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ABSTRACT

This thesis proposes a framework for detection and identification of system

topological changes in near real-time that utilizes the statistical properties of

electricity generation and demand, which are assumed to be known. Instead

of relying on offline models as with traditional methods, the proposed method

is model-free, and exploits the high-speed synchronized measurements pro-

vided by phasor measurement units (PMUs). In this framework, a statistical

quickest change algorithm is applied to the voltage phase angle measure-

ments collected from PMUs to detect the change-point that corresponds to

the system topology change instant. An advantage of this algorithm is that

the operator also has full control over the tradeoff between detection delay

and false alarm rate. Additionally, a full measurement set is not necessary

for its implementation and good results can be achieved even for a few PMU

measurements. A scheme for systematic PMU bus selection is presented

along with a method to partition the power system such that the aforemen-

tioned algorithm for line outage detection can be applied in parallel to each

area, allowing for even faster detection. The optimal partitioning scheme is

formulated as an integer program and solved using a greedy algorithm.

In the second half of the thesis, an adaptive line outage detection algorithm

that accounts for the transient dynamics following a line outage is proposed.

A more accurate governor power flow model of the power system is used. This

new algorithm is shown to have better performance compared to existing

algorithms for line outage detection. In order to lend support for the work

done in this thesis, case studies are done through simulations on standard

IEEE test systems.
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CHAPTER 1

INTRODUCTION

In this chapter, we present the motivation for developing algorithms for topo-

logical change detection in power systems. This is followed by a survey of

prior work published in the area of change detection and PMU placement.

We then present the contributions of our research in relation to these top-

ics and outline the rest of the document, concluding with future research

directions.

1.1 Motivational Background

Timely line outage detection for power systems is crucial for maintaining op-

erational reliability. Currently, many of the methods for online power system

monitoring rely on a system model that is obtained offline, which can be in-

accurate due to bad historical or telemetry data; such inaccuracies have been

a contributing factor in many recent blackouts. For example, in the 2011 San

Diego blackout, operators were unable to determine overloaded lines because

the network model was not up to date [1]. This lack of situational aware-

ness limited the operators’ ability to identify and prevent the next critical

contingency, leading to instability and cascading failures. Similarly, during

the 2003 Northeast blackout, operators failed to initiate the correct control

schemes because they had an inaccurate model of the system, and could not

identify the loss of key transmission elements [2]. These blackouts highlight

the importance of developing online techniques to detect and identify system

topological changes.

This thesis addresses the problems discussed above by establishing a frame-

work for quickly detecting system topological changes. Specifically, we focus

on the problem of line outage detection in power systems, and exploit fast

measurements provided by PMUs to develop a statistical method that allows
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for quick detection of network topological changes. Additionally, it would not

be economical to place a PMU at every bus across the power network. There-

fore, we also consider the problem of optimal PMU placement at strategic

locations for line outage detection.

1.2 Prior Work

Early approaches for topological change detection and identification include

algorithms based on state estimation [3]–[5], and rule-based algorithms that

mimic system operator decisions [6]. The issue of external system topology

error detection was explored in [7]. More recent proposed methods exploit

the fast sampling of voltage magnitudes and phases provided by PMUs to

detect events in a power system in near real-time [8]–[11]. While these works

allow for improved situational awareness of the power system, they do have

shortcomings. Mainly, they do not exploit the fact that the line outage is

persistent; i.e., once a line outage occurs, it persists until it is detected and

brought back into service. Instead, only the most recent PMU measurement

is used to determine if an outage has occurred. The authors of [12] proposed

a method to detect line outages using statistical classifiers where a maximum

likelihood estimation is performed on the PMU data. The authors also con-

sidered the transient response of the system after a line outage by comparing

synthesized data against actual data. However, their method requires the ex-

act instant the line outage occurs to be known before applying the algorithm,

whereas the method we propose in this paper does not have this restriction.

In [13], [14], the authors proposed a statistical method based on the theory

of quickest change detection (QCD) for line outage detection and identifi-

cation. This method observes a sequence of measured voltage phase angles

provided by PMUs and exploits the fact that their statistics change following

a line outage. The objective is to detect this change in distribution quickly

while subject to a fixed false alarm rate. The statistics of the measured volt-

age angles pre- and post line outage are related to the known distributions

in the real power injections through a linear mapping involving a linearized

power flow model. For this method, the incremental changes in real power

injections are modeled as independent random variables. Then, the prob-

ability distribution of such incremental changes is mapped to that of the

2



incremental changes in voltage phase angles via a linear transformation ob-

tained from the power flow equations. The PMUs provide a random sequence

of voltage phase angle measurements in real-time; when a line outage occurs,

the probability distribution of the incremental changes in the voltage phase

angles changes abruptly. The objective is to detect a change in this proba-

bility distribution after the occurrence of a line outage as quickly as possible

while maintaining a desired false alarm rate. In the previous work in [13],

[14], the Cumulative Sum (CuSum) algorithm was proposed to solve this

problem. For this algorithm, a sequence of CuSum statistics is computed,

one for each line in the system. An outage is declared when any one of the

statistics crosses a prespecified threshold for the first time. The performance

of this algorithm is characterized by a parameter known as the Kullback-

Leibler (KL) divergence (see, e.g., [15]), which is a distance measure between

the pre- and post-outage voltage phase angle distributions.

Since full PMU placement on every bus could be costly, there has been

research on optimal PMU placement at select buses. However, most of the

research has been focused on achieving network observability with minimum

number of PMUs; on the other hand, the objective of our research is to

find the optimal PMU placement for quickly detecting network topological

changes. Heuristic techniques for determining optimal placement include

simulated annealing, nondominated sorting genetic algorithm, and particle

swarm methods [16]–[18]. In [19], the authors also proposed a PMU place-

ment strategy for optimizing a line outage detection scheme. Similar to our

work, they formulate the problem as an integer program and then upper and

lower bound the optimal solution by using a greedy algorithm and a convex

relaxation. Their objective is to maximize the minimum of the voltage phase

angle signatures associated with the line outages, where the line outage sig-

natures are based on the pre- and post-outage mean of the phase angles. In

contrast, we optimize the PMU placement based on the persistent covariance

shift of the voltage phase angles pre- and post-outage. In general, this prob-

lem of optimal PMU placement with constraints is an integer programming

(IP) problem that is considered NP-hard and may not have a unique solution

[20].
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1.3 Contributions

This thesis extends the framework introduced in [13], [14] in several direc-

tions. We consider the scenario where the power system has a limited number

of PMUs deployed instead of requiring the availability of PMUs at all buses.

Additionally, we formulate the problem of determining the optimal number

of PMUs and their locations while achieving the desired line outage detection

performance. We then present a method to partition the power system into

smaller subsystems so that the proposed method of quickest change detection

for line outages can be applied for each subsystem in parallel. The partition-

ing algorithm is optimal in the sense that the number of lines within each

area is balanced while minimizing the number of tie-lines across areas. We

show that by setting the detection threshold scaled according to the so-called

Kullback-Leibler (KL) divergence for each line outage, lower detection delay

could be achieved.

Finally, we propose an algorithm for line outage detection on the power

system that considers the transient response immediately following the line

outage. For example, after an outage, the transient behavior of the system

is dominated by the inertial response from the generators. This is followed

by the governor response and then the automatic generation control (AGC).

We incorporate these dynamics into the power system model by relating

incremental changes in active power demand to active power generation. We

use this model to develop the Dynamic CuSum test (D-CuSum), which is used

to capture the transient behavior in the non-composite QCD problem (see

e.g., [15], [21]). Then, the Generalized Dynamic CuSum test (G-D-CuSum)

is derived by calculating a D-CuSum statistic for each possible line outage

scenario; an outage is declared the first time any of the test statistics crosses

a pre-specified threshold. The proposed test has better performance because

it takes the transient behavior into account in addition to the persistent

change in the distribution that results from the outage. To show viability,

the proposed algorithms are applied to several IEEE test systems.
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1.4 Thesis Organization

This thesis is organized into six chapters; a short summary of each remaining

chapter is provided next.

Chapter 2. In this chapter, we provide the preliminary background of this

research along with the statement of the problem to be addressed. Specifi-

cally, we introduce the power system model and the assumptions we adopt,

the pre- and post-outage statistical model of the voltage phase angles, and

the problem statement of quickest change detection. Starting from the non-

linear power balance equations, we derive the linearized incremental model

of the system and then apply the DC power flow assumptions. The result-

ing proposed model captures the transient dynamics following a line outage.

Finally, the statistical model for the incremental power injections and how

they relate to the voltage phase angle statistics are also introduced.

Chapter 3. This chapter outlines the QCD-based line outage identifica-

tion algorithms, the CuSum algorithm and the Generalized Likelihood Ratio

Test algorithm. Small examples are provided to illustrate this process. We

also introduce the KL divergence, which is an important measure for charac-

terizing the performance of these detection algorithms. Finally, various other

algorithms for line outage detection that exist in the literature are discussed.

These algorithms are “one-shot” detection schemes that do not exploit the

persistence of the line outage. We compare the performance of our proposed

method against those of others and show that the CuSum-based method is

better.

Chapter 4. A new line outage algorithm that accounts for the transient

dynamics that occur following a line outage on the system is proposed in this

chapter. The relation between active power generation and load demand is

modeled using participation factors. The improved algorithm is shown to

have better performance compared to existing line outage detection algo-

rithms and the algorithm proposed in Chapter 3, where the system transient

dynamics are not considered.

Chapter 5. Various extensions of the basic QCD-based algorithm are

presented in this chapter. These include partitioning the power system into

multiple areas and applying the QCD-based algorithms in parallel for better

scalability. In the case where PMUs are limited, a method to determine the

optimal PMU allocation for each area is presented. It is shown that both of
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these extensions can be formulated as an optimization program. These new

concepts are reinforced through case studies.

Chapter 6. This chapter concludes this work by summarizing what has

been done as part of this research along with additional insights and remarks.

Future research directions are also provided.
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CHAPTER 2

PRELIMINARIES

In this chapter, we present the power system model adopted in this research.

A linearized small-signal power system model is used in conjunction with

synchronized voltage phase angle measurements obtained from phasor mea-

surement units. We provide a general framework where the system transient

dynamics after a line outage are captured in the model. We then establish a

statistical framework for both the pre- and post-outage scenarios that is used

in the line detection algorithm. This chapter concludes with the statement

of the line outage detection problem.

2.1 Power System Model

We represent the power system network by a graph consisting of N nodes and

L edges, corresponding to buses and transmission lines, respectively. The set

of buses is denoted by V = {1, . . . , N}, and the set of transmission lines is

denoted by E , where for m,n ∈ V , (m,n) ∈ E if there exists a transmission

line between buses m and n. At time t, let Vi(t) and θi(t) denote the voltage

magnitude and phase angle at bus i, and let Pi(t) and Qi(t) denote the net

active and reactive power injection at bus i. Then, the quasi-steady-state

behavior of the system can be described by the power flow equations, which

for bus i can be written as:

Pi(t) = pi(θ1(t), . . . , θN(t), V1(t), . . . , VN(t)), (2.1)

Qi(t) = qi(θ1(t), . . . , θN(t), V1(t), . . . , VN(t)),

where the dependence on the system network parameters is implicitly cap-

tured by pi(·) and qi(·) (see e.g., [22]).
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2.1.1 Pre-outage Incremental Power Flow Model

Let Pi[k] := Pi(k∆t) and Qi[k] := Qi(k∆t), ∆t > 0, k = 0, 1, 2, . . . , denote

the kth measurement sample of active and reactive power injections into

bus i. Similarly, let Vi[k] and θi[k] denote bus i’s kth voltage magnitude

and angle measurement sample at t = k∆t, k = 0, 1, 2, . . . . Furthermore,

define variations in voltage magnitudes and phase angles between consecutive

sampling times k∆t and (k+1)∆t as ∆Vi[k] := Vi[k+1]−Vi[k] and ∆θi[k] :=

θi[k + 1]− θi[k], respectively. Similarly, variations in the active and reactive

power injections at bus i between two consecutive sampling times are defined

as ∆Pi[k] = Pi[k + 1]− Pi[k] and ∆Qi[k] = Qi[k + 1]−Qi[k].

Suppose a solution to the power flow equations exists at

(θi[k], Vi[k], Pi[k], Qi[k]), i = 1, . . . , N , such that pi(·) and qi(·) in (2.1) are

continuously differentiable with respect to all θi and Vi at θi[k] and Vi[k],

i = 1, . . . , N . Then, assuming that ∆θi[k] and ∆Vi[k] are sufficiently small,

we can approximate ∆Pi[k] and ∆Qi[k] as

∆Pi[k] ≈
N∑
j=1

aij[k]∆θj +
N∑
j=1

bij[k]∆Vj, (2.2)

∆Qi[k] ≈
N∑
j=1

cij[k]∆θj +
N∑
j=1

dij[k]∆Vj, (2.3)

where

aij[k] =
∂pi
∂θj

, bij[k] =
∂pi
∂Vj

, cij[k] =
∂qi
∂θj

, dij[k] =
∂qi
∂Vj

,

for each bus i = 1, . . . , N , all evaluated at (θi[k], Vi[k], Pi[k], Qi[k]).

Under standard assumptions used in power system analysis, we assume

that bij << aij and cij << dij in (2.2) and (2.3) [22]. This allows for

the decoupling of (2.2) and (2.3) as the variations in the active power in-

jections primarily affect the bus voltage angles; therefore, we can write

∆Pi[k] ≈
∑N

j=1 aij[k]∆θj[k]. Furthermore, under the so-called DC assump-

tions, namely (i) the system is lossless, (ii) Vi[k] = 1 per unit (p.u.) for all

i ∈ V , k, and (iii) θm[k]− θn[k] << 1 for all k and for m,n ∈ V , aij[k] simply

becomes the negative of the imaginary part of the (i, j)th entry of the net-

work admittance matrix and independent of k [22]. One of the buses must be

designated as reference (i.e., θ = 0) for the other buses in the system. There-
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fore, since the reference bus angle is assumed to be known, the equation for

the reference bus is omitted from (2.2). We can express the variations in the

voltage phase angles due to the variations in the real power flow in matrix

form by

∆P [k] ≈ H0∆θ[k], (2.4)

where ∆P [k], ∆θ[k] ∈ R(N−1) and H0 ∈ R(N−1)×(N−1). Note that the N − 1

dimension of the vectors is the result of omitting the reference bus equation.

In an actual power system, random fluctuations in the load drive the gen-

erator response. Therefore, in this work, we use the so-called governor power

flow model (see e.g., [23]), which is more realistic than the conventional power

flow model, where the slack bus picks up any changes in the load power de-

mand. In the governor power flow model, at time instant k, the relation

between changes in the load demand vector, ∆P d[k] ∈ RNd , and changes in

the power generation vector, ∆P g[k] ∈ RNg , is described by

∆P g[k] = B[k]∆P d[k], (2.5)

where B[k] is a time dependent matrix of participation factors. We ap-

proximate B[k] by quantizing it to take values Bi, i = 0, 1, . . . , T , where i

denotes the time period of interest. Let B[k] = B0 and M0 := H−1
0 during

the pre-outage period. Then, we can substitute (2.5) into (2.4) to obtain a

pre-outage relation between the changes in the voltage angles and the real

power demand at the load buses as follows:

∆θ[k] ≈M0∆P [k]

= M0

[
∆P g[k]

∆P d[k]

]

= [M1
0 M

2
0 ]

[
B0∆P d[k]

∆P d[k]

]
(2.6)

= (M1
0B0 +M2

0 )∆P d[k]

= M̃0∆P d[k],

where M̃0 = M1
0B0 +M2

0 .
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2.1.2 Post-outage Incremental Power Flow Model

Suppose an outage occurs for the line (m,n) at time t = tf , where γ0∆t ≤
tf < (γ0 + 1)∆t. In addition, assume that the loss of line (m,n) does not

cause islands to form in the post-event system (i.e., the underlying graph

representing the internal power system remains connected).

Following a line outage, the power system undergoes a transient response

governed by Bi, i = 1, 2, . . . , T − 1 until quasi steady state is reached, in

which B[k] settles to a constant BT . For example, immediately after the

outage occurs, the power system is dominated by the inertial response of

the generators, which is then followed by the governor response. As a result

of the line outage, the system topology changes, which manifests itself in

the matrix H0. This change in the matrix H0 resulting from the outage

can be expressed as the sum of the pre-outage matrix and a perturbation

matrix, ∆H(m,n), i.e., H(m,n) = H0 +∆H(m,n). Since H0 has the same sparsity

structure as the graph Laplacian of the internal system network, we conclude

that the only non-zero terms in the matrix ∆H(m,n) are ∆H(m,n)[n, n] =

−∆H(m,n)[m,n] = −∆H(m,n)[n,m] = ∆H(m,n)[m,m] = −1/X(m,n), where

X(m,n) is the imaginary part of the impedance of the outaged line. Thus, the

matrix ∆H(m,n) is a rank-one matrix and can be expressed as

∆H(m,n) = − 1

X(m,n)

r(m,n)r
T
(m,n), (2.7)

where r(m,n) ∈ RN−1 is a vector with the mth entry equal to 1, the nth entry

equal to −1, and all other entries equal to 0.

We can use the matrix inversion lemma [24] to obtain an expression for

M(m,n) := H−1
(m,n) as follows:

M(m,n) = M0 + β(m,n) s(m,n) s
T
(m,n), (2.8)

where β(m,n) = 1/(X(m,n) − rT(m,n)H
−1
0 r(m,n)) and s(m,n) = H−1

0 r(m,n).

Then, by letting M(m,n) := H−1
(m,n) = [M1

(m,n) M
2
(m,n)], and deriving in the

same manner as the pre-outage model of (2.6), we obtain the post-outage

relation between the changes in the voltage angles and the real power demand

as:

10



∆θ[k] ≈ M̃(m,n),i∆P
d[k], γi−1 ≤ k < γi, (2.9)

where M̃(m,n),i = M1
(m,n)Bi +M2

(m,n), i = 1, 2, . . . , T .

2.1.3 Instantaneous Change During Outage

At the time of outage, t = tf , there is an instantaneous change in the mean

of the voltage phase angle measurements that affects only one incremental

sample, namely, ∆θ[γ0] = θ[γ0 + 1]− θ[γ0]. The measurement θ[γ0] is taken

immediately prior to the outage, whereas θ[γ0 + 1] is the measurement taken

immediately after the outage. Then, the effect of an outage in line (m,n)

can be modeled with a power injection of P(m,n)[γ0] at bus m and −P(m,n)[γ0]

at bus n, where P(m,n)[γ0] is the pre-outage line flow across line (m,n) from

m to n. Following a similar approach as the one in [13], the relation between

the incremental voltage phase angle at the instant of outage, ∆θ[γ0], and the

variations in the real power flow can be expressed as:

∆θ[γ0] ≈M0∆P [γ0]− P(m,n)[γ0 + 1]M0r(m,n), (2.10)

where r(m,n) ∈ RN−1 is a vector with the (m − 1)th entry equal to 1, the

(n − 1)th entry equal to −1, and all other entries equal to 0. Furthermore,

by using the governor power flow model of (2.5) and substituting into (2.10),

and simplifying, we obtain:

∆θ[γ0] ≈ M̃0∆P d[γ0]− P(m,n)[γ0 + 1]M0r(m,n). (2.11)

Example 2.1 (Three-Bus System). Consider the lossless three-bus system

shown in Fig. 2.1. The parameters for this system are listed in Table 2.1 and

all quantities are in per unit. The nonlinear real power balance equations of

(2.2) for this system are

P1 =
V1V2

X1,2

sin(θ1 − θ2) +
V1V3

X1,3

sin(θ1 − θ3),

P2 =
V2V1

X1,2

sin(θ2 − θ1) +
V2V3

X2,3

sin(θ2 − θ3),

P3 =
V3V1

X1,3

sin(θ3 − θ1) +
V3V2

X2,3

sin(θ3 − θ2).

(2.12)
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Table 2.1: Parameter values for 3-bus system shown in Fig. 2.1.

P2 P3 X1,2 X2,3 X1,3

-1 -0.9 0.0504 0.0372 0.0636

The first equation with P1 is removed from (2.12) since bus 1 is the reference

bus. Then, using the DC assumptions, the model of (2.12) can be approxi-

mated by a small-signal linear incremental model of the form in (2.4), where

H0 =

[
1

X1,2
+ 1

X2,3
− 1
X2,3

− 1
X2,3

1
X1,3

+ 1
X2,3

]

=

[
46.72 −26.88

−26.88 42.60

]
.

Accordingly, M0 = H−1
0 is computed as:

M0 =

[
0.033 0.021

0.021 0.037

]
.

Suppose an outage occurs on line (1, 2). Then, according to (2.7) and (2.8),

∆H(1,2) = − 1

0.0504
[−1, 0]T [−1, 0]

=

[
19.84 0

0 0

]
,

and

∆M(1,2) = 59.53[−0.033,−0.021]T [−0.033,−0.021]

=

[
0.067 0.042

0.042 0.026

]
.

2.2 Measurement Model

Since the voltage phase angles, θ[k], are assumed to be measured by PMUs,

we allow for the scenario where the angles are measured at only a subset of

12
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Figure 2.1: Network topology for 3-bus system.

the load buses, and denote this reduced measurement set by θ̂[k]. Suppose

that there are Nd load buses and we select p ≤ Nd locations to deploy the

PMUs. Then, there are
(
Nd
p

)
possible locations to place the PMUs. Let

M̃ =


M̃0, if 1 ≤ k < γ0,
...

M̃(m,n),T , if k ≥ γT .

(2.13)

Then, the absence of a PMU at bus i corresponds to removing the ith row

of M̃ . Thus, let M̂ ∈ Rp×Nd be the matrix obtained by removing N − p− 1

rows from M̃ . Therefore, we can relate M̂ to M̃ in (2.13) as follows:

M̂ = CM̃, (2.14)

where C ∈ Rp×(N−1) is a matrix of 1’s and 0’s that appropriately selects the

rows of M̃ . Accordingly, the increments in the phase angle can be expressed

as follows:

∆θ̂[k] ≈ M̂∆P d[k]. (2.15)

The small variations in the real power injections at the load buses, ∆P d[k],

can be attributed to random fluctuations in electricity consumption. In

this regard, we may model the ∆P d[k]’s as independent and identically dis-

tributed (i.i.d.) random vectors. By the Central Limit Theorem [25], it

can be shown that each ∆P d[k] is a Gaussian vector, i.e., ∆P d[k] ∼ N (0,Λ),

13



where Λ is the covariance matrix. Note that the elements ∆P d[k] need not be

independent. Since ∆θ̂[k] depends on ∆P d[k] through the linear relationship

given in (2.15), we have that:

∆θ̂[k] ∼



f0 := N (0, M̂0ΛM̂T
0 ), if 1 ≤ k < γ0,

f
(0)
(m,n)

:= N (−P(m,n)[γ0 + 1]CM0r(m,n),

M̂0ΛM̂T
0 ), if k = γ0,

...

f
(T )
(m,n)

:= N (0, M̂(m,n),TΛM̂T
(m,n),T ), if k ≥ γT ,

(2.16)

It is important to note that for N
(

0, M̂ΛM̂T
)

to be a nondegenerate

p.d.f., its covariance matrix, M̂ΛM̂T , must be full rank. We enforce this by

ensuring that the number of PMUs allocated, p, is less than or equal to the

number of load buses, Nd.

2.3 Problem Statement

Our goal is to detect the change in the probability distribution of the sequence

{∆θ̂[k]}k≥1 (that results from the line outage) as quickly as possible while

maintaining a certain level of detection accuracy, which is related to, e.g.,

the false alarm rate. This problem, referred to as quickest change detection

(QCD), has been well studied in the statistical signal processing literature.

Next, we provide a precise mathematical description of the QCD problem

and an algorithm that we will use to detect a line outage; we refer the reader

to [21]-[26] for a survey of the theory of QCD and algorithms.

We assume that the sequence {∆θ̂[k]}k≥1 of random vectors is available

from PMU measurements. For the base case where no line outages are

present, we have that ∆θ̂[k] ∼ f0. At some random time, tf , an outage

occurs on line (m,n). Then, the pdf of the sequence {∆θ̂[k]} changes from

f0 to f
(0)
(m,n). Then, the system undergoes a series of transient responses which

corresponds to the distribution of ∆θ̂[k] evolving from f
(0)
(m,n) to f

(T )
(m,n). First,

a meanshift takes place during the instant of change tf , where the pdf is

f
(0)
(m,n). Then, the statistical behavior of the process is characterized by a

series of changes only in the covariance matrix of the measurements. The

14



objective is to detect this transition in the pdf of {∆θ̂[k]} as quickly as pos-

sible. Mathematically, when a line outage occurs, the objective is to find

the optimal stopping time τ on the sequence of observations for ∆θ̂. In the

absence of a change, the expectation of τ , E[τ ], should be maximized so as to

avoid false alarms. On the other hand, once a line outage occurs, we expect

E[τ ] to be as small as possible. A formulation that captures this trade-off is

as follows [27]:

min
τ

sup
γ0≥1

Eγ0 [τ − γ0|τ ≥ γ0]

subject to E∞[τ ] ≥ β,

(2.17)

where Eγ0 denotes the expectation with respect to probability measure when

a change occurs at time sample γ0, E∞ denotes the corresponding expectation

when the change never occurs, and β > 0 is the given constraint on the mean

time to false alarm.

2.4 Summary

This chapter set up the framework for the proposed line outage detection and

identification method that is to be developed in this work. An incremental

DC-like power flow model was derived along with the statistical model for the

voltage phase angles, the measurements of which are assumed to be provided

by PMUs. In the derivation of the statistical model, we assumed that the

incremental variations in the active power injections at each load bus are

independent random variables and that the generators react to the changes

in these load demands.

15



CHAPTER 3

LINE OUTAGE IDENTIFICATION: NO
TRANSIENTS

This chapter begins by introducing the CuSum algorithm for change detec-

tion for the case where only the meanshift and the quasi steady state period

following a line outage is considered. This is followed by the presentation of

the Kullback-Leibler (KL) divergence, which is an important measure char-

acterizing the distance between two probability distributions; the detection

algorithms we present are based on this measure. Then, we introduce the

Generalized Likelihood Ratio Test (GLRT) algorithm, which serves as a basis

for our line-outage detection method. The performance of the proposed al-

gorithm is compared against other existing line outage detection algorithms

in the literature. We show that our algorithm performs better as it exploits

the statistical properties of the measured voltage phase angles before, during,

and after a line outage, whereas other methods in the literature only utilize

the change in statistics that occurs at the instant of outage.

3.1 CuSum Algorithm

Recall the measurement model in (2.16) for the case where T = 1:

∆θ̂[k] ∼


f0 := N (0, M̂0ΛM̂T

0 ), if 1 ≤ k < γ0,

f
(0)
(m,n)

:= N (−P(m,n)[γ0 + 1]CM0r(m,n),

M̂0ΛM̂T
0 ), if k = γ0,

f
(1)
(m,n)

:= N (0, M̂(m,n),TΛM̂T
(m,n),T ), if k ≥ γ1.

(3.1)

Suppose that the p.d.f.’s f0, f
(0)
(m,n), and f

(1)
(m,n), are known. Then, one par-

ticular algorithm that possesses the optimality properties with respect to the

formulation in (2.17) is the Cumulative Sum (CuSum) algorithm [28]. From

the sequence of phase angle measurements, the CuSum algorithm computes a

sequence of statistics recursively so that for k ≥ 0, the statistic WCU
(m,n)[k+ 1]
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is computed as

WCU
(m,n)[k + 1] = max

{
WCU

(m,n)[k] + log
f

(1)
(m,n)(∆θ̂[k + 1])

f0(∆θ̂[k + 1])
,

log
f

(0)
(m,n)(∆θ̂[k + 1])

f0(∆θ̂[k + 1])
, 0

}
,

(3.2)

where WCU
(m,n)[0] = 0 for all (m,n) ∈ E . Denote τC to be the time at which

the CuSum algorithm declares a line outage; then,

τC = inf{k ≥ 1 : WCU
(m,n)[k] > ACU

(m,n)}, (3.3)

where ACU
(m,n) is a threshold selected for the corresponding WCU

(m,n)[k] statistic.

An optimal method to select this threshold will be presented in Section 3.3.

3.2 Generalized Likelihood Ratio Test Algorithm

In the setting we consider for this thesis, since the line for which an outage

occurs is unknown, the post-change pdf of ∆θ̂ is also unknown. However,

since the single-line outage can occur in at most L ways, the post-change

distribution is known to belong to the finite set {f(m,n), (m,n) ∈ E}. In

this context, we can apply the Generalized Likelihood Ratio Test (GLRT)

algorithm where we compute L CuSum statistics in parallel, one for each

post-change scenario, and declare an outage the first time a change is detected

in any one of the parallel CuSum tests. In other words, we compute (3.2) for

each line (m,n) in the system, with WCU
(m,n)[0] = 0, and stop at

τCU = inf

{
k ≥ 1 : max

(m,n)∈E
WCU

(m,n)[k] > ACU
(m,n)

}
. (3.4)

In [13], a single threshold ACU
(m,n) was chosen for all line outage streams WCU

(m,n).

However, faster detection can be achieved by choosing an individual thresh-

old ACU
(m,n) for each WCU

(m,n) that is proportional to its corresponding KL diver-

gence. The threshold ACU
(m,n) can be chosen to control the mean time to false

alarm; if a larger mean time to false alarm is required, then ACU
(m,n) is set to

a larger value, and vice-versa. Finally, this algorithm also identifies the line
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that is outaged at τCU to be

(m̂, n̂) = arg max
(m,n)∈E

WCU
(m,n)[τ

CU]. (3.5)

3.3 Threshold Selection

We now present ways of choosing the thresholds for the CuSum test. It can

be shown (see, e.g., [29]) that by choosing

ACU
(m,n) = log γ − log β(m,n), (3.6)

with β(m,n) being a positive constant independent of γ, the expected delay for

each possible outage differs from the corresponding minimum delay among

the class of stopping times Cγ = {τ : E0(τ) ≥ γ}, as γ → ∞, by a bounded

constant.

A choice of thresholds for the CuSum algorithm is obtained by setting

β(m,n) = 1
L

for all (m,n) ∈ E . This way we get a common threshold, i.e.,

ACU
(m,n) = ACU = log(γL) for all (m,n) ∈ E . It can be shown (see, e.g., [30])

that by choosing the thresholds this way, we can guarantee that E0[τCU] ≥ γ.

Using the results in [29], another choice of the thresholds could be based

on a relative performance loss criterion, i.e.,

β(m,n) =
1

D(f
(1)
(m,n) ‖ f0)L(ζ(m,n))2)

, (3.7)

where

ζ(m,n) = lim
b→∞

E(1)
(m,n)

[
e{−(S(m,n)[τ

b
(m,n)

]−b)}
]
, (3.8)

with

τb
(m,n) = inf{k ≥ 1 : S(m,n)[k] ≥ b}, (3.9)

and

S(m,n)[k] =
k∑
l=1

log
f

(1)
(m,n)(∆θ̂[l])

f0(∆θ̂[l])
. (3.10)

This choice of threshold depends on the asymptotic overshoot of an Sequen-

tial Probability Ratio Test (SPRT)-based test, which is often used in hypoth-

esis testing [15]. As we show through case studies, these thresholds result in
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performance gains.

3.4 Intuition Behind the Operation of the GLRT

Algorithm

The algorithm we presented in (3.2) for line outage detection is based on the

Kullback-Leibler (KL) divergence, which for any two probability densities f

and g is defined as follows:

D(f ‖ g) :=

∫
f(x) log

f(x)

g(x)
dx ≥ 0, (3.11)

with equality if and only if f = g almost surely. In the context of the line

outage detection problem, for an outage of line (m,n), the KL divergence is

D(f
(1)
(m,n) ‖ f0) = E

[
log

(
f

(1)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

)∣∣∣∣∣ (m,n) outage

]
, (3.12)

which provides a bound on the delay for detecting an outage in line (m,n);

a larger KL divergence results in lower detection delay and vice versa. Prior

to any changes, the mean of the log likelihood ratio is negative due to (3.11).

Therefore, WCU
(m,n)[k] would remain close to or at 0 prior to a line outage. On

the other hand, after an outage occurs, the mean of the log-likelihood ratio

is positive. As a result, WCU
(m,n)[k] increases unboundedly after the outage in

line (m,n), and the CuSum algorithm in (3.2) declares the occurrence of an

outage in line (m,n) the first time that WCU
(m,n)[k] reaches ACU

(m,n).

In addition, We can use (3.11) to obtain bounds on the false isolation

rates. Consider an outage of line (m,n); if E
[
log

(
f
(1)
(k,l)

f0

)]
is positive, then

WCU
(k,l)[k] would increase despite no outage in line (k, l). Hence, we would

like E
[
log

(
f
(1)
(m,n)

f
(1)
(k,l)

)]
to be maximized so that the false isolation rate for line

(m,n) outage is minimized. For example, we can compute D(f
(1)
(m,n) ‖ f

(1)
(k,l))

to estimate a bound on the false isolation rate, where a small value indicates

that an outage in line (k, l) causes a statistical change in the voltage phase

angles that is very similar to that corresponding to an outage in line (m,n).
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(a) Line (1, 2) outage.
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(b) Line (1, 3) outage.
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(c) Line (2, 3) outage.

Figure 3.1: Realizations of WCU
(m,n)[k] for each line outage of 3-bus system

with PMU at buses 2 and 3.

An extreme case of D(f
(1)
(m,n) ‖ f

(1)
(k,l)) = 0 occurs when lines (k, l) and (m,n)

have the same impedance and share the same terminal buses, i.e., k = m,

l = n. In this case, our algorithm cannot distinguish between the occurrence

of an outage on either of the two lines. Next, we illustrate these ideas in a

small power system example.

Example 3.1 (Three-Bus System). Consider the 3-bus system shown in

Fig. 2.1. We apply the GLRT algorithm to detect and identify a line (2, 3)

outage at γ0 = 1. The PMU measurements are simulated by creating an

active power injection time-series data for each load bus i with

Pi[k] = Pi[k − 1] + vi, (3.13)

where Pi[0] is the nominal power injection at load bus i at instant k, and

vi ∼ N (0, 0.5) is a pseudorandom value representing random fluctuations

in electricity consumption. For each set of bus injection data, we solve the

nonlinear power flow equations in (2.1) to obtain the sequence of phase angle

“measurements” {θ̂[k]}. In this example, we assume that bus 1 is the refer-
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Table 3.1: 3-bus system KL Div.

KL Div.
Line Outage (m,n)

(1, 2) (1, 3) (2, 3)

E
[

log
(
f(1,2)
f0

)∣∣∣ (m,n) outage
]

3.69 -1.09 0.75

E
[

log
(
f(1,3)
f0

)∣∣∣ (m,n) outage
]

-0.86 1.77 1.34

E
[

log
(
f(2,3)
f0

)∣∣∣ (m,n) outage
]

0.59 -0.02 6.42

ence bus and the random fluctuations at buses 2 and 3 are uncorrelated, so

Λ is a diagonal matrix.

Using the GLRT-based algorithm, we execute three CuSum tests in par-

allel and compute each WCU
(m,n)[k] defined in (3.2), one for each line of the

system. Figure 3.1 shows the typical progressions of WCU
(m,n)[k] for each line

outage of the 3-bus system. In Fig. 3.1(a), WCU
(1,2)[k] crosses the threshold

of A = 100 first, while WCU
(1,3)[k] and WCU

(2,3)[k] remain close to 0. There-

fore, the algorithm was able to correctly detect and identify the line out-

age after k = 25 samples. Similar behavior was observed for outages of

line (1,3) and (2,3). In addition to the plots, Table 3.1 shows the com-

puted KL divergences of all line outages according to (3.11). For exam-

ple, a positive E
[

log
(
f(1,2)
f0

)∣∣∣ (1, 2) outage
]

value of 3.69 means that in the

long run, if the outage were indeed on line (1, 2), WCU
(1,2)[k] will increase;

the rate of this increase depends on the magnitude of the KL divergence.

Since E
[

log
(
f(1,2)
f0

)∣∣∣ (1, 2) outage
]
> E

[
log
(
f(1,3)
f0

)∣∣∣ (1, 3) outage
]
, on aver-

age, WCU
(1,2)[k] reaches the threshold A in less samples than WCU

(1,3)[k] for an

outage of their respective lines. On the other hand, the negative value of

E
[

log
(
f(1,2)
f0

)∣∣∣ (1, 3) outage
]

means that WCU
(1,2)[k] tends to stay near 0 for a

line (1, 3) outage, which is observed in Fig. 3.1(b).

3.5 Other Statistical Algorithms for Power System

Line Outage Detection

This section introduces some of the other algorithms that are used for change

detection. Specifically, we introduce the meanshift and Shewhart tests, which

only consider the latest sample of the voltage phase angles instead of using

all of the samples. For example, the line outage detection algorithm proposed
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in [8] can be shown to be equivalent to a log-likelihood ratio test that only

uses the most recent measurements.

3.5.1 Meanshift Test

The meanshift test is a “one-shot” detection scheme in that the algorithm

uses only the most recent observation to decide whether a change in the

mean has occurred and ignores all past observations. The meanshift statistic

corresponding to line (m,n) is defined as follows:

WMS
(m,n)[k] = log

f
(1)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])
. (3.14)

The decision maker declares a change when one of the |E| statistics crosses

a corresponding threshold, AMS
(m,n). The stopping time for this algorithm is

defined as:

τMS = inf
(m,n)∈E

{
inf{k ≥ 1 : WMS

(m,n)[k] > AMS
(m,n)}

}
. (3.15)

The meanshift test ignores the persistent covariance change that occurs

after the outage. In particular, note that the meanshift test is using the

likelihood ratio between the distribution of the observations before and at

the changepoint. More specifically, assuming that an outage occurs in line

(m,n), the expected value of the statistic at the changepoint is given by

E(0)
(m,n)

[
log

f
(0)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

]
= D(f

(0)
(m,n) ‖ f0) > 0. (3.16)

On the other hand, after the changepoint (k > λ0), the expected value of

the statistic is given by

E(1)
(m,n)

[
log

f
(0)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

]
=

= D(f
(1)
(m,n) ‖ f0)−D(f

(1)
(m,n) ‖ f

(0)
(m,n)),

(3.17)

which could be either positive or negative.
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3.5.2 Shewhart Test

Similar to the meanshift test, the Shewhart test is also a “one-shot” detection

scheme. This test attempts to detect a change on the observation sequence

through the meanshift and the change in the covariance matrix of ∆θ̂[k]. The

Shewhart test statistic for line (m,n) outage is defined as:

W SH
(m,n)[k] = max

{
log

f
(0)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])
, log

f
(1)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

}
, (3.18)

where the first log-likelihood ratio is used to detect the meanshift, while

the second log-likelihood ratio is used to detect the persistent change in the

covariance. The stopping time is:

τSH = inf
(m,n)∈E

{
inf{k ≥ 1 : W SH

(m,n)[k] > ASH
(m,n)}

}
. (3.19)

Since the Shewhart test exploits the covariance change in addition to the

meanshift statistic, it should perform better than the meanshift test, at least

as the meantime to false alarm goes to infinity, which is verified in the case

studies.

3.6 Case Studies

This section provides a case study of the concepts introduced in this chapter

on the IEEE 14-bus and 118-bus systems [31]. The importance sampling

technique for rare events is also presented. An outage is simulated and the

proposed algorithm is used to detect this outage. In addition, we demon-

strate the effectiveness of our proposed line outage detection algorithm by

comparing against other line outage detection algorithms on the IEEE 14-bus

system.

3.6.1 Importance Sampling

Since the meanshift in the voltage phase angles occurs between the sample

immediately prior to and after the line outage, it is not persistent. If the

meanshift test presented in Section 3.5.1 does not capture the outage exactly
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when it occurs, then the likelihood of correctly identifying the outage would

be a rare event. This is because the log-likelihood ratio used in the meanshift

statistic of (3.14) matches only the meanshift but not the covariance shift

that is persistent after a line outage. Therefore, in order to simulate detection

delays of the meanshift test, the technique of importance sampling is used.

The usual Monte Carlo method of estimating the average detection delay

of the meanshift test is

τ̂MS := E[τMS] ≈ 1

N

N∑
i=1

τMS
i , (3.20)

whereN is a large sample size and τMS
i is the detection delay for the ith sample

run. For line (m,n) outage simulation, starting with the second sample after

the line outage, the voltage phase angles samples are generated from the

probability distribution f
(1)
(m,n). Therefore, the numerator of (3.14) does not

match the distribution from which the samples are generated, making the

crossing of threshold rare. In order to use importance sampling, we sample

from the distribution f
(0)
(m,n) instead of f

(1)
(m,n) for all samples after the outage.

We use the fact that

E
f
(1)
(m,n)

[
log

f
(0)
(m,n)

f0

]
= E

f
(0)
(m,n)

[
log

(
f

(0)
(m,n)

f0

)
f

(1)
(m,n)

f
(0)
(m,n)

]
. (3.21)

We modify the meanshift statistic of (3.14) to

WMS
(m,n)[k] = log

(
f

(0)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

)
f

(1)
(m,n)(∆θ̂[k])

f
(0)
(m,n)(∆θ̂[k])

(3.22)

but with sampling of ∆θ̂[k] from the distribution f
(0)
(m,n) after the line outage

instead of f
(1)
(m,n). We declare the detection of line outage when the statistic

crosses the threshold. This method greatly reduces the number of sample

paths that must be simulated to estimate the detection delay, resulting in

greater efficiency.
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Figure 3.2: Network topology for 14-bus system.

3.6.2 14-Bus System

The one-line diagram of the IEEE 14-bus test system is shown in Fig. 3.2.

We simulate a line (2, 5) outage at k = 10 and apply the CuSum tests of

(3.2) to the voltage phase angle measurements. The random fluctuations

in the active power injections are considered independent Gaussian random

variables with a variance of 0.03. Therefore, Λ is a diagonal matrix. Figure

3.3 shows that the W(2,5)[k] stream crosses the threshold of 100 before all

the other streams at k = 48, resulting in a detection delay of 38 samples.

Assuming that the PMUs sample voltage angles at a rate of 30 samples per

second, the detection delay in this case is about 2 seconds. Again, we see

that the streams for the other lines either remain close to 0 or grow at a

slower rate than W(2,5)[k].

Next, we perform Monte Carlo simulations for the Shewhart, meanshift,

and CuSum algorithms to obtain plots of average detection delay versus mean

time to false alarm. The values for the average detection delay are obtained

by simulating an outage in line (4, 5) and running the corresponding detec-

tion algorithms for different thresholds until a detection of the outaged line

is declared. For computing the mean time to false alarm, the detection algo-

rithms are executed for the power system under normal operation until a false

alarm occurs. Since false alarm events are in general rare, averaging many
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Figure 3.3: Sample run for 14-bus system.

sample runs would incur significant computation time. In order to reduce

the simulation time, importance sampling is used for the meanshift and She-

whart tests. For our simulations, we found that the error bounds for all the

simulated values are within 5% of the means. Figure 3.4 shows the average

detection delay versus mean time to false alarm for all of the detection meth-

ods mentioned in this paper. As evidenced by the crossing of the Shewhart

and meanshift plots, for small values of mean time to false alarm, the mean-

shift test performs better than the Shewhart test. It can be verified from

QCD theory that the slope of Delay versus log(mean time to false alarm) for

the Shewhart and CuSum tests is given by 1

D(f
(1)
(m,n)

‖ f0)
for large mean time

to false alarm [21].

From the plots, we conclude that for the same value of mean time to false

alarm, both CuSum-based algorithms have a much lower average detection

delay compared to the Shewhart and meanshift algorithms. In addition,
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Figure 3.4: Detection delay vs. mean time to false alarm.
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the figure shows that when we use varied thresholds for the CuSum test as

opposed to a fixed threshold, even lower detection delay can be achieved for

the same mean time to false alarm. This illustrates that our algorithm is an

improvement over that of [13]. Lastly, simulation results demonstrate that

the detection delay scales exponentially with the selected thresholds for both

the meanshift and Shewhart tests, and linearly for the CuSum-based tests.

3.6.3 118-Bus System

Next, we illustrate the scalability of the proposed line outage detection

algorithm on the IEEE 118-bus test system. The simulation tool MAT-

POWER [32] is used to compute the voltage angles by repeatedly solving

AC power flow solutions of the system. The real power injection is generated

using (3.13) with σ = 0.03. We also assume these random fluctuations are

uncorrelated; thus, Λ is a diagonal matrix.

An outage in line (34, 37) starting at k = 1 is simulated and the algorithm

of (3.2) is applied. Some sample test statistics are shown in Fig. 3.5. With

a threshold of 40, the line outage is declared 53 samples after the outage.

3.7 Summary

In this chapter, the CuSum algorithm for change detection was introduced

along with the GLRT algorithm, which serves as a basis for the line-outage

detection method proposed in this thesis. We also introduced other line out-
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age detection algorithms in literature and compare their performance against

our proposed method. We showed that the CuSum algorithm performs better

since it uses the statistical properties of the measured voltage phase angles

before, during, and after a line outage, whereas other methods in the litera-

ture only utilize the change in statistics that occurs at the instant of outage.
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CHAPTER 4

LINE OUTAGE DETECTION
CONSIDERING TRANSIENTS

This chapter improves the line outage detection algorithm presented in Chap-

ter 3 by taking into account the transient dynamics that the system ex-

periences immediately after the outage occurrence. More specifically, the

generators respond to the power mismatch according to the so-called “gov-

ernor power flow model”. Hence we incorporate this phenomenon into our

detection scheme for better performance. The notion of ranked list is also

introduced for capturing the probability of false isolation.

4.1 Generalized CuSum Test

Recall the statistical model in (2.16):

∆θ̂[k] ∼



f0 := N (0, M̂0ΛM̂T
0 ), if 1 ≤ k < γ0,

f
(0)
(m,n)

:= N (−P(m,n)[γ0 + 1]CM0r(m,n),

M̂0ΛM̂T
0 ), if k = γ0,

...

f
(T )
(m,n)

:= N (0, M̂(m,n),TΛM̂T
(m,n),T ), if k ≥ γT .

(4.1)

The Generalized CuSum (G-CuSum) discussed in Chapter 3 was developed

with the understanding that the transition between pre- and post-outage

periods is not characterized by any transient behavior other than the mean-

shift that occurs at the instant of outage (e.g., T = 1). The meanshift was

captured by introducing an additional log-likelihood ratio term between the

distribution at the time of change and the distribution before the change.

The final test statistic takes the maximum of this log-likelihood ratio and

the traditional G-CuSum test recursion.

Although the G-CuSum algorithm does not take any transient dynamics

into consideration, it can still perform well when the transient distributions
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and the final post-change distribution are “similar”, i.e., when the KL diver-

gence between f
(i)
(m,n), i = 1, 2, . . . , T − 1, and f

(T )
(m,n) is small. As a result, it

is useful to compare the performance of the G-CuSum test with the perfor-

mance of the G-D-CuSum test that is proposed in this work.

Since the line that is outaged is not known a priori, the G-CuSum test

works by using the CuSum test statistics in a generalized manner. As a

result, we compute L CuSum statistics in parallel, one corresponding to each

line outage scenario, and declare a change when an outage to any line is

detected. The CuSum recursion for line (m,n) is calculated by accumulating

log-likelihood ratios between f
(T )
(m,n) and f0.

4.2 Generalized Dynamic CuSum Test

Since the proposed statistical model in (2.16) can include an arbitrary num-

ber of transient periods with finite duration, each one corresponding to a

respective transient distribution induced on the observations, it is clear that

the G-CuSum test of [33] needs to be modified to take this transient behavior

into consideration. Toward this end, we introduce the Generalized Dynamic

CuSum (G-D-CuSum) test. This test is derived by exploiting the so-called

Dynamic CuSum (D-CuSum), a test also proposed in this work. This test

arises as a solution to the non-composite QCD problem under the presence

of an arbitrary number of transient periods. The D-CuSum test statistic is

derived by formulating the transient QCD problem as a dynamic composite

hypothesis testing problem at each time instant. The G-D-CuSum algorithm

uses the test statistics of the D-CuSum test in a generalized manner, i.e., cal-

culates a test statistic for each possible line outage in parallel, and declares

an outage when one of the line statistics crosses a pre-determined positive

threshold corresponding to the line.

By using the D-CuSum test statistic as a basis, we propose the G-D-CuSum

test. The statistic for line (m,n) is given as follows:

WD
(m,n)[k] = max

{
Ω

(1)
(m,n)[k], . . . ,Ω

(T )
(m,n)[k], log

f
(0)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

}
, (4.2)
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where

Ω
(i)
(m,n)[k] = max

{[
max{Ω(i)

(m,n)[k − 1],Ω
(i−1)
` [k − 1]}+

log
f

(i)
(m,n)(∆θ̂[k])

f0(∆θ̂[k])

]
, 0

}
,

(4.3)

for i ∈ {1, . . . , T}, Ω
(0)
(m,n)[k] := 0 for all k ∈ Z and Ω

(i)
(m,n)[0] := 0 for all

(m,n) ∈ E and all i. The corresponding stopping rule is defined as

τD = inf
(m,n)∈E

{
inf{k ≥ 1 : WD

(m,n)[k] > A(m,n)}
}
. (4.4)

Calculating the test statistic for line (m,n) involves calculating the statis-

tics Ω
(1)
(m,n), . . . ,Ω

(T )
(m,n). The final test statistic is given by taking the maximum

of these terms together with the log-likelihood ratio between the distribution

at the outage and the pre-outage distribution. Note that to renew each Ω

statistic, the value of the statistic in the previous time instant and the value

of the statistic used to detect the previous distribution change is used. The

basis of this algorithm is that each statistic is used to capture one of the

transient distributions. As a result, at each different period that the process

goes through, one of the Ω statistics will dominate the others, leading to

the adaptive nature of the algorithm. Also, the test statistics are designed

to use prior information from other test statistics, exploiting the fact that

distribution changes occur in a sequential manner. A detailed derivation of

this algorithm is presented in Appendix B.

4.3 Line Outage Identification

The detection algorithm proposed in Chapter 3 can also be used to identify

the outaged line. One strategy would be to declare the outaged line as the

one corresponding to the largest statistic at the stopping time. To this end,

denote by l̂ the line that is identified as outaged. Then,

l̂ = arg max
(m,n)∈E

W(m,n)[τ ]. (4.5)
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A drawback of this line outage identification method is that the statistics for

other lines may also increase following a line outage. Due to the structure

of a power system, certain line outages may result in multiple line statistics,

in addition to the one corresponding to the true outaged line, to increase.

Therefore, in order to reduce the probability of false isolation, a set of lines

is identified as potentially outaged. Consequently, more than one line should

be checked by the system operator after an outage is declared. We associate

with each line statistic a corresponding ranked list. The idea is similar to

listed decoding in digital communications (see e.g., [34]).

This ranked list contains line indices for which the line statistics grow

almost as fast as the true outaged line. The ranked list can be created of-

fline by computing the growth rate of each statistic for each line outage in

advance, either through a full simulation of the power system, or theoreti-

cally, by inspecting the post-outage KL divergences. Since there are multiple

transient periods following a line outage, it is important to use the correct

post-outage distribution in the calculation of the KL divergence. Intuitively,

for a specific threshold choice and line outage, knowledge of the average de-

lay provides information regarding the post-outage period during which the

outage is declared. It is natural to believe that the KL divergence between

the distribution corresponding to this stage and the pre-outage distribution

plays the major role in the behavior of the test statistic; thus it should be

used to create the ranked list for the examined line.

Define the ranked list for statistic W(m,n) as

C(m,n) = {(m,n)1, . . . , (m,n)C(m,n)
}, (4.6)

where C(m,n) the cardinality of the ranked lists and (m,n) ∈ C(m,n).

To quantify the performance of our algorithm with respect to its ability to

identify the outaged line accurately, we define the probability of false isolation

(PFI). For the case of line (m,n) outage, a false isolation event occurs when

(m,n) is not included in the ranked list of the line statistic with the highest

value at the time of stop. Define the PFI when line (m,n) is outaged as:

PFI(m,n)(τ) = P{(m,n) 6∈ Cl̂|line (m,n) outage}. (4.7)

The length of ranked lists should be chosen to optimize the tradeoff between
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Figure 4.1: Voltage phase angles of IEEE 14-bus system following an
outage in line 7.
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Figure 4.2: Sample paths for IEEE 14-bus system.

PFI and number of lines that need to be checked after an outage detection

has occurred. In particular, larger ranked lists lead to lower PFI, but to a

larger set of possibly outaged lines. Detailed simulation results for the PFI

values of our proposed algorithm are presented in Section 5.4.

4.4 Case Studies

In this section, the algorithm proposed in (4.2)-(4.4) is applied to the IEEE

14-bus, and the IEEE 118-bus test systems (for the model data, see [31]).

In order to compute the transient dynamics following a line outage, we use

the simulation tool Power System Toolbox [35]. For simplicity, we used the

statistical model in (2.16) with T = 2, i.e., we assumed one transient period

after the line outage occurs. Additional transient periods could easily be

incorporated into the simulations. The power injection profiles at the load

buses are assumed to be independent Gaussian random variables with vari-
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Figure 4.3: IEEE 14-bus Monte Carlo simulation results.

ance of 0.03 and the PMU sampling rate is assumed to be 30 measurements

per second. For our simulations, we found that the error bounds for all the

simulated values are within 5% of the means.

4.4.1 14-bus System

For the IEEE 14-bus system, we simulated an outage in line 7 at t = 0.1s. The

dynamic responses of the voltage phase angles are shown in Fig. 4.1. From

the plots, we conclude that the transient period following a line outage lasts

approximately 3 seconds, which is assumed in the model for our proposed

detection algorithm.

Next, we simulate two different line outages for the 14-bus test system, one

in which the detection occurs during the transient period and one in which the

detection occurs after the transient period; the results are shown in Fig. 4.2.

Figure 4.2(a) shows some typical progressions of W9[k]’s for the various line

outage detection schemes discussed earlier. The fault occurs at k = 10 and

the threshold is A(m,n) = 50. The transient period was assumed to last for

100 samples (approximately 3 seconds). From the figure, we conclude that

for this sample run, a line outage is declared after 74 samples when the G-D-

CuSum stream crosses the threshold first. The other algorithms incur a much

larger detection delay since they do not cross the threshold of A(m,n) = 50.

Figure 4.2(b) shows the typical progressions of W9[k]’s for an outage in line

9. For a threshold of A(m,n) = 80, the G-D-CuSum detects a line outage

138 samples after the outage occurs. In this example, the detection occurs

after the transient dynamics have subsided. From the plots, we conclude
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Table 4.1: False isolation probability obtained via simulation for IEEE
14-bus system.

E0[τ ] [day] 1/24 1/4 1/2 1 2 7

Line 3 0.0312 0.0255 0.0230 0.0214 0.0209 0.0197

Line 6 0.0139 0.0094 0.0059 0.0044 0.0031 0.0022

Line 15 0.0112 0.0079 0.0052 0.0044 0.0030 0.0021

that even though detection takes place after the transient dynamics subside

(k = 110), the G-D-CuSum algorithm still has a smaller detection delay than

the G-CuSum algorithm.

We performed Monte Carlo simulations for outages in lines 3, 6, and 15,

and show the detection delay versus mean time to false alarm in Fig. 4.3(a).

Among all the lines of the system, detection delay for line 15 is the lowest

for a fixed mean time to false alarm while line 6 has the worst detection de-

lay. Line 3 was chosen as a representative line for intermediate delay values.

Inspecting 4.3(a), we come to the conclusion that detection of line 3 and

line 6 outage is happening after the transient period is over for the major-

ity of the sample runs. This is also reflected on the slope change of these

two lines. In particular, after the transient dynamics subside, the slope of

the delay lines gradually changes, since the dominant KL divergence is that

between the persistent post-outage distribution and the pre-outage distribu-

tion. Additionally, we compared the performance of our proposed algorithm

against the Meanshift test, Shewhart test, and the G-CuSum algorithm for

an outage on line 7, and the results are shown in Fig. 4.3(b). From the plot,

we conclude that the G-D-CuSum algorithm achieves the lowest detection

delays among all algorithms for a given mean time to false alarm.

Finally, the PFI versus mean time to false alarm is obtained for outages

in lines 3, 6, and 15; the results are recorded in Tab. 4.1. The PFI was

calculated by using the clustering technique discussed in Section 4.3. The

ranked list for the 14-bus system line statistics is shown in Tab. 4.2. A

maximum number of three lines per ranked list was used. Table 4.2 indicates,

for each statistic, the set of 3 lines that are most likely to have contributed

to this line statistic achieving large values. For example, a large value of

statistic WD
2 is most likely caused by an outage in line 2, 4, or 5. Note
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that the PFI decreases as the mean time to false alarm increases. This is

because larger mean time to false alarm corresponds to larger thresholds,

which result in smaller PFI values. Finally, line 14 do not have a ranked list

since its outage causes the system to island into two smaller subsystems.

4.4.2 118-bus System

To illustrate the scalability of the proposed algorithm, we simulate outages in

lines 60, 180, and 186. The detection delay versus false alarm for these lines

is shown in Fig. 4.4. From the plots, we conclude that among the three lines,

line 186 has the best line outage detection performance. That is, for a fixed

mean time to false alarm, a line 186 outage has the lowest detection delay.

Meanwhile, line 60 has the worst detection performance and line 180 is in the

middle. Finally we estimated the PFI for different mean times to false alarm

through Monte Carlo simulations. We use the same clustering technique as

for the 14-bus system with a maximum of three lines per ranked list on the

118-bus system. However, due to space constraints, we omit the ranked list

table for the 118-bus system. The PFI results for lines 60 and 180 are shown

in Tab. 4.3. The PFI results for line 186 outage are not shown because after

extensive simulations, we found the values to be all smaller than 10−7. The

PFI values are similar to the 14-bus system with PFI decreasing as the mean

time to false alarm increases.
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Figure 4.4: 118-bus: Detection delay versus mean time to false alarm for
different lines for the IEEE 118-bus system.

36



Table 4.2: 14-bus system: Ranked list

Statistics WD
1 WD

2 WD
3 WD

4 WD
5

Lines {1, 2, 4} {2, 4, 5} {3, 4, 6} {2, 3, 4} {3, 5, 6}

Statistics WD
6 WD

7 WD
8 WD

9 WD
10

Lines {3, 5, 6} {1, 2, 7} {1, 7, 8} {2, 4, 9} {1, 10, 17}

Statistics WD
11 WD

12 WD
13 WD

14 WD
15

Lines {1, 10, 17} {1, 11, 13} {1, 12, 19} ∅ {1, 8, 15}

Statistics WD
16 WD

17 WD
18 WD

19 WD
20

Lines {1, 15, 16} {1, 17, 20} {1, 11, 18} {1, 12, 19} {1, 17, 20}

Table 4.3: False isolation probability obtained via simulation for IEEE
118-bus system.

E0[τ ] [day] 1/24 1/4 1/2 1 2 7

Line 60 0.0295 0.0183 0.0176 0.0127 0.0103 0.0087

Line 180 0.0237 0.0132 0.0101 0.0087 0.0059 0.0031

4.5 Summary

In this chapter, we proposed a modified line outage detection algorithm that

performs better than previous methods of line outage detection because it is

adaptable to the transient dynamics that occur in the system following a line

outage. This algorithm features a set of statistics which are used to capture

each distribution shift. The algorithm is derived as a generalization of the

generalized likelihood ratio solution of the transient QCD problem. The

detection delay performance of the proposed algorithm is compared against

other line outage detection algorithms for line outages simulated on the IEEE

14- and 118-bus test systems.
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CHAPTER 5

OPTIMAL PMU PLACEMENT AND
SYSTEM PARTITIONING

In this chapter we present several extensions of the quickest change detection

algorithm presented in Chapter 3. A method to choose the threshold for

each CuSum statistic resulting in better performance is proposed. We also

formulate the optimal PMU placement strategy for the given power system

network so that the worst case detection delay is minimized. Additionally,

we show that our method could be applied to each area of a partitioned

power system concurrently for faster detection, and provide several criteria

to obtain such partitions.

5.1 PMU Placement

It turns out that the definition of KL divergence presented in equation (3.11)

has a closed form solution if the two distributions f and g are Gaussian. Since

the pre-outage distribution, f0 = N (0, M̂0ΣM̂T
0 ), and the post-outage dis-

tribution, f(m,n) = N (0, M̂(m,n)ΣM̂
T
(m,n)), are both Gaussian, we can express

D(f(m,n) ‖ f0) as (for derivation, see Appendix A.2)

1

2

[
Tr(Γ−1

0 Γ(m,n))− p+ log(det(Γ0Γ−1
(m,n)))

]
, (5.1)

where p ≤ Nd is the number of PMUs allocated for the system, Γ0 = M̂0ΣM̂T
0 ,

and Γ(m,n) = M̂(m,n)ΣM̂
T
(m,n).

From equation (5.1), it is evident that the KL divergences depend on p,

the number of PMUs allocated for the system. In addition, for a fixed p, the

locations of the PMUs also affect the KL divergences. In order to minimize

the worst case detection delay for all line outages, the following optimization

can be solved for the optimal placement of the p PMUs:
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max
C

min
Γ(m,n)

1

2

[
Tr(Γ−1

0 Γ(m,n))− p+ log(det(Γ0Γ−1
(m,n)))

]
. (5.2)

The inner minimization is over all possible line outages in the system since we

would like to minimize the detection delay for the worst possible line outage

case. Some techniques for solving this optimization include cutting-plane

method and branch and bound method [36].

The integer programming problem in (5.2) is NP hard; therefore, in order

to speed up the combinatorial search, we propose a greedy algorithm, the

pseudocode of which is provided in Algorithm 1; this algorithm provides a

lower bound to the globally optimal solution. The algorithm chooses the

locations of the PMUs sequentially. At each step, we select the additional

location of the PMU to be the one that maximizes the current minimum

KL divergence for all possible line outages and add it to the current PMU

selection. The algorithm stops when the number of PMUs selected reaches

p. We show in the case studies that this method is computationally tractable

with good performance.

Algorithm 1: Greedy Algorithm for PMU placement

Data: N , p
C = 0, k = 0;
for k = 1 to p do

g = 0;
for n = 1 to N do

C(k, :) = eTn ;

KL = min
Γi

1
2

[
Tr(Γ−1

0 Γi)− p+ log(det(Γ0Γ−1
i ))

]
;

if g < KL then
g = KL;
l = n;

end

end
C(k, :) = eTl ;

end
return C

Example 5.1 (Three-Bus System with Limited PMUs). Now consider the

same 3-bus system as in Example 3.1 but with PMU deployed at only bus

2 instead of both buses 2 and 3. The typical progressions of W(m,n)[k] for

each line outage of the 3-bus system are simulated and plotted in Fig. 5.1.
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(c) Line (2, 3) outage.

Figure 5.1: Realizations of W(m,n)[k] for each line outage of 3-bus system
with PMU at bus 2 only.

Table 5.1 shows the computed KL divergences for this example. With the

removal of one PMU from this system, the KL divergences for all line out-

ages decreased. This is also evident from the plots, where on average, the

W(m,n)[k]’s now required more samples to reach the same threshold A, result-

ing in longer detection delays.

Example 5.2 (14-Bus System PMU Placement). Consider the IEEE 14-

bus test system, the one-line diagram of which is shown in Fig. 3.2. The

PMU measurements for the voltage phase angles are simulated by creating

an active power injection time-series data set and using it to compute the

voltage phase angles via the nonlinear power flow model. The power injection

for each load bus i is simulated by

P d
i [k] = P d

i [k − 1] + vi, (5.3)

where P d
i [0] is the nominal power demand at bus i and vi ∼ N (0, 0.3) is

a pseudorandom value representing random fluctuations in electricity con-

sumption. In addition, we assume that the random fluctuations at all the
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Table 5.1: 3-bus system KL Div. with PMU at bus 2.

KL Div.
Line Outage (m,n)

(1, 2) (1, 3) (2, 3)

E
[

log
(
f(1,2)
f0

)∣∣∣ (m,n) outage
]

2.9 0.33 -0.38

E
[

log
(
f(1,3)
f0

)∣∣∣ (m,n) outage
]

2.51 0.52 -0.03

E
[

log
(
f(2,3)
f0

)∣∣∣ (m,n) outage
]

1.46 0.37 0.06

load buses are independent, so Λ is a diagonal matrix.

An outage in line (2, 5) is simulated at k = 10. We apply the Generalized

CuSum algorithm in (3.2) by computing W(m,n)[k] for each line of the system.

A uniform threshold of A = 100 is used for all CuSum statistics, W(m,n)[k].

Figure 5.2 shows the typical progressions of W(m,n)[k] for an outage in line

(2, 5). Figure 5.2(a) assumes a full measurement set of voltage phase angles,

while Fig. 5.2(b) is simulated with a reduced measurement set, where PMUs

are deployed randomly at only nine of the buses. In both cases, the line

outage is correctly identified when the W(2,5) statistic crosses the threshold

of A = 100 first. With a full measurement set, the correct line outage is

identified 65 samples after the outage occurs while a much longer detection

delay of 170 samples is needed for the reduced measurement set.

Now suppose that we select nine buses via the procedure in Algorithm 1.

The typical progressions of W(m,n)[k] for this case are shown in Fig. 5.2(c).

By optimally placing the PMUs, we have reduced the detection delay to 79

samples, which is significantly better than randomly choosing the nine PMU

locations.

5.2 Power System Network Partitioning

For scalability, the graph describing the topology of a power system could be

partitioned into subgraphs and the quickest change detection algorithm could

be applied to each partition in parallel. This would allow for easier imple-

mentation of double line outage detection and scaling to larger systems but

would require novel approaches to solving the current line outage detection

problem. There are many ways we can partition the overall system according

to some optimality criteria; we consider three possible criteria here:
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Figure 5.2: 14-bus system: Sample paths of W(m,n)[k] for outage of (2,5).

C1. Equal number of edges within each partition (balanced size for each

partition).

C2. A partition such that the number of detectable single-line outage for

the overall system is maximized.

C3. Minimum KL divergence for all the partitions is maximized (to mini-

mize detection delay).

[C1.] Suppose each processor carrying out the line-outage detection algo-

rithm could perform computations on K streams of data in parallel and there

are L total lines in the overall system. Then the ideal number of partitions

for the system such that all processors are fully utilized is
⌈
L
K

⌉
. One particu-

lar graph partitioning algorithm minimizes the number of edges (or the sum

of their associated costs) in the cut-set of the graph while constraining the

upper bound on the number of nodes in each partition [37]. This algorithm

is based on computing the spectral factorization of the partition matrix.

Another graph partitioning software is the METIS package [38]. It is a k-

way partitioning method based the Kernighan-Lin algorithm with multilevel
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Table 5.2: 14-bus min. KL Div.

no. PMUs 1 2 3 4 5 6 7 8 9 10 11 12
Optimal 0.029 0.045 0.094 0.37 0.40 0.54 0.60 0.62 0.62 0.64 0.64 0.64
Greedy 0.027 0.043 0.056 0.19 0.22 0.23 0.25 0.37 0.49 0.61 0.64 0.64

graph coarsening. This software partitions a graph into k partitions based on

two possible objective functions, minimum edgecut or minimum communica-

tion volume (based on weights assigned to border vertices). Hence, one form

of quasi-optimality for partitioning is to balance the number of edges within

each partition; once the number of edges within each partition is specified,

then the problem becomes finding the set of partitions such that the mini-

mum KL divergence in each partition is maximized. It is worth mentioning

that the number of edges in the cutset should be minimized since outages

for these lines are unobservable through the QCD algorithm. The problem

of balancing edges in every partition may be transformed into a problem of

balancing the in/out degrees of the vertices in a partition.

[C2.] If the removal of an edge in the partition further divides the graph

into subgraphs (this corresponds to islanding in the power system partition),

then such a line outage is undetectable by the QCD method. A good par-

titioning scheme maximizes the number of detectable single-line outages for

the overall system.

[C3.] The optimal partition should minimize the false alarm and false

isolation rate. The false isolation rate decays exponentially with the thresh-

old A while the average detection delay is inversely proportional to the KL

divergence. The problem of finding the optimal partitioning of the system

would then be formulated as

max
all partitions

min
Γ(m,n)

1

2

[
Tr(Γ−1

0 Γ(m,n))− p+ log(det(Γ0Γ−1
(m,n)))

]
. (5.4)

Constraints can be added to the optimization problem as necessary. These

constraints include the maximum number of edges in each partition, the

maximum number of vertices in each partition, or the number of partitions

for the overall system.

Example 5.3 (14-Bus System Partitioning). We adopt Criterion C1 and

use the METIS software package to partition the network of the IEEE 14-

bus system utilized in Example 5.2. For a partition size of 2, this program

separates the 14-bus system into areas with approximately equal number of
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nodes while minimizing the number of tie-lines between the two areas. The

result from the graph partitioning algorithm is as follows:

• Area 1: Buses 1, 2, 3, 4, 5, 7, 8

• Area 2: Buses 6, 9, 10, 11, 12, 13, 14.

For a partition size of 2, this algorithm separated the 14-bus system into ar-

eas with approximately equal number of nodes while minimizing the number

of tie-lines between the two areas. While such a partition choice is favorable

from the perspective of requiring the least number of direct line power flow

measurements for the tie lines, it does not minimize the total number of un-

observable line outages for the overall system. This is evidenced by the fact

that an outage on lines (10, 11) or (13, 14) causes islands to form in Area 2.

Next, we compute the minimum KL divergences for the entire 14-bus sys-

tem, Area 1, and Area 2 of the partitioned 14-bus system to compare how

they are affected by the number of PMUs deployed. Figure 5.3 shows how

the minimum KL divergence increases as more PMUs are added, using both

an exhaustive search that is globally optimal and the greedy Algorithm 1.

The results for the entire 14-bus system are shown in Fig. 5.3(a) while those

for Area 1 and Area 2 of the partitioned 14-bus system are shown in Fig.

5.3(b) and Fig. 5.3(c), respectively. The values of the KL divergence as more

PMUs are added for the entire 14-bus system are also listed in Tab. 5.2. From

the plots, we conclude that the greedy algorithm provides a lower bound to

the exhaustive search because the greedy algorithm is only traversing one of

the many branches of the branch and bound method. Although not globally

optimal, the greedy algorithm is attractive in the sense that is it tractable

for larger systems.

5.3 On Selection of Threshold

In [13], a single threshold A was chosen for all line outage streamsW [k]. How-

ever, we show that faster detection can be achieved by choosing a threshold

A(m,n) for W(m,n)[k] that is scaled by its respective KL divergence:

A(m,n) = α
D(f(m,n)||f0)

max
(k,l)∈E

D(f(k,l)||f0)
, (5.5)
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(b) Area 1: Buses 1-5, 7-8.
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(c) Area 2: Buses 6, 9-14.

Figure 5.3: Minimum KL divergence of 14-bus system.

where α is a positive scaling constant and D is the KL divergence defined

next. We illustrate this idea of scaling A(m,n) individually with α in Section

5.4 with case studies on the IEEE 118-bus system. The threshold A(m,n) can

also be chosen to control the mean time to false alarm; if a larger mean time

to false alarm is required, then A(m,n) is set to a larger value, and vice-versa.

5.4 Case Studies

In this section, we illustrate the ideas proposed in this paper on the IEEE

30-bus and the IEEE 118-bus test systems. The one-line diagrams for these

systems can be found in [31].

5.4.1 30-bus System

For the IEEE 30-bus system, we partition the system into two areas using

the METIS software and compute the minimum KL divergence in Area 2

(buses 10, 12−30) to see how it is affected by the number of PMUs deployed
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Figure 5.4: Minimum KL Div. of Area 2 of 30-bus system.

throughout the partition. We apply both the greedy algorithm (the pseu-

docode of which is provided in Algorithm 1) and an exhaustive search and

show the results in Table 5.3 and Fig. 5.4. Using MATLAB running on an

Intel Core i7 Processor, the greedy algorithm required less than 2 minutes to

run, while 3 days were required for the optimal PMU placement via exhaus-

tive search. For the exhaustive search method, the number of computations

required for each partition is
(
Ni
p

)
while the greedy algorithm requires only

Nip computations, where Ni is the number of buses in partition i.

Next we simulate a line outage on line (15, 23) of Area 2, which has a KL

divergence of 14.3. The threshold is set at A = 200 with the variance of

active power injections assumed to be 0.3 at all of the load buses. Typical

progressions of W(m,n)[k] are shown in Fig. 5.5. For this particular example,

W(15,23) crosses the threshold of A = 200 for the first time 23 samples after

the outage occurs, resulting in a detection delay of 0.76 seconds.

Finally, we compare how the average detection delay of all possible line

outages is related to the detection threshold. For a particular chosen thresh-
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Figure 5.5: 30-bus system: Sample paths of W(m,n)[k] for line outage of
(15,23) of Area 2.
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Table 5.3: 30-bus system: Minimum KL divergence of Area 2.

no. PMUs 1 2 3 4 5 6 7
Optimal 0.0012 0.08 0.22 0.72 1.03 1.73 2.27
Greedy 0.0012 0.02 0.05 0.12 0.16 0.69 1.09

no. PMUs 8 9 10 11 12 13 14
Optimal 2.49 2.63 2.72 2.96 2.96 2.96 2.96
Greedy 1.41 1.79 1.94 1.94 1.94 1.94 1.94

Table 5.4: 30-bus system: α vs. Average Detection Delay of all lines.

α 10 20 30 40 50 60 70 80 90 100
Avg. Detection Delay [s] 0.25 0.49 0.73 0.99 1.23 1.47 1.84 1.93 2.20 2.46

Uniform A 10 20 30 40 50 60 70 80 90 100
Avg. Detection Delay [s] 2.02 4.04 6.07 8.09 10.13 12.06 14.18 16.23 18.19 20.21

old A(m,n), we perform Monte Carlo simulations to obtain the average de-

tection delay for the outage in line (m,n). Then, we compute the mean of

the average detection delay of all lines in the power system. The top half of

Table 5.4 shows the mean of the average detection delay of all lines resulting

from selecting the thresholds A(m,n) through α and scaled according to (5.5).

The bottom half of Table 5.4 shows the results due to selecting a thresh-

old uniformly across all lines. From the results, we observe that scaling the

thresholds according to KL divergences incurs a much lower mean average

detection delay. In addition, we note that for either method of selecting the

threshold, the detection delay scales linearly with the threshold.

5.4.2 118-bus System

Next for the IEEE 118-bus system, we simulate an outage in line (60, 62)

at k = 1. Figure 5.6 shows two realizations of W [k] for the same outage.

In Fig. 5.6(a), the detection threshold was set at A = 100 for all W [k]s.

In Fig. 5.6(b), the threshold for each W [k] was scaled linearly to the KL

divergence according to (5.5) with α = 100. Comparing the two cases, we

conclude that by choosing the thresholds scaled appropriately according to

the KL divergences, much lower detection delay can be achieved. This was

also verified through extensive Monte Carlo simulations where a threshold

of A = 100 resulted in an average detection delay of 42 samples, whereas

scaling the threshold reduced the average detection delay to 21 samples.

Next, we compare the average detection delay versus mean time to false
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Figure 5.6: 118-bus system: Sample paths of W(m,n)[k] for outage of (60,
62).

alarm of our proposed CuSum line outage detection method. We perform

50, 000 sample runs of outages on lines (60, 62) and (62, 66) to compute the

average detection delay and then another 50, 000 sample runs for the false

alarm data. The results are shown in Fig. 5.7 with the PMU sampling rate

assumed to be 30 samples per second. We conclude that even for large mean

time to false alarm, the detection delays are quite low for the line outages

studied.

Finally, we apply Algorithm 1 for deploying PMUs across the 118-bus

system. For each configuration of PMUs, we simulate the average detection

delay of all line outages with a uniform threshold of A = 100 for all W [k]s.

The results are shown in Fig. 5.8. From the figure, it is evident that the

first several PMUs have the most impact in reducing detection delay. As

the number of PMUs increases, the marginal benefit decreases. It was also

observed that in general having PMUs at one-third of the buses is sufficient

to achieve average detection delays that are close to the globally optimal

1/24 1/4 1/2 1 2 7
0.1

0.2

0.3

0.4

0.5

Mean Time to False Alarm [days]

D
et

ec
tio

n 
D

el
ay

 [
s]

 

 

Line (60, 62)
Line (62, 66)

Figure 5.7: 118-bus system: Average Detection Delay vs. Mean Time to
False Alarm.
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Figure 5.8: 118-bus system: Average Detection Delay vs. PMUs.

value obtained from exhaustive search.

5.5 Summary

This chapter provided several extensions of the basic QCD-based algorithm

presented earlier. We partitioned the power system into multiple areas and

applied the QCD-based algorithms in parallel for each area. A method to

determine the optimal PMU allocation for each area was also presented. It

was shown that both of these extensions can be formulated as an optimization

program.
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CHAPTER 6

CONCLUDING REMARKS

In this chapter we provide a summary of this thesis, highlight its main con-

tributions, and conclude with some discussion of directions for future work.

6.1 Thesis Summary

This thesis is composed of six chapters. A framework for line outage detection

exploiting the statistical properties of the voltage phase angle measurements

is proposed. The methods developed within this framework are compared

against other existing line outage detection methods and we show that our

method is capable of real-time detection with better performance.

Chapter 2. This chapter provided the preliminary background of this

research along with the statement of the problem to be addressed. The

power system model was introduced; then, the linear incremental model was

derived. Using this system model, we developed the pre- and post-outage

statistical model of the voltage phase angles and presented the problem state-

ment of quickest change detection.

Chapter 3. This chapter introduced the QCD-based line outage identi-

fication algorithms and the KL divergence, which is an important measure

for characterizing the performance of these detection algorithms. Various

other algorithms for line outage detection that exist in the literature were

presented. Finally, we compared the performance of our proposed method

against the other algorithms and showed that the CuSum-based method is

better.

Chapter 4. In this chapter, an extension of the line outage algorithm

proposed in Chapter 3 was presented. The new algorithm accounts for the

transient dynamics that occur following a line outage. To model the transient

behavior, participation factors were used to relate the active power gener-
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ation to the load demand. The new algorithm was shown to have better

performance compared to existing line outage detection algorithms and the

algorithm proposed in Chapter 3, where the system transient dynamics are

not considered.

Chapter 5. In this chapter, various extensions of the basic QCD-based

algorithm were presented. The idea of partitioning the power system into

multiple areas and applying the QCD-based algorithms in parallel for better

scalability was introduced. In addition, for cases where PMUs are limited, a

method to determine the optimal PMU allocation for each area was proposed.

6.2 Conclusion

This thesis provided a framework for line outage detection in power systems,

which is crucial for maintaining operational reliability. Many of the current

methods for online power system monitoring rely on a system model that can

be inaccurate due to bad historical or telemetry data. These inaccuracies

were a major factor in many blackouts. Therefore, there is a significant need

for developing online techniques to detect and identify system topological

changes.

The algorithm proposed in this thesis exploits fast measurements provided

by PMUs and uses a statistical method to quickly detect network topological

changes. The results of the proposed method are compared against the other

line outage detection algorithms in literature. Additionally, it would not be

economical to place a PMU at every bus across the power network. Therefore,

we also consider the problem of optimal PMU placement at strategic locations

for line outage detection.

6.3 Future Work

There are several extensions to this current work that are left for future

work. The current method is not capable of detecting double line outage;

new techniques that allow for quick detection of double line outages would

be beneficial. Specifically, in terms of optimal PMU placement, there exists

room for improving the current greedy algorithm. The formulation of the

51



PMU placement problem could be cast as a convex optimization and then

existing techniques can be used for solving it. Finally, the algorithms pre-

sented in this work could be applied to other event detection problems in

power systems such as switching of capacitors and transformers.
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APPENDIX A

DERIVATIONS

A.1 Extension of KL Divergence

We can extend the idea of KL Divergence to compute Ef2
[
log
(
f1
f0

)]
, which

provides a measure for false alarm rates.

Ef2
[
log

(
f1

f0

)]
=

∫
f2(x) log

(
f1(x)

f0(x)

)
dx

=

∫
f2(x) log(f1(x))dx−

∫
f2(x) log(f0(x))dx

=

∫
f2(x) log

(
f1(x)

f2(x)

)
dx+

∫
f2(x) log

(
f2(x)

f0(x)

)
dx

= D(f2 ‖ f0)−D(f2 ‖ f1).

A.2 KL Divergence for Multivariate Gaussians

The KL Divergence between two Multivariate Gaussian variables can be

computed analytically. Let f0 ∼ N (µ0,Γ0) and f1 ∼ N (µ1,Γ1) where

Γ0,Γ1 ∈ Rn×n. Then,
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D(f1 ‖ f0) =

∫
f1(x) log

(
f1(x)

f0(x)

)
dx

= Ef1
[
log

(
f1

f0

)]
=

1

2
log

(
det Γ0

det Γ1

)
+

1

2
Ef1
[
(x− µ0)TΣ−1

0 (x− µ0)− (x− µ1)TΣ−1
1 (x− µ1)

]
=

1

2
log

(
det Γ0

det Γ1

)
+

1

2

[
(µ1 − µ0)TΣ−1

0 (µ1 − µ0) + Tr(Γ−1
0 Γ1)

]
− n

2
,

where in the last step, we used the following identity [39]:

E
[
(x− c)TA(x− c)

]
= (µ− c)TA(µ− c) + Tr(AΓ)

for x ∼ N (µ,Γ).
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APPENDIX B

DYNAMIC CUSUM

Assume a random process {Xk}∞k=1 with the following statistical behavior:

Xk ∼



f0, if 1 ≤ k < γ0,

f (0), if γ0 ≤ k < γ1,
...

f (i), if γi ≤ k < γi+1,
...

f (T ), if γT ≤ k,

(B.1)

where γi ∈ N, i = 0, . . . , T . The goal is to design a stopping rule that will

detect the change in the statistical behavior of the observed process that

takes place at time instant γ0.

A heuristic test solution can be derived by considering this problem as a

dynamic composite hypothesis testing problem. Thus, at every time instant

k, choose between the following two hypotheses:

Hk
0 : k < γ0,

Hk
1 : k ≥ γ0.

The nominal hypothesis Hk
0 corresponds to the case that the time instant

γ0 has not been crossed yet, while the alternative hypothesis Hk
1 corresponds

to the case that we have crossed γ0. Each hypothesis induces a different

set of distributions on the data X1, X2, . . . , Xk. In particular, Hk
0 is a single

hypothesis under which the data follow distribution f0 i.i.d. and Hk
1 is a

composite hypothesis, i.e., it induces one distribution belonging to a set of

distributions. The distribution that is induced depends on the values of the

γ’s and k. To find the test statistic we first form the likelihood ratio of this
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hypothesis testing problem for an arbitrary choice of γ’s:

min{γ1−1,k}∏
j=γ0

f (0)(Xj) · · ·
k∏

j=min{γT−1,k}+1

f (T )(Xj)

k∏
j=γ0

f0(Xj)

.

This likelihood ratio should be interpreted with the understanding that
k∏

j=k+1

f (i)(Xj)

f0(Xj)
:= 1 for i = 0, . . . , T . This is a natural generalization of the

maximum likelihood interpretation of the CuSum statistic [21]. The test

statistic is derived by taking the maximum with respect to γ0, . . . , γT . An

equivalent test statistic can be derived by maximizing the logarithm of the

above quantity. As a result, we have that

W [k] = max
γ0<···<γT

{min{γ1−1,k}∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ . . . (B.2)

+
k∑

j=min{γT−1,k}+1

log
f (T )(Xj)

f0(Xj)

}
,

with the understanding that in γ0 ≤ k holds. The expression in (B.2) can be

written in the following way:

W [k] = max{Ω(0)[k], . . . ,Ω(i)[k], . . . ,Ω(T )[k]}, (B.3)

where

Ω(i)[k] = max
γ0<γ1<···<γi≤k

{ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ . . .

+
k∑

j=γi

log
f (i)(Xj)

f0(Xj)

}
, i = 0, . . . , T,

(B.4)

and using the fact that
k∑

j=k+1

log f (i)(Xk)
f0(Xk)

= 1, i ∈ {0, . . . T}. We claim that

the above expression can be written in a recursive manner as follows:

Ω(i)[k] = max{Ω(i)[k − 1],Ω(i−1)[k − 1]}+ log
f (i)(Xk)

f0(Xk)
,
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for i = 0, . . . , T and Ω(0)[k] := 0 for all k ∈ Z. First, consider the case i = 0:

Ω(0)[k] = max
γ0≤k

{ k∑
j=γ0

log
f (0)(Xj)

f0(Xj)

}

= max
γ0≤k

{ k−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ log

f (0)(Xk)

f0(Xk)

}

= max
γ0≤k

{ k−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)

}
+ log

f (0)(Xk)

f0(Xk)

= max

{
max
γ0≤k−1

[ k−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)

]
,

k−1∑
j=k

log
f (0)(Xj)

f0(Xj)

}
+ log

f (0)(Xk)

f0(Xk)

= max{Ω(0)[k − 1], 0}+ log
f (0)(Xk)

f0(Xk)
.

Since Ω(−1)[k] := 0, the argument we attempt to prove holds for the case of

i = 0. Now for the case of an arbitrary i:

Ω(i)[k] = max
γ0<γ1<···<γi≤k

{ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ . . .

+
k∑

j=γi

log
f (i)(Xj)

f0(Xj)

}

= max
γ0<γ1<···<γi≤k

{ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ . . .

+
k−1∑
j=γi

log
f (i)(Xj)

f0(Xj)

}
+ log

f (i)(Xk)

f0(Xk)
.
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Consider the first term of this expression. We have that:

max
γ0<γ1<···<γi≤k

{ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ . . .

+
k−1∑
j=γi

log
f (i)(Xj)

f0(Xj)

}

= max

{
max

γ0<γ1<···<γi≤k−1

[ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ . . .

+
k−1∑
j=γi

log
f (i)(Xj)

f0(Xj)

]

= max
γ0<γ1<···<γi−1≤k−1

[ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ . . .

+
k−1∑

j=γi−1

log
f (i−1)(Xj)

f0(Xj)

]}
= max{Ω(i)[k − 1],Ω(i−1)[k − 1]}.

It can be shown than an equivalent test arises if we force the Ω statistics

to be non-negative. Thus, the D-CuSum test statistic is defined as follows:

W [k] = max

{
Ω(0)[k], . . . ,Ω(T )[k]

}
, (B.5)

where

Ω(i)[k] = max

{
max{Ω(i)[k − 1],Ω(i−1)[k − 1]}+

log
f (i)(X[k])

f0(X[k])
, 0

}
, i = 0, . . . , T,

(B.6)

where Ω(−1)[k] := 0 for all k ∈ Z and Ω(i)[0] := 0 for all i.

The corresponding stopping time is given by comparing W [k] against a

pre-determined positive threshold:

τ = inf{k ≥ 1 : W [k] > A}.
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avalli, “Power system line outage detection and identification—a quick-
est change detection approach,” in Proc. of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, May 2014.

[15] H. V. Poor and O. Hadjiliadis, Quickest Detection. Cambridge Univer-
sity Press, 2009.

[16] R. Nuqui and A. Phadke, “Phasor measurement unit placement tech-
niques for complete and incomplete observability,” IEEE Transactions
on Power Delivery, vol. 20, no. 4, pp. 2381–2388, Oct 2005.

[17] B. Milosevic and M. Begovic, “Nondominated sorting genetic algorithm
for optimal phasor measurement placement,” IEEE Transactions on
Power Systems, vol. 18, no. 1, pp. 69–75, Feb 2003.

[18] M. Hajian, A. M. Ranjbar, T. Amraee, and B. Mozafari, “Optimal place-
ment of PMUs to maintain network observability using a modified BPSO
algorithm,” Int. J. Elect. Power Energy Syst., vol. 33, no. 1, pp. 28–34,
Jan. 2011.

[19] Y. Zhao, A. Goldsmith, and H. Poor, “On pmu location selection for
line outage detection in wide-area transmission networks,” in Power and
Energy Society General Meeting, 2012 IEEE, July 2012, pp. 1–8.

[20] N. Manousakis, G. Korres, and P. Georgilakis, “Taxonomy of PMU
placement methodologies,” IEEE Transactions on Power Systems,
vol. 27, no. 2, pp. 1070–1077, May 2012.

[21] V. V. Veeravalli and T. Banerjee, Quickest Change Detection. Elsevier:
E-reference Signal Processing, 2013.

[22] A. R. Bergen and V. Vittal, Power Systems Analysis. Prentice Hall,
2000.

60



[23] M. Lotfalian, R. Schlueter, D. Idizior, P. Rusche, S. Tedeschi, L. Shu,
and A. Yazdankhah, “Inertial, governor, and AGC/economic dispatch
load flow simulations of loss of generation contingencies,” IEEE Trans-
actions on Power Apparatus and Systems, vol. PAS-104, no. 11, pp. 3020
–3028, Nov. 1985.

[24] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1985.

[25] B. Hajek, Random Processes for Engineers. Cambridge University
Press, 2015.

[26] A. G. Tartakovsky, I. V. Nikiforov, and M. Basseville, Sequential Anal-
ysis: Hypothesis Testing and Change-Point Detection, ser. Statistics.
CRC Press, 2014.

[27] M. Pollak, “Optimal detection of a change in distribution,” Ann.
Statist., vol. 13, no. 1, pp. 206–227, Mar. 1985.

[28] T. L. Lai, “Information bounds and quick detection of parameter
changes in stochastic systems,” IEEE Trans. Inf. Theory, vol. 44, no. 7,
pp. 2917–2929, Nov. 1998.

[29] G. Fellouris and G. Sokolov, “Second-order asymptotic op-
timality in multisensor sequential change detection,” Octo-
ber 2014, http://arxiv.org/abs/1410.3815v2. [Online]. Available:
http://arxiv.org/abs/1410.3815v2

[30] A. G. Tartakovsky and A. S. Polunchenko, “Quickest changepoint de-
tection in distributed multisensor systems under unknown parameters,”
in Proc. of IEEE International Conference on Information Fusion, July
2008, pp. 1–8.

[31] “Power system test case archive,” Oct. 2012. [Online]. Available:
http://www.ee.washington.edu/research/pstca.

[32] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning and analysis tools for power
systems research and education,” IEEE Transactions on Power Systems,
vol. 26, no. 1, pp. 12–19, Feb. 2011.

[33] G. Rovatsos, X. Jiang, A. D. Domı́nguez-Garćıa, and V. V. Veeravalli,
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