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Abstract

In this thesis, I discuss three different problems of stochastic nature in spatially extended

systems: (1) a noise induced mechanism for the emergence of biological homochirality in

early life self-replicators, (2) the amplification effect of nonnormality on stochastic Turing

patterns in reaction diffusion systems, and (3) the velocity statistics of edge dislocations in

plastic deformation of crystalline material.

In Part I, I present a new model for the origin of homochirality, the observed single-

handedness of biological amino acids and sugars, in prebiotic self-replicator. Homochirality

has long been attributed to autocatalysis, a frequently assumed precursor for self-replication.

However, the stability of homochiral states in deterministic autocatalytic systems relies on

cross inhibition of the two chiral states, an unlikely scenario for early life self-replicators.

Here, I present a theory for a stochastic individual-level model of autocatalysis due to early

life self-replicators. Without chiral inhibition, the racemic state is the global attractor of the

deterministic dynamics, but intrinsic multiplicative noise stabilizes the homochiral states,

in both well-mixed and spatially-extended systems. I conclude that autocatalysis is a vi-

able mechanism for homochirality, without imposing additional nonlinearities such as chiral

inhibition.

In Part II, I study the amplification effect of nonnormality on the steady state amplitude

of fluctuation-induced Turing patterns. The phenomenon occurs generally in Turing-like

pattern forming systems such as reaction-diffusion systems, does not require a large separa-

tion of diffusion constant, and yields pattern whose amplitude can be orders of magnitude

larger than the fluctuations that cause the patterns. The analytical treatment shows that

ii



patterns are amplified due to an interplay between noise, non-orthogonality of eigenvectors

of the linear stability matrix, and a separation of time scales, all built-in feature of stochastic

pattern forming systems. I conclude that many examples of biological pattern formations

are nonnormal stochastic patterns.

In Part III, I study the dynamics of edge dislocations with parallel Burgers vectors, mov-

ing in the same slip plane, by mapping the problem onto Dyson’s model of a two-dimensional

Coulomb gas confined in one dimension. I show that the tail distribution of the velocity of

dislocations is power-law in form, as a consequence of the pair interaction of nearest neigh-

bors in one dimension. In two dimensions, I show the presence of a pairing phase transition

in a system of interacting dislocations with parallel Burgers vectors. The scaling exponent

of the velocity distribution at effective temperatures well below this pairing transition tem-

perature can be derived from the nearest-neighbor interaction, while near the transition

temperature, the distribution deviates from the form predicted by the nearest-neighbor in-

teraction, suggesting the presence of collective effects.
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Chapter 1

Introduction

In studies of statistically large systems of interacting agents, the detailed modeling of every

individual is often replaced by a probabilistic approach in which the exact state of the

system is uncertain. In this approach, the lack of knowledge about the individual degrees

of freedom imposes a seemingly random force on the variables of interest. There can be

different sources of these stochastic forces: the lack of information about the number and

interactions of individuals in the system leads to what is known as intrinsic noise. The

noise produced by the probabilistic treatment of collision of molecules in chemical reactions

is an example of intrinsic noise. In contrast, extrinsic noise is produced by the probabilistic

treatment of the interaction of the system with the external environment. Noise could also

be produced from physical sources such as sound vibrations, collective motion of defects in

plastic deformation, or by spatial or environmental heterogeneity.

The effects of these random forces can be conveniently circumvented in classical statisti-

cal mechanics due to the fact that the distributions of various extensive thermodynamical

variables approach a narrow Gaussian around their mean in large systems, where the width

of the distribution is proportional to the square root of the system size (or the inverse of the

square root of the system size for intensive variables), and therefore, they can be approxi-

mated by their expected values. In systems with quenched randomness representing frozen

spatial heterogeneity, the Gibbs distribution is modified by the disorder and methods such

as the replica method need to be used to handle the quenched, out of equilibrium spatial

disorder. In pure systems that are far from equilibrium, global average variables are rarely of

interest, since they no longer can be used as full descriptions for the state of a large system.
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The further a system from equilibrium, the smaller is the coarse graining system size around

each point in space, and therefore, the larger the effect of the stochasticity. Moreover, sys-

tems far from equilibrium do not obey Boltzmann statistics, and therefore, the distributions

of thermodynamical variables may not even peak around their average values, resulting in a

complete disagreement between the stochastic and deterministic dynamics.

In this thesis, I introduce three different problems of stochastic nature. In Part I, I propose

a model for the origin of homochirality in biological systems. In this model, multiplicative

intrinsic noise induces extra stable points in the stochastic dynamics that are not the fixed

points of the deterministic dynamics. In Part II, I study how the effect of noise on the

steady state noise-induced pattern-forming behavior of a system can be greatly amplified

by the transient dynamics, thus making it more likely that such effects can be observed

experimentally. In Part III, I study the effect of physical noise produced by the avalanche

dynamics in plastic deformations on the velocity statistics of edge dislocations, by mapping

the problem to Dyson’s model of nuclear energy levels, itself related to the two-dimensional

Coulomb gas [1]. I show that the stochastic dynamics of dislocations can explain the power-

law distribution of their velocities.

In the remainder of this introduction, I briefly explain the problems I have addressed in

this thesis, and I summarize my contributions to the collaborations that entailed.

1.1 Noise-Induced Mechanism for the Origin of Biological

Homochirality

The origin of biological homochirality, the single handedness of virtually all amino acids

incorporated in proteins and all sugars in the backbones of DNA and RNA molecules, has

been one of the mostly debated topics since its discovery by Louis Pasteur in 1848. There are

those who argue that homochirality must have preceeded the first chemical systems under-

going Darwinian evolution, and there are those who believe homochirality is a consequence
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of life, not a prerequisite. There are even those who go as far as saying that homochirality

is a consequence of underlying asymmetries from the laws of physics, invoking complicated

astrophysical scenarios for the origin of chiral organic molecules or even the violation of

parity from the weak interactions! In fact, such explanations that are based on physical

asymmetries can only predict an enantiomeric excess of one handedness over another, and

not the 100% effect observed in nature.

Kinetic instability of the racemic mixture of chiral molecules in particular sets of auto-

catalytic reactions involving a mutually antagonistic relationship between two enantiomeres

of a chiral molecule gives rise to a huge class of spontaneous symmetry breaking mecha-

nisms invoked to explain homochirality. Although autocatalysis is an expected prerequisite

for early life self-replicators, the mutually antagonistic relationship between the two chiral

molecules may not have an obvious biological justification depending on when we place the

origin of homochirality with respect to the origin of life.

In Chapter 2, I give a complete introduction to this topic and the theories to date. This

sets the stage for Chapter 3, where I remove the mutually antagonistic relationship form the

set of autocatalytic chemical reaction, replacing it by linear decay and production reactions

of chiral molecules. In this new model, I will show that when the autocatalysis (modeling

the self-replication) is the dominant production mechanism for early life self-replicators,

even though the only deterministic dynamical attractor of the reactions kinetics is a racemic

solution, the homochiral states are stabilized by the intrinsic noise from autocatalysis.

Since, this mechanism for homochirality depends on intrinsic noise, it is important to de-

termine how robust it is with respect to spatial inhomogeneities. In Chapter 4, first, I show

that when a well-mixed system described by this model is perturbed by diffusion of chiral

molecules of perhaps opposite chirality from neighboring well-mixed systems, the system

maintains its homochirality. Then, I will show that in a continuous one-dimensional model,

the reactions at different points in space synchronize their final homochiral state, showing

that this noise-induced mechanism for the origin of homochirality is robust with respect to

the spatial extension.
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1.2 Nonnormality of Stochastic Spatial Patterns in Reaction

Diffusion Systems

One of the most fundamental problems in ecology and developmental biology is the emer-

gence of spatial and temporal patterns from an initially homogeneous state. Previous work

from our group showed that in contrast to earlier work based on Turing’s classic calculation

of diffusive instabilities, demographic stochasticity provides a mechanism for pattern forma-

tion that does not require exquisite fine-tuning of the parameters in the model, especially

the ratio of the diffusion coefficients of the morphogens. However, the amplitude of the

fluctuation-induced patterns far from the fine-tuned parameter regime as estimated by cur-

rent mathematical techniques [2] is expected to be small, casting a shadow on the prospect

of ever confirming the prediction of spatially extended patterns due to demographic fluctua-

tions. We show that the current mathematical analyses miss an important amplifying effect

due to nonnormality, a generic and necessary feature of pattern-forming systems. My work

shows that stochastic patterns are in fact observable and likely to be ubiquitous in systems

characterized by demographic stochasticity.

In Chapter 5, I review the concept of nonnormality (a property of matrices with nonorthog-

onal eigenvectors) in dynamical systems, and show that it leads to a transient growth of

perturbations near a stable fixed point. Then I discusses how this transient growth has a

lasting effect on the final state of stochastic dynamical systems. I derive a natural measure

of nonnoramality in terms of the angle between the eigenvectors and the separation of the

time scales associated with the eigenvalues. This measure quantifies the amplification ef-

fect of nonnormality on the steady state amplitude of stochastic variables. In Chapter 6,

I review the Turing mechanism for spatial instability in reaction diffusion systems, and

how the fine tuning problem of Turing mechanisms is solved by introducing fluctuations. I

show why stochastic patterns are presumed to have small amplitude, making them hard to
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be experimentally observed. Then, I show that all the stochastic patterns are nonnormal,

and therefore, their amplitude is much larger than expected purely from naive eigenvalue

analysis. The amplification that I calculate means that stochastic pattern forming systems

exit the linear regime much quicker than would otherwise have been the case, allowing the

instabilities to grow and ultimately interact through nonlinearities.

In Chapter 7, I study the patterns that emerge in the stochastic extension of a model

whose deterministic behavior was previously examined by Ridolfi et al. [3], and show that

(1) the range of parameters in which the system exhibits steady state patterns is drastically

expanded by the demographic noise, and (2) the nonnormality amplifies the amplitude of

the stochastic patterns by orders of magnitude.

1.3 Velocity Statistics of Edge Dislocations in Plastic

Deformation of Crystalline Material

At mesoscopic scales, crystalline materials under stress exhibit intermittent behavior through

plastic slip avalanches that follow power-law statistics [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The

origin of intermittency in plastic strain rate is attributed to the collective dynamics of de-

fects such as dislocations. Reference [5] shows that the experimentally measured E−3/2

distribution of the acoustic energy, E, of these avalanches is associated with the power-law

distribution of velocity of dislocations with the exponent −2.5 which is independent of the

value of the external stress.

In this project, I propose a model to study the velocity distribution of edge dislocations by

mapping the problem to Dyson’s two-dimensional Coulomb gas confined to one dimension [1].

This work has already appeared in print [14]. In this model we show that a power-law

probability distribution, P (v), of the velocity of edge dislocations is not necessarily due

to a collective effect arising from avalanche dynamics, non-equilibrium critical points, or

self-organized criticality as was previously claimed [15, 16, 8, 5, 17, 13, 11, 18]. In a one-

5



dimensional model, I show that the velocity distribution of dislocations has a temperature-

dependent power-law. This power-law distribution can be derived by considering only the

nearest-neighbor interactions of dislocations, and therefore, is not a consequence of collective

interactions; it is only a consequence of the logarithmic interaction potential between the

one-dimensional edge dislocation.

In two dimensions, there exists a transition between a state at which the nearest neigh-

bors are bound to each other and a state where they can escape from each other’s attractive

force. This transition takes place at an effective temperature where the effective thermal

energy becomes equal to the pairwise interaction potential. For temperatures significantly

smaller than this transition temperature, the probability density function of the velocities

of dislocations agrees with the scaling v−2 found from the nearest-neighbor analysis, while

for temperatures close to or larger than this transition temperature, the probability density

function follows a power-law with an exponent steeper than −2 suggesting that the high

velocity events are dominated by collective effects due to the interaction of more than two

dislocations. This exponent is very weakly temperature dependent and has the value −2.4

at the transition temperature.

1.4 List of Publications

The work presented in this thesis is an expanded version of the following papers published

or under preparation:

• F. Jafarpour, T. Biancalani, N. Goldenfeld. Noise-Induced Mechanism for Biological

Homochiralinnty of Early Life Self-replicators. Phys. Rev. Lett. 115.15 (2015) [19]

• F. Jafarpour, L. Angheluta, N. Goldenfeld. Velocity Statistics for Interacting Edge

Dislocations in One Dimension from Dyson’s Coulomb Gas Model. Phys. Rev. E. 88.4

(2013) [14]
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• F. Jafarpour, T. Biancalani, N. Goldenfeld. Stochastic Patterns with Unexpectedly Large

Amplitudes. (under preparation)

• F. Jafarpour, T. Biancalani, N. Goldenfeld. Spatially Extended Noise-Induced Mecha-

nism for the Origin of Biological Homochiralinnty. (under preparation)

1.5 My Contribution

The work in this thesis was developed in close conceptual collaboration and, in some in-

stances, detailed technical input from my advisor Nigel Goldenfeld. It also involved my

close interactions with the postdocs in our group. It has led to two publications and two

papers in preparation. In this section, I briefly summarize my contribution to these collab-

orations.

In the work on homochirality, I proposed the set of reactions in Chapter 3 and derived

the stochastic differential equation for its time evolution; this equation was previously solved

by Tommaso Biancalani and is related to the Wright-Fisher model of evolutionary biology.

I performed all the simulations for well-mixed, two-patch and one-dimensional models. The

derivation of the stochastic differential equation for the spatial extension was done by me. I

performed the perturbation theory calculations for the two-patch model which was developed

by Tommaso and me. The analysis of the one-dimensional model was done by me.

In the work on nonnomrality of spatial patterns, I derived the steady state solution to the

complex valued linear Fokker-Planck equation and found the expression for the amplification.

I showed that all pattern forming systems are far from normal. I derived the stochastic

differential equations for the spatial extension of the model by Ridolfi, and carried out the

stability analysis of the uniform solution, calculated the phase diagram, and performed the

simulations.

In the work on plasticity, I performed the simulations on both one-dimensional and quasi-

two-dimensional models. I proposed the quasi-two-dimensional model, while all the analytic
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calculations were done in close collaboration with Luiza Angheluta.

All the numerical simulations shown in this thesis were performed by me. All the figures

and plots presented here were generated by me. Most of the material in the appendices is

common knowledge in the field and is included for completeness and to assist future students

in the group. The exception is the row reduction in Appendix A.2, and Appendices A.6,

A.7, and B.3 that are my own work.
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Part I

Noise-Induced Origin of

Homochirality in Prebiotic

Self-Replicators
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Chapter 2

Introduction to Homochirality

One of the very few universal features of biological systems is homochirality: virtually all

naturally occurring amino acid are left-handed (l-chiral) while all sugars are right-handed

(d-chiral) [20, 21]. Although such unexpected broken symmetries are well-known in physics,

complete biological homochirality still defies explanation.

In this chapter, I will give an introduction to the basic concepts related to chirality and

biological homochirality. I review spontaneous and explicit symmetry breaking theories of

homochirality. The main focus of this work is on spontaneous symmetry breaking mecha-

nisms. All of the previous spontaneous symmetry breaking models of homochirality have

the same basic mechanism [22] as that of the seminal model by C. F. Frank [23], which

is reviewed in Section 2.3. Frank has shown that in a population of self-replicating (auto-

catalytic) chiral molecules that are mutually antagonistic, the racemic solution is unstable.

While autocatalysis is expected in a model of prebiotic chemistry, the mutual antagonistic

relationship has no obvious biological justification.

In Chapter 3, I will replace the reaction modeling the mutual antagonistic relationship

by linear decay and growth reactions and show that even though the racemic solution is

the global attractor of the deterministic dynamics, when the intrinsic stochasticity of the

self-replication process is taken into the account, the system transitions to homochirality.

This transition takes place when the efficiency of self-replication exceeds a threshold. The

relationship between the transition to homochirality in this model and the origin of life is

discussed in Section 3.3. In Section 3.4, I discuss the nonequilibrium aspects of our model

and the principle of detailed balance.
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The effect of spatial inhomogeneity and diffusion is discussed in Chapter 4, where I show

that a system of diffusively coupled otherwise independent replicas of this model synchronize

their final homochiral states. Moreover, in a continuous one-dimensional spatial extension

of this model, even for infinite system size, the system reaches a uniformly homochiral final

state at pure autocatalytic limit, where self-replication is the only production mechanism of

the chiral molecules.

2.1 Chirality

In 1848, Louis Pasteur discovered that a certain salt of synthetic tartaric acid (known at the

time as racemic1 acid) produces two distinct types of crystals known as “+” and “−” forms,

which are mirror images of one another. Pasteur showed that if we shine linearly polarized

light through solutions made by each one of these two types of crystals, they rotate the angle

of polarization of light in opposite directions. He concluded that the racemic acid was made

of two kinds of molecules with opposite optical activity, and the asymmetry of the crystals

was related to an asymmetry at the molecular level [24]. A clear explanation did not emerge

until 1874, when J. H. van’t Hoff and J. A. Le Bel independently discovered that organic

molecules with a carbon atom connecting to four different groups are not mirror symmetric,

and as a result, the groups can be placed around the carbon atom in two different left-handed

and right-handed order, two configurations that are mirror images of one another [25, 26].

Such molecules that are not superimposable on their mirror image are called chiral (Greek

for hand), and the atom surrounded by four different groups is known as the chiral center

of the molecule.

There are at least three different conventions to determine which one of the two optical

isomers (also known as enantiomers) should be called left-handed, and which one should be

1The word racemic is Latin for ‘bunch of grapes,’ and at the time, it was used to refer to synthetic tartaric acid, since
tartaric acid is naturally found in grapes. However, the tartaric acid found in grape does not produce the two distinct crystals,
since it is produced biologically and is homochiral. The word racemic is nowadays used to mean a fifty-fifty mixture of two
chiral molecules, which could be misleading knowing the etymology of the word. Thanks to Prof. Michael Stone for pointing
this out in my preliminary exam.
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COOH
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R C H

L-Amino acid D-Amino acid

Figure 2.1: Ball and stick model of a generic α-amino acid and its mirror image. α-amino acids are organic
compounds with a chiral carbon connected to an amino group (−NH2), a carboxylic acid group (−COOH),
a hydrogen atom (−H), and a side chain (−R) that varies depending on the particular amino acid. The
l/d chirality of amino acids is determined by the CORN rule: an amino acid is l−chiral (d−chiral) if by
wrapping your left hand (right hand) fingers around the direction of CORN (−CO, −R, and −N groups in
order) your thumb points toward the direction of the hydrogen atom.

called right-handed:

1. The (+)/(−) classification that is based on the optical activity is important for historical

reasons, but it is not very useful for our purpose, as there is no way to determine the

optical activity just by looking at the structure of the molecule. Moreover, the optical

activity of the chiral solutions could also depend on the properties of the solvent.

2. More commonly used in chemistry is the R/S (referring to Rectus and Sinister) nomen-

clature, where the ordering of the groups on the chiral centers is chosen based on the

atomic numbers, and can be easily determined by looking at the three dimensional

structure of the molecule. However, atomic number is not always the most biologically

relevant criteria, and as it turns out, the R/S classification does not keep the ordering

of the functional groups consistent across, e.g. all amino acids.

3. The d/l (named after Dexter and Laevus Latin for right and left) convention (also

known as Fisher-Rosanoff convention) is chosen for a molecule if it can be theoretically
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derived fromR/S-glyceraldehyde without changing the configuration of the chiral center

[27]. This seemingly arbitrary convention happens to be the one that keeps the order

of similar functional groups in biological molecules consistent and makes it possible to

compare the chirality of different molecules with similar groups such as different amino

acids (see Fig. (2.1)).

It is important to note that there is no fixed relation between the three conventions, as a

right-handed molecule in one convention can be left-handed in the other.

Parity is a symmetry of laws of physics (with the exception of weak interaction). In par-

ticular, two enantiomeres of a chiral molecule have identical physical, chemical, and thermo-

dynamical properties. Therefore, chemical reactions producing chiral molecules from achiral

molecules, by symmetry, are expected to produce solutions of fifty percent right-handed, and

fifty percent left-handed molecules. Such solutions are called racemic. In contrast, a solution

of all left-handed or all right-handed molecules is called homochiral or enantiopure. During

the emergence of life, many chiral molecules were formed from simpler achiral molecules

existed in early atmosphere or the ocean. As a result, one would expect the modern life to

consist of equal number of left-handed and right-handed enantiomers of each chiral molecule.

However, virtually all amino acids and sugars found in nature are homochiral. This homochi-

rality is uniform across all amino acids, all organisms, and all ecosystems. In Section 2.2, I

will discuss the origin of homochirality as a symmetry-breaking problem.

2.2 Biological Homochirality: A Symmetry Breaking Problem

Amino acids are building blocks of proteins and their chirality plays an important role in the

structure and the function of proteins in living cells. Most of us know sugars as molecules

used to store chemical energy, but more importantly, sugars play a key role in the structure

of RNA and DNA molecules. The famous double helix structure of DNA is a result of

the chirality of the sugar molecules in its backbone. Despite the diversity of proteins and
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their functions virtually all chiral biological amino acids2 are l-chiral3, while all sugars are

d-chiral.

Homochirality is particularly surprising, when considering the fact that all the physical,

chemical, and thermodynamical properties of the two enantiomeres of a chiral molecule are

identical. This is due to the symmetry of laws of electromagnetism under reflection. When

life was emerging on the planet, chiral molecules were formed from simpler achiral molecules

that existed in early atmosphere and the ocean. Since, the initial state was symmetric

(solution of achiral molecules), and the laws of physics are symmetric, one would expect a

symmetric final state, that is a biosphere made of a racemic solution of chiral molecules. A

phenomenon in which the initial state and the corresponding laws of physics are symmetric

with respect to a particular transformation, but the final state of the system violates that

symmetry, is called a symmetry-breaking. There are two resolution to a symmetry breaking

problem: (1) Explicit symmetry breaking is when the laws of physics are only approximately

symmetric, or there is an asymmetric perturbation to the system. (2) In contrast, sponta-

neous symmetry breaking happens when the governing laws are perfectly symmetric, and

as a result, the symmetric state is a final solution, but it may be an unstable solution. In

this case, even the slightest perturbation to the system moves the system far away from the

symmetric state.

There have been some attempt to explain homochirality through explicit symmetry break-

ing mechanisms. For example, if life was formed from chiral organic molecules that were

produced under a steady radiation of circularly polarized light, the asymmetric interaction

of different enantiomeres of chiral molecules with the light over hundreds of millions of years

could lead to a significant enantiomeric excess [31]. These theories are partly motivated

by reports of observation of slight l-enantiomeric excess of some of amino acids found in

2From the 23 proteinogenic amino-acids found in life, Glycine is the only achiral amino acid.
3There are some d-amino acids in biological system (e.g. d-aspartate is a regulator of adult neurogenesis[28]) and are

generated by enzymes that are specialized in the inversion of the stereochemistry (of the corresponding l-amino acids) known
as racemases and epimerases. These amino acids cannot participate in proteins structures through ribosomal synthesis but
can take part in structure of peptides (e.g. d-phenylalanine in the antibiotic Tyrocidine[29]) through either posttranslational
conversion of l- to d-amino acids or the activity of nonribosomal peptide synthetases. For a review of the role of d-amino acids,
see for example Ref. [30]
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Murchison meteorite [32, 33, 34]. Another prominent example relates to the parity violation

in weak interaction. Unlike electromagnetic interaction, the weak interaction grossly violates

the mirror symmetry [35]. Even though weak interaction has a negligible effect at molecular

scales, it has been argued that it can cause an asymmetry affecting the rate of production

of two enantiomeres in a manner that over billions of years could lead to an observable level

of enantiomeric imbalance [36, 37].

A common weakness of explicit symmetry breaking mechanisms is that the homochirality

achieved is only partial: These mechanisms lead to an imbalance between the concentrations

of the two enantimeres, but do not result in complete homochirality. As a result, there

is a common misunderstanding in the field that the origin of homochirality requires two

steps: (1) an explicit symmetry breaking mechanism to break the symmetry in the initial

condition, followed by (2) a mechanism to amplify the initial asymmetry. However, if there

is a mechanism amplifying the initial asymmetry, the symmetric solution is unstable, and

over time the system decays to one of the two homochiral states, even with a symmetric

initial condition; this is spontaneous symmetry breaking.

The first model of spontaneous symmetry breaking for homochirality was proposed by C.

F. Frank in 1953 [23]. There have been many other models of homochirality since Franks

model, but the underlying mechanism for spontaneous symmetry breaking in all of these

models is the same as the mechanism by Frank [22]. Frank’s model is reviewed in detail in

Section 2.3.

2.3 Frank’s Model of Homochirality

Every physicist knows the year 1905 as one of the most important years in the history of

modern physics; 1953 is the 1905 of biology and the origin of life. The seminal paper on

the structure of DNA by Watson and Crick [38] published in 1953 opened the world of

biology to understanding of genetics and the genetic code. In the same year, Stanley Miller
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working in the laboratory of Harold Urey, published the results of the first abiotic synthesis

of amino acids in what he thought to be the conditions of primitive earth [39]. Another

very important, but perhaps less well-known publication in 1953, was the first spontaneous

symmetry-breaking theory of homochirality by Charles Frank suggesting that homochirality

could be a consequence of chemical autocatalysis [23], a frequently presumed mechanism

associated with the emergence of early life self-replicators.

Frank introduced a model in which the d and l enantiomers of a chiral molecule are

autocatalytically produced from an achiral molecule A in reactions

A+ d
ka−−→ 2d, A+ l

ka−−→ 2l, (2.1)

and are consumed in a chiral inhibition reaction4,

d + l
ki−−→ 2A. (2.2)

The state of this system can be described by the chiral order parameter ω defined as

ω =
[d]− [l]

[d] + [l]
, (2.3)

where [d] and [l] are the concentrations of d and l. The order parameter ω is zero at the

racemic state, and ±1 at the homochiral states. In order to determine the time evolution of

the order parameter ω, we can use the law of mass action to set the rates of reactions (2.1)

and (2.2) proportional to the products of the concentrations of the corresponding reactants.

The result is the following set of mean field equations for the rate of change of concentrations

4 In the original model by Frank, the concentration of the molecules A was kept constant to reduce the degrees of freedom
by one, and the chiral inhibition was introduced by the reaction d + l → ∅. This model leads to indefinite growth of d or
l molecules and does not have a well-defined steady state. To resolve this problem, we let the concentration of A molecules
be variable and replaced this reaction by d + l → 2A which conserves the total number of molecules. This conservation law
reduces the number of degrees of freedom by one again. The mechanism to homochirality in the modified model is the same as
the original model by Frank, since the order parameter in both models obeys Eq. (2.6).
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of A, d, and l:

d[A]

dt
= 2ki [d] [l]− ka [A] ([d] + [l])

d[d]

dt
= ka [A] [d]− ki [l] [d]

d[l]

dt
= ka [A] [l]− ki [d] [l].

(2.4)

The rate of change of ω can be derived by a the chain rule resulting in the mean field equation

of motion:

dω

dt
=

1

2
ki ([d] + [l])ω

(
1− ω2

)
. (2.5)

Equation (2.5) has three deterministic fixed points; the racemic state, ω = 0, is an unstable

fixed point, and the two homochiral states, ω = ±1 are stable fixed points. Starting from

almost everywhere in the d-l plane, the system converges to one of the homochiral fixed

points (Fig. (2.2a)).

In the context of biological homochirality, extensions of Frank’s idea have essentially

taken two directions. On the one hand, the discovery of a synthetic chemical system of

amino alcohols that amplifies an initial excess of one of the chiral states [40] has motivated

several autocatalysis-based models (see [22] and references therein). On the other hand,

ribozyme-driven catalyst experiments [41] have inspired theories based on polymerization

and chiral inhibition that minimize [42, 43, 44] or do not include at all [45, 46] autocatalysis.

In contrast, a recent experimental realization of RNA replication using a novel ribozyme

shows such efficient autocatalytic behavior that chiral inhibition does not arise [47]. Further

extensions accounting for both intrinsic noise [22, 48] and diffusion [49, 50, 51, 52] build

further upon Frank’s work.

Regardless of the specific model details, all these models share the three-fixed-points

paradigm of Frank’s model, namely that the time evolution of the chiral order parameter ω

is given by a deterministic equation of the form [22]

dω

dt
= f(t)ω

(
1− ω2

)
, (2.6)
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Figure 2.2: (Color online) (a) Phase portrait of Frank’s model: the racemic state is an unstable fixed point
(red dot), while the homochiral states are stable fixed points (green dots). (b) If chiral inhibition is replaced
by linear decay reaction, the ratio of d and l molecules stays constant. (c) Adding even the slightest amount
of non-autocatalytic production of d and l molecules makes the racemic state (green dot) the global attractor
of the dynamics.

where the function f(t) is model-dependent. The sole exception to this three-fixed-points

model in a variation of Frank’s model is the work of Lente [53], where purely stochastic

chiral symmetry breaking occurs, although chiral symmetry breaking is only partial, with

ω 6= 0 but |ω| < 1. In all models obeying Eq. (2.6), the homochiral states arise from a

nonlinearity which is not a property of simple autocatalysis, but, for instance in the original

Frank’s model, is due to chiral inhibition. To clarify this, one can repeat the analysis of the

rate equations for a variation of Frank’s model in which the chiral inhibition reaction (2.2)

is replaced by independent linear decay reactions

d
kd−−→ A, l

kd−−→ A. (2.7)

Figure (2.2b) shows that in this modified model, the homochiraity is lost, and the ratio of d

and l molecules stay constant over time. The situation is even worse: if the reactions (2.7)

are even slightly reversible,

d
kd−−⇀↽−−
kn

A, l
kd−−⇀↽−−
kn

A, (2.8)

the racemic solution becomes the global attractor of the deterministic dynamics (see Fig. (2.2c)).

Even starting from a homochiral solution, such system eventually converges to racemic so-
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lution.

In Section 3, I will show that despite the fact that the stability analysis of rate equations

shows that the modified Frank’s model without chiral inhibition approaches a racemic steady

state, when the intrinsic noise from the autocatalytic reactions is taken into account, the

system can transition to homochirality under certain conditions.
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Chapter 3

Noise-Induced Origin of
Homochirality in Prebiotic
Self-Replicators

In this chapter, I will show that efficient early-life self-replicators can exhibit universal ho-

mochirality, through a stochastic treatment of Frank’s model without requiring nonlinearities

such as chiral inhibition. In our stochastic treatment, the homochiral states arise not as fixed

points of deterministic dynamics, but instead are states where the effects of chemical number

fluctuations (i.e. the multiplicative noise [54]) are minimized. The mathematical mechanism

proposed here [55, 56, 57, 58] is intrinsically different from that of the class of models summa-

rized by Eq. (2.6). I conclude that autocatalysis alone can in principle account for universal

homochirality in biological systems far from equilibrium, when autocatalysis is the strongly

dominant mechanism for the production of chiral molecules.

It may be helpful for the audience not familiar with the stochastic treatment of chemical

reactions to clarify in what sense chemical reactions are stochastic, and when the stochas-

ticity matters. In reaction kinetics, the rate of reactions are calculated using the law of

mass action. The law of mass action states that the rate of a reaction is proportional to the

product of the concentrations of its reactants, and the proportionality constant is defined as

the reaction rate. An intuitive explanation of this law is following: A chemical reaction takes

place when its reactants collide with enough energy to overcome the activation energy of the

reaction. The probability of the collision of these reactants is proportional to the product of

their concentration, and therefore, the expected value of the number of such collisions per

unit time is also proportional to the product of the concentrations of the reactants. This is

the law of mass action, and it is in an intrinsically mean field approximation.

Near equilibrium, a system of large number of interacting chemicals follows Boltzmann
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statistics and can be approximated by its expected value. This approximation is possible

because the distribution of various quantities converge to the a narrow Gaussians around

their mean. This is the reason that, in calculating rates of reactions, the expected value of

number of collisions is used instead of the actual probability distribution of the number of

collisions per unit time.

However, this property is not generalizable to systems that are maintained far from equi-

librium. For such systems, instead of using the law of mass action as the expected value

of the number of reactions per unit time, it is more helpful to interpret the law of mass

action as the probability per unit time of occurrence of a chemical reaction. Also, instead of

the rate equations for the rate of change of the expected value of the concentrations of the

reactants and the products, we can write the master equation for the rate of change of the

probability of the system having certain concentrations of reactants and products. A step by

step treatment of the master equation is given in Section 3.2 (audience not interested in the

technical aspects of stochastic processes can skip this section). An intuitive explanation of

the mechanism for the symmetry breaking and its relationship with the origin of life follows

in Section 3.3.

Our proposed reactions (reactions (3.1)) are chosen as an effective minimal model in

which the transition to homochirality via a noise-induced symmetry breaking in the absence

of chiral inhibition can be observed. Of course, the actual set of reactions that took place

during the emergence of life leading to the symmetry breaking may involve more chemical

species and more intermediate steps. In particular, the steady state of our reaction set will

be a nonequilibrium steady state implying that self-replication process has to be driven by

an external source of energy. This could mean that self-replication may be coupled to other

set of reactions, in the same way that some energy consuming reactions in biological cells

are driven by ATP hydrolysis. A more detailed analysis of the thermodynamical aspects of

our model and other variations are discussed in Section 3.4.
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3.1 Description of the Model

Motivated in part by the experimental demonstration of autocatalysis without chiral inhibi-

tion [47], we propose the reaction scheme below, which is equivalent to a modification of a

model by Lente [53] with the additional process representing the recycling of enantiomers:

A+ d
ka−−→ 2d, A+ l

ka−−→ 2l,

A
kn−−⇀↽−−
kd

d, A
kn−−⇀↽−−
kd

l (3.1)

Compared to Frank’s model, the chiral inhibition is replaced by reversible linear decay reac-

tions which model both recycling and non-autocatalytic production. The rate constants are

denoted by k, with the subscript serving to identify the particular reaction (subscript a for

autocatalysis, d for decay, and n for nonautocatalytic production). The only deterministic

fixed point of this model is the racemic state (see Fig. (2.2c)). This model can be interpreted

as a model of the evolution of early life where primitive chiral self-replicators can be pro-

duced randomly through non-autocatalytic processes at very low rates; the self-replication

is modeled by autocatalysis while the decay reaction is a model for the death process.

It is important to note that for the nonautocatalytic reaction to occur at a very small

rate compared to the decay rate, the self-replication process should be an energy consuming

reaction (as is the case in biological systems). Hence, in order to maintain an irreversible

self-replication, system has to be driven by an external source of energy. This steady inflow

of the energy keeps the steady state of the system far from equilibrium. The source of this

driving energy is not included in our model. For more details on the thermodynamics of this

model see Section 3.4.

Section 3.2 details the derivation of an exactly solvable stochastic differential equation for

the time evolution of chiral order parameter ω from reactions (3.1), which shows that in the

regime where autocatalysis is the dominant reaction, the functional form of the multiplica-

tive intrinsic noise from autocatalytic reactions stabilizes the homochiral states. Readers

not interested in the derivation the stochastic differential equation for ω can skip Section 3.2
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and go directly to Section 3.3 where the main results are discussed.

3.2 Master Equation, Fokker-Planck Equation, and Langevin

Equation

Chemical reactions are inherently stochastic, as they rely on stochastic collision of molecules

with sufficient energy to overcome the activation energy. The goal of this section is to derive

a master equation for the rate of change of probability of the system being at a state defined

by the concentration of A, d, and l molecules and a stochastic differential equation for the

rate of change of the chirality order parameter ω.

Consider reactions (3.1) taking place in a well-mixed system of volume V with total

number of molecules N . The state of the system is defined by the concentration vector

(a, d, l) ≡ (x1, x2, x3) ≡ ~x of the molecules A, d, and l respectively. We define the transition

rate T (~y|~x) as the probability per unit time per unit volume of the system transitioning to

the state ~y, given the initial state ~x. From the reaction set reaction (3.1), there are four

types of transitions characterized by the four rows of the stoichiometry matrix S

S =



−1 1 0

−1 0 1

1 −1 0

1 0 −1


, (3.2)

corresponding to the reactions that consume A, and produce d or l respectively and the

ones that consume d or l and produce A respectively. The columns of S correspond to

the species A, d, and l respectively, and the negative or positive signs refer to consumption

or production. From the law of mass action, the transition rates corresponding to different
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types of transitions are given by

T (~x+ ε~s1|~x) = (kn + kad)a, T (~x+ ε~s3|~x) = kdd,

T (~x+ ε~s2|~x) = (kn + kal)a, T (~x+ ε~s4|~x) = kdl,
(3.3)

where the vector ~si (with i = 1, . . . , 4) is i-th row of the stoichiometry matrix S, ε = 1/V is

one over the volume of the system, ε~si’s are the changes in the concentration vector ~x due

to a reaction of type i.

Now, the rate of change of the probability of the system being at a state ~x at time t,

P (~x, t), is given by the sum of the probability of the system being at some state ~y times the

probability per unit time of transitioning from ~y to ~x minus the probability of the system

being already at state ~x times the probability per unit time of transitioning out of ~x to some

other state ~y.

∂P (~x, t)

∂t
= V

∑
~y

(T (~x|~y)P (~y, t)− T (~y|~x)P (~x, t)) . (3.4)

Equation (3.4) is called the master equation [59], and it describes the time evolution of

probability of the system at a state defined by discrete concentration values. The master

equation is the most accurate description of the individual level model and can be simulated

exactly using the Gillespie algorithm [60]. In the master equation for the reaction set reac-

tion (3.1), most of the transition rates are zero, except the allowed transitions specified by

Eq. (3.3). Substituting the allowed transitions from Eq. (3.3) in Eq. (3.4), we obtain

∂P (~x, t)

∂t
= V

4∑
i=1

(T (~x|~x− ε~si)P (~x− ε~si, t)− T (~x+ ε~si|~x)P (~x, t)) . (3.5)

The next step is to take the continuous limit of Eq. (3.4) at large total number of molecules

N � 1 to derive a partial differential equation for the time evolution of the probability

density of finding the system a state defined by continuous concentration variables. This

equation in known as the Fokker-Planck equation. We begin by defining the functions Fi’s
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as

Fi(~x, t) = T (~x|~x+ ε~si)P (~x, t), (3.6)

so that the master equation can be written as:

∂P (~x, t)

∂t
=

4∑
i=1

Fi(~x− ε~si, t)− Fi(~x, t)
ε

. (3.7)

The right-hand side of the master equation can be expanded in ε,

∂P (~x, t)

∂t
= −

∑
i,j

Si,j
∂Fi
∂xj

+
ε

2

∑
i,j,k

Si,jSi,k
∂2Fi
∂xj∂xk

− ε

6

∑
i,j,k,l

Si,jSi,kSi,l
∂3Fi

∂xj∂xk∂xl
+ . . . . (3.8)

If P (~x, t) is analytic in ε, before truncation, Eq. (3.8) is exact and does not require ε to be

small. For N � 1, by central limit theorem, the fluctuations are Gaussian, and therefore,

the probability density function P (~x, t) has to obey a second order Fokker-Planck equation.

At this limit, even if ε is not small, we can truncate the series to second order, and after eval-

uating the corresponding partial derivatives, we obtain the following Fokker-Planck equation

for the time evolution of P (~x, t):

∂P

∂t
≈ −

3∑
j=1

∂ (HjP )

∂xj
+

1

2

3∑
j,k=1

∂2 (BjkP )

∂xj∂xk
, (3.9)

where the drift vector ~H with component Hj is given by

~H =
∑
i

T (~x+ ε~si)|~x)~si =


kd(d+ l)− a(2kn + ka(d+ l))

−kdd+ a(kn + kad)

−kdl + a(kn + kal)

 .
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The symmetric diffusion matrix B is given by

B = ε
∑
i

T (~x+ ε~si)|~x)~si ⊗ ~si

= ε


kd(d+ l) + a(2kn + ka(d+ l)) −kdd− a(kn + kad) −kdl − a(kn + kal)

−kdd− a(kn + kad) kdd+ a(kn + kad) 0

−kdl − a(kn + kal) 0 kdl + a(kn + kal)

 ,

(3.10)

where the symbol ⊗ indicates the Kronecker product.

Equation (3.9) describes the time evolution of the probability density of the concentration

vector ~x in the continuous model, and all further approximations and simplifications can be

done directly on this equation. However, it is more insightful to keep track of the stochastic

dynamics of the concentration variables. The following is the set of stochastic differential

equations (defined in the Itō sense, see Appendix A.1 for more details on Itō vs. Stratonovich)

corresponding to a probability density function obeying Eq. (3.9) [54].

d~x

dt
= ~H(~x) + ~ξ(t), (3.11)

where ξi’s, the components of ~ξ(t), are zero mean Gaussian noise functions with correlation

〈ξi(t)ξj(t′)〉 = Bi,jδ(t− t′). (3.12)

To rewrite Eq. (3.11) in terms of uncorrelated Gaussian noise functions, we seek to decompose

the matrix B to B = GGT. This decomposition is not unique and multiple choices for G

exist [61]. It is easy to check that the following 3× 2 matrix satisfies the decomposition:

G =
√
ε


√
a (kad+ kn) + kdd

√
a(kal + kn) + kdl

−
√
a (kad+ kn) + kdd 0

0 −
√
a(kal + kn) + kdl

 . (3.13)
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For more details on how such decompositions are found, see Appendix A.2. Now, for a two

dimensional zero mean Gaussian white noise ~η(t) with correlation

〈ηj(t)ηk(t′)〉 = δj,kδ(t− t′), (3.14)

the correlated noise ~ξ(t) can be rewritten as ~ξ(t) = G~η(t) (see Appendix A.2). Now,

Eq. (3.11) can be written in terms of ~η as

d~x

dt
= ~H(~x) +G(~x)~η(t). (3.15)

Note that since the Fokker-Planck equation (3.9) only depends on B and not the particular

choice of its decomposition G, the probability density function of ~x and its time evolution

do not depend on G either [61].

To obtain a stochastic differential equation for the time evolution of the chirality order

parameter ω, we perform the following change of variables in Eq. (3.15):
a

d

l

→


n

r

ω

 =


a+ d+ l

d+ l

(d− l)/(d+ l)

 (3.16)

Using Itō’s lemma (see Appendix A.3) we can obtain an equation for the time evolution of

the new state vector ~y = (n, r, ω).

In general, it is not easy to solve for the joint probability density of coupled stochastic

differential equations (SDE), but for a single variable first order SDE the steady state dis-

tribution is always exactly solvable. Therefore, we seek to reduce the number of degrees of

freedom in the problem using the following two facts:

1. The reaction scheme reaction (3.1) conserves the total number of molecules, meaning

that the total concentration n = a+ d+ l is constant.

2. Simulations show that the concentration r = d + l settles to a Gaussian distribution

27



around its fixed point value r∗, allowing us to substitute r(t) → r∗. Therefore, the

dynamics at long time occurs only in the chiral order parameter ω.

In the new variables, we find that ṅ = 0 and, by taking the positive solution of ṙ = 0, that

is

r∗ =

√
(kan− kd − 2kn)2 + 8kaknn+ kan− kd − 2kn

2ka
, (3.17)

we substitute r → r∗ in the equation for ω, and use the rule for summing Gaussian variables

(i.e. aη1+bη2 =
√
a2 + b2η; where a and b are generic functions [54]) to express the stochastic

part of the equation using a single noise variable. Expressing the result in terms of the total

number of molecules N = V n, for N � 1, we arrive at the following stochastic differential

equation for the chirality order parameter ω:

dω

dt
= −2knkdV

Nka
ω +

√
2kd
N

(1− ω2)η(t), (3.18)

where η(t) is Gaussian white noise with zero mean and unit variance. The time evolution

of the probability density function of ω is described by the corresponding Fokker-Planck

equation of Eq. (3.18) given by

∂P (ω, t)

∂t
=

∂

∂ω

(
2knkdV

Nka
ωP (ω, t)

)
+

1

2

∂2

∂ω2

(
2kd
N

(1− ω2)P (ω, t)

)
. (3.19)

This is an exactly solvable partial differential equation with time dependent solution given

in [62]. The steady state solution of Eq. (3.19) is given by (see Appendix A.4)

Ps(ω) = N
(
1− ω2

)α−1
, with α =

knV

ka
, (3.20)

with the normalization constant

N =

(∫ +1

−1

(
1− ω2

)α−1
dω

)−1

=
Γ
(
α + 1

2

)
√
π Γ(α)

. (3.21)
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Figure 3.1: (Color online) Comparison between the stationary distribution, Eq. (3.20), (dashed lines) and
Gillespie simulations of reactions reaction (3.1) (markers), for different values of α. Simulation parameters:
N = 103, ka = kn = kd = 1.

Equation (3.20) is compared in Fig. (3.1) against exact Gillespie simulations [60] of re-

actions (3.1). For α = αc = 1, ω is uniformly distributed. For α � αc, where the non-

autocatalytic production is the dominant production reaction, Ps(ω) is peaked around the

racemic state, ω = 0. For α� αc, where autocatalysis is dominant, Ps(ω) is sharply peaked

around the homochiral states, ω = ±1. The simulations were performed for N = 1000, where

the analytic theory is expected to be accurate; for much smaller values of N , the theory is

qualitatively correct, but very small quantitative deviations are observable compared to the

simulations.

The importance of this treatment is not only in the analytical results for the probability

density function of ω, but also the intuitive picture that Eq. (3.18) provides to understand

the mechanism through which autocatalysis leads to homochirality. We will discuss an intu-

itive interpretation of Eq. (3.18) and the behavior of its solution Eq. (3.20) in the Section 3.3

along with the relationship of this model with the origin of life.
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3.3 Transition to Homochirality and Origin of Life

In Section 3.2, we saw that for the reactions (3.1), in a well-mixed system of volume V and

total number of molecules N , the time evolution of the chiral order parameter ω obeys the

stochastic differential equation

dω

dt
= −2knkdV

Nka
ω +

√
2kd
N

(1− ω2)η(t), (3.22)

where η(t) is a normalized Gaussian white noise with zero mean defined in the Itō sense [54].

The deterministic part of Eq. (3.22)

dω

dt
= −2knkdV

Nka
ω, (3.23)

which could alternatively be derived by reaction kinetic analysis (see Section 2.3), has one

stable fixed point at the racemic state, consistent with the phase portrait in Fig. (2.2c). The

multiplicative noise in Eq. (3.22) vanishes at homochiral states, and admits its maximum

at the racemic state. In order to determine which one of the two terms is dominant, one

can define the dimensionless parameter α as the ratio of the two constants 2knkdV/Nka and

2kd/N , that is

α =
knV

ka
. (3.24)

Note that the steady state solution of Eq. (3.22), given in Eq. (3.20), only depends on α.

When α� 1, the deterministic part of the Eq. (3.22) is dominant, and therefore, we expect

a racemic solution. That is indeed the case, and the steady state probability density of ω

is peaked around zero for large α (see Fig. (3.1)). However, for α� 1, where autocatalysis

is the dominant production mechanism, the amplitude of the noise term in Eq. (3.22) is

much larger than the amplitude of the corresponding deterministic term. Since the noise is

maximum at the racemic state, the variable ω stochastically walks away from the racemic

state over time and ends up at homochiral states where the noise term vanishes.

To understand this result physically, note that the source of the multiplicative noise is the
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intrinsic stochasticity of the autocatalytic reactions. While, on average, the two autocatalytic

reactions do not change the variable ω (see Fig. (2.2b)), each time one of the reactions takes

place, the value of ω changes by a very small discrete amount. As a result, over time the value

of ω drifts away from its initial value. Since the amplitude of the noise term is maximum at

racemic state and zero at homochiral states, this drift stops at one of the homochiral states.

The absence of the noise from autocatalysis at homochiral states can be understood by

recognizing that at homochiral states, the molecules with only one of two chiral states d and

l are present, hence only the autocatalytic reaction associated with that chiral state has a

non-zero rate. This reaction produces molecules of the same chirality, keeping the system

at the same homochiral state without affecting the value of ω, and therefore, the variable ω

does not experience a drift away from the homochiral states due the autocatalytic reactions.

Note that the stationary distribution of ω in Eq. (3.20) is only dependent on α and is

independent of the decay reaction rate, kd. The only role of this reaction is to prevent the A

molecules from being completely consumed, thus providing a well-defined non-equilibrium

steady state independent of the initial conditions.

The parameter α is proportional to the ratio of the non-autocatalytic production rate,

kn, to the self-replication rate, ka. In the evolution of early life, when self-replication was a

primitive function, ka would be small and the value of α would therefore be large. As life

evolved, the self-replicators would evolve to become more efficient at self-replication, and

would be less likely to be produced spontaneously through non-self-replicating mechanisms.

As a result the value of ka would increase, while kn decrease, and α would become very small.

Therefore, in our model, we expect that life started in a racemic state, and it transitioned

to homochirality after self-replication became efficient (i.e. when α � 1). It is a necessary

weakness of the present state of understanding that we do not have a dynamical description

of α(t), so in this sense, our theory is incomplete.

It is important to note that all of the previous mechanisms suggested for homochirality

rely on assumptions that cannot be easily confirmed to hold during the emergence of life.

However, even if all of such mechanisms fail during the origin of life, our mechanism guar-
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antees the emergence of homochirality, since it only relies on self-replication and death, two

processes that are inseparable from any living system.

3.4 Pigs Can Fly: Violation of Detailed Balance is a Necessary

Condition for Homochirality

Our model violates the principle of microscopic reversibility, and in this section, I wish

to comment on this fact and explore its physical origin. The violation of microscopic re-

versibility follows because our model explicitly violates the principle of detailed balance, as

is required for an externally driven minimal model far from equilibrium. Here, I review

some thermodynamical aspects of our model, which I believe have important implications

for understanding the origin of life. Before, starting to analyze the model, I would like to

review the history of criticisms to minimal models for homochirality that violate microscopic

reversibility.

The story dates back to 2009, when Donna Blackmond published an essay titled: “If pigs

could fly” chemistry: a tutorial on the principle of microscopic reversibility [63]. In this

essay, she criticizes several kinetic models of homochirality similar to Frank’s model with

the type of recycling that exists in our model. She argues that these kinetic models are

written with arbitrary reactions constants without a regard for whether reactions with these

constants are thermodynamically feasible or not. The crux of the argument boils down to

the following: the principle of microscopic reversibility states that at equilibrium, the rate

of the forward reaction and the reverse reaction are equal for all reactions. For systems

involving recycling, or more generally cyclic reactions, this principle puts a constraint on the

relationship of the rate constants of the set of reactions that share their pool of reactants
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and products. For example, consider the cyclic reaction set

A
k1

k∗1
B

k ∗3k
3

C

k
∗

2
k 2

(3.25)

At equilibrium, the rate of forward and backward reactions are the same for each reaction,

giving rise to the following relationships:

k1[A] = k∗1[B], k2[B] = k∗2[C], k3[C] = k∗3[A]. (3.26)

Eliminating the concentrations [A], [B], and [C], we have

k1

k∗1

k2

k∗2

k3

k∗3
= 1. (3.27)

This relationship was discovered by Wegscheider in 1901 [64]. It implies that, at equilibrium,

the six reaction rates cannot be chosen independently. In particular, one cannot have a set

of cyclic irreversible reactions, that is for nonzero k1, k2, and k3, we cannot set k∗1, k∗2, and k∗3

simultaneously to zero, at equilibrium. Of course, once an equilibrium solution exists, these

constant should obey Wegscheider’s conditions, even far from equilibrium, because after all,

reaction constants are constants, i.e. independent of the extent of reactions. In other words,

Wegscheider’s condition is the condition for the existence of an equilibrium solution. The

principle of microscopic reversibility is a consequence of detailed balance, which is obeyed

by equilibrium systems. If a model has an equilibrium solution, one can derive the rate

constants from the free energy differences. However, in a cyclic reaction set, not all the free

energy differences are independent. As a result, for a model to have an equilibrium solution,

its rate constants have to obey a constraint, and that is Wegscheider’s condition.

What does it all have to do with homochirality? There is a similar situation in the model

defined by reactions (3.1) because of the recycling and irreversibility of the autocatalytic
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reactions. Note that the linear and the autocatalytic reactions have the same reactants and

products, therefore, doing the same analysis on reactions

A+ d
ka−−⇀↽−−
k∗a

2d, A
kn−−−⇀↽−−−
kd

d, (3.28)

results in the following condition at equilibrium

ka[A][d] = k∗a[d]2, kn[A] = kd[d], (3.29)

which implies

ka
k∗a

=
kn
kd
. (3.30)

This suggests that for this model to have an equilibrium solution, it cannot have an ir-

reversible autocatalysis and recycling simultaneously (i.e. k∗a cannot be zero for a nonzero

kd).

This is a potential source of criticism against this model. After all, one might say, every

set of chemical reactions should have an equilibrium. No, it should not: every closed set

of chemical reactions should have an equilibrium. I have made this clear that the station-

ary solution of my model is a nonequilibrium steady state, and therefore, it has to be a

driven system with an external source of energy or disequilibrium. In fact, as I will show in

this section, any system modeling a prebiotic chemistry, and more importantly any model

attempting to achieve complete homochirality has to be a driven model. Like Frank and

most other workers in this field, we chose not to include the external source of energy in

our model for several reasons: (1) it is unnecessary and not the main point of the exercise;

(2) it forces us to make specific and detailed choices about chemical processes that have no

experimental support in an early life context; (3) it obscures the basic mechanisms leading

to homochirality.

Before I show why it is necessary for model to be driven by an external source of energy,

in order to give rise to a homochiral steady state, let me show a couple of different ways one
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can implement such energy sources, keeping the autocatalysis irreversible.

The reaction set (3.1) was set up with the idea in mind that self-replication (modeled

by the autocatalytic reactions) has exclusive access to an external source of energy, as is

the case in all biological systems, and therefore the effective “reaction constants” (which

are dependent on the amount of energy to which the replicator has access) can be tuned

independently of the other non-autocatalytic reactions. This can be shown by adding extra

molecular species representing the source of energy. For example, modern organisms couple

the hydrolysis reaction of adenosine triphosphate (ATP) that produces adenosine diphos-

phate (ADP) and a phosphate (P) to their autocatalytic cylces in their cell, using the free

energy difference to drive the cycles [65]. Consider the following set of reactions

A+ d + ATP
ks−−→ 2d + ADP + P

A+ l + ATP
ks−−→ 2l + ADP + P

A
kn−−−⇀↽−−−
kd

d

A
kn−−−⇀↽−−−
kd

l

(3.31)

It is easy to see how all of these reaction rates are independent of each other. Now keeping the

concentration of ATP constant (by providing a constant supply of ATP), the self-replication

reactions can be written in the compact form

A+ d
ks[ATP ]−−−−−−→ 2d, A+ l

ks[ATP ]−−−−−−→ 2l (3.32)

ignoring the inactive compounds, ADP and P. Now we can simply define an effective reaction

rate ka = ks[ATP ], recovering reactions (3.1). This reaction rate, as promised, is tunable

independently of the other reaction constants; it depends on the availability of the energy

source.

35



Another potential solution to this problem is to change the set of proposed reactions to

A+ d
ka−−→ 2d, d

kd−−⇀↽−−
kn

B

A+ l
ka−−→ 2l, l

kd−−⇀↽−−
kn

B.

(3.33)

In this model, d and l enantiomeres are autocatalytically produced from a less stable achiral

molecule A, and decay to a more stable achiral molecule B. Now, all we need to do to drive

the reactions to a nonequilibrium steady state is to provide a constant supply of A and

continuously remove B from the system. The free energy difference between A and B will

provide the driving force. Unlike the previous solution, this is a different model with slightly

different kinetics. However, it does result in a homochiral steady state through exactly

the same noise-induced mechanism described in this chapter. This attests to the fact that

our mechanism only depends on self-replication and decay, and the details of the chemical

reactions implementing these processes are irrelevant. There are other ways to model the

source of driving energy in the system; see, for example Ref. [66] for a resolution of a similar

problem in another model of homochirality.

A steady process of self-replication requires a constant supply of energy, and therefore,

an open-system. This is true of all biological systems today, and so has to have been true

during the emergence of life. In general the source of energy for self-replication could be a

constant supply of high free energy molecules, steady flow of photons from sunlight, voltage

difference across an alkaline hydrothermal vent in the bottom of the ocean, or any perhaps

unknown kind of interesting chemistry that led to the emergence of life. These cases may all

look like “exceptional cases” compared to typical test tube experiments done in the lab, but

it would be hard to imagine a scenario for the origin of life that does not involve an external

driving force.

The fact that biological systems are driven is not the only reasoning behind open driven

models for homochirality. In fact there are thermodynamical constraints on the type of model

that could lead to complete homochirality. Perhaps the most straightforward argument for
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open driven models of homochirality with recycling is the following: it is a well known fact

that amino acids spontaneously racemize over the time scale of years to millennia depending

on temperature and PH [67, 68, 69]. Note that this is a very short time scale compared with

the geological time scale associated with the origin of life. Any mechanism for homochirality

that does not continuously recycle the product will end up with a racemic equilibrium

mixture of amino acids. Of course a continuous recycling and production through a separate

mechanism requires a steady supply of external driving force leading to a nonequilibrium

steady state.

This argument goes deeper than amino acids: there is no closed system with a completely

homochiral equilibrium. Suppose, that the equilibrium state of a system is homochiral for

at least one type of the chiral molecules in the system. Let us make a replica of the system

and replace half of those chiral molecules with their mirror images. This transformation

does not change the internal energy, U , of the system, since both of the chiral molecules

have the same internal energy. It does not change the pressure or the volume of the system

either, since all the physical properties of the two chiral molecules are identical by symmetry.

However, the entropy of the racemic replica is larger than that of the homochiral system.

Therefore, the Gibbs free energy, G = U + pV − TS, of the racemic mixture is lower than

that of homochiral mixture, and the homochiral solution cannot be the equilibrium solution

of the system; over long time, such a homochiral solution will racemize. Only a continuously

driven mechanism can keep such a system in a homochiral state over long time, and that

state will be a nonequilibrium steady state.
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Chapter 4

Noise-Induced Homochirality in
Spatially Extended Systems

Consider your favorite origin of life scenario. For example, imagine life started through

autocatalytic reactions in Alkaline hydrothermal vents in the bottom of the ocean [70] (this is

just an example, and what follows does not depend on the details of the origin of life scenario).

Now, whatever symmetry-breaking mechanism we propose for the origin of homochirality

in this prebiotic world should be robust in the following sense: First, consider two nearby

hydrothermal vents. In the absent of diffusion, over time, each one becomes homochiral

through some symmetry-breaking mechanism. This homochirality should be robust with

respect to the perturbation caused by (e.g. ) molecules of opposite chirality diffusing from the

other vent. Second, over time the particular choice of homochirality should be synchronized

over all of the sources of production of these chiral molecules.

In this chapter, I will show that the noise-induced homochirlaity mechanism suggested

in Chapter 3 is robust with respect to these two criteria. In Section 4.1, I define the spa-

tial extension of our model as a set of well-mixed reaction patches diffusively coupled to

their neighbors. The Fokker-Planck equation for two diffusively coupled patches is derived

in Section 4.2, followed by a perturbation theory analysis in Section 4.3, showing the first

robustness criteria for our model holds when autocatalysis is the dominant production mech-

anism. In Section 4.4, we study the one dimensional spatial extension of the model in the

continuum limit, where we see that the correlation length for the chiral order parameter

diverges as the nonautocatalytic reaction rates approaches zero. Moreover, I show simula-

tion results for a one-dimensional system of diffusively coupled patches at pure autocatalytic

limit, where the patches synchronize their final homochiral state. This indicates that the
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pure autocatalytic limit of our model is robust with respect to the second robustness criteria.

4.1 Description of the spatially extended model

Consider the following spatial extension [71] of the model described in Chapter 3: let reac-

tions (3.1) take place in a set of M well-mixed patches of volume V, while molecules can

diffuse between neighboring patches with diffusion rate δ. The set of neighbors of each patch

i, i = 1, . . . ,M , is denoted by 〈i〉 (e.g., for a linear chain, 〈i〉 = {i− 1, i+ 1}) and molecules

of species A, d, and l in patch i by Ai, di, and li respectively. In summary, the following

set of reactions defines the spatial model:

Ai
kn−−−⇀↽−−−
kd

di, Ai
kn−−−⇀↽−−−
kd

li, i = 1, . . . ,M

Ai + di
ka−−→ 2di, Ai + li

ka−−→ 2li

di
δ−−⇀↽−− dj, li

δ−−⇀↽−− lj, j ∈ 〈i〉.

(4.1)

A similar analytical treatment to that of Section 3.2 results in the following set of coupled

stochastic differential equations for the time evolution of the chiral order parameter ωi, of

each patch i (I will show a step by step derivation of the special case M = 2 in Section 4.2):

dωi
dt

= −2knkdV

Nka
ωi + δ

∑
j∈〈i〉

(ωj − ωi) +

√
2kd
N

(1− ω2
i )ηi(t) +

√
δ

N
ξi(~ω, t), (4.2)

where now N represents the average number of molecules per patch, ηi’s are independent

normalized Gaussian white noises, ξi’s are zero mean Gaussian noise with correlator

〈ξi(t)ξj(t′)〉 =

2
∑
k∈〈i〉

(1− ωiωk) δi,j +
(
ω2
i + ω2

j − 2
)
χ〈i〉(j)

 δ(t− t′), (4.3)

and χ〈i〉(j) is equal to one if j ∈ 〈i〉 and zero otherwise.
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4.2 Two-Patch Model: Fokker-Planck Equation

Let us analyze the homochirality in each patch of the spatial extension of our model described

by reactions (4.1) with M = 2. We can follow the procedure explained in Section 3.2 to

obtain a Fokker-Planck equation for the time evolution of the probability density of the

system being at a state with concentrations a1, d1, l1, a2, d2, and l2. Again we can reduce

the number of variables using the following facts (i) the total concentration nt = n1 + n2 =

a1 + d1 + l1 + a2 + d2 + l2 is conserved; (ii) simulation shows that in long time, the variables

r1 = d1 + l1, r2 = d2 + l2, and ∆ = n1 − n2 settle to Gaussian distributions around their

fixed point values r1 = r2 = r∗ and ∆ = 0. We do the following change of variables

a1

d1

l1

a2

d2

l2


→



nt

∆

r1

r2

ω1

ω2


=



a1 + d1 + l1 + a2 + d2 + l2

a1 + d1 + l1 − a2 − d2 − l2

d1 + l1

d2 + l2

(d1 − l1)/(d1 + l1)

(d2 − l2)/(d2 + l2)


(4.4)

using Itō’s formula. Now the dynamics only occurs only in ~ω = (ω1, ω2). For large average

number of molecules per patch N � 1, the resulting Fokker-Planck equation for the time

evolution of the joint probability density function of ω1 and ω2, Q(~ω, t), reads

∂Q

∂t
= −

2∑
i=1

∂ ((L~ω)iQ)

∂ωi
+

1

2

2∑
i,j=1

∂2 (UijQ)

∂ωi∂ωj
. (4.5)

Note that the above sums are now over the patches, and not over species as in Eq. (3.9).

The Jacobian matrix L is given by

L = −2kdknV

Nka

 1 0

0 1

+ δ

 −1 1

1 −1

 , (4.6)
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and the diffusion matrix U by

U =
2kd
N

 1− ω2
1 0

0 1− ω2
2

+
δ

N

 2(1− ω1ω2) ω2
1 + ω2

2 − 2

ω2
1 + ω2

2 − 2 2(1− ω1ω2).

 . (4.7)

This Fokker-Planck equation describes the time evolution of the probability density of

stochastic variables obeying the spacial case, M = 2, of Eq. (4.2).

4.3 Two-Patch Model: Homochirality

Does a system described by reactions (3.1) stay homochiral when diffusively coupled to

similar systems? To answer this question, we need to analyze the homochirality in each

patch of the spatial extension of our model described by reactions (4.1) with M = 2. In

Section 4.2, I showed that the joint probability density of chiral order parameters of two

diffusively coupled patches obeys Eq. (4.5). probability density function of the chiral order

parameter of a single patch, Qs(ω) is defined by

Qs(ω) =

∫ +1

−1

Qs(ω, ω2)dω2 =

∫ +1

−1

Qs(ω1, ω)dω1, (4.8)

where Qs(ω1, ω2) is the stationary solution of Eq. (4.5). We first analyze the condition for

each patch reaching homochirality using perturbation theory, in the case of slow diffusion.

For δ ∼ kd/N or smaller, we can treat the diffusion deterministically by ignoring the last

term in Eq. (4.7). To solve for Qs(ω), we begin by rewriting Eq. (4.5) as a continuity

equation,

∂tQ+∇ · ~J = 0, (4.9)

which defines the probability current ~J as [54]

~J = L~ω Q− 1

2
∇ · (UQ) . (4.10)
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By the conservation of probability, at steady state, the total probability flux ~Js through each

vertical section of ω1-ω2 plane must be zero. That is∫ +1

−1

Js,1dω2 =

∫ +1

−1

(
(L~ω)1Qs −

1

2
∂ω1(U11Qs)

)
dω2

= Qs(ω1)ω1

(
2kd
N

(1− α)− δ
)
− kd
N

(1− ω2
1)
dQs

dω1

+ δ

∫ +1

−1

ω2Qs(ω1, ω2)dω2 = 0.

(4.11)

The last integral can be evaluated using Bayes’ theorem

δ

∫ +1

−1

ω2Qs(ω1, ω2)dω2 = δ

∫ +1

−1

ω2Qs(ω2|ω1)Qs(ω1)dω2 = δ Qs(ω1)〈ω2〉ω1 = O(δ2), (4.12)

which is of order δ2 for small δ, since, 〈ω2〉ω1 (the expected value of ω2 given ω1) vanishes

at zero δ, and therefore, of order δ for small δ. In this regime, Eq. (4.11) provide us with a

differential equation for Qs(ω) with the solution

Qs(ω) = Z(1− ω2)
α+ δN

2kd
−1
, (4.13)

where the normalization constant Z is given by

Z =
Γ
(
α + δN

2kd
+ 1

2

)
√
π Γ(α + δN

2kd
)
. (4.14)

This result shows that the critical α below which each patch becomes homochiral, up to the

first order correction in δ, is given by

αc ≈ 1− δ N
2kd

, for δ ≈ 0. (4.15)

We can now turn to the case of high diffusion. Recall that the patches are defined as the

maximum volume around a point in space in which the system can be considered well-mixed.

This can be interpreted as the maximum volume in which diffusion dominates over the other
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Figure 4.1: (Color online) Parameter αpatch
c in the two-patch system as a function of the diffusion rate δ.

Gillespie simulations (markers) are compared against Eq. (4.15) (solid blue line) and Eq. (4.17) (dashed red
line). Simulation parameters as in Fig. (3.1).

terms acting on the variable of interest (in this case ω). From Eq. (4.2), this condition is

fulfilled for δ ∼ 2kdα/N . In the vicinity of the transition α is of order unity, therefore the

condition becomes δ ∼ kd/N . For δ � kd/N , the whole system can be considered well-mixed

and has the critical value of α, αsystem
c = 1, from the well-mixed results (see Section 3.2).

Note that α scales with the volume, and the volume of the whole system is two times the

volume of each patch, i.e. 2V . This indicates that in a single patch

αc ≈
1

2
, for δ � 0. (4.16)

Now we can interpolate between these extreme limits, asymptotic to 1/2 for large δ and to

Eq. (4.15) for small δ:

αc =
δ + 2δ∗

2δ + 2δ∗
, δ∗ =

kd
N
. (4.17)

Figure (4.1) shows agreement between αc measured from Gillespie simulations of the two-

patch system, and the Eq. (4.17). At the parameter regime below the αc curve in Fig. (4.1),

individual patches are homochiral. Also, we find that the correlation between the homochiral

states of the two patches increases with diffusion rate δ and become completely correlated

when δ ∼ kd/N or more. In this regime the system reaches global homochirality.
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4.4 One-Dimensional Model of Homochirality and the

Correlation Function

In Section 4.3 we saw that chiral molecules produced through autocatalytic processes in a

spatial model stay at least locally homochiral even in the presence of diffusion, when auto-

catalysis the dominant production mechanism. In other words, the noise-induced mechanism

for homochirality is robust with respect to diffusion. But does the system stay globally ho-

mochiral? To answer this question, let us examine the continuous limit of Eq. (4.2). In the

continuum limit, the noise term ξi (a side effect of diffusion on a discrete lattice) can be

neglected. What is left of Eq. (4.2) in the continuous form can be written as

∂ω

∂t
= −2kn kd

n ka
ω(t, ~x) +D∇2ω +

√
2kd
n

(1− ω2) η(t, ~x), (4.18)

where the Gaussian noise η(t, ~x) is defined by its moments

〈η(t, ~x)η(t′, ~x′)〉 = δ(t− t′) δ(~x− ~x′), and 〈η(t, ~x)〉 = 0. (4.19)

After a change of variable (not shown here) Eq. (4.18) can be converted to a special case

of what Korolev et al. [72] call “stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equa-

tion [73, 74] with additional terms describing mutation.” We follow Ref. [72] to derive an

equation for the time evolution of the two-point correlation function defined as

φ(t, ~x1, ~x2) = 〈ω(t, ~x1)ω(t, ~x2)〉 . (4.20)

The correlation function φ(t, ~x1, ~x2) is a function of two stochastic variables ω(t, ~x1) and

ω(t, ~x2), and its time derivative can be calculated using Itō’s lemma (see Appendix A.3)

from Eq. (4.18). The result has a beautiful closure property, where the right hand side can
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be written in terms of φ:

∂

∂t
φ(t, ~x1, ~x2) =− 4knkd

nka
φ(t, ~x1, ~x2) +

2kd
n

(1− φ(t, ~x1, ~x1))δ(~x1 − ~x2)

+D
(
∇2
~x1

+∇2
~x2

)
φ(t, ~x1, ~x2). (4.21)

The two point correlation function, φ(t, ~x1, ~x2), in Eq. (4.21) only depends on t and ~x =

~x1 − ~x2 for spatially homogeneous initial conditions. With this simplification we have

∂

∂t
φ(t, ~x) = 2D∇2φ(t, ~x)− 2kd

n
(φ(t, ~x)− 1) δ(~x)− 4knkd

nka
φ(t, ~x) (4.22)

In one dimension, the steady state solution of Eq. (4.22) can be obtained by setting the right

hand side equal to zero, and for φ(x) = φ(∞, x), we have

2D ∂2

∂x2
φ(x)− 2kd

n
(φ(x)− 1) δ(x)− 4knkd

nka
φ(x) = 0. (4.23)

Let us solve this differential equation: for x > 0, δ(x) = 0 and we can solve for φ(x)

∂2

∂x2
φ(x)− 2knkd

nDka
φ(x) = 0 =⇒ φ(x) = C1e

−
√

2knkd
nDka

x + C2e

√
2knkd
nDka

x (4.24)

The limit of x→∞ of φ(x) should be finite therefore C2 = 0, and

φ(x) = C1e
−
√

2knkd
nDka

x, for x > 0. (4.25)

Similarly, for x < 0:

φ(x) = C1e

√
2knkd
nDka

x, for x < 0. (4.26)

At x = 0, the second derivative of φ is proportional to a δ-function, and therefore, its

derivative is discontinuous, but the function itself is continuous, and we have

lim
x→0−

φ(x) = lim
x→0+

φ(x) =⇒ C1 = C2. (4.27)
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To find the discontinuity in the derivative at x = 0, we need to integrate the second derivative

given by

∂2

∂x2
φ(x) =

kd
Dn

(φ(x)− 1) δ(x)− 2knkd
nDka

φ(x), (4.28)

on the interval (−ε, ε) and take the limit of ε→ 0:

lim
ε→0

∫ ε

−ε

∂2

∂x2
φ(x)dx = lim

ε→0

∫ ε

−ε

kd
Dn

(φ(x)− 1) δ(x)− 2knkd
nDka

φ(x)dx. (4.29)

The left hand side becomes the difference between the right and left derivative of φ, while

only the term involving the δ-function survives under the limit on the right hand side:

lim
ε→0+

∂φ

∂x

∣∣∣∣
ε

− lim
ε→0−

∂φ

∂x

∣∣∣∣
ε

=
kd
Dn

(φ(0)− 1) . (4.30)

substituting φ from Eqs. (4.25) and (4.26), we have

−2

√
2knkd
nDka

C1 =
kd
nD

(C1 − 1) =⇒ C1 =
1

1 +
√

8nDkn
kakd

, (4.31)

which gives the steady state solution to the two-point correlation function

φ(x) =
e−

√
2knkd
nDka

|x|

1 +
√

8nDkn
kakd

. (4.32)

The expected value of ω2 is given by φ(0), and φ(x) exponentially decays from this value

with the length scale

ζ =

√
nDka
2knkd

. (4.33)

Therefore this length scale ζ defines a correlation length. This correlation length diverges as

kn approaches zero, indicating that in the pure autocatalytic limit of this model, at steady

state, the entire space synchronizes its choice of homochirality to the same uniformly ho-

mochiral state. Figure (4.2) shows the result of simulation of reactions (4.1) in one dimension

with M = 100 patches at the limit kn → 0. The simulation is initialized with a uniformly
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Figure 4.2: Gillespie simulation of scheme reaction (4.1) for a one-dimensional system of M = 100 patches,
starting from racemic state and ending with all the patches in the same homochiral state ω = −1. Simulation
parameters: N = 1000, ka = kd = 1, δ = 10−3, and kn = 0.

racemic state. The homochiral islands of d and l form very quickly at the beginning of the

simulation and compete until the entire space becomes uniformly homochiral.

Here is a cute fact about this spatial extension: Let us define the correlation volume

V = (2ζ)D (this is the volume of the correlated cube from −ζ to ζ on each dimension),

where the dimension D = 1 in this case. In term of the correlation length and the correlation

volume, the two-point correlation function is given by

φ(x) =
e−|

x
ζ |

1 + 2knV
ka

=
e−|

x
ζ |

1 + 2ᾱ
. (4.34)

The new ᾱ = knV/ka is the α from the well-mixed case defined in Eq. (3.20) with the volume

substituted by the correlation volume, V = V . The expected value of ω2 at each point is

given by φ(0) = 1/(1 + 2ᾱ) which is exactly the same if calculated from Eq. (3.20):

〈
ω2
〉

=

∫ 1

−1

ω2P (ω)dω =
Γ
(
α + 1

2

)
√
πΓ(α)

∫ 1

−1

ω2
(
1− ω2

)α−1
dω =

1

1 + 2α
. (4.35)

This shows that there is a correlation volume around every point in space in which the sys-

tem behaves as though it is a well-mixed system with that volume.
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4.5 Conclusion

In conclusion, a racemic population of self-replicating chiral molecules far from equilibrium,

even in the absence of other nonlinearities that have previously been invoked, such as chi-

ral inhibition, transitions to complete homochirality when the efficiency of self-replication

exceeds a certain threshold. This transition occurs due to the drift of the chiral order pa-

rameter under the influence of the intrinsic stochasticity of the autocatalytic reactions. The

functional form of the multiplicative intrinsic noise from autocatalysis directs this drift to-

ward one of the homochiral states. Unlike some other mechanisms in the literature, this

process does not require an initial enantiomeric excess. In our model, the homochiral states

are not deterministic dynamical fixed points, but are instead stabilized by intrinsic noise.

Moreover, in the spatial extension of our model, we have shown that diffusively coupled au-

tocatalytic systems synchronize their final homochiral states, allowing a system solely driven

by autocatalysis to reach global homochirality. We conclude that autocatalysis alone is a

viable mechanism for homochirality, without the necessity of imposing chiral inhibition or

other nonlinearities.
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Part II

Nonnormality of Stochastic Turing

Patterns
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Chapter 5

Nonnormality and Steady State
Amplification in Stochastic Dynamics

It is widely assumed that deterministic dynamical systems close to their stable fixed points

respond to small perturbations by damping those perturbations exponentially. However,

this is not necessarily the case: in nonnormal systems (i.e. systems with non-orthogonal

eigenvectors) the response may initially consist of amplifying perturbations, as shown in

Fig. 5.1. Systems that exhibit these amplifications are called reactive [75]. This surprising

feature, initially found in fluid dynamics [76, 77, 78], and later in ecology [75, 79], shows

that a stable deterministic system can in theory produce a response that exceeds by several

order of magnitude the amplitude of the perturbation the system is subject to — a feature

not detectable by the analysis of the system’s eigenvalues.

In deterministic systems, where this phenomenon is most widely studied, the effect of

growth is transient, and at long time, the system damps the perturbations exponentially at

the rate determined by the largest eigenvalue of the system. In this chapter, we will see

that the effect of nonnormality on stochastic dynamical systems is permanent, where the

system maintains an amplified mean distance from its steady state. First, I discuss some

background work on deterministic nonnormal dynamical systems in Section 5.1. Linear

stability analysis of a stochastic dynamical system near its equilibrium point is shown in

Section 5.2. Equilibrium systems are time reversally symmetric and have hermitian linear

stability operators. However, near a nonequilibrium steady state, the system is generally

nonnormal. The linear stability analysis of a system near a nonnormal fixed point is given

in Section 5.3, which is used in Section 5.4 to calculate the amplification of the steady state

mean distance from the fixed point due to nonnormality. This amplification factor, as a new
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measure of nonnormality, with its geometric interpretation is the main result of this chapter

and is used in Chapter 6 and Chapter 7 to study the effect of nonnormality on stochastic

Turing patterns.

5.1 Introduction to Nonnormality and Transient Growth in

Deterministic Dynamics

Recent work in ecological dynamics has emphasized the importance of both transient and

asymptotic behavior of an ecological systems near their equilibrium when subject to an

initial perturbation [80, 81, 82, 75]. Near a stable fixed point, a nonlinear dynamical system

can be linearized to the following system of ordinary differential equations

d~y

dt
= A ~y, (5.1)

where the so called community matrix A has eigenvalues with negative real parts. It is

straightforward to show that asymptotically, ~y decays with the time scale set by the real

part of the largest eigenvalue λ1 of A, since all of the other eigenmodes decay faster (see

Appendix B.2). It can also be shown that if A has a complete set of orthogonal eigenvectors,

the same time scale sets an upper bound for the exponential decay of ~y (see Appendix B.1).

However, for a nonnormal matrix A, in short time, not only the norm of ~y could decay

slower than this time scale, it may transiently grow, despite the fact that all the component

of ~y along the eigenvectors of A exponentially decay. This is possible because of the fact

that the transformation that gives the component of vector ~y in the eigenbasis of ~A is not

unitary if the eigenvectors of A are not orthogonal, and does not preserve the norm of ~y.

We will see an intuitive explanation of this phenomenon in Section 5.4.

The rate of change of norm of ~y (i.e. ‖~y‖ =
√
~y T~y) is bound by the largest eigenvalue

of the hermitian part, H , of the matrix A defined as H = 1/2(A+AT). If this eigenvalue

is positive, for some initial conditions, ‖~y‖ transiently grows. In this case, the matrix A is
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Figure 5.1: Stable linear systems can amplify perturbations. Dynamics of the Euclidean norm ‖~y‖ obtained

by solving ~̇y = Ai~y. Reactive systems exhibit transient amplification before relaxing to fixed point (blue
lines), in contrast with conventional response of stable systems (yellow lines). Matrices A1 and A2 have
same eigenvalues [75].

called reactive, and the largest eigenvalue ofH is called the reactivity ofA [75]. The operator

norm of the time evolution operator exp(At) is also used as upper bound for ‖~y(t)‖ / ‖~y(0)‖

and is called the amplification envelope. The maximum of the amplification envelope and

the time tmax at which it occurs are also used as alternative measures of reactivity [75] (see

Appendix B.2 for more details).

5.2 Steady State Amplitude in Stochastic Dynamics Near

Equilibrium

Consider the real-valued linear stochastic differential equation for an m-component state

vector ~y

~̇y = A ~y + σ ~η(t), (5.2)

where ηi, i = 1, . . . ,m, the components of ~η, are independent zero mean Gaussian white

noises with unit variance, and the eigenvalues of the model-dependent matrix A have nega-

tive real parts. Therefore, the fixed point ~y0 = 0 is stable. The coefficient σ represents the

strength of the fluctuations and scales with Ω−1/2 in the case of demographic noise. For sim-
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plicity, the noise is chosen to be diagonal, however, partial results for non-diagonal noise are

presented in Appendices A.5, A.6, and A.7. Equation (5.2) is the prototypical linearization

of stochastic dynamics near a stable fixed point.

The condition of detailed balance corresponds to matrix A being symmetric (i.e. A =

AT). When this condition is satisfied, ~y0 = 0 is an equilibrium point, and the driving

force A~y can be written as the gradient of the potential U = 1/2 ~y TA ~y. The equilibrium

probability density of ~y is given by the Boltzmann factor

P (~y) = Z exp

(
~y TA ~y

σ2

)
, (5.3)

where the normalization constant Z is given by

Z =

√
det

(
− A

πσ2

)
. (5.4)

Under the influence of the stochastic noise, the system maintains an average distant form

the equilibrium point. The mean square value of this distant is given by

〈
‖~y‖2〉 =

∫
P (~y) ‖~y‖2 d~y = −1

2
σ2Tr

(
A−1

)
≤ m

2
σ2τ, (5.5)

where τ = −λ−1
1 is the time scale set by largest eigenvalue of A. Alternatively, we could

find this upper bound through the following heuristic argument: Since all the eigenvalues of

A are negative, under the deterministic part of Eq. (5.2), all the components of ~y along the

eigenvectors of A decay exponentially to zero with decay time scales τi = λ−1
i , where λi are

the associated eigenvalues. An upper bound for the norm of ~y could be found by replacing

all the eigenvalues by λ = max{λi}. Therefore, the norm of ~yu obeying

d~yu
dt

= λ~yu + σ ~η(t), (5.6)

should provide an upper bound for ‖~y‖. The mean square norm of ~yu for Eq. (5.6) is given
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by 〈
‖~yu‖2〉 =

〈∥∥∥∥∥
∫ τ/2

0

~η(t)dt

∥∥∥∥∥
2〉

=
m

2
τσ2. (5.7)

Although, the exact amplitude calculated in Eq. (5.3) obviously depends on Eq. (5.2)

having a potential solution and is only applicable to a symmetric A, one could naively

think that the heuristic argument above should hold for a nonsymmetric A as well. In this

chapter, we show that this upper bound is only valid when the matrix A is normal, i.e. it

has an orthogonal set of eigenvectors, since for a nonnormal A (when the fixed point ~y0 is

a nonequilibrium steady state violating detailed balance), the argument that ‖~y‖ decays at

least as fast as the slowest eigenvalue does not hold. As a result, we can show that this

transient effect in the deterministic part of Eq. (5.2) has a lasting effect on the steady state

amplitude of the stochastic dynamics [78]. This can be demonstrated by solving the steady

state probability density of ~y for Eq. (5.2).

5.3 Nonnormal Stochastic Dynamics Near a Nonequilibrium

Steady State

If A is nonnormal, Eq. (5.2) does not satisfy detailed balance. This indicates that the fixed

point ~y0 = 0 is a nonequilibrium steady state. In this case there does not exist a potential

function whose gradient is given by driving force A ~y. Therefore, the steady state solution

to the corresponding Fokker-Planck equation is not given by Boltzmann factor. The steady

state solution to a more general form of Eq. (5.2) can be found in Appendix A.5. Here, I

present the final results in terms of what I call the hermitianizer of A: the unique matrix

G such that its product with A is a hermitian matrix, and the hermitian part of its inverse

is the identity,

1

2

(
G−1 +

(
G−1

)T)
= 1

(GA)T = GA.

(5.8)
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Note thatG is the identity matrix ifA is hermitian, and its deviation from identity measures

how far A is from being hermitian. In terms of this matrix G, the steady state probability

density of ~y can be written as

P (~y) = N exp

(
~y TGA~y

σ2

)
, (5.9)

where the normalization constant N is given by

N =

√
det

(
−GA
πσ2

)
(5.10)

Note that, even though it looks like that 1/2 ~y TGA~y is a potential function, the statistics

of the approach to steady state is different in the system described by Eq. (5.2) compared

to a system defined by the potential 1/2 ~y TGA~y.

5.4 Steady State Amplification and New Measure of

Nonnormality

Given the steady state probability density of ~y from Eq. (5.9), we can evaluate the mean

square value of ‖~y‖ (see Appendix A.6 for the derivations):

〈
‖~y‖2〉 = −σ

2

2
Tr
(
G−1A−1

)
. (5.11)

For a hermitian matrix A, G is the identity (recovering Eq. (5.3)), and the right hand side of

Eq. (5.11) would depend only on the eigenvalues ofA and the strength of the noise σ2 (not the

eigenvectors). Therefore, to measure the effect of nonnormality of the eigenvectors, we can

divide Eq. (5.11) for a nonnormal matrix A by the same equation evaluated for a hermitian

matrix whose eigenvalues have the same real parts. Thus, we define the nonnormality index

H as

H(A) = Tr
(
G−1A−1

)
/Tr

(
A−1

)
. (5.12)
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Slow eigenvectorStable fixed point

Arc with constant

Figure 5.2: Reactivity is caused by nonorthogonal eigenvectors and a separation of timescales. The stable
fixed point is subject to the perturbation ~y0. Because of the separation of timescales, the deterministic
trajectory (blue arrowed line) is initially parallel to the fast eigenvector before relaxing to the slow manifold.
From A to B, the trajectory has magnitude greater than ||~y0||, hence the system is reactive.

In terms of H, Eq. (5.11) can be written as

〈
‖~y‖2〉 = −σ

2

2
H(A) Tr

(
A−1

)
. (5.13)

The nonnormality index H is always H ≥ 1, and the farther A is from normal, the

larger is the index H (compare Eq. (5.13) with Eq. (5.5)). This becomes more clear in two

dimensions where Eq. (5.11) simplifies to

〈
‖~y‖2〉 = −σ

2

2
det
(
G−1

)
Tr
(
A−1

)
, (5.14)

and therefore, the nonnormality index of A become the inverse determinant of the hermi-

tianizer of A. When the eigenvalues are real, we can solve directly for det(G) in term of

the eigenvalues of A and the angle θ between its eigenvectors, resulting in the intuitive

expression

H = 1 + cot2(θ)

(
λ1 − λ2

λ1 + λ2

)2

, (5.15)

relating the nonnormality index to the separation of time scales, and the non-orthogonality

of the eigenvectors.

When the eigenvectors are not orthogonal, cot2(θ) will be greater than zero. In this

case, for some initial conditions (e.g. the blue vector in Fig. (5.2)), the component along the

eigenvectors can be larger than the vector itself. If one of the eigenvalues is much smaller than

the other (separation of time scales), the component of ~y along the eigenvector associated

with the smaller eigenvalue (the vector pointing to the left in Fig. (5.2)) decays quickly, and
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as a result, the norm of ~y approaches the length of its other component, causing a transient

growth of the vector ~y, before decaying with rate associated with the larger eigenvector.

It is clear from this simple geometric picture that the separation of time scales, and the

non-orthogonality of the eigenvectors are requirements for the transient growth that leads

to a steady state amplification of ‖~y‖.

There are several other measures of nonnormality used in literature, such as the largest

eigenvalue of the hermitian part of A and the operator norm of the time evolution opera-

tor || exp(At)|| [75]. Although they all beautifully capture various aspects of the effect of

nonnormality on the transient dynamics, in the context of stochastic dynamics, the non-

normality index from Eq. (5.12) is the natural measure for this effect on steady state, as

it directly measures the amplification of the steady state magnitude compared to a normal

dynamical system with the same eigenvalues.
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Chapter 6

Nonnormality and Spatial Patterns in
Reaction Diffusion Equations

In the past decade, there has been an ever increasing attention to demographic fluctua-

tions in gene expressions, populations biology, and ecology [83, 84]. While one of the most

fundamental problems in ecology and developmental biology, i.e. the emergence of spatial

and temporal patterns from homogeneity, has recently been linked to demographic fluctua-

tions [85, 86], as it resolves the fine tunning problem [87, 88, 89] of Turing mechanism [90].

However, the amplitude of the fluctuation-induced patterns far from the fine tune parameter

regime as estimated by current mathematical techniques [2] is expected to be small, casting

a shadow on the prospect of ever observing spatially extended patterns due to demographic

fluctuations. I show that the current mathematical analyses miss an important amplifying

effect due to nonnormality that is a built-in feature of these pattern-forming systems. In

this chapter, I will show that stochastic patterns are in fact observable and likely to be

ubiquitous in systems characterized by demographic stochasticity.

Since the seminal paper of Turing [90], it has been thought that diffusion instabilities may

underlie various cases of biological pattern formation [91]. The Turing mechanism, which I

will describe in detail in Section 6.1, shows that diffusion, which is typically thought of as a

process that stabilize the uniform solution, can indeed destabilize it in some reaction diffu-

sion systems. These systems typically consist of activator-inhibitor reactions with diffusion

constants of widely different magnitude [92]. This latter condition has not been found in

experimental observations [93, 94], and has led to the conclusion that Turing-like patterns

are not widespread [95].

Recently, it was noted that reaction diffusion systems subject to demographic noise can
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also exhibit spatial patterns very similar to Turing patterns. They are known as stochastic

Turing patterns and have constraints on the diffusions constant that are much weaker than

the requirement for Turing patterns [85, 86, 96, 3, 97, 98]. I will review the mechanism

underlaying these stochastic patterns in Section 6.2.

Stochastic Turing patterns can exist over a wide range of parameter values, even where

the diffusion constants of activator and inhibitor are of similar magnitudes. Yet, unlike

deterministic patterns, the amplitude of stochastic pattern scales as Ω−1/2 (where Ω is the

correlated system size), meaning that in large populations, these patterns might be very

small [85], and are expected to be smaller the farther the system from the parameter regime

of deterministic Turing patterns. Therefore, it remains unclear whether stochastic patterns

are a sound paradigm for biological and ecological pattern formation.

In Section 6.3, I show that all stochastic Turing patterns are far from normal, and there-

fore, their amplitudes are significantly larger than the upper bound expected from the eigen-

value analysis. The effect of this nonnormality is persistent at steady state due to the

presence of noise, and the methods developed in Chapter 5 are applicable for the analysis of

this amplification. I conclude that the mechanism underlying the observed pattern forma-

tion in many of biological systems is that of the reactive stochastic patterns, since they have

large amplitudes and do not require an unphysically large separation of diffusion constants.

6.1 Deterministic Turing Patterns

The Turing mechanism in simplest form, consist of a system of two species, an activator

and an inhibitor that react and diffuse with different diffusion constants. The activator is

a species that catalyzes the production of itself and the other species, while the inhibitor

inhibits the production of itself and the activator. In the context of predator-prey models in

ecology, the activators are the prey that self-replicate and feed the predators, while predators

that compete and prey on the prey are the inhibitors. In the absence of diffusion, such
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systems typically reach a steady state solution with the coexistence of both activator and

inhibitor species at certain densities.

My first intuition would say that in the spatially extended case with diffusion, the uniform

solution with the well-mixed steady state densities should be a stable solution, since both the

reaction kinetics and the diffusion process would suppress inhomogeneous deviations from

the steady state value. However, Turing showed that if the inhibitor (the predator) diffuses

much faster than the activator (the prey), a subtle interplay between the different rates

of diffusion and the activation inhibition reactions can cause stable spatial inhomogeneities

with well-define length scales.

The inhomogeneities in Turing patterns consist of localized areas with both densities of

activator and inhibitor higher than the well-mixed steady state. Since the well-mixed steady

state is stable, the high concentration of inhibitor should reduce the total density, but the

inhibitor diffuses much faster and quickly leaves the high concentration area keeping the

ratio of inhibitor to activator bellow the well-mixed steady state. This shortage of inhibitors

is responsible for maintaining the high local density. But where would the inhibitors go? As

inhibitors leave the high density area, they enter the low density area where the densities of

both species are bellow their steady-state well-mixed values. Since the density of the acti-

vator is low in these regions, a significant portion of the local population would be migrants

that are produced in high density areas. The inhibitors migrate faster, and therefore, the

ratio of the inhibitor to activator in these regions is higher than the well-mixed. This excess

density of inhibitor is what maintains the low density in these regions.

In summary, the high density spots are sources where most of both species are produced.

The activators are slower and stay in the spots, while the inhibitors leave and keep the

density of the surrounding area low. This mechanism highlights the out of equilibrium

aspect of activator-inhibitor systems by separating the source and the sink locally in space.

This nonequilibrium aspect, as mentioned in Chapter 5, hints at the possibility of nonnormal

dynamics which we will see in Section 6.3. Before going there, we need to understand a more

general form of the above dynamics in a quantitative sense and be able to predict the regime
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of parameters of such spatial instabilities. Consider the reaction diffusion equation of the

form

∂~q

∂t
= ~f(~q) +D∇2~q (6.1)

where the vector field ~q is the state vector, with components qi representing population densi-

ties of species i with diffusion constant Di, and the diffusion matrix D = diag(D1, D2, . . . ).

The function ~f(~q) determines the interactions of the species. We assume that ~f(~q) has a

stable fixed point, i.e. there exist ~q ∗ such that ~f(~q ∗) = 0, and all of the eigenvalues of

J = ∇~qf(~q)|~q ∗ (6.2)

have negative real parts.

Our goal is to study the stability of the uniform solution ~q(~x) = ~q ∗. Equation (6.1) can

be linearized around its fixed point ~q ∗, by defining the deviation from the fixed point

~p = ~q − ~q ∗ (6.3)

and linearizing around the fixed point.

∂~p

∂t
= J~p+D∇2~p (6.4)

The Laplacian in Eq. (6.4) can be diagonalized by a Fourier transform, resulting in

d~p~k
dt

= K~p~k, K = J − k2D (6.5)

If the diffusion constants Di’s are all the same, the matrix D becomes a multiple of the

identity, and the eigenvalues of K will be the eigenvalues of J shifted by −k2D for each ~k,

resulting in a more stable operator, making the homogeneous solution a deterministically

stable solution of Eq. (6.1). This is the natural case, when one would expect that the dif-

fusion would favor the uniform solution. However, in the case that the diffusion rates are
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sufficiently different, the largest eigenvalue of K can have a non-monotonic behavior as a

function of ~k, and in some cases have positive eigenvalues for a small range of ~k peaked

around some value ~k0 (see Fig. (6.1a)). In this case, in a neighborhood of the homogeneous

solution, all the Fourier modes exponentially decay to zero except the modes near ~k0 that

can grow so large that the linear approximation is no longer valid. The growth in a lo-

calized region of ~k-space leads to the formation of patterns known as deterministic Turing

patterns [90]. The formation of these Turing patterns is dependent on a large separation of

the diffusion constants [92, 93, 94].

6.2 Stochastic Turing Patterns

Turing instabilities rely on the inhibitors having a diffusion constant orders of magnitude

larger than the activators, making the observation of Turing patterns in natural systems

unlikely [92]. It has been shown, however, that the presence of noise can expand the range

of parameters (in particular the ratio of diffusion constants) in which spatial pattens can be

observed. Let us review the mechanism for these noise-induced spatial patterns. Consider

the stochastic extension of Eq. (6.1)

∂~q

∂t
= ~f(~q) +D∇2~q + σ~ξ(~x, t). (6.6)

where ξi’s, the components of ~ξ(~x, t) are δ-correlated Gaussian white noises with unit vari-

ances and zero means. Again, we assume that ~f(~q) has a stable fixed point, i.e. there exist

~q ∗ such that ~f(~q ∗) = 0, and all of the eigenvalues of J = ∇~qf(~q)|~q ∗ have negative real parts.

Our goal is to study the stability of the uniform solution ~q(~x) = ~q ∗ in the present noise.

Equation (6.6) can be linearized around its fixed point ~q ∗, by defining the deviation from

the fixed point ~p = ~q − ~q ∗ and linearizing around the fixed point.

∂~p

∂t
= J~p+D∇2~p+ σ~ξ(~x, t). (6.7)
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The Laplacian in Eq. (6.7) can be diagonalized by a Fourier transform, resulting in

d~p~k
dt

= K~p~k + σ~ξ(~k, t), K = J − k2D (6.8)

Obtaining the stochastic extension of Eq. (6.5). In Section 6.1, we saw that for a large

separation of diffusion constants, if the real part of the largest eigenvalue of K is positive

in a neighborhood of its maximum at ~k = ~k0, deterministic Turing patterns are formed. In

contrast, consider an intermediate scenario with diffusion constants different enough so that

they can cause a non-monotonic behavior for the largest eigenvalue of K as a function of ~k

peaked around some value ~k0, but not enough for the largest eigenvalue to become positive

at any ~k. In the absence of the noise term, if the largest eigenvalue at ~k0 is close enough to

zero, in a neighborhood of the homogeneous state, all the ~k modes decay quickly to zero,

while the modes with ~k ∼ ~k0 persist longer in the system, causing a transient pattern. In

the presence of the noise term ~ξ(~k, t) in Eq. (6.8), while the modes with smaller eigenvalues

decay quickly to zero, the slow modes drift away from the fixed points under the influence of

the noise. The drift of the ~k modes near ~k0 produces persistent steady-state patterns with

well-defined length-scales known as stochastic Turing patterns [85, 86]. See Fig. (6.1b) for

an example of λ1 of K as a function of k = ||~k|| that could lead to stochastic patterns.

Equation (6.8), is the complex variable version of Eq. (5.2), and its steady state amplitude

can be calculated through methods similar to those in Chapter 5. The complex extensions

of some of the analyses in Chapter 5 are shown in Appendix A.7. The amplitude of such

fluctuation-induced pattern is proportional to the amplitude of the noise, σ, which is of the

order of inverse square root of the system size, Ω−1/2, in the case of demographic noise. A

naive eigenvalue analysis would set an upper bound on the mean amplitude square of the

patterns proportional to σ2τ , where τ is the decay time scale associated with the largest

eigenvalue of K, τ = <(λ1)−1. Therefore, for these patterns to be experimentally observed,

either the noise has to be very large, or the real part of λ1 be very close to zero. But, for

<(λ1) to be very close to zero, the parameters of the problem (in particular the ratio of
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0.0 2.0

0

1

(a) Deterministic Pattern

0.0 2.0

(b) Stochastic Pattern

Figure 6.1: The real part of the largest eigenvalue, <(λ1), of K, as a function of the length of the wave

vector k =
∥∥∥~k∥∥∥. (a) The real part of the largest eigenvalue of K is positive in a neighborhood of its peak at

k = k0 leading to spatial instabilities known as deterministic Turing patterns. (b) When <(λ1) at its peak

at some ~k0 6= 0 is close to zero, but still negative, the ~k modes in the neighborhood of k0 maintain a larger
steady state amplitude in the presence of noise compared to the other Fourier modes giving rise to spatial
inhomogeneities known as stochastic Turing patterns

the diffusion constants) have to be very close to the parameter regime of the deterministic

Turing patterns (see Fig. (6.1)).

This seems to suggest that we have not solved the problem of observability of Turing

patterns, unless, we can show the system is far from normal. In which case, the amplitude

of these patterns can be far larger than predicted from the eigenvalue analysis, as shown in

Chapter 5. In the next section, I will show that all the pattern forming systems are far from

normal. In particular, if a system can theoretically exhibit deterministic Turing patterns for

some ratio of diffusion constants, that system is reactive, and can produce large amplitude

stochastic Turing patterns at much smaller ratio of diffusion constants.
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6.3 Nonnormality and Pattern Formation

In this section, I show that in order for a system described by Eq. (6.6) to produce stochastic

patterns, it is necessary for the matrix J in Eq. (6.7) to be far from normal. I will show this

by finding a lower bound on the difference between the largest eigenvalue of H = (J+JT )/2

and the real part of the largest eigenvalue of matrix J .

The proof relies on the fact that for the system to exhibit stochastic patterns, the real

part of the largest eigenvalue, λ1, of K as a function of the wave vector ~k should have its

maximum at some value ~k0 6= 0 [2, 86], and therefore,

δ = <(λ1(K0))−<(λ1(J)) > 0, (6.9)

for K0 = K(~k0) (see Fig. (6.1b)). It is a well known fact that the real part of the largest

eigenvalue of a matrix is less than or equal to that of its Hermitian part (see Appendix B.2

for a simple proof), therefore,

<(λ1(K0)) ≤ λ1(H − k2
0D). (6.10)

Since both H and −k2
0D are Hermitian, by Weyl inequality

λ1(H − k2
0D) ≤ λ1(H) + λ1(−k2

0D) = λ1(H)− k2
0Dmin. (6.11)

Adding k2
0 Dmin −<(λ1(J)) to both sides of this inequality, we have

λ1(H)−<(λ1(J)) ≥ δ + k2
0Dmin. (6.12)

Moreover, since the non-normality of J should be independent of the diffusion constants,

this lower bound can be extended to the supremum of the right hand side of the inequality

(6.12) over all the matrices D that produce spatial patterns and their corresponding ~k0. In

particular, if a system is theoretically capable of producing deterministic Turing patterns
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for some set of diffusion constants, i.e. <(λ1(K0)) > 0, δ would be greater than −<(λ1(J)),

and therefore J would be reactive (this special case was previously proven by Neubert et

al. [99]). In this case, if experimentally measured values of diffusion constants do not fall

within the Turing pattern regime, the system is still reactive and capable of exhibiting am-

plified stochastic patterns.

6.4 Conclusion

Deterministic Turing patterns suffer from their dependence on extremely large separation of

the diffusion constant. Stochastic Turing patterns in nonreactive systems have amplitudes of

order Eq. (5.7) and are unlikely to be experimentally observed. We argue that the observation

of spatial order in reaction diffusion systems based on Turing mechanism is only possible

in the case of stochastic Turing patterns with large reactivity. It is important to note that

reactivity in a pattern forming system is not unexpected. We have shown that all stochastic

pattern forming systems are far from normal. Neubert et al. have shown that reactivity is a

necessary, but not sufficient condition for the formation of deterministic Turing patterns [99].

This implies that as we move in the parameter space of the problem out of the deterministic

Turing pattern regime and enter the stochastic Turing pattern regime, the system is still

reactive for all range of parameters in the stochastic regime. In other word, every system

that is capable of producing deterministic patterns for some ratio of diffusion constants, will

produce reactive stochastic Turing patterns for smaller ratios of diffusion constants.

In Chapter 7, we will study the patterns that emerge in the stochastic extension of a

model whose deterministic behavior was previously examined by Ridolfi et al. [3], and show

that the range of parameters in which the system exhibits steady state patterns is drastically

expanded by the demographic noise, and the amplification of the stochastic patterns due to

nonnormality makes it possible to observe these patterns far form the regime of deterministic

pattern.
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Chapter 7

Reactive Stochastic Patterns in an
Activator-Inhibitor Model

In this chapter, we study the patterns that emerge in the stochastic extension of a model

whose deterministic behavior was previously examined by Ridolfi et al. [3], and show that

(1) the range of parameters in which the system exhibits steady state patterns is drastically

expanded by the demographic noise, and (2) the nonnormality amplifies the amplitude of

the stochastic patterns by orders of magnitudes.

7.1 Description of the Model

A special case of the deterministic part of Eq. (6.6) was studied by Ridolfi et al. with two

species U and V with densities ~q = (u, v), and ~f(u, v) define as

~f(u, v) =

 u (a u v − e)

v (b− c u2 v)

 , (7.1)

where the the constants a, b, c and e are positive It was determined that the deterministic

dynamics produces transient patterns [3]. Here, we use an individual level model whose de-

terministic dynamics is given by Ridolfi’s model, and demonstrate that the resulting intrinsic

noise induces steady state stochastic patterns that are highly amplified by the nonnormality

of Jacobian of ~f . This individual level model is defined by the following set of two-species
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activator-inhibitor reactions on a discretized D-dimensional space with LD lattice sites,

2Ui + Vi
a−→ 3Ui + Vi, Vi

b−→ 2Vi,

Ui
e−→ ∅, 2Vi + 2Ui

c−→ Vi + 2Ui,

Ui
δu−→ Uj, Vi

δv−→ Vj, j ∈ 〈i〉

(7.2)

where Ui and Vi are the species U and V on the site i for i = 1 . . . LD and 〈i〉 is the set

of sites neighboring i. The state of the system is specified by the concentration vectors

~qi ≡ (ui, vi) ≡ (Ui, Vi)/Ω, where Ω is the volume of each site. The diffusion rates δu and δv

are related to the diffusion constants by (δu, δv) = (DU , DV )/Ω2/D.

For b > e, the deterministic dynamics of the well-mixed reactions has a stable fixed

point. The stability of the homogeneous state associated with this fixed point in the spatial-

extended system can be analyzed by the methods explained in the previous chapter. In

the following sections, the discrete-space version of Eqs. (6.6) (6.7) (6.8) are derived by

expanding the master equation for the time evolution of the probability of the system being

at a density ~q. Then, the stability of the homogeneous state is determined by analyzing

the behavior of the eigenvalues of K as a function of ~k. The audience not interested in the

details of the analysis can skip to Section 7.6 were the main results are summarized.

7.2 Master Equation, Fokker-Planck Equation, and Langevin

Equation

In this section we derive the stochastic extension of the model by Redolfi et al. [3] by

expanding the master equation corresponding to the individual level model defined by re-

actions (7.2). Each reaction of reaction scheme (7.2) takes the system from a state {~qi} to

{~qi′} with probability per unit time T ({~qi′}|{~qi}). These transition rates are given from the
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law of mass action:

T (~qi + ~s1| ~qi) = Ωau2
i vi, T (~qi + ~s2| ~qi) = Ωbvi,

T (~qi − ~s1| ~qi) = Ωeui, T (~qi − ~s2| ~qi) = Ωcu2
i v

2
i ,

(7.3)

and for every j ∈ 〈i〉

T (~qi − ~s1, ~qj + ~s1| ~qi, ~qj) = Ωδuui,

T (~qi − ~s2, ~qj + ~s2| ~qi, ~qj) = Ωδvvi,
(7.4)

where

~s1 = Ω−1

 1

0

 , ~s2 = Ω−1

 0

1

 . (7.5)

The master equation for the time evolution of the probability of finding the system at a

state {~qi}, P ({~qi}, t) can be written as

dP ({~qi}, t)
dt

=
∑
{~qi′}

(T ({~qi}|{~qi′})− T ({~qi′}|{~qi})) (7.6)

Following [2], we can expand the right hand side of Eq. (7.6) to second order in Ω−1 obtaining

a Fokker-Planck equation corresponding the following set of stochastic differential equations

dui
dt

= ui(auivi − e) + δu
∑
j∈〈i〉

(uj − ui) + ξi(t),

dvi
dt

= vi(b− cu2
i vi) + δv

∑
j∈〈i〉

(vj − vi) + ηi(t),

(7.7)

where ξi’s and ηi’s are zero mean Gaussian noise with correlations

〈ξi(t)ξj(t′)〉 =
δ(t− t′)

Ω

((
ui(auivi + e) + δu

∑
k∈〈i〉

(ui + uk)

)
δi,j − δu(ui + uj)χ〈i〉(j)

)

〈ηi(t)ηj(t′)〉 =
δ(t− t′)

Ω

((
vi(b+ cu2

i vi) + δv
∑
k∈〈i〉

(vi + vk)

)
δi,j − δv(vi + vj)χ〈i〉(j)

) (7.8)
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and the characteristic function, χ〈i〉, of 〈i〉 is defined as

χ〈i〉(j) =


1 j ∈ 〈i〉

0 j /∈ 〈i〉
. (7.9)

By defining ~f(~q) ≡ (f, g) ≡ (u(auv − e), v(b− cu2v)), ~ξi ≡ (ξi, ηi), δ ≡ diag(δu, δv), and

(∆~q)i ≡
∑

j∈〈i〉(~qj − ~qi), Eq. (7.7) can be written in the simple form

d~qi
dt

= ~f(~qi) + δ (∆~q)i + ~ξi(t). (7.10)

Equation (7.10) is the discrete space version of Eq. (6.6). Continuous limit can be taken

at any point in the following analysis to recover the continuous space stochastic partial

differential equations of type analyzed in Chapter 6. We continue with the discrete version

where the analytic results can be more readily compared to the simulation.

The deterministic part of our model has a fixed point ~q ∗ ≡ (u∗, v∗) = (ba/ce, e2c/a2b),

obtained by setting ~f(~q) equal to zero. We can linearize Eq. (7.10) around the fixed point

~q ∗, by defining ~pi ≡
(
(ui − u∗)/

√
2u∗e, (vi − v∗)/

√
2v∗b

)
which are the rescaled deviations

of ~qi from ~q ∗,

d~pi
dt

= J~pi + δ(∆~p)i + ~ξi(t), (7.11)

where the linear stability operator J is defined as the Jacobian of the transformed function

f at the fixed point ~p = 0 is given by

J =

 e b
3
2 a

3
2

ce

− 2e2c

a
3
2 b

1
2
−b

 (7.12)

Evaluating Eq. (7.8) at ~q ∗

〈ξi(t)ξj(t′)〉 =
δ(t− t′)

Ω

((
1 + δun/e

)
δi,j − δuχ〈i〉(j)

)
,

〈ηi(t)ηj(t′)〉 =
δ(t− t′)

Ω

((
1 + δvn/b

)
δi,j − δvχ〈i〉(j)

)
,

(7.13)
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where n ≡ |〈i〉| is the number of neighbors of each site. Note that for b > e, both of the

eigenvalues of J have negative real parts, making ~q ∗ an attractor of the dynamics in the

absence of the diffusion.

7.3 Pattern Formation and Stability of the Uniform State

To examine the spatial stability of the uniform solution ~qi = ~q ∗ of Eq. (7.10), we need to

diagonalize the discrete Laplacian operator ∆ in Eq. (7.11) to obtain a discrete-~k version

of Eq. (6.8) whose pattern forming behavior was analyzed in Section 6.2. The discrete

Laplacian operators is diagonalized by discrete Fourier transform: we define the discrete

Fourier transform for a sequence {s~n} as

s̃~k ≡ (F [{s~n}])~k ≡
1√
ND

∑
~n

ε−2π~k.~n/Ns~n. (7.14)

We drop the tildes on the Fourier variable with the convention that the variables with index

k are Fourier variables. Equation (7.11) under this transformation becomes

d~p~k
dt

= K~p~k + ~ξ~k(t), K = J + ∆(~k)δ, (7.15)

where ∆(~k) is the discrete Fourier transform of the discrete Laplacian operator given by

∆(~k) ≡ −2
D∑
l=1

(
1− cos(2πkl/N)

)
(7.16)

and

〈ξ~k(t)ξ
∗
~k′

(t′)〉 = Ω−1
(

1− e−1δu∆(~k)
)
δ~k,~k′δ(t− t

′),

〈η~k(t)η
∗
~k′

(t′)〉 = Ω−1
(

1− b−1δv∆(~k)
)
δ~k,~k′δ(t− t

′).

(7.17)

For the regime that we observe stochastic patterns, the contribution of the diffusion
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process in the amplitude of the noise in Eq. (7.17) is very small and will be neglected for

simplicity. This approximation is not necessary, since there is always a change of variables

that simplifies the correlation matrix to a multiple of the identity matrix (this is the reason

for the rescaling in the definition of ~p). With this approximation

〈
~ξ~k(t)

~ξ †~k′(t
′)
〉

= Ω−1δ~k,~k′δ(t− t
′)1 (7.18)

where ~ξ †~k′ is the conjugate transpose of ~ξ~k′ , and 1 is the 2×2 identity matrix. Equation (7.15)

is of the form Eq. (7.11) and its pattern forming behavior is determined by the eigenvalues

of K as explained in Chapter 6.

7.4 Phase Diagram

The pattern forming behavior of the model defined by reactions (7.2) can be understood by

analyzing the eigenvalues of K as a function of ~k. Matrix K can be written in elements

from Eq. (7.15) and Eq. (7.12):

K =

 e+ ∆(~k)δu
b
3
2 a

3
2

ce

− 2e2c

a
3
2 b

1
2

−b+ ∆(~k)δv

 (7.19)

As it will become clear, most of the properties of the system depend on the following three

parameters

ρ =
b

e
, ν =

e c

a
3
2 b

1
2

, r =
δv
δu

=
DV

DU

. (7.20)

In the following analysis, I rewrite various expression in terms of these parameters, wherever

possible. We start with K

K =

 e+ ∆(~k)δu b/ν

−2e ν −b+ ∆(~k)δv

 (7.21)
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The largest eigenvalue of K is given by

λ(~k) =
1

2

(√
b2 − 2b∆(~k)(δv − δu)− 6be+

(
e−∆(~k)(δv − δu)

)2

− b+ ∆(~k)(δv + δu)− e

)
.

(7.22)

Notice that the eigenvalues of K are independent of ν. For small ~k, ∆(~k) is a monotonically

decreasing function of ~k (proportional to −k2). We define y = −∆(~k). To determine if λ

monotonically decays or if it has a maximum at some ~k0 6= 0, we can differentiate λ with

respect to y and see if it has a positive root. The largest root of dλ
dy

is given by

y0 = −∆(~k0) =
(r + 1)

√
2 b e r − b r − e r

δu (r − 1) r
. (7.23)

For y0 to be greater than zero we need

ρ <

(
1 + r + r2 + (r + 1)

√
r2 + 1

)
r

. (7.24)

We can find the condition on the ratio of the diffusion constants by inverting this inequality:

r >
1− 2 ρ+ ρ2 + (1 + ρ)

√
1 + ρ (ρ− 6)

4 ρ
= f1(ρ). (7.25)

The condition for formation of stochastic pattern is λ(~k0) > <(λ(0)). We can find λ(~k0)

and λ(0) by substituting y0 = y(~k0) from Eq. (7.23) and y(0) = 0 in Eq. (7.22):

λ(~k0) =
b+ e r −

√
8 b e r

r − 1
, λ(0) =

1

2

(√
b2 − 6 b e+ e2 − b+ e

)
. (7.26)

Then, λ(~k0) > <(λ(0)) simplifies to

r >
−1 + 14 ρ− ρ2 + 4

√
−2 ρ (1 + ρ (ρ− 6)))

(1 + ρ)2
= f2(ρ). (7.27)

The condition for a deterministic Turing pattern is a lot simpler; we just need λ(~k0) > 0
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Figure 7.1: Stochasticity expands the parameter regime of pattern formation. (left) Phase diagram
of model defined by reactions (7.2) showing that the pattern forming behavior of this model depends only
on the ratios b/a and DV /DU . (right) Semi-log plot of nonnormality index for the point P as a function of
a/c2/3. Black markers are amplifications measured in simulation.

which simplifies to

r >
(

3 + 2
√

2
)
ρ = f3(ρ). (7.28)

When r is greater than f1(ρ) and f2(ρ) but less than f3(ρ), the system exhibits stochastic

patterns (blue region in Fig. (7.1)-left), while we observe the deterministic patterns when r

is greater than f3 (orange region of Fig. (7.1)-left).

7.5 Nonnormality

The amplification of our stochastic patterns depend on the nonnormality index of K0 =

K(~k0) given by

K0 =

 e− y0 δu b/ν

−2 e ν −b− y0 δv

 , (7.29)

where y0 = −∆(~k0). The nonnormality index of 2 × 2 matrices is calculated explicitly in

Appendix B.3. We use Eq. (B.14) to calculate the nonnormality index of K0:

H(K0) = 1 +

(
b+ 2eν2

ν(b− e+ y0 (δu + δv))

)2

. (7.30)
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We substitute y0 from Eq. (7.23) and rewrite the resulting expression in terms of ρ, r, and

ν:

H(K0) = 1 +

 2ν2 + ρ

ν

(
ρ− 1 +

(r+1)(−ρr+(r+1)
√

2ρ r−r)
(r−1)r

)


2

(7.31)

Since the eigenvalues of K do not depend on ν, one can change H(K0) by changing ν with-

out moving the system in its phase diagram (see Fig. (7.1)-right). This can be done by

changing the ratio of a/c2/3 without affecting ρ.

7.6 Summary

The pattern forming behavior of the model described by reaction (7.2) only depends on

the ratio of the diffusion constants DV /DU and the ratio of the reaction rates of the two

linear reactions b/e. Figure (7.1)-left shows the regime of parameters in which the system

exhibits either stochastic or deterministic Turing patterns. As expected, deterministic pat-

terns emerge only when the ratio DV /DU of diffusion constants is very large (above the

blue line in Fig. (7.1) which steeply grows outside of the figure), while the requirement on

this ratio for the stochastic patterns is drastically reduced (see the Section 7.4 for analytic

expressions for the boundaries). In the absence of the nonnormality effect, one would expect

that only stochastic patterns with the parameters very close to the deterministic regime

would be observed, since far from this regime, the amplitude of the patterns would be too

small to detect.

However, since for all b/e > 1, there is a DV /DU above which the system exhibits de-

terministic Turing patterns, J is reactive for all b/e > 1. Therefore, even when the system

is far from the parameter regime of deterministic patterns, the amplitude of the resulting

stochastic pattern is far larger than what one would expect from the analysis of the eigen-

values from Eq. (5.7). We can see this by analyzing the amplitude of the patterns at the

point P in Fig. (7.1). This point has the ratios b/e = 5.8 and DV /DU = 3.4 and is chosen to
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Figure 7.2: Reactivity amplifies the amplitude of stochastic patterns. (right) An example of stochas-
tic patterns obtained by Gillespie simulations [60] of the model defined by reactions (7.2) at the point P of
Fig. (7.1) showing two orders of magnitude amplification. (left) Eigenvalues of K as a function of k; the
largest eigenvalue peaks at k0 = 6. Simulation parameters: a = 3, b = 5.8, c = e = 1, δu = 3.9, δv = 3.4 δu,
and Ω = 104.

be very far from the deterministic Turing pattern regime. At this b/e ratio, the ratio of the

diffusion constants has to be at least ten time larger than the chosen value for the system

to exhibit deterministic Turing patterns. The amplitude of the patterns as determined by

Eq. (5.13) is dependent on the eigenvalues of K (fixed by the choice of the point P ) and

the nonnormality index H(K) which can be tuned by changing the ratio a/c2/3 without

changing the point P (see Section 7.5 for the analytic expression). Figure (7.1)-right shows

that the amplification of stochastic patterns for the point P varies over orders of magnitude

for a small range of a/c2/3.

Figure (7.2)-right shows the time series of the amplified stochastic Turing patterns in the

concentration of the species U , in a simulation of our model in one dimension. The mean

square amplitude of these spatial patterns is about 0.21, while the upper bound for the

amplitude of the pattern in the absence of reactivity from Eq. (5.7) is 2.5× 10−3. The non-

normality index H of the slowest Fourier mode k0 = 6 is about 103 justifying the two order

of magnitude amplification in the amplitude of the stochastic patterns (see Fig. (7.1)-right).
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Figure 7.3: The effect of the ratio r of the diffusion constants r = DV /DU on the pattern formation of the
model defined by reactions (7.2). The Gillespie simulations are run for r values 1.1, 3.4, 10, 33, 34, and
35 (top to bottom). For r > 34, the system is in the regime of deterministic Turing patterns, while the
values of 1 < r < 34 are stochastic patterns. Unlike what is expected from the eigenvalue analysis, the
amplitude of the patterns is not strongly dependent on how far the system is form the deterministic Turing
pattern regime, but the regularity of the patterns is affected by moving away from this regime. Simulation
parameters: a = 3, b = 5.8, c = e = 1, and Ω = 104.
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Chapter 8

Velocity Statistics of Edge
Dislocations in Plastic Flow

8.1 Introduction

At mesoscopic scales, crystalline materials under stress exhibit intermittent behavior through

plastic slip avalanches that follow the power-law statistics predicted by the mean field theory

of interface depinning transition [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The origin of intermit-

tency in plastic strain rate fluctuations is attributed to the collective dynamics of dissipative

structures, such as dislocations, where shear deformation is localized. In addition to the

heterogeneous strain response, the long range elastic interactions between dislocations lead

to complex spatial-temporal patterning and correlations [100]. Plastic slip avalanches me-

diated by dislocations have been studied numerically using discrete dislocation dynamics

models [5, 101, 102] and phase field crystal models [13].

A point edge dislocation generates in two-dimensions a shear stress that decays as 1/|~r|

with a quadrupole anisotropy of the form

τ (~r) = bµ
x (x2 − y2)

2π(1− ν)(x2 + y2)2
, (8.1)

where ~r = (x, y) is a position vector with respect to the dislocation origin, b is the length of

the Burgers vector parallel to the x-direction (~b = bx̂), µ is the shear modulus, and ν is the

Poisson ratio [103]. The discrete dislocation dynamics (DDD) model describes a collection of

N edge dislocations with pairwise interactions mediated by the internal shear stress τ from

Eq. (8.1). Each dislocation performs overdamped motion along the x-direction described
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by [104, 5, 101]

η

b

dxi
dt

= b
∑
j 6=i

τ(~ri − ~rj), ∀i = 1, · · · , N (8.2)

where η/b is an effective friction coefficient per unit dislocation length [105]. Most of the DDD

simulations are done at zero temperature and focus on the collective effects of dislocations in

the presence of an external, uniform stress. Starting from a random configuration, the system

relaxes according to Eq. (8.3) towards a frozen metastable configuration. At a non-vanishing

external stress below a critical threshold, the relaxation dynamics follows a power-law scaling

in time with exponents depending on the physical setup [106, 105]. Above a critical threshold

and after a transient power-law relaxation, the system approaches a stress-dependent plateau

corresponding to steady-state plastic flow.

Since the velocity of each dislocation is proportional to the stress at the position of the

dislocation, in a translationally invariant system, where the probability density of position of

dislocations is uniform, the distribution of velocity v of dislocations has the same functional

form as the distribution of internal stress. Although the velocity distribution of individ-

ual dislocations (or, equivalently, the distribution of internal stress) has not been directly

measured, from a theoretical point of view, it is a better defined quantity compared to the

distribution of acoustic energy of plastic slip avalanches, as one does not need to deal with

the arbitrarily defined thresholds and coarse-graining time scales that show up in the defi-

nition of slip events in avalanches. Also, in a discrete dislocation dynamics simulation, as a

measure of the statistical properties of the system, the stress distribution can be numerically

calculated and analysed more effectively than the pair correlation function [107].

While the local stress fluctuations are known to be power-law distributed, different expo-

nents have been found in the literature depending on the details of the models and methods

used in the particular studies. The probability distribution of stress is analytically studied

in Ref. [108] for a two-dimensional statistical model, and a power-law scaling τ−3 is found

for the high stress tail of the stress distribution in equilibrium configurations. A similar

power-law, found in the high velocity tail of the velocity distribution in both two and three
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dimensions in discrete dislocation dynamics simulation in Ref. [16], is attributed to the

avalanche dynamics, and has been shown to be independent of the value of the external

stress. However, at intermediate stresses, when a pair of oppositely-oriented dislocations

can be approximated by ideal dipoles, the stress distribution has been shown to have the

exponent −2 [107]. Reference [5] shows that the E−3/2 distribution of the acoustic energy, E,

of avalanches that is measured experimentally is associated with the power-law distribution

of velocity of dislocations with an exponent −2.5 that is again independent of the value of

the external stress. In this study, the presence of avalanches and intermittency of the system

was attributed to dislocation pair-creation through Frank-Read sources.

In Refs. [15, 16, 8, 5] discussed above, the robust power-law distributions for the different

avalanche variables of the collective dislocation dynamics are attributed to self-organized

criticality, while other studies [17, 13, 11, 18] show that in fact the avalanche statistics is a

signature of a fine-tuned critical behavior predicted by the mean field depinning transition.

Reference [17] derives the density dependence of the critical stress below which the system

of dislocations are jammed, and proposes a phase diagram by analogy with the jamming

transition in granular materials [109] in which stress and temperature play symmetric roles.

Although the DDD method has been extensively used to investigate plastic flow prob-

lems, most studies are based on a deterministic, athermal approach. Hence, the classical

DDD model is not suitable for simulating thermally-activated processes, such as dislocation-

obstacle interactions. In athermal DDD simulations, the system gets trapped into a metastable

configuration, causing unphysical freezing of dislocation motion. Hence, it is challenging to

study equilibrium properties of dislocation ensembles in athermal configurations. Instead, we

consider a stochastic approach by including in the dislocation motion, given by Eq. (8.3), ran-

dom stress pulses that mimic, to a first approximation, thermal agitations. Another source of

stochasticity in dislocation dynamics is the fluctuating local strain field arising from random

dislocation arrangements. This approach has been applied to study the distribution of stress

fluctuations [108] and fractal dislocation patterning during plastic deformations [110, 111].

The purpose of this project is to investigate the statistical properties of equilibrium dislo-
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cation configurations in the presence of thermal fluctuations. Thermal agitations arise from

random collisions of dislocations with surrounding particles, such as phonons, and result in

random forces acting on dislocations. The stochastic version of Eq. (8.2) that we consider

is given by

η

b

dxi
dt

= b
∑
j 6=i

τ(~ri − ~rj) + ξi(t), (8.3)

where the fluctuations are Gaussian distributed with zero mean and variance

〈ξi(t)ξj(t′)〉 =
2kBTη

b2
δi,jδ(t−′ t), (8.4)

that depends on the effective temperature kBT and a damping coefficient consistent with the

fluctuation-dissipation theorem. In particular, we study the distribution of velocities of dis-

locations in a relaxed configuration and show that the corresponding power-law probability

distribution function P (v) is not necessarily a collective effect arising from avalanches dynam-

ics, non-equilibrium critical points, or self-organized criticality; rather, it is a consequence of

the functional form of the stress in Eq. (8.1) and, in some cases, can be determined only by

considering the nearest-neighbor interaction. In other cases, where the collective dynamics

of dislocations has a significant effect on P (v), this collective effect can be quantified by con-

sidering the deviation of the exponent of the power-law distribution of velocity from the one

predicted using only the nearest-neighbor interaction. In section II, we show that Eq. (8.3)

in one dimension is the same as the equation of motion for a two-dimensional (2D) Coulomb

gas confined in one dimension (1D). This system is sometimes known as Dyson’s model,

and was first introduced to investigate the statistical properties of energy levels of heavy

nuclei [1]. We find the probability distribution of velocity in Dyson’s model and show that

it follows a temperature dependent power-law distribution which can be predicted simply by

considering the nearest-neighbor interaction, and thus is a consequence of the logarithmic

interaction energy.

The nearest-neighbor analysis in 2D is performed in section III, where we find a power-

law distribution of velocities with an exponent −2 independent of the effective temperature.
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We show the presence of a phase transition analogous to the pairing transition in a 1D

plasma with logarithmic interaction [112] at a temperature where the effective thermal energy

becomes equal to the mutual interaction energy scale µb3

2π(1−ν)
. Above this temperature,

the dislocations are no longer bound to their nearest neighbor in the long time limit. At

temperatures well below the transition temperature, we show that the nearest-neighbor

approximation is valid, and the probability distribution of velocities of dislocations follows

a power-law with the exponent −2, while at temperatures comparable with the transition

temperature or above, the exponent of the power-law distribution of velocity deviates from

−2, and is thus a presumptive indication of the collective dynamics of dislocations.
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8.2 Velocity distribution in Dyson’s model

In 1D, Eq. (8.1) for the internal stress simplifies to a 1/r- force, such that Eq. (8.3) re-

duces to the stochastic equation of motion for a 2D Coulomb gas confined in 1D, which

was first studied by Dyson [1] to investigate the statistics of the energy levels of heavy nu-

clei. Dyson’s model has also been used to model a wide variety of phenomena in nuclear

physics and other fields, including random matrix theory [113, 114], the theory of orthog-

onal polynomials [115, 116], and quantum transport theory [113, 117]. Since a system of

Coulomb particles with the same charge (in our case, dislocations with the same Burgers vec-

tor) does not have a stable equilibrium, a uniform background of opposite charge is added to

the model through a parabolic potential term, keeping the particles from flying off to infinity.

Here we work with a dimensionless spatial variable x̂ by rescaling the length in units of

the Burgers vector, x = bx̂ and define a dimensionless time variable t̂ through t ≡ t̂t0 with

t0 = 2π(1 − ν)η/(bµ). In these units and dropping the hat symbol over the dimensionless

variables, Eq. (8.3) with an additional term −κxi, added to ensure the charge neutrality

condition, can be written as:

dxi
dt

=
∑
j 6=i

1

xi − xj
− κxi + ξi(t), (8.5)

which is the same as the equation of motion in Dyson’s model [1]. The value of the dimen-

sionless parameter κ is an indication of the strength of the parabolic potential originating

from the uniform opposite charge background, and it introduces a new length scale in the

problem. We will show that the addition of the parabolic potential does not influence the

power-law distribution of the velocity of dislocations, and its only function is to keep the

system bounded. The variance of the dimensionless fluctuations is then given by

〈ξi(t)ξj(t′)〉 = 2σδijδ(t− t′), (8.6)
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where σ = 2π(1 − ν)kBT/(µb
3) which is the ratio between the effective thermal energy

and the elastic interaction energy. From Eq. (8.5), the Fokker-Plank equation for the joint

probability distribution of the positions of dislocations ρ(x1, · · · , xN , t) follows as

∂ρ

∂t
= σ

∑
i

∂2ρ

∂x2
i

−
∑
i

∂

∂xi

[
ρ

(∑
j 6=i

1

xi − xj
− kxi

)]
(8.7)

The equilibrium configurational probability distribution is determined from Eq. (8.7) and is

given by [1]:

ρ(x1, ..., xN) ∝

(∏
i<j

|xi − xj|1/σ
)

exp

(
− κ

2σ

∑
i

x2
i

)
. (8.8)

However, the exact probability distribution of particle velocities in this system is very difficult

to determine, due to the nonlinear relationship between the xi’s and the vi’s in Eq. (8.5).

Nonetheless, we show that the velocity distribution can be computed analytically in the

limit where only the nearest-neighbor interactions are dominant. This is done by solving

the system of two particles and comparing with the numerical result for a simulated system

of N = 100 particles. The strength of the parabolic potential for the two-body system is

tuned to give the same average separation between the particles as the one in the simulation.

Let the vector ~x ≡ (x1, x2) be the position vector of two particles and ~v ≡ (v1, v2) be

the deterministic part of the velocity vector:

~v(~x) =

(
1

x1 − x2

− κx1,
1

x2 − x1

− κx2

)
. (8.9)

The joint probability distribution of velocities can be found by the change of variables ~x→ ~v

in the probability distribution of positions

P (~v) =
∑
~x(~v)

ρ(~x(~v))

∣∣∣∣∣∣
∂x1
∂v1

∂x1
∂v2

∂x2
∂v1

∂x2
∂v2

∣∣∣∣∣∣ , (8.10)

where the summation is performed over all the positions ~x associated with the same velocity
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Figure 8.1: Probability distribution of velocity of particles at σ = 1/2. The solid line is the result of
numerical integration of Eq. (8.11) with κ = 0.05. The circles are the data from the simulation of a system
of N = 100 particles with κ = 10−3.

~v in Eq. (8.9). By inverting Eq. (8.9) and substituting in Eq. (8.8), the joint probability

distribution of velocities P (~v) can be written as:

P (~v) = C exp

(
w2

κσ

)∑
+,−

1√
u2 + 8κ

(
∓u+

√
u2 + 8κ

)1+ 1
σ

exp

(
−u

2 ∓ u
√
u2 + 8κ

8κσ

)
(8.11)

where u = v1−v2 and w = 1
2
(v1+v2) are the relative and center of mass velocities respectively,

and C is a normalization constant. Eq. (8.11) can be numerically integrated over either v1 or

v2 to obtain the probability distribution of velocity. In Fig. (8.1), we compare the result of

numerical integration of Eq. (8.11) with the simulation of a system of N = 100 particles at

σ = 1
2
. In order to obtain the same transition velocity (the velocity at which P (v) becomes

a power-law), κ was scaled up by a factor of 50 to keep κN constant.

In the high velocity limit (either v1 →∞ or v2 →∞), Eq. (8.11) scales as:

P (~v) ∼ |u|−2−1/σ (8.12)
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1
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1
2 , 1} for

N = 100 particles with κ = 10−3. The exponent of the power-law distribution agrees with predicted values
from Eq. (8.13).

We claim that almost all of the high velocity events result from the pair interaction of two

particles that are very close to each other. Therefore, in this limit, v1 and v2 would be

correlated (v1 ∼ −v2), implying that P (v) also scales as

P (v) ∼ |v|−2−1/σ, (8.13)

where v = |v1| = |v2|. Figure (8.2) shows how the tail of the probability distribution of

velocities scales for different values of σ. The exponent β = −2 − 1/σ is independent of

κ as expected. In fact, the same result can be obtained without the parabolic potential,

by calculating the probability distribution for the velocity of a moveable particle trapped in

between two fixed particles. In this case, to get the correct transition velocity, the separation

of two fixed particles should be set to twice the most likely next-neighbor separation of

particles obtained from a many-body simulation. This is a clear indication that the only

effect of the background parabolic potential is to keep the system bounded, and that it does

not affect the scaling of the velocity distribution.
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Given the functional form of the pair interaction (1/r force) and the claim that high

velocity events are consequences of very close neighbor interactions, we can understand the

power-law tail of the velocity distribution through the following scaling argument: Since

r → 0 is a singular limit, for two very close particles, both the external force (the force from

the parabolic potential in this case) and the superposition of all forces from other distant

particles can be neglected compared to the force of the closest particle. Therefore, v(r) scales

as v ∼ 1/r. Also, from Eq. (8.8), ρ(r) scales as ρ(r) ∼ r1/σ. Using

ρ(r)dr = P (v)dv, (8.14)

we have

P (v) ∼ ρ (r(v))

∣∣∣∣drdv
∣∣∣∣ ∼ v−2−1/σ. (8.15)

It is important to confirm that ρ(r) ∼ r1/σ, that is, we can neglect the contribution of

the interactions with other particles in the scaling of the probability distribution separation

of a pair of particles with very small distance. Equivalently, we need to confirm that the

distribution of nearest-neighbor separation is the same as the two-particle distribution in

the limit of small distance. Figure (8.3) compares the probability distribution Pnn(d) of

the nearest-neighbor separation, d, with the distribution of relative distance in a two-body

system. Although the distribution at large separations behaves differently in the many-body

system from the two-body system, the small separation limits of both systems are essentially

identical.

From the simple argument above, it is clear that the temperature-dependent power-

law distribution of velocities in one dimension is not a collective effect, and it is only a

consequence of the logarithmic interaction potential. The distribution of velocities and

the short distant limit of the distribution of nearest-neighbor separations can be very well

approximated with those of the two-body system. The long distance limit of the distribution

of the nearest-neighbor separations is the only quantity that can not be predicted from the

two-body analysis (see Fig. (8.3)).
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8.3 Two-dimensional model and pairing transition

A neutral system of dislocations with opposite charges in 1D is difficult to study without

introducing ad-hoc rules of pair creation and annihilation. Forrester has studied a 2D gen-

eralization of Eq. (8.5) for a system with two opposite charges and isotropic logarithmic

interaction potential [118]. For nanocrystals with strong crystal anisotropy, the assumption

of straight edge dislocations with parallel Burgers vectors is a good approximation, and, in

this case, the motion is confined to discrete, parallel glide lines. However, the dislocation

interaction is not a simple isotropic logarithmic potential, but it obeys Eq. (8.1). We can

generalize Dyson’s model with an anisotropic interaction as following.

Consider a system of 2N particles (N of each charge) with position vectors ~r±i = (x±i , y
±
i )

(1 ≤ i ≤ N), where y±i ’s are a set of 2N uniformly distributed random variables between 0

and L, and x±i ’s satisfy the following equations of motion:

dx±i
dt

=
∑
j 6=i

τ(~r±i − ~r±j )−
∑
j

τ(~r±i − ~r∓j ) +
√

2σξ±i (t). (8.16)

Here

τ(~r) =
x (x2 − y2)

(x2 + y2)2 , (8.17)

and 〈ξ±i (t)ξ±j (t′)〉 = δijδ(t− t′).

Since the system is charge-neutral, the term from the parabolic potential is no longer

necessary. We notice that Eq. (8.17) can be derived from a potential of the form

V (~r) = − y2

|~r|2
− log (|~r|) . (8.18)

The equilibrium joint probability distribution for the positions of these particles is given

by the generalization of Eq. (8.8) to a neutral system of particles and has the following
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4} compared with the predicted power-law in Eq. (8.26)

expression

ρ(~r+
1 , . . . , ~r

+
N , ~r

−
1 , . . . , ~r

−
N) =

1

Z

∏
i<j

∣∣~r+
i − ~r+

j

∣∣ 1σ exp

(
(y+i −y

+
j )

2

σ|~r+i −~r+j |2
)∏

n<m |~r−n − ~r−m|
1
σ exp

(
(y−n−y−m)

2

σ|~r−n−~r−m|2
)

∏
i,j

∣∣~r+
i − ~r−j

∣∣ 1σ exp

(
(y+i −y

−
j )

2

σ|~r+i −~r−j |2
) ,

(8.19)

where the partition function is expressed as

Z = L2N

∫
d2Nr

∏
i<j

∣∣~r+
i − ~r+

j

∣∣ 1σ exp

(
(y+i −y

+
j )

2

σ|~r+i −~r+j |2
)∏

n<m |~r−n − ~r−m|
1
σ exp

(
(y−n−y−m)

2

σ|~r−n−~r−m|2
)

∏
i,j

∣∣~r+
i − ~r−j

∣∣ 1σ exp

(
(y+i −y

−
j )

2

σ|~r+i −~r−j |2
) .

(8.20)

We show that the logarithmic term in Eq. (8.18) results in a power-law velocity distribu-

tion for a system of two particles. If the power-law distribution of velocities is a consequence

of the nearest-neighbor pair interaction, as was the case in a 1D system with one charge, we

should be able to predict the exponent of the velocity distribution in a many-body system

by studying a system of two particles. However, if the high velocity events are dominated

by collective effects such as avalanches, we should see different exponents in the many-body
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simulation compared to the analysis of the two-body system. We will show that, in fact,

the latter is true, and at a non-zero temperature, the high velocity events are dominated by

collective interactions.

In contrast to the case of same-charge particles in 1D, the opposite charges have attractive

forces, and therefore, the nearest neighbor of each particle is expected to have opposite charge

for the majority of the time when the system is at equilibrium. Consider a system of two

opposite charges moving on two parallel lines with separation y = y+ − y−, and relative

longitudinal displacement x = x+ − x− obeying the equation of motion

dx

dt
= −2

x(x2 − y2)

(x2 + y2)2
+
√

4σξ(t). (8.21)

This equation imposes a limit of vmax = 1
4y

on the absolute value of the velocity of these

particles. The absolute value of velocity attains its maxima at x = ±(1±
√

2)y.

Equation (8.21) is simplified through rescaling x by y. This corresponds to the changes of

variables x
y
→ x, t

y2
→ t, and yξ → ξ. Under these changes of variables, Eq. (8.21) becomes

dx

dt
= −2

x(x2 − 1)

(x2 + 1)2
+
√

4σξ(t), (8.22)

which is the same equation obtained by setting y = 1. From Eq. (8.19) and Eq. (8.20), we

have

ρ(x) =
1

Z
(
x2 + 1

)− 1
2σ exp

(
− 1

σ (x2 + 1)

)
(8.23)

and

Z =

∫ +∞

−∞

(
x2 + 1

)− 1
2σ exp

(
− 1

σ (x2 + 1)

)
dx. (8.24)

The integral above, converges only for σ < 1, meaning that for σ ≥ 1, at equilibrium, the

probability of finding the particles at any finite separation is zero. At low temperatures, the

particles remain in a bound state at equilibrium. Above the critical temperature σc = 1,

the particles are no longer bound and fly off to infinity in the long-time limit. This is the
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analogue of the pairing transition in a 1D plasma with logarithmic interaction with a short

distance cut-off [112].

The probability distribution for the relative velocity of these particles can be found using

the change of variable

P (v) =
∑
x(v)

ρ (x(v))

∣∣∣∣dxdv
∣∣∣∣ . (8.25)

Fig. (8.4) shows the resulting velocity distribution calculated from Eq. (8.25) for tempera-

tures σ = 2
3

and 3
4
. The divergence of P (v) at vmax is due to the singular change of variable

Jacobian
∣∣dx
dv

∣∣. For σ > 1
2
, away from the maximum velocity, corresponding to |x| � 1, P (v)

decays as

P (v) ∼ v−2+1/σ. (8.26)

In this region, the system can be approximated by the 1D system, and an argument simi-

lar to the one in the previous section can be used to explain the scaling behavior of P (v).

For σ ≤ 1/2, however, the x � 1 region has a finite contribution in the low velocity limit

(limv→0 P (v) is finite for σ ≤ 1/2 in Eq. (8.26)), and therefore, the contributions of other

zeros of velocity near x = 0 become important. In this region, the low velocity scaling of

P (v) can be determined by considering the contributions of all the competing terms from

zeros of velocity including both the ones near zero and the one at infinity in the scaling

argument.

P (v) calculated above is, in fact, the conditional probability distribution for the velocity

given the separation y = 1 or P (v|y = 1). The relation

P (v|y) = yF (yv) (8.27)

can be obtained by a reverse change of variable to the original x, y, and v, where F (v) =

P (v|y = 1) is the distribution calculated above. In order to calculate the probability distri-
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bution for the velocity, independent of y,

P (v) =

∫ ∞
0

P (v|y)f(y)dy, (8.28)

the distribution of y, f(y), is needed. In the original many-body problem, yi’s were chosen to

be uniformly distributed. However, the two-body problem that approximates the many-body

problem is constructed to represent a pair of nearest neighbors in the many-body problem.

Thus, fN(y) should be defined to be the probability distribution of the distance from the

nearest neighbor in an ensemble of N uniformly distributed yi’s, 0 ≤ yi ≤ L = Nd, for some

average separation d. In other words, fN(y) is the probability of finding yi at any point

0 ≤ s ≤ L = dN finding another yj at the distance y from yi, and finding all the other yk’s

outside of the interval (s− y, s+ y), given that the probability density of finding each yi at

each point in (0, L) is L−1 = (Nd)−1:

fN(y) =

∫ Nd

0

P (yi = s)
∑
j 6=i

(
P (yj = s± y)

∏
k 6=i,j

(
1−

∫ min{s+y,Nd}

max{s−y,0}
P (yk = x)dx

))
ds

≈ Nd

(
1

Nd

)
(N − 1)

(
2

Nd

(
1− 2y

Nd

)N−2
)

=
2(N − 1)

Nd

(
1− 2y

Nd

)N−2

(8.29)

Now, f(y) can be defined as

f(y) = lim
N→∞

fN(y) = λe−λy, (8.30)

where λ = 2
d
. The limit of N →∞ is taken by keeping d = L

N
constant. In order to perform

the integral in Eq. (8.28), F (v) was analytically calculated and numerically evaluated over

its range of definition and stored in an array. 108 random numbers from an exponential dis-

tribution were generated as y values, and at each v, P (v|y) was calculated using Eq. (8.27)

for all y’s, and it was summed over all y’s. The resulting function P (v) then was normalized.

Fig. (8.5) shows P (v) calculated for different values of σ. The low velocity tail follows the

scaling law for the low velocity tail of F (v) discussed above, while the high velocity tail is
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independent of σ and has the exponent β = −2.

Although the behavior of the low velocity tail can be understood by the same scaling

argument used in 1D system, since the low velocity tail is heavily influenced by the long

distance behavior, the nearest-neighbor approximation does not hold for this region. The

high velocity tail of a the two-body system, however, can be used as the nearest-neighbor

approximation for the many-body system. The −2 exponent of the high velocity tail can be

understood through a similar argument, but this time, by expanding v(x) near its maxima.

v can be written near each of its maxima as

v ≈ vmax + ki(x− xi)2, (8.31)

where ki = 1
2
∂2v
∂x2

∣∣
xi

and |v(xi)| = vmax. Thus, using Eq. (8.25), near vmax, F (v) can be

approximated as

F (v) ≈

(∑
i

ρ(xi)

ki

)
(vmax − v)−

1
2 . (8.32)

In other words, F (v) diverges as (vmax−v)−
1
2 in the limit that v approaches vmax. It is impor-

tant to note that the exponent does not depend on the functional form of the interaction,

and this scaling holds as long as the interaction stress has a non-singular maximum at which

its second derivative does not vanish. Using Eq. (8.28), it is straightforward to see that the

−2 exponent of the high velocity tail can be obtained only by considering the near maximum

functional form F (v),

P (v) ∼
∫ vmax

v

0

y(vmax − yv)−
1
2 e−λydy ∼ v−2 (8.33)

Figure (8.6) shows the probability distribution for the velocity in a simulation with 200

particles (N = 100). The weakly temperature-dependent exponent β has the value −2 as
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predicted from the nearest-neighbor analysis for σ � σc = 1, while it has a smaller value

for σ close to or larger than σc. This deviation from the predicted exponent in the nearest-

neighbor approximation is an indication that the dislocation motion is dominated by more

than just the nearest-neighbor interactions. The numerical exponent has the value β = −2.4

at the critical temperature σc = 1 which is consistent with the exponent found in externally

driven systems at zero temperature [5].
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Figure 8.5: (Color online) Probability distribution of velocities in ensembles of system of two particles
confined in parallel lines with exponentially distributed separations, y, for σ ∈ {0.1, 0.5, 1.0, 1.5}.
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σ ∈ {0.1, 0.5, 1.0, 1.5}.
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8.4 Conclusions

In this project, we have studied the statistics of velocity fluctuations in a simplified system

of dislocations with parallel Burgers vectors in one and two dimensions.

In one dimension, the probability density function for the velocities of the dislocations

at high velocities scales as v−2−1/σ with a power law exponent that quantifies the strength

of background noise fluctuations relative to the pairwise interaction energy. We have shown

that this power-law distribution can be derived by considering only the nearest-neighbor

interactions of dislocations, and therefore, is not a consequence of collective interactions.

In two dimensions, at an effective temperature where the noise energy kBT becomes equal

to the pairwise interaction energy µb3

2π(1−ν)
, we have found that there is a transition between

a state at which the nearest neighbors are bound to each other and a state where they can

escape from each other’s attractive force. For temperatures significantly smaller than this

transition temperature, the velocity probability density function for dislocations agrees with

the scaling v−2 found from the nearest-neighbor analysis, while for temperatures close to or

larger than this transition temperature, the probability density function follows a power-law

with an exponent steeper than −2 suggesting that the high velocity events are dominated

by collective effects due to the interaction of more than two dislocations. This exponent is

very weakly temperature dependent and has the value −2.4 at the transition temperature.

It remains to be further investigated how our results relate to the velocity statistics in

more complicated three-dimensional models with features such as junctions of dislocations

and line tension effects.
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Appendix A

Useful Results from Stochastic
Dynamics

A.1 Stochastic Differential Equations

A stochastic differential equation in Itō sense is the continuous-time limit of a Markov process

defined by

Xt+δt = Xt + δt
(
f(Xt) +

√
g(Xt)ξ(t)

)
, (A.1)

where Xt is a random variable describing the state of a system, f and g are continuously

differentiable functions, and ξ(t) at each time t, is an independent Gaussian distributed

random number with zero mean and variance 1/δt.

In contrast, a stochastic differential equation in the Stratonovich sense is defined as the

continuous-time limit of the Markov process

Xt+δt = Xt + δt

(
f ′
(
Xt +Xt+δt

2

)
+

√
g′
(
Xt +Xt+δt

2

)
ξ(t)

)
, (A.2)

where the functions f ′ and g′ depend on the average of the variable X in the interval

[Xt, Xt+δt]. In ordinary calculus, evaluating the functions at different points in the interval

[Xt, Xt+δt] does not make a difference, and by continuity, the δt→ 0 limit of both processes

would converge to the same value. However, in stochastic calculus, since the function ξ(t) is

a discontinuous function of time, it matters at which point the function g′ is evaluated. Of

course, there are infinitely many types of processes where g′ is evaluated at different points

in the interval.

At δt→ 0 limit, Eq. (A.1) and Eq. (A.2) converge to the same continuous process only if
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g′(x) = g(x), and f ′(x) = f(x)− 1

4

dg

dx
. (A.3)

This can be shown by finding an equation of motion for the corresponding probability density

P (Xt) for Eq. (A.1) and Eq. (A.2), and showing that in the δt → 0 limit, both equations

converge to the same equation.

The conditions of Eq. (A.3) can be understood from the fact that zero mean random

fluctuation of a variable X that depend on the initial value of X in the time interval (as is the

case in Eq. (A.1)) induce a probability current down the gradient of g. I would like to clarify

this by a simple example: suppose you invest your money in a volatile stock, and on average,

the value of the stock changes 10% a day. The strength of the fluctuations is dependent on

the initial value of the stock everyday, and it increases as the stock value increases (it is

a fixed fraction of the stock value1). According to the claim I made earlier, there should

be a probability current down the gradient of the function describing the dependence of

fluctuations on the stock value, and therefore, you should be more likely to lose money. Of

course, since the fluctuations have zero mean (the stock is equally likely to go up and down

with the same amount every day), the expected value of your final amount of money stays

the same, but still you are more likely to lose money. Here is why: the most likely scenario

is that over a long time you gain and lose money about the same number of times, let’s

say n gains and n losses. Each time you lose money, the value of your stock is multiplied

by 0.9, while each time you gain, it is multiplied by 1.1. The final value of the stock is its

initial value multiplied by (1.1 × 0.9)n, which is less than one. This probability flux down

the gradient of g persists in the continuous limit of Eq. (A.1).

In contrast, if the value of your stock fluctuates in a way that its fluctuation is proportional

to the average value of stock over the day2, one can show that on average, you are equally

likely to lose or gain over time. This is why a term proportional to the gradient of g is

subtracted in f ′ in Eq. (A.2) to make up for the probability flux down the gradient of g in

1The continuous version of this process with Gaussian noise is known as geometric random walk.
2Of course, this requires that either the system have some knowledge of future events before making a change, or the

fluctuations to be a result of some underlying coarse-grained behavior over the whole day.
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Eq. (A.1) that results from evaluating the fluctuations at the beginning of the interval.

Most of the processes described in this thesis are neither one of Eq. (A.1) nor Eq. (A.2).

They are Markov processes defined by an equation of the form

Xt+δt = Xt +
∑

t′∈[t, t+δt]

ζ(Xt′), (A.4)

where ζ(Xt′) are independent (usually Poisson distributed) random variables with finite X-

dependent variance, added at some time t′ ∈ [t, t+δt]. In the limit of the model where many

such stochastic events are happening per unit time, the Central Limit Theorem implies that,

for a mesoscopic δt, the sum

µ(X, t) =
∑

t′∈[t,t+δt]

ζ(Xt′), (A.5)

is a Gaussian distributed random variable with an X-dependent variance proportional to δt.

We can define the mean and the X-dependent part of the variance of µ(X, t) by

f ′′(X) = 〈µ(X, t)〉 (A.6)

g′′(X) =
1

δt

〈
(µ(X, t)− f ′′(X))2

〉
. (A.7)

Then the zero mean Gaussian random variable

ξ(t) =
1

δt
√
g(X)

(µ(X, t)− f ′′(X)) (A.8)

is independent of X. In terms of these new functions, Eq. (A.5) can be written as

Xt+δt = Xt + δt
(
f ′′(X) +

√
g′′(X) ξ(t)

)
. (A.9)

Due to the coarse-graining process through which the noise function ξ(t) is defined, it

is ambiguous to know at which point in the time interval [t, t + δt], X in g′′(X) should

be evaluated. As we saw earlier, the continuous limit of this process converges to different
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limits depending on this choice of evaluation. To avoid this ambiguity, in this thesis, I never

derive a stochastic differential equation by taking the continuous limit of an equation of the

type Eq. (A.5). Instead, I write a master equation for the time evolution of the probability

of X. The probability function is continuous and differentiable, and the Gaussian noise

approximation and the continuous limit are unambiguous and can be evaluated using the

Kramers-Moyal expansion, as explained in Section 3.2. The resulting partial differential

equation for the time evolution of the probability density of X, which is known as the

Fokker-Planck equation, describes the time evolution of two related processes: one is the

probability density of a stochastic differential equation in the Itō sense and the other is

a somewhat different stochastic differential equation in the Stratonovich sense. The two

equations are related by the conditions of Eq. (A.3).

In this thesis, I use stochastic differential equations in the Itō sense and not that of

Stratonovich. There are two good reasons to do so:

1. The Gaussian noise produced at each time step in Itō does not require knowledge of

the future state of the system. This makes the computer simulation of such processes

more readily accessible.

2. The noise term ξ(t) in Itō is independent of the variable X in g(X), while that is not

the case in Stratonovich differential equations. For example, in Itō, we know that the

expected value of the fluctuation term is zero,

〈g(X)ξ(t)〉 = 〈g(X)〉 〈ξ(t)〉 = 0, (A.10)

due to the independence of g(X) and ξ(t).

However, it is important to keep in mind that the choice of Itō over Stratonovich means that

we have to deal with the counter intuitive effect of the probability current down the gradient

of g (also known as noise-induced drift) that is produced by zero mean random fluctuations.

This drift plays a crucial role in Section 3.3.

In this thesis, I write the Itō stochastic differential equation describing the continuous
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limit (δt→ 0) of Eq. (A.1) as

dX

dt
= f(X) +

√
g(X)ξ(t), (A.11)
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A.2 Decoupling Gaussian Noise

Consider a set of coupled stochastic differential equations

d~x

dt
= ~H(~x) + ~ξ(t), (A.12)

where ξi’s (i ∈ {1, . . . , n}), the components of ~ξ(t), are zero mean Gaussian noise functions

with correlation

〈ξi(t)ξj(t′)〉 = Bi,jδ(t− t′). (A.13)

We would like to rewrite Eq. (A.12) in terms of some set of independent Gaussian white

noise functions ηi(t)’s (i ∈ {1, . . . ,m} for some m) with the correlation

〈ηi(t)ηj(t′)〉 = δi,jδ(t− t′). (A.14)

If we can find an n×m matrix G such that B = GGT, then it is straightforward to show

that ~ξ(t) = G~η(t):

〈ξi(t)ξj(t′)〉 =

〈∑
k

Gi,kηk(t)
∑
l

Gj,lηl(t
′)

〉

=
∑
k,l

Gi,kGj,l 〈ηk(t)ηl(t′)〉

=
∑
k,l

Gi,kGj,lδk,lδ(t− t′)

=
∑
k

Gi,kG
T
k,jδ(t− t′) = Bi,jδ(t− t′). (A.15)

Now Eq. (A.12) in terms of ~η(t) is given by

d~x

dt
= ~H(~x) +G~η(t). (A.16)

This decomposition is not unique and multiple choices for G exist [61]. Perhaps the simplest

choice is given by the n × n matrix G = B1/2. Note that matrix B is symmetric positive
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definite, and therefore, is diagonalizable and has well-defined real symmetric square root.

Hence GGT = GG = G2 = B.

Many of the Fokker-Planck Equations in this thesis are derived from a set of reactions

or species interactions, and therefore have a B matrix with the particular structure (see

e.g. Section 3.2)

B =
m∑
i=1

Ti ~si ⊗ ~si, (A.17)

where ~si is the i’th row of an m×n stoichiometry matrix S. For such B, there is a particular

choice of matrix G whose matrix elements have simpler analytic expressions compared to

the square root choice:

Gi,j =
√
Tj Sj.i (A.18)

It is easy to show that GGT = B:

(
GGT

)
i,j

=
∑
k

Gi,kGj,k =
∑
k

√
TkSk.i

√
TkSk,j =

(∑
k

Tk ~sk ⊗ ~sk

)
i,j

= Bi,j. (A.19)

The number of columns, m, of matrix G from this method is the same as the number

of reactions from which the Fokker-Planck Equation is derived. In the special case, where

the stoichiometry matrix S has rows that are multiples of each other, there are simpler

choices of G obtained by reducing the rows of S before calculating G through the following

procedure: Suppose, for example ~sj = a~si. Then, we simply remove the row j of S (and the

corresponding Tj) and replace Ti by Ti + a2 Tj. The reason that this row reduction works is

that the reduced matrix S and corresponding T ’s define the same matrix B as before:

B =
m∑
k=1

Tk ~sk ⊗ ~sk = · · ·+ Ti ~si ⊗ ~si + · · ·+ Tj ~sj ⊗ ~sj + . . .

= · · ·+ Ti ~si ⊗ ~si + · · ·+ a2 Tj ~si ⊗ ~si + . . .

=
∑
k 6=i,j

Tk ~sk ⊗ ~sk + (Ti + a2 Tj)~si ⊗ ~si.

(A.20)
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A.3 Itō’s lemma

Consider a set of coupled stochastic differential equations

d~x

dt
= ~H(~x) +G(~x)~η(t). (A.21)

where ηi’s (i ∈ {1, . . . , n}), the components of ~η(t), are zero mean Gaussian noise functions

with correlation

〈ηi(t)ηj(t′)〉 = δi,jδ(t− t′). (A.22)

Itō’s lemma is used to find the time evolution of an arbitrary function f of ~x. The normal

chain rule does not apply to a function f(~x) since the variable ~x is a stochastic variable in

Itō’s sense [54]. The rate of change of f is given by

df

dt
=
∑
i

Hi
∂f

∂xi
+

1

2

∑
i,j

Bi,j
∂2f

∂xi∂xj
+
∑
i,j

Gi,j
∂f

∂xi
ηj(t), (A.23)

where B = GGT.

In particular, one can use Itō’s lemma to change of variables from ~x to some ~y = ~f(~x).

We obtain the time evolution in the new variables ~y,

d~y

dt
= ~H ′(~y) +G′(~y)~η(t), (A.24)

where ~H ′ and G′ are given by:

~H ′ =
∑
i

Hi
∂ ~f

∂xi
+

1

2

∑
i,j

Bi,j
∂2 ~f

∂xi∂xj
, G′i,j =

∑
k

∂fi
∂xk

Gk,j. (A.25)
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A.4 Steady-State Solution of One-Dimensional Fokker-Planck

Equation

Consider a one-dimensional stochastic differential equations

dx

dt
= h(x) + g(x)η(t). (A.26)

where η(t) is zero mean Gaussian noise with correlation 〈η(t)η(t′)〉 = δ(t−t′). The probability

density function, P (x, t), of x obeys the Fokker-Planck Equation

∂

∂t
P (x, t) = − ∂

∂x
(h(x)P (x, t)) +

1

2

∂2

∂x2
(b(x)P (x, t)), (A.27)

where b(x) = (g(x))2. Equation (A.27) can be written as a continuity equation for probability

density

∂P (x, t)

∂t
= −∂J

∂x
(A.28)

where the probability current J is given by

J = h(x)P (x, t)− 1

2

∂

∂x
(b(x)P (x, t)) , (A.29)

with J = 0 at the boundaries. Equation (A.28) implies that at steady state the probability

current J is constant, and since it is zero at the boundaries, it has to be zero everywhere.

Therefore, the steady state solution for Ps(x) = limt→∞ P (x, t) is obtained by setting J from

Eq. (A.29) to zero:

h(x)Ps(x) =
1

2

d

dx
(b(x)Ps(x)) =

1

2

(
db

dx
Ps(x) + b(x)

dPs
dx

)
=⇒

∫
dPs
Ps

=

∫
2 (b(x))−1

(
h(x)− 1

2

db

dx

)
dx

=⇒ Ps(x) = N 1

b(x)
exp

(
−2

∫ x

0

h(y)

b(y)
dy

)
,

(A.30)
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where the normalization constant N is given by

N =

(∫
1

b(x)
exp

(
−2

∫ x

0

h(y)

b(y)
dy

)
dx

)−1

. (A.31)
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A.5 Steady State Solution of Multivariate Linear Fokker-Planck

Equation

Consider the linear stochastic differential equation of the form

d~y

dt
= A~y + ~η(t), (A.32)

where A is independent of ~y and ~η are Gaussian white noises with zero mean and correlator

〈~η(t) ~ηT(t′)〉 = Bδ(t− t′). (A.33)

The noise matrix B is symmetric (i.e. BT = B) and independent of ~y. Equation (A.32) is

tantamount to the Fokker-Planck equation for the probability density P (~y, t):

∂P (~y, t)

∂t
= −

∑
i,j

Aij
∂

∂yi
(yjP ) +

1

2

∑
i,j

∂2

∂yi∂yj
(BijP ). (A.34)

As shown in e.g. [59], the stationary distribution is Gaussian and takes the form

Ps(~y) =
1√

det(2πΞ)
exp

(
−1

2
~yT Ξ−1 ~y

)
, (A.35)

where the symmetric covariance matrix Ξ satisfies the Sylvester’s equation,

AΞ + ΞAT +B = 0. (A.36)

In two dimensions, this equation can be solved [54] leading to an explicit formula for Ξ:

Ξ =
(A− 12 trA)B (12 trA−A)T −B detA

2 trA detA
. (A.37)

In the following, I assume for convenience that the noise matrix B is a multiple of the

identity matrix 1 (B = σ21), a choice that can be made without losing in generality. In

fact, since B is symmetric, it is diagonalized by an orthogonal matrix which one can use
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to transform the noises; the resulting diagonal matrix can then be mapped to the identity

matrix simply by rescaling the variables ~y. Now, I will write the matrix Ξ in terms of A

and what I call the hermitianizer of A, defined as

G = −1

2
σ2 Ξ−1A−1, (A.38)

which yields a symmetrization of matrix A: even though A is not generally symmetric,

A 6= AT, the product GA = −2−1σ2Ξ−1 is a symmetric matrix. Sylvester equation (A.36)

written in terms of G simplifies to

1

2
(G−1 + (G−1)T) = 1, (A.39)

indicating that the hermitian part of G−1 is the identity. Alternatively, the hermitianizer

of A can be defined as the unique matrix satisfying Eq. (A.39) whose product with A is

hermitian. In terms of G, Eq. (A.35) can be written as

Ps(~y) =

√
det

(
−GA
πσ2

)
exp

(
~y TGA ~y

σ2

)
. (A.40)

If A is hermitian, G is the identity matrix, and the Boltzmann distribution is recovered.
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A.6 Steady State Mean Square Norm in Linear Fokker-Planck

Equation

We now wish to find an expression for the mean amplification factor, 〈‖~y‖2〉, used in the

main text to quantify the linear response of a stochastic reactive system. The norm of ~y is

the Euclidean norm ‖~y‖ =
√∑

i |y2
i |. Specifically, we want to compute the integral:

〈‖~y‖2〉 =

∫
RD
d~y Ps(~y) ‖~y‖2 , (A.41)

where the distribution Ps(~y) is given by Eq. (A.35). Therefore,

〈
‖~y‖2〉 =

1√
det(2πΞ)

∫
d~y exp

(
−1

2
~yT Ξ−1 ~y

)
‖~y‖2 . (A.42)

To evaluate this integral, we use the identity

∫
‖~p‖2 e−~p

TM~pd~p =
1

2
Tr
(
M−1

) ∫
e−~p

TM~pd~p, (A.43)

with M = 1/2 Ξ−1, which yields the compact expression:

〈‖~y‖2〉 = Tr(Ξ) (A.44)

Now we can rewrite Eq. (A.44) in terms ofA andG by substituting Eq. (A.38) in Eq. (A.44):

〈‖~y‖2〉 = −1

2
σ2 Tr

(
A−1G−1

)
(A.45)

WhenA is a 2×2 matrix, the trace of the inverse can be written as trace over determinant:

〈‖~y‖2〉 = −1

2
σ2 Tr (GA)

det(G) det(A)
(A.46)
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Tr(GA) can be simplified by taking the trace of Eq. (A.38)

Tr(GA) = −1

2
σ2 Tr(Ξ−1). (A.47)

Also, by multiplying the right-hand side of the Sylvester equation Eq. (A.36) by Ξ−1:

A+ ΞATΞ−1 = −σ2 Ξ−1. (A.48)

and taking the trace we have (recalling that Tr(ΞATΞ−1) = Tr(AT) = Tr(A)):

σ2 Tr(Ξ−1) = −2 Tr(A) (A.49)

From Eq. (A.49) and Eq. (A.47) it follows that Tr(GA) = Tr(A), which we can use to

simply Eq. (A.45):

〈‖~y‖2〉 = − σ2

2 detG

TrA

detA
= −1

2
σ2 det

(
G−1

)
Tr
(
A−1

)
. (A.50)
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A.7 Multivariate Linear Fokker-Planck Equation with Complex

Variables

Consider a linear stochastic differential equation of the the form

d~y

dt
= A~y + ~η(t), (A.51)

where ~y and ~η are vectors with complex-valued, and ~η is a Gaussian white noise with zero

mean and correlation

〈~η(t) ~η †(t′)〉 = Bδ(t− t′),

〈~η(t) ~η T(t′)〉 = 0.
(A.52)

where the † symbol represents the transpose conjugate. These equations can show up, for

example as the Fourier transform of a similar real valued equation, as it was the case in

chapters (6) and (7). The analysis in the Appendices (A.5) and (A.6) can be generalized by

evaluating the expected value of ~y(t)~y †(τ) and ~y(t)~y T(τ) at steady state for t = τ to obtain

the following relationships for the covariance and relation matrices

A
〈
~y~y †
〉

+
〈
~y~y †
〉
A† +B = 0,

A
〈
~y~y T

〉
+
〈
~y~y T

〉
AT = 0.

(A.53)

The first equation is the analogue of equation of Sylvester Eq. (A.36) for the hermitian

covariance matrix Ξ =
〈
~y~y †
〉
, while the second equation implies that the symmetric relation

matrix C =
〈
~y~y T

〉
is equal to zero. Therefore, at steady state, ~y obeys a circularly symmetric

complex Gaussian distribution of the form

Ps(~y) =
1

det(2πΞ)
exp

(
−1

2
~y †Ξ−1 ~y

)
. (A.54)

Notice the different normalization factor compared to Eq. (A.35), as it is normalized over

CD instead of RD.
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To compute the mean square value of the norm of ~y, we can follow similar analysis to

that of Appendix A.6. Here, we highlight the differences. The mean square norm is define

as

〈‖~y‖2〉 =

∫
CD
d~y Ps(~y) ‖~y‖2 , (A.55)

with the norm ‖~y‖ =
√
~y †~y. The complex version of Eq. (A.43) can be evaluated by

diagonalizing the matrix M and rewrite the integral on a 2-dimensional real space. The

result is given by

∫
CD
‖~p‖2 e−~p

†M~pd~p = Tr
(
M−1

) ∫
CD
e−~p

†M~pd~p , (A.56)

where the factor 1/2 is canceled due to the fact that each eigenvalue of M−1 should be

counted twice in the 2-dimensional space, once for the real part and once for the imaginary

part. As a result, there will be an extra factor 2 in Eq. (A.44), Eq. (A.45), and Eq. (A.50).

In particular ,

〈‖~y‖2〉 = −σ2 Tr
(
A−1G−1

)
(A.57)
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Appendix B

Nonnormality

B.1 Exponential Decay Under Normal Stable Operator

Consider the set of linear ordinary differential equations

d~y

dt
= A~y. (B.1)

where A is an n × n matrix with eigenvalues λ1, . . . , λn, and 0 > <(λ1) ≥ · · · ≥ <(λn).

Suppose A has a complete set of orthogonal eigenvectors; i.e. there exist a unitary matrix

U and a diagonal matrix Λ = diag(λ1, . . . , λn) such that A = UΛU †. Then the rate of

change ‖~y‖ is given by

d ‖~y‖
dt

=
d
√
~y†~y

dt
=

1

2 ‖~y‖
(
~y†A†~y + ~y†A~y

)
=

1

2 ‖~y‖
(
~y†UΛ∗U †~y + ~y†UΛU †~y

)
=

1

2 ‖~y‖
~y†U (Λ∗ + Λ)U †~y =

1

‖~y‖
~y†U<(Λ)U †~y ≤ 1

‖~y‖
~y†U<(λ1)1U †~y = <(λ1) ‖~y‖

(B.2)

Therefore, norm of ~y decays exponentially with a time scales τ = 1/<(λ1),

‖~y(t)‖ ≤ ‖~y(0)‖ exp (<(λ1)t) . (B.3)
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B.2 Transient Growth Under Nonnormal Stable Operator

Consider the set of linear ordinary differential equations

d~y

dt
= A~y. (B.4)

where A is an n× n matrix with eigenvalues λ1, . . . , λn, and 0 > <(λ1) ≥ · · · ≥ <(λn).

Claim 1: The upper bound for the growth/decay rate of the ‖~y‖ is set by the largest

eigenvalue, ν1, of the hermitian part, H , of A. Note that since H is hermitian, there exist a

unitary matrix V and a real diagonal matrix N = diag(ν1, . . . , νn) such that H = V NV †.

Let bi be the component of ~y along the i’th eigenvector, ~vi, of H . Then rate of change of

norm of ~y is given by

d ‖~y‖
dt

=
d
√
~y†~y

dt
=

1

2 ‖~y‖
(
~y†A†~y + ~y†A~y

)
=

1

‖~y‖
~y†
(
A† +A

2

)
~y

=
1

‖~y‖
~y†H~y =

1

‖~y‖
~y†V NV †~y =

1

‖~y‖
∑

νi |bi|2

≤ 1

‖~y‖
∑

ν1 |bi|2 =
1

‖~y‖
~y†V ν11V

†~y = ν1 ‖~y‖

(B.5)

Therefore, the upper bound for the growth/decay rate of norm of ~y is give by the largest

eigenvalue of the hermitian part of A, ν1. If ν1 > 0, there exist an initial condition (namely

~y(0) = ~v1, where ~v1 is the eigenvector of H corresponding to the eigenvalue ν1) such that

‖~y‖ growth at the rate ν1 at time t = 0. In this case, matrix A is called reactive.

Claim 2: The largest eigenvalue of H is greater than or equal to the real part of the

largest eigenvalue of A [119], i.e. ν1 ≥ <(λ1). Let ~u1 be the normalized eigenvector of A

corresponding to the eigenvalue λ1, then

ν1 = sup
‖~x‖=1

~x †H~x = sup
‖~x‖=1

~x †
(
A† +A

2

)
~x = sup

‖~x‖=1

(
~x †A†~x+ ~x †A~x

2

)
= sup
‖~x‖=1

(
(~x †A~x)† + ~x †A~x

2

)
= sup
‖~x‖=1

<
(
~x †A~x

)
≥ <

(
~u †1A~u1

)
= <(λ1)

(B.6)
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0
  0

1.0

time
Figure B.1: Maximum value of ‖~y(t)‖ over all normalized initial conditions, given by the amplitude envelope,
ρ(t), for a reactive matrix A (blue curve). The amplitude envelope for a hermitian matrix with the same
eigenvalues is given by exp(λ1t) (orange curve). The initial slope of the amplitude envelope (i.e. maximum
initial growth rate) is set by the largest eigenvalue, ν1, of the hermitian part of A.

Claim 3: At long time, ‖~y‖ decays at the rate set by λ1, i.e.

lim
t→∞

‖~y(t)‖
exp(λ1t)

= O(1). (B.7)

I prove this result for the case that the eigenvalue of A are distinct. Let ~u1, . . . , ~un be the

eigenvectors of A. Then ~y(t) can be written as a linear combination of ~ui’s, i.e. ~y(t) =∑
ai(t)~ui. By diagonalizing Eq. (B.4), we have

dai
dt

= λiai =⇒ ai(t) = ai(0) exp(λit) (B.8)

Therefore

lim
t→∞

‖~y(t)‖
exp(λ1t)

= lim
t→∞

∥∥∥∥ ~y(t)

exp(λ1t)

∥∥∥∥ = lim
t→∞

∥∥∥∥∑ ai(t)~ui
exp(λ1t)

∥∥∥∥ = lim
t→∞

∥∥∥∥∑ ai(0) exp(λit)~ui
exp(λ1t)

∥∥∥∥
= lim

t→∞

∥∥∥∑ ai(0) exp((λi − λ1)t)~ui

∥∥∥ = ai(0) ‖~ui‖
(B.9)

For an operator O, the operator norm with respect to some norm ‖·‖ on the vector space
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is define as

‖O‖ = sup
‖~x‖=1

‖O~x‖ . (B.10)

The amplitude envelope of A is defined as ρ(t) = ‖exp(At)‖. With this definition

‖~y(t)‖ ≤ ρ(t) ‖~y(0)‖ . (B.11)

The maximum possible amplitude of ‖~y‖, given ‖~y(0)‖ = 1, is ρmax = maxt ρ(t), and the

time at which this maximum is achieved is called tmax. At t = 0 the slope of ρ(t) is given

by ν1, and when A is hermitian, ρ(t) = exp(λ1t) with slope λ1 at t = 0 (see Fig. (B.1)).
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B.3 Nonnormality Index of 2× 2 Matrices

Consider a general 2× 2 matrix A given by its elements

A =

 a11 a12

a21 a22

 . (B.12)

To find an expression for H(A), the nonnormality index of A, we start by solving for Ξ from

Eq. (A.37) and substituting in Eq. (A.38) to find the matrix G in terms of matrix elements

of A:

G =

 (a11+a22)2

(a12−a21)2+(a11+a22)2
− (a12−a21)(a11+a22)

(a12−a21)2+(a11+a22)2

(a12−a21)(a11+a22)
(a12−a21)2+(a11+a22)2

(a11+a22)2

(a12−a21)2+(a11+a22)2

 . (B.13)

The nonnormality index H is given by the inverse of the determinant of G:

H(A) = det
(
G−1

)
= 1 +

(a12 − a21)2

(a11 + a22)2
. (B.14)

If the eigenvalues of A are real, we can rewrite this expression in terms of the eigenval-

ues and the angle between the eigenvectors of A. Let ∆ > 0 be the discriminant of the

characteristic polynomial of A:

∆ = (a11 − a22)2 + 4 a12 a21. (B.15)

If λ1 and λ2 are the two eigenvalues of A, and ~v1 and ~v2 are the two eigenvectors, we have

(λ1 + λ2)2 = (a11 + a22)2, (λ1 − λ2)2 = ∆,

cos2(θ) =

(
~v1 · ~v2

‖~v1‖ ‖~v2‖

)2

, cot2(θ) =
cos2(θ)

1− cos2(θ)
=

(a11 − a22)2

∆
.

(B.16)

Now it is clear that

H(A) = 1 + cot2(θ)

(
λ1 − λ2

λ1 + λ2

)2

. (B.17)
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