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Abstract 

Powered ankle-foot orthoses (AFOs), which are capable of providing assistive torque at the 

ankle joint, have significant potential as both assistance and rehabilitation devices. Technology 

advancements have led to great progression in the development of powered AFOs. Our group had 

developed the Portable Powered Ankle-Foot Orthosis (PPAFO) that was capable of providing 

bidirectional assistive torque at the ankle joint. Two generations of the PPAFO were previously 

developed. Both designs used two different off-the-shelf rotary actuators. This thesis consists of two 

studies focusing on the development of a new compact higher torque actuation system and the 

identification of a minimum sensor configuration for gait event detection for a powered AFO.  

Study 1 presents the design and evaluation of a new actuation system for the PPAFO 

(Generation 3.0). The actuation system utilized two dual-action linear actuators and a customized 

gear train. Compared with the previous designs, it generated higher torque and power while 

providing a thinner lateral profile. The new design had a total weight of (680g) and was capable of 

generating 32 Nm torque and 110 W power. While running under the same torque and power level as 

the previous designs, the new design offered better longevity (42.9% and 81.4% increases in 

normalized run time for test bench emulation and treadmill walking). Although the overall weight of 

the new actuation system had a 20% increase compared with previous design, it could generate 

166.7% more torque and 120% more power, which will enable us to test the system at various torque 

and power settings.  

Study 2 investigated the minimum sensor configuration for detecting gait events. Knowledge 

of the expected orientation and behavior of a limb as related to specific events during the gait cycle 

(or state timing as a function of the percentage of the gait cycle, % GC) is essential to allow 

appropriate control of a powered AFO. A total of five sensors were selected (two force sensitive 
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sensors, one ankle angle sensor, and two inertial measurement units (IMU)). The performances of 

selected sensor configurations were quantified and compared through state-based and event-based 

approaches in terms of gait state estimation and gait event detection timing, respectively. Gait data 

were collected from five healthy subjects while walking on a treadmill wearing the Gen 3.0 PPAFO. 

Results indicated that, while single IMU configurations (located on the shank or foot) both 

outperformed all other configurations (mean state estimation error: < 2% GC; mean event detection 

timing error: < 23 ms), the shank IMU was able to detect more gait events than the foot IMU. Since 

more detectable events could improve the system’s robustness (i.e., adjusting to variable speeds) by 

updating estimation more frequently, a single shank IMU configuration was recommended for 

powered AFO applications.  
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Chapter 1:  
INTRODUCTION 

1.1 MOTIVATION 

1.1.1 Walking Gait 

Walking is a type of gait which has at least one foot in contact with the ground at all time. A 

normal walking gait can be divided into three functional tasks [1] and eight different events [2]. The 

first task is weight acceptance, which includes initial contact (IC), loading response (LR). The second 

task is single-limb support, which includes mid stance (MSt), terminal stance (TSt). The third task is 

limb advancement, which includes pre-swing (PSw), initial swing (ISw), mid-swing (MSw), and 

terminal swing (TSw) (Figure 1). 

 

FIGURE 1 DIFFERENT PHASES OF A GAIT CYCLE (STARTING WITH THE RIGHT HEEL STRIKING THE GROUND AND CONTINUING TO THE NEXT 

HEEL STRIKE) (FIGURE CREATED USING HUMAN MODEL DOWNLOADED FROM [3])  

During the weight acceptance task, immediately after IC (i.e., heel strike, HS), body weight 

transfer onto the contacting ipsilateral limb is performed. This process provides shock absorption 

while preserving the momentum of progression. During the single-limb support task, the stance limb 

is undergoing a forward rocking motion while the contralateral foot is in a swing motion. Body 

weight is carried completely by the stance limb. During the final limb advancement task, the 

ipsilateral limb leaves the ground (i.e., toe off, TO) and begins to swing forward. While the 
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contralateral foot is providing the weight support, the swinging limb reaches maximum swing speed 

to posture itself in preparation for next the IC [4].  

1.1.2 Causes of Impaired Walking 

Impaired walking is identified as one of the most common functional disability types [5]. An 

essential part of people’s daily lives [6], walking is not only rhythmically complex, but also involves 

the intricate coordination of the brain, muscles and nerves as well as lower and upper limbs [4]. 

Therefore it can be affected by symptoms resulting from numerous neurological disorders, muscular 

pathologies and injuries. Diseases such as stroke, Parkinson’s disease, multiple sclerosis or spinal 

cord injury may lead to a mobility disorder. Many of these diseases have significant correlations with 

aging. For example, an estimated 7 million Americans over 20 years of age have had a stroke. Nearly 

three-quarters of all strokes occurred in people over the age of 65, and 30 percent of survivors were 

unable to walk without some form of assistance. The risk of having a stroke more than doubles each 

decade after the age of 55 [7]. Projections indicate that by 2030, the prevalence of stroke will 

increase 24.9% from 2010 [8]. Despite the increasing stroke population, only 30.7% of stroke 

survivors received outpatient rehabilitation [9]. Thus, affordable and effective rehabilitation solutions 

were needed to help the patients restore their mobility.   

1.1.3 Power-Assisted Solutions  

It is necessary and impactful to develop affordable powered assistive devices that utilize 

state-of-the-art technologies to help people with disability regain the abilities to stand and walk [10]. 

To the author’s knowledge, the earliest recorded publication that introduces the concept of “powered 

orthosis” was in the early 1960s [11]. Since then, especially in the last two decades, powered 

orthoses and exoskeletons have been developed extensively [12]. While powered orthoses were 

developed for various purposes, they can be classified as upper extremity devices, lower extremity 

devices, as well as full body devices [11, 13-15]. Many research groups have focused on lower-limb 
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devices as they address the basic walking task [10]. The work presented in this thesis focused on the 

powered ankle-foot orthosis, because during walking gait, the ankle joint complex dissipates impact 

energy, helps to maintain stability and generates the highest output at push-off which is the primary 

source of power for forward propulsion [16].  

1.1.4 From AFO to PPAFO 

An ankle-foot orthoses (AFO) is an orthotic device used to correct gait deficiency at the 

ankle created by impairment to the lower limb.  While current commercially available AFOs are still 

mostly passive [17], they are not capable of providing forward propulsion (plantarflexion) needed for 

normal and fast walking speeds. Powered AFOs, which are capable of providing assistive torque at 

the ankle joint, have significant potential as both assistance and rehabilitation devices [6]. 

Technology advancement has led to great progression in the development of powered AFOs. 

Unfortunately, while many different design approaches can easily be found, the challenges related to 

portability and power generation still remain. 

Our group had developed the Portable Powered Ankle-Foot Orthosis (PPAFO) that was 

capable of providing bidirectional assistive torque at the ankle joint. Two generations of the PPAFO 

have been developed [6, 18] (Figure 2). The Gen 1.0 PPAFO used a dual-vane bidirectional rotatory 

pneumatic actuator (CRB2BW40-90D-DIM0065, SMC Corp of America; Noblesville, IN). The Gen 

2.0 PPAFO utilized a different off-the-shelf actuator (PRN30D-90-45, Parker Hannifin, Cleveland, 

OH). The PPAFO was designed for untethered operation away from the confines of a lab or treadmill 

by use of a portable pneumatic power supply. In both generations, the peak plantarflexor torque was 

approximately 12 Nm for 100 psig input pressure, which is 17% of peak ankle torque that an 85 kg 

healthy walker can generate [19]. In addition, the bulkiness of the actuator made it difficult to be 

concealed underneath clothing and increased the risk of interfering with the surrounding environment 
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during gait. Therefore, other solutions that could provide high torque and compact designs were 

investigated. 

 

FIGURE 2 GEN 1.0 AND 2.0 PPAFO DESIGNS (ROTATORY ACTUATOR DESIGNS) 

1.2 LITERATURE REVIEW  

1.2.1 Existing Actuation Systems for Powered Orthoses and Exoskeletons 

Robotic devices such as powered orthoses or exoskeletons for lower limb gait assistance have 

the potential to significantly improve mobility for people with lower-limb gait disorders. Because 

walking is not an energy neutral process, external power sources are needed for such devices to 

improve wearer’s mobility [17]. Developing joint power has been managed through electrical, 

hydraulic, pneumatic, as well as pure mechanical systems. 

1.2.1.1 ELECTRICAL ACTUTION SYSTEMS 

The most commonly used actuators for electric powered AFOs or exoskeletons are electric 

motors [20-22].  A motor is either aligned with a joint axis to apply power directly or utilize some 

forms of power transmission methods to translate the power from motor to joint [20, 21, 23]. With 

technology advancement, electrical motors remain competitive due to their capability of advanced 
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motion control, high torque to weight ratio, as well as reduced running noise, though size, weight and 

power ratio of motor have been major concerns for wearable robotics. 

Kazerooni’s group at Berkeley designed an electric motor joint for the Berkeley lower 

extremity exoskeleton (BLEEX) [20] with the goal of reducing power consumption when compared 

with their hydraulic design. The main advantage of this electrical joint was its higher power 

efficiency. The major disadvantage was the size and the weight of the system (4.1 kg). One concern 

about this design was that the size and the weight of the system would greatly affect the overall 

inertia of the lower limbs. This added inertia could further affect the limb dynamics during 

locomotion. Another limitation was an overheating issue caused by the large amount of current going 

through the system. Overall, the joint was 15% efficient, as it required 93 W to produce 13.5 W of 

mechanical output. With a motor constant of 0.237 Nm/√W and transmission ratio of 80, the motor 

was estimated to output a 27Nm ankle torque. The torque capability of the system was also greatly 

dependent on the operating temperature. Therefore, a proper cooling system was also necessary for 

the motor joint design. 

Walsh’s group at Harvard developed a soft exosuit for gait assistance by utilizing an 

electrical motor and two Bowden cables per leg [21]. The system had a total weight of 6.5 kg and 65 

W power consumption, while generating ~ 20 % of the nominal joint torque at the ankle joint.  The 

Bowden cables were capable of providing flexible transmission from the actuator to the desired 

lower limb joint. With the help of a Bowden cable, the design shifts the motor unit to the side of an 

empty backpack. A soft webbing design not only reduced the amount of weight that was needed to 

attach to the lower limbs but also allowed the subject to wear normal clothes. However, because of 

the soft webbing, proper positioning was necessary. It was noted that actuation may present 

difficulties if the suit changed the position during locomotion.  
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Herr’s group at MIT presented a plantarflexion-only powered leg exoskeleton [22]. The 

design used fiberglass struts as an extension to the ankle joint moment arm which was connected to a 

brushless motor that was mounted on the anterior shank segments. The total mass of the system was 

4.0 kg. It was capable of generating 70 Nm and11.5 W to each ankle joint.  

1.2.1.2 HYDRAULIC SYSTEMS 

Hydraulic systems have the highest power to mass ratio compared to electric motor or 

pneumatic systems [24]. Unlike electric motors and pneumatics, hydraulic actuator’s power to mass 

ratio increases with increasing weight [25], which means as the system’s weight increases, its power 

output increases at a higher ratio. Therefore, hydraulic systems tend to be more suitable for large 

scale applications. For low power applications, a hydraulic solution could be lighter than a 

electromechanical solution, if the hydraulics were running at a high pressure [26]. 

Durfee’s group at the University of Minnesota had designed a portable hydraulic ankle-foot 

orthosis [26, 27]. The system consisted of a custom hydraulic power supply and a custom hydraulic 

ankle-foot actuator secured to the shin and foot with carbon fiber supports. The two components 

were connected through two high pressure hydraulic tubes in which fluid power was transmitted. The 

total weight of the system was 4.2 kg and was capable of generating 90 Nm torque at 2000 psig, 

however actual power output during gait had yet to be presented. The hydraulic actuator was 

essentially a combination of two custom mini hydraulic cylinders with pistons attached to steel 

cables that wrapped around a pulley. The pulley was directly aligned to the ankle joint. Thus, as the 

cable was pulled by the cylinders, torque was generated at the ankle joint. One limitation about the 

design was that the bandwidth (actuation speed) of the system may not be high enough to meet 

normal gait speed requirements. 

Another version of the BLEEX was powered by linear hydraulic actuators [13]. The design 

chose linear hydraulic actuators over rotary hydraulic actors because rotatory hydraulic actuators 
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usually had either internal leakage or considerable friction [28]. The ankle-foot segment of the 

BLEEX consists of two separate parts, the foot and the shank. To create rotatory motion to the ankle 

joint one end of the linear hydraulic actuator was attached to the shank bar where it was close to the 

knee connection while the other end connected to the ankle joint moment arm. The system was 

capable of providing full torque that was needed for a 75 kg subject walking up to 1.3 m/s at 1000 

psig. While the overall weight of the system was not recorded, BLEEX was designed in such way 

that it was capable of carrying its own weight through its mechanical structure. 

1.2.1.3 PNEUMATIC SYSTEMS 

Pneumatics has been widely used in the field of robotics. Historically, its low cost, high 

power density and high natural compliance feature made pneumatics a popular option for powered 

orthoses. In fact, the first power orthosis in the 1960s used a pneumatic muscle [11]. 

Research teams under Ferris et al. at the University of Michigan initiated a series of studies 

using pneumatic powered AFOs [29-31]. The second generation AFO used a carbon fiber and 

polypropylene shell with two artificial pneumatic muscles attached to the anterior and posterior side 

of the shank shell to provide plantarflexion and dorsiflexion [29]. Total weight of the system was 

around 1.3 kg and it was able to provide ~57 % peak ankle plantarflexor torque with an average 

moment arm of 10.1 cm. Its average positive mechanical power was 0.23±0.02W/kg during level 

ground walking. 

Walsh’s group had also developed a pneumatic version of the soft exosuit. The exosuit was 

designed using custom McKibben style pneumatic actuators [32]. The actuators were attached to the 

exosuit through a network of soft inextensible webbing. Each joint required multiple McKibben style 

pneumatic actuators to achieve the desired power output. This device had a total weight of 7.1 kg 

with peripherals but only 3.5 kg for the actual suit which resulted in low mechanical impedance and 

inertia to the lower limbs. The design was aimed to provide ~50 % of plantarflexor torque. Its total 
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power output at the ankle joint was not recorded, but there was a 43.9 W reduction in average 

metabolic power when comparing walking with the powered suit to walking with the unpowered suit. 

The Gen 1.0 and 2.0 PPAFOs developed by our group at the University of Illinois [6, 18] 

used off-the-shelf pneumatic bidirectional rotary actuators to generate approximately 12 Nm torque 

output at an operating pressure of 100 psig. Both PPAFOs weighed around 3.0 kg in total. While the 

peak power output for Gen 1.0 was not recorded, Gen 2.0 had a peak power generation of 50 W 

during gait [18]. The PPAFOs utilized small, compressed CO2 tanks on a belt around the user’s 

waist. The rotary actuators created a dorsiflexor torque for toe lifting during swing and eccentric 

deceleration at initial contact, and modest assistive plantarflexor torque at terminal stance phase. 

Both PPAFOs’ actuators were directly aligned to the ankle axis of rotation through the support of 

carbon fiber shells had therefore had large lateral profiles due the off the shelf designs. 

1.2.1.4 MECHANICAL SYSTEMS 

While all the systems reviewed above were considered powered devices, pure mechanical 

systems can be considered as a power harvesting device. These types of systems are designed to 

either correct gait impairment or improve overall gait efficiency. 

Our group developed a self-controlled pneumatic power harvesting AFO [33]. Ankle motion 

during swing phase was restricted through a locking mechanism actuated via a pneumatic circuit 

connected to a pump embedded under the forefoot. The pump was compressed by the body weight 

during stance and the compressed air was then used to engage the lock during swing to prevent foot 

drop. 

Collins’ group at Carnegie Mellon presented an unpowered exoskeleton [34]. This 

exoskeleton had a custom clutch spring system that behaved like calf muscles. The clutch held the 

spring as it was stretched when the foot was on the ground and releasing the stored power during 
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push off. The system weighed between 0.408 and 0.503 kg depending on participant size. The power 

output of the device was not recorded however it reduced the metabolic cost of walking by around 

0.21w/kg. 

1.2.2 Existing Gait State Recognition Sensory Systems 

The use of a gait state recognition system can provide gait monitoring and gait biofeedback. 

In this section, we review the sensors and gait detection methods used for gait monitoring not only in 

the field of powered orthoses but also in clinical applications such as monitoring daily activities and 

gait behaviors. 

1.2.2.1 Sensors 

The commonly found wearable sensors used for gait monitoring are: force based sensors  

(e.g. pressure insoles, force sensitive sensors) [6, 23, 35-37], joint angle measurement sensors (e.g. 

potentiometer, goniometer and Hall Effect sensor) [38-41], electromyographic (EMG) sensors [29, 

30], and other inertial sensors such as accelerometer [42-47],  gyroscope [21, 23, 48-50], as well as 

their combination which is known as an inertial measurement unit (IMU) [51-59]. 

1.2.2.1.1 Force based sensors 

Among different sensors, footswitches such as force resistive sensors (FSR) were commonly 

used for force-based gait detection [6, 13, 35-37]. With FSRs mounted in shoe insoles, gait event 

detection could be achieved based on the threshold values obtained from the FSR. This type of sensor 

is low cost and easy to process. Although footswitches were widely used, there were still a few 

disadvantages. The number of detectable events was limited and the placement of the sensors on 

patients with pathological gaits affects its accuracy and reliability [50]. FSR’s performance is highly 

depending on its placement. Wire connections subjected to repetitive load decreased the system 

service life [47]. A study also showed that heel strike detection using a FSR had a mean delay of 0.3-
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3 percent of a gait cycle when compared with heel strike detection using force plate measurements 

[36].  

1.2.2.1.2 Inertial sensors 

With the advancement of micro-electromechanical systems (MEMS) and digital signal 

processing technologies, inertial sensors such as gyroscopes and accelerometers have quickly gained 

popularity since the early 2000s. Inertial sensors are miniature, durable, inexpensive, and highly 

mobile sensors. In addition, due to their very low electrical power consumption, the inertial sensors 

can be battery powered and are promising tools for long-term monitoring [50]. Moreover, with 

respect to solutions based on footswitches or foot pressure insoles, the analysis of the inertial sensors 

allowed researchers to recognize a greater granularity of events during the gait cycle, such as the sub-

phases of the swing phase [60]. 

a) Accelerometer 

Accelerometers provide the measurement of acceleration on its axes. MEMS accelerometers 

consist of a mass-spring system in a vacuum environment. It essentially uses the fundamentals of 

Newton’s Laws of Motion [42] by measuring the displacement of the mass, which is proportional to 

the force acting on the mass, to compute the acceleration. By attaching an accelerometer to various 

body segments, such as the thigh, shank or foot, one can capture the continuous kinematic 

information of the leg during gait. In addition, previous studies also used accelerometers embedded 

in mobile phones [43] or smartwatches and wristbands [61, 62]. However, due to the random 

movements caused by phones or the upper extremities during gait, these embedded options were not 

preferred for gait state estimation for powered orthotic devices due to their relatively low accuracy. 

In general, the accelerometer was used to detect two gait phases: the stance and swing phases. The 

use of accelerometry data required additional signal processing due to the effects of gravity and jerky 

motions which would result in data drifting in a short period of time [47].  
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b) Gyroscopes 

A MEMS gyroscope is an angular velocity sensor consisting of a vibrating element and 

sensing element. It is essentially capturing the Coriolis force which is generated do to the vibrating 

element proportionally to the angular velocity. The use of the angular velocity as a variable to 

perform gait partitioning reached greater popularity in recent decades [47] due to angular velocity 

being not easily influenced by gravity or vibrations caused by an intense movement such as heel 

strike [48]. Typical placement of the gyroscope was similar to the accelerometer. In gait analysis, the 

major contribution of gyroscopes is in their combination with accelerometers to compensate for 

accelerometer orientation errors. 

c) Inertial measurement unit 

The combination of more than one inertial sensor, such as gyroscope and accelerometer, has 

been referred to as an inertial measurement unit (IMU). An IMU consists of multi-axis gyroscopes 

and accelerometers enabling the tracking of rotational and translational movements. While a biaxial 

accelerometer and a uniaxial gyroscope can be used for measuring 1D orientation [63], triaxial 

sensors were needed to achieve 2D orientation [55, 59]. When it came to segment orientation or joint 

angle tracking for gait analysis, gyroscopes suffered from unknown initial joint angles and error 

accumulation in the integral value, while the accelerometer signal was sensitive to heel strike 

vibrations and gravitational force. A common solution to this problem has been to combine more 

than one inertial sensor [52]. IMUs are currently one of the most widely used types of sensors in gait 

analysis. Various sensor fusion algorithms also provided higher position and angle tracking accuracy 

[55, 64-66]. Therefore, IMUs have a great potential in the field of powered orthoses and 

exoskeletons. 

 In addition to an accelerometer and a gyroscope, another sensor that is commonly embedded 

in an IMU is a magnetometer. A magnetometer can be used to detect the Earth’s magnetic field, 
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providing another reference measure for body 3D orientation [55, 66]. Unlike the accelerometer, the 

magnetometer signal is not affected by dynamic motions [67]. However, it is sensitive to the 

presence of metals and ferromagnetic materials [68]. Therefore, the presence of magnetic 

disturbances such as metal objects and house hold electronics may limit the performance of 

magnetometers for gait monitoring.  

1.2.2.1.3 Goniometers  

Goniometers can be used to track the angles of body joints. They are essentially operated by 

measuring the change in sensors’ signals (e.g., resistance, the direction of the magnetic field, and, 

electrical pulses) resulting from the angular change. Commonly used mechanisms for goniometers 

are strain gauges, encoders, potentiometers and Hall Effect sensors. Goniometers are capable of 

providing continuous measurement during gait.  

1.2.2.1.4 Electromyography (EMG) 

 EMG signals can be used to measure the action of the muscles in the lower extremity. It is 

less popular due to higher complexity in data acquisition and post-processing [47]. In addition, while 

working with impaired populations, collecting EMG signals is not necessarily an easy task to 

accomplish, especially in populations with neuromuscular impairment [69]. Studies also indicate 

that, in the powered AFO application, EMG amplitude tends to reduce over time due to subject 

adaptation [70]. 

1.2.2.2 Gait detection methods 

Identifying when a sensor reading crosses a set of thresholds (e.g. local maxima, minima and 

threshold-crossing) is the most common method for detecting gait events used due to their 

capabilities of real-time detection and ease of implementation [67]. Sensors such as insole FSR, 

gyroscope and accelerometer are capable of differentiating stance phase and swing phase by 

detecting HS and TO events [36, 44, 49]. Shorter et al. initially proposed a direct event (DE) 
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controller that used FSRs in the PPAFO sole to divide the gait cycle into four gait states (1.loading 

response, 2.mid stance, 3.terminal stance through pre swing, and 4.swing). Li et al. proposed a 

Fractional Time (FT) state estimation approach that depended only on the rising edge of the heel FSR 

sensor data to define the heel strike event [71]. The percentage of the gait cycle was then estimated 

following the heel strike event. This approach was slow in adjusting to changing gait speed because it 

only detected the heel strike event. Similar to the DE method, Mooney et al. proposed a finite state 

machine technique which used threshold detection and zero-crossing detection to detect the swing 

phase and the heel strike event [23]. A series of power timers were also used to further divide the gait 

cycle into more sub-states for controlling their ankle exoskeleton (i.e., controlling the actuator until a 

predetermined timer expired).  However the sub-states were still relying on the initial threshold 

detection. Ferris et al. used electromyography (EMG) signals of the tibialis anterior muscle and the 

soleus muscle for tracking gait states and controlling AFO [29]. Upon reaching a threshold, a 

proportional myoelectric control was applied to their powered AFOs.  

Furthermore, pattern similarity matching and machine learning are two major advanced gait 

detection methods that provided more accurate gait detection. For similarity matching, methods such 

as curve-aligning and pattern fitting [41, 46, 71, 72] were commonly used. Pattern fitting was 

performed by methods such as k-nearest neighbor (kNN) and correlation [71, 72]. Li et al. proposed 

state estimation methods that used the cross correlation (CC) and kNN between sensor signals and a 

regression model learned from training data [71]. Both methods were able to divide the gait cycle 

into 100 states. Islam et al. [41] proposed the Modified Fractional Time (MFT) estimator utilizing 

both heel and toe FSRs and an additional ankle angle sensor (Hall Effect sensor). MFT was able to 

detect up to eight events within a single gait cycle by comparing the captured data with a trained 

vector. Several machine learning techniques have been used to detect gait events, such as Artificial 

Neural Networks (ANN) [41], and Gaussian Mixture Model (GMM) [73]. The GMM method was 
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used to discriminate stance and swing phases, while the ANN method proposed by Islam et al. used a 

moving window of six continuous data points estimating states across the gait cycle. Advanced 

algorithms and multi-sensor configurations showed improvements in terms of accuracy and number 

of detectable events. However, some of these algorithms either cannot achieve satisfactory control 

for AFOs due to heavy computing and delays in classification process [38, 71], or a model of the 

events was necessary to identify gait event [38, 41, 73]. With the increasing number of sensors 

introduced to gait monitoring systems, the complexity of these systems increased [20] due to their 

complicated data collection protocols and computationally expensive algorithms. 

 

1.3 MOTIVATION FOR PROPOSED STUDIES 

1.3.1 Study 1: A COMPACT HIGH TORQUE ACTUATION SYSTEM FOR A PORTABLE POWERED 

ANKLE-FOOT ORTHOSIS 

As mentioned previously, our group had developed multiple generations of the portable 

pneumatically powered ankle-foot orthosis utilizing off-the-shelf components [6, 18]. These devices 

were designed for untethered operation away from the confines of a lab or treadmill by use of a 

portable pneumatic power supply. However, since the off-the-shelf actuators were not designed for 

portable application, the systems had lower torque outputs and large lateral profiles. So our goal for 

the first study was to develop a compact higher torque PPAFO (Gen 3.0). The development of a 

lower profile and higher torque generating PPAFO has the potential to increase the mobility and 

enable further investigation on how powered plantarflexor torque magnitude impacts gait function. 
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1.3.2 Study 2: MINIMUM SENSOR CONFIGURATION FOR GAIT EVENT DETECTION FOR A 

PORTABLE POWERED ANKLE-FOOT ORTHOSIS 

The use of gait detection devices can provide gait monitoring and gait biofeedback. One 

major benefit of gait monitoring for lower-limb powered orthoses is its ability to collect gait 

information and make control decisions on board in real time, such that the ankle torque actuation 

control policies can be designed to accommodate the short-term changes in gait speed and/or gait 

mode. There were many studies investigating low-cost, robust wearable sensors that could potentially 

be used for gait event detection. However, with the increasing number of sensors and gait detection 

methods introduced to gait monitoring systems, the complexity of these systems could also be 

increased [74] due to the intricate data collection protocols and computationally expensive 

algorithms. To the author’s knowledge, there has been no systematic study on the simplest cost-

effective and robust sensor configuration for robust gait monitoring in a powered AFO. So as our 

goal for the second study, we were interested in investigating the minimum sensor configuration that 

would be needed for robust gait event estimation. 

1.4 THESIS OVERVIEW 

The study presented in Chapter 2 covers the design and evaluation of the Gen 3.0 portable 

powered ankle-foot orthosis (PPAFO). The Gen 3.0 PPAFO utilized two dual-action linear 

pneumatic actuators and customized compact gear train to provide plantarflexion and dorsiflexion 

actuation to the ankle joint. The new system was capable of providing higher torque and power 

output while reducing the lateral profile compare with the earlier generations. Next, a study on the 

investigation of the minimum amount of sensors that were needed for better gait event detection is 

presented in Chapter 3. Multiple sensors were compared (FSRs, potentiometer, IMU). The study 

focused on single sensor and double sensor configurations to identify the minimal number of sensors 
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required to perform robust gait event detection. Lastly, in the final chapter, we discuss the conclusion 

and the future directions of the studies described in this thesis. 
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Chapter 2:  
A COMPACT HIGH TORQUE ACTUATION 
SYSTEM FOR A PORTABLE POWERED ANKLE-
FOOT ORTHOSIS 

Abstract 

The portable powered ankle-foot orthosis (PPAFO) is capable of providing bidirectional 

assistive torque at the ankle joint. To create the ankle torque, the previous design utilized an off-the-

shelf rotatory pneumatic actuator (560 g) capable of generating up to 12 Nm torque and 50 W power 

at an operating pressure of 100 psig. This torque value is 17% of the peak ankle torque that an 85 kg 

healthy walker can generate. An increased torque may help to improve gait function. In this chapter, 

we present the design and evaluation of a new actuation system for the PPAFO. The actuation system 

utilized two dual action linear actuators and a customized gear train. Compared with the previous 

design, it generated higher torque and power while providing a thinner lateral profile. The new 

design had a total weight of (680g) and was capable of generating 32 Nm torque and 110 W power. 

While running under the same torque and power level, the new design offered better longevity 

(42.9% and 81.4% increases in normalized run time for test bench emulation and treadmill walking). 

Although the overall weight of the new actuation system had a 20% increase compared with previous 

design, it could generate 166.7% more torque and 120% more power which will enable us to test the 

system at various torque and power settings.  

  



 
 

18 
 

2.1 Introduction 

An ankle-foot orthoses (AFO) is an orthotic device used to correct mobility disorders that 

cause impairments to the lower legs. Conventional passive AFOs provide functional assistance 

during gait by restricting unwanted motion of the foot [75]. However, the restricted motion and 

passive properties of conventional AFOs can impede gait and cannot adapt to a changing 

environment[76].  Therefore, powered AFOs capable of providing assistive torque at the ankle joint 

have significant potential as both assistive and rehabilitative devices [6].  

Novel powered AFOs have been developed to provide assistance to the ankle joint for motion 

control and torque assistance [6]. The development of joint power had been achieved through 

electrical [21, 22, 40], hydraulic, [13, 27] and pneumatic systems [6, 29, 32]. One research group at 

the Carnegie Mellon University recently developed two different electrically powered, tethered 

designs [40]. Both designs were powered with an off-board motor. The peak torque during pilot 

testing was 121 Nm. The peak power of the system was not recoded; however it was reported to be 

capable of providing high torque at high bandwidth with accurate torque tracking. Though the 

systems were able to provide full torque assistance, their tethered design constrained the testing 

environment to be indoor only. Another group at the Massachusetts Institute of Technology had 

developed an active plantarflexion leg exoskeleton using brushless DC motors [22]. The peak torque 

and power of the exoskeleton were estimated to be 70 Nm and 180 W [22]. While electrical systems 

demonstrated the ability to generate high power or torque output, either tethered design or significant 

amounts of weight and inertia were introduced to the system in order to house the actuators, batteries, 

and controllers [25]. High inertia systems at the extremities of the user may hinder motion, especially 

in subjects with a mobility disorder [21, 77]. The research group at the University of Minnesota 

developed a hydraulic AFO which was capable of generating 90 Nm torque [27] and the system was 

designed to generate a peak power of 100 W [26]. One limitation about the hydraulic design was its 
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low bandwidth (actuation speed).  Hydraulic cylinders are often used for low velocity and large 

linear force generation [27]. Therefore, the system’s performance may be limited to meet normal gait 

speed requirements. 

Pneumatic systems, in contrast, possess a number of assets such as high natural compliance 

due to compressibility and low cost, while maintaining a relatively high power density. A research 

group at the University of Michigan developed multiple light weight pneumatic powered AFOs. 

Their second generation AFO was able to provide 60 Nm plantarflexor torque [29]. The system’s 

peak power generation was not recorded. The total weight of the system was 1.7 kg. Our group at the 

University of Illinois also developed multiple generations of the portable powered ankle-foot orthosis 

(PPAFO) using pneumatic power [18, 78-80].  

 

FIGURE 3 GEN 2.0 PPAFO DESIGN 

A PPAFO is able to provide bidirectional assistive torque at the ankle joint (dorsiflexion or 

plantarflexion). The Gen 1.0 and Gen 2.0 PPAFOs have served as testbed platforms for investigating 

the effect of a powered orthosis on able-bodied and impaired gait [6, 18, 78-82]. Both designs were 

untethered, allowing it to be used outside of a lab setting by the use of a portable pneumatic power 
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supply. To provide ankle torque, the Gen 2.0 design (Figure 2) used a dual-vane bidirectional off-the-

shelf rotatory actuator (PRN30D-90-45, Parker Hannifin, Cleveland, OH).  The most recent design, 

Gen 2.0 PPAFO system, weighed 3.1 kg including power source and had a peak power generation of 

50 W at 100 psig during gait [18]. The peak plantarflexor torque was 12 Nm for 100 psig input 

pressure, which is 17% of the peak ankle torque that an 85 kg healthy walker can generate [19] 

(Figure 4). In addition, the off-the-shelf rotatory actuator had a large and undesirable lateral profile 

(Figure 2&Table 3). The bulkiness of the actuator made it difficult to be concealed underneath 

clothing and increased the risk of interfering with the surrounding environment during gait. 

Therefore, other options that provide high power and compact designs were needed.  

  

FIGURE 4 PEAK TORQUE GENERATION FOR HEALTHY 85 KG WALKER. FIGURE ADAPTED FROM [19]  

COMPARED TO OUTPUT OF GEN 2.0 & GEN 3.0 PPAFO AT 100 psig OPERATING PRESSURE 

We collaborated with several senior design teams at Bradley University aiming to design a 

working, compact, and efficient actuator for a powered ankle orthosis [83-85]. The design developed 

by the 2013-2014 school year team [85] used two dual-acting pneumatic air cylinders (091.092-D; 

Bimba Manufacturing; University Park; IL; USA) to increase the overall piston area (Figure 5). By 
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putting the linear actuators against the lateral side of the shank, the overall effective piston area 

(EPA) was distributed in the transverse plane along the anterior–posterior direction to reduce the 

lateral profile of the actuation system. The linear motions of the pneumatic cylinders (contraction, 

extension) were synchronized by connecting to a custom-made connector block (yoke) and then 

converted to rotatory motions through a rack and pinion compound gear system. The design had an 

overall gear ratio of 4:1 and a compound gear with an input gear (IG) to output gear (OG) gear ratio 

of 1:1 (Figure 5). This design resulted in a large 4 inch pitch diameter (PD) for the sector gear (SG) 

to achieve 55˚ range of motion (ROM) at the ankle joint.  

  

FIGURE 5 2014 DESIGN  

The 2014 design compared with the Gen 2.0 PPAFO successfully demonstrated a reduced 

lateral profile at a cost of increased system weight and profile. In addition, more moving components 

(gears, rack, and yoke) were introduced to the system with the rack and pinion compound gear design 

which could increase the risk of injury for users. Therefore, further modifications were needed to 

optimize the system. 

In this chapter, we present the design and evaluation of a compact, high power and torque 

actuation system for the Gen 3.0 PPAFO. The main objective of the new system design was to 
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increase the maximum torque output while minimizing system volume and weight so that further 

studies can be conducted through a range of torque settings. This range will allow us to understand 

how torque magnitude impacts gait function. The new actuation system’s physical properties and 

performances were evaluated in comparison to those of the Gen 2.0 design. For the performances 

evaluation, a gas consumption (longevity) study was conducted using the Gen 3.0 PPAFO powered 

by compressed CO2 tanks. This analysis of compressed gas was performed using both treadmill 

walking and a test bench setup created to emulate the timing of a walking condition. One able-bodied 

male subject was tested while walking on a treadmill with the assistance of Gen 3.0 PPAFO. Test 

bench testing and treadmill testing both used the same Gen 3.0 PPAFO and sensors for data 

collection.  

2.2 Methods 

This section is divided into two parts: the first part presents the Gen 3.0 PPAFO hardware 

design and the second part describes the system evaluation conducted on both a treadmill and a test 

bench created to emulate the gait cycle. 

2.2.1 Gen 3.0 PPAFO Hardware Design 

2.2.1.1 Design specifications 

The minimum desired torque output and range of motion were 30 Nm and 55 ˚, respectively. 

The lateral profile should be less than 5.1 cm to be wearable within a pair of slacks.  

2.2.1.2 Actuator configuration 

For the actuator configuration, the two dual-action linear actuator concept was adapted from 

the 2014 Bradley design. For a pneumatic system, the force generated by a piston is proportional to 

the effective piston area (EPA). Therefore, the bigger the EPA, the higher the force that the actuator 

could generate while keeping pressure constant. However, for a single linear actuator design, a bigger 
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EPA also means a bigger lateral profile. The two linear actuator configuration, on the other hand, 

could distribute the overall EPA by dividing it between two actuators. For a linear actuator, the EPA 

in the retract chamber is smaller than that in the extend chamber due to the existence of the piston 

rod. The resulting retraction force is lower than extension force while under the same chamber 

pressure. Thus the piston’s extension force was used to assist plantarflexion because human 

plantarflexor torque is much higher than dorsiflexor torque [2]. Both air cylinders had a stroke length 

of 4.9 cm (1.92 inch) and were synchronized by connecting to a custom yoke (Figure 6.b). 

2.2.1.3 Compound gear system  

 

FIGURE 6 ASSEMBLY VIEW (a) AND EXPLODED VIEW (b) OF THE GEN 3.0 PPAFO'S ACTUATION SYSTEM 

 

For a compound gear system (Figure 6), the gear ratio is equivalent to the product of the pitch 

diameters (PD) of the driven gears divided by the product of the PDs of the driving gears [86]. 

According to our design concept, compound input gear (IG) and sector gear (SG) are driven gears 

and compound output gear is a driving gear.  The system’s equivalent gear ratio was then defined as:  
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Req =
PDIG∙PDSG

PDOG
  (1) 

where: 

𝑅𝑒𝑞 = equivalent gear ratio of entire system. 

Thus, either enlarging PDIG or reducing PDOG will reduce the required PDSG (Figure 6) while 

maintaining a constant overall gear ratio and a 55˚ ROM. It was hypothesized that there might exist a 

combination of PDs to result in minimization of gear combination’s weight and profile. However 

both options mentioned above will also increase the mechanical advantage of the compound gear. 

The tangential load between the SG and compound OG will increase and then raise the gears’ root 

fillet stress [86]. Therefore, additional design considerations had to be taken into account in order to 

prevent mechanical failure.  

Other factors that could affect the root fillet stress are pressure angle (PA) and diametral 

pitch (DP) [86]. The 2014 design utilized 1215 carbon steel gears with a standard 14.5˚ pressure 

angle (PA), 24 diametral pitch (DP). Surface wear was noticed after laboratory testing. Prior work 

showed that high PA of 35˚ resulted in lower stresses and were mostly compressive, leading to good 

fatigue resistance [87]. A larger than standard PA could both increase efficiency and reduce surface 

wear by decreasing the amount of sliding between teeth [87]. Therefore, in addition to the standard 

gear PA of 20˚ and 14.5˚, a 35˚ PA was considered.  

Due to the OG’s smallest PD in the system relative to all other gears, and the higher 

tangential loads anticipated at the OG-SG interface, the OG would be the most likely point of failure 

in the system. Therefore, we focused on OG to identify the strongest possible gear geometry. PDOG 

was first constrained accordingly as a starting point from which the PA and DP combination could 

also be determined. 2014 design had a PDOG of 0.54 inch. Therefore, we chose to compare a smaller 
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0.5 inch PDOG at different PA and DP settings. As a basis of comparison, a 12 tooth OG was chosen 

for the 24 DP gear set. A 10 tooth OG for 20 DP, and a 9 tooth OG for 16 DP were also selected.  

Upon completing the potential gear geometries, stress analysis was performed to identify 

maximum stress of each combination. For the stress analysis, we chose to use both analytical 

(American Gear Manufacturers Association (AGMA) corrected Lewis equation) and numerical 

approaches (Finite Element Analysis (FEA) in Creo 3.0). A maximum acceptable pressure of 120 psi 

was set for the worst-case scenario because it was the maximum documented pressure pf our 

previous designs [17, 82]. The rack load at 120 psi is expected to be about 216 lbs (pressure times 

EPA). Thus, the tip load for OG was set as 432 lbf which was the maximum load corresponding to a 

2:1 compound gear ratio. The AGMA corrected Lewis equation is [86]: 

σ =  
Ft DP

b J
 ∙ Kv KO Km   (2) 

where: 

J = spur gear geometry factor [87] (0.2 for 14.5˚ PA, 0.21 for 20˚ PA, and 0.25 for 35˚ PA)  

DP = diametral pitch 

Ft = tangential load on spur gear 432 lbf 

b = face width 0.25 inch 

Kv= dynamic factor which punishes for high velocity approximated as 1 because pitch line 

velocity for the system is expected to be very low [86] 

 KO = overload factor also approximated as 1 due to the inherent compliance and shock 

absorption of the pneumatic system [86] 

 Km = mounting factor was set to 1.2 for accurate mounting narrow face width and small 

bearing clearances, etc. [86] 
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FEA in PTC Creo 3.0 was used to represent a conservative upper limit gear stress by modelling tip 

loaded tooth with no load sharing amongst neighboring teeth [88] (Figure 7). This condition would 

never occur in actual gears due to load sharing between teeth. Models of gears used in this software 

analysis were constructed in Creo 3.0 from DXF profiles constructed in Dr. Rainer Hessmer’s 

Involute Spur Gear Builder web application [89].  

 

FIGURE 7 :  FEA LOAD AND CONSTRAINS. MATERIAL PROPERTIES (AR500) FOR FEA WERE DEFINED AS FOLLOWS: ELASTIC MODULUS = 

200 GPA. POISSON’S RATIO = .25. THE INNER BORE OF THE GEAR WAS CONSTRAINED TO 0.0 DISPLACEMENT AND A 432 LBF TIP 

LOAD WAS APPLIED TO ONE GEAR TOOTH.  

Results for constant tip load were determined (Table 1). A 35˚ PA and 16 DP gear resulted in 

a lowest root fillet stress (133ksi). Therefore we chose to use a 35˚ pressure angle for all of our 

customized gears. 

TABLE 1 MAXIMUM ROOT FILLET STRESS OF COMPOUND OUTPUT GEAR AT DIFFERENT DIAMETRAL PITCHES AND PRESSURE ANGLES  

   

DP PA(˚)
AGMA Lewis equatoin

root fillet stress (ksi) 

FEA worst case

root fillet stress (ksi)

24 14.5 249 370

24 20 237 331

24 35 199 229

20 14.5 207 349

20 20 197 326

20 35 166 215

16 14.5 166 284

16 20 158 235

16 35 133 189



 
 

27 
 

With the knowledge of the proper PA of the gears, we moved on to the size selection of the 

compound IG and SG to achieve the optimal weight reduction. As was mentioned previously, 

enlarging the compound IG’s diameter would reduce the required diameter of the SG while 

maintaining a constant overall gear ratio and 55˚ ROM. It was assumed that the total surface area  of 

the gear set was proportional to the total weight of the gear set due to the uniform gear thickness 

(0.25 inch) and material density (steel: 4.5oz/inch3). Therefore, total surface area with respect to each 

IG-SG combination was compared (Table 2, formula see Appendix A). The combination of an 18 

tooth IG and 32 tooth SG was chosen, as it had the same overall gear ratio with the 2014 design (gear 

ratio 4:1) and a low overall surface area. The lower limit for the number of the SG teeth was set at 32 

due to the maximum tangential load reached 432 lbf. 

TABLE 2 OVERALL SURFACE AREA OF DIFFERENT GEAR SET 

 

This optimized the weight of the gear train. In addition, the reduced overall profile also 

motivated the design of a gear box housing (Section 2.1.3). With the gear train being enclosed, the 

moving components will be less likely to interfere with the surround environment. 

 

compound 

IG tooth 

count

corresponding 

SG tooth 

count

overall 

gear 

ratio

surafe 

area 

(cm2)

14 40 3.89 11.03

15 39 4.06 11.10

15 38 3.96 10.84

16 37 4.11 10.90

16 36 4.00 10.71

16 35 3.89 10.45

17 34 4.01 10.52

17 33 3.90 10.32

18 32 4.00 10.45
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FIGURE 8 COMPOUND GEAR DESIGN COMPARED TO 2014 DESIGN  

TOP: 2014 GEAR MECHANISM THROUGH FULL RANGE OF MOTION. 

BOTTOM: GEN 3.0 DESIGN THROUGH FULL RANGE OF MOTION.  

A list of materials were examined for manufacturing the customized gear. During this process 

the strength of the materials and manufacturability were considered. AR500 steel was selected for a 

gear prototype due to its high yield strength (187ksi) and availability off the shelf in the right 

thickness and annealed state. All other alternative materials that had higher yield strength required 

proper heat treatment which would complicate the manufacturing process. Gears were cut via a wire 

electric discharge machining (EDM). The high precision and small cutting diameter of EDM made 

this manufacturing process suitable for the gears needed. The small heat affected zone at the cutting 

surfaces required polishing because the surface roughness resulting from the cutting process may 

otherwise affect reliability of the gears [90].  

2.2.1.4 3D printed gearbox  

A new gearbox was designed to contain the gear train. The 2014 design simply used an 

aluminum mounting plate for the gear train that resulted in heavy system weight and exposure of 

moving components. Therefore, a gearbox (Figure 9) was designed to reduce the weight of the gear 

housing while fully enclosing the moving components. For producing the gear box, rapid prototyping 

techniques, specifically 3D printing stereolithography (SLA) technique was used due to its high 
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accuracy, low weight, and fast prototyping. A light weight and low cost material (Somos 18420) was 

chosen to fabricate the gearbox casing. With a proper post-curing operation, a tensile strength of 66-

68 MPa can be obtained. Though the true yield strength of the part was unknown due to the complex 

printing technique and thermal-deformation, structural reinforcements were applied to minimize 

internal stress of the gearbox. Aluminum inserts (Figure 9.a) with tapped holes were used to reinforce 

the mounting of the aluminum cylinder holder (Figure 9.e) so that the mounting bolts could avoid 

contacting the 3D printed case while still providing rigid attachments to the gearbox. The gearbox 

was designed to fit the mounting holes on the orthotic shell so that the Gen 2.0 and Gen 3.0 actuation 

systems were interchangeable. A lubrication channel (Figure 9.g) was also added to the case to 

provide oxidation resistance and wear reduction for the gear system.  

 

FIGURE 9 SIDE VIEW OF 3D PRINTED GEARBOX (A) LINEAR ACTUATOR MOUNTING REINFORCEMENT/ALUMINUM INSERT,  

(B) LEG SHELL MOUNTING HOLES, (C ) GEAR RACK, (D) YOKE, (E) ALUMINUM CYLINDER HOLDER, (F) TAPPED FRONT COVER MOUNTING 

HOLE, (G) LUBRICATION CHANNEL, (H) COMPOUND DRIVER GEAR, (I) COMPOUND DRIVEN GEAR, (J) SECTOR GEAR.  
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An FEA analysis was conducted to estimate the potential stress of the gearbox design 

(Appendix B). The maximum input force (i.e., push force (Pf)) in this analysis was set equal to the 

force generated by the linear actuators when both linear actuators’ extend chambers were pressurized 

to 100 psi. The resulting maximum push force applied to the gear rack from linear actuators was 

about 180 lbf (pressure times extend chamber EPA). Material properties (Somos 18420) for FEA 

were defined as follows: Tensile Strength = 68 MPa, Elastic Modulus = 2960 MPa, and Poisson’s 

ratio = 0.42 [91]. The four mounting holes were constrained to 0.0 displacement. A maximum stress 

of 63.0 MPa was observed (Figure 10). 

  

FIGURE 10 FEA RESULT OF THE GEARBOX AT THE PISTON LOAD OF 180 LBF.  

2.2.2 Experimental evaluation 

The evaluation of the Gen 3.0 was conducted by comparing its physical properties and 

performances with the Gen 2.0 design.  

The physical properties analysis of the Gen 3.0 system included its dimensions, overall 

weight, maximum chamber volume, and torque output (Figure 11). The maximum chamber volume 

of Gen 3.0 was calculated using extend chamber EPA (11.55 cm2) times stroke length (4.88 cm). A 
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static torque measurement was conducted using a uniaxial force gauge (DFG35-10, Omega 

Engineering, Stamford, CT). The actuator was attached to an aluminum stand using the four bolts 

that would normally attach to the leg shell. The force gauge was locked to a bolt that was screwed 

into the triangle plate, which was normally used to attach to the foot shell. The force gauge was 

clamped perpendicular to the lever arm between the actuators’ axis of rotation and the line of action 

of the force (Figure 11 b&c).  

 

FIGURE 11 DEFINITION OF THE PHYSICAL DIMENSIONS (a) AND TORQUE MEASUREMENT SET UP (b&c) 
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FIGURE 12 TORQUE MEASUREMENT RESULT 

To compare the system performance, we conducted a gas consumption (longevity) study on 

both a treadmill and a test bench created to emulate the walking condition. For the treadmill testing 

the Gen 3.0 PPAFO’s performance was recoded then compared with that of the Gen 2.0 PPAFO [78]. 

For the test bench testing, both Gen 2.0 and Gen 3.0’s performances were recoded then compared.  

2.2.2.1 Test bench emulation 

The experimental test bench setup consisted of a mock leg and shank with 3D rotational 

freedom at the ankle joint and 1D sagittal plane rotation at the knee joint (Figure 13). The inertial 

properties of a mock foot were based on anthropometric data from 50th percentile male (similar to the 

properties of the able-bodied subject tested in treadmill walking). A rigid aluminum mounting fixture 

was used because it provided a more controlled environment for the system comparison with Gen 2.0 

PPAFO. See Appendix C for details of the off-the-shelf components. 
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FIGURE 13 TEST BENCH SETUP 1) PRESSURE SENSORS, 2) ANKLE ANGLE SENSOR, 3) 9OZ CO2 BOTTLE, 4) SOLENOID VALVES, 5) 

DORSIFLEXION REGULATOR, AND 6) CONTROLLER & DATA ACQUISITION BOX.  

For the test bench trials, the onboard microcontroller (STM32F407VG; STMicroelectronics, 

Geneva, Switzerland) was programmed to simulate a 1 Hz gait cycle (GC) based on healthy 

normative adult walking timing (dorsiflexion: 0-7 %GC and 62-100 %GC, plantarflexion: 48-

62 %GC, no pressurized state: 7-48 %GC) [2, 18]. Two fast switching solenoid valves (MHE2-

MS1H- 3/2O-QS-4; Festo Corp US; Hauppauge, NY) were used to control the pressurization and 

depressurization of the actuators. A pressure regulator (LRMA-QS-4; Festo Corp-US, Hauppauge, 

NY) was mounted in-line with the retract chambers to reduce the input pressure to ~14.5 psig (1 bar) 

and achieve the desired smaller dorsiflexor torque. Two pressure sensors (TBPDANN150PGUCV; 

Honeywell; Morristown, NJ) were also placed in-line with both extend and retract chambers to track 

the chamber pressure. 9 oz CO2 bottles (Catalina Cylinders, Hampton, VA) were used, to control the 

amount of gas consumed within each trial. A linear potentiometer (MP1-L-0050-103-5%-RH; 
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Spectrasymbol; Salt Lake City, UT) was used to track the movement of the piston. The 

microcontroller board was set at 500Hz sampling frequency to record data from all sensors. The CO2 

bottles were filled to their maximum capacity (9 oz + bottle tear weight) before use. Each trial started 

with a full bottle and ended when the actuators could no longer complete the normal range of motion. 

Time (in s), number of completed cycles (i.e., number of steps) and bottle weight (in g) were 

recorded at both the beginning and the end of each trial for measurements of runtime. Internal 

chamber pressure (in Pa) of each actuator and actuator piston motion (in m) were also recorded for 

measurements of system power output. The pressure sensors used were custom made utilizing an 

instrumentation amplifier (AD623 AN, Analog Devices, Norwood, MA) and a board mounted 

pressure sensor (TBPDANN150PGUCV, Honeywell, Morris Plains, New Jersey). Details for 

pressure circuit and housing can be found in Appendix D. 

Two testing conditions with different bottle pressures were evaluated for Gen 3.0 design. Six 

bottles were regulated down to two different pressure levels (38 and 100 psig) to simulate two types 

of peak plantarflexor torque outputs (12 and 32 Nm); thus, three bottles per condition were tested. 

The lower pressure condition was regulated to reproduce the plantarflexor torque output of the Gen 

2.0 PPAFO at 100 psig, while the higher pressure condition was for testing the full capacity of the 

Gen 3.0 PPAFO. 

For the test bench comparison, Gen 2.0’s performance was also evaluated. We used the same 

test bench setup as the Gen 3.0 design. Three 9 oz bottles were regulated to 100 psig for Gen 2.0 to 

have a peak torque output of 12 Nm. The total runtime and mass consumed were recorded. 

2.2.2.2 Able-bodied treadmill walking 

To evaluate the performance of the Gen 3.0 PPAFO, able-bodied treadmill waking test was 

also conducted. All procedures were approved by the institutional review board of the University of 

Illinois. The subject was given informed consent. One able-bodied male subject (age 27 years, height 
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178 cm, weight 80 kg) was tested while walking on an instrumented treadmill (Bertec Corp., 

Columbus, OH) with the assistance of Gen 3.0 PPAFO. The subject walked on the treadmill while 

wearing the Gen 3.0 PPAFO on his right leg and his personal running shoe on the other leg. The 

subject was encouraged to maintain a 1 Hz step rate with the help of a 60 bpm metronome. The 

PPAFO actuation timing was controlled by the a fractional time controller [71] with the same 

actuation timing used for the test bench emulation. Three 9 oz CO2 bottles were also used during 

treadmill walking. The trial ended when the subject no longer felt any assistance from the PPAFO. 

The total consumed mass of CO2 (in g), the total walking time (in s) and number of steps were 

recorded.  

2.2.2.3 Data Analysis 

For both treadmill walking and test bench testing, the normalized runtime (min/g) and mass 

consumption per step (g/step) between Gen 3.0 and Gen 2.0 designs were compared. Normalized 

runtime was calculated as total runtime divided by the total mass consumed. Mass consumption per 

step was calculated as total mass consumed divided by the total number of steps.  

In addition, the power output (in W) was derived by tracking the piston velocity (in m/s) and 

pressure in the actuator of the Gen 3.0 PPAFO. The raw piston velocity was calculated using the 

difference between piston position measurements divided by the sampling time (2ms). The raw 

piston velocity was then filtered with a 4th order Butterworth low pass filter with a cut-off frequency 

of 10Hz. Power output indicates the amount of assistance per sampling time given to the wearer of 

the device. Pressure sensor outputs (in Pa) and effective pistons area (EPA, in m2) were used to 

calculate the net force (in N) generated by the actuator piston. The equation for calculating power 

was: 
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Power= (𝑃e 𝐴𝑒 − 𝑃𝑟𝐴𝑟)Vel  (3) 

where: 

𝑃𝑒,𝑟 = extend and retract chamber pressure  

𝐴𝑒,𝑟 = extend and retract chamber effective piston area 

𝑉𝑒𝑙 = piston velocity 

𝐴𝑒,𝑟 = extend chamber EPA 1.155E-3 m2 & retract chamber EPA 1.056E-3 m2 [92] 

2.3 Results  

 

FIGURE 14 GEN 3.0 PPAFO (LINEAR ACTUATOR DESIGN) 

A compact high torque actuation system (Figure 14) for the PPAFO was designed. For 

physical properties comparison, the Gen 3.0 design had a 45.1% reduction in lateral profile and a 

166.7% torque output increase (Table 3). While the width of the design remain similar, the overall 
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height and weight of the design had 215% and 21.4% increases, respectively. The maximum chamber 

volume of Gen 3.0 increased by 67.6%. 

TABLE 3 PHYSICAL CHARACTERISTICS COMPARISON BETWEEN GEN 2.0 PPAFO AND GEN 3.0 PPAFO DESIGN. *[93]. 

 

For the power output comparison, the Gen 3.0 PPAFO was capable of generating an equal 

amount of power at a much lower operating pressure. The peak power output of the Gen 3.0 PPAFO 

at 38 psig was close to Gen 2.0 PPAFO at 100 psig (50 W), while Gen 3.0’s power more than 

doubled when operated at 100 psig (110 W) (Figure 15 & Table 4). 

 



 
 

38 
 

  

FIGURE 15 AVERAGE POWER OUTPUT OF GEN 2.0 & GEN 3.0 PPAFOS. SHADED AREAS REPRESENT THE STANDARD DEVIATIONS OF 

POWER OUTPUT OF THREE TRIALS PER GEN 3.0 TEST CONDITION. *[18] 

For the gas consumption comparison, the Gen 3.0 PPAFO had 0.021 min/g and 0.048 min/g 

increases in normalized runtime, compared to Gen 2.0, for test bench emulation and treadmill 

walking while under the same torque output condition (12 Nm target). When operating under the 

same pressure (100 psig) as the Gen 2.0 PPAFO, the Gen 3.0 PPAFO’s normalized runtime was 

reduced by 0.012 min/g.  
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TABLE 4 MEAN AND STANDARD DEVIATION OF RUN TIME, NORMALIZED RUNTIME, AND MASS CONSUMPTION PER STEP COMPARISON 

OF ALL EXPERIMENTAL TRIALS. *[78],**[18] 

 

2.4 Discussion 

In this chapter, we presented the design and evaluation of a compact, higher torque actuation 

system for PPAFO.  The previous design (Gen 2.0 PPAFO) served as a testbed platform for 

investigating the effect of a powered orthosis on able-bodied and impaired gait [78-80]. Early studies 

recorded improved gait functionality, however that design’s peak plantarflexor torque was only 12 

Nm for 100 psig input pressure. In addition, the off-the-shelf rotatory actuator had a large and 

undesirable lateral profile. The main objective of the new system design was to increase the 

maximum torque output, while also minimizing system volume and weight, so that further studies 

can be conducted through a range of torque settings.  

The new actuation system consisted of two linear actuators, a customized compound gear 

train and a gear housing. The compound gear train was used to convert the actuators’ linear motion to 

rotatory motion, and the gear housing was used to contain the gear train. The evaluation of the Gen 

3.0 PPAFO was conducted by comparing its physical properties and performances with the Gen 2.0 

design.  

For physical properties evaluation, the two systems’ dimensions, overall weights and 

maximum torque outputs were compared (Table 3). The Gen 3.0 design had a 45.1% reduction in 

lateral profile. A decreased lateral profile will enable the possibility of fitting the system within a pair 
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of slacks, as well as reduced the risk of interfering with the surrounding environment. The overall 

height of the design, though at a 215% increase, reduced the added device weight’s radius of gyration 

relative to the medial-lateral axis of rotation of the knee joint by shifting the center of mass of the 

actuation system more proximal along the shank. This could be beneficial since the more moment of 

inertia added to the distal joint, the more energy is needed to swing the limb during gait [21]. The 

peak torque that the Gen 3.0 system could generate at 100 psig was 32 Nm, which was 166.7% 

higher than previous design. Although the overall weight of the new system had a 20% increase 

compared with Gen 2.0, the new design was capable of providing the same amount of torque and 

power (Figure 15) at a lower operating pressure and a longer normalized runtime (Table 4).  

For the performance evaluation, the systems’ power generation, normalized runtime, as well 

as CO2 mass consumption per step were compared. The system was capable of generating an equal 

amount of power as the Gen 2.0 system at a much lower operating pressure. The peak power output 

of Gen 3.0 PPAFO at 38 psig was close to Gen 2.0 PPAFO at 100 psig (50 W). Moreover, the 

average peak power of Gen 3.0 PPAFO when operating under 100 psig was 110 W (Figure 15, Table 

4). This amount was 120% more than what Gen 2.0 PPAFO could generate. The increased the 

maximum power and torque output of the new design extended the range of power and torque 

settings. These extended ranges would allow us to understand how torque and power impacts gait 

functions.   

For the gas consumption (longevity) study, the Gen 3.0 PPAFO had 0.021 min/g and 0.048 

min/g increases in normalized runtime for test bench emulation and treadmill walking while under 

the same torque output condition (12 Nm target, Table 4). The normalized runtime of Gen 3.0 

PPAFO for both bench test and treadmill walking were longer than the Gen 2.0 PPAFO. Moreover, 

the mass consumed per step for Gen 3.0 PPAFO was also lower than Gen 2.0 PPAFO. These results 

suggested that the new system, when running under same torque and power setting, offered better 
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longevity. The operating pressure was increased to compare the runtime of Gen 3.0 and Gen 2.0 

under the same operating pressure of 100 psig (Table 4). This comparison was conducted in the test 

bench condition only because the high torque output of the Gen 3.0 design could result in injury to 

the wearer if not properly controlled. Results suggested that when operating under 100 psig, the Gen 

3.0 PPAFO’s normalized runtime was 0.012 min/g shorter than that of the Gen 2.0 PPAFO.  

To conclude, the new system achieved a higher torque output, while meeting range of motion 

requirements and reducing the actuation system’s lateral profile. The maximum torque that Gen 3.0 

system could generate was 32 Nm and the maximum power was 110 W. In addition, the system’s 

normalized run time was reduced when operating under a torque setting equivalent to the Gen 2.0 

design’s normal operating torque (12 Nm). This result was expected because the pneumatic cylinders 

consumed more power fuel per step when running at 100 psig. 

Although results from the new design are encouraging, a few limitations must be addressed. 

Firstly, the weight of the current system is slightly heavier than the Gen 2.0 design (21.4% increase). 

The weight could be further reduced using lightweight actuators (fiberglass cylinders). Use of 

fiberglass cylinders could possibly bring the weight of the linear pneumatic system below that of the 

rotary actuator system. Secondly, a couple of the moving compounds (yoke and actuators’ pistons) 

were still exposed.  Because the moving components could possibly injure the wearer, further 

modification might be needed to fully contain these components. Lastly, as the system was capable 

of generating high torque, the current binary control strategy becomes problematic. Inaccurate 

actuation timing of plantarflexion could cause limb discomfort for a low torque system [94]; 

however, a high torque system could further amplify this error and possibly injure the wearer. Thus, 

an advanced control strategy is required. Other alternative solutions may include proportional control 

valves or novel piezoelectric valves. While, most commercially available proportional valves are 

heavy, piezoelectric valves are limited to a low maximum operating pressure and low flow rate [95, 
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96]. Though the flow rate could be overcome by using multiple piezoelectric valves in parallel, the 

low operating pressure could still be a problem. Further investigation on identifying proper control 

strategies is needed. 

2.5 Conclusion 

The design and evaluation of a compact and high torque actuation system for a new PPAFO 

design (Gen 3.0) was presented. The actuation system utilized two dual-action linear actuators and a 

customized gear train to provide plantarflexion and dorsiflexion actuation to the ankle joint. The 

system, compared with a previous generation design (Gen 2.0), was capable of generating higher 

torque (166.7% increase) and power (120% increase) output while delivering a thinner lateral profile 

(45.1% decrease). The runtime of the Gen 3.0 PPAFO under same power torque output condition (12 

Nm) was longer than the Gen 2.0 design (42.9% and 81.4% increases for test bench emulation and 

treadmill walking). The runtime at maximum torque and power conditions was shorter than that of 

Gen 2.0 design (24.4% decrease). This result was expected because the pneumatic cylinders 

consumed more fuel per step when running at 100 psig. Although the overall weight of the new 

system had a 21.4% increase compared with Gen 2.0, the Gen 3.0 design could generate substantially 

more torque which will enable future testing of the system at various torque settings.  
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Chapter 3:  
MINIMUM SENSOR CONFIGURATION FOR 
GAIT EVENT DETECTION FOR A PORTABLE 
POWERED ANKLE-FOOT ORTHOSIS  

Abstract 

Receiving gait information from external sensors is essential for successfully controlling a 

powered ankle-foot orthosis (AFO). Many wearable sensors and gait detection algorithms have been 

investigated for gait event detection. However, with the increasing number of sensors and algorithms, 

gait estimation systems’ complexities have increased. To our knowledge, there has been no 

systematic study on identifying the simplest cost-effective and robust sensor configuration for a 

powered AFO. In the present study, we investigated the minimum sensor configuration for detecting 

gait events. A total of five sensors were selected (two force sensitive sensors, one ankle angle sensor, 

and two inertial measurement units (IMU)). The performances of selected sensor configurations were 

quantified and compared through state-based and event-based approaches in terms of gait state 

estimation and gait event detection timing, respectively. Gait data were collected from five subjects 

while walking on a treadmill wearing a powered AFO. Results indicated that, while the single IMU 

configurations (on the shank or foot) both outperformed all other configurations (mean state 

estimation error: < 2% gait cycle; mean event detection timing error: < 23ms), the shank IMU was 

able to detect more gait events than the foot IMU. Since more detectable events could improve 

system robustness (i.e., adjusting to variable speeds) by updating estimation more frequently, a single 

shank IMU configuration was recommended for powered AFO applications.  
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3.1. Introduction 

A powered ankle-foot orthosis (AFO) is a special class of gait assistive device that employs 

an actuation system to enhance movement of ankle articulation. Over the past decade, research on 

powered orthoses have expanded considerably [12, 25, 75]. The functions of lower limb powered 

orthoses range from power enhancement to gait function restoration [6, 13, 21, 23, 41, 57, 97]. For 

these different functionalities, the mechanical structures, actuators and interfaces vary. However, 

when it comes to sensing and control processes, they usually follow a series of common steps [6, 13, 

21, 23, 41, 57, 71]: (1) detect the lower limb kinematics and kinetics, (2) identify key gait events, and 

(3) apply control to meet the functional objective determined by the gait events. Therefore, proper 

tracking of gait (steps 1 and 2) is essential for successfully controlling a powered AFO.  

Gait is a cyclic task characterized by repetitive events [71]. A normal gait cycle generally 

begins from initial heel strike, 0% gait cycle (GC), and ends at the next heel strike of the same foot, 

100% GC. A normal walking gait cycle can be divided into three functional tasks (weight 

acceptance, single-limb support and limb advancement) [1] and eight different sub-phases (initial 

contact (IC), loading response (LR), mid stance (MSt), terminal stance (TSt), pre-swing (PSw), 

initial swing (ISw), mid-swing (MSw), and terminal swing (TSw)) [2] (Figure 16). Efficient 

segmentation of the gait cycle into these gait sub-phases is a critical component of gait estimation 

and can be achieved through the detection of gait events. Ten possible gait events during a gait cycle 
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are presented (Figure 16).

 

FIGURE 16 DIFFERENT FUNCTIONAL TASKS, SUB-PHASES, AND POSSIBLE GAIT EVENTS OF A GAIT CYCLE  (FIGURE CREATED USING 

HUMAN MODEL DOWNLOADED FROM [3]) 

The detection of gait events has been of interest in several fields of studies. Its applications 

range from classification of daily activities such as stair climbing [59, 74], distinguishing abnormal 

gait behavior [98, 99], to controlling robotic devices such as powered prostheses or orthoses [6, 13, 

21, 23, 41, 57, 97]. According to the literature, common wearable sensors used for gait event 

detection are: footswitches [6, 35-37] (e.g. pressure insoles, force sensitive resistors (FSR)), joint 

angle measurement sensors [38, 39, 41] (potentiometer, goniometer and Hall Effect sensor), 

electromyography (EMG) sensors [31, 100, 101], and other inertial sensors such as accelerometers, 

gyroscopes and their combination which is known as an inertial measurement unit (IMU) [21, 22, 59, 

102]. With a proper developed gait event detection algorithm, one can detect gait events within each 

gait cycle. 

In both clinical and powered orthotic applications, most existing gait event detection methods 

utilized detection of local maxima, minima and/or crossing pre-defined threshold values [6, 23, 31, 

36, 44, 49, 74]. Advanced methods such as curve-alignment, pattern fitting and model based 

identification have also been proposed [13, 37, 38, 41, 46, 71]. However, some of these advanced 
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algorithms either cannot achieve satisfactory control for AFOs due to susceptibility to chattering and 

delays in the classification process [13, 71] or a model of the system was necessary to identify gait 

events [38].  

In our group, two types of gait detection approaches have been used for controlling a portable 

powered ankle-foot orthosis (PPAFO). The first approach, event-based approach, provided torque 

assistance simply based on the detection of gait events of interest (the events that can be used to 

control powered AFO directly) [6]. Shorter et al. mentioned an event-based Direct Event (DE) 

controller that used heel and toe FSR “on” and “off” states to control the actuation of the PPAFO [6]. 

FSR “on” and “off” states were defined when sensor magnitudes exceeded or fell below a set of 

thresholds, respectively. Dorsiflexor torque was applied when the heel FSR was “on” and the toe 

FSR was “off”, and plantarflexor torque was applied when the heel FSR was “off” and the toe FSR 

was “on”. Similar approaches have been seen in other applications such as the use of Functional 

Electrical Stimulation (FES) systems for correction of foot drop, which often require detection of the 

heel strike (HS) and toe off (TO) events to stimulate the paralyzed muscles [74]. For the event-based 

approach, accurate event detection timing is crucial. This is because the control of the device is 

depended on the detection of certain gait events of interest. It was observed that for some users with 

impaired gait function who did not follow typical heel-toe gait, the event-based approach did not 

provide appropriate control of the PPAFO since the sensors could not detect all DE gait events of 

interest [71]. Therefore, the following state-based approach was developed. 

The second approach, state-based approach, characterized the gait cycle as a set of gait states. 

A full gait cycle was divided into 101 states (0-100) to represent 0% to 100% GC [41, 71]. The gait 

state was determined by sensor measurements and then used to identify the gait events of interests 

in %GC to provide control to the PPAFO [41, 71]. Li et al. [71] used a state-based Fractional Time 

(FT) estimator that depended only on the HS event. The gait state was then estimated with the 
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assumption that subsequent gait states increased linearly within the time between consecutive 

ipsilateral HS events. Once the estimated gait state reached a set of predefined %GC, the PPAFO 

applied appropriate torque assistance (e.g., dorsiflexion: 0-7 %GC and 62-100 %GC, plantarflexion: 

48-62 %GC, no pressurized state: 7-48 %GC). This controller’s robustness, however, was limited 

when gait speed changed [41]. Since it could only detect the start and end of a gait cycle via the HS 

event, the FT controller was not able to update gait states within a gait cycle. To increase the 

system’s robustness, Islam et al. [41] proposed two new state-based estimators (Modified Fractional 

Time (MFT) and Artificial Neural Network (ANN)), which utilized both heel and toe FSRs and an 

additional ankle angle sensor (Hall Effect sensor) to estimate the gait state. MFT was able to detect 

events and update gait state estimation up to eight times within a single gait cycle, and ANN was 

capable of estimating gait states continuously across the gait cycle by using a moving window of six 

previous sets of data points. Both state-based MFT and ANN estimators showed significant 

improvements when compared with the FT estimator; however they were also computationally 

expensive.  

Advanced approaches and multi-sensor configurations showed improvements in gait event 

detection in terms of accuracy and number of detectable events [37, 38, 41]. However, with the 

increasing number of sensors introduced to the systems, system complexity could also increase due 

to complex data collection protocols and computationally expensive algorithms [74]. Applying 

multiple sensors and complex algorithms does not necessarily indicate the best solution, and to our 

knowledge, the most cost-effective sensor configuration for robust gait event estimation is still 

unknown. Thus, we were interested in investigating the minimum number of sensors needed for gait 

event estimation. 

In this study, we investigated the minimum sensor configuration needed for gait event 

estimation for a powered AFO (Figure 17) [103]. A total of five sensors were considered (two force 
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sensitive sensors, one ankle angle sensor, and two inertial measurement units (IMUs)). Since the 

previous state-based algorithms developed in our lab used at most three sensors, only single and 

double sensors configurations were evaluated in this study. Selected sensor configuration 

performances were quantified and compared through event-based and state-based approaches in 

terms of gait event detection timing and gait state estimation, respectively. Gait events were first 

detected through the use of a combination of local maxima, minima and threshold-crossing methods. 

Then the detected events were used to perform gait state estimation. Gait data were collected from 

five subjects while walking on an instrumented treadmill wearing a powered AFO on their right foot. 

 

FIGURE 17 PPAFO HARDWARE OVERVIEW. THE SHANK AND FOOT PLATE ARE CONNECTED BY A PNEUMATIC ACTUATION SYSTEM 

(GRAY), WHICH CAN PROVIDE DORSI- OR PLANTARFLEXOR TORQUE. FIVE SELECTED SENSORS AND THEIR PLACEMENTS FOR GAIT EVENT 

DETECTION ARE HIGHLIGHTED WITH BLUE ARROWS. 
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3.2 Method 

This section is divided into six parts. The first part describes the sensors and their 

placements. The second part explains gait event detection methods and presents the detectable gait 

events for each sensor. With the knowledge of each sensor’s detectable events, the third part lists the 

selected sensor configurations compared in this study. The fourth part introduces the data collection 

procedure. The fifth part describes the state estimation process using collected data. Upon the 

completion of gait event detection and state estimation, the last part introduces the performance 

evaluation methods. 

3.2.1 Sensor description 

A total of five sensors were compared in this study (Figure 17). Two force sensitive sensors 

(FSRs) were used for detecting foot contact under the heel and ball of the foot (FSR-square, SEN-

09376 ROHS, SparkFun Electronics, Niwot, Colorado, USA).  The FSRs were embedded between 

the shoe foam sole and rubber tread. Footswitches are low cost and reliable for the detection of the 

foot contacting the floor [47]. However, the number of detectable events are limited, and a FSR’s 

performance is highly depending on its placement [47, 104, 105]. In addition, the wire connections 

embedded in the shoe foam sole are exposed to repetitive load which decreases its service life [47].  

A linear magnetic potentiometer (MagnetoPot; Spectra Symbol; West Valley City, UT) was 

attached to the linear pneumatic actuators (Figure 2). Due to the actuators’ linear motion being 

directly translated to ankle joint through the gear train, the potentiometer measurement could be 

converted to ankle angle measurement (Appendix E). The validation of the angle measurement was 

performed by comparing the calculated joint angles with the joint angles measured with a 

goniometer. The discrepancies were assessed by the Pearson correlation coefficient. The two sets of 

measurements had a correlation coefficient of 0.99. The linear potentiometer output was directly 
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proportional to the ankle angle. However, the potentiometer also requires a proper placement. There 

are two parts in this linear magnetic potentiometer, a stationary magnetic sensor and a moving 

magnet (Figure 17). The magnetic sensor was fixed to the outside of the linear actuators through the 

potentiometer housing, and a magnet was synced to the linear rack motion through the use of a 

magnet housing. 

Two IMUs (MPU9250; InvenSense; San Jose, CA) were attached to the bony landmarks of 

the foot and shank segments (anterior shin at tibial strap (Figure 18.b) and dorsal surface of foot strap 

(Figure 18.c)) to track the kinematics of these segments. Custom housings were designed to contain 

the shank and foot IMUs (Figure 18.b & c).  Each IMU consisted of one 3D accelerometer, one 3D 

gyroscope and one 3D magnetometer. The magnetometer was not used in this study due to its poor 

performance during indoor activities [59]. This IMU is low-cost, light weight [47], and also has a 

minimal profile and low power consumption [51]. Additional signal processing such as filtering 

might be required for certain IMU measurements [106]. In this study, each IMU was considered as 

one sensor.  
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FIGURE 18 (a) MARKER PLACEMENT AND VECTOR REPRESENTATION FOR COMPARING ANGLES COMPUTED USING PPAFO SHELL 

(OPTION 1 BLUE) OR BODY SEGMENT (OPTION 2 RED). (b) TIBIAL STRAP AND CUSTOM SHANK IMU HOUSING (ANTERIOR SHIN). (c) 

FOOT STRAP AND CUSTOM FOOT IMU HOUSING (DORSAL SURFACE OF FOOT). (d) IMU STRAP-ON FEATURE WITHOUT PPAFO. 

A supplemental study was conducted to find the best IMU placement because there were two 

options of where to place the IMU sensors when measuring segment orientation (either on the carbon 

fiber shells of the orthosis (shank and foot shell) or strapped directly to the shank and foot segments). 

We used a motion capture system (Model 460; Vicon, Oxford, UK) to capture the shell-based vectors 

angle and body segment-based vectors angle in sagittal plane. A total of eight markers were placed 

on the carbon fiber shells and the straps on the body segments with four vectors representing the 

orientation of the attached surfaces in sagittal plane (Figure 18.a). Shell-based vectors angle (angle 

between two blue vectors in sagittal plane) and body segment-based vectors angle (angle between 

two red vectors in sagittal plane) were then derived (Appendix F). This supplemental study found 

that the two angles had a correlation coefficient of 0.99. This result effectively meant that with the 

PPAFO securely attached to the shank-foot segments, the movement artifact between the body and 

PPAFO was minimal. In this study, we chose to strap the IMUs on the shank and foot segments. The 
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strap-on feature would not only simplify the donning and doffing process, but also allowed for the 

possibility of  collecting subject data with or without wearing the PPAFO (Figure 18.d). 

3.2.2 Gait event detection methods for each individual sensor 

We first used a combination of local maxima, minima and threshold-crossing methods to 

identify potential points within the collected data that may qualify as gait events. Ten potential events 

were identified (Figure 16&Table 5): (1) Heel Strike, (2) Middle of the loading response (mid of 

LR), (3) Toe on or Beginning of the mid-stance (init of MSt), (4) Middle of the mid-stance (mid of 

MSt), (5) Heel off or Beginning of the terminal stance (init of TSt), (6) Middle of the terminal stance 

(mid of TSt), (7) Beginning of the  pre-swing (init of PSw), (8) Toe off or Beginning of the initial 

swing (init of ISw), (9) Middle of the initial swing (mid of ISw), and (10) Beginning of the terminal 

swing (init of TSw). Events 1, 3, 5, 7, 8 and 10 are the events which indicated the transition between 

two sub-phases. Events 2, 4, 6, and 9 are the gait events which indicated the middle of certain sub-

phases.  

TABLE 5. GAIT EVENTS AS DETECTED BY EACH SENSOR.  
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3.2.2.1 FSRs 

Each of the FSRs embedded in the PPAFO foot piece were able to detect two events (Table 

5). These events were detected when the sensor magnitudes rose above or fell below a set of 

predefined thresholds (Figure 19). The heel strike event indicated the start of the gait cycle and was 

detected when the heel sensor reading rose above the heel strike threshold (i.e., 0.3V). The beginning 

of the mid-stance or toe on event was defined when the toe sensor signal was in a rising edge. The 

heel off event was detected when the heel sensor faced a falling edge and the toe off event was 

detected by the falling edge of the toe sensor. These last three events were detected when sensor 

readings crossed the thresholds (i.e., 1.0V). This higher voltage threshold value was used for these 

events due to large variability in the sensor signals around the timings of these events (Figure 4).  
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FIGURE 19 MEAN VALUES (SOLID LINE) AND STANDARD DEVIATION (SHADED AREAS) OF HEEL AND TOE FSRS MEASUREMENTS OVER 

ONE SUBJECT’S MULTIPLE GAIT CYCLES  

3.2.2.2 Ankle angle 

The ankle angle and its derivative (angular velocity) were capable of detecting four events 

consistently (Figure 20). Init of MSt was detected when the ankle joint started the rotation towards 

the dorsal direction due to the body weight shifting to the ipsilateral limb, as indicated by finding the 

angular velocity rising and crossing 0˚/s. Init of PSw was detected when the ankle joint reached 

maximum dorsiflexion between the terminal stance and pre-swing. Mid of ISw event was detected 

when the ankle joint reached maximum plantarflexion. One more event, Init of ISw, was also defined 
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by detecting the maximum plantarflexion-directed velocity, as noted by the minima of the angular 

velocity (Figure 20). The angular velocity was calculated using the difference between angle 

measurements divided by the sampling time (2 ms) then filtered with a 4th order Butterworth low 

pass filter with a cut-off frequency of 30 Hz. Cut-off frequencies within the range of 25-35 Hz have 

been commonly used for providing real-time sensing [36, 49, 105, 107, 108] as they removed 

unwanted noise while retaining gait information [105]. 

   

FIGURE 20 MEAN VALUES (SOLID LINE) AND STANDARD DEVIATION (SHADED AREAS) OF ANKLE ANGLE POSITION AND VELOCITY OVER 

ONE SUBJECT’S MULTIPLE GAIT CYCLES (POSITIVE VALUES INDICATE DORSIFLEXION ANGULAR POSITION AND VELOCITY)  

3.2.2.3 Shank and foot IMU 

The shank and foot IMUs were capable of detecting multiple events (Table 5). For example, 

looking at the shank IMU (Figure 21), since we were focusing on the sagittal plane (x-z) movement, 
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we only examined the sagittal plane x-direction acceleration (𝑎𝑥), z-direction acceleration (𝑎𝑧), and 

y-direction gyroscope angular velocity (𝜔𝑔𝑦𝑟) from the respective accelerometers and gyroscope in 

the shank IMU (Figure 17 & Figure 21). The unit for acceleration was in 𝑔 (standard gravity; 𝑔 = 9.8 

m/s2), and the unit for angular velocity was in (˚/s). In addition to these direct measurements, z-

direction jerk (�̇�𝑧, in 𝑔/s) and y-direction gyroscope angular acceleration (𝛼𝑔𝑦𝑟, in ˚/s2) were 

recorded. Both �̇�𝑧 and 𝛼𝑔𝑦𝑟 were derived using the same method mentioned previously. The shank 

segment angular position, velocity, and acceleration were defined as positive when considered 

counterclockwise from the positive global X-axis (color gray in Figure 21). For shank angular 

velocity and acceleration, these directions are opposite to the y-direction of the gyroscope (Figure 

21). Therefore, we defined 𝜔𝑠ℎ𝑎𝑛𝑘 = −𝜔𝑔𝑦𝑟 and 𝛼𝑠ℎ𝑎𝑛𝑘 = −𝛼𝑔𝑦𝑟. 

Because the segment angular position orientation could also be used to indicate certain gait 

events (i.e., shank segment angle was 90˚ to the ground at Mid of MSt), we implemented a Kalman 

filter to estimate the shank IMU orientation ( 𝜃𝑘𝑎𝑙𝑚𝑎𝑛) using combined data from the accelerometers 

and gyroscope. This value was then converted to the shank segment angular position orientation 

( 𝜃𝑠ℎ𝑎𝑛𝑘 = 90˚ −  𝜃𝑘𝑎𝑙𝑚𝑎𝑛) [53, 64, 109] (Appendix G). The IMU orientation was first calculated 

through the gyroscope (𝜃𝑔𝑦𝑟) by integrating the gyroscope reading 𝜔𝑔𝑦𝑟. The integration error (drift 

over time) was then corrected through the Kalman filter using the angle calculated from 

accelerometer readings 𝑎𝑥 and 𝑎𝑧 using trigonometry (𝑒. 𝑔., 𝜃𝑎𝑐𝑐 = tan−1 (−
𝑎𝑥

𝑎𝑧
), Figure 21). This 

method for computing  𝜃𝑠ℎ𝑎𝑛𝑘 was preferred over integrating 𝜔𝑠ℎ𝑎𝑛𝑘, as derived from only the 

gyroscope, because integration method caused errors (i.e., signal noise) to accumulate and caused the 

calculated values to ‘drift’ from the true value. 
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FIGURE 21 OUTLINE OF SHANK ORIENTATION ESTIMATION IN GLOBAL COORDINATE SYSTEM (GRAY) THROUGH THE SHANK IMU’S 

KALMAN FILTER RESULT (RED) DERIVED FROM THE COMBINATION OF BOTH GYROSCOPE (GREEN) AND ACCELEROMETER (BLUE) DERIVED 

ANGLE MEASUREMENTS 

The following gait events were detected from the shank IMU signals. Heel strike was 

detected as when �̇�𝑧 or 𝛼𝑠ℎ𝑎𝑛𝑘 reached a certain threshold (i.e., 50 𝑔/s or -10000˚/s2). Mid of LR was 

defined as when the jerk’s magnitude fell below a certain threshold (i.e.,  �̇�𝑧 < 50 𝑔/s). Mid of MSt 

was defined when the ipsilateral shank reached a vertical position, and mid of TSt was defined as 

when ipsilateral shank orientation (𝜃𝑠ℎ𝑎𝑛𝑘) approached 80˚ (i.e., 10˚ dorsiflexion). Init of PSw was 

defined when the shank angular velocity decreased and reached a certain threshold (i.e.,  𝜔𝑠ℎ𝑎𝑛𝑘 =

−100˚/s). Toe off was defined when shank angular velocity reached a local minima. Mid of ISw was 

detected when 𝜔𝑠ℎ𝑎𝑛𝑘 crossed zero angular velocity. From a pilot study, we found that  𝜔𝑠ℎ𝑎𝑛𝑘 

reached a local maxima, and 𝜃𝑠ℎ𝑎𝑛𝑘 = 90˚ (vertical to the ground) during the beginning of the 

terminal swing phase (init of TSw) (Figure 22). During swing, the hip flexes and knee extends which 

combined created a peak positive shank angular velocity [2, 49, 110].  Therefore we used the local 
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maxima of the shank angular velocity (𝜔𝑠ℎ𝑎𝑛𝑘) as an indicator to reset the estimation process and 

started to look for the heel strike by monitoring the z-direction jerk (�̇�𝑧) and shank angular 

acceleration (𝛼𝑠ℎ𝑎𝑛𝑘). 

The gait events detected from the foot IMU were the same as the shank IMU, except for three 

events during the stance phase (foot flat on the ground). Due to a lack of the variance within foot 

IMU measurements during stance, the foot IMU could not detect mid of MSt, init of TSt, and mid of 

TSt during mid stance (Figure 23). 
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FIGURE 22 MEAN VALUES (SOLID LINE) AND STANDARD DEVIATION (SHADED AREAS) OF SHANK IMU MEASUREMENTS OVER ONE 

SUBJECT’S MULTIPLE GAIT CYCLES 
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FIGURE 23 MEAN VALUES (SOLID LINE) AND STANDARD DEVIATION (SHADED AREAS) OF FOOT IMU MEASUREMENTS OVER ONE 

SUBJECT’S MULTIPLE GAIT CYCLES 
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3.2.3 Identify potential sensor configurations 

After determining which gait events could be detected for a given sensor, a total of nine 

sensor configurations were chosen to be evaluated (Table 6). These configurations were either using 

a single sensor (blue cells) or dual sensor configurations (green). Sensor configurations that could not 

detect heel strike, such as a single toe sensor configuration, were ignored (×, grey). Dual sensor 

configurations, such as ankle angle and IMU, were also ignored since the events detected by ankle 

angle sensor were redundant to the IMU events (init of MSt, init of PSw, init of ISw, and mid of 

ISw; Table 5) (•, grey).  

TABLE 6 SENSOR CONFIGURATIONS CONSIDERED FOR COMPARISON (ROW ELEMENT REPRESENTS FIRST SENSOR AND COLUMN 

REPRESENTS THE SECOND SENSOR) 

 

3.2.4 Data Collection 

3.2.4.1 Subjects 

Five adult male subjects participated in this study. All subjects were healthy (age 24.2 ± 5.1 

years, height 173.8 ± 8.9 cm, weight 75.9 ± 9.5 kg) and did not have any neurological, gait, or 

postural disorders. All procedures were approved by the institutional review boards of the University 

of Illinois, and all participants gave informed consent. 

3.2.4.2 Experimental setup  

Subjects walked with the PPAFO on an instrumented split-belt treadmill (Bertec, Columbus, 

OH) at their self-selected comfortable walking speed. The average gait period of all five subjects was 

Heel FSR Toe FSR Ankle Ang Shank IMU Foot IMU Single-Sensor Configuration

Heel FSR √ √ √ √ √ Dual-Sensor Configuration

Toe FSR × × √ √ Ignored Sensor Configuration

Ankle Ang × • • √-Compared Configuration

Shank IMU √ • x-Configuration with no heel strike detection

foot IMU √ •-Configuration wirh redundant events detection
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1.3s.  The PPAFO was worn on the right limb. The subject’s own shoe (running/walking) was worn 

on the left limb. A total of five one-minute trials of data per subject were collected. Four reflective 

markers were attached to the PPAFO shell (Figure 18, option 1). Only one option was used due to 

both option 1 and 2 are essentially outputting same patterns (correlation coefficient of 0.99). 

Kinematic data were collected using a motion capture system with a sampling rate set at 100 Hz 

(Model 460; Vicon, Oxford, U.K.). Kinetic data (ground reaction forces, GRFs) were also collected 

an instrumented treadmill (Bertec, Columbus, OH) at a sampling rate of 1000 Hz. 

3.2.5 State Estimation Procedure 

3.2.5.1 Identifying true gait state 

The “true” gait state was considered as a gold standard to describe gait and was derived via 

kinematic and kinetic data collected following the method described in [41, 71]. We used a total of 

eight signals to define the “true” gait state (ankle angle and shank angle determined from the motion 

capture data, right and left vertical ground reaction forces (GRFs) from the treadmill, and their 

derivatives). An eight dimensional (8-D) vector 𝒑(𝑡) was used to describe time 𝑡’s position in a gait 

cycle. Each gait cycle was divided into 101 states (from 0% to 100% GC). A linearly weighted 

regression model �̅�, with the dimension of 8×101, was then built using the 𝒑(𝑡) data sets across all 

gait cycles (60s × 5 trials). Upon the completion of building the model matrix �̅�, at any time stamp 𝑡, 

the “true” state 𝜆(𝑡) was defined by comparing the vector 𝒑(𝑡) to the regression model �̅�(𝜆∗) where 

𝜆∗ was the gait state. The state 𝜆 at time 𝑡 was defined as 

𝜆(𝑡) = arg𝑚𝑖𝑛
𝜆∗∈[0,100]

‖𝒑(𝑡) − �̅�(𝜆∗)‖2  (4) 

3.2.5.2 Training procedure for each sensor configuration 

All sensor configurations required a preliminary training process to fit the uniqueness of each 

subject’s gait pattern, similar to that used in [41]. The first trial of each subject’s walking data was 
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used to serve this purpose. We used the methods described in section 2.2 to identify gait events from 

the training data and the methods described in section 2.5.1 to identify “true” gait state. During 

subject-specific training of the estimator, we saved the corresponding state value (i.e., % GC) for 

each event. While gait patterns varied among the subjects, the state value of each event was relatively 

consistent between subjects. Therefore, we defined the state value of each captured event as the mean 

of the “true” percentage gait cycles of each event within the training data. These state values were 

then saved in a vector for state estimation use (𝐿𝑒, where 𝑒 is from 1 to the total number of events 

detected from each sensor configuration).  

3.2.5.3 Gait state estimation 

Upon the completion of the training procedure, the remaining four trials were used as testing 

trials to perform gait state estimation following the Fractional Time (FT) and Modified Fractional 

Time (MFT) methods described in [41, 71]. During each gait cycle, the saved values of 𝑳𝒆 were used 

to update the estimated state �̂�. We assumed that the gait state increased linearly between two 

detectable events according to the average period of the gait cycle. Note that the state of the last 

detected event 𝐿𝐿𝐸 is a single scalar value within 𝑳𝒆. Therefore, for current time 𝑡, the estimated state 

will be calculated by following equation. 

�̂� = 𝐿𝐿𝐸  + 100
𝑡−𝑡𝐿𝐸

𝑇(𝑡)
   (5) 

With 

𝑇(𝑡) = 0.8𝑇(𝑡 − ∆𝑡) + 0.2𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡  (6) 

Where 𝑇 was the average period of the gait cycle and was updated every time a new event was being 

detected. 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 was the time between two consecutive occurrences of event 𝐿𝐿𝐸. 
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 𝑡 and 𝑡𝐿𝐸 each represented the time for the current detected event and the time for the last detected 

event, respectively. The number 0.8 and 0.2 each indicated the weight ratio of 𝑇 and 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡. The 

higher the weight ratio of  𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡, the faster that the estimator adjusts to a changing gait behavior. 

3.2.6 Performance evaluation 

The performances of selected sensor configurations were quantified and compared through 

event-based and state-based approaches in terms of gait event detection timing and gait state 

estimation, respectively. The mean absolute error (MAE) was used to quantify each sensor 

configuration performance. The MAE was defined by taking the average of the absolute values of 

differences between the estimated values �̂� from the sensors and “true” values 𝑥. 

𝑀𝐴𝐸 = average
𝑖∈[0,𝑛]

|�̂�(𝑖) − 𝑥(𝑖)|   (7) 

Where 𝑛 represented the total number of data points. 

1) Gait event detection timing 

For the gait event detection timing comparison, only heel strike (HS) and toe off (TO) 

detection timings were compared because their “true” timings 𝑡 were identifiable using the GRF data 

from the treadmill. The HS and TO events marked the start of stance and swing phase, respectively. 

The “true” timings of the HS and TO events were identified as when the vertical GRF exceed or fell 

below 10N. Since each sensor configuration’s HS and TO detection was achieved through one or two 

of the five sensors, we were essentially comparing the event detection timing of each individual 

sensor. Therefore, the estimated event detection timing �̂� was identified from the shank IMU, foot 

IMU, heel FSR, toe FSR and ankle angle sensor (Table 5). The 𝑀𝐴𝐸𝑒𝑣𝑒𝑛𝑡 between the each sensor’s 

event detection timing �̂� and the “true” event timing 𝑡 was calculated. In this case, 𝑛 in equation 4 

represented the total number of steps. 
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2) Gait state estimation 

For the gait state estimation evaluation, the 𝑀𝐴𝐸𝑠𝑡𝑎𝑡𝑒 between each sensor configuration’s 

estimated gait state �̂� and the “true” gait state 𝜆 was calculated. In this case, 𝑛 in equation 4 

represented the last 4 minutes of testing data (n=4min×60s/min×500Hz/s, where 500Hz is the 

sampling frequency). In addition to the sensor configurations presented in section 2.3, we also 

included a previously used the single heel FSR sensor based state estimator, the FT estimator [71], to 

represent the earliest level of state estimation performance. The FT state estimator used the same 

method presented in section 2.4.3 except that it relied on the detection of heel strike event only. 

3.3 Results 

For the gait event detection timing comparison, five sensors’ HS and TO events event 

detection timing error were compared (Table 7). The 𝑀𝐴𝐸𝑒𝑣𝑒𝑛𝑡  for both HS and TO events of the 

single IMUs were lower than that of the heel, toe FSR as well as ankle angle sensor. 

TABLE 7 MEAN ABSOLUTE ERROR OF GAIT EVENT DETECTION TIMING FOR SELECTED SENSOR CONFIGURATIONS 

 

 

For gait state estimation, all sensor configurations had 𝑀𝐴𝐸𝑠𝑡𝑎𝑡𝑒 less than 3.5 %GC. In 

general, configurations that included an IMU had better performance than non-IMU configurations 

(Figure 24). Among all the IMU configurations, the single IMU configurations (shank or foot IMU 

only) had the best performances, reducing the 𝑀𝐴𝐸𝑠𝑡𝑎𝑡𝑒 by up to 44% when compared to the FT state 

(ms) HS TO

Shank IMU 8.9 ± 10.9 22.8 ± 27.4

Foot IMU 8.4 ± 9.4 13.6 ± 15.9

Ankle Ang N/A 53.7 ± 15.7

Heel FSR 23.9 ± 11.2 N/A

Toe FSR N/A 33 ± 20.8

   𝒆 𝒆   
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estimator. Among all the non-IMU configurations, the heel-toe FSR configuration showed relatively 

better performance. 

 

FIGURE 24 MEAN ABSOLUTE ERROR OF GAIT STATE ESTIMATION (%GC) FOR DIFFERENT SENSOR CONFIGURATIONS (HIGHLIGHTED IN 

BLUE). THE FT STATE ESTIMATER (HIGHLIGHTED IN GRAY) REPRESENTS THE EARLIEST LEVEL OF STATE ESTIMATION PERFORMANCE. 

*[71]  

3.4 Discussion  

The main purpose of this study was to investigate the minimum sensor configuration to 

achieve the simplest cost-effective sensor configuration for robust gait event estimation for a 

powered ankle-foot orthosis. A total of nine single and dual sensor configurations were compared to 

identify which configuration(s) resulted in the most accurate performance. Gait data from the sensor 

were collected from five healthy young subjects while walking on an instrumented treadmill wearing 
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a powered AFO. The results from the sensor data were compared to “true” gait data derived from 

motion captured kinematic data and ground reaction force data from the treadmill. 

In our group, two types of gait event detection approaches have been used for controlling the 

powered AFO [6, 41, 71]. The first approach, event-based approach, provided torque assistance 

simply based on the detection of gait events directly from sensor measurements [6]. The second 

approach, state-based approach, characterized the gait cycle as a set of gait states [41, 71]. Gait state 

(i.e., % GC) was determined by sensor measurements and used to identify gait events of interests to 

provide control to the PPAFO. In this study, each selected sensor configuration performance was 

examined through both event-based and state-based approaches. Selected sensor configuration 

performances were quantified and compared through event-based and state-based approaches in 

terms of gait event detection timing and gait state estimation, respectively. 

For the gait event detection timing comparison, only heel strike and toe off events were 

compared since the “true” event timings of these two events were identifiable from GRFs of the 

treadmill. Out of all sensors, the ankle angle sensor had the highest accuracy error for TO detection. 

The heel-toe sensors had relatively greater accuracy error for HS and TO detection compared with 

the two IMU configurations (Table 7). This was because the FSR configurations were heavily reliant 

on sensor sensitivity and placement. If the heel FSR was not placed at the direct contact point where 

the physical heel strike happened, it could cause a delay in heel strike detection. On the other hand, 

IMU configurations did not have this issue since an IMU monitored lower limb kinematics 

(acceleration, jerk, etc.) directly. The results from the event timing comparison suggested that the 

sensor configuration that involve IMU had better performances at detecting HS and TO events.  

The state estimation comparison suggested that all the sensor configurations that involved an 

IMU (Figure 24, c-h) appeared to have better performance than the non IMU configurations (Figure 

24, a, b, i, j). The single IMU configurations (shank IMU and foot IMU) were able to perform gait 
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state estimation with multiple detected events while maintaining a low error (𝑀𝐴𝐸𝑠𝑡𝑎𝑡𝑒 < 2% GC) 

(Figure 24, c&d). The difference between the errors for the two single IMU configurations was 

minimal (0.05% GC). 

From these state estimation comparison results, we concluded that there were two factors that 

could affect the overall robustness of each sensor configuration: (I) the number of events detected, 

and (II) the variability of the sensor signals of these events. By comparing the 𝑀𝐴𝐸𝑠𝑡𝑎𝑡𝑒 of the single 

heel FSR configuration (detecting heel on and heel off events) with the FT state estimator (detecting 

only heel event) (Figure 24, a&b), we observed that although the single heel FSR configuration could 

detect two events, the high variability of the heel FSR’s signal at the heel off event (Figure 19) 

slightly increased the 𝑀𝐴𝐸𝑠𝑡𝑎𝑡𝑒 for this configuration (b) compared to (a). However, by adding an 

additional sensor, e.g., toe FSR or ankle angle sensor, to the heel FSR configuration (Figure 24, i&j), 

we introduced more events that had less variability, such that the 𝑀𝐴𝐸𝑠𝑡𝑎𝑡𝑒 were reduced for (i) and 

(j) compared to (b). This reduction was due to the inclusion of more consistent events that not only 

provided better adjustment to gait variability, but also corrected for the poor performance caused by 

the events with high variability.  

Further comparison between single IMU configurations (shank IMU, foot IMU) were 

considered. When comparing the number of events detected from each sensor, the shank IMU was 

capable of detecting more events than the foot IMU (8 vs. 7 events, Table 6). Due to the lack of 

substantial movement of the foot during the stance phase, the foot IMU was not able to detect events 

within this phase.  

To conclude, single IMU configurations (shank IMU, foot IMU) outperformed other sensor 

configurations for all comparisons proposed in this study (Figure 24, Table 7). Although the shank 

IMU had slightly larger errors (MAE) for both event detection timing and gait state estimation when 
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comparing to the foot IMU, the amount of the differences were at minimal. Therefore, since the 

shank IMU is able to detect more gait events, it is recommended that the single shank IMU is the 

most cost-effective sensor configuration.  

One limitation about the single IMU configuration is that, its performance may be affected if 

a certain kinematic features during gait are missing (e.g. pathological gait, slipping, tripping etc.). 

Therefore, an additional failsafe feature might be included. It is worth mentioning that, though a FSR 

sensor had many limitations such as high event detection timing error and low service life due to 

repetitive loading, it is still relatively reliable on detecting whether the foot segment is in contact with 

the ground. This information can be used to provide a failsafe since it increases event detection 

redundancy. From the event detection timing comparison of this study, we found out that the heel 

FSR’s detection of heel strike event always came in after the IMU’s. Therefore we could add in a 

heel FSR as a failsafe without affecting the IMU’s overall performance. Note that this failsafe does 

not make it equal to configuration (c) because configuration (c) used heel sensor detected as part of 

its state estimation. The high variability of the heel off event in (c) increased state estimation error. 

There were a few limitations in this study. Firstly, this study was performed with healthy 

subjects walking at their comfortable speed. Gait speed variation may affect the overall performance 

of the sensor configurations. Further study could be conducted in evaluating different sensor 

configuration performances on state estimation at different gait speeds. Future study could also focus 

on investigating the sensor detected events that are not only consistently detectable but also sensitive 

to variations of gait speed. Secondly, sensor configuration performances can also be evaluated base 

on their capability of recognizing gait modes (e.g. level ground walking, stair descending and 

ascending). A pilot study was conducted to investigate the performance of using IMUs to recognize 

and classify gait modes (Appendix H). The results suggested that the foot IMU was able to classify 

these three gait modes using 0.1s of inertial sensor data captured after the toe off event (Figure 34). 
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This pilot study on gait mode classification was done with only one subject. Although the results 

were promising, more test subjects would help to evaluate the performance of the sensor 

configurations more accurately.  

3.5 Conclusion 

For a successful powered AFO application, it is essential to receive information from external 

sensors to apply control. While many sensors can be used for gait estimation, they also increase the 

system complexity. The goal of this study was to discover the minimum sensor configuration needed 

for real-time gait event detection. Multiple sensors as well as their combinations were compared. We 

conducted the performances evaluation through both event-based approach and state-based approach. 

As a result, a shank IMU configuration was recommended due to its capability of detecting more 

events than the foot IMU.  
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Chapter 4: 
CONCLUSIONS AND FUTURE WORK 

This thesis was focused on the design of a compact higher torque actuation system and the 

identification of minimum sensor configuration for a portable powered ankle-foot orthosis (PPAFO). 

A compact, lightweight, and efficient PPAFO will expand treatment and rehabilitation opportunities 

for individuals with impairments to the ankle joint complex. Our previous PPAFO design had peak 

plantarflexor torque of 12 Nm for 100 psig input pressure, which was 17% of peak ankle torque that 

an 85 kg healthy walker can generate. In addition, the off-the-shelf rotatory actuator had a large and 

undesirable lateral profile. The bulkiness of the actuator made it difficult to be concealed underneath 

clothing and increased the risk of interfering with the surrounding environment during gait. To 

address this issue, we developed a compact high torque system with the goal of enabling future 

studies on testing the device with various torque settings. With the high torque system being 

developed, appropriate gait state estimation also becomes essential. If gait can be monitored 

accurately, the control of a powered AFO can be more effective. There were many studies 

investigating low-cost, robust wearable sensors for gait event detection. However, with the increasing 

number of sensors and gait detection methods introduced to gait monitoring systems, the complexity 

of these systems could also be increased due to the intricate data collection protocols and 

computationally expensive algorithms. To address this problem, we conducted a study investigating 

the minimum sensor configuration that would be needed for robust gait event estimation. 
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4.1. A COMPACT HIGH TORQUE ACTUATION SYSTEM FOR A PORTABLE 

POWERED ANKLE-FOOT ORTHOSIS (Chapter 2) 

4.1.1 Conclusion 

Chapter 2 introduced the design and evaluation of a compact and higher torque actuation 

system for the PPAFO. The actuation system utilized two dual-action linear actuators and a 

customized gear train to provide plantarflexion and dorsiflexion actuation to the ankle joint. The 

system, compared with a previous generation design (Gen 2.0), was capable of generating higher 

torque (166.7% increase) and power (120% increase) output, while delivering a thinner lateral profile 

(45.1% decrease). The runtime of the Gen 3.0 PPAFO under the same power torque output condition 

(12 Nm) was longer than the Gen 2.0 design (42.9% and 81.4% increases for test bench emulation 

and treadmill walking). The runtime at maximum torque and power conditions was shorter than that 

of Gen 2.0 design (24.4% decrease). This result was expected because the pneumatic cylinders 

consumed more fuel per step when running at 100 psig. Although the overall weight of the new 

system had a 21.4% increase compared with Gen 2.0, the Gen 3.0 design could generate substantially 

more torque which will enable future testing of the system at various torque settings.   

4.1.2 Limitations and Future Work 

There were a few limitations in this design. Firstly, the weight of the current system was 

slightly heavier than the Gen 2.0 design (21.4% increase). The weight could be further reduced using 

lightweight actuators (fiberglass cylinders). Use of fiberglass cylinders could possibly bring the 

weight of the linear pneumatic system below that of the rotary actuator system. Secondly, a couple of 

the moving compounds (yoke and actuators’ pistons) were still exposed.  Because the moving 

components could possibly injure the wearer, further modification might be needed to fully contain 

these components. Lastly, as the system was capable of generating high torque, the current binary 
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control strategy becomes problematic. Inaccurate actuation timing of plantarflexion could cause limb 

discomfort for a low torque system; however, a high torque system could further amplify this error 

and possibly injure the wearer. Thus, an advanced control strategy is required. Other alternative 

solutions may include proportional control valves or novel piezoelectric valves. While most 

commercially available proportional valves are heavy, piezoelectric valves are limited to a low 

maximum operating pressure and low flow rate. Though the flow rate could be overcome by using 

multiple piezoelectric valves in parallel, the low operating pressure could still be a problem. Further 

investigation on identifying proper control strategies is needed. 

4.2. MINIMUM SENSOR CONFIGURATION FOR GAIT EVENT DETECTION 

FOR A PORTABLE POWERED ANKLE-FOOT ORTHOSIS (Chapter 3) 

4.2.1 Conclusion 

Chapter 3 presented the investigation of a minimum sensor configuration needed for real-

time gait event detection. Selected sensor configuration performances were quantified and compared 

through event-based and state-based approaches in terms of gait event detection timing and gait state 

estimation, respectively. Gait data were collected from five subjects while walking on a treadmill 

wearing a powered AFO. Results indicated that, while the single IMU configurations (shank IMU, 

foot IMU) both outperformed all other configurations (mean state estimation error: < 2% gait cycle; 

mean event detection timing error: < 23ms), the shank IMU was able to detect more gait events than 

the foot IMU. Therefore, a shank IMU configuration was recommended for powered AFO 

applications.  
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4.2.2 Limitations and Future Work 

There were a few limitations in this study. Firstly, this study was performed with healthy 

subjects walking at their comfortable speed. Gait speed variation may affect the overall performance 

of the sensor configurations. Further study could be conducted in evaluating different sensor 

configuration performances on state estimation at different gait speeds. Future study could also focus 

on investigating the sensor detected events that are not only consistently detectable but also sensitive 

to variations of gait speed. Secondly, sensor configuration performances can also be evaluated based 

on their capability of recognizing gait modes (e.g. level ground walking, stair descending and 

ascending). A pilot study was conducted to investigate the performance of using IMUs to recognize 

and classify gait modes. The results suggested that the foot IMU was able to classify these three gait 

modes using 0.1s of inertial sensor data captured after the toe off event. This pilot study on gait mode 

classification was done with only one subject. Although the results were promising, more test 

subjects would help to evaluate the performance of the sensor configurations more accurately.  
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Appendix A: Gear Surface Area Calculations * 

It was assumed that the total surface area of the gear set was proportional to its total weight 

due to the uniform gear thickness (0.25 inch) and material density (steel: 4.5oz/inch3). Therefore, 

total surface area with respect to each input gear (IG) and sector gear (SG) combination was 

calculated. Surface area (SA) estimations were performed by approximating each gear as an annulus 

with an outer diameter (OD) equal to the pitch diameter (PD). The inner diameter (ID) of the annulus 

corresponded to gear shaft diameter.  ID on the SG was 0.5” and ID on the IG and output gear (OG) 

were 0.25”. Area of addendums and negative area of dedendums were ignored (and assumed to 

roughly negate one another). Surface area of the OG was estimated based on the following 

relationship representing area of the pitch circle minus area of the shaft: 

𝑆𝐴OG = [π ∙ (𝑃𝐷𝑂𝐺
2

)
2
−  π ∙ (. 125")2 ]  (8) 

Approximation of 𝑆𝐴SG was more complex due to the trimming of additional material from a 

full circular gear.  The area of a wedge had to be calculated and then the area corresponding to the 

gear hub had to be added: 

𝑆𝐴SG = [π ∙ (𝑃𝐷𝑆𝐺
2

)
2
−  π ∙ (. 25")2 ] ∙

55

360
     +    [π ∙ (. 5")2 −  π ∙ (. 25")2 ] ∙

360−55

360
 (9) 

The expression of 𝑆𝐴SG represents a 55˚ wedge of an annulus of ID = .5” and OD = 𝑃𝐷𝑂𝐺.  

The second portion of 𝑆𝐴SG represents the addition o1f hub material to the sector gear.  This hub is 

represented by an annulus with an ID of .5” and an OD of 1”.  This annulus only takes up the fraction 

of the circle complimentary to the 55˚ already occupied by the wedge shaped component or 
360−55

360
 

(Figure 25). 

                                                             
* This work is adapted from Aaron Benjamin, the 2015 summer REU student. 
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FIGURE 25 ANNULUS REPRESENTATION OF GEAR SURFACE AREA ESTIMATION 

The surface area of the trimmed IG can be approximated by the same method as 𝑆𝐴SG using 

different circular fractions, IDs, and ODs (ID = .25”, OD = 𝑃𝐷𝐼𝐺) 

𝑆𝐴IG = [π(𝑃𝐷𝐼𝐺
2

)
2
−  π(. 125")2 ]

12

𝑃𝐷𝐼𝐺∙𝐷𝑃
+ [π(. 25")2 −  π(. 125")2 ]

𝑃𝐷𝐼𝐺∙𝐷𝑃 −12

𝑃𝐷𝐼𝐺∙𝐷𝑃
 (10) 

This calculation becomes slightly more complex because the angle required to trim this gear 

(to retain 12 and only 12 teeth) varies with PD.  Thus, the fraction of gear retained becomes 
12

𝑃𝐷𝐼𝐺∙𝐷𝑃
  

(where 𝑃𝐷𝐼𝐺 ∙ 𝐷𝑃 = the number of IG teeth). The fraction of hub added to the wedge then becomes 

the compliment to the circle of the fraction of wedge retained or 
𝑃𝐷𝐼𝐺∙𝐷𝑃 −12

𝑃𝐷𝐼𝐺∙𝐷𝑃
. 
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Appendix B: Gear box FEA analysis 

 

FIGURE 26 MODEL OF GEAR BOX AND COMPOUND GEAR TRAIN (COMPOUND INPUT GEAR WAS SET TRANSPARENT FOR BETTER 

VISUALIZATION) 

Though the true 3D printed material properties were unknown, an FEA analysis was 

conducted to estimate the potential stresses that our gearbox design might experience during 

operation. The maximum input force (i.e., push force (Pf)) in this analysis was set equal to the force 

generated by the linear actuators when both linear actuators’ extend chambers were pressurized to 

100 psi. The resulting maximum push force applied to the gear rack from linear actuators was about 

180 lbf (pressure times extend chamber EPA). For the gear system, the force between mating teeth 

can be resolved at the contacting point into two components [86]; tangential force Ft and radial force 

Fr. The equation used to calculate the Fr from known tangential load is: 

𝐹𝑟 = 𝐹𝑡 tan(𝜙)  (11)[86] 

where: 

𝜙 = pressure angle (35˚) 
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The tangential force between the linear rack and the compound input gear 𝐹𝑡1 was 180 lbf as 

mentioned previously and the tangential force between compound output gear and sector gear 𝐹𝑡2 

was 360 lbf (twice of 180 lbf due to compound gear ratio of 2:1) (Figure 27). We then applied the 

tangential forces to equation (11) to find the radial loads (i.e., 𝐹𝑟1 = 𝐹𝑡1 tan(𝜙) & 𝐹𝑟2 =

𝐹𝑡2 tan(𝜙)). The resulting radial loads 𝐹𝑟1and 𝐹𝑟2 were 126 lbf and 252 lbf, respectively. 

 

FIGURE 27 TANGENTIAL AND RADIAL FORCES BETWEEN (A) LINEAR RACK AND COMPOUND INPUT GEAR, (B) COMPOUND OUTPUT GEAR 

AND SECTOR GEAR.  

The sum of the forces for each gear was calculated then applied to the gear box model in Creo 

(Figure 28). In addition to the forces that were generated between gears, an additional pull force was 

also considered (Figure 28).  The pull force (180lbf) was the result from the aluminum inserts 

holding linear actuators in position (i.e., countering the 180 lbf push force).  
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FIGURE 28 FORCES BEING APPLIED TO THE GEAR BOX.  
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Appendix C: Off-the-shelf components used for Gen 3.0 PPAFO 

Component Part number Manufacture Location Quantity 

Dual action linear actuator 091.092-D Bimba 
University 

Park, IL 
2 

Fast switching solenoid 

valve 
MHE2-MS1H- 3/2O-QS-4 Festo Corp US Hauppauge, NY 2 

Pressure regulator LRMA-QS-4 Festo Corp US Hauppauge, NY 1 

Pressure sensor TBPDANN150PGUCV Honeywell Morristown, NJ 2 

Instrumentation amplifier 

for pressure sensor 
AD623 AN Analog Devices Norwood, MA 2 

Ankle angle sensor MP1-L-0050-103-5%-RH Spectrasymbol 
Salt Lake City, 

UT 
1 

Microcontroller STM32F407VG 
STMicroelectronic

s 

Geneva, 

Switzerland 
1 

CO2 bottle with embedded 

pressure regulator  
JacPac J-6901- 91 Pipleline Inc. 

Waterloo, 

ON, Canada 
1 

Force sensitive resistor SEN-09376 ROHS 
SparkFun 

Electronics 
Niwot, CO 2 

Inertial measurement unit MPU9250 InvenSense San Jose, CA 2 
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Appendix D: Electric Pressure Sensor Circuit & Housing 

The electric pressure sensor utilized an instrumentation amplifier (AD623 AN) and a 

Honeywell TBP pressure sensor (TBPDANN150PGUCV). With a 5 V power supply in a pressure 

range of 0 – 150 psig on the sensor, according to the pressure sensor’s datasheet, voltage output was 

expected to be less than or equal to 47.52 mV.  The instrumentation amplifier was used to amplify 

this signal within the range of detection on the STM32F4 Discovery Development Board in use.  

This board detects an analog signal from 0.0 V– 3.0 V.  Thus, the dynamic range of the amplifier had 

to be less than 3 V. According to the amplifier’s datasheet, the equation for calculating required Gain 

(G) for the TBP signal was: 

G =
3.0 V

0.04752 V
= 63.1  (12) 

Gain resistance (RG) was then calculated as: 

RG =
100,000 

G−1
= 1609 Ω   (13) 

Through experimentation, RG was fine tuned to 1650 Ω to provide a satisfactory range in output 

voltage (<3.0 V).  

 

 

FIGURE 29 CIRCUIT DIAGRAM 
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Upon completing the circuit (Figure 29 & Figure 30), a case was constructed for the circuit 

boards for use as an inline sensor. A Legris push to connect (P2C) connector for a 4 mm tube outer 

diameter (OD) was adapted for use with the board (Figure 30) to simplify the tube connection.  

  

FIGURE 30 (A) PRESSURE SENSOR BOARD, (B) 3D CIRCUIT HOUSING MODEL, AND (C) HOUSING WITH CIRCUIT BOARD AND PUSH TO 

CONNECT CONNECTOR 
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Appendix E: Ankle angle sensor (linear magnetic potentiometer) 

conversion 

The linear magnetic potentiometer (MagnetoPot; Spectra Symbol; West Valley City, UT) 

was attached to the linear pneumatic actuators. Due to the actuators’ linear motion being directly 

translated to ankle joint through the gear train, the potentiometer measurement could be converted to 

ankle angle measurement. The potentiometer outputs an analog signal (𝑉, in Volt) resulting from the 

piston position change (𝐿, in m). Therefore, through the calibration, the analog signal could be 

mapped to the piston linear motion then converted to ankle angle measurement (𝜃𝑎𝑛𝑘𝑙𝑒 in °). The 

equation used for converting the analog reading to angle is as follows: 

𝐿 =
𝑉−0.277

2.94−0.277
∙ 0.0475  (14) 

where 0.277 and 2.94 (in Volt) are the minimum and maximum analog reading from the 

potentiometer (corresponding to the maximum dorsiflexion angle and maximum plantarflexion 

angle). 0.0475 (in m) is the full range of motion of the potentiometer. The linear motion was then 

converted to the ankle angle 𝜃𝑎𝑛𝑘𝑙𝑒 through the known compound gear ratio (𝐺𝑅) and sector gear 

pitch diameter (𝑃𝐷𝑆𝐺): 

𝜃𝑎𝑛𝑘𝑙𝑒 =
𝐿

𝐺𝑅∙
𝑃𝐷𝑆𝐺

2

∙
180

𝜋
− 35 (15) 

where  

𝐺𝑅 = 2, is the compound gear ratio 

𝑃𝐷𝑆𝐺 = 0.0508 𝑚 (2 inch), is the pitch diameter of the sector gear 

35 (in °) is the maximum plantar flexion angle 
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The validation of the angle measurement was performed by comparing the calculated joint 

angles with the joint angles manually measured with a goniometer (Figure 31). The discrepancies 

were assessed by the Pearson correlation coefficient in MATLAB program using the function 

“corrcoef” (the Mathworks Inc., Natick, MA, USA). The two sets of measurements had a correlation 

coefficient of 0.9943.  

 

FIGURE 31 COMPARISON OF CALCULATED ANKLE ANGLE AND GONIOMETER ANGLE READING 
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Appendix F: Supplemental study on IMU placement using Vicon system   

A supplemental study was conducted to find the best IMU placement because there were two 

options of where to place the IMU sensors when measuring segment orientation (either on the carbon 

fiber shells of the orthosis (shank and foot shell) or strapped directly to the shank and foot segments).  

 

FIGURE 32 VECTOR REPRESENTATION AND VICON GLOBAL COORDINATE SYSTEM 

We used a motion capture system (Model 460; Vicon, Oxford, UK) to capture the shell-based 

ankle angle and body segment-based ankle joint angle. A total of eight markers were placed on the 

carbon fiber shells and the straps on the body segments with four vectors representing the orientation 

of the attached surfaces in sagittal plane (x-z plane) (Figure 18.a). The vector angles 𝜃𝑣were then 

derived as follows: 

𝜃𝑣 = tan−1 (
�⃑� 𝑧

�⃑� 𝑥
) (16) 

 

Where 𝑣 𝑥 and 𝑣 𝑧 are the x and z component of each vector. 
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FIGURE 33 RAW VECTOR ANGLE MEASUREMENT FROM SHELL-BASED VECTORS (RED) AND SEGMENT-BASED VECTORS (DASHED 

BLACK) 

Raw (nonfiltered) shell-based vectors angle and body segment-based vectors angle were 

derived (Figure 33). The discrepancies of the two measurements were accessed by Pearson 

correlation coefficient in MATLAB program (the Mathworks Inc., Natick, MA, USA). This 

supplemental study found that the two ankle angles had a correlation coefficient of 0.9998. This 

result effectively meant that with the PPAFO securely attached to the shank-foot segments, the 

movement artifact between the body and PPAFO was minimal. 
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Appendix G: Kalman filter for computing shank angular position 

Because the segment orientation could also be used to indicate certain gait events (i.e., shank 

segment angle was 90˚ to the ground at Mid of MSt), we implemented a Kalman filter to estimate the 

shank IMU orientation, then converted it to the shank orientation [53, 64, 109]. The IMU orientation 

was first calculated through the gyroscope (𝜃𝑔𝑦𝑟) by integrating the gyroscope reading 𝜔𝑠ℎ𝑎𝑛𝑘. The 

integration error (drift over time) was then corrected through the Kalman filter using the angle 

calculated from accelerometer readings 𝑎𝑥 and 𝑎𝑧 using trigonometry (𝑒. 𝑔., 𝜃𝑎𝑐𝑐 = tan−1 (−
𝑎𝑥

𝑎𝑧
)).  

We first denote the state matrix x at time k as: 

𝑥𝑘 = [
𝜃𝑔𝑦𝑟

𝜔𝑏
]
𝑘

  (17) [53, 64, 109] 

with 𝜃𝑔𝑦𝑟 being the gyroscope angle calculated by integrating 𝜔𝑠ℎ𝑎𝑛𝑘 and 𝜔𝑏being bias based upon 

the measurements from the gyroscope. The bias ω𝑏was the amount that the gyro has drifted and was 

initially set as 0 then consistently being updated. The calculation of 𝜔𝑏will be covered in the later 

steps. The estimated current state �̂�𝑘  based on all the previous states �̂�𝑘−1 and the current gyro 

measurement 𝜔𝑔𝑦𝑟 was derived as follow: 

�̂�𝑘 = 𝐹�̂�𝑘−1 + 𝐵𝜔𝑔𝑦𝑟  (18) 

where 𝜔𝑔𝑦𝑟 was also called a control input, in this case it was the gyroscope measurement in degrees 

per second (°/s). 𝐹 was the state transition model which was applied to the previous state �̂�𝑘−1 and 𝐵 

was the control input model (𝐹 = [
1 ∆𝑡
0 1

] and 𝐵 = [
∆𝑡
0

] with ∆𝑡 representing sampling time; i.e., 

0.002s) [64].  
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An updated estimation error covariance matrix 𝑃𝑘 was defined based on the previous error 

covariance matrix 𝑃𝑘−1. This matrix was used to estimate how much we should trust the current 

values of the estimated state. The smaller the value of Pk, then the more that we trust the current 

estimated state. 

𝑃𝑘 = 𝐹𝑃𝑘−1𝐹
𝑇 + 𝑄𝑘∆𝑡 (19) 

where 𝑃 was a  2 × 2 covariance matrix that was constantly being updated. 𝑃 was initially set as 

[
0 0
0 0

]. 𝑄𝑘 is the current process noise covariance matrix and in this case the covariance matrix of 

the state estimate of the angle and bias. It was defined as [
𝑄𝜃𝑔𝑦𝑟

0

0 𝑄𝜔𝑏

] [53]. 𝑄θ𝑔𝑦𝑟
and 𝑄𝜔𝑏

 are the 

variances of calculated gyroscope angle and gyroscope measurement bias. Common values used for 

𝑄θ𝑔𝑦𝑟
 and 𝑄𝜔𝑏

 for our IMU (MPU9250; InvenSense; San Jose, CA) were 𝑄θ𝑔𝑦𝑟
= 0.001 and 𝑄𝜔𝑏

=

0.003 [111].  

The angle difference between the accelerometer angle measurement θ𝑎𝑐𝑐 and the estimated 

state was defined as  

�̃�𝑘 = 𝜃𝑎𝑐𝑐 − 𝐻�̂�𝑘  (20) 

Where H was the observation model (𝐻 = [1 0] ) used to map the estimated state �̂�𝑘 to the 

observed space (i.e., from a 2 × 1 matrix to a scalar value). 

Next, we calculated the innovation covariance which was used to predict how much we 

should trust the measurement based on the error covariance matrix 𝑃𝑘 

𝑆𝑘 = 𝐻𝑃𝑘𝐻
𝑇 + 𝑅  (21) 

where 𝑅 is the covariance of the measurement noise. It is noted that a bigger measurement noise will 

result in a larger 𝑆 which means the incoming measurement is less reliable which will result in a 
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smaller Kalman gain. In our case, due to the accelerometer’s large noise caused by heel strike, the 

incoming measurement 𝜃𝑎𝑐𝑐 was less reliable. Therefore, the value for 𝑅 was manually tuned to 50 

[66]. Kalman gain was then derived as:  

𝐾𝑘 = 𝑃𝑘𝐻
𝑇𝑆𝑘

−1  (22) 

and the Kalman filtered estimated current state was calculated as: 

�̂�𝑘 = �̂�𝑘−1 + 𝐾𝑘�̃�𝑘  (23) 

Note that since �̂�𝑘 was defined as a 2 × 1 matrix which consisted of 𝜃𝑔𝑦𝑟 and 𝜔𝑏. The gyroscope 

angle and bias were updated here. 

 Finally, we updated the error covariance matrix. 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘  (24) 

where 𝐼 was an identity matrix. 
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Appendix H: Pilot study on gait mode classification  

To better evaluate the performance of the two single IMU configurations (shank IMU, foot 

IMU), we conducted a pilot study to identify which IMU placement had distinct features for better 

potential of recognizing and classifying three gait modes (level ground walking, stair ascending and 

descending). As a pilot study, we had one male subject (age 27 years, height 178 cm, weight 85 kg) 

wearing the unpowered PPAFO and walking on level ground and indoor stairs – two stair traverse (h 

= 18m per stair). The subject was asked to walk in one gait mode at a time with his own comfortable 

speed. Four trials of data per gait mode were collected (total 12 trials). For each trial and gait mode 

the subject was told to complete 6 full steps (total 6 × 12 steps). The first trial of each condition was 

used as training data, and the remaining three trials were used for testing. The sensor sampling rate 

was set at 500 Hz. 

Three of the IMU signals (x & z-direction acceleration (𝑎𝑥  & 𝑎𝑧) and y-direction angular 

velocity (𝝎𝒈𝒚𝒓)) were used to identify a feature matrix. Event detection methods described in section 

2.2.3 were used to identify the toe off event during the three types of gait. Immediately after 

identifying the toe off event, 50 data points (equivalent to 0.1 second under the 500 Hz sampling 

rate) of each signal were recorded. Training matrix 𝐶𝑖,𝑛was constructed by combining all of the 

training steps from trial one, with 𝑖 representing number of training steps and 𝑛 representing total 

data points (3𝑠𝑒𝑛𝑠𝑜𝑟𝑠 × 50𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠) per trial. 

Next, using principle component analysis (PCA) [112], we identified the most distinct feature 

within the training matrix 𝐶𝑖,𝑛 by reducing its dimension to one (1D). We first found the covariance 

matrix 𝐶𝑜𝑣(𝐶), then found the linear map or the weight matrix 𝑊 for reducing the dimension. 

𝑊 = [(𝞚)−
1

2 × 𝑉𝑇]𝑑×𝑛 (25) 



 
 

91 
 

where, 𝞚 was a diagonal matrix of generalized eigenvalues and 𝑉was a full matrix whose columns 

were the corresponding eigenvectors computed from 𝐶𝑜𝑣(𝐶). 𝑊 was a 𝑑 ×  𝑛 matrix with 𝑑 

representing the reduced number of features (𝑑 = 1 in this case). 

Upon identifying the weight matrix 𝑊 through the training data (the first trial of each gait 

mode), the rest of the trials could be classified into three states (level ground walking, stair ascending 

and descending) by multiplying 𝑊 with each testing step. 

𝑍 =  𝑊 × 𝐶𝑖,𝑛   (26) 

with 𝑖 representing number of testing steps and 𝑛 representing total data points (3𝑠𝑒𝑛𝑠𝑜𝑟𝑠 ×

50𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠) per trial. Z was the resulting principal component scores which can be used to identify 

the three states. A gaussian distribution of Z was assumed for the PCA results (Figure 34). The 

classification results from the shank IMU’s data indicated a similarity between stair descending and 

level ground walking as the Gaussian distributions had a significant amount of overlapping (Figure 

34).  
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FIGURE 34 GAUSSIAN DISTRIBUTION OF GAIT MODE CLASSIFICATION RESULT USING SINGLE IMU CONFIGURATIONS 

For the gait mode detection, the PCA result suggested that the foot IMU configuration had 

the capability of distinctively classifying each of the three gait modes with a reduced 1D feature. This 

result suggested that the initial data from the shank segment during level ground walking and stair 

descending had less distinct features. Further study is recommended for developing a more robust 

algorithm to identify gait modes. 
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