The second subsection describes our main results; these

include two instances of resonance (on plane partitions and increasing tableaux), an equivariant bijection

between these two sets with a number of new consequences, and a higher-dimensional analogue of N. Williams

and J. Striker’s result on the equivariance of (poset-)promotion and rowmotion [StWi12].

8.1.1 Resonance

We introduce the following concept of resonance1.

Definition 8.1. Suppose G = 〈g〉 is a cyclic group acting on a set X, Cω = 〈c〉 a cyclic group of order ω

acting nontrivially on a set Y , and f : X → Y a surjection. We say the triple (X,G, f) exhibits resonance

with frequency ω if, for all x ∈ X, c · f(x) = f(g · x), that is, the following diagram commutes:

X X

Y Y

g·

f f

c·

or a set of words with c acting by a cyclic shift. Resonance is a “pseudo-periodicity” property of the

G-action, in that the resonant frequency ω is generally less than the order of the G-action. Note that, in

1The mathematically precise definition of resonance given here was new in [DiPeSt15], though the phenomenon had been
discussed by various people over the previous year or more, in particular, at the 2015 “Dynamical Algebraic Combinatorics”
workshop at the American Institute of Mathematics where the work described here began. Thanks to Jim Propp for coining
the term “resonance” which so nicely encapsulates the idea.

174



general, (X,G, idX) satisfies the definition of resonance with frequency |G|; we call this an instance of trivial

resonance.

Our prototypical example of resonance is the action of gyration on alternating sign matrices.

Definition 8.2. An alternating sign matrix (ASM) is a square matrix with the following properties:

the entries are in the set {0, 1,−1}, each row and each column sums to one, and the nonzero entries along

each row or column alternate in sign. Let ASMn denote the set of n × n alternating sign matrices. (See

Figure 8.2 for examples of ASMs.)

Alternating sign matrices were introduced by D. Robbins–H. Rumsey [RoRu86] as part of their study

of the lambda-determinant. With W. Mills [MiRoRu83], they then conjectured an enumeration for ASMn,

which was proved by D. Zeilberger [Ze96] and G. Kuperberg [Ku96] (cf. [Br99] for a detailed exposition of this

history). Alternating sign matrices are known to be in bijection with fully-packed loop configurations [Wi00,

Pr01]; see Figures 8.2 and 8.3.

Definition 8.3. Consider an [n] × [n] grid of dots in Z2. For each dot in the top row, draw an edge from

that dot up one unit. Similarly for each dot on each of the other three sides of the grid, draw an edge one

unit away from the grid and perpendicular to that edge. (Corner dots are thereby attached two edges, one

horizontal and one vertical.) Beginning with the vertical edge at the top left of the grid, alternately color

the edges blue and red; then delete all red edges. A fully-packed loop configuration (FPL) of order

n is a set of paths and loops on the [n] × [n] grid such that the paths end with the blue boundary edges

constructed above and each of the n2 vertices within the grid has exactly two incident edges.

Definition 8.4. Given a fully-packed loop configuration, number the external edges clockwise, starting with

the upper left external edge. Each external edge will be connected by a path to another external edge, and

these paths will never cross. This matching on the external edges is a noncrossing matching on 2n points,

and is called the link pattern of the FPL. Let rot denote the operator on link patterns that rotates them

by an angle of 2π/2n.

Note that this map from fully-packed loop configurations to link patterns is not injective.

Definition 8.5. Given an [n]× [n] grid of dots, color the interiors of the squares in a checkerboard pattern.

Given an FPL of order n drawn on this grid, its gyration, Gyr, is computed by first visiting all squares of

one color then all squares of the other color, applying at each visited square the “local move” that swaps

the edges around a square if the edges are parallel and otherwise leaves them fixed. Figure 8.1 shows an

example of the operation.
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Figure 8.1: An example of gyration on the fully-packed loop configuration shown at left. First at each each
square marked with  , we replace the local configuration  with | | and vice versa, obtaining the picture
on the right. Then we perform the same local switch at each square marked with #. In this case, there are
no local configurations # with |#| in the picture on the right, so we obtain the picture on the right as the
final result of gyration.

The following theorem of B. Wieland gives a remarkable property of gyration.

Theorem 8.1 (B. Wieland [Wi00]). Gyration of an FPL rotates the associated link pattern by an angle of

2π/2n.

We reformulate this theorem into a statement of resonance.

Corollary 8.1. Let f be the map from an alternating sign matrix through its FPL to the link pattern. Then,

(ASMn, 〈Gyr〉, f) exhibits resonance with frequency 2n.

For example, consider gyration on 5 × 5 alternating sign matrices. Gyration has orbits of size 2, 4, 5,

and 10. So the order of gyration (i.e., the smallest positive k such that Gyrk = id) in this case is 20, but

(ASM5, Gyr, f) exhibits resonance with frequency 10. Consider the orbit of gyration in Figure 8.2. This

orbit is of size 4, while the link pattern orbit is of size 2. So even though Gyr10(A) 6= A for A an ASM in

this orbit, rot10(f(A)) = f(A) (since, in this case, rot2(f(A)) = f(A)).

As another example, the ASM in Figure 8.3 is in a gyration orbit of size 84 (= 12 · 7), while (ASM6,

Gyr, f) exhibits resonance with frequency 12. So even though Gyr12(A) 6= A for A an ASM in this orbit,

rot12(f(A)) = f(A).

We think of the property of resonance as somewhat analogous to the cyclic sieving phenomenon (intro-

duced by V. Reiner–D. Stanton–D. White [ReStWh04], generalizing the q = −1 phenomenon of J. Stembridge

[Ste94a]) and the homomesy property (isolated by J. Propp–T. Roby [PrRo15], inspired by observations of

D. Panyushev [Pa09]) in being a somewhat subtle ‘niceness’ property of a cyclic group action. We suspect

that the phenomenon of resonance, like those of cyclic sieving and homomesy, is significantly more com-

mon than previously realized. Heuristically, one is led to suspect the presence of resonance in a system by

observing that many orbit cardinalities are multiples or divisors (or multiples of divisors) of ω.
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0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 −1 1
0 0 0 1 0




0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1




0 0 0 1 0
0 1 0 0 0
0 0 1 −1 1
1 0 −1 1 0
0 0 1 0 0




0 0 1 0 0
0 0 0 0 1
1 0 −1 1 0
0 0 1 0 0
0 1 0 0 0
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Figure 8.2: A length 4 gyration orbit in ASM5; Top Row: ASM, Middle Row: FPL, Bottom Row: link
pattern


0 0 0 1 0 0
0 1 0 −1 1 0
0 0 0 1 −1 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
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Figure 8.3: A 6× 6 ASM with gyration orbit of length 84, with its corresponding FPL and link pattern
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8.1.2 Main results

The remainder of this chapter centers around two new examples of resonance on plane partitions under

rowmotion and increasing tableaux under K-promotion, as well as a new equivariant bijection relating these

phenomena. Here we summarize our main results; see the referenced sections for relevant definitions.

Rowmotion has attracted much attention since it was first studied (under another name) by A. Brouwer–

A. Schrijver [BrSc74] in 1974; see for example [Fo93, CaFo95, Pa09, StWi12, ArStTh13, RuSh13, PrRo15,

RuWa15]. More recently, several authors have studied a birational lift of rowmotion [EiPr14, GrRo16,

GrRo15], with some relations to Zamolodchikov periodicity.

Let J(a× b× c) denote the set of plane partitions inside an a× b× c box and Row denote rowmotion;

see Section 8.3.3 for the definitions of Xmax and D. Our first main resonance result is the following.

Theorem 8.8. (J(a× b× c), 〈Row〉, Xmax ◦D) exhibits resonance with frequency a+ b+ c− 1.

To better study plane partitions, we introduce and develop the machinery of affine hyperplane toggles and

n-dimensional lattice projections, including a higher-dimensional analogue of N. Williams and J. Striker’s

result on the equivariance of (poset-)promotion and rowmotion [StWi12]. We obtain a large family of toggling

actions {Pσπ,v} whose orbit structures are equivalent to that of rowmotion. See Sections 8.3.4 and 8.3.5 for

further details.

Theorem 8.9. Let P be a finite poset with an n-dimensional lattice projection π. Let v = (v1, v2, v3, . . . , vn)

and w = (w1, w2, w3, . . . , wn), where vj , wj ∈ {±1}. Finally suppose that σ : supp(P, π, v) → supp(P, π, v)

and τ : supp(P, π, w) → supp(P, π, w) are bijections. Then there is an equivariant bijection between J(P )

under Pσπ,v and J(P ) under Pτπ,w.

Our other main object of study is K-promotion on increasing tableaux, as described in Chapter 7. Here

however, we do not require that the set of entries is an initial segment of Z>0. Let Incq(λ) denote

the set of increasing tableaux of shape λ and entries at most q, and let Con be the content map. In Section

8.2.2, we prove the following, our first main result on K-promotion.

Theorem 8.2. (Incq(λ), 〈P〉,Con) exhibits resonance with frequency q.

This similarity of Theorems 8.2 and 8.8 leads us to establish an equivariant bijection between plane

partitions under rowmotion and increasing tableaux under K-promotion.

Theorem 8.11. J(a× b× c) under Row is in equivariant bijection with Inca+b+c−1(a× b) under P.
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Part of our approach to establishing this equivariant bijection involves the reinterpretation ofK-promotion

in terms of K-Bender-Knuth involutions, which we introduce; see Proposition 8.1. We also extend, in Sec-

tion 8.2.4, a result of B. Rhoades on descent cycling to the K-promotion setting.

We obtain a variety of corollaries of this equivariant bijection. Many of these corollaries are new proofs

of previously discovered results on the order of Row and P. We highlight here only those results that are

new.

Corollary 8.6. The order of P on Inca+b(a× b) is a+ b.

Corollary 8.7. The order of P on Inca+b+1(a× b) is a+ b+ 1.

We also obtain the following strengthening of a theorem of P. Cameron–D. Fon-der-Flaass [CaFo95,

Theorem 6(a)]. The original theorem had the more stringent hypothesis c > ab− a− b+ 1.

Theorem 8.12. If a + b + c − 1 is prime and c > 2ab−2
3 − a − b + 2, then the cardinality of every orbit of

Row on J(a× b× c) is a multiple of a+ b+ c− 1.

The rest of this chapter is structured as follows. In Section 8.2, we recall the K-promotion

operator on increasing tableaux and establish a number of new properties (including resonance) that we

will use. In Section 8.3, we establish resonance of plane partitions under rowmotion, and extend machinery

developed by N. Williams and J. Striker [StWi12], to introduce the family of toggle group actions {Pσπ,v} and

show that each Pσπ,v acts with the same cycle structure as rowmotion. In Section 8.4, we give an equivariant

bijection between increasing tableaux under K-promotion and plane partitions under P(1,1,−1) and Row.

We then extract a number of corollaries from this equivariant bijection, including new proofs of theorems of

A. Brouwer–A. Schrijver [BrSc74] and P. Cameron–D. Fon-der-Flaass [CaFo95], a strengthening of a theorem

of P. Cameron–D. Fon-der-Flaass [CaFo95], and several new results on the order of K-promotion. Finally, we

conjecture the order of rowmotion on plane partitions of height 3 (which we have shown to be also the order

of K-promotion on certain classes of increasing tableaux). In Section 8.5, we propose additional instances

of resonance related to alternating sign matrices and totally symmetric self-complementary plane partitions.

8.2 K-Promotion on increasing tableaux

In this section, we study increasing tableaux, the first of the objects in our main bijection (Theorem 8.10).

After recalling the basic concepts, we establish resonance of increasing tableaux under K-promotion in

Theorem 8.2. In Section 8.2.3, we reinterpret K-promotion in terms of K-Bender-Knuth involutions, which

we introduce; this interpretation plays an important role in Section 8.4.2 in establishing equivariance of our
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main bijection. In Section 8.2.4, we extend a descent cycling result of B. Rhoades [Rh10, Lemma 3.3] from

standard Young tableaux to increasing tableaux; this extension is used in Theorem 8.12 to improve on a

theorem of P. Cameron–D. Fon-der-Flaass [CaFo95].

8.2.1 Increasing tableaux

Identify a partition λ with its Young diagram. An increasing tableau of shape λ is a filling of λ with

positive integers such that labels strictly increase from left to right across rows and from top to bottom

down columns. An example appears in Figure 8.4. We write Incq(λ) for the set of all increasing tableaux of

shape λ with all entries at most q. In contrast to the definition in Chapter 7, we do not assume

here that every integer between 1 and q appears. The K-promotion operator P is defined exactly as

in Chapter 7, with the caveats that there may be no label 1 to delete and that after swapping the empty

box (if any) should be filled with q + 1 before decrementing.

1 4 5 8

2 5 7 9

6 7 9 10

8 10

Figure 8.4: An increasing tableau T of shape λ = (4, 4, 4, 2).

T = 1 2 4 6
4 5 6 7

2 4 6
4 5 6 7

2 4 6
4 5 6 7

2 4 6
4 5 6 7

2 4 6
4 5 6 7

2 4 6
4 5 6 7

2 4 6
4 5 7

2 4 6 7
4 5 7

1 3 5 6
3 4 6 7

= P(T )

Delete 1’s

Fill and

decrement

Figure 8.5: Calculating the K-promotion of T ∈ Inc7(2× 4). In each intermediate step, we have colored the
short ribbons on which we are about to act.
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8.2.2 Content cycling

Define the content of an increasing tableau T ∈ Incq(λ) to be the binary sequence Con(T ) = (a1, a2, . . . , aq),

where ai = 1 if i is an entry of T and ai = 0 if it is not. That is, ai := χi(T ) where χi denotes the indicator

function for the label i.

Lemma 8.1. Let T ∈ Incq(λ). If Con(T ) = (a1, a2, . . . , aq), then Con(P(T )) is the cyclic shift (a2, . . . , aq, a1).

Proof. Case 1: (χ1(T ) := a1 = 0): Then T has no labels 1. Hence the first step of K-promotion is trivial,

deleting no labels. The ribbon switching process is also trivial, as there are no empty boxes. Therefore, at

the final step, there are no boxes to fill. Thus, in this case, the total effect of K-promotion is merely to

subtract 1 from each entry. The lemma is then immediate in this case.

Case 2: (χ1(T ) := a1 = 1): Then the first step of K-promotion is to delete a nonempty collection of

labels 1. Hence there are a nonzero number of empty boxes. The ribbon switching process may change the

number of empty boxes, but clearly preserves its nonzeroness. Hence in the final step of K-promotion, there

will be a nonzero number of boxes filled with q + 1 and then decremented by 1. Hence χq(P(T )) = 1.

Let i > 1 and suppose χi(T ) = 1. Then i appears as an entry of T . The ribbon switching process

preserves this property (though not in general the number of entries i). Hence after subtracting one from

each entry, this yields χi−1(P(T )) = 1. If instead χi(T ) = 0, then i does not appear in T . Hence during the

ribbon switching process, when we consider the ribbons consisting of i’s and empty boxes, each is a single

empty box and by definition we make no change. Hence the ribbon switching process preserves the absence

of i. After decrementing, this yields χi−1(P(T )) = 0.

The following instance of resonance follows directly from Lemma 8.1.

Theorem 8.2. (Incq(λ), 〈P〉,Con) exhibits resonance with frequency q.

This leads to the following corollary.

Corollary 8.2. Suppose q is prime and T ∈ Incq(λ) does not have full content. Then the size of the

K-promotion orbit of T is a multiple of q.

8.2.3 K-Bender-Knuth involutions

In this subsection, we reinterpret K-promotion as a product of involutions, which we will need in our proof

of Theorem 8.8. We define operators K -BKi on Incq(λ) for each 1 ≤ i ≤ q. Take T ∈ Incq(λ). We compute

K -BKi(T ) as follows: Consider the set of boxes in T that contain either i or i+ 1. This set decomposes into

connected components that are short ribbons. On each nontrivial such component, we do nothing. On each
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component that is a single box, replace the symbol i by i+ 1 or vice versa. The result is K -BKi(T ). That

is, the action of K -BKi on T is to increment i and/or decrement i + 1, wherever possible. These operators

are illustrated in Figure 8.6.

Clearly each K -BKi is an involution. We call it the ith K-Bender-Knuth involution because in

the case T is standard, K -BKi coincides with the classical involution introduced by E. Bender–D. Knuth

[BeKn72] and discussed in Section 1.3.

1 4 5 8
2 5 7 9
6 7 9 10
8 10

1 3 5 8
2 5 7 9
6 7 9 10
8 10

1 4 5 8
2 5 7 9
6 7 8 10
9 10

K -BK3 K -BK8

Figure 8.6: The action of some K-Bender-Knuth involutions on the tableau T from Figure 8.4.

Proposition 8.1. For T ∈ Incq(λ), P(T ) = K -BKq−1 ◦ · · · ◦K -BK1(T ).

Proof. Another way to think of K -BKi is as the K-infusion (see Section 3.1.4) of the labels i through the

labels i + 1. That is, treat the labels i as empty boxes and swap the short ribbons of empty boxes and

(i+ 1)’s as in the definition of K-promotion; then relabel each i+ 1 as i and each empty box as i+ 1.

From this characterization, it is clear that K -BKq−1 ◦ · · · ◦ K -BK1 amounts to deleting the 1’s and

swapping the empty boxes successively through each other label in order, decrementing each other label

as the empty boxes swap through it, and finally labeling the empty boxes at outer corners by q. This is

transparently the same as K-promotion, except that the decrementing of labels happens throughout the

process instead of all at the end.

8.2.4 Descent cycling

In this subsection, we restrict consideration to increasing tableaux of rectangular shape. We extend a

result of B. Rhoades [Rh10, Lemma 3.3] from standard Young tableaux to increasing tableaux. Our proof

is a elaboration of his argument. We will use this result in Theorem 8.12 to improve on a theorem of
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P. Cameron–D. Fon-der-Flaass [CaFo95, Theorem 6(a)]. Throughout this subsection, we write “East”, “east”

and “southEast” to mean “strictly east”, “weakly east” and “weakly south and strictly east” respectively,

etc.

Definition 8.6. Let T ∈ Incq(a × b). For 1 ≤ i < q, the symbol i is a descent of T if some instance of i

appears in a higher row than some instance of i+ 1. Additionally, q is a descent of T if q − 1 is a descent

of P(T ).

Lemma 8.2. Suppose i is a descent of T ∈ Incq(a× b). Then i− 1 mod q is a descent of P(T ).

Proof. Throughout this proof, we use the original definition of K-promotion involving swaps, instead of the

K-Bender-Knuth alternative.

Case 1: (1 < i < q): T has an instance of i in row h and an instance of i+ 1 in row k with h < k. In P(T ),

there is an i − 1 in row h or h − 1 and there is an i in row k or k − 1. Hence i − 1 is a descent in P(T ) if

k − h > 1. Thus assume k = h+ 1.

Restrict attention to rows h and h+ 1 of T . T has a unique i in row h and a unique i+ 1 in row h+ 1.

By increasingness, this i+ 1 is not East of this i.

Suppose the i+ 1 is West of the i. Then T contains the local configuration
y z

i+1

. Since z ≤ i < i+ 1,

the i + 1 cannot move North during this application of K-promotion. Hence P(T ) has i in row h + 1, and

i− 1 is a descent of P(T ).

Thus, it remains to consider the case that i and i + 1 are in the same column of T . The i + 1 can only

move North if the i moves. If the i moves North, we are done, so assume i moves West. Then T has the

local configuration
i

y i+1

where y ≥ i. But by increasingness, y < i + 1. Hence y = i, so T has the local

configuration
i

i i+1

. Therefore, P(T ) has the local configuration
i−1 i

i

and thus i− 1 is a descent of P(T ).

Case 2: (i = 1): We must show that q is a descent of P(T ), that is, q − 1 is a descent of P2(T ).

For V ∈ Incq(a× b), let F(V ) be the flow path of V , that is the set of pairs of adjacent boxes {B,B′} of

V such that B and B′ are at some point part of the same short ribbon during the application of P to V . For

B a box of a× b, we write B↑ for the box immediately North of B, B→ for the box immediately East of B,

etc. Define the upper flow path F(V ) to be those {B,B→} ∈ F(V ) such that {B,B→} is northmost in its

columns among F(V ) together with those {B,B↓} such that {B,B↓} is eastmost in its rows among F(V ).

Similarly define the lower flow path F(V ) to be those pairs in F(V ) that are southmost or westmost.

Figure 8.7 shows an example of these flow paths.

Let Q be the box in the lower right corner of a × b. By Proposition 8.1, q appears in P(T ). Hence by

increasingness, P(T ) has q ∈ Q. Thus it suffices to show that {Q↑, Q} ∈ F(P(T )). The proof proceeds by
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1 2 4 8

2 5 7 9

3 6 8 10

6 11 13 14

7 12 15 16

Figure 8.7: The flow path of a tableau V ∈ Inc16(5× 4). Elements of the lower flow path are shown in red,
while elements of the upper flow path are shown in blue and the remaining elements of the flow path are
shown in yellow-orange.

comparing F(T ) and F(P(T )).

Let S = {B ∈ a× b : {B,B→} ∈ F(T )}. It is clear that S contains exactly one box from each column of

a× b, except the eastmost column.

If {Q↑, Q} /∈ F(P(T )), then there is some B ∈
⋃
F(P(T )) such that B ∈ S. Choose B to be maximally

west among such boxes.

Since B is chosen maximally west, {B←, B} /∈ F(P(T )). Suppose {B↑, B} ∈ F(P(T )). Then in P(T ),

the entry of B is strictly less than the entry of B↑→. That is, if h is the entry of B and k is the entry of

B↑→ then h < k. However, in T we have k + 1 ∈ B↑→ and h+ 1 ∈ B→; this contradicts the increasingness

of T . Thus B is the northwestmost box of a× b.

Since 1 is a descent of T and B ∈ S, T has 1 ∈ B, 2 ∈ B↓ and 2 ∈ B→.

Let S = {B ∈ a × b : {B,B→} ∈ F(T )}. We claim that if {B,B→} ∈ F(T ), then there is a pair

{A,A→} ∈ F(P(T )) with A North of B in the same column. To see this, first observe by local analysis that

if {B,B→} ∈ F(T ) and B↑ ∈
⋃
F(P(T )), then {B↑, B↑→} ∈ F(P(T )). Now recall that S contains exactly

one box from each column of a× b, except the eastmost column. Moreover since T has 2 ∈ B↓, no box of S

is in the northmost row. The claim follows. Thus Q↑ ∈
⋃
F(P(T )) and we are done.

Case 3: (i = q): By definition.

Proposition 8.2. The symbol i is a descent of T ∈ Incq(a × b) if and only if i − 1 mod q is a descent of

P(T ).

Proof. Suppose i is a descent of T . By Lemma 8.2, i − 1 mod q is a descent of P(T ). Since Incq(a × b)

is finite, there is some M such that PM (T ) = P−1(T ). Hence by M applications of Lemma 8.2, i + 1 is a

descent of P−1(T ).
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Definition 8.7. Let T ∈ Incq(a × b). For 1 ≤ i < q, i is transpose descent of T if some instance of i

appears in a lower indexed column than some instance of i+ 1. Additionally q is a transpose descent of

T if q − 1 is a transpose descent of P(T ).

Equivalently, j is a transpose descent of T if and only if j is a descent of the transpose of T .

Proposition 8.3. The symbol i is a transpose descent of T ∈ Incq(a × b) if and only if i − 1 mod q is a

transpose descent of P(T ).

Proof. Since clearly K-promotion commutes with transposing, the proposition is immediate from Proposi-

tion 8.2.

The following is an enriched version of Corollary 8.2 for rectangular tableaux.

Proposition 8.4. Let T ∈ Incq(a× b) with q prime. Suppose at least one of the following is true:

• T does not have full content,

• some 1 ≤ i ≤ q is not a descent in T , or

• some 1 ≤ i ≤ q is not a transpose descent in T .

Then, the K-promotion orbit of T has cardinality a multiple of q.

Proof. If T does not have full content, Corollary 8.2 applies. Otherwise, some 1 ≤ i ≤ q is not a (transpose)

descent in T . The proposition is then immediate by Proposition 8.2 or 8.3.

Finally, we prove the following lemma, which we will use in Section 8.4.3.

Lemma 8.3. Let T ∈ Incq(a × b) and suppose that 1 ≤ i < q is both a descent and a transpose descent in

T . Then the number of i’s in T plus the number of (i+ 1)’s in T is at least 3.

Proof. Since i is a descent, both i and i + 1 must appear in T . Hence if i appears at least twice in T , we

are done. Thus assume i appears exactly once in T . Since i is a descent, some i+ 1 appears South of this i.

Since i is a transpose descent, some i+ 1 appears East of this i.

We claim these instances of i + 1 are distinct, completing the proof of the lemma. Otherwise, we have

i + 1 SouthEast of i. Consider the label z of the box that is in the row of the i and in the column of the

i+ 1. By the increasingness conditions on T , i < z < i+ 1, contradicting that z is an integer.

In Section 8.4.3, we will use Proposition 8.4, Lemma 8.3, and our main results, Theorems 8.9 and 8.11,

to give in Theorem 8.12 a strengthening of a theorem of P. Cameron–D. Fon-der-Flaass on plane partitions

in a box.
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8.3 Promotion and rowmotion, revisited

In this section, we switch our focus from increasing tableaux to our other main objects of study: plane

partitions. A plane partition is a stack of unit cubes in the positive orthant, justified toward the origin in

all three directions. Plane partitions inside a box with side lengths a, b, and c, are counted by P. MacMahon’s

box formula:
∏ i+ j + k − 1

i+ j + k − 2
where the product is over all 1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ c [Mac1915].

Plane partitions inside an a× b× c box can be seen as order ideals in the product of three chains poset

a× b× c. Thus, most of our discussion in this section centers on posets and order ideals, keeping in mind

that all such general results can be applied to plane partitions.

We begin in Section 8.3.1 by discussing the rowmotion action on order ideals and some results on the

order of this action on products of two and three chains. In Section 8.3.2, we discuss the toggle group,

first defined by P. Cameron–D. Fon-der-Flaass [CaFo95] and further studied by J. Striker and N. Williams

[StWi12]. In Section 8.3.3, we use the main theorem of [StWi12] to prove resonance of plane partitions

under rowmotion. The toggle group will be the algebraic structure underlying Sections 8.3.4 and 8.3.5, in

which we revisit this main result of [StWi12] by proving, in Theorem 8.9, a generalization in the setting of

n-dimensional lattice projections.

8.3.1 Rowmotion

Let P be a finite partially ordered set (poset). P is a chain if all its elements are mutually comparable.

Let n denote the n-element chain. The product of k chains poset, P = n1 × n2 × · · ·nk, has as elements

ordered integer k-tuples (x1, x2, . . . , xk) such that 0 ≤ xi ≤ ni−1 with partial order given by componentwise

comparison.

A subset I ⊆ P is an order ideal if it is closed downward, i.e. if y ∈ I and x ≤ y, then x ∈ I. Denote

the set of order ideals of P as J(P ). An order ideal in P is uniquely determined by its set of maximal

elements, or alternatively by the set of minimal elements of its complement in P . We study the orbit

structure of rowmotion, Row: J(P ) → J(P ), defined as the order ideal whose maximal elements are the

minimal elements of P \ I.

The function Row has a long history of rediscovery and has appeared under many names. A partial

summary of previous work follows; for a more complete discussion, see [StWi12]. A. Brouwer–A. Schrijver

[BrSc74] studied Row for P = a× b, the product of two chains. They discovered that this action has much

smaller orbits than one naively expects:

Theorem 8.3 ([BrSc74, Theorem 3.6]). The order of Row on J(a× b) is a+ b.
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P. Cameron–D. Fon-der-Flaass [CaFo95] studied the same question on plane partitions, that is, J(a ×

b× c).

Theorem 8.4 ([CaFo95, Theorem 6(b)]). The order of Row on J(a× b× 2) is a+ b+ 1.

Extrapolating from Theorems 8.3 and 8.4, one might speculate that Row has order a + b + c − 1 on

J(a×b×c). In general, the order is unknown but often significantly greater than this naive guess. However,

P. Cameron–D. Fon-der-Flaass established the following related fact.

Theorem 8.5 ([CaFo95, Theorem 6(a)]). If a+b+c−1 is prime and c > ab−a−b+1, then the cardinality

of every orbit of Row on J(a× b× c) is a multiple of a+ b+ c− 1.

We will revisit Theorems 8.3 and 8.4 in Remark 8.2. In Section 8.3.3, we give a new proof of Theorem 8.5.

Furthermore, as a consequence of our main equivariant bijection between plane partitions and increasing

tableaux (Theorem 8.11), we will show, in Theorem 8.12, that in Theorem 8.5 the condition c > ab−a−b+1

may be relaxed to c >
2ab− 2

3
− a− b+ 2. This is evidence toward the conjecture of P. Cameron–D. Fon-

der-Flaass [CaFo95] that this condition may be dropped entirely.

The approach of P. Cameron–D. Fon-der-Flaass was to reinterpret rowmotion as a toggle group action.

We describe the toggle group in the next subsection.

8.3.2 The toggle group

The toggle group was first studied by P. Cameron–D. Fon-der-Flaass [CaFo95] and subsequently by

J. Striker–N. Williams [StWi12]. It is the subgroup of the symmetric group on all order ideals SJ(P )

generated by certain involutions, called toggles. For each element e ∈ P define its toggle te : J(P )→ J(P )

as follows.

te(X) =


X ∪ {e} if e /∈ X and X ∪ {e} ∈ J(P )

X \ {e} if e ∈ X and X \ {e} ∈ J(P )

X otherwise

Remark 8.1. Observe that te, tf commute whenever neither e nor f covers the other.

The following theorem interprets rowmotion as a toggle group action.

Theorem 8.6 ([CaFo95]). Given any poset P , Row is the toggle group element that toggles the elements of

P in the reverse order of any linear extension. If P is ranked, this is the same as toggling the ranks (rows)

from top to bottom.
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In 2012 [StWi12], J. Striker–N. Williams built on the work of P. Cameron–D. Fon-der-Flaass, showing

that rowmotion is conjugate to the toggle group action they called promotion, or Pro, defined as toggling

the elements of the poset from left to right (given a suitable notion of left-to-right, for which they used the

term rc-poset).

Theorem 8.7 ([StWi12, Theorem 5.2]). For any rc-poset P , there is an equivariant bijection between J(P )

under Pro and J(P ) under Row.

We discuss this result in further detail in Sections 8.3.4 and 8.3.5 and give a multidimensional general-

ization of it in Theorem 8.9.

Remark 8.2. For many posets, the orbit structure of promotion is easier to study than that of rowmotion.

Thus Theorem 8.7 yielded many results on the orbit structure of rowmotion by translating from the analogous

result on promotion. Theorem 8.7 was applied in [StWi12] to give simple new proofs of Theorem 8.3 of

A. Brouwer–A. Schrijver and Theorem 8.4 of P. Cameron–D. Fon-der-Flaass (discussed in Section 8.3.1), as

well as easy proofs of the cyclic sieving phenomenon of V. Reiner, D. Stanton, and D. White [ReStWh04]

in these cases and a few others.

In the next subsection, we use Theorem 8.7 to prove resonance of rowmotion on plane partitions.

8.3.3 Resonance of plane partitions

In this subsection, we prove our second main resonance result, Theorem 8.8. We also give a new proof of

Theorem 8.5.

In [StWi12, Section 7.2], J. Striker–N. Williams applied their theory to plane partitions, that is, the

order ideals J(a× b× c). They characterized J(a× b× c) in terms of boundary path matrices. We give a

sketch of this characterization here; for futher details, see [StWi12]. Given an order ideal in a special kind

of planar poset (in the language of [StWi12], an rc-poset of height 1, or in the language of the next section,

a poset with a 2-dimensional lattice projection), its boundary path is a binary sequence that encodes the

path that separates the order ideal from the rest of the poset. Given a plane partition P ∈ J(a×b× c), its

boundary path matrix is a b× (a+ b+ c− 1) matrix {Xi,j} with entries in {0, 1} such that the ith row

consists of the boundary path of layer i preceded by i− 1 zeros and succeeded by b− i zeros. The rows of a

boundary path matrix each sum to a and the entries obey the condition

if

k∑
j=1

Xi,j =

k∑
j=1

Xi+1,j , then Xi+1,j+1 6= 1.

188



It was noted in [StWi12, Section 7.2] that Pro traces from left to right through the columns of the boundary

path matrix, swapping each pair of entries in adjacent columns and the same row that result in a matrix

still satisfying the condition above.

Given P ∈ J(a × b × c) with boundary path matrix {Xi,j}, define Xmax(P ) to be the vector of length

a+ b+ c− 1 whose jth entry is max(Xi,j)1≤i≤b.

Lemma 8.4. Let P ∈ J(a× b× c). If Xmax(P ) = (x1, x2, . . . , xa+b+c−1), then Xmax(Pro(P )) is the cyclic

shift (x2, . . . , xa+b+c−1, x1).

Proof. For i > 1, if column i of the boundary path matrix is all zeros, then in the application of Pro, all

of these entries swap with the entries of column i − 1, since the condition on the partial row sums is not

violated.

If i = 1, the column of all zeros swaps all the way through the matrix, from the first column to the last

column.

Thus, under Pro, a column of all zeros cyclically shifts to the left.

The following instance of resonance follows directly from Lemma 8.4.

Proposition 8.5. (J(a× b× c), 〈Pro〉, Xmax) exhibits resonance with frequency a+ b+ c− 1.

Let D be the conjugating toggle group element between rowmotion and promotion given in [StWi12,

Theorem 5.4]. By the equivariance of Pro and Row in [StWi12], we have the following statement of resonance

on rowmotion, which follows directly from Proposition 8.5 and [StWi12, Theorem 5.4].

Theorem 8.8. (J(a× b× c), 〈Row〉, Xmax ◦D) exhibits resonance with frequency a+ b+ c− 1.

This leads to the following corollary.

Corollary 8.3. Suppose a+ b+ c− 1 is prime and P ∈ J(a× b× c). Suppose there is a zero in Xmax(P ).

Then the size of the promotion orbit of P is a multiple of a+ b+ c− 1.

Using Corollary 8.3, we have a new proof of Theorem 8.5 of P. Cameron–D. Fon-der-Flaass.

Proof of Theorem 8.5. If a+ b+ c− 1 is prime and c > ab−a− b+ 1, then there are a total of ab ones in the

boundary path matrix, but a total of a+ b+ c− 1 > ab columns in the matrix, so there must be a column of

all zeros. Thus, there is a zero in Xmax(P ) for any plane partition P in an a× b× c box, and the promotion

orbit is a multiple of a+ b+ c− 1 by Corollary 8.3. Then by Theorem 8.7, the orbits of rowmotion are also

multiples of a+ b+ c− 1.

P. Cameron–D. Fon-der-Flaass’s proof of Theorem 8.5 is similar, but analyzes rowmotion directly rather

than conjugating to promotion.
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8.3.4 n-dimensional lattice projections

In this and the next subsections, we adapt the proof of the conjugacy of promotion and rowmotion from [StWi12]

to give a generalization in the setting of n-dimensional lattice projections, which we introduce in Defini-

tion 8.9. (This new perspective includes the original theorem as the case n = 2.) We prove, in Theorem 8.9,

the equivariance of the 2n−1 toggle group actions given in Definition 8.10.

Definition 8.8. We say that a poset P is ranked if it admits a rank function rk: P → Z satsifying

rk(y) = rk(x) + 1 when y covers x.

Definition 8.9. We say that an (n-dimensional) lattice projection of a ranked poset P is an order and

rank preserving map π : P → Zn, where the rank function on Zn is the sum of the coordinates and x ≤ y in

Zn if and only if the componentwise difference y − x is in (Z≥0)n.

In light of Remark 8.1, the key feature of π is that it preserves cover relations. That is, if y covers x in

P , then π(y) covers π(x) in Zn. However, since Zn is ranked, π being cover-relation preserving would make

rk ◦π a rank function for P . And if P is ranked, then a map π : P → Zn being cover-relation preserving is

equivalent to it being order and rank preserving (up to a shift of the rank functions).

In [StWi12], the definition of an rc-poset was a poset that had a 2-dimensional lattice projection (albeit

to a slightly different lattice). However, E. Sawin noted that every ranked poset P with rank function ρ

has such an embedding given by π(x) = (ρ(x), 0) for x ∈ P [Sa13]. Similarly, any poset P with a lattice

projection π has a rank function given by the sum of the coordinates in π(x) for x ∈ P .

Additionally, a ranked poset may have multiple distinct projections. For example, in Figure 8.8, we

have the boolean lattice on three elements, which we can think of a product of three chains of length 2. In

Figure 8.9, we have the standard three-dimensional lattice projection of this poset we get by thinking of it

as a product of three chains. In Figure 8.10, we show two different two-dimensional lattice projections of

this poset. In the projection on the right, we assign every element of the same rank to the same point, but

instead of doing so along the x-axis as in the previous paragraph, we do this diagonally in a zig-zag pattern.

Therefore, instead of considering rc-posets, we consider any ranked poset, but with respect to a given lattice

projection.

8.3.5 Promotion via affine hyperplane toggles

We now define a toggling order on our poset with respect an n-dimensional lattice projection, and with

respect to a distinguished direction.
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Figure 8.8: A product of three chains.
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Figure 8.9: The standard three-dimensional lattice projection of a product of three two-element chains.
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Figure 8.10: Two distinct two-dimensional lattice projections of a product of three two-element chains.

a

bcd efg

h

Figure 8.11: Gyration lattice projections of a product of three chains.
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Definition 8.10. Let P be a poset with an n-dimensional lattice projection π, and let v = (v1, v2, v3, . . . , vn),

where vj ∈ {±1}. Let T iπ,v be the product of toggles tx for all elements x of P that lie on the affine hyperplane

〈π(x), v〉 = i. If there is no such x, then this is the empty product, considered to be the identity. Then

define promotion with respect to π and v as the toggle product Proπ,v = . . . T−2π,vT
−1
π,vT

0
π,vT

1
π,vT

2
π,v . . ..

See Figure 8.12 for an example.

Remark 8.3. Note that Proπ,−v = (Proπ,v)
−1, so we will generally only consider distinguished vectors with

v1 = 1, as all promotion operators are either of this form, or the inverse of something of this form.

Lemma 8.5. Two elements of the poset that lie on the same affine hyperplane 〈π(x), v〉 = i cannot be part

of a covering relation, so by Remark 8.1, the operator T iπ,v is well-defined and (T iπ,v)
2 = 1.

Proof. Assume that y covers x, and they both lie on the same affine hyperplane (〈π(x), v〉 = 〈π(y), v〉 = i).

Then 〈π(y), v〉 − 〈π(x), v〉 = 〈π(y) − π(x), v〉 = 0. But since y covers x, π(y) − π(x) = ei for some i. And

since v has all coordinates ±1, then 〈ei, v〉 = ±1, a contradiction.

y

xz

x+ y − z = −2

y

xz

x+ y − z = −1

y

xz

x+ y − z = 0

y

xz

x+ y − z = 1

y

xz

x+ y − z = 2

y

xz

x+ y − z = 3

Figure 8.12: The affine hyperplane toggles corresponding to Proid,(1,1,−1) for the identity three-dimensional
lattice projection of the poset J(3× 2× 3)
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For ease of notation, we may suppress explicitly listing the lattice projection map π or the direction v

when referring to the generalized promotion operator, if it is clear from context. Note that for a finite poset

P , T iπ,v will be the identity operator for all but finitely many i.

Remark 8.4. To compare with the notion of promotion and rowmotion given in [StWi12], for a given

2-dimensional lattice projection π of a finite poset P , rowmotion corresponds to Proπ,(1,1), and promotion

corresponds to Proπ,(1,−1).

Proposition 8.6. For any finite ranked poset P and lattice projection π, Proπ,(1,1,...,1) = Row.

Proof. Proπ,(1,1,...,1) sweeps through P from top to bottom (in the reverse order of a linear extension), so by

Theorem 8.6, this is rowmotion.

We give some further definitions and lemmas, in order to state and prove Theorem 8.9 in full generality.

Definition 8.11. Let P be a poset, and let π, v, and T iπ,v be as in Definition 8.10. Define the support of

(P, π, v), denoted supp(P, π, v), to be the smallest interval [a, b] ⊆ Z such that T iπ,v is the identity operator

for all i ∈ Z \ [a, b].

Definition 8.12. If (P, π, v) has finite support, that is, supp(P, π, v) = [a, b] ⊂ Z, let σ : [a, b] → [a, b]

be a bijection. Then define promotion with respect to P , π, v, and σ as the following product of

hyperplane-toggles:

Proσπ,v = T
σ(a)
π,v T

σ(a+1)
π,v . . . T

σ(b−1)
π,v T

σ(b)
π,v .

We will use the following toggle group element in the proof of Theorem 8.9.

Definition 8.13. For a poset P , define the parity of p ∈ P as even (resp. odd) if the parity of rk(p) is

even (resp. odd). Define gyration Gyr as the toggle group element which first toggles all p ∈ P with even

parity, then all p with odd parity.

Remark 8.5. There is a connection between the toggle group element Gyr defined above and the gyration

action on alternating sign matrices discussed in Section 8.1.1. Namely, there is a poset An whose order

ideals are in bijection with alternating sign matrices, and for which the gyration action of Definition 8.5 is

the action of Gyr. For details, see [StWi12, Section 8] and [Str15].

Remark 8.6. Given a lattice projection π, the rank of p is the same as the rank of π(p) = (x1, x2, . . . xn),

which is
∑
i xi. Since all the coordinates in v are ±1, the parity of π(p) will be the same as the parity of

〈π(p), v〉. Thus, all elements lying on the same affine hyperplane with respect to v will have the same parity.
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Lemma 8.6. If (P, π, v) has finite support [a, b], then for any bijection σ : [a, b] → [a, b] such that σ(k) is

odd if k < a+b
2 and even if k > a+b

2 , we have Proσπ,v = Gyr.

We are now nearly ready to state and prove the main theorem of this section. We will need the following

lemma, which appears as [StWi12, Lemma 5.1].

Lemma 8.7 ([HoHu92]). Let G be a group whose generators g1, . . . , gn satisfy g2i = 1 and (gigj)
2 = 1 if

|i− j| > 1. Then for any σ, τ ∈ Sn,
∏
i gσ(i) and

∏
i gτ(i)are conjugate.

The main theorem of this section is below, whose proof follows that of [StWi12, Theorem 5.2].

Theorem 8.9. Let P be a finite poset with an n-dimensional lattice projection π. Let v = (v1, v2, v3, . . . , vn)

and w = (w1, w2, w3, . . . , wn), where vj , wj ∈ {±1}. Finally suppose that σ : supp(P, π, v) → supp(P, π, v)

and τ : supp(P, π, w) → supp(P, π, w) are bijections. Then there is an equivariant bijection between J(P )

under Proσπ,v and J(P ) under Proτπ,w.

Proof. Suppose P is a finite poset with an n-dimensional lattice projection π. Let v = (v1, v2, v3, . . . , vn),

where vj ∈ {±1}. We claim the toggles T iπ,v for i ∈ supp(P, π, v) satisfy the conditions of Lemma 8.7. By

Lemma 8.5, (T iπ,v)
2 = 1. Also, if 〈π(x), v〉 = i and 〈π(y), v〉 = j, then 〈π(y)−π(x), v〉 = j−i. So if |j−i| > 1,

as all the coefficients in v are ±1, then π(y)− π(x) cannot be ei for any i, and y and x cannot be part of a

covering relation. Thus, toggles on non-adjacent hyperplanes commute, and we have (T iπ,vT
j
π,v)

2 = 1 when

|j − i| > 1. So by Lemma 8.7, for any bijections σ, σ′ : supp(P, π, v)→ supp(P, π, v), there is an equivariant

bijection between J(P ) under Proσπ,v and J(P ) under Proσ
′

π,v (since such bijections can be considered as

permutations in Sb−a+1 if supp(P, π, v) = [a, b]).

Consider Gyr of Definition 8.13. By Lemma 8.6, for every v there exists a σv such that Gyr can be realized

as Proσv
π,v. Therefore, there is an equivariant bijection between J(P ) under Proσπ,v and under Proσv

π,v = Gyr,

from which the theorem follows.

After we see a bijection between increasing tableaux and plane partitions given in the next section, we

will use Theorem 8.9 to give an improvement on Theorem 8.5 of P. Cameron–D. Fon-der-Flaass (discussed

in Section 8.3.1).
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8.4 An equivariant bijection between plane partitions and

increasing tableaux

8.4.1 Bijections between plane partitions and increasing tableaux

In this section, we introduce bijections between increasing tableaux and plane partitions. The existence of

these bijections should not be at all surprising. However, these maps are key to many of our results. These

maps are also fundamental to [HPPW16] (the basis of Chapter 9), where they are used to give the first

bijective proofs of various results on plane partitions, including R. Proctor’s main result from [Pr83].

We define a map Ψ3 : J(a × b × c) → Inca+b+c−1(a × b) as follows. Let P ∈ J(a × b × c). Thinking

of P in the standard way as a pile of small cubes in an a × b × c box, project onto the a × b face. Record

in position (i, j) the number of boxes of P with coordinate (i, j, k) for some 0 ≤ k ≤ c − 1. The result is

a standard plane partition representation of P , as a filling of the Young diagram a × b with nonnegative

integers such that rows weakly decrease from left to right and columns weakly decrease from top to bottom.

Rotate this plane partition 180◦, so that rows and columns become weakly increasing. Now thinking of a× b

as a graded poset with the upper left corner box the unique element of rank 0, add to each label its rank

plus 1. That is, increase each label by one more than its distance from the upper left corner box. (This is

just the standard way of converting a weakly increasing sequence into a strictly increasing one.) The result

is the increasing tableau Ψ3(P ). For an example of this transformation, see Figure 8.13.

Theorem 8.10. Ψ3 : J(a× b× c)→ Inca+b+c−1(a× b) gives a bijection between plane partitions inside an

a× b× c box and increasing tableaux of shape a× b and entries at most a+ b+ c− 1.

Proof. The map is defined as the composition of a projection, a rotation, and entrywise addition, all of which

are clearly invertible.

Similarly, define bijections Ψ2 : J(a×b×c)→ Inca+b+c−1(a×c) and Ψ1 : J(a×b×c)→ Inca+b+c−1(b×c)

projecting onto the a× c and b× c faces, respectively (cf. Figure 8.14).

Given the simplicity of the bijection of Theorem 8.10, one might wonder why it was previously overlooked.

The set of increasing tableaux in bijection with plane partitions includes those with gaps in the content.

However much previous research on increasing tableaux was motivated by K-theoretic geometry, and in this

context there is little reason to consider increasing tableaux without full content. Moreover, by restricting

to tableaux of full content, one obtains some attractive enumerations [Pe14, PrStVi14]; for instance, the

number of increasing tableaux with shape 2 × n and full content is the nth small Schröder number [Pe14,
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P =

4 4 4 3

4 3 3 2

3 2 2 1

3 1 0 0

0 0 1 3

1 2 2 3

2 3 3 4

3 4 4 4

1 2 4 7

3 5 6 8

5 7 8 10

7 9 10 11

= Ψ3(P )

Project to

bottom face

Rotate 180◦

Add 1+rank

Figure 8.13: The process of applying Ψ3 to the illustrated P ∈ J(4 × 4 × 4). Here we think of Ψ3 as
projecting onto the bottom face of the large bounding box.

Theorem 1.1]. It was the equivariance of the actions of P and Row, discussed in the next section, which led

us to observe the bijection of Theorem 8.10.

8.4.2 The equivariance of P and Row

Our first main result was Theorem 8.9, that given a poset P with lattice projection π, there is an equivariant

bijection between the order ideals J(P ) under Proσπ,v and Proτπ,w, where σ, τ are any permutations of the

hyperplane toggles associated to the {−1, 1}-vectors v, w. In this section, we use Theorem 8.9 in our proof

of our second main result, Theorem 8.11, that P and Row are in equivariant bijection.

Lemma 8.8. Ψ3 intertwines Proid,(1,1,−1) and P. That is, the following diagram commutes:

J(a× b× c) Inca+b+c−1(a× b)

J(a× b× c) Inca+b+c−1(a× b)

Ψ3

Proid,(1,1,−1) P

Ψ3

Proof. Let P ∈ J(a× b× c) and let T = Ψ3(P ). Note that the poset a× b× c has a 3-dimensional lattice
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6 9 10 11
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2 4 7 9

4 7 8 10

7 9 10 11

Figure 8.14: The three bijections, Ψ1, Ψ3, and Ψ2
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projection, in the sense of Definition 8.9, given by the identity map.

By Proposition 8.1,

P(T ) = K -BKa+b+c−2 ◦ · · · ◦K -BK1(T ).

Similarly,

Proid,(1,1,−1) = T
(a−1)+(b−1)−(a+b+c−2)
id,(1,1,−1) ◦ · · · ◦ T (a−1)+(b−1)−1

id,(1,1,−1) .

Thus, it suffices to show that

Ψ3

(
T

(a−1)+(b−1)−`
id,(1,1,−1) (P )

)
= K -BK`(T ).

By Definition 8.10, T
(a−1)+(b−1)−`
id,(1,1,−1) is the product of the the toggles tx for all x ∈ a × b × c lying on

the affine hyperplane determined by 〈x, (1, 1,−1)〉 = (a − 1) + (b − 1) − `. Consider x = (i, j, k) on this

hyperplane. Then i+ j − k = (a− 1) + (b− 1)− `.

We have x = (i, j, k) ∈ P if and only if the (a− i, b− j) entry of T is at least k + (a− i) + (b− j)− 1 =

k+ a+ b− i− j − 1. Since k = i+ j − (a− 1)− (b− 1) + `, we can rewrite this condition as the (a− i, b− j)

entry of T being at least (i+ j − (a− 1)− (b− 1) + `) + a+ b− i− j − 1 = `+ 1. Hence x ∈ P if and only if

the (a− i, b− j) entry of T is at least `+ 1.

(Case 1: x ∈ P ): If (i, j, k + 1) ∈ P , then x is unaffected by the toggle and the (a− i, b− j) entry of T is at

least `+ 2 and so unaffected by K -BK`.

Otherwise (i, j, k+ 1) /∈ P and the (a− i, b− j) entry of T equals `+ 1. K -BK` will turn this `+ 1 into `

exactly when neither the (a− i− 1, b− j) nor the (a− i, b− j − 1) entry of T equals `. By increasingness of

T , neither entry is greater than `. The (a− i− 1, b− j) entry of T is at least ` exactly when (i+ 1, j, k) ∈ P .

Similarly the (a − i, b − j − 1) entry of T is at least ` exactly when (i, j + 1, k) ∈ P . Hence K -BK` will

turn this `+ 1 into ` exactly when neither (i+ 1, j, k) nor (i, j + 1, k) is in P . But this is exactly when the

hyperplane toggle removes x from P . Since P is an order ideal, (i, j, k−1) ∈ P , so if T
(a−1)+(b−1)−`
id,(1,1,−1) removes

x from P , then the (a− i, b− j) entry of Ψ3

(
T

(a−1)+(b−1)−`
id,(1,1,−1) (P )

)
equals `, as desired.

(Case 2: x /∈ P ): The (a− i, b− j) entry of T is at most `. If it is less than `, then (i, j, k − 1) /∈ P . Hence

x is unaffected by the hyperplane toggle and the (a− i, b− j) entry of T is unaffected by K -BK`.

Otherwise, the (a − i, b − j) entry of T equals ` and (i, j, k − 1) ∈ P . K -BK` will turn this ` into ` + 1

exactly when neither the (a − i + 1, b − j) nor the (a − i, b − j + 1) entry of T equals ` + 1. This happens

exactly when both (i− 1, j, k) ∈ P and (i, j − 1, k) ∈ P . Thus T
(a−1)+(b−1)−`
id,(1,1,−1) toggles x into P exactly when

K -BK` turns this ` into `+ 1.
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Remark 8.7. By symmetry of J(a× b× c), we obtain analogous results for Ψ1 and Ψ2.

As a consequence of the above lemma and Theorem 8.9, we obtain the following.

Theorem 8.11. J(a× b× c) under Row is in equivariant bijection with Inca+b+c−1(a× b) under P.

8.4.3 Consequences of the bijection

In this subsection, we give a number of consequences of Theorem 8.11. We first give another statement of

resonance on plane partitions in Corollary 8.4 (cf. Theorem 8.8). In Corollary 8.5, we give P-equivariant

bijections between various sets of increasing tableaux using the tri-fold symmetry of J(a×b×c). We exploit

this symmetry to prove Corollaries 8.6 and 8.7. We make a conjecture about the order of Row on J(a×b×3).

Finally, in Theorem 8.12, we improve the bound of Theorem 8.5 of P. Cameron–D. Fon-der-Flaass.

We obtain the following statement of resonance of rowmotion on plane partitions as a consequence of

Theorems 8.11 and 8.2.

Corollary 8.4. (J(a× b× c),Row,Con ◦Ψ3) exhibits resonance with frequency a+ b+ c− 1.

We furthermore obtain the following corollary via the tri-fold symmetry of J(a× b× c).

Corollary 8.5. There are P-equivariant bijections between the sets Inca+b+c−1(a × b), Inca+b+c−1(a × c),

and Inca+b+c−1(b× c).

Proof. By Lemma 8.8 and Remark 8.7, Ψ2 ◦ Ψ−13 is a P-equivariant bijection between Inca+b+c−1(a × b)

and Inca+b+c−1(a × c). Similarly, Ψ1 ◦ Ψ−13 is an equivariant bijection between Inca+b+c−1(a × b) and

Inca+b+c−1(b× c).

Theorem 8.11 and Corollary 8.5 allow us to obtain a number of results for small values of c. We obtain

new proofs of known results Theorems 8.3 and 8.4, while Corollaries 8.6 and 8.7 are new.

We use the following trivial fact about the order of P on increasing tableaux of one row.

Fact 8.1. The order of P on Incq(1× a) is q.

The following is a new proof of Theorem 8.3 of A. Brouwer–A. Schrijver [BrSc74], which we restate for

convenience.

Theorem 8.3. The order of Row on J(a× b) is a+ b.

Proof. The order of Row on J(a× b) is the same as the order of Row on J(a× b× 1). By Corollary 8.11,

the order of Row on J(a × b × 1) equals the order of P on Inca+b(a × 1). By Fact 8.1, the order of P on

Inca+b(a× 1) is a+ b.
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The following result is new.

Corollary 8.6. The order of P on Inca+b(a× b) is a+ b.

Proof. By the tri-fold symmetry of Corollary 8.5, there is a P-equivariant bijection between the sets

Inca+b(a× b) and Inca+b(1× a). The result is then immediate by Fact 8.1.

We can also use Theorem 8.11 and Corollary 8.5 to show that the Theorem 8.4 of P. Cameron–D. Fon-

der-Flaass [CaFo95] is equivalent to Theorem 7.3, thus providing a new proof of Theorem 8.4. Alternatively,

one may use Theorem 8.4 along with Theorem 8.11 and Corollary 8.5 to give a new proof of Theorem 7.3.

Theorem 8.4. The order of Row on J(a× b× 2) is a+ b+ 1.

Proof. By Theorem 8.11 and Corollary 8.5, the order of Row on J(a × b × 2) equals the order of P on

Inca+b+1(2 × a). By Theorem 7.3, the latter is a + b + 1. (Theorem 7.3 only considers those increasing

tableaux of complete content; however its proof extends easily to the case of general content.)

The following result is new.

Corollary 8.7. The order of P on Inca+b+1(a× b) is a+ b+ 1.

Proof. By Corollary 8.5, there is a P-equivariant bijection between the sets Inca+b+1(a×b) and Inca+b+1(2×

a). The result is then immediate from Theorem 7.3.

Recall that for c > 3, the order of Row on J(a×b×c) is generally greater than a+b+c−1. Nonetheless,

we make the following conjecture.

Conjecture 8.1. The order of Row on J(a× b× 3) is a+ b+ 2.

As with the above corollaries, the results of this chapter show that Conjecture 8.1 is equivalent to the

order of K-promotion being a + b + 2 on either Inca+b+2(a × b) or Inca+b+2(3 × a). We have verified

Conjecture 8.1 for a ≤ 7 and b arbitrary.

Finally, we improve the bound in Theorem 8.5 of P. Cameron–D. Fon-der-Flaass [CaFo95] by more than

a factor of 2
3 . This is evidence toward the conjecture of P. Cameron–D. Fon-der-Flaass [CaFo95] that this

condition may be dropped entirely.

Theorem 8.12. If a+ b+ c− 1 is prime and c >
2ab− 2

3
− a− b+ 2, then the cardinality of every orbit of

Row on J(a× b× c) is a multiple of a+ b+ c− 1.
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Proof. Let q = a+ b+ c− 1. The case q = 2 is trivial, so assume q is odd.

Consider P ∈ J(a × b × c) and let T = Ψ3(P ) ∈ Incq(a × b). If T does not have full content, then

by Corollary 8.2, the K-promotion orbit of T has cardinality a multiple of q. Hence by Theorem 8.11, the

rowmotion orbit of P has cardinality a multiple of q, as claimed. Thus, we may assume T has full content.

Similarly, by Proposition 8.4, we may assume that every 1 ≤ i ≤ q is both a descent and a transpose

descent in T . Hence by Lemma 8.3, for 1 ≤ j ≤ q−1
2 , the number of (2j − 1)’s in T plus the number of 2j’s

in T is at least 3. By the increasingness conditions on T , there is exactly 1 instance of q in T . Thus the

total number of labels in T is at least 3 q−12 + 1.

Since T ∈ Incq(a × b), this forces 3a+b+c−22 + 1 ≤ ab. Thus c ≤ 2ab−2
3 − a − b + 2, contradicting the

assumed bound on c.

8.5 Open problems

We conclude by reformulating some observations from [StWi12] in terms of resonance; for further details,

see [StWi12, Sections 8.3 and 8.4].

Recall from Remark 8.5 that there is a poset An whose order ideals are in bijection with n×n alternating

sign matrices such that gyration (of Definition 8.5) is equivalent to the action of the toggle group element

Gyr of Definition 8.13. Another element, SPro, of the toggle group on An was introduced in [StWi12,

Definition 8.14]. It is shown in [StWi12, Theorem 8.15] that the orbit of the empty order ideal in J(An)

under SPro has cardinality 3n − 2. Further data contained in [StWi12, Figure 22] leads us to propose the

following.

Problem 8.1. Construct a natural map f such that (ASMn,SPro, f) exhibits resonance with frequency

3n− 2.

Similarly, there is a poset Tn whose order ideals are in bijection with totally symmetric self-complementary

plane partitions inside a 2n×2n×2n box (denote this set as TSSCPPn). It is shown in [StWi12, Theorem 8.19]

that the cardinality of the rowmotion-orbit of the empty order ideal in J(Tn) is 3n−2. Further data contained

in [StWi12, Figure 22] suggests the following.

Problem 8.2. Construct a natural map f such that (TSSCPPn,Row, f) exhibits resonance with frequency

3n− 2.

We suspect that a solution to the above problems would be a major step towards exhibiting an explicit

bijection between ASMn and TSSCPPn, which are known (non-bijectively) to be equinumerous.
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Chapter 9

Doppelgängers and bijections of plane
partitions

This chapter derives from joint work with Z. Hamaker, R. Patrias, and N. Williams [HPPW16].

9.1 Introduction

9.1.1 Doppelgängers

Let n ∈ N be a positive integer, and let [n] := {1, 2, . . . , n}. If P is a poset with ` elements, its linear

extensions or standard Young tableaux of shape P (written SYT(P)) are all (strictly) order-preserving

bijections from P → [`], while for p ∈ N its P-partitions of height p (written PP[p](P)) are all weakly

order-preserving maps from P → {0} ∪ [p].

Example 9.1. Let P have Hasse diagram and let Q have Hasse diagram . The posets P and Q

each have two standard Young tableaux, and six plane partitions of height one, as illustrated below.

1

32

4

1

23

4

34

1

2

43

1

2

♦

Definition 9.1. Let P 6= Q be two finite posets. We say that P and Q are doppelgängers if
∣∣∣PP[p](P)

∣∣∣ =∣∣∣PP[p](Q)
∣∣∣ for all nonnegative integers p.

The equality of the number of P- and Q-partitions in Definition 9.1 forces the corresponding equality of

the number of standard Young tableaux.

Proposition 9.1. If P and Q are doppelgängers, then |SYT(P)| = |SYT(Q)|.

Proof. The quantity
∣∣∣PP[p](P)

∣∣∣—the order polynomial of P—is a polynomial in p with leading coefficient

1
`! |SYT(P)| [Sta72].
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As a trivial example, any poset and its dual (obtained by turning its Hasse diagram upside down) are

doppelgängers. As a less trivial example, the posets P and Q of Example 9.1 are doppelgängers because

they both have order polynomial

∣∣∣PP[p](P)
∣∣∣ =

∣∣∣PP[p](Q)
∣∣∣ =

1

12
p(p+ 1)2(p+ 2).

We are interested in non-trivial examples of doppelgängers that arise naturally from root systems. We

establish our examples through consideration of the K-theoretic Schubert calculus of minuscule varieties.

9.1.2 Root-Theoretic Posets

We briefly describe the posets required to state our main results. We name and informally describe these

posets in Figure 9.1, and give examples in Figure 9.2. Note that Example 9.1 is an instance of the first row

of Figure 9.1.

Label Name Description Description Name

B ΛGr(k,n) k × (n− k) rectangle shifted trapezoid (n ≥ 2k) Φ+(Bk,n)
H ΛOG(6,12) shifted 5-staircase See Figure 9.2 Φ+(H3)
I ΛQm propeller snake Φ+(I2(m))
A ΛLG(n,2n) shifted n-staircase n-staircase Φ+(An)

Figure 9.1: The eight posets used in Theorem 9.1, Theorem 9.2, and Theorem 9.1. Row B is a doubly infinite
family, row H is a single example, and rows I and A are infinite families. Figure 9.2 illustrates particular
examples.

Minuscule posets

Let Φ be an irreducible crystallographic root system with Weyl group W and weights Λ. A minuscule

weight is a dominant weight ω 6= 0 such that 〈ω, α∨〉 ∈ {−1, 0, 1} for all α ∈ Φ. The weight poset

is the partial order on the orbit {w(ω) : w ∈ W} given by the transitive closure of the relations ω ≺

µ if and only if µ− ω is a simple root; when ω is minuscule, this poset is a distributive lattice, and we call

its poset of join-irreducibles a minuscule poset. A minuscule poset is therefore characterized by a Cartan

type and the index of a minuscule weight (see Figure 9.6 for our indexing conventions). The posets on the

left-hand side of Figure 9.1 are all (co)minuscule posets (except ΛQ2m−1 , which we define to be ΛQ2m without

its top element1):

• ΛGr(k,n) is the minuscule poset of type (An−1, k);

1Warning: Our ΛQ2m−1 conflicts with notation usually reserved for odd orthogonal Grassmannians.
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Label Λ Φ+

B ΛGr(3,6) Φ+(B3,6)

H ΛOG(6,12) Φ+(H3)

I ΛQ6 Φ+ (I2(6))

A ΛLG(3,6) Φ+(A3)

Figure 9.2: Examples of the eight posets of Figure 9.1.

• ΛOG(6,12) is the minuscule poset of type (D6, 1);

• ΛQ2m is the minuscule poset of type (Dm+1,m+ 1); and

• ΛLG(n,2n) is the cominuscule poset of type (Cn, 1).

These objects are reviewed in more detail in Section 9.4.

Coincidental root posets

The coincidental types An, Bn, H3, and I2(m) are those real reflection groups whose degrees d1 ≤ d2 ≤

· · · ≤ dn form an arithmetic sequence. Many natural enumerations are “more uniform” in these types. In

crystallographic type, the positive root poset is the partial order on the positive roots Φ+ given by the

transitive closure of the relations α ≺ β if and only if β − α is a simple root:

• Φ+(An) is the positive root poset of type An; and

• for n ≥ 2k, Φ+(Bk,n) is the restriction of Φ+(Bn−k) to the inversions of bk,n := (s1s2 · · · sn−k)k ∈

W (Bn−k), so that Φ+(Bn,2n) = Φ+(Bn) is the positive root poset of type Bn.

For the noncrystallographic H3 and I2(m) (m 6= 2, 3, 4, 6), we use the surrogate root posets constructed

by D. Armstrong [Ar09]:

• Φ+(H3) is drawn in Figure 9.2; and
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• Φ+(I2(m)) is a chain of length m− 2 with two minimal elements appended.

We further discuss the coincidental types in Section 9.5.

9.1.3 Main Results

For each coincidental type, Theorem 9.1 and Theorem 9.2 bijectively establish a pair of non-trivial dop-

pelgängers. Theorem 9.1 addresses the top three rows of Figure 9.1, corresponding to the coincidental types

Bn, H3, and I2(m).

Theorem 9.1. The pairs ΛGr(k,n) and Φ+(Bn,k), ΛOG(7,14) and Φ+(H3), and ΛQm and Φ+ (I2(m)) are each

doppelgängers.

Indeed, there are explicit, type-uniform (K-theoretic jeu de taquin) bijections

(BP) PP[p]
(
ΛGr(k,n)

)
' PP[p]

(
Φ+(Bn,k)

)
,

(HP) PP[p]
(
ΛOG(7,14)

)
' PP[p]

(
Φ+(H3)

)
, and

(IP) PP[p] (ΛQm) ' PP[p]
(
Φ+(I2(m))

)
,

which restrict to explicit, type-uniform bijections

(BS) SYT
(
ΛGr(k,n)

)
' SYT

(
Φ+(Bn,k)

)
, (M. Haiman [Ha92])

(HS) SYT
(
ΛOG(7,14)

)
' SYT

(
Φ+(H3)

)
, and

(IS) SYT (ΛQm) ' Φ+ (I2(m)) ,

Although the bijections are type-uniform, our proofs are only partially so.

Theorem 9.2 establishes a relationship between ΛLG(n,2n) and Φ+(An) (from the last row of Figure 9.1),

although these two posets are not quite doppelgängers. A minuscule poset may be identified with an

order filter in the corresponding root poset, and therefore is naturally labeled by certain positive roots

(see Equation (9.5)). The diagonal of the minuscule poset ΛLG(n,2n) is the set of its elements labeled by

long roots of Φ+(Cn); this is the leftmost column of the posets illustrated in the top row of Example 9.2.

Let SYT(ΛLG(n,2n)) denote the product [2n(n−1)/2] × SYT(ΛLG(n,2n)) (with elements represented as shifted

standard Young tableaux with any set of off-diagonal entries barred), and let PP
[2p]

(ΛLG(n,2n)) be the subset

of PP[2p](ΛLG(n,2n)) with only even heights on the diagonal. These definitions are illustrated in Example 9.2

for n = 2 and p = 1.
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Example 9.2. For n = 2 and p = 1, SYT(ΛLG(2,4)) and PP
[2]

(ΛLG(2,4)) (first row), and (the duals of)

SYT(Φ+(A2)) and PP[1](Φ+(A2)) (second row) are illustrated below. The color white stands for height zero,

gray for height one, and black for height two. The modified fillings for ΛLG(n,2n) have no barred element nor

the color gray in their leftmost columns.

1

2

3

1

2

3

3 2

1

2 3

1

♦

The next theorem summarizes work in [Sh99] and [Pu14].

Theorem 9.2. There is an explicit (symplectic jeu de taquin) bijection between

(AP) PP
[2p] (

ΛLG(n,2n)

)
' PP[p]

(
Φ+(An)

)
, (J. Sheats [Sh99])

and there is also an explicit (jeu de taquin) bijection between

(AS) SYT
(
ΛLG(n,2n)

)
' SYT

(
Φ+(An)

)
. (K. Purbhoo [Pu14])

Our contribution is to conjecture that a simple generalization of K. Purbhoo’s bijection also establishes

(AP).

Conjecture 9.1. There is an explicit (K-theoretic jeu de taquin) bijection for (AP) that restricts to K. Purb-

hoo’s bijection for (AS).

The precise version of this conjecture appears in Section 9.10.3.

9.1.4 Previous Work

We outline previous work on Theorems 9.1 and 9.2.

(BS) and (BP)

(BS) In his study of dual equivalence [Ha92], M. Haiman gave an elegant jeu de taquin bijection called

rectification for (BS). We will review rectification in a more general context in Section 9.8.2.
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(BP) In [Pr83], R. Proctor used a branching rule due to R. King ([Ki75, Li50]) from the Lie algebra inclusion

sp2n(C) ↪→ sl2n(C) to prove the identity (BP) non-bijectively. Indeed, he remarks that “the question

of a combinatorial correspondence for [the identity (BP)] seems to be a complete mystery.”

For p = 1, J. Stembridge produced a jeu de taquin bijection [Ste86], while V. Reiner [Rei97] gave an

argument using type B noncrossing partitions. For p = 2, S. Elizalde gave an bijection in the language

of pairs of lattice paths [El15]. The restriction of our bijection to these special cases is not immediately

equivalent to any of these. No bijection was previously known for p > 2.

Our bijection simultaneously generalizes M. Haiman’s bijection and provides the sought-after bijective

proof of R. Proctor’s result for arbitrary p.

(HS),(HP),(IS), and (IP)

These four identities (noted in [Wi13, Theorems 3.1.24 and 3.1.27]) are easy to establish, as one can explicitly

compute the relevant order polynomials. We provide the first natural bijections.

(AS) and (AP)

(AS) This identity can be proven bijectively using properties of Sagan-Worley insertion [Wo84, Sa87].

K. Purbhoo [Pu14] gave an embedding of LG(n, 2n) ↪→ Gr(n, 2n), which he used to give an simple,

explicit jeu de taquin bijection by folding. We will review this bijection in Section 9.10.3.

(AP) R. Proctor [Pr90] related Young tableaux indexing bases of certain highest weight representations of

sp2n(C) with Gelfand patterns indexing the same representations to prove the identity (AP) non-

bijectively.

J. Sheats [Sh99] defined symplectic jeu de taquin to give a combinatorial proof. His bijection is not

immediately equivalent to that of our Conjecture 9.1. Further combinatorics based on the Garsia-Milne

involution principle appears in [FuKr96, FuKr97].

Our Conjecture 9.1 would simultaneously generalize K. Purbhoo’s bijection and give a new and simpler

bijective proof of R. Proctor’s result.

9.1.5 Bijections

Let (X,Y, Z) be a triple from a row of Figure 9.3.
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Label X Y Z

B Gr(k, n) Bk,n OG(n, 2n)
H OG(6, 12) H3 Gω(O3,O6)
I Qm I2(m) Q2m−2

A LG(n, 2n) An Gr(n, 2n)

Figure 9.3: As illustrated in Figure 9.4, both the minuscule poset ΛX and the coincidental root poset Φ+(Y )
embed in the ambient minuscule poset ΛZ .

The posets Φ+(Y ) have an odd feature—besides having the minuscule doppelgänger ΛX , the dual poset

of each is an order ideal in a second, ambient minuscule poset ΛZ .2 The minuscule doppelgänger poset ΛX

also occurs as a subposet of ΛZ . These observations are the key to our bijections.

We specify the shapes inside ΛZ corresponding to ΛX and Φ+(Y ) as

v/u := Θ(ΛX) ⊆ ΛZ and w := χ(Φ+(Y )) ⊆ ΛZ .

These embeddings are illustrated in Figure 9.4, and fully discussed in Section 9.6.

B H I A

Figure 9.4: The minuscule posets ΛZ in which the doppelgänger pairs of Figure 9.2 are embedded. The
nodes with thick borders correspond to Θ(ΛX) = v/u, while the gray nodes represent χ(Φ+(Y )) = w.

The fundamental object that we borrow from the combinatorics of K-theoretic Schubert calculus is a

natural generalization of standard Young tableaux. The increasing tableaux of shape v/u and height

k—written IT[k](v/u)—are strictly order-preserving maps from v/u → [k]. Note that here as in Chapter 8,

unlike in Chapter 7, we do not require that all entries between 1 and k appear. For a ranked poset P whose

maximal chains are all of the same length ht(P) (and, in particular, for all the posets of Figure 9.1), there

2We thank R. Proctor for pointing this out for H3, long before we had any idea how to make sense of it.
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is a simple bijection

IT[k](P) ' PP[p](P),

where k = p+ht(P) (see Proposition 9.6). We may therefore approach Theorem 9.1 by considering increasing

tableaux instead of P-partitions.

The significant advantage that increasing tableaux enjoy over P-partitions is a well-developed theory of

(K-theoretic) jeu de taquin initiated by H. Thomas and A. Yong in [ThYo09b] and further developed by

A. Buch, E. Clifford, H. Thomas, M. Samuel, and A. Yong in [ClThYo14, BuSa13]. When we restrict to

the minuscule posets ΛZ , there are well-behaved jeu de taquin-like operations called K-rectifications that

produce a tableau Rect(T) ∈ IT[k](w) from a given increasing tableau T ∈ IT[k](v/u) (see Theorem 9.11).

These rectifications restrict to the set of standard Young tableaux.

Under the identification of increasing tableaux and P-partitions, the bijections of Theorem 9.1 may be

uniformly and simultaneously described as

IT[k](ΛX)→ IT[k](Φ+(Y ))

T 7→ χ−1 (Rect (Θ(T))) .

We illustrate these bijections in Example 9.3.

Example 9.3. Let P and Q be as in Example 9.1. These are an example of row (B) of Figure 9.3 (for k = 2

and n = 4), and so both embed in the poset . Rectification is the following jeu de taquin computation

(see Section 9.8.2), which gives a bijection from PP[1](P) to PP[1](Q):
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→ →

•
1

22

3

→

1

•
22

3

→

1

2

••
3

→

1

2

33

•
→ →

→ →

•
1

22

4

→

1

•
22

4

→

1

2

••
4

→

1

2

44

•
→ →

→ →

•
1

32

4

→

1

•
32

4

→

1

2

3•
4

→

1

2

34

•
→ →

→ →

•
1

23

4

→

1

•
23

4

→

1

2

•3

4

→

1

2

43

•
→ →

→ →

•
1

33

4

→

1

•
33

4

→

1

3

••
4

→

1

3

44

•
→ →

→ →

•
2

33

4

→

2

•
33

4

→

2

3

••
4

→

2

3

44

•
→ →

Restricting to the standard fillings in the middle two rows illustrated above recovers M. Haiman’s bijection

[Ha92] of standard Young tableaux of P and Q. ♦

Conjecture 9.1 similarly extends K. Purbhoo’s folding map.

Example 9.4. For n = 2 and p = 1, let ΛLG(2,4) and the dual of Φ+(A2) be as in Example 9.2. These

are an example of row (A) of Figure 9.3, and so both embed in the poset . Folding is the following

alphabet-reordering jeu de taquin computation (see Section 9.8.2), bijecting PP[1](Φ+(A2)) to PP
[2]

(ΛLG(2,4)):
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→ →
1

2 2

2 2

1

→
1

1 1

2 2

2

→ →

→ →
1

3 2

3 2

1

→
1

2 1

3 2

3

→ →

→ →
1

2 3

2 3

1

→
1

2 1

3 2

3

→ →

→ →
1

3 3

3 3

1

→
1

1 1

3 3

3

→ →

→ →
2

3 3

3 3

2

→
2

2 2

3 3

3

→ →

Restricting to the standard fillings (in their respective alphabets) of the second and third rows above

recovers K. Purbhoo’s bijection of standard tableaux [Pu14]. ♦

9.2 Philosophy of the Proof

The philosophy behind our proof may be summarized as follows: Given a ring with a basis indexed by

combinatorial objects, one may deduce bijections of the combinatorial objects from multiplicity-free products

in the ring. In this section, we give a short example of this philosophy by sketching a parallel argument due

to R. Stanley.

Theorem 9.3 (R. Stanley [Sta86, §3]). The number of self-complementary plane partitions in a (2r)×(2s)×

(2t) box is equal to the number of pairs of plane partitions, each fitting inside an s× r × t box.

9.2.1 A Ring

Recall from Section 1.3 that the ring of symmetric polynomials in n variables Λn has a basis of Schur

functions {sλ : λ a partition with at most n parts}, where

sλ :=
∑

T∈SSYTn(λ)

n∏
i=1

xnumber of times i appears in T
i .
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9.2.2 A Multiplicity-Free Product

R. Stanley’s argument hinges on the following multiplicity-free identity in Λt+r, expressing the square of a

Schur function indexed by the rectangular partition (sr) in the Schur basis:

s2
(sr) =

∑
γ

sγ , (9.1)

where γ ranges over the explicit set of partitions

{
(s+ δ1, . . . , s+ δr, s− δr, . . . , s− δ1) : δ = (δ1, . . . , δr) ⊆ (sr)

}
.

Example 9.5. For s = r = 2, we have the
(
s+r
s

)
=
(

4
2

)
= 6-term expansion

s2 = s + s + s + s + s + s . ♦

Theorem 9.3 follows from Equation (9.1) as follows. The terms in the product on the left-hand side

of Equation (9.1) are indexed by pairs of rectangular semistandard tableaux with entries in [t+ r] (top left

of Figure 9.5). By subtracting i from the ith row, we produce a pair of plane partitions, each fitting inside

an s× r × t box, from this pair of semistandard tableaux (bottom left of Figure 9.5).

For the right-hand side, we again have a semistandard tableaux (top right of Figure 9.5). As before, we

subtract i from the ith row to produce a plane partition. Now observe that the partitions λ occuring in the

sum on the right-hand side are exactly of the form required so that λ and its rotation by 180◦ may be placed

together to form a rectangular partition of size ((2s)2r). The interpretation in Theorem 9.3 is completed

by noting that the filling of this rotation is specified by the self-complementarity condition (bottom right

of Figure 9.5).

9.2.3 A Bijection

But, as sketched at the end of [Sta86], Theorem 9.3 can be realized with a simple bijection, guided by the

multiplicity-free product above. Semistandard tableaux (unlike plane partitions) come with a theory of jeu

de taquin as discussed in Section 1.3. By a standard combinatorial realization of the Littlewood-Richardson

rule (see, for example, [Fu97]), placing our initial pair of semistandard tableaux “kitty-corner” from each

other and applying jeu de taquin until arriving at a north-west-justified (“straight”) shape gives a bijection
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from the pairs of tableaux representing the left-hand side of Equation (9.1) to the semistandard tableaux

representing the terms of the right-hand side. That is, we use the combinatorics of the ring to extract a

bijection from a multiplicity-free product.

• • • • 1 1 2 3

• • • • 2 4 5 5

• • • • 6 6 6 6

1 1 1 2

3 3 4 5

4 5 6 6

jeu de taquin //

1 1 1 1 1 2 3 5

2 2 4 4 5 6 6 6

3 3 5 6 6

4 5 6

subtract i from ith row
complete to

self-complementary

��

Theorem 9.3
//

add i to ith row
place tableaux

kitty-corner

OO

Figure 9.5: An illustration of a bijective proof of Theorem 9.3.

9.2.4 Outline of the Chapter

In summary, a bijection arises from a multiplicity-free identity in a ring with a basis indexed by combinatorial

objects. In this chapter, we apply this philosophy using the objects and tools of minuscule K-theoretic

Schubert calculus. To obtain the bijections of Theorem 9.1, we therefore need:

• combinatorial objects (Sections 9.4 to 9.6);

• rings with bases indexed by those objects (Section 9.7);

• combinatorial rules to compute structure coefficients in those rings (Section 9.8); along with

• interesting multiplicity-free formulas in those rings (Theorems 9.8 and 9.10).

The remainder of the chapter is structured as follows. In Section 9.3, we review required background

and fix notation for root systems, Coxeter groups, and flag varieties. In Section 9.4, we discuss minus-

cule (co)weights and their associated posets. We then recall the coincidental types and their root posets

in Section 9.5. Section 9.6 is devoted to certain embeddings of the minuscule posets and coincidental root

posets of Figure 9.3 inside ambient minuscule posets. In Section 9.7, we recall the basic notions of (coho-

mological and K-theoretic) Schubert calculus, building to the powerful combinatorial toolkit of Section 9.8.

In Section 9.9, we state and prove our main theorem (Theorem 9.16), which we specialize in Section 9.10
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to conclude Theorem 9.1. Section 9.10 also contains the precise statement of Conjecture 9.1. Finally, in

Section 9.11, we outline some related open problems and place our results in a larger framework.

9.3 Root Data

In this section, we review background and fix notation. We refer the reader to [Hi82, Hu92] for a more

comprehensive treatment.

9.3.1 Root Systems

Let V be a real Euclidean space of rank n with a nondegenerate symmetric inner product 〈·, ·〉. Fix an

irreducible root system Φ ⊂ V with positive roots Φ+ and choose a set of simple roots ∆ := {α1, α2, . . . , αn}.

When we wish to differentiate types, we will write Φ = Φ(Xn) for the root system of type Xn (and similarly

for other objects). For a root α, let α∨ := 2 α
〈α,α〉 be the corresponding coroot and let Φ∨ = {α∨ : α ∈ Φ}

be the dual root system. The root system Φ is crystallographic if 〈α, β∨〉 ∈ Z for all α, β ∈ Φ; in this

case we define the positive root poset to be the partial order on Φ+ given by

α ≺ β if and only if β − α is a nonnegative sum of simple roots. (9.2)

The height of a positive root α =
∑n
i=1 aiαi is the integer ht(α) =

∑n
i=1 ai. We will abuse notation and

write Φ+ for the positive root poset, and we note that Φ+ has is a unique maximal element α̃ called the

highest root.

For Φ crystallographic, we let Q := ZΦ be the root lattice, Q∨ := ZΦ∨ the coroot lattice, and we

set Λ := {ω : 〈ω, α∨〉 ∈ Z for all α ∈ ∆} to be the weight lattice (whose elements are weights) and

Λ∨ := {ω : 〈ω, α〉 ∈ Z for all α ∈ ∆} to be the coweight lattice. Then Λ contains the root lattice as a

subgroup; the finite index f = |Λ/Q| is called the index of connection. The dominance order is the

order on Λ given by

λ ≺ ω if and only if ω − λ is a nonnegative sum of simple roots.

We define the reflection sα(v) := v−〈v, α∨〉α for α ∈ Φ+. The Coxeter group is the group W generated

by these reflections; W has a smaller generating set called the simple reflections S = {si := sαi
: αi ∈ ∆},
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and the Coxeter system (W,S) has the presentation

〈s1, s2, · · · , sn : s2
i = (sisj)

mij = e〉,

where mij = mji and e is the identity of W . The relations (sisj)
2 = e are called commutation relations,

while higher order relations (sisj)
mij for mij > 2 are called braid relations. Associated to this presentation

is the Coxeter-Dynkin diagram, a graph with vertices si and edges from si to sj labeled by mij (we omit

edges for commutations and omit labels for which mij = 3). In crystallographic type, we will use the

standard convention of multiple bonds with arrows indicating long and short roots (see Figure 9.6 for some

examples).

With some low-dimensional redundancy, finite irreducible Coxeter groups are classified as the crystallo-

graphic types An, Bn, Dn, E6, E7, E8, F4, and G2, and the noncrystallographic types H3, H4, and I2(m). We

shall refer to these symbols as Coxeter-Cartan types. Each crystallographic Coxeter group has an affine

extension W̃ = W nQ∨ obtained by adding a new affine simple reflection parallel to α̃.

A standard parabolic subgroup WJ ⊂ W is a group generated by a subset of the simple reflections

J ⊂ S; a maximal parabolic subgroup is one for which J = S \ {si}—we shall denote such subgroups by

W〈i〉. The set W J := W/WJ is called a parabolic quotient; we shall identify W J with its minimal coset

representatives and write W 〈i〉 = W/W〈i〉. Any w ∈ W can be written as w = wJw
J with wJ ∈ WJ and

wJ ∈W J .

For any w ∈W , we let

Red(w) := {(si1 , si2 , . . . , si`) : w = si1si2 · · · si` and ` is minimal}

be its set of reduced words; by Matsumoto’s theorem, Red(w) is connected under commutations and braid

relations.

For w ∈W we let

w :=
(
−w(Φ+)

)
∩ Φ+ = {αi1 , si1(αi2), . . . , si1si2 · · · si`−1

(αi`)}

be its inversion set, where si1si2 · · · si` is any reduced word for w. We write len(w) := |w| = ` for the length

of w. The Demazure product is defined by si • w :=


siw if len(siw) > len(w)

w otherwise

and then extended to

arbitrary words (the Demazure product corresponds to the product in the 0-Hecke algebra, and so gives a
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monoid structure on W .)

The weak order is the order on W defined by w ≤ v if and only if w ⊆ v. The group W has a unique

longest element w◦ that is maximal in the weak order, and we write w◦(J) for the longest element of WJ .

Each parabolic quotient W J also has a longest element wJ◦ , and W J consists of the elements in the interval

[e, wJ◦ ] (and so inherits the partial order from W ). The map w̌ := w◦ww◦(J) gives an antiautomorphism of

W J .

9.3.2 Flag Varieties

Fix G a semisimple complex Lie group with Borel subgroup B, opposite Borel B− and maximal torus

T := B ∩ B−.

For example, we denote the classical groups (over C) by:

• SL(n) := {A an n× n matrix : det(A) = 1};

• Sp(2n) := {A a (2n)× (2n) matrix : AtrJA = J}, where J =

 0 I

−I 0

; and

• SO(n) := {A ∈ SL(n) : A−1 = Atr}.

One recovers the data of Section 9.3.1 in the following way. The Weyl group W := N(T)/T, where N(T)

is the normalizer of T in G. The complex Lie algebra g of G decomposes under the adjoint action as

g = t⊕
⊕
α∈Φ

gα,

where t is the Lie algebra of the maximal torus and each gα is one-dimensional. From this decomposition,

we recover the root system Φ, the positive roots Φ+, and the simple roots ∆.

Then G decomposes as the disjoint union (the Bruhat decomposition)

G =
⊔
w∈W

B−wB.

More generally, let P be a parabolic subgroup of G; we write WP = W/WP for the corresponding parabolic

quotient and subgroup of W . Then

G =
⊔

w∈W P

B−wP
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and the generalized flag variety G/P has the decomposition

G/P =
⊔

w∈W P

B−wP/P. (9.3)

9.4 Minuscule Posets

Definition 9.2. A weight ω ∈ Λ is called minuscule if ω 6= 0 and 〈ω, α∨〉 ∈ {−1, 0, 1} for α ∈ Φ.

A minuscule weight for the dual root system Φ∨ is called a minuscule coweight; the corresponding

weight of the original root system is called cominuscule. Minuscule (co)weights frequently occur as simple

examples of general constructions [Gr13, Pr84a, Pr84b]. In Schubert calculus, a (co)minuscule weight ω

corresponds to a flag variety G/P, whose structure coefficients are nicely computable in terms of the poset

ΛG/P (defined below) (cf., e.g., [ThYo09a]). From the point of view of the Weyl group W , a minuscule weight

is a point whose W -orbit is small relative to |W |—such points can be used to construct small permutation

representations of W . In the representation theory of Lie algebras, the highest weight representation Vω

associated to a minuscule weight ω consists only of the weights in this W -orbit, and bases for Vkω are indexed

by PP(k)(ΛG/P).

Theorem 9.4. For ω a dominant coweight in crystallographic Coxeter-Cartan type, the following are equiv-

alent:

1. ω is minuscule—that is, ω 6= 0 and 〈ω, α〉 ∈ {−1, 0, 1} for all α ∈ Φ;

2. ω = ωi is a fundamental coweight, and ci = 1 in the expansion α̃ =
∑n
j=1 cjαj of the highest root in

the simple root basis;

3. ω = ωi is a fundamental coweight, and there is an automorphism of the affine Dynkin diagram sending

α0 to αi;

4. ω is a nonzero minimal representative of Λ∨/Q∨ in the dominance order; and

5. ω = ωi is a fundamental coweight, and the corresponding node of the Dynkin diagram is marked in

gray in Figure 9.6.

Proof. See, for example, [Ste94b, Appendix: A Minuscule Atlas], [Ste98, Proposition 1.12], and [Gr13]
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Coxeter-Cartan type
and index

G/P Coxeter-Dynkin diagram

(An, k) Gr(k, n+ 1)

1 2 n

(Bn, n) Q2n−1 1 2
n

(Cn, 1) LG(n, 2n) 1 2 n

(Dn,1)
(Dn,2) OG(n, 2n)

1

2
3

n

(Dn, n) Q2n−2

1

2
3

n

(E61)
(E6,6) OP2

1 3 4 5 6

2

(E7, 1) Gω(O3,O6)
1 3 4 5 6 7

2

(H3, 3) 5

1 2 3
(I2(m),1)
(I2(m),2)

m

1 2

Figure 9.6: In crystallographic type, the roots αi marked in gray have a corresponding cominuscule funda-
mental weight ωi; the affine simple root is marked in black. For H3 and I2(m), the roots marked in gray
correspond to maximal parabolic quotients W 〈i〉 whose longest element is fully commutative.

9.4.1 General Construction

The stabilizer

W〈i〉 := {w ∈W : w(ωi) = ωi}

is the maximal parabolic subgroup of W generated by ∆\{αi}; let Pi be the corresponding maximal parabolic

subgroup of G. By the orbit-stabilizer theorem, the minimal coset representatives w of the parabolic quotient

W 〈i〉 := W/W〈i〉 are in bijection with the weights in the orbit {w(ωi) : w ∈ W}. We will now explicitly

describe the elements of these quotients in the case ωi is minuscule.

Fix w ∈ W and let w = (sk1 , sk2 , . . . , sk`) be a reduced word for w. Define a partial order ≺w on [`] by

the transitive closure of the relations

i ≺w j if i < j and skiskj 6= skjski . (9.4)

This partial ordering defines an ordering on [`] called a heap [Vi86, Ste96], and hence gives an ordering of

the roots in the inversion set w of w.

We recall that a fully commutative element w ∈ W is one whose set Red(w) of reduced words is
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connected using only commutations. For any two reduced words of a fully commutative w, it is then not

difficult to see that the two induced partial orderings on w are isomorphic. We may therefore unambiguously

refer to the heap w of w ∈W , when w is fully commutative.

1 3

2

2

1 3

2

2

1 3

2

2

1 3

2

2

1 3

2

2

1 3

2

2

Figure 9.7: For W = W (A3), the minuscule weight ω2 is fixed by the parabolic subgroup W〈2〉. The

corresponding quotient W 〈2〉 has a fully commutative longest element w
〈2〉
◦ = s2s1s3s2, whose heap is

w
〈2〉
◦ = [2]× [2] ' ΛGr(2,C4).

Theorem 9.5 ([Ste96, Proposition 2.2 and Lemma 3.1]). For w fully commutative, there is a bijection

SYT(w) ' Red(w).

This induces a bijection

PP[1](w) ' [e, w].

In [Ste96], J. Stembridge classified all maximal parabolic quotients whose longest element w
〈i〉
◦ is fully

commutative. This classification is summarized in Figure 9.6, and is intimately related to finding a natural

subgroup of W isomorphic to Λ/Q. When W is a Weyl group, this classification essentially coincides with

the classification of minuscule representations of the corresponding Lie algebra.3

By Theorem 9.5 and J. Stembridge’s classification, when ωi is minuscule the inversion sets of the elements

in W 〈i〉—which, a priori are just biclosed subsets of positive roots not lying in the root system corresponding

to Pi—are order ideals in the heap for the longest element w
〈i〉
◦ of W 〈i〉. This heap may be simply described

as the order filter in Φ+ generated by αi:

ΛG/Pi
:= {α ∈ Φ+ : if α =

n∑
j=1

ajαj , then ai 6= 0}. (9.5)

We summarize this discussion with the theorem below.

3The Weyl group is not sensitive to the difference between long and short roots, and so confuses types B and C.
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Theorem 9.6 (R. Proctor [Pr84a]). When ω is a minuscule coweight, there is a bijection

WP ' PP[1](ΛG/P)

u 7→ u,

where for WP := {w ∈W : w(ω) = ω}, WP is the set of minimal coset representatives of W/WP.

In particular, the weak order on WP is a distributive lattice. When ω is a (co)minuscule weight, we shall

also use the term (co)minuscule to describe the corresponding flag variety G/P and poset ΛG/P.

9.4.2 Explicit Constructions

Expanding on Section 9.1.2, we explicitly identify the posets from Figure 9.6 that we require by giving

reduced words for w
〈i〉
◦ (the corresponding posets can then be built as heaps using Equation (9.4)). We have

seen these posets before, for example in Section 2.4.

The Grassmannian Gr(k, n)

In type An−1, any fundamental weight ωk is minuscule. The Grassmannian is

Gr(k, n) := SL(n)/SL(n)k.

Let W = W (An−1). The image of Λ/Q in W is given by the cyclic group 〈c〉, where c = s1s2 · · · sn−1, and

the corresponding parabolic quotient W 〈k〉 may be identified as the weak order interval [e, ck]. Although ck

is not reduced for k > 1, one can check that

w
〈k〉
◦ =

n−k∏
j=1

n−j∏
i=k−j+1

si

is a reduced word. The poset ΛGr(k,n) is commonly described as a [k] × [n − k] rectangle, represented as a

partition by (n− k, n− k, . . . , n− k)︸ ︷︷ ︸
k times

.

LG(n, 2n)

In type Cn, ω1 is a cominuscule weight. The Lagrangian Grassmannian is

LG(n, 2n) := Sp(2n)/Sp(2n)1.
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Let W = W (Cn). The longest element w
〈1〉
◦ of W 〈1〉 is an involution—reflecting the fact that |Λ/Q| = 2—

with reduced word

w
〈1〉
◦ =

n∏
i=1

n−i+1∏
j=1

sj ,

so that—when drawn as a shifted Young diagram—ΛLG(n,2n) is a shifted staircase of order n. We write this

as the shifted partition (n, n− 1, . . . , 1)∗.

OG(n, 2n) and Q2n−2

In type Dn, ω1 and ω2 are minuscule weights with isomorphic minuscule posets ΛOG(n,2n), while ωn is also

minuscule but with poset ΛQ2n−2 .

The even Orthogonal Grassmannian is

OG(n, 2n) := SO(2n)/SO(2n)1 = SO(2n)/SO(2n)2,

and the even dimensional quadric is

Q2n−2 := SO(2n)/SO(2n)n.

Let W = W (Dn) and write s1,2(j) =


s1 if j is odd

s2 if j is even

. One can check that the corresponding longest

elements of W 〈i〉 for i ∈ {1, 2, n} have reduced words

w
〈1〉
◦ =

n∏
j=1

(
s1,2(j)

n−j+1∏
k=3

sk

)

w
〈2〉
◦ =

n∏
j=1

(
s1,2(j + 1)

n−j+1∏
k=3

sk

)

w
〈n〉
◦ =

 n∏
j=3

sj

−1

(s1s2)

 n∏
j=3

sj

 .

The image of Λ/Q in W is then given by the elements {e, w〈1〉◦ , w
〈2〉
◦ , w

〈n〉
◦ }, with multiplicative structure

depending on the parity of n.

The poset ΛOG(n,2n) is a shifted staircase of size n− 1. The poset ΛQ2n−2 can be compactly described as

the iterated distributive lattice of order ideals J n−3([2]× [2]), and we define ΛQ2n−3 to be ΛQ2n−2 without

its top element.
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Gω(O3,O6)

In type E7, only ω1 is a minuscule weight. For W = W (E7), a reduced word for the longest element of W 〈1〉

is

w
〈1〉
◦ = s1s3s4s5s6s2s5s4s3s1s7s6s5s4s3s2s5s4s6s5s7s6s2s4s3s1.

The poset ΛGω(O3,O6) is the second poset from the left in Figure 9.4.

9.5 Coincidental Root Posets

Definition 9.3. We call the Coxeter-Cartan types An, Bn, H3, and I2(m) the coincidental types.

A. Miller observed that these are exactly those types for which the degrees d1 < d2 < · · · < dn of

the Coxeter group W form an arithmetic sequence [Mi15]. The coincidental types have many remarkable

properties, and many enumerative questions are “more uniform” when restricted from all Coxeter-Cartan

types to just the coincidental types. Such enumerative results include:

• the number of k-dimensional faces of the generalized cluster complex [FoRe05];

• the number of saturated chains of length k in the noncrossing partition lattice [Rea08];

• the number of reduced words for w◦ [Sta84, EdGr87, Ha92, Wi13];

• the number of multitriangulations [CeLaSt14]; and

• the Coxeter-biCatalan numbers [BaRe15].

9.5.1 Crystallographic

Since An and Bn are crystallographic, the root posets for those types are defined by Equation (9.2). Examples

are given in Figure 9.2—when drawn as a Young diagram, Φ+(An) is a staircase (n, n− 1, . . . , 1) of order

n, while Φ+(Bn) is a shifted double staircase when drawn as a shifted Young diagram (see Figures 9.13

and 9.16 for examples).

More generally, using the conventions of Figure 9.6, let4

bk,n := (s1s2 · · · sn−k)k ∈W (Bn−k)

4The subposet specified by bk,n in the root system of type Cn−k is isomorphic to Φ+(Bk,n), although it does not sit inside
the root poset in quite the same way.
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for n ≥ 2k. The poset Φ+(Bk,n) is defined to be

Φ+(Bk,n) := Φ+(Bn−k) ∩ bk,n,

the restriction of Φ+(Bn−k) to the roots that are inversions of bk,n. As a special case, since bn,2n = w◦ ∈

W (Bn), we have Φ+(Bn) = Φ+(Bn,2n). When drawn as a shifted Young diagram, this poset may be

described as the shifted trapezoid, with shifted partition shape (n− 1, n− 3, . . . , n− 2k + 1)∗.

9.5.2 Non-Crystallographic

It remains to construct “root posets” in the noncrystallographic types H3 and I2(m). For convenience, we

work with reflections instead of roots.

It is a fact, uniformly proven by B. Kostant [Ko59], that the sizes of the ranks of Φ+ and the degrees

d1, d2, . . . , dn of W form conjugate partitions under the identity [Hu92, Theorem 3.20]

∣∣{α ∈ Φ+ : ht(α) = i}
∣∣ = |{j : dj > i}| . (9.6)

The obvious application of Equation (9.2) does not yield a root poset satisfying this condition in the

non-crystallographic types. For example, if φ := 1+
√

5
2 , then in the basis of simple roots,

Φ+(I2(5)) = {(1, 0), (0, 1), (φ, 1) , (1, φ) , (φ, φ)} ,

which would be ordered by Equation (9.2) to have Hasse diagram , so that it has two elements of rank

one, two elements of rank two, and one element of rank three. On the other hand, since the degrees of I2(5)

are 2 and 5, Equation (9.6) predicts two elements of rank one, and one element for each rank greater than

one.

On the basis of Equation (9.6) and a few other criteria from Coxeter-Catalan combinatorics, D. Armstrong

constructed surrogate root posets in types H3 and I2(m) with desirable behavior [Ar09]. For more details,

see [CuSt15, Section 3] (which includes a construction of Φ+(H3) using a folding argument).

We will construct these root posets using the fully commutative theory reviewed in Section 9.4, and refer

the reader to the noncrystallographic part of Figure 9.6 for the labeling conventions of the Coxeter-Dynkin

diagram.
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1 2 3

212 232

12121 32123

121 3121213

12321 231212132

12312121321

2123121213212

2123212

123121321

Figure 9.8: The nodes of the root poset of type H3 labeled using the method of Section 9.5.2.

I2(m)

In type I2(m), the root poset is a natural generalization of the root posets for the crystallographic dihedral

types A1 ×A1, A2, B2, and G2.

The Coxeter group W = W (I2(m)) has two generators, s = s1 and t = s2. W has a fully-commutative

maximal parabolic quotient W J , where J = {t}. The longest element of W J has one reduced word: wJ◦ =

sts · · ·︸ ︷︷ ︸
m−1 letters

. The heap for wJ◦ is therefore a chain of length m − 1, whose vertices are canonically labeled

by the reflections coming from the corresponding letter of the word for wJ◦ : s, sts, ststs, . . .. We now

apply Equation (9.6) to conclude that sts covers t.

H3

We note that W (I2(5)) is the maximal parabolic subgroup of W = W (H3) generated by J = {s1, s2}.

By the previous section, we therefore obtain the root poset of the parabolic subgroup W (I2(5)), which

ought to be the restriction of the full root poset of H3 to that parabolic subgroup. Now the parabolic

quotient W J = W (H3)/W (I2(5)) has a maximal element that is fully commutative (see the classification

in Figure 9.6), which allows us to canonically label the heap of

wJ◦ = s3s2s1s2s1s3s2s1s2s3

by the corresponding reflections. Letting tl s3ts3 for all reflections t ∈ WJ such that s3ts3 6= t, we obtain

the desired poset, which is illustrated in Figure 9.8.

224



We write

w◦(Y ) :=


w◦ ∈W (Y ) if Y ∈ {An, H3, I2(m)}

bk,n ∈W (Bn−k) if Y = Bk,n

. (9.7)

Note that the root posets of types Dn (n ≥ 4), E6, E7, E8, and F4 are each non-planar, in contrast to the

coincidental root posets constructed above, and hence cannot embed in any minuscule poset.

9.6 Poset Embeddings

Let (X,Y, Z) be a triple in Figure 9.3. Following [ThYo09a] and [Pu14], we formalize Figure 9.4 by embedding

the doppelgängers ΛX and Φ+(Y ) into the ambient minuscule posets ΛZ . That is, we explicitly characterize

v/u := Θ(ΛX) ⊆ ΛZ and w := χ(Φ+(Y )) ⊆ ΛZ .

9.6.1 X in Z: Embedding Minuscule Varieties

A minuscule flag variety is specified by a Cartan type and a minuscule weight. For X a minuscule flag

variety, let Cart(X) be the corresponding Cartan type and let WX be the corresponding parabolic quotient

of the Weyl group W (Cart(X)), as in Figure 9.6. For example, when X = Gr(k, n) we have Cart(X) = An−1

and WX = A
〈k〉
n−1.

Rows (B),(H), and (I)

For each of the first three rows of Figure 9.3, define injections

ΘB : ∆(An−1) ↪→ ∆(Dn)

αi 7→ αi+1,

ΘH : ∆(D6) ↪→ ∆(E7)

α1 7→α6
α6 7→α1,

α2 7→α2
α4 7→α4,

α3 7→α5
α5 7→α3,

ΘI : ∆(Dm) ↪→ ∆(D2m−2)

αi 7→ αi.

We drop the subscript on Θ when context is clear. These embeddings are illustrated in Figure 9.9 by

drawing the Dynkin diagram of Cart(X) as a subdiagram of the Dynkin diagram of Cart(Z). They extend
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by linearity to injections of the full root system

Θ : Φ(Cart(X)) ↪→ Φ(Cart(Z))

and, under the correspondence between roots and reflections, to injections of the associated Weyl groups

Θ : W (Cart(X)) ↪→W (Cart(Z)).

Following [ThYo09a], the next proposition states that these embeddings of Dynkin diagrams actually

induce embeddings of the minuscule flag varieties. Using the cell decomposition of Equation (9.3) and

results of [ThYo09a], it suffices to embed the parabolic Weyl group quotients in a sufficiently nice way.

1

2
3 n

1 3 4 5 6 7

2

1

2
3 m

ΘB : ∆(An−1) ↪→ ∆(Dn) ΘH : ∆(D6) ↪→ ∆(E7) ΘI : ∆(Dm) ↪→ ∆(D2m−2)

Figure 9.9: Embedding ∆(Cart(X)) into ∆(Cart(Z)).

Proposition 9.2 (After [ThYo09a]). For (X,Z) from the first three rows of Figure 9.3 (with m even in the

third row), there is an embedding Θ : X ↪→ Z such that

Θ(WX) = {ux : x ∈WX} ⊆WZ ,

for some u ∈WZ .

Proof. We first characterize u ∈WZ in each of the three cases.

(B) u is the longest element of the parabolic quotient W (Dk)〈1〉, explicitly identified in Section 9.4.2.

(H) u := s7s6s5s4s3s1; and

(I) u := s2ms2m−1 · · · sm+2.

One checks case-by-case that if x ∈ WX , then uXx ∈ WZ by examining the corresponding heaps. This

proves the second part of the proposition, which establishes the analogues of [ThYo09a, Corollary 6.7, Lemma

6.8] in these settings. The first part now follows from [ThYo09a, Proposition 6.1].

We deduce that there is an embedding of the corresponding minuscule posets.

226



Corollary 9.1. For (X,Z) from the first three rows of Figure 9.3, there are poset embeddings Θ : ΛX ↪→ ΛZ .

Proof. For X 6= Q2m−1, let v := uwX◦ ∈ WZ , where wX◦ is the longest element of WX . Since wX◦ is fully

commutative, by Theorem 9.6 and Proposition 9.2, ΛX embeds in ΛZ as the poset v/u. For X = Q2m−1, since

ΛQ2m−1 is defined to be ΛQ2m without its top element, we can use the previous embedding for X = Q2m.

Remark 9.1. We have not compiled here an exhaustive list of all such embeddings, but have limited

ourselves to those that have connections to the coincidental types.

Row (A)

In [Pu14], K. Purbhoo describes the following embedding

ΘA : LG(n, 2n) ↪→ Gr(n, 2n+ 1).

Index the coordinates of a vector x ∈ C2n+1 by x = (x−n, x−n+1, . . . , xn) and let V := {x : x0 = 0} ⊂ C2n+1.

We write Gr(n,V) for the Grassmannian of n-dimensional subspaces of V. Define a symplectic form by

[x, y] :=

n∑
i=−n
i 6=0

(n+ i)!(n− i)!
i

xiy−i,

for x, y ∈ V. For a subspace V ⊆ V, define V ⊥ := {x ∈ V : [x, v] = 0 for all v ∈ V }. Then Ω is

Ω := {V ∈ Gr(n,V) : V = V ⊥} ⊂ Gr(n,V) ⊂ Gr(n, 2n+ 1).

Proposition 9.3 (K. Purbhoo [Pu14]). The space Ω is an embedding

ΘA : LG(n, 2n) ↪→ Gr(n, 2n+ 1).

K. Purbhoo interprets this as an embedding of ΛLG(n,2n) in ΛGr(n,2n+1) in [Pu14, Lemma 3.11]. In the

style of Proposition 9.2, this can be phrased as follows, though we do not entirely understand the relation

to the geometry.

Proposition 9.4. There is a poset embedding ΘA : ΛLG(n,2n) ↪→ ΛGr(n,2n+1).

Proof. Given a reduced word x for an element x ∈W LG(n,2n), we create a reduced word ΘA(x) for an element

ΘA(x) ∈ WGr(n,2n+1) by mapping a simple reflection of type Cn to the product of two simple reflections of
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type A2n as follows:

si 7→ sn+1−isn+i.

This map of simple reflections induces the desired poset embedding by “doubling” the poset ΛLG(n,2n) inside

ΛGr(n,2n+1) (note that this differs from the construction in Section 9.8.3 by repeating the diagonal).

Note that given a reduced word for the longest element w
〈1〉
◦ in W LG(n,2n) (see Section 9.4.2), under the

map to the element of WGr(n,2n+1), we have a choice of the order sn+1−isn+i or sn+isn+1−i for i 6= 1, while

for i = 1 we must order the reflections snsn+1. This would appear to account for the possibility of barring

(or leaving unbarred) the off-diagonal entries in Section 9.10.3.

9.6.2 Y in Z: Embedding Root Posets

We now embed the root posets of the coincidental types Φ+(Y ) into the ambient minuscule posets ΛZ . We

find the existence of these embeddings mysterious—unexpectedly, the element w ∈ W (ΛZ) whose heap w

coincides with Φ+(Y ) has the same number of reduced words as w◦(Y ) ∈W (Y ).

Proposition 9.5. For (Y,Z) from any row of Figure 9.3, there is a poset embedding χ : Φ+(Y ) ↪→ ΛZ , so

that χ(Φ+(Y )) = w for some w ∈W (Z), and such that

Red(w◦(Y )) ' Red(w),

where w◦(Y ) is the element defined in Equation (9.7) with inversion set Φ+(Y ).

Proof. We first characterize the elements w ∈W (Z) in each of the four cases.

(B) w :=
∏k
j=1

(
s∗j
∏n−2j+2
i=3 si

)
, where s∗j =


s1 if j is odd

s2 if j is even

.

(H) w := s1s3s4s5s6s7s2s5s6s4s5s2s3s4s1.

(I) w :=
(∏m

j=3 sj

)−1

(s1s2).

(A) w :=
∏n
j=1

∏2n−2j+1
i=n−j+1 si.

The statement that Red(w◦(Y )) ' Red(wY ) follows for (A) by [Sta84, EdGr87, HaYo13], for (B)

by [Kra89, Ha92, BHRY14] (we use the poset isomorphism between ΛOG(n,2n) and ΛLG(n−1,2n22)), and for

(I) and (H) this is an easy check [Wi13].
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In types (A) and (B), the relation Red(w◦(Y )) ' Red(wY ) in Proposition 9.5 has two different combina-

torial proofs, which are related in [HaYo13, BHRY14]. We refer the reader to [Las95] for additional historical

context.

• One proof is via modified RSK insertion algorithms due to P. Edelman and C. Greene in type An, and

W. Kraskiewicz in type Bn [EdGr87, Kra89, Lam95]—these insertions read and insert a reduced word

for w◦(An) or w◦(Bn,k) letter by letter to produce a standard Young tableau of shape w (a staircase

or trapezoid). The bijection is concluded using Theorem 9.5, which canonically bijects SYT(w) with

Red(w). The map backwards proceeds via promotion on the standard Young tableau encoding a

reduced word of w.

• Another proof is via Little bumps and signed Little bumps [Li03, BHRY14]. Thinking of a reduced word

as a wiring diagram, these methods take a reduced word for w◦(An) or w◦(Bn,k) and systematically

eliminate all braid moves—by introducing additional strands—to obtain a reduced word for w. Little

bumps may be viewed as a combinatorialization of transition for Schubert polynomials (due in type

An to A. Lascoux and M.-P. Schützenberger) [BiHa95, Bi98].

The Edelman-Greene bijection from SYT(w) to Red(w◦(Y )) using promotion works in all coincidental

types, which suggests the following open problem.

Problem 9.1. Uniformly develop a theory of insertion algorithms and Little bumps to explain the relation

Red(w◦(Y )) ' Red(w) in the coincidental types.

Remark 9.2. The first step towards a theory of Little bumps in types I2(m) and H3 would be the rep-

resentation of reduced words using wiring diagrams. Such representations exist, since both W (I2(m)) and

W (H3) ' Alt5 ×Z/2Z have (small) permutation representations coming from their actions on the parabolic

subgroups identified in Section 9.5.2; recall that the usual permutation representations of W (An) and W (Bn)

may be obtained in a similar manner.

For example, if we write ((i, j)) := (i, j)(−i,−j) for the transposition of ±i with ±j, we have a repre-

sentation of W (H3) on ±[1, 2, 3, 4, 5, 6] defined by:

s1 7→ ((1, 2))((3, 4))

s2 7→ ((2, 3))((4, 5))

s3 7→ ((1,−2))((5, 6)).
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9.7 Schubert Calculus

We now turn to the algebro-geometric context for the combinatorial objects of Sections 9.4 to 9.6. This

section sets up the rings necessary to state the multiplicity-free identities that correspond to the bijections

of Theorems 9.1 and 9.2. The corresponding combinatorics of structure coefficients is deferred to the next

section.

9.7.1 Cohomology

Recall from Section 9.3.2 that for P a parabolic subgroup of G, the generalized flag variety G/P has the

Bruhat decomposition

G/P =
⊔

w∈W P

B−wP/P.

The Schubert classes σw are the Poincaré duals of the Schubert varieties, which are the closures

Xw := B−wP/P. Since the Bruhat decomposition is a cell decomposition, the set {σw}w∈W P is a Z-linear

basis of the cohomology ring H?(G/P,Z). As such, any cup product σw ·σu of basis elements can be expressed

in the basis:

σw · σu =
∑
v∈W P

cvw,uσv.

The Borel isomorphism from H?(Gr(k, n)) to the coinvariant ring identifies Schubert classes with Schur

functions, and the cvw,u are the Littlewood-Richardson coefficients in this case [Le47]. This setup therefore

generalizes the specific example discussed in Sections 1.3 and 9.2. Since Schur functions are commonly

indexed by partitions, the (minuscule) Schubert class σw is often indexed by the inversion set w (an order

ideal in ΛGr(k,n), by Theorem 9.6), which we call a straight shape. An anti-normal shape is then an

order filter. Similarly, if w ⊆ v we write v/w for the subposet v \ w ⊆ ΛG/P, and call v/w a skew shape.

Recall that for w ∈W J , we write w̌ := w◦ww◦(J).

For G/P minuscule, H. Thomas and A. Yong have given a uniform combinatorial formula for cvw,u [ThYo09a].

Their formula generalizes M.-P. Schützenberger’s well-known rule for G/P = Gr(k, n). Given a standard

tableau T ∈ SYT(v/w), there is a map rectification (whose definition we defer until Section 9.8.2, where

it will be given in greater generality, though we saw a special case in Section 1.2.3) that produces a tableau

Rect(T ) ∈ SYT(u′), for some u′ ∈WP.

Theorem 9.7 ([ThYo09a]). For G/P minuscule, the coefficient cvw,u equals the number of standard tableaux

T ∈ SYT(v/w) whose rectification is any fixed standard tableaux of shape u.

The following identities in H?(Z) follow from Theorem 9.1 (which will be proven in Section 9.10) using the
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well-known S3-symmetry of Littlewood-Richardson coefficients (see, e.g., [ThYo08]) and the combinatorial

interpretation of the Littlewood-Richardson coefficients.

Theorem 9.8. For (X,Y, Z) from the first three rows of Figure 9.3, with u, v, and w as defined in Sec-

tion 9.6, the following identity holds in H?(Z):

σu · σv̌ = σw̌.

9.7.2 K-Theory

K-theoretic Schubert calculus turns to the Grothendieck ring K(G/P) of algebraic vector bundles over G/P

as a richer analogue of the cohomology ring H?(G/P). K(G/P) has a Z-linear basis given by the classes of

the Schubert varieties’ structure sheaves {[OXw
]}w∈W/WP

. As before, we have an expansion:

[OXw
] · [OXu

] =
∑

v∈W/WP

Cvw,u[OXv
], (9.8)

where now now (−1)|v|−|w|−|u|Cvw,u ∈ Z≥0 [Br02]. These K-theoretic structure constants generalize their

cohomological counterparts—Cvw,u = cvw,u whenever |v| = |w|+ |u|, but when |v| > |w|+ |u|, while Cvw,u can

be nonzero.

When σw · σu expands as a multiplicty-free sum of Schubert classes in H?(G/P), a result of A. Knutson

determines the corresponding expansion of [OXw
] · [OXu

] in K(G/P). Recall that the Möbius function of

a poset P is the function µP : P × P → Z uniquely characterized by

µP(x, y) :=
∑

x≤z<y

µP(x, z) = 0 (9.9)

for all x < y ∈ P. Given a poset P, we shall adjoin a minimal element 0̂ and write µ̂P(x) := −µP(0̂, x).

Theorem 9.9 (A. Knutson [Kn09, Theorem 3]). Suppose

σw · σu =
∑
v∈D

σv

is multiplicity-free. Write P := {y ∈ WG/P : y ≥ v, for some v ∈ D}. Then the corresponding expansion in
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K-theory is

[OXw
] · [OXu

] =
∑
y∈P

µ̂P(y)[OXy
].

Example 9.6. Continuing Example 9.5, for s = r = 2, we have

[
O

]2

=

[
O

]
+

[
O

]
+

[
O

]
+

[
O

]
+

[
O

]
+

[
O

]

−

[
O

]
−

[
O

]
−

[
O

]
−

[
O

]
−
[
O

]
−
[
O

]

+

[
O

]
.

♦

When determining multiplicity-freeness in K(G/P), it therefore suffices to check the corresponding state-

ment in H?(G/P) and then apply Theorem 9.9.

Remark 9.3. It is not the case that a multiplicity-free product in cohomology necessarily yields a multiplicity-

free product in K-theory. For example, in Gr(3, 6), we have

σ · σ = σ + σ + σ , ,

but

[
O

]
·
[
O
]

=

[
O

]
+

[
O

]
+

[
O

]
− 2

[
O

]

The following theorem is the K-theoretic analogue of Theorem 9.8.

Theorem 9.10. For (X,Y, Z) from the first three rows of Figure 9.3, with u, v, and w as defined in Sec-

tion 9.6, the following identity holds in K(Z):

[OXu ] · [OXv̌ ] = [OXw̌ ].
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Proof. This follows from Theorem 9.8 and Theorem 9.9—since the product in cohomology has exactly one

term, so does the product in K-theory.

9.8 Combinatorics of Structure Coefficients

In this section we introduce the combinatorial tools developed in the study of K-theoretic Schubert calculus

by H. Thomas and A. Yong [ThYo09b], E. Clifford, H. Thomas, and A. Yong [ClThYo14], and A. Buch

and M. Samuel [BuSa13]. The main result we wish to review is a combinatorial formula for the K-theoretic

structure coefficients Cvw,u in the style of Theorem 9.7. We have seen special cases of this theory (for type

A and maximal orthogonal Grassmannians in Chapters 3 and 6, but we review all the definitions here, since

we will need them in full generality.

9.8.1 Increasing Tableaux

Following [BuSa13], we generalize the language of the introduction in this section to accommodate the

embeddings of Section 9.6. Fix a finite poset P with order relation ≺ and an alphabet A (assume the

symbol • 6∈ A). We call an order ideal w of P a straight shape, and the difference of two straight shapes

w ⊆ v a skew shape v/w. Note that v is the special case of a skew shape for w = ∅. These shapes inherit

the partial order from P. A tableau of shape v/w on the alphabet A is a map T : v/w→ A.

Definition 9.4. Let A be a totally-ordered alphabet with order relation <. An increasing tableau of

shape v/w on the alphabet A is a strictly order-preserving map T : v/w → A, that is if α ≺ β in v/w

then T(α) < T(β). We write ITA(v/w) for the set of all such maps.

For two disjoint alphabets A,B with T ∈ ITB(w) (B for below) and U ∈ ITA(v/w) (A for above), we

write TtU for the increasing tableau in ITBtA(v), where B tA is totally ordered so that b < a for all b ∈ B

and a ∈ A. We define IT(v/w) :=
⋃∞
k=1 IT

[k](v/w) and set Tmin
v/w to be the componentwise minimal increasing

tableau in IT(v/w). We will call Tmin
v/w the minimal increasing tableau of shape v/w (see Figure 9.11 for

an example), and it will play an important role in the sequel.

In special cases, the notions of increasing tableaux and P-partitions are easily related, as was first

observed in [DiPeSt15].

Proposition 9.6 ([DiPeSt15, Theorem 4.1]). For a ranked poset P with all maximal chains of the same

length ht(P), there is a bijection PP[p](P) ' IT[k](P), where k = p+ ht(P).

Proof. With our conventions, a bijection is evidently given by adding i to the ith rank.
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Since all of the posets in Theorems 9.1 and 9.2 are of the required form, by Proposition 9.6 we may

henceforth deal only with increasing tableaux. The significant advantage that increasing tableaux enjoy over

P-partitions is that increasing tableaux are equipped with a well-developed theory of jeu de taquin [ThYo09b,

ThYo09a, ClThYo14, BuSa13].

9.8.2 Jeu de taquin and Other Games

Jeu de taquin

Given a shape v/w ⊆ P, a tableau T of shape v/w on A, and a ∈ A, we let

Ta := {α ∈ v/w : α covers or is covered by some β for which T(β) = a}.

For two letters a, b ∈ A, we may “exchange” them in T to obtain a new tableau

swapa,b(T)(α) :=


a if T(α) = b and α ∈ Ta;

b if T(α) = a and α ∈ Tb;

T(α) otherwise.

If we remove a set of maximal elements from w to obtain w′, we may extend the definition of T from v/w

to a tableau T′ of shape v/w′ by setting T′(α) := • for α ∈ w/w′. Given an increasing tableau T of shape

v/w on the totally-ordered alphabet A, the slide of T into w/w′ is given by

jdtw/w′(T) :=

(∏
a∈A

swapa,•

)
(T′),

where the product is in the given linear ordering for A, and where we restrict the domain of jdtw/w′(T) to

the subset v′/w′ := {α ⊆ v/w′ : jdtw/w′(T)(α) 6= •}. This procedure is bijective.

Example 9.7. The following illustration is an example of a slide for A = 1 < 2 < 3 < 4 < 5 < 6

(see Example 9.3 for several others).

•
1

2

4

2

3

6 swap1,•
−−−−−−→

1

•
2

4

2

3

6 swap2,•
−−−−−−→

1

2

•
4

•
3

6 swap3,•
−−−−−−→

1

2

3

4

3

•
6 swap6,•

−−−−−−→

1

2

3

4

3

6

•
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♦

When T ∈ SYT(v/w) and w/w′ is a single box, this process recovers the usual notion of jeu de taquin.

Two tableaux T and T′ are called jeu de taquin equivalent if they are related by a sequence of slides.

Rectification

Let T ∈ IT[k](w) and set wi := {α ∈ w : U(α) ≤ k − i}, so that w0 = w and wk = ∅. The T-rectification of

U ∈ ITA(v/w) is the tableau

RectT(U) :=

(
k−1∏
i=0

jdtwi/wi+1

)
(U).

A unique rectification target (URT) is an increasing tableau R of straight shape such that if RectT(U) =

R for some T ∈ IT(w), then RectT′(U) = R for all T′ ∈ IT(w). When the tableau dictating rectification order

does not matter, we may simply write Rect(U) = R. Example 9.7 is an example of rectification.

Theorem 9.11 ([BuSa13, Theorem 3.12]). For G/P minuscule and w any straight shape, Tmin
w is a URT.

We can now state the rule, generalizing Theorem 9.7, for the structure coefficients Cvw,u of Equation (9.8).

Theorem 9.12 ([BuSa13, Corollary 4.8]). For G/P minuscule,

(−1)|v|−|w|−|u|Cvw,u =

∣∣∣∣ {T ∈ IT(v/w) : Rect(T) = Tmin
u

} ∣∣∣∣.
The Infusion Involution

Instead of discarding the rectification order T when performing rectification, we can consider what happens

to the pair (T,U) as we move U past T. We keep track of the two tableaux using two different alphabets:

[k], and [k] := {1 < 2 < · · · < k}. For U ∈ IT[k](v/w), we will write U to denote the increasing tableau in

IT[k](v/w) obtained by sending i 7→ i.

Let T ∈ IT[i](w) and U ∈ IT[j](v/w). Informally, we will glue the tableau T on the alphabet [i] to the

bottom of the tableau U on [j] and then slide one alphabet past the other, so that the total ordering

[i] t [j] = 1 < 2 < · · · < i < 1 < 2 < · · · < j

becomes

[j] t [i] = 1 < 2 < · · · < j < 1 < 2 < · · · < i.

Formally, the infusion involution of (T,U) ∈ IT[i](w)×IT[j](v/w) is the pair of tableaux (U′,T′) ∈ IT[j](u)×
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IT[i](v/u) defined by

U′ t T′ =

 i∏
a=1

1∏
b=j

swapa,b

 (T t U).

Theorem 9.13 ([ThYo09b, Theorem 3.1]). For T ∈ IT(w) and U ∈ IT(v/w),

(infusion ◦ infusion)(T,U) = (T,U).

Folding

We introduce the alphabet [k] := {k < · · · < 2 < 1} and for U ∈ IT[k](v/w) we let U denote the increasing

tableau in IT[k](v/w) obtained by sending (k + 1− i) 7→ i.

Let T ∈ IT[k](w) and U ∈ IT[k](v/w). Similarly to Section 9.8.2, we glue T to the bottom of U—but

rather than completely slide one alphabet past another, we instead fold the two alphabets together, so that

the total ordering

[k] t [k] = 1 < 2 < · · · < k < k < · · · < 2 < 1

becomes the total ordering

[k]� [k] := 1 < 1 < 2 < 2 < · · · < k < k.

Following K. Purbhoo [Pu14, vL01], the folding of (T,U) ∈ IT[k](w)×IT[k](v/w) is the tableau fold(T,U) ∈

IT[k]�[k](v) defined by

fold(T,U) :=

(
1∏
b=k

(
k∏
a=b

swapa,b

)
◦

(
b+1∏
a=k

swapa,b

))
(T ∪ U).

9.8.3 Relations and Equivalence

We write “Ferrers shape” for an order ideal in ΛGr(k,n) (for some k, n) and “shifted shape” for an order ideal

in ΛOG(n,2n), and the tableaux of the corresponding shape are denoted similarly. When working with Ferrers

and shifted shapes, we will find it convenient to switch to the English convention on tableau orientation.

That is, we vertically reflect and then rotate our tableaux 135◦ clockwise so “gravity” now points north-

west. We differentiate shifted partitions from partitions using a subscripted “∗”—thus (3, 2, 1) stands for

the Ferrers shape , while (3, 2, 1)∗ is the shifted shape .

For T a standard or increasing tableau, let read(T) be the column reading word obtained by reading
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bac ∼ bca
cab ∼ acb

a(a+1)a ∼ (a+1)a(a+1)

aba ∼ bab
aa ∼ a

abu ∼ bau

Knuth

Coxeter-Knuth

K-Knuth

Weak K-Knuth

Figure 9.10: (Standard) Knuth-like relations, where a < b < c are distinct positive integers and u is a word
of positive integers.

the columns of T from left to right and bottom to top; where it will not cause confusion, we will abbreviate

this to reading word. We wish to consider the set of words on the alphabet of positive integers, up to

Knuth, Coxeter-Knuth, K-Knuth, or weak K-Knuth equivalences—summarized in Figure 9.10. We note

that the “Knuth equivalence” in Figure 9.10 applies to words with distinct letters.

Remarkably, as summarized in Theorem 9.14, these relations on reading words of tableaux exactly mirror

jeu de taquin slides on the tableaux themselves.

Theorem 9.14 ([BuSa13, Theorems 6.2 and 7.8]).

Two

increasing (skew) Ferrers

increasing (skew) shifted

 tableaux T,T′ are jeu de taquin equivalent

if and only if read(T) and read(T′) are

 K-Knuth

weakly K-Knuth

 equivalent.

The following proposition records two facts about K-Knuth equivalence for use in Section 9.10.1.

Proposition 9.7 ([ThYo09b, Theorem 6.1] and [BuSa13, Lemma 5.4 and Corollary 6.8]).

1. The longest strictly increasing subsequences of K-Knuth equivalent words have the same length.
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2. The length of the first row of an increasing Ferrers tableau T is the length of the longest strictly

increasing subsequence of read(T).

The doubling TD of a shifted tableau T is the Ferrers tableau obtained by reflecting T across the shifted

diagonal—note that the shifted diagonal itself is not duplicated [BuSa13, Section 7.1]. This construction is

illustrated in Figure 9.11.

(a) For u = (3, 2, 1)∗, the minimal increasing tableau Tmin
u and (Tmin

u )D:

1 2 3

3 4

5

−→ 1 2 3

2 3 4

3 4 5

(b) A partially filled skew shape Ũ and its doubling ŨD:

1

2

3 4

−→ 1

2

3 4

1 2 3

4

Figure 9.11: Examples of doubling. In red, we have marked the strictly increasing subsequence of length at
least k from which we derive a contradiction in Proposition 9.9.

The operation of doubling allows us to relate weak K-Knuth equivalence to K-Knuth equivalence.

Proposition 9.8 ([BuSa13, Proposition 7.1]). If T and U are weakly K-Knuth equivalent, then read(TD)

and read(UD) are K-Knuth equivalent.

9.9 Main Theorem

Using the techniques of Section 9.7.2, the bijections of Theorem 9.1 may now be given. The idea behind

these bijections is illustrated in Figure 9.12. We first give a more general statement, and then specialize to

the cases of interest.

For x, u ⊆ v order ideals in a minuscule poset, let

Rv
x,u := {U ∈ IT(v/x) : RectT(U) = Tmin

u for some T ∈ IT[k](x)}. (9.10)

By Theorem 9.11, Tmin
u is a URT. Therefore, if U ∈ Rv

x,u, then the choice of rectification order T is irrelevant—

RectT(U) = Tmin
u for every T ∈ IT[k](x).
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x

U

Kinfusion←−−−−→

Tmin
u

v/u

Figure 9.12: An illustration of the idea (and notation) behind the bijections of Theorem 9.15. To con-
clude Theorem 9.1, we wish to show that x = χ(Φ+(Y )) and that U is unique.

Theorem 9.15. Fix k ∈ N a positive integer and u ⊆ v. Then RectTmin
u

gives a bijection

IT[k](v/u) '
⊔
x⊆v

(
Rv

x,u × IT[k](x)
)
.

Proof. Consider T′ ∈ IT[k](v/u). We have

infusion(Tmin
u ,T′) = (T,U),

for some x ⊆ v, some T ∈ IT[k](x) and some U ∈ IT[k](v/x). Since RectT(U) = Tmin
u , we have U ∈ Rv

x,u. Since

infusion is an involution by Theorem 9.13, this means that RectTmin
u

is an injection

IT[k](v/u) ↪→
⊔
x⊆v

(
Rv

x,u × IT[k](x)
)
.

Conversely, for x ⊆ v, U ∈ Rv
x,u and T ∈ IT[k](x), we have

infusion(T,U) = (Tmin
u ,T′) ∈ IT(u)× IT[k](v/u),

for a unique T′. This shows that RectTmin
u

is also surjective, and hence bijective.

In the special case when Rv
x,u only has one element, we obtain a bijective statement involving only sets

of increasing tableaux.

Theorem 9.16. Fix k ∈ N a positive integer and u ⊆ v. Suppose |Rv
x,u| ≤ 1 for every x ⊆ v. Then RectTmin

u
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gives a bijection

IT[k](v/u) '
⊔

x:|Rv
x,u|6=0

IT[k](x).

This map restricts to a bijection

SYT(v/u) '
⊔

x:|Rv
x,u|6=0

SYT(x).

Let k = p + ht(v/u). If all maximal chains of v/u are of equal length, and the same is true for each x

with |Rv
x,u| 6= 0, then there is a bijection

PP[p](v/u) '
⊔

x:|Rv
x,u|6=0

PP[p+ht(v/u)−ht(x)](x).

Proof. The first statement is immediate from Theorem 9.15. Furthermore, the map clearly restricts to the

set of standard Young tableaux. The last statement then follows by Proposition 9.6.

This theorem is illustrated in Example 9.3.

9.10 Applications: Doppelgängers

We fix (X,Y, Z) as in Figure 9.3. We recall that χ is the embedding of the coincidental root poset Φ+(Y ),

Θ is the embedding of the doppelgänger minuscule poset ΛX , and that we specify the corresponding shapes

inside the ambient minuscule poset ΛZ as

w := χ(Φ+(Y )) and v/u := Θ(ΛX).

We deduce Theorem 9.1 from Theorem 9.16 by showing that Rv
w,u has a unique element and that Rv

x,u = ∅

for x 6= w.

9.10.1 (B) Rectangles and Trapezoids

Sections 9.4 to 9.6 identify the following shapes:
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w = (n− 1, n− 3, . . . , n− 2k + 1)∗ is a shifted trapezoid and

v/u = (n− k, n− k, . . . , n− k) is a k × (n− k) rectangle. Then

u = (k − 1, k − 2, . . . , 1)∗ is a shifted staircase and

v = (2m− 1, 2m− 2, . . . ,m)∗.

Figure 9.13 illustrates examples of v/u and w.

Figure 9.13: v/u = Θ(ΛGr(k,n)) and w = χ(Φ+(Bk,n)) for k = 3 and n = 8.

Write a := 2k−3 and let U be the increasing antinormal Ferrers tableau of shape v/w obtained by labeling

each southwest-to-northeast diagonal of the staircase v/w with consecutive increasing integers, where the

bottom row is labeled with the odd numbers 1, 3, . . . , a − 2, a. Figure 9.11(a) and Figure 9.14 illustrates

examples of Tmin
u and U.

1

3

5

2

4

1

3

3
2

5
4

3

5

4 6

3 5 7

2 4 6 8

1 3 5 7 9

Figure 9.14: On the left are the tableau U (top, black numbers in white nodes) and Tmin
u (bottom, white

numbers in gray nodes) for k = 3 and n = 6. On the right is the increasing anti-normal Ferrers tableau U
for k = 6—inserting spaces for clarity, it has reading word read(U) = 1 32 543 7654 98765.

We begin by characterizing a property of the reading word of any tableau that rectifies to Tmin
u .

Lemma 9.1. For a = 2k − 3, let π ∈ Sa be the permutation with one-line notation

[2, 4, . . . , a+1, 1, 3, . . . , a].
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Then any tableau Ũ that rectifies to Tmin
u has a reading word read(Ũ) whose Demazure product is π. In

particular, since len(π) =
(
k
2

)
, any such Ũ must have at least

(
k
2

)
cells.

Proof. It is easy to see that the reading word read(Tmin
u ) is a reduced word of the permutation π. Since

read(Tmin
u ) is a reduced word, any weakly K-Knuth equivalent word is at least as long (see the weak K-

Knuth relations in Figure 9.10). Furthermore, since every reduced word for π begins with two commuting

letters, the words that are weakly K-Knuth equivalent to read(Tmin
u ) have Demazure product π. We conclude

the statement using the equivalence of K-jeu de taquin equivalence of tableaux and K-Knuth equivalence

of their reading words Theorem 9.14.

We now consider tableaux whose reading word can be π. Recall that a permutation π ∈ Sa is vexillary

if its one-line notation avoids the pattern 2143; π is fully-commutative if and only if it avoids the pattern

321; and π is Grassmannian if it has at most one descent. A Grassmannian permutation is both vexillary

and fully-commutative. In particular, the π of Lemma 9.1 is Grassmannian.

Lemma 9.2. For a = 2k − 3, let π ∈ Sa be the permutation with one-line notation

[2, 4, . . . , a+1, 1, 3, . . . , a].

Then there is a unique increasing anti-normal Ferrers tableau Tπ such that read(Tπ) ∈ Red(π).

Proof. We shall prove the statement more generally for Grassmannian permutations π. As suggested by

V. Reiner, it suffices to prove that there is a unique such (straight) Ferrers tableau, since if T′π is the tableau

obtained from Tσ by reflecting across the diagonal and replacing si 7→ sa−i, then read(T′π) is a reduced word

for w◦πw◦ (and both of the patterns 321 and 2143 are stable under conjugation by w◦).

The reduced words of a vexillary permutation form a single Coxeter-Knuth equivalence class; the ad-

ditional assumption of fully-commutative implies that in the absence of braid moves, this Coxeter-Knuth

class reduces to an ordinary Knuth equivalence. But any (semistandard) Knuth equivalence class contains

a unique word that is the reading word of a Ferrers tableau [Fu97, Section 2], from which we conclude the

lemma.

Using the constraints provided by Lemma 9.1 and Lemma 9.2, we can now show that U is the unique

tableau whose shape is an order filter of v rectifying to Tmin
u .

Proposition 9.9. Rv
w,u = {U} and Rv

x,u = ∅ for x 6= w.

Proof. We first show that U ∈ Rv
w,u. Since read(Tmin

u ) = read(U) and Tmin
u is a URT, RectT(U) = Tmin

u for

any T ∈ IT(w) by [BuSa13, Theorem 7.8]. By definition, we conclude U ∈ Rv
w,u.
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1
2

3
4

5
6

1
4

2
3

5
6

1
2

1
2

Figure 9.15: The shape v is the set of all boxes that are either gray or thick-bordered; the shape w is the set
of gray boxes; and the shape v/u is the set of all thick-bordered boxes. Tmin

u is the bottom tableau consisting
of the gray boxes with white numbers. The top tableau consisting of the white boxes with black numbers is
the unique tableau U whose shape is an order filter in v that rectifies to Tmin

u .

Let Ũ ∈ Rv
x,u for some x. We now argue that Ũ is necessarily of shape v/w. By Propositions 9.7 and 9.8,

since the shape of (Tmin
u )D is a (k − 1)× (k − 1) square (see Figure 9.11 (a)), the longest strictly increasing

subsequence in read(ŨD) is of length k − 1. We claim that this forces the rth column of Ũ (from the right)

to have at most k− r cells: if the rth column of Ũ has more than k− r cells, then the rth row of ŨD—along

with the last r− 1 entries in the bottom row of Ũ—form a strictly increasing sequence of length at least k in

read(ŨD). Since there are at least
(
k
2

)
entries in Ũ by Lemma 9.1, the shape of Ũ is v/w. This construction

is illustrated in Figure 9.11 (b).

It remains to show that the fillings of Ũ and U are equal. By Lemma 9.1, the Demazure product of read(Ũ)

is π. But since read(Ũ) has length
(
k
2

)
= len(π), read(Ũ) is then a reduced word for π. Since both read(Ũ)

and read(U) are reduced words for the Grassmannian permutation π, and both Ũ and U have antinormal

shapes, Lemma 9.2 implies Ũ = U.

By combining Theorem 9.16 and Proposition 9.9, we conclude Theorem 9.1 (B).

9.10.2 (H) and (I)

For row (H), let the tableau U and its rectification be as illustrated on the left in Figure 9.15. It is a

straightforward but lengthy calculation to verify that Rv
w,u = {U} and that Rv

x,u = ∅ for x 6= w. We

performed this calculation via computer, explicitly rectifying all applicable tableaux.

For row (I), the shape x must be an order filter of size bm−2
2 c in v. There is a unique such order filter—the

shape v/w—and (since v/w is a chain) it has a unique filling that rectifies to Tmin
u . We refer the reader the
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the illustration on the right in Figure 9.15.

By Theorem 9.16, these observations prove Theorem 9.1 (H) and (I).

9.10.3 (A) Staircases and Shifted Staircases

1 2 4 5

2 3 5

3 4

6

χ // 1 2 4 5 5

2 3 5 5 4

3 4 4 3 2

6 6 3 2 1

fold // 1 1 2 2 3

2 3 3 4 4

2 3 4 4 5

3 4 5 6 6

Θ−1
// 1 2 2 3

3 4 4

4 5

6

Figure 9.16: For n = 4, the leftmost two diagrams show how to embed a tableau in IT[k](Φ+(An)) as a

tableau in IT[k]t[k](ΛGr(n,2n)). The middle two show the result after performing fold. The rightmost two

diagrams show how to extract a tableau in IT
[k]

(ΛLG(n,2n)) from a tableau in IT[k]�[k](ΛGr(n,2n)).

We begin by recalling the modified definitions of tableaux for ΛLG(n,2n). Let N := n(n+1)
2 and write

SYT(ΛLG(n,2n)) for the set of injections from ΛLG(n,2n) to the alphabet [N ]� [N ] with no barred letter on

the (shifted) diagonal and with exactly one of i or i in the image. Similarly, let IT
[k]

(ΛLG(n,2n)) denote the

set of increasing tableaux of shape ΛLG(n,2n) on the alphabet [k]� [k].

As in Proposition 9.5—and illustrated in the leftmost two diagrams of Figure 9.16—we can embed an

element of IT[k](Φ+(An)) on the standard alphabet [k] as an element of IT[k]t[k](Gr(n, 2n)) by reflecting

across the diagonal anry—extending the standard alphabet to [k] t [k]. In [Pu14], K. Purbhoo used this

embedding to give the bijection (see Section 9.8.2)

fold : SYT(Φ+(An))→ SYT(ΛLG(n,2n)).

We conjecture that the increasing modification of K. Purbhoo’s folding is also a bijection between the

corresponding sets of increasing tableaux.

Conjecture 9.1. The map fold is a bijection

fold : IT[k]
(
Φ+(An)

)
→ IT

[k] (
ΛLG(n,2n)

)
.

Standardizing the alphabet [k]� [k] by replacing i 7→ 2i and i 7→ 2i− 1, Proposition 9.6 gives a bijection

(subtracting j + 1 from the jth rank)

IT
[k] (

ΛLG(n,2n)

)
' PP

[2p]
(ΛLG(n,2n)),
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where 2k = 2p + n and PP
[2p]

(ΛLG(n,2n)) is the subset of PP[2p](ΛLG(n,2n)) with only even heights on the

diagonal. So Conjecture 9.1 gives an explicit conjectural bijection between

PP
[2p] (

ΛLG(n,2n)

)
' PP[p]

(
Φ+(An)

)
.

This bijection is illustrated for n = 2 and p = 1 in Example 9.4.

Remark 9.4. The rightmost two diagrams of Figure 9.16 show how to extract an element of IT
[k]

(ΛLG(n,2n))

from an element of IT[k]�[k](ΛGr(n,2n)), using the embedding in Proposition 9.4. We do not currently un-

derstand (even conjecturally) how to recover the forgotten half of IT[k]�[k](ΛGr(n,2n)) from the tableau in

IT
[k]

(ΛLG(n,2n)). In the standard case, the forgotten tableau is recovered by sending barred elements to

unbarred elements, and vice-versa; this does not generalize in the obvious way to the increasing setting.

9.11 Future Work

In [ThYo05], H. Thomas and A. Yong characterize all multiplicity-free products of Schubert classes in

Gr(k, n). It is natural to wish to extend this to all minuscule flag varieties; except for the single remaining

infinite family (up to isomorphism), this is a finite check.

Problem 9.2. Classify all multiplicity-free products of cohomological Schubert classes in all minuscule flag

varieties.

As pointed out Remark 9.3, multiplicity-free products in cohomology are not necessarily multiplicity-free

in K-theory. It would be interesting to apply A. Knutson’s Theorem 9.9 to classify the latter products.

To our knowledge, this is open even in the Grassmannian case (although additional combinatorial tools are

available in that case, e.g. [Sn09]).

Problem 9.3. Classify all multiplicity-free products of K-theoretic Schubert classes in all minuscule flag

varieties.

Given any multiplicity-free product from Problem 9.2 or Problem 9.3, Theorem 9.16 then gives a com-

binatorial identity. We have not recorded in this chapter all such identities—or even all such identities that

lead to a pair of doppelgängers. For example, [ThYo09a, Figure 9] specifies an embedding of OG(5, 10) in

the minuscule poset of type E6 and an embedding of the minuscule poset of type E6 inside Gω(O3,O6) that

lead to the (not especially exciting) doppelgängers of Figure 9.17.
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Figure 9.17: Two other pairs of doppelgängers (cf. [ThYo09a, Figure 9]).

More generally, it is possible to derive poset identities (relating the number of standard or increasing

fillings) by comparing Richardson varieties. V. Reiner, K. Shaw, and S. van Willigenburg have partial results

in this direction for Grassmannians [RSvW07].5

Problem 9.4. When do the (cohomological or K-theoretic) classes of two Richardson varieties have the

same expansion into Schubert classes?

5We thank F. Bergeron for pointing out that [RSvW07] was of the same spirit as the problems we have been considering.
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