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Abstract 

 

Log-multiplicative association (LMA) models, special cases of log-linear models, can be 

used as multidimensional item response theory (MIRT) models for polytomous items (Anderson, 

Verkuilen and Peyton, 2010; Anderson, 2013).  LMA models do not require numerical 

integration for their estimation nor do they require assumptions regarding the marginal 

distribution of the latent variables.  However, maximum likelihood estimation (MLE) of LMA 

models requires iteratively computing fitted values for all possible response patterns. Standard 

estimation methods for large numbers of items fail because the number of possible response 

patterns increases exponentially as the number of items and response options per item increase.  

In this study, a new algorithm is proposed to solve this estimation problem. 

Anderson, Li and Vermunt (2007) proposed using pseudo-likelihood estimation (PLE); 

however, their solution only applies to models in the Rasch family, which exploits the 

relationship between log-linear and logistic regression models.  Their method is extended to 

more general models by adding an additional step that estimates slope (item discrimination) 

parameters for the latent variables.  

The new algorithm has two basic steps and simplifies for special cases. In Step 1, a 

(multinomial) logistic regression model is fit by MLE to one item using rest-scores as an 

explanatory variable to get new estimates of item slopes that are used in the rest-score for the 

next item. This process is repeated for each item until all item slopes have been up-dated.  Step 2 

involves fitting a single conditional logistic regression model for a data set formed by stacking 

the conditional logistic regressions for each item.  This yields new estimates of location (item 
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difficulty) parameters and the covariance matrix for the latent variables.  Steps 1 and 2 are 

repeated until all parameter estimates converge.  

The results of simulation and empirical studies with real data show that the proposed 

algorithm successfully estimates parameters in more general LMA models with both location and 

slope parameters as MIRT models.     
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Chapter 1 

Introduction 

Log-multiplicative association (LMA) models, special cases of log-linear models, are 

implied by different underlying structures. Although multivariate normality implies LMA 

models for data, the emphasis in this thesis is on LMA models as multidimensional item 

response theory (MIRT) models. One hindrance to more widespread use of LMA models as 

MIRT models is that current estimation methods are limited relatively small numbers of items. 

An algorithm to overcome this limitation is proposed and its performance is evaluated in this 

thesis.  

Estimation of MIRT Models for Polytomous Items 

Questionnaire or test items with more than two response options (i.e., polytomous items) 

are frequently administered to examinees in educational and psychological settings. Item 

response theory (IRT) models have been developed for polytomous items.  Depending on the 

restrictions on slope (item discrimination) parameters of the latent trait in parameterizations of 

the models, polytomous IRT models may be classified into either Rasch family models or more 

general models where the slope parameters are fee to vary across items. Unidimensional 

polytomous IRT models where slope parameters vary across items include Samejima (1969)’s 

graded response model (GRM), Muraki (1992)’s generalized partial credit model (GPCM) for 

ordered responses, and Bock (1972)’s nominal response model (NRM) for items with a non-

specified response order. The slope parameters of the GRM and GPCM are constant over the 

response options; whereas, in the NRM, the slope parameters may vary. In this thesis, research 

interest lies in estimating slope parameters that may vary across response categories within an 

item and over items; that is, Bock (1972)’s NRM. 
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 Multidimensional item response theory (MIRT) has been developed, incorporating 

multiple latent traits into IRT models. It is regarded as a useful tool for exploring the underlying 

dimensionality of an IRT model. There have been several multidimensional extensions of 

traditional IRT models for polytomous items (Reckase, 2009). These include the 

multidimensional graded response model (Muraki & Carlson,1993), the multidimensional partial 

credit model (Kelderman & Rijkes, 1994), and, more recently, the multidimensional generalized 

partial credit model (Yao & Schwarz, 2006). Although the usefulness of MIRT has been known 

for many years in the psychological and educational literature (Ackerman, 1994; Embretson, 

1991; Reckase, 1985; Reckase & McKinley, 1991), the estimation of the parameters for MIRT 

models is challenging. 

The parameters of MIRT models can be estimated by the marginal maximum likelihood 

estimation (MMLE), which was developed by Bock and Lieberman (1970) and elaborated with 

EM algorithm by Bock and Aitkin (1981). The MMLE procedure regards the observed response 

patterns as random samples drawn from a population and assumes the distribution of the latent 

variables. By numerically integrating out the person parameters, marginal likelihood functions in 

terms of the item parameters are obtained and then item parameters are estimated without 

dependence on latent variables (θ) of individual examinee.  

The MMLE is preferred over other estimation methods because it yields consistent item 

parameter estimates and can be applied to all of uni- and multidimensional IRT models. Its 

popularity can be found by many computer programs employing the procedure for MIRT models 

such as TESTFACT (Bock, Gibbsons, Schilling, Muraki, Wilson, & Wood, 2003), flexMIRT 

(Cai, 2013), LISREL (Jöreskog & Sörbom, 2004), and Mplus (Muthén and Muthén, 2012). The 

MMLE approach is also used in PROC/NLMIXED in SAS when the parameters of MIRT 
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models are estimated as nonlinear mixed models (De Boeck & Wilson, 2004; Rijmen, 

Tuerlinckx, De Boeck, & Kuppens, 2003; Sheu, Chen, Su, & Wang, 2005).       

MMLE requires the user to assume the marginal distribution of the latent variable and 

involves numerically integrating the latent variable out of the model for parameter estimation. 

This method becomes problematic for multiple latent variables because it requires multiple 

numerical integrations. Bock, Gibbons, and Muraki (1988) report in their study on full 

information item factor analysis that the number of dimensions was limited to five factors 

because of the heavy computational work in MMLE/EM algorithm.  

As an alternative for higher dimensionality, Bayesian estimation procedure with Markov 

chain Monte Carlo (MCMC) methods is used for estimating parameters in MIRT models, but it 

is extremely time consuming and requires highly advanced computer programming skills with 

mathematical knowledge.  

Estimation of LMA Models as MIRT Models 

To alleviate these problems, an easier and more flexible way for parameter estimation in 

MIRT models can be provided by log-multiplicative association (LMA) models. LMA models 

are special cases of log-linear models where all two-way interaction terms between pairs of 

variables (i.e., items) are replaced by products of category scales values and an association 

parameter (Anderson & Vermunt, 2000). LMA models have a number of advantages as MIRT 

models:  They do not require numerical integration for their estimation nor do they require 

assumptions regarding the marginal distribution of the latent variables. Covariates can be 

included in the model and they can be estimated quickly in SAS.  

There are at least two derivations of LMA models as item response models. One 

derivation is due to Holland (1990) through his Dutch Identity and latter extensions of the model 
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to polytomous items1 (Hessen, 2012; Li, 2010). The other derivation was proposed in Anderson 

and Yu (2007) for dichotomous items based on fully conditionally specified logistic models 

using a rest-score in lieu of the latent variable. Of the two derivations, this study focuses more on 

the fully conditional specification derivation of LMA models. Anderson and Yu (2007) proposed 

to use a rest-score as an estimate of the latent variable based on the precedence and justification 

for it in the literature on classical test theory and IRT as mentioned in Junker and Sijtsma (2000).  

In this approach, logistic regression models are specified for each item conditional on responses 

to all others. They also showed that the set of fully conditionally specified models uniquely 

implies an LMA model for the joint distribution based on a proof given by Joe and Liu (1996).  

The fully conditional derivation was later generalized to polytomous items and multidimensional 

models (Anderson, Li, & Vermunt, 2007; Anderson, Verkuilen, & Peyton, 2010; Anderson, 

2013).  

 The parameters in LMA models are typically estimated by maximum likelihood 

estimation (MLE) using computer programs such as lEM (Vermunt, 1997), SAS nonlinear 

programming procedure (PROC/NLP), R, and MatLab. When estimating the parameters in LMA 

models with MLE, it requires iteratively computing fitted values for all possible response 

patterns. Parameter estimates of LMA models for small numbers of items can be obtained by 

MLE easily because the number of all possible response patterns is reasonable. For large 

numbers of items, however, the standard estimation methods of LMA models fail because the 

number of possible response patterns increases exponentially as the number of items and 

response options per item increase. More recently, pseudo-likelihood estimation (PLE) was 

                                                           
1 The derivation by Dutch Identity is formally equivalent to graphical model derivation (Anderson & Vermunt, 

2000; Anderson & Böckenholt, 2000; Anderson, 2002). The graphical derivation is more general.  
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proposed to solve the problem for LMA Rasch models with large numbers of items (Anderson, 

Li, & Vermunt 2007). It is reported that PLE can fit the models to data with large numbers of 

items successfully and fast, handle models with multiple latent variables and covariates, yield 

consistent estimates, and is easy to implement.  

Pseudo-likelihood Estimation for LMA Models and Its Limitation 

Pseudo-likelihood estimation (PLE) was first introduced by Besag (1974) as an approach 

to the specification and analysis of spatial interaction. The basic idea behind PLE is to replace 

numerically challenging problems with more tractable ones by simplifying them with conditional 

specification approach so that computational demands of fitting models to data.  

Anderson, Li, and Vermunt (2007) implemented PLE for LMA Rasch models with 

polytomous items and multiple correlated latent variables. Following Anderson and Yu (2007)’s 

fully conditional specification approach, they specified conditional models corresponding to each 

item using rest score in lieu of the latent variable and defined the pseudo-likelihood as the 

product of the likelihoods of the conditional multinomial logistic regressions. The whole set of 

fully conditionally specified logistic regression models were “stacked” into a large design matrix 

and the model parameters were estimated by fitting a conditional multinomial logistic regression 

model to the data. The maximum value of the likelihood of the model fit to the stacked data 

equals the pseudo-likelihood. Based on their simulation studies on the performance of PLE, the 

estimates obtained by PLE and MLE were almost identical and the parameter recovery of PLE 

was excellent for large numbers of binary or polytomous items with a single or multiple latent 

variables (i.e., multidimensional generalizations of Bock’s NRM and all special cases). 

Although they have shown that parameters in LMA models with large number of items 

can be estimated very fast and easily by PLE, their application of current PLE is limited to 



 

6 
 

models in the Rasch family (i.e., 1PL model).  In this study, their method is extended to more 

general models such as 2PL model, Bock’s nominal response model, and multidimensional 

generalizations of these models by adding an additional step that estimates the slope parameters 

for the latent variables. 

Research Objectives 

Throughout this study, the performance of the proposed PLE algorithm for more general 

LMA models as MIRT models are examined. The three main goals of this study are: (1) how 

well does the newly proposed step for estimating slope parameters perform?; (2) how well does 

PLE of LMA models using the new two-step algorithm perform relative to MLE of LMA 

models?; and lastly, (3) how well and fast does the algorithm of PLE perform for LMA models 

as MIRT models with large numbers of items? 

The remainder of this thesis is structured as follows. Chapter 2 provides an overview of 

the development of the LMA models as multidimensional item response theory (MIRT) models 

for polytomous items, along with two derivations of LMA models as IRT models. Chapter 3 

presents two estimation procedures for LMA models as MIRT models, maximum likelihood 

estimation (MLE) and pseudo-likelihood estimation (PLE), followed by its implementation for 

LMA Rasch models (i.e., linear-by-linear models). Chapter 4 introduces a new estimation 

algorithm for more general LMA models where both location and slope parameters are included, 

along with the implementation of the estimation method in SAS. Chapter 5 describes the 

methodology for simulation studies conducted to investigate the performance of the proposed 

algorithm, followed by possible ways to obtain correct standard errors of pseudo-likelihood 

estimates. Chapter 6 provides the detailed results of simulation studies in terms of item 

parameter recovery. Chapter 7 describes the results of empirical studies conducted to provide the 
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practical use of PLE using real data. Lastly, Chapter 8 provides the findings and their 

implications, along with the possible further research.   
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Chapter 2 

LMA Models as Multidimensional Item Response Theory (MIRT) Models 

The purpose of this chapter is to provide an overview of the development of the LMA 

models as multidimensional item response theory (MIRT) models for polytomous items.  After a 

brief review of IRT models for polytomous items, compensatory MIRT models for nominal 

responses are discussed. In the subsequent section, two derivations of LMA models as IRT 

models are presented with the connection between them, followed by research showing the 

flexibility of the approach.  Of the two derivations, this study focuses more on the fully 

conditional specification derivation of LMA models (Anderson & Yu, 2007; Anderson, 

Verkuilen, & Peyton, 2010; Anderson, 2013).  

Multidimensional Item Response Models for Polytomous Items 

Although most IRT models assume unidimensionality (i.e., all of the items on a test are 

measuring only one latent trait or ability), there are situations where this assumption does not 

hold. For example, questionnaires or tests are often designed to measure multiple skills/abilities 

and more than one latent trait may underlie responses to items. Ackerman (1994) states that the 

assumption of unidimensionality must be considered very carefully and should always be 

verified when modeling a set of items.          

Multidimensional item response theory (MIRT) has been developed, incorporating 

multiple latent traits into IRT models. It is regarded as a useful tool for exploring the underlying 

dimensionality of an IRT model. There have been several multidimensional extensions of 

traditional IRT models for polytomous items (Reckase, 2009). These include the 

multidimensional graded response model (Muraki & Carlson, 1993), the multidimensional partial 
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credit model (Kelderman & Rijkes, 1994), and, more recently, the multidimensional generalized 

partial credit model (Yao & Schwarz, 2006). 

Multidimensional Compensatory IRT Model for Nominal Responses 

One purpose of this study is to estimate the parameters of LMA models that correspond 

to slope parameters of MIRT models when the slopes vary across response categories within an 

item and over items. When only one latent variable is considered in the model, Bock (1972)’s 

NRM is the model of interest. In this section, Bock’s NRM will be reviewed, followed by a 

multidimensional compensatory polytomous IRT model for nominal responses that is a 

generalization of Bock’s NRM.  

Bock (1972)’s nominal response model was designed for polytomous items where all of 

the items are reflecting a single latent variable and the responses of the items do not (necessarily) 

have a pre-specified order. NRM is a multinomial logistic model that specifies the probability 

that an examinee with a given value of the latent variable (i.e., θ) selects the response option j on 

item i. Formally, Bock’s NRM2 is  

 
P(𝑌𝑖 = 𝑗|𝜃) =

exp(𝜆𝑖𝑗 + 𝜈𝑖𝑗θ)

∑ exp(𝜆𝑖ℎ + 𝜈𝑖ℎθ)ℎ
, 

 

(2.1) 

where 𝜈𝑖𝑗 is an unknown slope (i.e., item discrimination) parameter for response j of item i, and 

𝜆𝑖𝑗 is a location parameter (i.e., item difficulty) for response j on item i. The sum in the 

denominator ensures that the sum of probabilities over all response options on item i equals 1. 

Special cases of the NRM include the Rasch model for polytomous responses (Andersen, 

1995) and two-parameter logistic (2PL) model for dichotomous responses (Alasuutari, Bickman, 

                                                           
2 Note that the notation differs from more standard notation so that connections with other models are more 
transparent. 
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& Brannen, 2008; Bartholomew & Knott, 1999; Heinen, 1993, 1996). Anderson, Verkuilen, and 

Peyton (2010) showed that Bock (1972)’s NRM leads to LMA models where a rest-score is 

substituted for θ in (2.1). They specified a multinomial logistic regression model for each item 

and showed that the set of multinomial logistic regression models yields LMA models for the 

joint distribution of observed responses to all items (i.e., response patterns).         

When multiple latent variables underlie responses to nominal items, the unidimensional 

model in equation (2.1) can be extended to a multidimensional model.  The multidimensional 

model is  

P(𝑌𝑖 = 𝑗|𝜃1, … 𝜃𝑀) =
exp(𝜆𝑖𝑗 + ∑ 𝜈𝑖𝑗𝑚𝜃𝑚𝑚 )

∑ exp(𝜆𝑖ℎ + ∑ 𝜈𝑖ℎ𝑚𝜃𝑚𝑚 )ℎ
, (2.2) 

where 𝜈𝑖𝑗𝑚 is an unknown slope or discrimination parameter for response j on item i on latent 

variable 𝜃𝑚, 𝜆𝑖𝑗is the location or difficulty parameter, and the sum in the denominator ensures 

that the sum of probabilities over all response options on item i equals 1.  Given values on the M 

latent traits 𝜽 = (𝜃1, … 𝜃𝑀), this model specifies the probability that an examinee selects the 

response option j of item i.   

Model (2.2) includes many well-known special cases. If responses are dichotomous, 

model (2.2) is equivalent to a multidimensional compensatory version of the 2PL model as 

presented by McKinley and Reckase (1983). When the slope or discrimination parameters are 

fixed or assumed to be known, Bock’s NRM and its multidimensional models are corresponding 

to a Rasch model for polytomous responses (Andersen, 1995) and its multidimensional extension 

(Fischer, 1995).   

Although the usefulness of MIRT has been known for many years in the psychological 

and educational literature (Ackerman, 1994; Embretson, 1991; Reckase, 1985; Reckase & 
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McKinley, 1991), the estimation of the parameters for MIRT models is challenging. The 

parameters of MIRT models can be estimated as nonlinear mixed models using marginal 

maximum likelihood method (MMLE), which yields consistent parameter estimates. However, 

MMLE procedure involves numerical integration of the latent variable and the parameter 

estimation gets more complicated as the number of the latent variables increases. Markov chain 

Monte Carlo (MCMC) (e.g., Metropolis-Hastings Robbins-Monro estimation) is one of the 

methods for estimating parameters of MIRT models, but it is computationally demanding.  

Another potential solution to the problem is connecting IRT models with log-multiplicative 

models (LMA), which do not use the numerical integration. In the next section, LMA models as 

IRT models will be discussed.            

Log-Multiplicative Models (LMA) as Item Response Models 

As discussed in Chapter 1, there are two basic derivations of LMA models as item 

response models. In this section, the two derivations will be reviewed.  

Holland’s Dutch Identity3 

The first derivation of LMA models as item response models was made by Holland 

(1990) for dichotomous items.  He pointed out that standard IRT models based on marginal 

maximum likelihood estimation encounter intractable integral problems, which obstruct the 

further understanding of the models. As a solution to this problem, he introduced the Dutch 

Identity, which establishes a model for probabilities of response patterns (i.e., log P(y) where y is 

a response pattern) for binary item responses. In his approach, the manifest probabilities of 

response patterns are assumed to follow a multinomial distribution.  Under conditional (or local) 

                                                           
3 Holland called the Theorem the “Dutch Identity” because he developed it while in Holland.  
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independence, the distribution of the manifest probabilities for a response pattern y, P(y) in the 

standard IRT models is given as below: 

 
P(𝒚) = ∫𝑃(𝒚|𝜃)𝑓(𝜃)𝑑(𝜃)

= ∫∏𝑃(𝑦𝑖 = 1|𝜃)𝑦𝑖

𝑖=1

𝑃(𝑦𝑖 = 0|𝜃)(1−𝑦𝑖)𝑓(𝜃)𝑑(𝜃), 

(2.3) 

 

where 𝒚 is a response pattern for I items, and 𝑦𝑖 = 1if the response is correct and 𝑦𝑖 = 0 if the 

response is incorrect. The Dutch Identity is restated below.    

Theorem 1. (The Dutch Identity; Holland, 1990). If the manifest probabilities P(y) satisfies (2.3), 

then for any fixed response pattern 𝒚𝐽, 

 𝑃(𝒚)

𝑃(𝒚𝐽)
= 𝐸 {exp [(𝒚 − 𝒚𝑱)

𝑇
𝜼(𝜃)] |𝒀 = 𝒚𝑱}, 

(2.4) 

 

where 𝜼(𝜃) = (𝜂1(𝜃), 𝜂2(𝜃),… , 𝜂𝑖(𝜃))
𝑇and 𝜂𝑖(𝜃) is the item logit function,  

 

𝜂𝑖(𝜃) = log (
𝑃𝑖(𝜃)

𝑄𝑖(𝜃)
) = log [

𝑃(𝑦𝑖 = 1|𝜃)

𝑃(𝑦𝑖 = 0|𝜃)
] for i =1, 2, …, I. (2.5) 

 

Holland derived second-order log-linear models (i.e., LMA models) as item response 

models using a corollary to the Dutch Identity where θ is a column vector (i.e., multidimensional 

case). In the corollary, he added two assumptions: posterior normality of the latent variables 

given the response pattern and the linearity of item logit functions. Using slightly different 

notation from those used by Holland, his corollary is restated below.    

Corollary 1. (Holland, 1990). If, for some choice of 𝒚𝑱, the posterior distribution of 𝛉|𝒀 = 𝒚𝑱 is 

a D-dimensional normal, that is, 

𝛉|𝒀 = 𝒚𝑱is𝑁𝐷(𝝁𝒚𝑱 , 𝚺𝒚𝑱), 

and if the item logit functions 𝜂𝑖(𝜽) are linear, that is, 
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𝜂𝑖(𝜽) = 𝜂𝑖(𝝁𝒚𝑱) − 𝒂𝑖
𝑇(𝜽 − 𝝁𝒚𝑱), 

where 𝒂𝑖
𝑇 = (𝑎1𝑖, 𝑎2𝑖, … , 𝑎𝐷𝑖).  Then,  

log 𝑃(𝒚) = log𝑃(𝒚𝑱) + (𝒚 − 𝒚𝑱)
𝑇
𝜼(𝝁𝒚𝑱) +

1

2
(𝒚 − 𝒚𝑱)

𝑇
𝑨𝚺𝒚𝑱𝑨

𝑻(𝒚 − 𝒚𝑱), (2.6) 

where 𝑨𝑇 = (𝒂𝟏, 𝒂𝟐, … , 𝒂𝑰)isa𝐷 × 𝐼matrix. 

The above corollary can be directly re-written for unidimensional case (i.e., D = 1).  If, for some 

reference response 𝒚𝑱, the posterior distribution of θ|𝒀 = 𝒚𝑱 is normal with mean 𝜇𝒚𝑱  and 

variance 𝜎𝒚𝑱
2 , that is,        

θ|𝒀 = 𝒚𝑱is𝑁(𝜇𝒚𝑱 , 𝜎𝒚𝑱
2 ), 

and if the item logit functions 𝜂𝑖(𝜃) are linear, that is, 

𝜂𝑖(𝜃) = 𝜂𝑖(𝜇𝒚𝑱) − 𝑎𝑖(𝜃 − 𝜇𝒚𝑱). 

Then,  

log 𝑃(𝒚) = log 𝑃(𝒚𝑱) + (𝒚 − 𝒚𝑱)
𝑇
𝜼(𝜇𝒚𝑱) +

1

2
𝜎𝒚𝑱
2 [(𝒚 − 𝒚𝑱)

𝑇
𝒂𝑖]

2

, (2.7) 

where 𝒂𝑖 = (𝑎1, 𝑎2, 𝑎3, … 𝑎𝑖)
𝑇 and 𝜼(𝜇𝒚𝑱) = (𝜂1(𝜇𝒚𝑱), 𝜂2(𝜇𝒚𝑱), 𝜂3(𝜇𝒚𝑱), … 𝜂𝑖(𝜇𝒚𝑱))

𝑇

. 

He conjectured that the model given in (2.7) is a limiting form for all “smooth” unidimensional 

IRT models when the number of items is large.   

The Dutch Identity provides a simple way for analyzing item response models with the 

marginal likelihood function of an item response model that does not use numerical integration. 

This advantage allows the theorem to be applied in several ways for specifying IRT models with 

large numbers of items, studying the structure of the latent variable models, testing the 
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dimensionality of the latent variables, clearing the problems away in forming item response 

function (IRF) and latent trait distribution from sample data and so on (Holland, 1990).  

A number of studies on the Dutch Identity were performed for the purpose of examining 

the assumptions or conjectures made by Holland (Chang & Stout, 1993; Chang, 1996; Zhang & 

Stout, 1997). Chang and Stout (1993) proved that the asymptotic posterior normality of the latent 

variable given response patterns under nonrestrictive nonparametric assumptions holds for a long 

test with dichotomously scored items. Chang (1996) extended the results to polytomous IRT 

models and established that the asymptotic posterior normality of the latent variable could also 

be assumed in the models.  

Zhang and Stout (1997) weakened the two assumptions of posterior normality of the 

latent variable and linear logit functions (i.e., 2PL). By counterexamples, they demonstrated that 

the Dutch Identity conjecture does not always hold; however, when the condition of posterior 

normality was weakened to asymptotic posterior normality and the counterexamples were not 

likely distributions of theta (θ).  

There have also been extensions of the Dutch Identity for dichotomous items to 

polytomous items (Hessen, 2012; Li, 2010). Hessen (2012) derived the polytomous Dutch 

Identity theorem to develop polytomous log-linear by linear association models (LLLA), which 

are special cases of LMA models. Hessen (2012)’s derivation is general but only special cases of   

responses. The equivalence between LMA models and Bock’s NRM was first noted in Anderson 

and Böckenholt (2000).  

Hessen (2012) also presented an extension of the Dutch Identity that can be applied to the 

multidimensional partial credit model. By using the extension, he derived a conditional 

multinormal partial credit model (i.e., a special case of LMA model) that does not require 
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numerical integration or assume a marginal multivariate normal distribution of the latent 

variables in the total population for maximum likelihood estimation. Like Holland, he assumed 

posterior or conditional normality of the latent variable given a response pattern, y (hence the 

name “conditional multinormal partial credit model”). He mentioned that his model should be 

extended to more general models where discrimination parameters are included but parameter 

estimation under such an extension is “complicated”. It will be shown in this study how easily 

and efficiently parameters can be estimated by LMA models for the more general models.   

  The Dutch Identity and Statistical Graphical Model Connection  

  Another derivation of LMA models as item response models was given by Anderson 

and Yu (2007). Their derivation is based on Anderson and Vermunt (2000)’s LMA model as 

latent variable models for observed data, which use statistical graphical models for discrete and 

continuous variables (Lauritzen & Wermuth, 1989). They also showed that the LMA models 

derived in Anderson and Vermunt (2000) are formally equivalent to models in Holland (1990).  

For illustration, consider the following two graphs for uni- and multidimensional models 

presented in Figure 1. 

Graph (A) represents a unidimensional model where four items are directly related to 

only one latent variable, and Graph (B) represents a multidimensional model where each half of 

four items are directly related to one of two latent variables and those two latent variables are 

correlated.  Each item (i.e., discrete variable) is represented by a square and the latent variables 

by circles. If two variables are not connected by a line, those variables are independent given all 

the other variables in the graph. If there is a line connecting two variables, it indicates that they 

may be (conditionally) dependent. Since no line directly connects any two items in either Graph  
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Figure 1. Graphs for (A) one latent variable and (B) two correlated latent variables with four items 

 

(A) or (B), given the latent variables, items are conditionally independent (i.e., local 

independence).  

Anderson and Yu (2007) showed that the assumptions made by Anderson and Vermunt 

(2000) were the same as those that Holland (1990) made. In addition to assuming the marginal 

distribution of response patterns is multinomial, there are two major assumptions for the model, 

which Anderson and Yu (2007) recounted from the perspective of the graphical model:  

(a) The responses to items (observed variables) are conditionally independent given 

the latent continuous ones : 

𝑝(𝒚|𝜃) = P(𝐘 = 𝐲|𝚯 = 𝜃) = ∏𝑝(𝒀𝑖 = 𝑦𝑖|𝜃).

𝐼

𝑖=1

 

(b) The joint distribution of observed and latent continuous variables is a 

homogenous conditional Gaussian distribution (Lauritzen & Wermuth, 1989).  A homogenous  

Y1 

Y2 

Y3 

Y4 

Θ1 

𝜈1𝑗1 

𝜈2𝑗1 

𝜈3𝑗2 

𝜈4𝑗2 

Θ2 

𝜎12 

𝜎22 

𝜎11 

Y1 

Y2 

Y3 

Y4 

Θ 

𝜈1𝑗  

𝜈2𝑗 

𝜈3𝑗 

𝜈4𝑗  

σ 

(A) (B) 



 

17 
 

conditional Gaussian distribution is the distribution of the continuous variables (i.e., θ) given the 

response pattern (i.e., y) is normal. The mean depends on the response pattern given but the 

variance remains the same over response patterns : 

Θ|𝐘 = 𝒚is𝑁(𝜇𝒚, 𝜎
2). 

Following Anderson and Vermunt (2000) and Anderson and Böckenholt (2000), 

Anderson and Yu (2007) showed the joint distribution of observed and latent continuous 

variables, which is restated below. 

 𝑓(𝒚, 𝜃) = 𝑓(𝜃|𝒚)𝑷(𝒚)

=
1

√2𝜋𝜎2
exp [−

(𝜃 − 𝜇(𝒚))
2

2𝜎2
]𝑷(𝒚)

= exp [𝑔(𝒚) + ℎ(𝒚)𝜃 −
𝜃2

2𝜎2
], 

 

 

(2.8) 

 

where 𝑔(𝒚) = log (
1

√2𝜋𝜎2
) + log(𝑷(𝒚)) −

𝜇(𝒚)
2

2𝜎2
, (2.9) 

and ℎ(𝒚) = 𝜇𝒚/𝜎
2. (2.10) 

The distribution in (2.8) is a homogeneous conditional Guassian distribution.  

In Anderson and Vermunt (2000), 𝑔(𝒚) represents the dependencies among discrete 

variables (i.e., item responses to items) given the latent variable and ℎ(𝒚) shows the 

dependencies between discrete variables and the latent variable.  By rewriting 𝑔(𝒚) in equation 

(2.9) in terms of log(𝑷(𝒚)), the log manifest probabilities for response pattern are obtained, that 

is, 

 log(𝑷(𝒚)) = 𝑔(𝒚) + log (√2𝜋𝜎2) +
𝜇(𝒚)
2

2𝜎2
. (2.11) 
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To derive LMA model for log manifest probabilities for response pattern, Anderson and 

Vermunt (2000) specified definitions for 𝑔(𝒚) and ℎ(𝒚). By the assumption of conditional 

independence of item responses given the latent variable, 𝑔(𝒚) is set equal to the sum of location 

parameters for each item, that is,  

 

𝑔(𝒚) = ∑𝜆𝑖𝑗.

𝐼

𝑖=1

 (2.12) 

As presented in equation (2.8), ℎ(𝒚) is a function of coefficients that shows the strength of the 

relationship between item responses to each item and the latent variable and is defined as the 

sum of category scores for each item, that is,  

 

ℎ(𝒚) =∑𝜈𝑖𝑗 .

𝐼

𝑖=1

 (2.13) 

By the two definitions of ℎ(𝒚) in (2.10) and (2.13), the mean of the homogenous conditional 

Gaussian distribution is defined as a linear expansion of scores, which equals: 

 

𝜇𝒚 = 𝜎2∑𝜈𝑖𝑗.

𝐼

𝑖=1

 (2.14) 

By substituting (2.12) and (2.14) into equation (2.11), the LMA model for the log 

manifest probabilities of response pattern can be rewritten as  

 log(𝑷(𝒚)) = 𝜆 +∑𝜆𝑖𝑗 + 𝜎2∑∑𝜈𝑖𝑗
𝑖<𝑘

𝜈𝑘𝑗
𝑖𝑖

, (2.15) 

where λ is a normalizing parameter that ensures that the P(y) sum to 1 over response patterns, 𝜆𝑖𝑗 

are the marginal effect term for category j on item i, 𝜈𝑖𝑗 are category scale values or scores for 

category j on item i, and 𝜎2 is an association parameter (i.e., variance of conditional distribution 

of θ) that shows the strength of the relationship between the items.   
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Anderson and Yu (2007) showed the equivalence of the LMA model using statistical 

graphical models to the one derived by Holland (1990) using the Dutch identity by showing that 

the above assumptions are equivalent to those made by Holland. When deriving the Dutch 

identity for the manifest probabilities of response patterns, Holland assumed that item logit 

functions are linear of a latent variable (θ). Anderson and Yu (2007) showed that the same 

assumption was also made in the LMA model by showing that item discrimination and item 

difficulty parameters of item logit functions can be rewritten as the difference between the 

corresponding parameters (i.e., 𝜈𝑖𝑗 and 𝜆𝑖𝑗, respectively) of the LMA models. Another 

assumption made by Holland is that the posterior distribution of θ is normal with the mean and 

the variance for one response pattern (𝒚0).  Anderson and Yu (2007) also proved that if it is the 

case for 𝒚0,then it is true for all response patterns (see also Hessen, 2012). In addition to these 

two assumptions, conditional independence and a multinomial distribution for the manifest 

probabilities of response patterns are also assumed in both derivations. The equivalence of the 

assumptions between both approaches has further established that LMA models can function as 

item response models. 

Fully Conditional Specification Derivation of LMA Models  

Anderson and Yu (2007) provided a new derivation of LMA model as item response 

models based on fully conditionally specified logistic regression models using a rest-score in lieu 

of θ. The sum of responses to items weighted by category scores (i.e.,𝜈𝑖𝑗) are sufficient statistics 

for the latent variable (Andersen, 1995; Ostini & Nering, 2006). Adapting the idea with a slight 

change, Anderson and Yu (2007) (see also Anderson, Li, & Vermunt, 2007; Anderson, 

Verkuilen, & Peyton, 2010; Anderson, 2013) proposed to use a rest-score as an estimate of the 
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latent variable based on the precedence and justification for it in the literature on classical test 

theory and IRT as mentioned in Junker and Sijtsma (2000).  

A rest-score is the sum of all the item scores except for the item being studied. For 

example, Graph (A) in Figure 1 represents a case where all of the four items are directly related 

to the only one latent variable, θ (i.e., unidimentional model).  When modeling the response to 

item 1 in Graph (A), the sum of the responses of Y2, Y3, and Y4 would be used as an estimate of 

θ; that is,  

 �̃�−1 = 𝜎11(𝜈2𝑗 + 𝜈3𝑗 + 𝜈4𝑗). (2.16) 

The symbol �̃�−1 represents the estimate of θ and is referred to as a rest-score for item 1. 

The subscript, ‘-1’ indicates that the response of item 1 is not included in the estimate of θ. The 

sum, (𝜈2𝑗 + 𝜈3𝑗 + 𝜈4𝑗), is over the category scores of all the other items except for the item that 

is being modeled (i.e., item 1) and 𝜎11 is an association parameter which is the variances of θ 

within a response pattern.   

When defining a rest-score in the case of multiple correlated latent variables, it consists 

of two components: (a) the one that is directly related to the latent variable and (b) the one that 

(indirectly) relates to the information from the correlated latent variable(s) with the target latent 

variable (Anderson, Li, & Vermunt, 2007; Anderson, Verkuilen, & Peyton, 2010; Anderson, 

2013). The latter adds to estimation of  �̃�−𝑖.  De la Torre and Patz (2005) found that taking into 

account the correlation between abilities can lead to a great improvement in ability estimation. 

Wang, Chen, and Cheng (2004) reported that using item responses to other tests as collateral 

information ca n increase measurement efficiency when the target ability is estimated.  

Graph (B) in Figure 1 shows a simple multidimensional structure with four items and two 

correlated variables.  Items 1 and 2 are directly related to 𝜃1, and items 3 and 4 to 𝜃2, and two 
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latent variables are correlated. When specifying a model for Y1, only the response of Y2 would 

be taken as an estimate of 𝜃1. Since two latent variables, 𝜃1 and 𝜃2 are correlated and items 3 and 

4 are direct indicators of 𝜃2, it would be possible to get some information about 𝜃1  from them. 

Thus, the responses of Y3 and Y4 would also be included in modeling  𝜃1. Therefore, the rest-

score for item 1, namely, the estimate of 𝜃1 in modeling the response of Y1 under two correlated 

latent variables,  

 �̃�1,−1 = 𝜎11(𝜈2𝑗1) + 𝜎12(𝜈3𝑗2 + 𝜈4𝑗2). (2.17) 

The more general form for any number of latent variables is 

𝜃𝑚,−𝑖 = 𝜎𝑚𝑚∑𝜈𝑘𝑗𝑚
𝑘≠𝑖

+ ∑ 𝜎𝑚𝑚′

𝑚′≠𝑚

(∑𝜈𝑘𝑗𝑚′

𝑘

), (2.18) 

where  �̃�𝑚,−𝑖 indicates the estimate of θ for the latent variable m that excludes the response of 

item i, 𝜈𝑘𝑗𝑚 is the category score for the response j on item k, which is a direct indicator of the 

latent variable m, 𝜎𝑚𝑚 is a weight (variance) that reflects the scale of the latent variable m, and 

𝜎𝑚𝑚′ is a weight that shows the strength of the relationship between latent variables (i.e., 

covariance).  

Replacing θ with its estimator �̃�𝑚,−𝑖 in equation (2.18) yields a set of fully conditional 

multinomial logistic regression models, one for each item. For illustration, the example model in 

Graph (B) in Figure 1 is used; 

Item 1 : P(𝑌1 = 𝑗|�̃�1,−1) = exp{𝜆1𝑗 + 𝜈1𝑗1(𝜎11𝜈2𝑗1 + 𝜎12(𝜈3𝑗2 + 𝜈4𝑗2))}/𝑘1 (2.19) 

Item 2 : P(𝑌2 = 𝑗|�̃�1,−2) = exp{𝜆2𝑗 + 𝜈2𝑗1(𝜎11𝜈1𝑗1 + 𝜎12(𝜈3𝑗2 + 𝜈4𝑗2))}/𝑘2 (2.20) 

Item 3 : P(𝑌3 = 𝑗|�̃�2,−3) = exp{𝜆3𝑗 + 𝜈3𝑗2(𝜎22𝜈4𝑗2 + 𝜎12(𝜈1𝑗1 + 𝜈2𝑗1))}/𝑘3     (2.21) 

Item 4 : P(𝑌4 = 𝑗|�̃�2,−4) = exp{𝜆4𝑗 + 𝜈4𝑗2(𝜎22𝜈3𝑗2 + 𝜎12(𝜈1𝑗1 + 𝜈2𝑗1))}/𝑘4 , (2.22) 

where  𝑘𝑖 = ∑ exp(𝜆𝑖ℎ + 𝜈𝑖ℎ𝑚�̃�𝑚,−𝑖)
𝑗
ℎ . 
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For any number of items and multiple latent variables, the set of fully conditionally specified 

response functions is defined as 

P(𝑌𝑖 = 𝑗|�̃�𝑚,−𝑖)   

=
exp {𝜆𝑖𝑗 + 𝜈𝑖𝑗𝑚 (𝜎𝑚𝑚 ∑ 𝜈𝑘𝑗𝑚𝑘≠𝑖 + ∑ 𝜎𝑚𝑚′𝑚≠𝑚′ (∑ 𝜈𝑘𝑗𝑚′𝑘 ))}

∑ exp {𝜆𝑖ℎ + 𝜈𝑖ℎ𝑚 (𝜎𝑚𝑚 ∑ 𝜈𝑘𝑗𝑚𝑘≠𝑖 + ∑ 𝜎𝑚𝑚′𝑚≠𝑚′ (∑ 𝜈𝑘𝑗𝑚′𝑘 ))}
𝑗
ℎ

 for i =1, 2, .., I. (2.23) 

The models above are called ‘fully conditionally specified models’ because the response of each 

item is modeled conditional on all of the other items.  To estimate the parameters of the observed 

response patterns of items by fitting the set of conditional logistic regression models, the joint 

distribution for the manifest probabilities of the response patterns, P(y) will be found (except for 

𝜆𝑖𝑗).  

A set of fully conditional specification of models (Anderson & Yu, 2007; Anderson, Li, 

& Vermunt, 2007; Anderson, Verkuilen, & Peyton, 2010) over-determines the joint distribution 

(Anderson, 2013; Gelman & Speed, 1993). Joe and Liu (1996) used the conditional specification 

method for multivariate binary response data with covariates and provided necessary and 

sufficient conditions for compatibility of conditional distributions. According to them, when one 

binary response variable, 𝑌𝑖 is conditional on 𝑌𝑗 (𝑖 ≠ 𝑗) and vice versa the two-way interaction 

parameters between two variables, 𝛾𝑖𝑗 and 𝛾𝑗𝑖 must be equal for the conditional distributions to 

be compatible or consistent. Extending Joe and Liu’s results to polytomous multidimensional 

IRT models, Anderson, Li, and Vermunt (2007), Anderson, Verkuilen, and Peyton (2010), and 

Anderson (2013) showed that this condition also holds for a set of fully conditionally specified 

models, including those that contained covariates and imposed ordinal constraints or parameters. 

The set of conditional models uniquely leads to an LMA model for the observed response 

patterns.    
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The LMA model for response patterns corresponding to Model (2.19) through (2.22), 

which corresponds to Graph (B) in Figure 1 is 

log 𝑃(𝑦) = 𝜆 + 𝜆1𝑗 + 𝜆2𝑗 +𝜆3𝑗 + 𝜆4𝑗

+ 𝜎11𝜈1𝑗1𝜈2𝑗1 + 𝜎22𝜈3𝑗2𝜈4𝑗2

+ 𝜎12(𝜈1𝑗1𝜈3𝑗2 + 𝜈1𝑗1𝜈4𝑗2 + 𝜈2𝑗1𝜈3𝑗2 + 𝜈2𝑗1𝜈4𝑗2). 

(2.24) 

The more general form of LMA model for the joint distribution is;  

log 𝑃(𝒚) = 𝜆 +∑𝜆𝑖𝑗 +∑∑∑ ∑ 𝜎𝑚𝑚′𝜈𝑖𝑗𝑚
𝑚≥𝑚′

𝜈𝑘𝑗𝑚′ ,

𝑚𝑖>𝑘𝑖𝑖

 (2.25) 

where y is the response pattern on I items, 𝜆 ensures that the sum of the probabilities over all the 

possible response patterns equals 1,  𝜆𝑖𝑗 represents the marginal effect terms of each category on 

item i, and 𝜎𝑚𝑚′𝜈𝑖𝑗𝑚𝜈𝑘𝑗𝑚′   is the multiplicative term of category scores between pairs of items 

with an association parameter. In the case where item k is not directly related the latent variable 

m, the corresponding 𝜈𝑘𝑗𝑚 will be set to zero. For example, since there is no relationship 

between item 2 and 𝜃2 in Graph (B), its category scores for the latent variable 𝜃2, 𝜈2𝑗2 equals 

zero.  

As mentioned earlier, LMA models are special cases of log-linear models (a Possion 

regression) with only two-way interaction terms. Multinomial logistic regression models with 

categorical variables for predictors can be written in the form of log-linear models (Agresti, 

2002). Therefore, each parameter in LMA model given in equation (2.24) is the same as those in 

equations (2.19) through (2.22) for multinomial logistic models.  That is, the marginal effect 

terms, 𝜆𝑖𝑗 correspond to the location parameters in the multinomial logistic regression models, 
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and the product terms of weights (𝜎𝑚𝑚′) and category scores (𝜈𝑖𝑗𝑚)also appear in both 

equations.       

There are two great advantages in the LMA model as item response model derived by 

Anderson, Verkuilen, and Peyton (2007). First, since LMA models are equivalent to Possion 

regression models, not only can the parameters be estimated without using numerical integration, 

but also explicit assumptions regarding the marginal distribution of the latent variables are not 

necessary. The LMA models allow IRT models with multiple latent variables to be fit to data 

using MLE by using computer software such as lEM (Vermunt, 1997) and PROC/NLP in SAS.    

A second of advantage of the fully conditional specification approach is that it suggests 

how parameters for large numbers of items could be estimated in an efficient way that 

overcomes the limitations of MLE of LMA models. The parameters of LMA models are 

estimated by MLE and it requires iteratively computing fitted values for all possible response 

patterns. ML estimates of LMA models for small numbers of items can be obtained easily, but 

the standard estimation methods for large numbers of items fail because the number of possible 

response patterns increases exponentially as the number of items and response options per item 

increase. Rather than MLE, pseudo-likelihood estimation can be done and will be discussed in 

the following chapter.        

 

 

 



 

25 
 

Chapter 3 

Estimation of LMA Models 

Log-linear and LMA models are typically estimated by maximum likelihood estimation 

(MLE). This chapter provides an overview of the estimation procedures of the parameters in 

LMA models. Two estimation procedures for LMA models as MIRT models will be introduced, 

maximum likelihood estimation and pseudo-likelihood estimation, followed by its 

implementation for LMA Rasch models (i.e., linear-by-linear models). The more general 

algorithm will be presented in the Chapter 4.  

Maximum Likelihood Estimation (MLE) 

Let C denote the number of possible item response patterns y, 𝑃(𝒚𝑐) denote their 

probabilities, where ∑ 𝑃(𝒚𝑐)𝑐 = 1, and 𝑛(𝒚𝑐) denote the number of examinees in the sample 

having a response pattern 𝒚𝑐, where ∑ 𝑛(𝒚𝑐)𝑐 = 𝑁, total number of examinees in the sample.  

Then, {𝑛(𝒚𝑐)}follows a multinomial distribution with parameters N and 𝑃(𝒚𝑐) as below: 

 𝑃[𝑛(𝒚1), 𝑛(𝒚2), 𝑛(𝒚3),… , 𝑛(𝒚𝑐)]

= (
𝑁!

𝑛(𝒚1)! 𝑛(𝒚2)! 𝑛(𝒚3)!…𝑛(𝒚𝑐)!
)𝑃(𝒚1)

𝑛(𝒚1)𝑃(𝒚2)
𝑛(𝒚2)𝑃(𝒚3)

𝑛(𝒚3)…𝑃(𝒚𝑐)
𝑛(𝒚𝑐). 

(3.1) 

Removing a multiplicative constant, the kernel of the likelihood function for multinomial count 

data of item response patterns equals 

 𝐿 = ∏
exp(−𝑃(𝒚𝑐))𝑃(𝒚𝑐)

𝑛(𝒚𝑐)

𝑛(𝒚𝑐)!

𝐶

𝑐=1

, (3.2) 

and the kernel of the log-likelihood function is 

 log 𝐿 =∑𝑛(𝒚𝑐) log 𝑃(𝒚𝑐) − 𝑃(𝒚𝑐)

𝐶

𝑐=1

. (3.3) 
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Holland (1990) showed that fitting IRT models by MMLE based on an item response 

matrix which presents all the responses to I items of all examinees in the sample (i.e., N) is 

equivalent to fitting a second-order log-linear model for multinomial count data by MLE 

(Holland, 1990)  and this goes the same for LMA models.  

Computer Programs for Parameter Estimation in LMA Models 

There are a number of computer programs for fitting LMA models and these include 

lEM (Vermunt, 1997), SAS nonlinear programming procedure (PROC/NLP), R, and MatLab. Of 

them, lEM and PROC/NLP in SAS are the most frequently used for fitting LMA models. lEM is 

open-source software for the analysis of categorical data developed by Vermunt (1997). It 

conducts parameter estimation of LMA models by maximum likelihood using a quasi-Newton 

algorithm. Uni-dimensional Newton-Raphson algorithm is a variant of Newton-Raphson 

algorithm that only uses the diagonal elements of the Hessian matrix to update equations for the 

parameters. Global optimal solutions are not guaranteed but multiple runs with random starts can 

be used to check convergence. For details, see Anderson and Vermunt (2000). PROC/NLP in 

SAS provides a variety of ways for estimating parameters in nonlinear statistical models. Both 

unconstrained and constrained maximization/minimization problems can be handled by the 

procedure with a set of optimization methods, including Newton-Raphson and quasi-Newton 

method. The latter is used when non-linear constraints are placed on parameters, otherwise 

Newton-Raphson can be used, which does give a unique global maximum. LMA models can be 

fit to data easily with three command statements in PROC/NLP. They are: (a) ‘parms’ statement 

that specifies the parameters to be estimated, (b) the equation of an LMA model, and (c) the 

logarithm of the likelihood function to be maximized. With Newton-Raphson, it yields estimates 
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of standard errors and covariance matrices for parameter estimates. These features of 

PROC/NLP provide an easy and flexible way of fitting LMA models.  

Motivation of PLE for LMA models 

When estimating parameters in LMA models with MLE, it requires iteratively computing 

fitted values for all possible response patterns. Parameter estimates of LMA models for small 

numbers of items can be obtained by MLE easily because the number of all possible response 

patterns is reasonable. For large numbers of items, however, the standard estimation methods of 

LMA models fail because the number of possible response patterns increases exponentially as 

the number of items and response options per item increase. For example, Anderson (2013) 

reported that the estimation of an LMA model for 8 items with 5 categories using PROC/NLP 

was successful, but failed for 9 items with the same number of categories. The number of 

possible item response patterns for 8 items equals 58 = 390,625and it increases to 59 =

1,953,125 when just one item is added to 8 items, which makes the MLE of LMA models 

infeasible.  

More recently, pseudo-likelihood estimation (PLE) was proposed to solve the problem 

for Rasch models with large numbers of items (Anderson, Li, & Vermunt 2007; Li 2010). It is 

reported that PLE can fit the models to data with large numbers of items successfully and fast, 

handle models with multiple latent variables and covariates, yield consistent estimates, and is 

easy to implement.  

Pseudo-likelihood Estimation (PLE)   

Pseudo-likelihood estimation (PLE) was first introduced by Besag (1974) as an approach 

to the specification and estimation of spatial interaction models. He pointed out that a 

complicated normalizing function hinders a direct approach to statistical inference through 
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maximum likelihood. To solve this problem, he specified a conditional distribution for spatial 

data observed at a specific site given the data observed at all the other sites and obtained the 

parameter estimates by maximizing the product of the conditional likelihood functions for data. 

As shown in his study, the basic idea behind PLE is to replace numerically challenging problems 

with more tractable ones by simplifying them with conditional specification approach so that 

computational demands can decrease in fitting models. For its computational efficiency, PLE has 

been used as an alternative to maximum likelihood estimation in a number of studies on social 

networks (Strauss & Ikeda, 1990; Wasserman & Pattison, 1990), multivariate clustered data 

(Geys, Molenberghs, & Ryan, 1999; Molenberghs & Verbeke, 2005), longitudinal data (Troxel, 

Lipsitz, & Harrington, 1998; Parzen, Lipsitz, Fitzmaurice, Ibrahim, Troxel, & Molenberghs, 

2007), incomplete data (Molenberghs, Kenward, Verbeke, & Birhanu, 2011). 

Several studies have been performed to estimate parameters of Rasch models with PLE 

(Arnold & Strauss, 1991; Strauss, 1992; Zwinderman, 1995; Smit & Kelderman, 2000). 

Following Besag (1974, 1975)’s conditional approach, Arnold and Strauss (1991) and Strauss 

(1992) provided the definition of pseudo-likelihood for pairs of binary items using Rasch models 

and mentioned that maximizing the pseudo-likelihood function is equivalent to finding MLE 

with a logistic regression procedure.    

Zwinderman (1995) conducted a simulation study to investigate the consistency and 

efficiency of PL estimates for Rasch models using responses to pairs of items, irrespective of 

other items. He compared the estimates from PLE to those from conditional maximum likelihood 

(CML) and marginal maximum likelihood (MML) estimation methods and showed that PL 

estimates are consistent and similar in efficiency to CML and MML estimates.  
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Smit and Kelderman (2000) proposed to apply PLE method to Rasch models for binary 

items. Unlike the pairwise estimation method used by Arnold and Strauss (1991), Strauss (1992), 

and Zwinderman (1995), they estimated the parameters for Rasch models based on a set of 

binary item responses and showed that PLE method is more computationally attractive than 

CML and its estimates are almost identical to CML and unconditional ML estimates.  

To summarize, the studies have shown that PLE can be used for Rasch models as an 

alternative estimation method to MLE, but their application of PLE was limited to 

unidimensional binary Rasch models.  

PLE for LMA Rasch Models Using Fully Conditionally Specified Models 

More recently, Anderson, Li, and Vermunt (2007) proposed PLE for LMA models to 

solve the problem of MLE for large numbers of items. Like the previous application of PLE to 

Rasch model, their methodology was also applied to LMA Rasch models, but its application was 

extended to the models for polytomous items and multiple latent variables. Their implementation 

of PLE of LMA Rasch models reflects the original idea of PLE introduced by Besag (1974, 

1975). As mentioned earlier, fitting LMA models for large numbers of items with MLE is 

prohibitive due to the exponential increase in the number of all possible item response patterns. 

To solve this complex problem, they replaced LMA Rasch models for large numbers of items 

with simpler conditional multinomial logistic models based on fully conditional specification 

approach (Anderson & Yu, 2007; Anderson, Li, & Vermunt, 2007; Anderson, Verkuilen, & 

Peyton, 2010). They specified conditional models corresponding to each item using rest score in 

lieu of the latent variable and defined pseudo-likelihood as the product of the likelihoods of the 

conditional multinomial logistic regressions. For implementation of PLE, the whole set of fully 

conditionally specified logistic regression models were “stacked” into a large design matrix and 
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the model parameters were estimated by finding the maximum value of likelihood function with 

one large stacked conditional multinomial logistic regression model. The maximum value of the 

likelihood of the model fit to the stacked data equals the maximum of pseudo-likelihood 

function. 

For illustration, let’s take an example model for a LMA Rasch model with I polytomous 

items and one latent variable. The graph for the model looks similar to Graph (A) in Figure 1 

represented in the previous chapter.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2. LMA Rasch model with I polytomous items and one latent variable 
 

In Anderson, Verkuilen, and Peyton (2010)’s fully conditional specification approach, the 

rest score for item i is defined as  

 �̃�−𝑖 = 𝜎11∑𝜈𝑘𝑗
𝑘≠𝑖

. (3.4) 

where  �̃�−𝑖 indicates the estimate of θ (e.g., a rest score) for item i,  𝜈𝑘𝑗 is the known (or 

assumed) category score for the response j on item k, and 𝜎11 is a weight (variance) that reflects 

the scale of the latent variable within response patterns.   
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Using the defined weighted rest score in equation (3.4), the LMA Rasch model in Figure 

2 yields a set of fully conditionally specified multinomial logistic regression models:  

P(𝑌1 = 𝑗|�̃�−1) = exp{𝜆1𝑗 + 𝜈1𝑗(𝜎11∑𝜈𝑘𝑗
𝑘≠1

)}/𝑘1 (3.5) 

P(𝑌2 = 𝑗|�̃�−2) = exp{𝜆2𝑗 + 𝜈2𝑗(𝜎11∑𝜈𝑘𝑗
𝑘≠2

)}/𝑘2 (3.6) 

                                        :                =                                  :                

P(𝑌𝐼 = 𝑗|�̃�−𝐼) = exp{𝜆𝐼𝑗 + 𝜈𝐼𝑗(𝜎11∑𝜈𝑘𝑗
𝑘≠𝐼

)}/𝑘𝐼, (3.7) 

where  𝑘𝑖 = ∑ exp{𝜆𝑖ℎ + 𝜈𝑖ℎ(𝜎11∑ 𝜈𝑘𝑗𝑘≠𝐼 )}
𝑗
ℎ=0 . 

As defined earlier, pseudo-likelihood is the product of the likelihoods of the conditional 

multinomial logistic regressions. Therefore, pseudo-likelihood for person n is defined as 

 

𝑃𝐿(𝝀|𝒚𝑛) =∏P(𝑌𝑛𝑖 = 𝑗|�̃�𝑛(−𝑖))

𝐼

𝑖=1

=∏
exp{𝜆𝑖𝑗 + 𝜈𝑖𝑗(𝜎11∑ 𝜈𝑘𝑗𝑘≠𝑖 )}

∑ exp{𝜆𝑖ℎ + 𝜈𝑖ℎ(𝜎11∑ 𝜈𝑘𝑗𝑘≠𝑖 )}
𝑗
ℎ=0

𝐼

𝑖=1

, 

(3.8) 

where 𝝀 is the vector of parameters in the model and 𝒚𝑛 is a response pattern to I items of person 

n.    

Assuming that each person is independent, pseudo-likelihood for all persons in N is expressed as  

 

𝑃𝐿(𝝀|𝒚1, 𝒚2, … 𝒚𝑁) = ∏∏P(𝑌𝑛𝑖 = 𝑗|�̃�𝑛(−𝑖))

𝐼

𝑖=1

𝑁

𝑛=1

= ∏∏
exp{𝜆𝑖𝑗 + 𝜈𝑖𝑗(𝜎11∑ 𝜈𝑘𝑗𝑘≠𝑖 )}

∑ exp{𝜆𝑖ℎ + 𝜈𝑖ℎ(𝜎11∑ 𝜈𝑘𝑗𝑘≠𝑖 )}
𝑗
ℎ=0

𝐼

𝑖=1

𝑁

𝑛=1

. 

(3.9) 

By taking logarithms on both sides of equation (3.9), log pseudo-likelihood for the whole 

response patterns of all individuals can be expressed as  
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 log 𝑃𝐿 = log (𝑃𝐿(𝝀|𝒚1, 𝒚2, … 𝒚𝑁))

= ∑∑P(𝑌𝑛𝑖 = 𝑗|�̃�𝑛(−𝑖))

𝐼

𝑖=1

𝑁

𝑛=1

. 
(3.10) 

Pseudo-likelihood estimates are the values for 𝝀 and 𝜎11 that maximize the pseudo-

likelihood function in equation (3.9) and this can be done by maximizing the likelihood of the set 

of conditional multinomial logistic regression models, (3.5) ~ (3.7). The one large conditional 

multinomial logistic regression model can be set up by stacking each conditional multinomial 

logistic regression model in a design matrix and the model fit by MLE. The value of the 

maximum of the likelihood of the conditional multinomial logistic regression is the value of the 

PLE.  

Table 1 illustrates the design matrix for fitting the set of fully specified conditional 

multinomial logistic regression models to get pseudo-likelihood estimates of person 1. For 

convenience, assume that all items have the same number of response categories. The design 

matrix consists of  I×( J + 1) rows and (I× J) + 4 columns for one person. Let’s suppose that 

person 1 has the response pattern to I polytomous items, 𝒚1 = (21…… 𝐽).  The first column 

shows person ID for each person. The next two columns show the item number and the response 

options for each item, respectively. The fourth column shows the response variable, Y indicating 

1 for the selected response option by person 1 and 0 for otherwise. For example, the third 

response option of item 1 is entered as 1 and the rest of response options as 0 because person 1 

selected the third response option for item 1. The next I×J columns show dummy codes4 for 

location parameters of each item, 𝜆𝑖𝑗 and 𝜆𝑖𝑗 is set to 𝜆𝑖𝑗 = 0 for identification. In each column 

                                                           
4 Other coding schemes can be used.  
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Table 1. Design matrix for one person for PLE of LMA Rasch model: Polytomous items with one latent variable 

 
Person Item Response Response item 1 item 2 … … item I Weighted rest-score 

  option variable (Y) 𝜆11 𝜆12 … 𝜆1𝐽 𝜆21 𝜆22 … 𝜆2𝐽 … … 𝜆𝐼1 𝜆𝐼2 … 𝜆𝐼𝐽 𝜎11 

1 1 0 0 0 0 … 0 0 0 … 0 … … 0 0 … 0 0 

1 1 1 0 1 0 … 0 0 0 … 0 … … 0 0 … 0 
𝜈11∑ 𝜈𝑘𝑗

𝑘≠𝑖
 

1 1 2 1 0 1 … 0 0 0 … 0 … … 0 0 … 0 
𝜈12∑ 𝜈𝑘𝑗

𝑘≠𝑖
 

: : : : : : : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : : : : : 

1 1 J 0 0 0 … 1 0 0 … 0 … … 0 0 … 0 
𝜈1𝐽∑ 𝜈𝑘𝑗

𝑘≠𝑖
 

1 2 0 0 0 0 … 0 0 0 … 0 … … 0 0 … 0 0 

1 2 1 1 0 0 … 0 1 0 … 0 … … 0 0 … 0 
𝜈21∑ 𝜈𝑘𝑗

𝑘≠𝑖
 

1 2 2 0 0 0 … 0 0 1 … 0 … … 0 0 … 0 
𝜈22∑ 𝜈𝑘𝑗

𝑘≠𝑖
 

: : : : : : : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : : : : : 

1 2 J 0 0 0 … 0 0 0 … 1 … … 0 0 … 0 
𝜈2𝐽∑ 𝜈𝑘𝑗

𝑘≠𝑖
 

1 : : : : : : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : : : : : 

1 : : : : : : : : : : : : : : : : : : 

1 I 0 0 0 0 … 0 0 0 … 0 … … 0 0 … 0 0 

1 I 1 0 0 0 … 0 0 0 … 0 … … 1 0 … 0 
𝜈𝐼1∑ 𝜈𝑘𝑗

𝑘≠𝑖
 

1 I 2 0 0 0 … 0 0 0 … 0 … … 0 1 … 0 
𝜈𝐼2∑ 𝜈𝑘𝑗

𝑘≠𝑖
 

: : : : : : : : : : : : : : : : : : : 

: : : : : : : : : : : : : : : : : : : 

1 I J 1 0 0 … 0 0 0 … 0 … … 0 0 … 1 
𝜈𝐼𝐽∑ 𝜈𝑘𝑗

𝑘≠𝑖
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for 𝜆𝑖𝑗, only one element is represented as 1 and all the other elements as 0. The last column 

shows a rest score weighted by the 𝜈𝑖𝑗 for the corresponding item and response option. In Rasch 

model, 𝜆𝑖0 and 𝜈𝑖0 are generally set to 𝜆𝑖0 = 0 and 𝜈𝑖0 = 0 . For this reason, all the elements in 

the first row of each item equal 0. For total sample size of N, there will be 𝑁 × (𝐼 × 𝐽) rows in 

the design matrix.  

Anderson, Li, and Vermunt (2007) examined the performance of PLE of Rasch models 

under various situations in the simulation studies, varying the number of items, response options 

(e.g., binary or polytomous), latent variables (e.g., single or multiple latent variables), and 

examinees. For small numbers of binary or polytomous items with a single or multiple latent 

variables, PL estimates were highly correlated with ML estimates for different sample sizes and 

yielded very similar estimates to true parameters used to simulate the data. The robust or 

“sandwich” standard errors that were computed were also very similar to those from MLE. The 

parameter recovery of PLE was excellent for large numbers of binary or polytomous items with a 

single or multiple latent variables. For large numbers of binary items with a single latent 

variable, standard errors from PLE and BILOG were compared and it showed that the robust 

standard errors from PLE were slightly smaller than the standard errors from BILOG. This 

methodology was further investigated for LMA Rasch models with covariates by Li (2010) and it 

was shown that the parameters for LMA Rasch models with covariates can be estimated by PLE 

easily and quickly with a small loss of efficiency relative to MLE.   

Motivation of the Extension of PLE to More General Models  

As reviewed so far, the use of current PLE is limited to the estimation of location 

parameters (i.e., models in the Rasch family). In this thesis, PLE will be proposed and developed 

for more general models including slope (discrimination) parameters.  
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Chapter 4 

Proposed Algorithm for LMA Models 

A new estimation algorithm for more general LMA models with both location and slope 

parameters is introduced. After presenting a general summary of the algorithm, a detailed 

description of each step involved in the algorithm will be given.  

An Overview of the New Algorithm   

The previous PLE algorithm for LMA Rasch models (Anderson, Li, & Vermunt, 2007) is 

extended by adding an additional step that estimates the slope parameters for the latent variables 

as well as location parameters. The algorithm has two basic steps and simplifies for special 

cases. In Step 1, a conditional multinomial logistic regression model is fit by MLE to one item 

using rest-scores as an explanatory variable to get new estimates of slope parameters for the 

item. Subsequently, the estimated slope parameter of the item is used in the rest-score for the 

model for the next item. This process is repeated for each item until all slope parameters have 

been updated. Step 2 involves fitting a single conditional logistic regression model to a data set 

formed by “stacking” the conditional logistic regressions for each item.  This yields new 

estimates of location parameters and the covariance matrix for the latent variables.  Steps 1 and 2 

are repeated until all parameter estimates converge. 

At convergence, additional iterations result in the situation where (a) log-likelihoods of 

conditional logit models for items do not change, (b) log-likelihood of a stacked regression does 

not change, (c) parameter estimates do not change, and (d) location parameters (𝜆𝑖𝑗) from 

conditional logit models for each item and from a stacked regression model are identical.  
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Figure 3. The proposed algorithm 

 

Figure 3 illustrates the algorithm with the parameters to be estimated in each step. In the 

following section, a detailed description about each step will be given. For illustration, the 

example model where two latent variables are correlated and two of four items are directly 

related to one of them and a set of fully conditionally specified models will be used. The 

example model is illustrated in Figure 1 (B) on page 16.  

Step 1: Conditional Multinomial Logit Models for Each Item   

The main goal of Step 1 is to estimate (or update) slope (discrimination) parameters for 

each item. The goal can be achieved by fitting a conditional multinomial logistic regression 

model for each item with MLE using a weighted rest-score as an explanatory variable.  

Estimation Process of Step 1 

In Step 1, a set of conditional logistic regression models is fit to data for one item at a 

time so that the estimated 𝜈𝑖𝑗𝑚 can be included in the weighted rest-score for next item and used 
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as an explanatory variable to estimate slope parameters for the item. The location parameters, 

𝜆𝑖𝑗’s are also obtained by fitting the models, but the main interest of Step 1 lies on slope 

parameters. Location parameters are also estimated in Step 2. Let’s suppose that the conditional 

multinomial logistic regression model for item 1 is fit to data. The parameters to be estimated are 

denoted by 𝝀𝟏𝒋  and  𝝂𝟏𝒋𝟏  as shown below.  

P(𝑌1 = 𝑗|�̃�1,−1) =
exp{ 𝝀𝟏𝒋 + 𝝂𝟏𝒋𝟏 (𝜎11𝜈2𝑗1 + 𝜎12(𝜈3𝑗2 + 𝜈4𝑗2))}

∑ exp(𝜆1ℎ + 𝜈1ℎ1�̃�1,−𝑖)
𝑗
ℎ

. 

After fitting the model, the MLE of 𝝂𝟏𝒋𝟏 is used in the model for item 2; namely, 

P(𝑌2 = 𝑗|�̃�1,−2) =
exp{ 𝝀𝟐𝒋 + 𝝂𝟐𝒋𝟏 (𝜎11𝝂𝟏𝒋𝟏 + 𝜎12(𝜈3𝑗2 + 𝜈4𝑗2))}

∑ exp(𝜆2ℎ + 𝜈2ℎ1�̃�1,−𝑖)
𝑗
ℎ

. 

The process continues over all the items in the same way until all of 𝜈𝑖𝑗𝑚s are estimated, 

including 𝜆𝑖𝑗s. With all 4 items in the example model, the whole process of Step 1 is illustrated 

as follows:  

P(𝑌1 = 𝑗|�̃�1,−1) = exp{ 𝝀𝟏𝒋 + 𝝂𝟏𝒋𝟏 (𝜎11𝜈2𝑗1 + 𝜎12(𝜈3𝑗2 + 𝜈4𝑗2))}/𝑘1 

↓ 

P(𝑌2 = 𝑗|�̃�1,−2) = exp{ 𝝀𝟐𝒋 + 𝝂𝟐𝒋𝟏 (𝜎11𝝂𝟏𝒋𝟏 + 𝜎12(𝜈3𝑗2 + 𝜈4𝑗2))}/𝑘2 

↓ 

P(𝑌3 = 𝑗|�̃�2,−3) = exp{ 𝝀𝟑𝒋 + 𝝂𝟑𝒋𝟐 (𝜎22𝜈4𝑗2 + 𝜎12(𝝂𝟏𝒋𝟏 + 𝝂𝟐𝒋𝟏))}/𝑘3 

↓ 

P(𝑌4 = 𝑗|�̃�2,−4) = exp{ 𝝀𝟒𝒋 + 𝝂𝟒𝒋𝟐 (𝜎22𝝂𝟑𝒋𝟐 + 𝜎12(𝝂𝟏𝒋𝟏 + 𝝂𝟐𝒋𝟏))}/𝑘4 

 

where  𝑘𝑖 = ∑ exp(𝜆𝑖ℎ + 𝜈𝑖ℎ𝑚�̃�𝑚,−𝑖)
𝑗
ℎ  , 𝝀𝒊𝒋  and 𝝂𝒊𝒋𝒎  are location and slope parameters to be 

estimated for item i, and 𝝂𝒊𝒋𝒎 is the estimated slope parameter for the response j on item i, which 

is a direct indicator of the latent variable m. 
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There are two great things about the estimation of parameters by Step 1. First, it is not 

sensitive to starting values for slope parameters of LMA models. Second, parameter estimates 

converge as long as identification constraints of LMA models are imposed. This can be setting 

𝜎𝑚𝑚 = 1 or ∑ 𝜈2𝑖𝑗𝑚 = 1𝑗  for one item that is directly related to latent variable m. In this thesis, 

the first one was chosen to simplify computations.        

In short, Step 1 involves an iterative process of fitting conditional multinomial logistic 

regression models for each item to estimate location and slope parameters in the models. The 

most currently obtained estimates of the slope parameters for previous items are used as 

explanatory variables for the next item. Once all the slope parameters of all items have been 

estimated through the repeated process, the algorithm is moving on to Step 2 of a stacked 

conditional logistic regression to estimate association and location parameters.    

Step 2: A Stacked Conditional Logistic Regression Model   

The goal of Step 2 is to estimate location (𝜆𝑖𝑗) and association parameters (𝜎𝑚𝑚′) for 

each item. To achieve the goal, the whole set of conditional logistic regressions for each item 

that has been fit in Step 1 is stacked and fit as a single “stacked” conditional logistic regression. 

Step 2 involves the maximization of pseudo-likelihood function by maximizing the likelihood of 

one large conditional logistic regression with a stacked data and yields new estimates of location 

and association parameters for latent variables.  

Estimation Process of Step 2 

One thing that should be noticed is that the definition of a weighted rest-score in Step 2 is 

different from that in Step 1. Let’s take a multinomial conditional logistic regression model for 

item 1 as an example.   
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Item1 ∶ P(𝑌1 = 𝑗|�̃�1,−1) =
exp{𝜆1𝑗 + 𝜈1𝑗1(𝜎11𝜈2𝑗1 + 𝜎12(𝜈3𝑗2 + 𝜈4𝑗2))}

∑ exp(𝜆1ℎ + 𝜈1ℎ1�̃�1,−𝑖)
𝑗
ℎ

. 

 

Depending on the step of the algorithm, the conditional logistic model for item 1 takes the 

different regression coefficients and the weighted rest-score for them. In step 1, the model can be 

viewed as a regression coefficients,𝜈1𝑗1 for the weighted rest-score, 𝜎11𝜈2𝑗1 + 𝜎12(𝜈3𝑗2 + 𝜈4𝑗2) . 

However, in Step 2, 𝜎11 is a regression coefficient of (weighted) rest-score, 𝜈1𝑗1𝜈2𝑗1 and 𝜎12 is a 

regression coefficient of (weighted) rest-score, 𝜈1𝑗1(𝜈3𝑗2 + 𝜈4𝑗2). Table 3 shows the regression 

coefficients for the weighted rest-score in each step.   

                      Table 2. Definitions of the weighted rest-score for item 1 in each step   

 Parameters to be estimated 

(regression coefficients) 
Weighted rest-score (�̃�𝑚,−𝑖) 

(explanatory variables) 

Step 1 𝜈𝑖𝑗𝑚 
𝜎𝑚𝑚∑𝜈𝑘𝑗𝑚

𝑘≠𝑖

+ ∑ 𝜎𝑚𝑚′

𝑚′≠𝑚

(∑𝜈𝑘𝑗𝑚′

𝑘≠𝑖

) 

Step 2 𝜎𝑚𝑚 𝜈𝑖𝑗𝑚∑𝜈𝑘𝑗𝑚
𝑘≠𝑖

 

 𝜎𝑚𝑚′ 𝜈𝑖𝑗𝑚∑𝜈𝑘𝑗𝑚′

𝑘≠𝑖

 

 

In Table 2, �̃�𝑚,−𝑖 indicates the estimate of θ for the latent variable m that excludes the 

response of item i, 𝜈𝑘𝑗𝑚 is the category score for the response j on item k (k ≠ i), which is a direct 

indicator of the latent variable m, 𝜎𝑚𝑚 is a weight (variance) that reflects the scale of the latent 

variable m, and 𝜎𝑚𝑚′ is a weight that shows the strength of the relationship between latent 

variables (i.e., covariance).  

Continuing with the 4 items in the example model, Step 2 starts with the whole set of 

conditional logistic regression models for each item that has already fit in Step 1 as follows.    
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P(𝑌1 = 𝑗|�̃�1,−1) = exp{𝜆1𝑗 + 𝝂𝟏𝒋𝟏(𝜎11𝝂𝟐𝒋𝟏 + 𝜎12(𝝂𝟑𝒋𝟐 + 𝝂𝟒𝒋𝟐))}/𝑘1 

P(𝑌2 = 𝑗|�̃�1,−2) = exp{𝜆2𝑗 + 𝝂𝟐𝒋𝟏(𝜎11𝝂𝟏𝒋𝟏 + 𝜎12(𝝂𝟑𝒋𝟐 + 𝝂𝟒𝒋𝟐))}/𝑘2 

P(𝑌3 = 𝑗|�̃�2,−3) = exp{𝜆3𝑗 + 𝝂𝟑𝒋𝟐(𝜎22𝝂𝟒𝒋𝟐 + 𝜎12(𝝂𝟏𝒋𝟏 + 𝝂𝟐𝒋𝟏))}/𝑘3 

P(𝑌4 = 𝑗|�̃�2,−4) = exp{𝜆4𝑗 + 𝝂𝟒𝒋𝟐(𝜎22𝝂𝟑𝒋𝟐 + 𝜎12(𝝂𝟏𝒋𝟏 + 𝝂𝟐𝒋𝟏))}/𝑘4 

where  𝑘𝑖 = ∑ exp(𝜆𝑖ℎ + 𝜈𝑖ℎ𝑚�̃�𝑚,−𝑖)
𝑗
ℎ . 

The slope parameters highlighted in bold font (i.e., 𝝂𝒊𝒋𝒎 ) represent that they are the estimates 

obtained in Step 1. To estimate location and association parameters in the models, the set of 

conditional logistic models is appropriately formatted for a stacked conditional logistic 

regression.  

Fitting a single conditional logistic regression model with a stacked data set yields the PL 

estimates for location and association parameters and they are highlighted as below.     

P(𝑌1 = 𝑗|�̃�1,−1) = exp{𝝀𝟏𝒋 + 𝝂𝟏𝒋𝟏(𝝈𝟏𝟏𝝂𝟐𝒋𝟏 + 𝝈𝟏𝟐(𝝂𝟑𝒋𝟐 + 𝝂𝟒𝒋𝟐))}/𝑘1 

P(𝑌2 = 𝑗|�̃�1,−2) = exp{𝝀𝟐𝒋 + 𝝂𝟐𝒋𝟏(𝝈𝟏𝟏𝝂𝟏𝒋𝟏 + 𝝈𝟏𝟐(𝝂𝟑𝒋𝟐 + 𝝂𝟒𝒋𝟐))}/𝑘2 

P(𝑌3 = 𝑗|�̃�2,−3) = exp{𝝀𝟑𝒋 + 𝝂𝟑𝒋𝟐(𝝈𝟐𝟐𝝂𝟒𝒋𝟐 + 𝝈𝟏𝟐(𝝂𝟏𝒋𝟏 + 𝝂𝟐𝒋𝟏))}/𝑘3 

P(𝑌4 = 𝑗|�̃�2,−4) = exp{𝝀𝟒𝒋 + 𝝂𝟒𝒋𝟐(𝝈𝟐𝟐𝝂𝟑𝒋𝟐 + 𝝈𝟏𝟐(𝝂𝟏𝒋𝟏 + 𝝂𝟐𝒋𝟏))}/𝑘4 

where  𝑘𝑖 = ∑ exp(𝜆𝑖ℎ + 𝜈𝑖ℎ𝑚�̃�𝑚,−𝑖)
𝑗
ℎ . 

Except for the first cycle of the algorithm, the conditional logit models with PL estimates 

obtained in Step 2 are the starting point of Step 1 for next cycle of the algorithm. The estimates 

of 𝜆𝑖ℎ, 𝜎11, 𝜎22, and 𝜎12 are included in calculating a new weighted rest-score for estimating 

slope parameters and then using the new value of the weighted rest-score, Step 1 proceeds to 

update the slope parameters. And again, a new weighted rest-score for Step 2 is computed using 

the updated slope parameters and Step 2 continues to update the location and the association 
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parameters based on the new values of the weighted rest-score. In this way, Steps 1 and 2 are 

repeated until all parameter estimates converge. 

The Extended Application of PLE to LMA Models as MIRT Models  

The proposed algorithm in this study is the extended version of the original application of 

PLE to LMA Rasch models (Anderson & Yu, 2997; Anderson, Li, & Vermunt, 2007; Li, 2010). 

The original application of PLE involves only fitting a single stacked conditional logistic model, 

which corresponds to Step 2. The proposed two-step algorithm can estimate parameters for 

general LMA models, including MIRT models where both location and slope parameters are 

included. This is true regardless of the number of latent variables and the response categories. 

Table 3 summarizes the extended application of PLE to more general LMA models as MIRT 

models, including unidimensional cases. 

In addition to Rasch models, 2PL models for binary items and Bock’s nominal response 

model for polytomous items, the more general LMA models with multiple latent variables can be 

fit by using the full algorithm, which includes Steps 1 and 2. 

Table 3.  LMA models as MIRT models covered by the algorithm 

Latent Item IRT model The proposed algorithm 

variables response  Step 1 Step 2 

   One item at a time Stacked regression 

unidimensional binary Rasch n.a. X 

  2PL new n.a. 

 polytomous Bock's NRM new n.a. 

multidimensional  LMA Rasch models n.a. X 

  General MIRT models new new 

 

Unidimensional models can be fit to data using only Step 1. Either the 2PL or Bock’s 

NRM can be estimated by iteratively fitting conditional logit models for each item.  
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Implementation of PLE in SAS for More General LMA Models  

The proposed algorithm was implemented in SAS using a series of SAS macros. The 

conditional logit models in Steps 1 and 2 of the algorithm are fit using the MDC (Multinomial 

Discrete Choice) procedure in SAS. For identification, the sum over response categories of 

location and slope parameters for each item are set to zero (i.e., ∑ 𝜆𝑖𝑗 = 0𝑗  and ∑ 𝜈𝑖𝑗 = 0𝑗 ).  

These are consistent with the linear restrictions imposed on location and slope parameters in 

Bock’s nominal response model for polytomous items. For a scaling constraint, 𝜎𝑚𝑚 is set equal 

to a constant (i.e., 𝜎𝑚𝑚 = 1) for all latent variables, while all the association parameters between 

latent variables (i.e., 𝜎𝑚𝑚′) are estimated by PLE. In this section, input data sets for PLE are 

described, followed by SAS macros.  

Input Data for PLE  

The original PLE for LMA Rasch models was implemented in both R and SAS.  The idea 

of input data described here follows the one employed in the SAS version of the previous 

application of PLE. Four types of input data are required to conduct PLE with SAS; (1) 

Response pattern (Responses), (2) Item ID (Items), (3) Item-by-trait adjacency matrix 

(ItemTraitAdj), and (4) Trait-by-trait adjacency matrix (TraitAdj).  

“Responses” is an item response matrix containing the responses of S persons to I items 

(i.e., S × 𝐼 ). Given the number of response categories equals J, the responses are represented in 

the matrix as 1, 2, …, J.  Table 4 illustrates an example of the input data, ‘Responses’ from six 3-

category items with 200 persons. 

“Items” is a data set that contains the name of the I items from the data set called 

‘Responses’. Table 5 shows an example of ‘Items’ dataset. Each of six items in “Responses” are 

named as y1, y2, y3, y4, y5, and y6 in the “Items” dataset. These names are used when creating  
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                                          Table 4. An example of ‘Responses’ dataset from six 3-category items 

Person Item1 Item2 Item3 Item4 Item5 Item6 

1 1 3 2 1 1 1 

2 2 2 1 2 1 1 

3 3 1 3 2 1 2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

200 1 1 1 1 1 1 

 

                                               Table 5. An example of ‘Items” dataset from six items 
 

Item1 Item2 Item3 Item4 Item5 Item6 

 y1 y2 y3 y4 y5 y6 

 

new variables associated with responses to items in a master dataset by Dataset conversion 

macro, which will be explained in the next section, “SAS Macros for PLE”.   

“ItemTraitAdj” is an item-by-latent trait adjacency matrix. If an item is directly related to 

a latent trait, the element corresponding to the item and the latent trait in the matrix takes 1 and 0 

otherwise. Table 6 illustrate examples of “ItemTraitAdj” datasets with 6 items.   

           Table 6. Example of ‘ItemTraitAdj’ datasets from six items 

(a) unidimensional  (b) 2-dimensional  (c) 3-dimensional 

Item Trait 1  Item Trait 1 Trait 2  Item Trait 1 Trait 2 Trait 3 

1 1  1 1 0  1 1 0 0 

2 1  2 1 0  2 1 0 0 

3 1  3 1 0  3 0 1 0 

4 1  4 0 1  4 0 1 0 

5 1  5 0 1  5 0 0 1 

6 1  6 0 1  6 0 0 1 

 

 

Table 6 (a) represents an “ItemTraitAdj” matrix for a unidimensional model where all of 

six items are directly to one latent trait, Table 6 (b) for a 2-dimensional model where each half of 

6 items are directly related one of two latent traits, and Table 6 (c) for a 3-dimensional model 

where each one-third of 6 items are directly related to one of three latent traits.  
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“TraitAdj” is a latent trait-by-latent trait adjacency matrix that represents whether or not a 

pair of latent traits is related to each other. An element involving two different latent traits is 

represented as 1 if one latent trait is related to the other and 0 otherwise. Table 7 shows examples 

of “TraitAdj” matrix for uni- and multidimensional models.  

     Table 7. Example of ‘TraitAdj’ datasets for uni- and multidimensional models 

(a) unidimensional  (b) 2-dimensional  (c) 3-dimensional 

 Trait 1   Trait 1 Trait 2   Trait 1 Trait 2 Trait 3 

Trait 1 1  Trait 1 1 1  Trait 1 1 1 0 

   Trait 2 1 1  Trait 2 1 1 1 

       Trait 3 0 1 1 

 

Table 7 (a) illustrates a “TraitAdj” matrix for a unidimensional model where ‘1’ 

represents the latent trait itself.  Table 7 (b) represents a “TraitAdj” matrix for a 2-dimensional 

model where two latent traits are related to each other. Table 7 (c) is an example for a 3-

dimensional model where latent traits 1 and 2, 2 and 3 are correlated while latent traits 1 and 3 

are not correlated each other. 

SAS Macros for PLE 

The extended PLE algorithm consists of basic and execution macros.  The PLE basic 

macro includes 4 separate sub-macros; (1) Dataset conversion macro, (2) computation of 

weighted rest score macro, (3) Step 1 macro, and (4) Step 2 macro. They can be found in 

Appendix.    

The Dataset conversion macro is to convert a standard item response matrix containing 

the responses of N persons to I items (i.e., 𝑁 × 𝐼 ) into a stacked dataset with the length of I 

items by J categories by S persons (i.e.,𝐼 × 𝐽 × 𝑁) and to create variables and initial values 

necessary for PLE algorithm by using the information provided in input data. Computation of 

weighted rest score macro is to compute rest-scores for each item and to create a data matrix that 
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contains the scores for each item. The created dataset is used in Step 1 as an explanatory variable 

for slope parameters of each item. Step 1 and Step 2 macros involve fitting conditional logistic 

regression models for each item with MLE and a single stacked conditional logistic regression 

with PLE, respectively.  

The PLE execution macro is to conduct PLE for a LMA model selected. Users should 

define several global macro variables by typing appropriate values or characters when they 

submit the macro. The global macro variables include ‘masterdata’, ‘cat2’, ‘response’, ‘idnum’, 

‘step’, ‘nitems’, ‘ncat’, ‘iterations’, ‘scaling_constraint’, ‘allnphis’, and ‘mymodel’.  

The ‘masterdata’   indicates a main data set to be analyzed during PLE execution. The 

‘cat2’ variable is used to assign ‘2’ to the second category of the location parameters in “Model” 

statement of MDC procedure in Step 1. The ‘response’ variable represents an outcome variable 

in MDC procedure. The ‘idnum’ is a variable that identifies an individual in MDC procedure. 

The ‘step’ is used to perform only Step 1 (‘step = 1’) for unidimensional models or full steps 

(‘step = 2’) for multidimensional models. The ‘nitems’, ‘ncat’, and ‘iterations’ specify the 

number of items, the number of categories per item, and the number of iterations that users want 

to run the algorithm for convergence, respectively. The following three global variables are 

associated with a stacked logistic regression in Step 2. The ‘scaling_constraint’ variable is to 

impose scaling constraints on latent variables for model identification. The ‘allnphis’ is to 

specify all possible association parameters in an LMA model of interest. The ‘mymodel’ 

specifies all of the location parameters to be estimated in Step 2. 

The values or characters for ‘masterdata’, ‘cat2’, ‘response’, and ‘idnum’ are fixed by 

default. In other words, users don’t have to make any changes in the values or characters for the 

variables. For unidimensional models, users should assign appropriate values for four global 
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variables of ‘step’, ‘nitems’, ‘ncat’, and ‘iterations’. For multidimensional models, users need to 

define three more variables along with those four variables, which are ‘scaling_constraint’, 

‘allnphis’, and ‘mymodel’. More detailed descriptions and examples for each global variable can 

be found in Appendix.   

Execution of PLE Algorithm with SAS 

 PLE algorithm with SAS can be executed as follows: (1) run PLE basic and execution 

macros, (2) read input data in SAS, and (3) submit PLE execution macro with appropriately 

defined global variables for a model of interest. The following SAS codes show examples of how 

PLE execution macro is submitted with the global variables for uni- and 3-dimensional models 

with six 3-category items.  

**************************************************** 

  Set-up global variables for Unidimensional models 

**************************************************** 

%let masterdata= PolyMaster; 

%let cat2 = 2 ; 

%let response=y ; 

%let idnum = caseID ; 

%let step = 1 ; 

%let nitems = 6 ; 

%let ncat = 3 ; 

%let iterations = 50 ; 

 

%Execute_PLE   

 

****************************************************** 

  Set-up global variables for Multidimensional models 

****************************************************** 

%let masterdata= PolyMaster; 

%let cat2 = 2 ; 

%let response=y ; 

%let idnum = caseID ; 

%let step = 2 ; 

%let nitems = 6 ; 

%let ncat = 3 ; 

%let iterations = 1 ; 

%let scaling_constraint = nphi11=1, nphi22=1, nphi33 =1 ; 

%let allnphis = nphi11 nphi12 nphi13 nphi22 nphi23 nphi33 ; 

%let mymodel = Lamda12 Lamda13 Lamda22 Lamda23 Lamda32 Lamda33  

               Lamda42 Lamda43 Lamda52 Lamda53 Lamda62 Lamda63 ;   

                          

%Execute_PLE  ; 



 

47 
 

Chapter 5 

Research Methodology 

Four sets of simulation studies were conducted to demonstrate the performance of the 

proposed pseudo-likelihood estimation method.  The first two sets of simulation studies were 

designed to investigate how well item parameters in unidimensional models are estimated by 

Step 1 of the proposed algorithm, which is the new step that has been added. The next two sets of 

simulation studies examined the performance of the full algorithm, that is, Step 1 and Step 2 for 

multidimensional models. For all simulation studies, item parameters were generated from 

standard normal distributions with 𝑎~𝑁(0.1, 1) and 𝑏~𝑁(0, 1). For unidimensional models, 

item parameters with extreme values that fall outside the limits were excluded (i.e., −0.4 <

𝑎𝑖𝑗 < 2.0 and −2.5 < 𝑏𝑖𝑗 < 2.7). Latent trait values (𝜃) were drawn from a standard normal 

distribution 𝜃~𝑁(0,1) for unidimensional models and from a multivariate normal distribution 

for multidimensional models. Probabilities of response patterns were simulated according to 2PL 

model and Bock’s nominal response model for unidimensional binary and polytomous item 

response models, respectively, and their generalizations for multidimensional models.  

Simulation Studies for Unidimensional Models  

Simulation studies 1 and 2 focus on the performance of Step 1 of the proposed estimation 

algorithm in estimating item parameters of LMA models with one latent variable. The main 

purpose of Simulation study 1 is to demonstrate that PLE behaves similarly to MLE by 

comparing the item parameter estimates obtained from the two estimation methods. To achieve 

the goal, item response datasets with small numbers of items (i.e., 4 and 6) were simulated, 

varying the number of response categories (i.e., 2, 3, and 5) and sample size (i.e., 200, 500, and 

1000).  Since the numbers of items in this simulation study are small, it is feasible to get item 
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parameter estimates of LMA models by MLE and it allows to compare the parameter estimates 

obtained from PLE with those obtained from MLE. Additionally, marginal maximum likelihood 

estimation (MMLE) was also used to estimate item parameters of 2PL and Bock’s nominal 

response models with small datasets using PROC NLMIXED procedure in SAS and the 

parameter estimates from MMLE and PLE were compared. This comparison will be reported in 

Chapter 6 to show that PLE works as well as standard IRT estimation methods even though two 

models are different, in particular, in terms of distribution assumptions.  

Simulation study 2 was designed to examine that PLE overcomes the limitation of MLE 

when fitting LMA models with large numbers of items. For this simulation study, datasets with 

20 and 50 items were simulated, varying the numbers of response categories (i.e., 2, 3, and 5) 

and sample size (i.e., 200, 500, and 1000). In the same way as Simulation study 1, 2PL and 

Bock’s nominal response models with large datasets were also fit by MMLE using flexMIRT 

(Cai, 2013) and MULTILOG 7.0 (Thissen, Chen, & Bock, 2003), respectively, and the parameter 

estimates obtained from MMLE were compared with those obtained from PLE.  

The simulation conditions for unidimensional models were designed by the number of 

items (4, 6, 20, 50) by the number of categories (2, 3, 5) by the number of people (200, 500, 

1000); that is, there are 4 × 3 × 3 = 36 different conditions (i.e., 18 conditions for small numbers 

of items and 18 conditions for large numbers of items).  

Identification constraints are required to estimate the parameters of LMA models. These 

may be setting one of location (𝜆𝑖𝑗) and slope (𝜈𝑖𝑗) parameters equal to zero (i.e., dummy coding,  

𝜆𝑖1 = 0 and 𝜈𝑖1 = 0)  or setting the sum equal to zero (i.e., effect coding, ∑ 𝜆𝑖𝑗 = 0𝑗  and  

∑ 𝜈𝑖𝑗 = 0𝑗 ). Besides the identification constraints, LMA models require scaling constraints for 

model identification. Either of two ways may be used for scaling constraints. One possible way 
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is to set ∑ 𝜈2𝑖𝑗𝑚 = 1𝑗  for one item that is directly related to latent variable m. Another possible 

way is to set 𝜎𝑚𝑚 to a constant (i.e., 𝜎𝑚𝑚 = 1).  In the simulation studies for unidimensional 

models, zero-sum constraints for location constraints and 𝜎11 = 1 for scaling constraints were 

used so 𝜎11 is not estimated.5   

Simulation Studies for Multidimensional Models 

Simulation studies 3 and 4 aim to evaluate the performance of the full algorithm (i.e., 

Step 1 and 2) for multidimensional models. Simulation study 3 has the same goal as Simulation 

study 1 for unidimensional models with small numbers of items, which is how well PLE of LMA 

models performs relative to MLE of LMA models. Since the simulation study was intended for 

multidimensional models, the number of latent variables was varied (i.e., 2 and 3) with the 

correlational structure between latent variables of 𝑟 = 0.50. The number of response categories 

and sample size varied for simulations are the same as the simulation studies for unidimensional 

models.  

Lastly, Simulation study 4 was conducted to illustrate that PLE works on large numbers 

of items when fitting LMA models with multiple latent variables. Since Simulation study 4 

involves large numbers of items, its simulation design is almost the same as that of Simulation 2, 

which is for unidimensional models with 20 and 50 items. The only difference between them is 

that the number of latent variables was considered (i.e., 2, 3, and 4) in Simulation study 4. For 

correlational structure between latent variables, it was set to 𝑟 = 0.50. Studies 3 and 4 for 

multidimensional models consist of 81 simulation conditions. 

                                                           
5 Estimates can be rescaled if an estimate of 𝜎11 is desired.  
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 For location constraints, zero-sum constraints were placed on the location and slope 

parameters. For scaling constraints, 𝜎𝑚𝑚 was set equal to a constant (i.e., 𝜎𝑚𝑚 = 1) for all latent 

variables, while all the association parameters between latent variables (i.e., 𝜎𝑚𝑚′) were 

estimated by PLE. 

Each simulation condition in all studies was replicated 30 times and the parameter 

estimates from the replications were averaged. The parameter estimates of LMA models 

obtained from PLE and MLE were transformed so that they would be placed on the same scale 

as those of standard IRT models (i.e., 2PL and Bock’s NRM) and comparable with true 

parameters used to simulate the data.  The transformed estimates were used to compute the mean 

and standard deviation of the estimates from 30 replications and the evaluation criteria assessing 

the performance of the estimation methods.      

Evaluation Criteria 

To evaluate how well PLE performed, 3 criteria were selected: bias, root mean squared 

error (RMSE), and Pearson product moment correlation coefficient (r).   

Bias and RMSE were calculated to see how accurately MMLE, MLE, and PLE recovered 

the parameters used to simulate the data. Bias is defined as the mean difference between the 

estimated parameter and the parameter used to simulate the data; that is,  

 
𝐵𝑖𝑎𝑠(𝜆𝑖𝑗) =

∑ (�̂�𝑖𝑗 − 𝜆𝑖𝑗)
𝑅
𝑟=1

𝑅
, (5.1) 

where 𝜆𝑖𝑗= the location parameter used to simulate the data for category j on item i, �̂�𝑖𝑗= the 

estimated location parameter of category j on item i, and R = the number of replications. Positive 

bias indicates that the parameter is overestimated, while negative bias reflects the parameter is 

underestimated. 
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RMSE is the square root of the mean of the squared difference between the estimated 

parameter and the parameter used to simulate the data; that is,       

 

𝑅𝑀𝑆𝐸(𝜆𝑖𝑗) =
√∑ (�̂�𝑖𝑗 − 𝜆𝑖𝑗)

𝑅
𝑟=1

2

𝑅
. (5.2) 

Smaller RMSE reflects greater accuracy.   

For uni- and multidimensional models with small numbers of items, the Root Mean 

Squared Difference (RMSDiff) of the parameter estimates between MLE and PLE of LMA 

models was also computed; that is,  

 

𝑅𝑀𝑆𝐷𝑖𝑓𝑓(�̂�𝑖𝑗) =
√
∑ (�̂�𝑖𝑗

𝑀𝐿𝐸 − �̂�𝑖𝑗
𝑃𝐿𝐸)𝑃

𝑝=1

2

𝑃
. (5.3) 

where �̂�𝑖𝑗
𝑀𝐿𝐸and �̂�𝑖𝑗

𝑃𝐿𝐸= the estimated location parameter of category j on item i by MLE and PLE, 

respectively, and P = the number of location parameters to be estimated. The small RMSDiff 

indicates that the two estimates obtained from MLE and PLE are not only linearly related but 

also close to each other.   

Pearson product moment correlation coefficient (r) was calculated to evaluate the 

accuracy of the parameter estimation by PLE and the equivalence of the parameter estimates 

between PLE and MLE of LMA models as well.  

Estimation of Standard Errors of PL Estimates 

Pseudo-likelihood estimation is quite convenient because the maximization of the 

pseudo-likelihood function is equivalent to the maximization of the likelihood function of a 

logistic regression model. The standard errors given by pseudo-likelihood estimation, however, 

are underestimated. In the logistic regression procedure, the parameter estimates and the standard 

errors of the estimates are obtained based on the assumption that observations are independent. 
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However, this assumption of independence is not met when MLE procedure is exploited to 

maximize the pseudo-likelihood function with a stacked dataset because the responses from a 

single person are set up in the stacked dataset with 𝐼 × 𝐽 rows and thus dependency among 

observations from the single person exists in the dataset. In pseudo-likelihood estimation using a 

logistic regression procedure with a stacked dataset, the parameters and standard errors are 

estimated, ignoring the dependency. Since the observations from the same single person are 

strongly interrelated, the resulting standard errors obtained by pseudo-likelihood estimation will 

be considerably small. The problem of ignoring dependency is also occurred when iteratively 

fitting conditional logit models for each item in Step 1 of the algorithm because they are not 

independent. To estimate correct standard errors, two possible methods can be considered: 

jackknife and bootstrap. Both jackknife and bootstrap involve resampling data; that is, repeatedly 

creating new data sets from the original data.  

Jackknife 

The jackknife removes one observation from the original sample and calculates an 

estimate based on the remaining 𝑁 − 1of them. This process is repeated N times, leaving one 

observation out at a time. Let 𝒀−𝑛 = (𝒚1, 𝒚2, … 𝒚𝑛−1, 𝒚𝑛+1… . , 𝒚𝑁) be a new sample obtained by 

leaving observation n out from the original sample, let �̂�𝑖𝑗
(𝑛)

 be the estimate of 𝜆𝑖𝑗 from a new 

sample, and let �̂�𝑖𝑗
(∙)

 be the mean of N estimates of 𝜆𝑖𝑗 obtained from N new samples, that is, 

�̂�𝑖𝑗
(∙)
=

1

𝑁
∑ �̂�𝑖𝑗

(𝑛)𝑁
𝑛=1 . Then the jackknife estimate of standard error of 𝜆𝑖𝑗 is defined  

 

𝜎𝐽(𝜆𝑖𝑗) = √
𝑁 − 1

𝑁
∑(�̂�𝑖𝑗

(𝑛) − �̂�𝑖𝑗
(∙)
)2

𝑁

𝑛=1

. 
(5.4) 
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Jackknife has been found to work well for RC(M) association model (Clogg & Eliason, 1987; 

Wong, 2011). 

Bootstrap 

The bootstrap method involves drawing random samples of size N with replacement 

repeatedly (e.g., 1,000 times) from the original sample that is also of size N. Let 𝒀 =

(𝒚1, 𝒚2, … , 𝒚𝑛… . , 𝒚𝑁) be the original sample of size N, let 𝒀∗(𝑚) = (𝒚1
∗ , … , 𝒚𝑛

∗ , … , 𝒚𝑁
∗ ) be the 

mth bootstrap sample, let �̂�𝑖𝑗
(𝑚)

 be the estimate of 𝜆𝑖𝑗 from the mth bootstrap sample, 𝒀∗(𝑚) , and 

let �̂�𝑖𝑗
(∗)

 be the mean of M estimates of 𝜆𝑖𝑗 obtained from the M bootstrap samples, that is, �̂�𝑖𝑗
(∗)

=

1

𝑀
∑ �̂�𝑖𝑗

(𝑚)𝑀
𝑚=1 . Then the bootstrap estimate of standard error of 𝜆𝑖𝑗is given by 

 

𝜎𝐵(𝜆𝑖𝑗) = √
1

𝑀 − 1
∑(�̂�𝑖𝑗

(𝑚)
− �̂�𝑖𝑗

(∗)
)2

𝑀

𝑚=1

. 
(5.5) 

Although jackknife and bootstrap procedures are considered as standard ways to estimate 

standard errors, they are also known to be computationally time consuming procedures. In this 

thesis, jackknife method was chosen to correct the standard errors given by PLE and performed 

for 18 unidimensional models with small numbers of items (i.e., Simulation study 1). To apply 

“leave-one-out” procedure of jackknife, 1) samples were formed from a whole item response 

pattern matrix containing the responses of N persons to I items (i.e., 𝑁 × 𝐼 ), 2) one person’s item 

response pattern was deleted from 𝑁 × 𝐼 item response pattern, and 3) the (𝑁 − 1) × 𝐼 data 

matrix was transformed into a stacked data matrix for pseudo-likelihood estimation. The 

jackknife procedure and PLE with the stacked dataset obtained from the sample was repeated as 

many times as sample size (N) of the sample. Using the N estimates obtained by PLE, jackknife 

estimates of variances of the parameters in LMA models were computed as 
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𝜎2
𝐽(𝜆𝑖𝑗) =

𝑁 − 1

𝑁
∑(�̂�𝑖𝑗

(𝑛) − �̂�𝑖𝑗
(∙)
)2

𝑁

𝑛=1

. (5.6) 

This computation was repeated with 30 replication datasets and the jackknife estimates of 

variances of each parameter were averaged across 30 replications. Finally, the jackknife 

estimates of standard errors were obtained by taking the square root of the mean of 30 jackknife 

estimates of variances of each parameter in LMA models as below.     

 

𝜎𝐽(𝜆𝑖𝑗) = √
1

𝑅
∑𝜎𝐽

2(𝜆𝑖𝑗

𝑅

𝑟=1

), (5.7) 

where 𝜎𝐽(𝜆𝑖𝑗) = the jackknife estimate of standard error of 𝜆𝑖𝑗, 𝜎𝐽
2(𝜆𝑖𝑗) = the jackknife estimate 

of variance of 𝜆𝑖𝑗, and R = the number of replications.    

In addition to jackknife estimates of standard errors, two types of standard error estimates 

were also calculated: the standard deviation of the estimated parameters from 30 replications and 

the square root of the mean of the squared standard error given by PLE, MLE, and MMLE 

procedures over the 30 replications.  

The first type of standard error estimates is the standard deviation of the estimates from 

30 replications. As mentioned earlier, the item parameters of 18 unidimensional models with 

small number of items were estimated by PLE, MLE, and MMLE and the parameter estimation 

was repeated 30 times with different datasets to yield 30 sets of parameter estimates. The 

standard deviations of each of the estimated parameters were calculated from the distribution of 

the 30 replicate estimates of each parameter and they were used for one of the standard error 

estimates in this thesis.  
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The second type of standard error estimates is associated with the original standard errors 

in the output given by three different estimation procedures across replications when the analysis 

is done. They are named here as PLE_SE, MLE_SE, and MMLE_SE to represent that they are 

from original standard errors.  The standard error estimates were computed by three steps. First, 

the original standard errors from PLE, MLE, and MMLE were squared to get the variance 

estimates of the estimated parameters. Second, the variance estimates were averaged across 

replications. Third, by taking the square root of the averaged variance estimate of each 

parameter, the resulting values for PLE_SE, MLE_SE, and MMLE_SE were obtained. They are 

used to examine the standard error estimates in this study. 
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Chapter 6 

Simulation Studies 

Simulation studies are reported here to demonstrate the performance of the extended 

pseudo-likelihood estimation method, followed by the standard error estimation by jackknife 

procedure for unidimensional models with small numbers of items, and the computational time 

of PLE for large numbers of items. As described in research methodology section, each of 117 

simulation conditions were replicated 30 times, and the parameter estimates for each condition 

were averaged across replications. Using the averaged parameter estimates, bias, root mean 

squared error (RMSE), and correlation coefficients were computed to assess the accuracy of the 

parameter recovery of PLE and compared with those from MMLE and MLE.  

Unidimensional Models with Small Numbers of Items 

This section describes the results of the simulation studies focusing on unidimensional 

LMA models with small numbers of items that only use Step 1 of the PLE algorithm, which is 

the new step. The performance of PLE for unidimensional LMA models with 4 and 6 items are 

presented with respect to comparisons of PLE with MLE and parameter recovery. As mentioned 

earlier, bias, RMSE and correlation coefficients were computed for each item to evaluate 

parameter recovery. For example, Table 8 contains bias values of parameters for unidimensional 

models with 4 items and sample size of 1000 by estimation method. In this thesis, the bias and 

RMSE computed for each item are averaged over items and categories to simplify the 

interpretation and reported with their standard deviations in the tables.   

Comparisons of PLE with MLE 

The main purpose of the study of unidimensional models with small numbers of items is 

to demonstrate that how similarly PLE behaves to MLE. This study shows how well the new  
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Table 8. Bias of parameters for unidimensional models with 4 items and sample size of 1000, by estimation method 

Item 
 Location    Slope  

MMLE MLE PLE  MMLE MLE PLE 

        
   2 categories (N=1000)   

        
Item 1 0.0005 0.0236 0.0236  0.0313 0.0028 0.0027 

Item 2 0.0105 -0.0963 -0.0964  0.0141 -0.0675 -0.0675 

Item 3 0.0269 0.4490 0.4494  -0.0109 -0.0336 -0.0338 

Item 4 0.0159 0.0410 0.0409  0.0759 -0.0505 -0.0508 

        
   3 categories (N=1000)   

        
Item 1_2 0.0006 -0.2901 -0.2904  -0.0570 0.1372 0.1355 

Item 1_3 0.0081 -0.2204 -0.2230  -0.0022 0.0628 0.0578 

Item 2_2 0.0009 -0.1140 -0.1134  -0.0033 -0.0626 -0.0621 

Item 2_3 -0.0364 0.2856 0.2840  0.0869 0.0478 0.0492 

Item 3_2 0.0306 0.2358 0.2344  0.0343 0.1022 0.0956 

Item 3_3 -0.0604 -0.1618 -0.1591  -0.0753 -0.2297 -0.2195 

Item 4_2 -0.0026 -0.1711 -0.1719  -0.0029 0.1160 0.1158 

Item 4_3 -0.0369 0.0229 0.0233  0.0475 -0.0128 -0.0121 

        
   5 categories (N=1000)   

        
Item 1_2 0.0326 -0.3256 -0.3267  0.0257 0.1306 0.1310 

Item 1_3 0.0299 0.0229 0.0217  -0.0044 0.0942 0.0912 

Item 1_4 -0.0040 0.3894 0.3881  0.0549 0.1619 0.1533 

Item 1_5 0.0297 0.2325 0.2309  0.0286 0.1216 0.1146 

Item 2_2 0.0148 -0.3003 -0.3008  -0.0023 0.0129 0.0160 

Item 2_3 0.0265 -0.2195 -0.2199  -0.0260 -0.0336 -0.0297 

Item 2_4 -0.0126 0.1323 0.1327  0.0496 0.0352 0.0332 

Item 2_5 -0.0425 -0.0424 -0.0422  -0.0442 -0.0380 -0.0369 

Item 3_2 -0.0149 -0.3297 -0.3333  0.0211 0.2648 0.2582 

Item 3_3 0.0208 0.1217 0.1270  -0.0795 -0.1787 -0.1704 

Item 3_4 -0.0567 -0.0169 -0.0123  0.1050 0.0660 0.0731 

Item 3_5 0.0359 0.6283 0.6348  -0.0543 -0.2626 -0.2513 

Item 4_2 0.0419 0.2429 0.2433  -0.0501 -0.0770 -0.0792 

Item 4_3 -0.0535 0.1403 0.1376  0.0289 -0.0288 -0.0246 

Item 4_4 0.0110 0.1436 0.1440  0.0014 -0.0626 -0.0647 

Item 4_5 -0.0321 -0.0511 -0.0509  0.0132 -0.0876 -0.0868 

 

algorithm is working. Since MLE is feasible to get item parameter estimates of LMA models 

with 4 and 6 items, it allows to compare the parameter estimates obtained from PLE with those 

obtained from MLE.    
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Table 9. Mean bias, RMSE and their (SDs) and correlation coefficients for location parameters of unidimensional 

models with 4 and 6 items, by estimation method 

 

(a) 2 categories 

  4 items   6 items 

  Bias RMSE 𝑟(𝜆,�̂�)   Bias RMSE 𝑟(𝜆,�̂�) 

            
     Sample size (N) =200     

            
MMLE 0.0220 (0.0606) 0.2243 (0.1038) 0.998  -0.0083 (0.0206) 0.1632 (0.0488) 0.999 

MLE 0.1054 (0.2675) 0.4015 (0.2506) 0.998  -0.0373 (0.0278) 0.1852 (0.0649) 0.999 

PLE 0.1057 (0.2676) 0.4006 (0.2514) 0.998  -0.0371 (0.0278) 0.1852 (0.0647) 0.999 
            
     Sample size (N) = 500     

            
MMLE -0.0116 (0.0117) 0.1360 (0.0542) 0.999  -0.0008 (0.0303) 0.1124 (0.0335) 0.998 

MLE 0.0781 (0.1240) 0.2172 (0.1377) 0.999  -0.0355 (0.0394) 0.1114 (0.0521) 0.997 

PLE 0.0780 (0.1243) 0.2173 (0.1376) 0.999  -0.0354 (0.0392) 0.1120 (0.0527) 0.997 
            
     Sample size (N) = 1000     

            
MMLE 0.0134 (0.0110) 0.1028 (0.0526) 0.999  0.0077 (0.0184) 0.0988 (0.0607) 0.999 

MLE 0.1043 (0.2378) 0.2437 (0.2006) 0.999  -0.0246 (0.0225) 0.1006 (0.0681) 0.999 

PLE 0.1044 (0.2380) 0.2438 (0.2009) 0.999  -0.0245 (0.0225) 0.1006 (0.0682) 0.999 

 

 

(b) 3 categories 

  4 items   6 items 

  Bias RMSE 𝑟(𝜆,�̂�)   Bias RMSE 𝑟(𝜆,�̂�) 

            
     Sample size (N) =200     

            
MMLE -0.0135 (0.0310) 0.2762 (0.0921) 0.999  -0.0203 (0.0753) 0.3100 (0.0992) 0.998 

MLE -0.0470 (0.2239) 0.2602 (0.0853) 0.970  -0.0210 (0.1629) 0.3002 (0.0660) 0.982 

PLE -0.0477 (0.2232) 0.2615 (0.0825) 0.971  -0.0233 (0.1623) 0.2952 (0.0636) 0.982 
            
     Sample size (N) = 500     

            
MMLE -0.0109 (0.0686) 0.2084 (0.0704) 0.998  -0.0205 (0.0513) 0.2344 (0.0838) 0.999 

MLE -0.0476 (0.2145) 0.2444 (0.0545) 0.973  -0.0305 (0.1683) 0.2481 (0.0461) 0.981 

PLE -0.0477 (0.2148) 0.2454 (0.0538) 0.973  -0.0307 (0.1680) 0.2482 (0.0468) 0.981 
            
     Sample size (N) = 1000     

            
MMLE -0.0120 (0.0297) 0.1364 (0.0483) 0.999  -0.0049 (0.0344) 0.1437 (0.0509) 0.999 

MLE -0.0516 (0.2130) 0.2184 (0.0681) 0.973  -0.0385 (0.1789) 0.2109 (0.0556) 0.978 

PLE -0.0520 (0.2126) 0.2189 (0.0679) 0.973  -0.0386 (0.1798) 0.2112 (0.0560) 0.978 
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Table 9. (cont.)  

(c) 5 categories 

  4 items   6 items 

  Bias RMSE 𝑟(𝜆,�̂�)   Bias RMSE 𝑟(𝜆,�̂�) 

            
     Sample size (N) =200     

            
MMLE -0.0326 (0.0992) 0.4306 (0.1956) 0.993  -0.0078 (0.0901) 0.3444 (0.1231) 0.995 

MLE 0.0225 (0.2978) 0.4031 (0.1360) 0.933  0.0293 (0.2602) 0.3777 (0.1340) 0.959 

PLE 0.0217 (0.2989) 0.4034 (0.1361) 0.933  0.0283 (0.2623) 0.3786 (0.1342) 0.958 
            
     Sample size (N) = 500     

            
MMLE -0.0100 (0.0643) 0.2366 (0.0997) 0.998  0.0028 (0.0454) 0.2199 (0.1059) 0.999 

MLE 0.0452 (0.2688) 0.2974 (0.1223) 0.944  0.0474 (0.2410) 0.2898 (0.1075) 0.964 

PLE 0.0455 (0.2689) 0.2970 (0.1222) 0.944  0.0459 (0.2451) 0.2915 (0.1105) 0.963 
            
     Sample size (N) = 1000     

            
MMLE 0.0017 (0.0473) 0.1902 (0.0914) 0.999  -0.0043 (0.0306) 0.1543 (0.0709) 0.999 

MLE 0.0480 (0.1326) 0.2759 (0.0928) 0.946  0.0398 (0.2359) 0.2445 (0.1270) 0.967 

PLE 0.0484 (0.1284) 0.2768 (0.0933) 0.946  0.0390 (0.2393) 0.2457 (0.1304) 0.966 
 

 

Table 10. Mean bias, RMSE and their (SDs) and correlation coefficients for slope parameters of unidimensional 

models with 4 and 6 items, by estimation method 

(a) 2 categories 

  4 items   6 items 

  Bias RMSE 𝑟(𝜈,�̂�)   Bias RMSE 𝑟(𝜈,�̂�) 

            
     Sample size (N) =200     

            
MMLE 0.0633 (0.0732) 0.3183 (0.1028) 0.986  0.0611 (0.0576) 0.2733 (0.0495) 0.994 

MLE -0.0047 (0.1038) 0.4290 (0.0464) 0.985  0.0274 (0.0891) 0.3203 (0.0520) 0.991 

PLE -0.0054 (0.1040) 0.4274 (0.0466) 0.985  0.0294 (0.0888) 0.3242 (0.0527) 0.991 
            
     Sample size (N) = 500     

            
MMLE 0.0354 (0.0542) 0.2000 (0.0456) 0.997  0.0094 (0.0500) 0.1845 (0.0644) 0.994 

MLE 0.1076 (0.0568) 0.3079 (0.0371) 0.996  0.0127 (0.0563) 0.2052 (0.0347) 0.994 

PLE 0.1067 (0.0569) 0.3066 (0.0377) 0.996  0.0125 (0.0567) 0.2061 (0.0352) 0.994 
            
     Sample size (N) = 1000     

            
MMLE 0.0276 (0.0365) 0.1544 (0.0587) 0.999  0.0237 (0.0277) 0.1326 (0.0430) 0.999 

MLE -0.0372 (0.0300) 0.1785 (0.0390) 0.999  -0.0180 (0.0332) 0.1464 (0.0289) 0.998 

PLE -0.0374 (0.0300) 0.1786 (0.0391) 0.999  -0.0179 (0.0333) 0.1464 (0.0287) 0.998 
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Table 10. (cont.) 

 

(b) 3 categories 

  4 items   6 items 

  Bias RMSE 𝑟(𝜈,�̂�)   Bias RMSE 𝑟(𝜈,�̂�) 

            
     Sample size (N) =200     

            
MMLE 0.0432 (0.0769) 0.3836 (0.1094) 0.999  -0.0093 (0.0789) 0.3751 (0.0796) 0.999 

MLE 0.0365 (0.1254) 0.3517 (0.0831) 0.997  0.0166 (0.1584) 0.3687 (0.0911) 0.996 

PLE 0.0391 (0.1229) 0.3504 (0.0843) 0.997  0.0145 (0.1404) 0.3593 (0.0810) 0.997 
            
     Sample size (N) = 500     

            
MMLE -0.0049 (0.1070) 0.3015 (0.0944) 0.999  -0.0034 (0.0499) 0.3094 (0.0901) 0.999 

MLE 0.0199 (0.1557) 0.2673 (0.0569) 0.996  0.0182 (0.1255) 0.2905 (0.0711) 0.998 

PLE 0.0201 (0.1545) 0.2669 (0.0575) 0.996  0.0158 (0.1172) 0.2882 (0.0699) 0.998 
            
     Sample size (N) = 1000     

            
MMLE 0.0035 (0.0532) 0.2304 (0.0541) 0.999  0.0029 (0.0454) 0.1870 (0.0431) 0.998 

MLE 0.0201 (0.1210) 0.2056 (0.0488) 0.998  0.0195 (0.1211) 0.1981 (0.0436) 0.997 

PLE 0.0200 (0.1169) 0.2070 (0.0491) 0.998  0.0162 (0.1127) 0.1930 (0.0400) 0.997 

 

(c) 5 categories 

  4 items   6 items 

  Bias RMSE 𝑟(𝜈,�̂�)   Bias RMSE 𝑟(𝜈,�̂�) 

            
     Sample size (N) =200     

            
MMLE -0.0393 (0.1044) 0.5334 (0.1908) 0.993  -0.0195 (0.0936) 0.4500 (0.1423) 0.996 

MLE -0.0469 (0.1231) 0.5104 (0.1810) 0.993  -0.0218 (0.1042) 0.4389 (0.1431) 0.995 

PLE -0.0480 (0.1230) 0.5118 (0.1808) 0.993  -0.0214 (0.1010) 0.4378 (0.1437) 0.995 
            
     Sample size (N) = 500     

            
MMLE -0.0004 (0.1078) 0.3244 (0.1330) 0.994  0.0117 (0.0702) 0.3017 (0.1138) 0.998 

MLE 0.0017 (0.1823) 0.3291 (0.1258) 0.983  0.0084 (0.1450) 0.3057 (0.1175) 0.990 

PLE 0.0024 (0.1813) 0.3281 (0.1253) 0.983  0.0088 (0.1355) 0.3021 (0.1162) 0.991 
            
     Sample size (N) = 1000     

            
MMLE 0.0042 (0.0473) 0.2285 (0.0914) 0.999  0.0033 (0.0558) 0.2118 (0.0847) 0.998 

MLE 0.0074 (0.1326) 0.2579 (0.0928) 0.992  0.0099 (0.1047) 0.2199 (0.0734) 0.994 

PLE 0.0080 (0.1284) 0.2553 (0.0933) 0.993  0.0102 (0.0954) 0.2162 (0.0716) 0.995 
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Tables 9 and 10 show mean bias, RMSE and their standard deviations for location (𝜆𝑖𝑗) 

and slope (𝜈𝑖𝑗) parameters of unidimensional models with 4 and 6 items by three different 

estimation procedures. The correlations (𝑟) between the estimates (i.e., �̂�𝑖𝑗 and �̂�𝑖𝑗) and the 

parameters used to simulate the data (i.e., 𝜆𝑖𝑗 and 𝜈𝑖𝑗) are also shown in the tables.  

Expected from comparing MLE and PLE of LMA models, Tables 8 and 9 show that 

mean bias, mean RMSE, and correlations of PLE are almost identical to those of MLE across all 

conditions. The findings are more clearly illustrated in Figures 4 through 6 for location 

parameters and Figures 7 through 9 for slope parameters. They further confirm that PLE 

recovered the parameters used to simulate the data with the same amount of errors as MLE in all 

unidimensional models.  

Table 11 provides the correlations between the parameter estimates obtained from MLE 

and PLE for all of 18 unidimensional models with 4 and 6 items.  All of the correlations are 

0.999 or 1.000 across all models, indicating the parameter estimates between MLE and PLE are 

all equivalent.  

Table 11. Correlation coefficients (r) between the parameter estimates obtained from MLE and PLE for 

unidimensional models with 4 and 6 items  

  2 categories   3 categories   5 categories 

 Sample size  Sample size  Sample size 

  N=200 N=500 N=1000   N=200 N=500 N=1000   N=200 N=500 N=1000 

Location parameters           

            
4 items 1.000 1.000 1.000  1.000 0.999 0.999  0.999 0.999 0.999 

6 items 0.999 0.999 1.000  0.999 0.999 0.999  0.999 0.999 0.999 

            
Slope parameters          

            
4 items 1.000 1.000 1.000  1.000 0.999 0.999  0.999 0.999 0.999 

6 items 0.999 0.999 0.999  0.999 0.999 0.999  0.999 0.999 0.999 
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Table 12. Mean RMSDiff of parameter estimates between MLE and PLE for unidimensional models with 4 and 6 

items.  

  2 categories   3 categories   5 categories 

 Sample size  Sample size  Sample size 

  N=200 N=500 N=1000   N=200 N=500 N=1000   N=200 N=500 N=1000 

Location parameters           

            
4 items 0.000 0.000 0.000  0.022 0.015 0.009  0.016 0.009 0.007 

6 items 0.001 0.001 0.000  0.035 0.022 0.012  0.017 0.013 0.029 

            
Slope parameters          

            
4 items 0.001 0.001 0.000  0.016 0.011 0.007  0.014 0.007 0.006 

6 items 0.002 0.001 0.001  0.019 0.013 0.008  0.012 0.008 0.014 

 

Table 12 contains the mean RMSDiff of the parameter estimates between MLE and PLE 

of LMA models. It was computed to assess how similar the parameter estimates from PLE are to 

those from MLE. The small RMSDiff indicates that the two estimates obtained from MLE and 

PLE are not only linearly related but also close to each other. The differences range from 0.000 

to 0.035 for location parameters and 0.000 to 0.019 for slope parameters. Overall, the mean 

RMSDiff values tend to decrease as sample sizes increase given the number of items and 

response categories.  All the values in the table show very small mean RMSDiff between MLE 

and PLE, suggesting that the parameter estimates of PLE are very close to those of MLE, and 

PLE behaves almost the same as MLE in estimating parameters of LMA models.             

Comparisons of MMLE of IRT Models and PLE of LMA Models 

Location parameters. Table 9 shows that PLE yields relatively small mean bias for 

location parameters in each of the 18 unidimensional models with small numbers of items, 

ranging from −0.0520 to 0.1057. The binary response model with 4 items and 200 persons 

resulted in the largest amount of bias with a value of 0.1057, while the 5 response categories 

with the same number of items and sample size yielded the minimum bias value of 0.0217. 
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Overall, the mean bias for polytomous response models are smaller than those for binary 

response models. It suggests that PLE recovered location parameters of polytomous response 

models with less amount of errors than those of binary response models.  

Figure 4 provides the mean bias results found in Table 9. As would be expected, the 

standard IRT estimation method, MMLE produces the mean bias values that are close to 0 over 

all conditions. The big differences in mean bias between PLE and MMLE is found in the binary 

response models with 4 items over all sample sizes. PLE and MMLE yield nearly identical mean 

bias values for the conditions of 3 categories, 6 items, and sample sizes of 200 and 500, which 

are close to 0. It indicates that PLE recovered location parameters of the models as well as 

MMLE did.  

The mean RMSE for location parameters of PLE ranges from 0.1006 to 0.4034. The large 

RMSE of PLE occur in two conditions with values of RMSE = 0.4006 for a binary response 

model with 4 items and 200 persons and RMSE = 0.4034 for a 5 response category model with 4 

items and 200 persons. The largest mean RMSE value of MMLE is also shown in the 5 response 

category model with 4 items and 200 persons with a value of 0.4306, which is a little larger than 

the value of PLE. Given the same number of items and sample sizes, the mean RMSE for 

location parameters increases as the number of categories increases over all estimation 

procedures compared. Because the 5 response category model with 4 items and 200 persons 

resulted in the largest mean RMSE of both PLE and MMLE, this finding indicates that a short 

test with a small sample size and a large number of categories may result in misleading 

estimates.   

 Figure 5 illustrates the mean RMSE results found in Table 9. One noticeable result is 

that the mean RMSE values of PLE for location parameters are almost equal to those of MMLE 
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                                                                            (a) 2 categories 

                    

                                                                             (b) 3 categories 

 

                                                                 (c) 5 categories 

 
Figure 4. Mean bias for location parameters of unidimensional models with 4 and 6 items 
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                                                            (a) 2 categories 

 

                                                                   (b) 3 categories 

             

                                                             (c) 5 categories 

 

Figure 5. Mean RMSE for location parameters of unidimensional models with 4 and 6 items 
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in five conditions associated with 6 items. For binary response models with 6 items, the mean 

RMSE values of PLE and MMLE are 0.1852 and 0.1632 for sample size of 200, respectively, 

and the differences in mean RMSE between two estimation procedures decreases as sample size 

gets large, resulting in almost the same RMSE values. The similar pattern is found in 3 response 

category models with the sample sizes of 200 and 500. The mean RMSE of PLE with sample of 

200, however, is a bit smaller than the value of MMLE (i.e., RMSE = 0.2952 for PLE, and 

RMSE = 0.3100 for MMLE). The findings from Figure 5 suggest that PLE may behave similarly 

to MMLE when it recovers true parameters. 

Table 9 also shows the correlation coefficients (𝑟) between the estimates (�̂�𝑖𝑗) and the 

location parameters used to simulate the data (𝜆𝑖𝑗). MMLE shows consistently highest 

correlations across all conditions. PLE also yields high correlations in all conditions, ranging 

from 0.933 to 0.999.  

Figure 6 illustrates that, for all binary response models, the correlations of PLE between 

the estimates and true parameters for location parameters are exactly the same as those of 

MMLE with coefficients of 0.998 for sample size of 200 and 0.999 for sample sizes of 500 and 

1000. The magnitude of the correlations of PLE gets smaller as the number of categories 

increases to 3 and 5, although the correlations associated with 3 and 5 categories are still high. 

The correlations for 3 and 5 categories with 6 items, however, are higher than those with 4 items, 

which indicates that the correlations of PLE between the estimates and true parameters for 

location parameters may be improved by increasing the number of items.        

Slope parameters. Table 10 shows that the mean bias of PLE for slope parameters are 

relatively small across all unidimensional models with 4 and 6 items, ranging from −0.0054 to 

0.1067. The largest mean bias of PLE occurs in the binary response model with 4 items and  
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                                                                       (a) 2 categories 

 

                                                                 (b) 3 categories 

                       

                                                           (c) 5 categories 

 

Figure 6. Correlation coefficients (r) for location parameters of unidimensional models with 4 and 6 items 
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sample size of 500 with a value of 0.1067, while the 5 response category model with the same 

number of items and sample size yields the smallest one of 0.0024. Except for the condition with 

the largest mean bias of 0.1067, the absolute values of the mean bias for all 17 conditions are less 

than 0.04, which is quite close to 0. Also, most of the mean bias for slope parameters are smaller 

than those for location parameters of their corresponding models. It suggests that slope 

parameters of LMA models are recovered with less amount of errors than location parameters by 

PLE.  

Figure 7 shows the mean bias results for slope parameters presented in Table 10. PLE 

estimates slope parameters as well as MMLE with almost the same and small mean bias values 

in 4 unidimensional models with 6 items, which are a binary response model with 500 persons 

and 5 response category models with 3 different sample sizes. The absolute values of all the 

mean bias for the 4 models are less than 0.02, which indicates that PLE recovered parameters 

used to simulate the data with small amount of errors.     

The mean RMSE for slope parameters of PLE ranges from 0.1464 to 0.5178. The largest 

mean RMSE values of PLE and MMLE commonly occur in the condition of 4 items, 5 response 

categories, and 200 persons (i.e., RMSE = 0.5118 for PLE, and RMSE = 0.5334 for MMLE).  

As the pattern found in the mean RMSE for location parameters, the mean RMSE values for 

slope parameters also increase as the number of categories increases given the same number of 

items and sample sizes and also larger mean RMSE values are found in the models associated 

with 4 items and 200 persons. Because the smaller RMSE reflects greater accuracy, this finding 

suggests again that the least amount of precision occurs with a short test, a small sample size, 

and a large number of categories in estimating slope parameters.  

Figure 8 illustrates the mean RMSE results for slope parameters presented in Table 10.  
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                                                                           (a) 2 categories 

                      

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 7. Mean bias for slope parameters of unidimensional models with 4 and 6 items 
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                                                                           (a) 2 categories 

                                

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 8. Mean RMSE for slope parameters of unidimensional models with 4 and 6 items 
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Except for binary response models, the mean RMSE values of PLE for all of 12 

polytomous response models are equal to or smaller than those of MMLE. PLE outperforms 

MMLE in 5 models associated with 3 response categories and 2 models with 5 response 

categories and sample size of 200, resulting in smaller mean RMSE values than MMLE.  It 

suggests that PLE recovered slope parameters of polytomous response models more accurately 

than MMLE. Overall, 6 items produced a smaller mean RMSE than 4 items and larger samples 

resulted in a smaller mean RMSE. This indicates that the amount of variability can be improved 

by longer tests and larger sample size.    

 The correlation coefficients (𝑟) between the parameters used to simulate the data and the 

estimated ones for slopes also presented in Table 10 and Figure 9. PLE yields consistently high 

correlations across all conditions, ranging from 0.983 to 0.999. Figure 9 shows that except for 

only one model associated with 5 response categories, 4 items, and 500 persons, the correlations 

of PLE are nearly identical to those of MMLE in all models with high coefficients. It is 

noticeable that the correlations for all 6 models with 3 category response categories and 5 models 

with 5 response categories are all 0.99. The correlations of PLE for slope parameters are higher 

than those for location parameters, indicating PLE performs better in estimating slope parameters 

than location parameters of LMA models.        

In summary, Simulation study 1 provides three main findings for PLE of unidimensional 

LMA models with small numbers of items. First, PLE yields almost identical estimates to those 

from MLE. It is supported by small RMSDiff values and high correlations between PLE and 

MLE of LMA models. Second, based on mean bias and RMSE, PLE recovers parameters as well 

as MMLE of IRT models. Third, overall, PLE performs more excellently when it estimates slope 

parameters than location ones of polytomous items, which proves the success of the newly  
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                                                                        (a) 2 categories 

                                

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 

Figure 9. Correlation coefficients (r) for slope parameters of unidimensional models with 4 and 6 items 
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proposed Step 1 of the PLE algorithm in this thesis.   

Unidimensional Models with Large Numbers of Items 

As mentioned earlier, MLE fails to estimate parameters of LMA models when the 

number of items is large. Simulation study 2 was conducted to examine that PLE using Step 1 of 

the algorithm overcomes the limitation of MLE when fitting LMA models with large numbers of 

items. The item parameters of 18 unidimensional models with 20 and 50 items were estimated by 

PLE and MMLE. To evaluate parameter recovery, three evaluation criteria were computed for 

each item in all simulation conditions. As part of those computed values, Table 13 shows the bias 

values of parameters for unidimensional models with 20 items, 2 and 3 categories, and sample 

size of 1000. Once again, to simplify the interpretation of the evaluation criteria, the averaged 

values over items and categories are presented in this thesis.   

Parameter Recovery of PLE with 20 and 50 items 

Location parameters. Table 14 shows mean bias, RMSE and their standard deviations, 

and correlations between the true and estimated parameters for location parameters of 

unidimensional models with 20 and 50 items.   

The mean bias values of PLE for location parameters are quite small across all 

polytomous response models with the minimum value of −0.0292 and the maximum value of 

−0.0001. Binary response models, however, have large mean bias values relative to polytomous 

response models, which range from −0.1347 to −0.0827. As found in the simulations with small 

numbers of items, polytomous response models with large numbers of items also resulted in 

smaller mean bias values of PLE than binary response models when the number of items are 

large.  
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Table 13. Bias of parameters for unidimensional models with 20 items, 2 and 3 categories, and sample size of 1000, 

by estimation method   

Item 
Location  Slope 

Item 
Location  Slope 

MMLE PLE  MMLE PLE MMLE PLE  MMLE PLE 

            
     2 categories (N=1000)     

            
Item 1 -0.0031 -0.0515  0.0370 0.0153 Item 11 0.0257 -0.3329  -0.0001 -0.0398 

Item 2 0.0096 -0.0049  0.0248 -0.0296 Item 12 -0.0238 -0.2742  0.0125 -0.0193 

Item 3 -0.0054 -0.1718  0.0072 -0.0126 Item 13 -0.0131 -0.2852  0.0253 -0.0399 

Item 4 0.0007 -0.0519  0.0245 -0.0593 Item 14 0.0241 -0.2061  -0.0091 -0.1336 

Item 5 0.0179 -0.0773  -0.0497 -0.1558 Item 15 0.0124 -0.1668  -0.0128 -0.0374 

Item 6 -0.0018 -0.2315  0.0245 -0.0512 Item 16 0.0070 -0.2089  0.0262 -0.0505 

Item 7 0.0253 0.4900  0.0677 0.1707 Item 17 0.0230 -0.2988  -0.0120 -0.0996 

Item 8 0.0249 -0.1506  0.0155 -0.1379 Item 18 -0.0094 0.0213  -0.0031 -0.0241 

Item 9 0.0058 0.0191  -0.0049 -0.0646 Item 19 0.0133 -0.3007  -0.0202 -0.0741 

Item 10 0.0056 0.1849  0.0084 -0.0225 Item 20 0.0231 -0.0029  0.0241 -0.0358 

            
     3 categories (N=1000)     

            
Item 1_2 0.0129 -0.1531  -0.0523 0.2076 Item 11_2 -0.0035 0.1400  0.0032 0.0116 

Item 1_3 -0.0063 -0.1869  -0.0638 0.1942 Item 11_3 -0.0014 -0.2072  -0.0117 -0.0163 

Item 2_2 0.0049 -0.0021  -0.0004 -0.1104 Item 12_2 0.0051 0.1945  0.0183 0.1621 

Item 2_3 -0.0160 0.3282  0.0360 0.0627 Item 12_3 -0.0024 0.1002  -0.0144 0.1291 

Item 3_2 0.0053 0.3637  0.0090 0.0349 Item 13_2 -0.0619 0.0604  0.0628 0.0094 

Item 3_3 -0.0181 -0.4399  0.0079 -0.0868 Item 13_3 0.0255 0.0734  -0.0181 -0.0907 

Item 4_2 -0.0078 -0.3348  -0.0057 0.1676 Item 14_2 0.0007 -0.0361  0.0022 0.0058 

Item 4_3 -0.0170 0.1042  -0.0183 -0.1013 Item 14_3 0.0094 0.1269  0.0141 0.0128 

Item 5_2 -0.0413 0.1905  0.0292 0.3613 Item 15_2 0.0064 -0.0932  -0.0075 -0.0017 

Item 5_3 0.0260 0.0240  -0.0276 -0.2010 Item 15_3 -0.0172 0.1527  0.0063 0.0098 

Item 6_2 -0.0137 -0.2957  -0.0259 -0.1726 Item 16_2 0.0601 -0.0003  0.0319 0.0350 

Item 6_3 -0.0055 -0.0293  -0.0215 0.0902 Item 16_3 0.0817 -0.0183  0.0164 0.0106 

Item 7_2 0.0048 -0.0637  0.0031 -0.0417 Item 17_2 0.0005 -0.0658  -0.0034 0.0778 

Item 7_3 0.0082 -0.0109  -0.0040 0.0180 Item 17_3 -0.0106 -0.0746  -0.0028 0.0810 

Item 8_2 0.0123 -0.0410  -0.0186 -0.1068 Item 18_2 0.0134 -0.0576  -0.0184 -0.1095 

Item 8_3 -0.0335 0.2687  0.0182 0.1375 Item 18_3 0.0434 -0.0194  -0.0102 -0.0411 

Item 9_2 -0.0340 -0.2533  -0.0729 0.0856 Item 19_2 -0.0197 0.0172  -0.0038 0.0007 

Item 9_3 -0.0017 -0.3288  -0.0696 0.0931 Item 19_3 0.0051 -0.0482  -0.0001 0.0075 

Item 10_2 -0.0579 -0.0272  0.0151 -0.0434 Item 20_2 -0.0194 -0.1025  -0.0423 0.0569 

Item 10_3 0.0243 0.0266  -0.0174 0.0107 Item 20_3 0.0143 -0.0710  0.0080 0.0884 

 

This pattern is illustrated more clearly in Figure 10. It shows that the big differences in 

mean bias between PLE and MMLE is found in all of the binary response models. PLE and  
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Table 14. Mean bias, RMSE and their (SDs) and correlation coefficients for location parameters of unidimensional 

models with 20 and 50 items 

  20 items   50 items 

  Bias RMSE 𝑟(𝜆,�̂�)   Bias RMSE 𝑟(𝜆,�̂�) 

            
2 categories        

     Sample size (N) =200     

            
MMLE 0.0135 (0.0921) 0.2925 (0.1699) 0.997  0.0072 (0.0540) 0.2611 (0.1101) 0.999 

PLE -0.0827 (0.0787) 0.2917 (0.1431) 0.996  -0.1171 (0.0582) 0.2768 (0.0983) 0.998 
            
     Sample size (N) = 500     

            
MMLE -0.0101 (0.0266) 0.1551 (0.0702) 0.999  -0.0417 (0.0548) 0.2582 (0.0853) 0.998 

PLE -0.1047 (0.1524) 0.2170 (0.0944) 0.999  -0.1347 (0.1311) 0.2148 (0.0993) 0.999 
            
     Sample size (N) = 1000     

            
MMLE 0.0081 (0.0145) 0.1058 (0.0400)  0.999    -0.0084 (0.0508) 0.2532 (0.0850)  0.999 

PLE -0.1050 (0.1964) 0.2039 (0.1216)  0.999  -0.1273 (0.1441) 0.1909 (0.1025) 0.999 

            
3 categories        

     Sample size (N) =200     

            
MMLE -0.0152 (0.0737) 0.2862 (0.1307) 0.999  0.0060 (0.0862) 0.2597 (0.1198) 0.998 

PLE -0.0292 (0.1908) 0.3160 (0.1380) 0.986  0.0260 (0.1683) 0.3000 (0.1558) 0.987 
            
     Sample size (N) = 500     

            
MMLE 0.0002 (0.0437) 0.1645 (0.0642) 0.999  0.0049 (0.0669) 0.1620 (0.0640) 0.998 

PLE -0.0193 (0.1846) 0.2233 (0.1143) 0.986  0.0125 (0.1410) 0.1931 (0.0929) 0.990 
            
     Sample size (N) = 1000     

            
MMLE -0.0006 (0.0271) 0.1196 (0.0488) 0.999     0.0021 (0.0524) 0.1101 (0.0446) 0.999 

PLE -0.0197 (0.1737) 0.1856 (0.1048) 0.987  0.0062 (0.1319) 0.1546 (0.0872) 0.991 

            
5 categories        

     Sample size (N) =200     

            
MMLE 0.0140 (0.0863) 0.3186 (0.1349) 0.996  0.0095 (0.0984) 0.2906 (0.1062) 0.994 

PLE 0.0140 (0.1245) 0.2988 (0.1352) 0.994  0.0096 (0.1215) 0.2748 (0.1076) 0.992 
            
     Sample size (N) = 500     

            
MMLE 0.0032 (0.0450) 0.1869 (0.0682) 0.999  0.0013 (0.0568) 0.1819 (0.0628) 0.998 

PLE -0.0003 (0.0718) 0.1855 (0.0646) 0.997  0.0065 (0.1007) 0.1870 (0.0699) 0.993 
            
     Sample size (N) = 1000     

            
MMLE 0.0041 (0.0426) 0.1278 (0.0491)   0.999    0.0028 (0.0407) 0.1218 (0.0442)  0.999 

PLE -0.0001 (0.0658) 0.1327 (0.0514) 0.998    0.0193 (0.1174) 0.1528 (0.0716)  0.990 
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                                                              (a) 2 categories 

                      

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 10. Mean bias for location parameters of unidimensional models with 20 and 50 items 
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MMLE, however, yield nearly identical mean bias for 5 category models. For 3 category models 

with 50 items, the mean bias of PLE gets closer to 0 as the sample size increases. The pattern 

shown in both short and long test lengths suggests that PLE recovered location parameters of 

polytomous response models better than those of binary response models regardless of test 

lengths.  

The mean RMSE for location parameters of PLE ranges from 0.1327 to 0.3160. The 

largest mean RMSE of PLE occur in the 3 category model with 20 items and 200 persons (i.e., 

RMSE = 0.3160) while the smallest does in the 5 category model with 20 items and 1000 

persons (i.e., RMSE = 0.1327). Unlike the results found in the simulations with 4 and 6 items, it 

appears that the mean RMSE of PLE for location parameters doesn’t increase as the number of 

categories increases given the same number of items and sample sizes. The mean RMSE values 

of PLE for 5 category models are smaller than those for 3 category models given the number of 

items and sample sizes are equal.  

Figure 11 illustrates different patterns of mean RMSE for location parameters by the 

number of categories. For binary response models with 50 items, MMLE shows almost the same 

amount of estimation errors regardless of sample sizes, whereas the estimation errors of PLE 

decrease as sample sizes increase, yielding smaller mean RMSE than MMLE in the conditions of 

50 items and sample sizes of 500 and 1000. For 3 category response models, MMLE yields 

smaller mean RMSE values than PLE in all conditions.  For 5 category response models, PLE 

shows a bit smaller mean RMSE than MMLE in three conditions (i.e., 20 and 50 items with 200 

persons and 20 items with 1000 persons) and almost identical ones in two conditions involving 

sample size of 500. Both PLE and MMLE show one clear pattern commonly in polytomous  
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                                                                           (a) 2 categories 

                      

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 11. Mean RMSE for location parameters of unidimensional models with 20 and 50 items 
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response models, where larger sample sizes are associated with smaller mean RMSE when the 

number of items and categories are the same.  

Table 14 also contains the correlation coefficients (𝑟) between the true and estimated 

parameters for location parameters. MMLE yields the highest correlations across all conditions 

with 20 and 50 items, which is the same result as those found in simulations with 4 and 6 items. 

PLE also yields consistently high correlations across all conditions, ranging from 0.986 to 0.999.    

The correlations are also illustrated in Figure 12.  For binary response models, the 

correlations of PLE between the estimates and true parameters for location parameters are almost 

the same as those of MMLE with very high correlations of 0.99. The correlations of PLE for 

polytomous response models show a different pattern by test length. For 3 category response 

models, the test length of 50 items shows higher correlations than 20 items across all sample size 

while the opposite occurs in 5 category response models, but the correlations of PLE for both test 

lengths are still high with the coefficients of 0.99 in all 5 category response models.    

Slope parameters. Table 15 presents mean bias, mean RMSE and their standard 

deviations, and the correlations between the estimates (�̂�𝑖𝑗) and true parameters (𝜈𝑖𝑗) for slope 

parameters of unidimensional models with 20 and 50 items.  

The mean bias of PLE for slope parameters are relatively small across all polytomous 

response models, ranging from −0.0057 to 0.0481 while the large mean bias is associated with 

binary response models, which is the same pattern found in the mean bias for location 

parameters. The large mean bias of PLE occur in two binary response models involving the 

sample size of 200 with values of −0.2177 and −0.1552 while the absolute values of mean bias 

are less than 0.05 for 3 category response models and 0.006 for 5 category response models.  
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                                                                       (a) 2 categories 

                                

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 12. Correlation coefficients (r) for location parameters of unidimensional models with 20 and 50 items 
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Table 15. Mean bias, RMSE and their (SDs) and correlation coefficients for slope parameters of unidimensional 

models with 20 and 50 items 

  20 items   50 items 

  Bias RMSE 𝑟(𝜈,�̂�)   Bias RMSE 𝑟(𝜈,�̂�) 

            
2 categories        

     Sample size (N) =200     

            
MMLE 0.0237 (0.0778) 0.2948 (0.1256) 0.987  0.0351 (0.0520) 0.2308 (0.0737) 0.994 

PLE -0.1877 (0.0982) 0.3360 (0.0937) 0.979  -0.1552 (0.0731) 0.2494 (0.0678) 0.987 
            
     Sample size (N) = 500     

            
MMLE 0.0133 (0.0322) 0.1694 (0.0638) 0.997  0.0480 (0.0413) 0.2361 (0.0785) 0.995 

PLE -0.0914 (0.0638) 0.1969 (0.0524) 0.989  -0.0503 (0.0464) 0.1558 (0.0433) 0.994 
            
     Sample size (N) = 1000     

            
MMLE  0.0093 (0.0249) 0.1100 (0.0399)  0.998  0.0555 (0.0513) 0.2447 (0.0865) 0.992 

PLE -0.0451 (0.0675) 0.1394 (0.0449) 0.986    -0.0366 (0.0386) 0.1083 (0.0291) 0.995 

            
3 categories        

     Sample size (N) =200     

            
MMLE -0.0150 (0.0821) 0.3003 (0.1392) 0.999  0.0050 (0.0634) 0.2637 (0.1113) 0.999 

PLE 0.0291 (0.1236) 0.3010 (0.1335) 0.994  0.0481 (0.2189) 0.3361 (0.2032) 0.976 
            
     Sample size (N) = 500     

            
MMLE -0.0112 (0.0425) 0.1794 (0.0689) 0.999  0.0062 (0.0372) 0.1472 (0.0528) 0.999 

PLE 0.0239 (0.1093) 0.2061 (0.0807) 0.994  0.0391 (0.2002) 0.2269 (0.1504) 0.980 
            
     Sample size (N) = 1000     

            
MMLE -0.0062 (0.0278) 0.1192 (0.0438) 0.999    0.0034 (0.0335) 0.1041 (0.0367) 0.999 

PLE 0.0260 (0.1094) 0.1559 (0.0734) 0.995  0.0325 (0.1899) 0.1848 (0.1436) 0.982 

            
5 categories        

     Sample size (N) =200     

            
MMLE 0.0059 (0.0793) 0.3489 (0.1388) 0.998  0.0024 (0.0601) 0.3095 (0.1304) 0.998 

PLE -0.0057 (0.1250) 0.3407 (0.1397) 0.992  0.0032 (0.2353) 0.3840 (0.1745) 0.973 
            
     Sample size (N) = 500     

            
MMLE -0.0027 (0.0469) 0.2133 (0.0921) 0.999  -0.0026 (0.0569) 0.1908 (0.0693) 0.999 

PLE -0.0042 (0.0978) 0.2266 (0.0940) 0.994  0.0018 (0.2225) 0.2820 (0.1283) 0.975 
            
     Sample size (N) = 1000     

            
MMLE -0.0021 (0.0306) 0.1414 (0.0610) 0.999  -0.0084 (0.0676) 0.1430 (0.0578) 0.999 

PLE -0.0029 (0.0870) 0.1624 (0.0662) 0.995  0.0029 (0.1087) 0.1654 (0.0754) 0.994 
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As shown in the mean bias for location parameters with 20 and 50 items, Figure 13 also 

illustrates that the big differences in mean bias for slope parameters between PLE and MMLE 

exist in all binary response models. The largest difference between two estimation methods is 

associated with the smallest sample size, but it appears that the gap decreases as sample size gets 

larger. The mean bias of PLE for 5 category response models are quite small and almost equal to 

those of MMLE.  

The largest mean RMSE of PLE occur in the 5 category response model with 50 items 

and 200 persons (i.e., RMSE = 0.3840) while the smallest does in the binary response model 

with 50 items and 1000 persons (i.e., RMSE = 0.1083). For polytomous response models, it 

appears that the mean RMSE of both estimation methods for slope parameters gets large as the 

number of categories increases given the same number of items and sample sizes, which is the 

same pattern of mean RMSE found in simulations with 4 and 6 items. The larger mean RMSE 

appears to be more associated with the models involving 20 items and 200 persons. It suggests 

again that more estimation errors occur with shorter test lengths, smaller sample size, and more 

categories.    

Figure 14 illustrates the mean RMSE for slope parameters by the number of category. 

The mean RMSE for slope parameters of binary response models shows a similar pattern to what 

has been found in the location parameters of the models. The estimation errors of PLE decrease 

with larger sample sizes in all binary response models, whereas those of MMLE are similar 

across the binary response models involving 50, regardless of sample sizes. Different patterns by 

test length are also found in polytomous response models. With 20 items, the mean RMSE of 

PLE and MMLE are close or nearly equal to each other. PLE, however, appears to have larger 

mean RMSE than MMLE in polytomous response models with 50 items. 
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                                                                           (a) 2 categories 

                      

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 13. Mean bias for slope parameters of unidimensional models with 20 and 50 items 
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                                                                          (a) 2 categories 

                           

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 14. Mean RMSE for slope parameters of unidimensional models with 20 and 50 items 
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The correlation coefficients (𝑟) between the estimated parameters and true parameters for 

slope parameters are also presented in Table 15. Again, MMLE yields the highest correlations 

across all conditions with 20 and 50 items and PLE also yields high correlations across all 

conditions with coefficients of 0.973 to 0.995.  

 The correlations are also illustrated in Figure 15.  For binary response models with 50 

items and sample sizes of 500 and 100, the correlations of PLE between the estimates and true 

parameters for slope parameters are nearly equal to or larger than those of MMLE. For 

polytomous response models with 20 items, PLE yields as high correlations as MMLE with a 

coefficient of 0.99. On the other hand, the magnitude of correlations of PLE for polytomous 

models with 50 items are a bit smaller than MMLE. The correlations of PLE, however, increase 

as sample sizes increase in all polytomous models.     

In summary, Simulation study 2 supports that the parameters of unidimensional LMA 

models with large numbers of items are successfully estimated by Step 1 of the PLE algorithm, 

overcoming the limitation of MLE of LMA models. For the simulation study, two findings can 

be summarized. First, PLE yields nearly unbiased item parameter estimates and very high 

correlations between the estimates and the parameters used to simulate the data in most of the 

conditions. Second, PLE performs as well as MMLE for unidimensional models with large 

numbers of items in terms of parameter recovery. 

Multidimensional Models with Small Numbers of Items 

This section describes how well PLE performs using the full algorithm for 

multidimensional models with small numbers of items. For 2 dimensional models, the number of 

items were varied with 4 and 6, but fixed to 6 items for 3 dimensional models. The performance 

of PLE are compared with MLE in terms of parameter recovery; that is, MLE of MIRT is a   



 

86 
 

                                                                         (a) 2 categories 

                                

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 15. Correlation coefficients (r) for slope parameters of unidimensional models with 20 and 50 items 
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baseline to compare PLE of LMA. PLE of LMA should not do better than model used to 

simulate the data. As part of the computed bias and RMSE values for each item in all 

multidimensional models with small numbers of items, Table 16 contains the bias values of 

parameters for two-dimensional models with 6 items and sample size of 1000.   

Parameter Recovery of PLE and MLE 

Two-dimensional models. Tables 17 and 18 contains mean bias, RMSE and their 

standard deviations for location (𝜆𝑖𝑗) and slope parameters (𝜈𝑖𝑗) of two-dimensional models with 

4 and 6 items by the number of categories. The correlations between the estimates and the 

parameters used to simulate the data are also shown in the tables.  

Tables 17 and 18 show that mean bias, mean RMSE, and correlations of PLE are nearly 

identical to those of MLE across all conditions, indicating that PLE recovered true parameters 

with the same amount of errors as MLE in all of two-dimensional models with 4 and 6 items and 

performed very similarly to MLE in estimating parameters of LMA models.  

For two-dimensional binary response models, both PLE and MLE show small mean bias 

for location parameters, ranging from −0.0264 to 0.0392. On the other hand, the mean bias for     

slope parameters are slightly large relative to those for location parameters, ranging from 

−0.1559 to 0.1851. The parameters for 6 binary items tend to be underestimated while those for 

4 binary items tend to be overestimated by PLE and MLE.    

For location parameters of two-dimensional polytomous response models, both PLE and 

MLE resulted in nearly unbiased location parameter estimates, where the absolute values of 

mean bias are less than 0.05 across all two-dimensional polytomous response models. This 

pattern also appears to be true for slope parameters of 5 response category models. However, the  

  



 

88 
 

Table 16. Bias of parameters for two-dimensional models with 6 items and sample size of 1000, by estimation 

method 

Item 
Location  Slope 

Item 
Location  Slope 

MLE PLE  MLE PLE MLE PLE  MLE PLE 

            
     2 categories (N=1000)     

            
Item 1 0.0058 0.0057  0.1615 0.1607 Item 4 -0.0582 -0.0582  0.0061 0.0049 

Item 2 0.0029 0.0030  0.0537 0.0519 Item 5 -0.0660 -0.0660  -0.0190 -0.0198 

Item 3 0.0100 0.0099  0.0392 0.0384 Item 6 -0.0525 -0.0525  -0.0402 -0.0406 

            
     3 categories (N=1000)     

            
Item 1_2 -0.2847 -0.2849  0.1729 0.1671 Item 4_2 -0.1089 -0.1094  0.1158 0.1064 

Item 1_3 -0.1086 -0.1061  -0.0172 -0.0122 Item 4_3 -0.0777 -0.0794  -0.0383 -0.0337 

Item 2_2 -0.1500 -0.1489  -0.1023 -0.1010 Item 5_2 0.5147 0.5159  -0.1175 -0.1189 

Item 2_3 0.1856 0.1858  0.0222 0.0185 Item 5_3 -0.2458 -0.2470  0.0773 0.0774 

Item 3_2 0.1114 0.1132  0.0418 0.0436 Item 6_2 -0.2393 -0.2374  -0.1821 -0.1741 

Item 3_3 0.0460 0.0422  -0.1119 -0.1175 Item 6_3 -0.1496 -0.1509  0.0615 0.0612 

            
     5 categories (N=1000)     

            
Item 1_2 -0.2476 -0.2486  0.0468 0.0437 Item 4_2 0.3852 0.3822  -0.1214 -0.1088 

Item 1_3 -0.1564 -0.1583  -0.0111 -0.0164 Item 4_3 0.1557 0.1539  -0.0453 -0.0349 

Item 1_4 0.0832 0.0828  0.1144 0.1092 Item 4_4 0.3035 0.3018  -0.1253 -0.1165 

Item 1_5 -0.0548 -0.0544  0.1459 0.1401 Item 4_5 -0.1742 -0.1725  0.0398 0.0397 

Item 2_2 -0.0769 -0.0780  -0.0550 -0.0540 Item 5_2 -0.1068 -0.1057  0.0600 0.0562 

Item 2_3 0.0295 0.0272  -0.0569 -0.0558 Item 5_3 -0.1916 -0.1905  0.0740 0.0696 

Item 2_4 -0.0198 -0.0192  0.0195 0.0191 Item 5_4 -0.6859 -0.6884  -0.2046 -0.1744 

Item 2_5 -0.0558 -0.0566  -0.0191 -0.0190 Item 5_5 -0.1488 -0.1500  0.0313 0.0336 

Item 3_2 -0.0780 -0.0814  0.3279 0.3204 Item 6_2 0.7112 0.7132  -0.0385 -0.0466 

Item 3_3 -0.1847 -0.1829  -0.2952 -0.2878 Item 6_3 0.0548 0.0578  0.0878 0.0831 

Item 3_4 -0.2398 -0.2387  -0.1570 -0.1499 Item 6_4 -0.3357 -0.3358  0.0011 0.0046 

Item 3_5 0.2409 0.2485  -0.1785 -0.1682 Item 6_5 -0.1307 -0.1302  0.0379 0.0383 

 

mean bias for 3 response category models appears to be somewhat different between 4 and 6 

items. With 6 items and different sample sizes, the conditions resulted in small mean bias for 

slope parameters, ranging from −0.0069 to 0.0109 for PLE and −0.0065 to 0.0138 for MLE, and 

the values of the mean bias decrease as sample size increases.  On the other hand, the largest 

mean bias values of PLE and MLE for slope parameters of 3 response category models are  
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Table 17. Mean bias, RMSE and their (SDs) and correlation coefficients for location parameters of 2 dimensional 

models with 4 and 6 items 

  4 items   6 items 

  Bias RMSE 𝑟(𝜆,�̂�)   Bias RMSE 𝑟(𝜆,�̂�) 

            
2 categories        

     Sample size (N) =200     

            
MLE 0.0193 (0.0386) 0.1294 (0.0508) 0.995  -0.0213 (0.0646) 0.1430 (0.0219) 0.989 

PLE 0.0192 (0.0386) 0.1293 (0.0508) 0.995  -0.0213 (0.0644) 0.1427 (0.0218) 0.989 
            
     Sample size (N) = 500     

            
MLE 0.0378 (0.0181) 0.0887 (0.0254) 0.999  -0.0252 (0.0511) 0.1011 (0.0221) 0.993 

PLE 0.0378 (0.0181) 0.0887 (0.0254) 0.999  -0.0252 (0.0512) 0.1012 (0.0221) 0.992 
            
     Sample size (N) = 1000     

            
MLE 0.0392 (0.0149) 0.0700 (0.0134) 0.999  -0.0263 (0.0360) 0.0784 (0.0133) 0.996 

PLE 0.0392 (0.0149) 0.0700 (0.0134) 0.999  -0.0264 (0.0360) 0.0784 (0.0133) 0.996 

            
3 categories        

     Sample size (N) =200     

            
MLE -0.0384 (0.2757) 0.2949 (0.1350) 0.955  -0.0374 (0.2439) 0.3415 (0.1096) 0.961 

PLE -0.0385 (0.2768) 0.2948 (0.1355) 0.955  -0.0373 (0.2455) 0.3420 (0.1115) 0.961 
            
     Sample size (N) = 500     

            
MLE -0.0342 (0.2988) 0.2665 (0.1571) 0.948  -0.0431 (0.2120) 0.2424 (0.1020) 0.970 

PLE -0.0340 (0.2999) 0.2673 (0.1576) 0.948  -0.0432 (0.2142) 0.2396 (0.1029) 0.969 
            
     Sample size (N) = 1000     

            
MLE -0.0398 (0.2850) 0.2445 (0.1511) 0.953  -0.0422 (0.2268) 0.2262 (0.1148) 0.965 

PLE -0.0399 (0.2853) 0.2446 (0.1513) 0.953  -0.0422 (0.2270) 0.2260 (0.1152) 0.965 

            
5 categories        

     Sample size (N) =200     

            
MLE 0.0368 (0.2713) 0.3792 (0.1526) 0.948  -0.0289 (0.2718) 0.3491 (0.1534) 0.956 

PLE 0.0384 (0.2698) 0.3794 (0.1520) 0.948  -0.0284 (0.2726) 0.3502 (0.1546) 0.956 
            
     Sample size (N) = 500     

            
MLE 0.0270 (0.2872) 0.3076 (0.1706) 0.949  -0.0335 (0.2685) 0.2822 (0.1613) 0.958 

PLE 0.0268 (0.2880) 0.3087 (0.1700) 0.948  -0.0334 (0.2685) 0.2823 (0.1611) 0.958 
            
     Sample size (N) = 1000     

            
MLE 0.0257 (0.2906) 0.2623 (0.1735) 0.951  -0.0385 (0.2719) 0.2530 (0.1665) 0.959 

PLE 0.0257 (0.2906) 0.2624 (0.1734) 0.951  -0.0385 (0.2724) 0.2534 (0.1669) 0.958 
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Table 18. Mean bias, RMSE and their (SDs) and correlation coefficients for slope parameters of 2 dimensional 

models with 4 and 6 items 

  4 items   6 items 

  Bias RMSE 𝑟(𝜈,�̂�)   Bias RMSE 𝑟(𝜈,�̂�) 

            
2 categories        

     Sample size (N) =200     

            
MLE 0.0930 (0.2965) 0.6712 (0.0744) 0.962  -0.1506 (0.1791) 0.4976 (0.0702) 0.994 

PLE 0.0948 (0.2962) 0.6756 (0.0740) 0.962  -0.1559 (0.1796) 0.4944 (0.0695) 0.993 
            
     Sample size (N) = 500     

            
MLE 0.1851 (0.1767) 0.6193 (0.0645) 0.989  -0.0912 (0.1457) 0.4465 (0.0818) 0.958 

PLE 0.1844 (0.1763) 0.6184 (0.0645) 0.989  -0.0932 (0.1461) 0.4472 (0.0824) 0.958 
            
     Sample size (N) = 1000     

            
MLE 0.1463 (0.1169) 0.6359 (0.1033) 0.995  0.0335 (0.0718) 0.2640 (0.0306) 0.991 

PLE 0.1463 (0.1170) 0.6361 (0.1033) 0.995  0.0326 (0.0717) 0.2652 (0.0307) 0.991 

            
3 categories        

     Sample size (N) =200     

            
MLE 0.1223 (0.1090) 0.5627 (0.1165) 0.998  0.0138 (0.1568) 0.4622 (0.0746) 0.993 

PLE 0.1262 (0.1116) 0.5533 (0.1182) 0.998  0.0109 (0.1525) 0.4598 (0.0782) 0.993 
            
     Sample size (N) = 500     

            
MLE 0.0121 (0.0391) 0.3530 (0.0866) 0.999  0.0061 (0.1092) 0.2724 (0.0477) 0.996 

PLE 0.0051 (0.0424) 0.3515 (0.0844) 0.999  0.0087 (0.1097) 0.2743 (0.0498) 0.996 
            
     Sample size (N) = 1000     

            
MLE 0.0683 (0.1176) 0.2914 (0.0653) 0.998  -0.0065 (0.1072) 0.2310 (0.0443) 0.996 

PLE 0.0686 (0.1166) 0.2910 (0.0640) 0.998  -0.0069 (0.1046) 0.2298 (0.0437) 0.996 

            
5 categories        

     Sample size (N) =200     

            
MLE -0.0318 (0.1797) 0.6275 (0.2426) 0.989  -0.0373 (0.1897) 0.5015 (0.1553) 0.981 

PLE -0.0348 (0.1819) 0.6324 (0.2516) 0.989  -0.0364 (0.1885) 0.5050 (0.1564) 0.981 
            
     Sample size (N) = 500     

            
MLE -0.0172 (0.1123) 0.4574 (0.1859) 0.997  -0.0193 (0.1304) 0.3435 (0.1022) 0.990 

PLE -0.0164 (0.1198) 0.4574 (0.1906) 0.997  -0.0180 (0.1242) 0.3434 (0.1010) 0.991 
            
     Sample size (N) = 1000     

            
MLE 0.0019 (0.0876) 0.3121 (0.1359) 0.997  -0.0134 (0.1298) 0.2635 (0.1088) 0.990 

PLE 0.0017 (0.0891) 0.3131 (0.1375) 0.997  -0.0114 (0.1237) 0.2611 (0.1075) 0.991 
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commonly found in the conditions with 4 items and sample size of 200, which are 0.1262 for 

PLE and 0.1223 for MLE, and sample size doesn’t have an influence on getting smaller mean 

bias for the models with 4 items. 

Figures 16 illustrates the mean bias for location and slope parameters of PLE and MLE 

for two-dimensional models with 4 and 6 items, and it also supports that the mean bias of PLE 

and MLE are nearly equal for all two-dimensional models with small numbers of items. When 

comparing mean bias for location and slope parameters of polytomous response models 

involving 6 items, slope parameter estimates of PLE and MLE are closer to true parameters than 

location parameter estimates of two estimation methods.        

For two-dimensional binary response models, the mean RMSE of PLE and MLE for 

slope parameters are large relative to those for location parameters, indicating that PLE and MLE 

recovered location parameters better than slope parameters for two-dimensional binary response 

models. Overall, the mean RMSE of PLE and MLE for location and slope parameters of two-

dimensional polytomous response models get smaller as the number of items and sample sizes 

increase, whereas they get larger as the number of categories increases. The condition of 5 

response categories, 4 items, and 200 persons resulted in the largest mean RMSE for location 

and slope parameters with values of 0.3794 and 0.6324 for PLE and 0.3792 and 0.6275 for MLE.  

On the contrary, the smallest values of mean RMSE for location and slope parameters were 

found in the condition of 3 response categories, 6 items, and 1000 persons, which are 0.2260 and 

0.2298 for PLE and 0.2262 and 0.2310 for MLE. 

Figures 17 shows the mean RMSE for location and slope parameters of PLE and MLE 

for two-dimensional models with 4 and 6 items.  The test lengths of 4 items and 6 items show 

similar variability in location parameter estimates of polytomous response models, whereas the  
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(a) 2 categories 

 

                   

                                                                             (b) 3 categories 

 

 

                                                                 (c) 5 categories 

 

 
               

Figure 16. Mean bias for location and slope parameters of 2 dimensional models with 4 and 6 items 
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                                                                             (a) 2 categories 

 

                   

                                                                             (b) 3 categories 

 

 
 

                                                                 (c) 5 categories 

 

 
               

Figure 17. Mean RMSE for location and slope parameters of 2 dimensional models with 4 and 6 items 
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test length of 4 items has more variability than the test length of 6 items in slope parameter 

estimates of the models. When given sample sizes of 200 and 500, the mean RMSE for location 

parameters of PLE and MLE are smaller than those for slope parameters overall. However, the 

mean RMSE for location and slope parameters appeared to be similar in the conditions 

associated with sample size of 1000.   

The correlation coefficients (𝑟) between the estimated parameters and true parameters for 

location and slope parameters are also presented in Tables 17 and 18. Both PLE and MLE yield 

high correlations across all conditions, ranging from 0.948 to 0.999 for location parameters and 

0.958 to 0.999 for slope parameters. In Figure 18, the location parameters of two-dimensional 

binary response models showed higher correlations than the slope parameters while the slope 

parameters of polytomous response models did higher correlations than the location parameters. 

Three-dimensional models. Table 19 presents mean bias, RMSE and their standard 

deviations for location (𝜆𝑖𝑗) and slope parameters (𝜈𝑖𝑗) and the correlations between the 

estimated and true parameters of three-dimensional models with 6 items by the number of 

categories.  

Again, PLE and MLE show almost the same values of mean bias, mean RMSE, and 

correlations across all three-dimensional models with 6 items. For binary response models, the 

mean bias values of PLE and MLE are around −0.03 for location parameters and range from 

−0.12 to 0.07 for slope parameters. For polytomous response models, the absolute values of the 

mean bias values are less than 0.04 for location parameters and 0.03 for slope parameters. These 

findings indicate that both PLE and MLE resulted in almost unbiased parameter estimates. For 

location parameters, the condition of 3 response categories and sample size of 1000 resulted in 

the largest mean bias values with values of −0.0400 for PLE and −0.0399 for MLE, whereas the  
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(a) 2 categories 

 

                   

                                                                             (b) 3 categories 

 

 
 

                                                                 (c) 5 categories 

 

 
               

Figure 18. Correlation coefficients (r) for location and slope parameters of 2 dimensional models with 4 & 6 items 
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Table 19. Mean bias, RMSE and their (SDs) and correlation coefficients for location and slope parameters of 3 

dimensional models with 6 items 

  6 items_Location   6 items_Slope 

  Bias RMSE 𝑟(𝜆,�̂�)   Bias RMSE 𝑟(𝜈,�̂�) 

            
2 categories        

     Sample size (N) =200     

            
MLE -0.0394 (0.0594) 0.1516 (0.0360) 0.991  -0.0774 (0.2019) 0.4114 (0.0802) 0.921 

PLE -0.0393 (0.0594) 0.1515 (0.0360) 0.991  -0.1234 (0.2045) 0.4439 (0.1014) 0.924 
            
     Sample size (N) = 500     

            
MLE -0.0300 (0.0225) 0.0892 (0.0187) 0.999  -0.0437 (0.1013) 0.3469 (0.0664) 0.990 

PLE -0.0299 (0.0223) 0.0893 (0.0187) 0.999  -0.0469 (0.1007) 0.3443 (0.0678) 0.991 
            
     Sample size (N) = 1000     

            
MLE -0.0392 (0.0293) 0.0758 (0.0224) 0.998  0.0736 (0.0981) 0.2876 (0.0695) 0.979 

PLE -0.0392 (0.0293) 0.0759 (0.0225) 0.998  0.0732 (0.0979) 0.2853 (0.0691) 0.979 

            
3 categories        

     Sample size (N) =200     

            
MLE -0.0332 (0.3272) 0.3360 (0.1690) 0.924  0.0228 (0.1091) 0.4550 (0.0988) 0.996 

PLE -0.0324 (0.3272) 0.3388 (0.1718) 0.924  0.0218 (0.1115) 0.4647 (0.0885) 0.996 
            
     Sample size (N) = 500     

            
MLE -0.0362 (0.2979) 0.2877 (0.1389) 0.938  -0.0093 (0.0990) 0.3128 (0.0781) 0.996 

PLE -0.0363 (0.2980) 0.2874 (0.1392) 0.937  -0.0074 (0.0973) 0.3195 (0.0823) 0.997 
            
     Sample size (N) = 1000     

            
MLE -0.0399 (0.2820) 0.2619 (0.1367) 0.944  -0.0105 (0.1113) 0.2596 (0.0782) 0.996 

PLE -0.0400 (0.2820) 0.2621 (0.1368) 0.944  -0.0055 (0.1072) 0.2625 (0.0798) 0.996 

            
5 categories        

     Sample size (N) =200     

            
MLE 0.0098 (0.2593) 0.3692 (0.1353) 0.960  -0.0299 (0.1586) 0.5661 (0.2148) 0.991 

PLE 0.0076 (0.2601) 0.3678 (0.1346) 0.960  -0.0313 (0.1635) 0.5689 (0.2183) 0.991 
            
     Sample size (N) = 500     

            
MLE 0.0099 (0.2435) 0.2730 (0.1335) 0.968  0.0022 (0.1276) 0.3961 (0.1544) 0.993 

PLE 0.0096 (0.2438) 0.2728 (0.1333) 0.968  0.0020 (0.1279) 0.3972 (0.1538) 0.993 
            
     Sample size (N) = 1000     

            
MLE 0.0143 (0.2534) 0.2413 (0.1484) 0.965  0.0123 (0.1020) 0.2723 (0.1056) 0.996 

PLE 0.0141 (0.2539) 0.2415 (0.1485) 0.965  0.0119 (0.1041) 0.2728 (0.1059) 0.995 
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condition of 5 response categories and sample size of 200 showed the smallest ones of 0.0076 for 

PLE and 0.0098 for MLE. For slope parameters, the 2 response category model with 200 persons 

had the largest mean bias with values of −0.1234 for PLE and −0.0774 for MLE while the 5 

response category models with 500 persons showed the smallest mean bias with values of 0.0020 

for PLE and 0.0022 for MLE.  

Figure 19 provides the mean bias for location and slope parameters of PLE and MLE for 

three-dimensional models with 6 items.  All of 3 category response models yielded less mean 

bias values for slope parameter estimates than for location parameter estimates, whereas binary 

and 5 category response models showed less mean bias values for location parameter estimates 

than for slope parameter estimates, regardless of sample sizes.       

For location parameters of three-dimensional response models, the mean RMSE values 

ranged from 0.0758 to 0.3692. The binary response models with 1000 persons had the smallest 

mean RMSE values of 0.0759 for PLE and 0.0758 for MLE. The largest mean RMSE values are 

0.3678 for PLE and 0.3692 for MLE resulted from the condition of 5 response categories and 

200 persons. Overall, the mean RMSE values for slope parameters are larger than those for 

location parameters, ranging from 0.2596 to 0.5689 for two estimation methods. Again, the 5 

response categories and sample size of 200 showed the largest mean RMSE for slope parameters 

with values of 0.5689 for PLE and 0.5661 for MLE. The smallest mean RMSE values for slope 

parameters are found in 3 response categories with sample size of 1000, which are 0.2625 for 

PLE and 0.2596 for MLE.  

Figures 20 shows the mean RMSE for location and slope parameters of PLE and MLE 

for three-dimensional models with 6 items. Across all conditions, larger samples showed smaller 

mean RMSE values for both location and slope parameters. As mentioned earlier, the mean  
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(a) 2 categories 

 

                   

                                                                             (b) 3 categories 

 

 
 

                                                                 (c) 5 categories 

 

 
               

Figure 19. Mean bias for location and slope parameters of 3 dimensional models with 6 items 
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(a) 2 categories 

 

 

                          (b) 3 categories 

 
 

                                                                 (c) 5 categories 

 

 
               

Figure 20. Mean RMSE for location and slope parameters of 3 dimensional models with 6 items 
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RMSE values for slope parameters appear to be larger than those for location parameters, but the 

polytomous models associated with sample size of 1000 showed similar mean RMSE values 

between location and slope parameters.   

The correlation coefficients (𝑟) between the estimated parameters and true parameters for 

location and slope parameters are also shown in Table 16 and illustrated in Figure 21. All of the 

estimates from PLE and MLE are highly related to true parameters. For three-dimensional binary 

response models, PLE and MLE yielded high correlations between the estimates and true 

parameters for both location and slope parameters. The correlation for location parameters are as 

high as r = 0.99 and those for slope parameters range from r = 0.92tor = 0.99.  

For polytomous response category models, slope parameters had slightly higher 

correlations than location parameters.  The correlations between the estimates and true 

parameters for slope parameters are as high as 0.996 under all 3 response category models while 

the correlations for location parameters range from 0.924 to 0.944.  For 5 response category 

models, the correlations between parameter estimates and true parameters are above 0.96 for 

location parameters and above 0.99 for slope parameters in all models with different sample 

sizes.    

As shown in Tables 17, 18, and 19, the mean bias, mean RMSE, and correlations of PLE 

are almost identical to those of MLE across all multidimensional models with small numbers of 

items. Figures 16 through 21 also illustrate that PLE yield almost equal parameter estimates to 

MLE.  To compare the performance of PLE for multidimensional models with MLE, the 

correlations of the estimates between two estimation methods were computed and they are 

shown in Table 20. The estimates from PLE and MLE are correlated as highly as 0.999 under all 

conditions, indicating that the parameter estimates between MLE and PLE are all equivalent.  
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(a) 2 categories 

 

                   

                                                                             (b) 3 categories 

 

 
 

                                                                 (c) 5 categories 

 

 
               

Figure 21. Correlation coefficients (r) for location and slope parameters of 3 dimensional models with 6 items 
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Table 20. Correlation coefficients (r) between the parameter estimates obtained from MLE and PLE for 

multidimensional models with 4 and 6 items  

  2 categories   3 categories   5 categories 

 Sample size  Sample size  Sample size 

  N=200 N=500 N=1000   N=200 N=500 N=1000   N=200 N=500 N=1000 

2 dimensional models          

Location parameters           

            
4 items 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

6 items 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

            
Slope parameters          

            
4 items 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

6 items 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

         
3 dimensional models         

Location parameters         

            
6 items 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

            
Slope parameters         

            
6 items 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

 

 

 

Table 21. Mean RMSDiff of parameter estimates between MLE and PLE for multidimensional models with 4 and 6 

items.  

  2 categories   3 categories   5 categories 

 Sample size  Sample size  Sample size 

  N=200 N=500 N=1000   N=200 N=500 N=1000   N=200 N=500 N=1000 

2 dimensional models         

Location parameters           

            
4 items 0.000 0.000 0.000  0.012 0.004 0.003  0.028 0.008 0.003 

6 items 0.001 0.000 0.000  0.042 0.037 0.010  0.014 0.006 0.004 

            
Slope parameters          

            
4 items 0.003 0.001 0.000  0.038 0.018 0.013  0.058 0.027 0.010 

6 items 0.011 0.006 0.001  0.035 0.024 0.009  0.021 0.011 0.006 

            
3 dimensional models         

Location parameters         

            
6 items 0.001 0.001 0.000  0.029 0.010 0.008  0.024 0.006 0.003 

            
Slope parameters          

            
6 items 0.019 0.006 0.003  0.057 0.019 0.018  0.067 0.014 0.009 
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In addition to correlations, the mean RMSDiff values of the parameter estimates between 

MLE and PLE of LMA models were also computed for multidimensional models with 4 and 6 

items to measure how close the parameter estimates from PLE are to those from MLE.  They are 

shown in Table 21. The mean RMSDiff of the parameter estimates between MLE and PLE range 

from 0.000 to 0.042 for location parameters and 0.000 to 0.067 for slope parameters. The 

findings indicate that the parameter estimates obtained from MLE and PLE are not only linearly 

related but also close to each other. Overall, the largest sample size resulted in the smallest mean 

RMSDiff value, which is the same tendency found in unidimensional models.  

In summary, the results of Simulation study 3 shows that PLE behaves similarly to MLE 

when it estimates parameters of multidimensional LMA models with small numbers of items 

using both Steps 1 and 2 of the algorithm. The correlations of the estimates between PLE and 

MLE are as high as r = 1.000 for all conditions in Simulation study 3 and the mean RMSDiff of 

the parameter estimates between PLE and MLE values are also small.   

Multidimensional Models with Large Numbers of Items 

This section describes how well PLE overcomes the limitation of MLE using the full 

algorithm for multidimensional models when the number of items is large. The item parameters 

of 54 multidimensional models with 20 and 50 items were estimated by PLE, varying the number 

of latent variables from 2 to 4. Table 22 shows the bias values of parameters for two- and three-

dimensional models with 20 items, 2 and 3 categories and sample size of 1000. Including the 

values shown in the table, the computed bias and RMSE values for each item in all 

multidimensional models with large numbers of items were averaged over items and categories 

for interpretation and the averaged values are reported in Tables 23 and 24.       
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Table 22. Bias of parameters for two- and three-dimensional models with 20 items, 2 and 3 categories and sample 

size of 1000 

Item 
Location  Slope 

Item 
Location  Slope 

2D 3D  2D 3D 2D 3D  2D 3D 

            
     2 categories (N=1000)     

            
Item 1 0.0537 0.0199  0.0259 -0.0176 Item 11 -0.2631 -0.1490  0.0061 0.0162 

Item 2 0.1084 0.0814  0.0046 -0.0107 Item 12 -0.2152 -0.1476  -0.0003 0.0182 

Item 3 0.0580 0.0407  0.0233 0.0129 Item 13 -0.3844 -0.1851  -0.0168 0.0027 

Item 4 0.1369 0.0803  0.0037 -0.0243 Item 14 -0.5914 -0.3154  -0.0760 0.0073 

Item 5 0.1575 0.0928  -0.0202 -0.0517 Item 15 -0.1990 -0.1093  -0.0116 0.0848 

Item 6 0.1139 0.0782  0.0361 0.0229 Item 16 -0.4103 -0.2331  -0.0062 0.0605 

Item 7 0.1619 0.0725  0.0070 -0.0353 Item 17 -0.4819 -0.2554  -0.0421 0.0190 

Item 8 0.1748 -0.3557  -0.0379 -0.0436 Item 18 -0.2229 -0.1638  0.0008 0.0736 

Item 9 0.1239 -0.2116  0.0221 0.0050 Item 19 -0.3443 -0.2049  -0.0138 0.0078 

Item 10 0.0650 -0.1542  0.0113 0.0161 Item 20 -0.4469 -0.2844  0.0197 0.0557 

            
     3 categories (N=1000)     

            
Item 1_2 -0.1592 -0.2271  0.1573 0.1914 Item 11_2 0.0816 0.0664  0.0015 0.0163 

Item 1_3 -0.0354 -0.1531  0.0967 0.1216 Item 11_3 -0.0901 -0.0670  0.0284 -0.0489 

Item 2_2 0.0063 -0.0764  -0.1092 -0.0454 Item 12_2 0.0801 0.0375  0.1392 0.1021 

Item 2_3 -0.0012 0.2218  0.1025 -0.0684 Item 12_3 0.3700 0.0269  0.1410 0.1004 

Item 3_2 0.0735 0.2009  0.0386 0.0818 Item 13_2 0.1546 0.0632  -0.0781 0.0505 

Item 3_3 0.0185 -0.1650  -0.0879 -0.1931 Item 13_3 0.0556 -0.0638  -0.0632 0.0377 

Item 4_2 -0.0467 -0.0996  0.1532 0.0990 Item 14_2 -0.0986 -0.0379  -0.0170 -0.0243 

Item 4_3 0.0285 0.0329  -0.0970 -0.0367 Item 14_3 0.0854 0.1045  0.0114 0.0414 

Item 5_2 -0.0076 0.1377  0.2880 0.1892 Item 15_2 -0.1002 -0.0199  0.0081 0.0031 

Item 5_3 0.0332 -0.0366  -0.1329 -0.1103 Item 15_3 0.1453 0.0549  -0.0127 -0.0206 

Item 6_2 -0.0839 -0.1406  -0.1766 -0.1500 Item 16_2 -0.0456 0.0030  0.0105 0.0423 

Item 6_3 0.0053 -0.0331  0.1013 0.0907 Item 16_3 0.0745 0.1109  0.0101 0.0753 

Item 7_2 0.0238 -0.0452  -0.0608 -0.0707 Item 17_2 -0.2159 -0.1423  0.0337 0.0469 

Item 7_3 -0.0717 -0.0167  0.0425 0.0441 Item 17_3 -0.1920 -0.1884  0.0430 0.0254 

Item 8_2 -0.0545 -0.1415  -0.0983 -0.0454 Item 18_2 -0.1821 -0.1614  0.0065 0.0004 

Item 8_3 0.0253 0.1634  0.1464 0.1044 Item 18_3 -0.2063 -0.0625  0.0319 -0.0334 

Item 9_2 -0.0506 -0.1207  0.1179 0.1838 Item 19_2 -0.0708 -0.0604  -0.0129 0.0084 

Item 9_3 -0.0997 -0.2310  0.1385 0.1247 Item 19_3 -0.0283 -0.0030  0.0067 -0.0095 

Item 10_2 0.0838 0.0487  -0.0715 -0.0254 Item 20_2 -0.2510 -0.1719  0.0312 -0.0271 

Item 10_3 -0.0189 -0.0132  0.0313 0.0021 Item 20_3 -0.1703 -0.1887  0.0743 0.0809 
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Parameter Recovery of PLE with 20 and 50 items 

Location parameters. Table 23 shows mean bias, RMSE and their standard deviations, 

and correlations between the estimated and true parameters for location parameters (𝜆𝑖𝑗) of 

multidimensional models with 20 and 50 items.   

The mean bias values of PLE for location parameters are small across all polytomous 

response models with the minimum value of −0.0381 and the maximum value of 0.0179, 

whereas those are large in binary response models relative to polytomous response models, 

which range from −0.1388 to −0.0986. Overall, location parameters of binary and 3 response 

category models were underestimated and the estimates of 5 response category models yielded 

less mean bias values than those of binary and 3 response category models. Figure 22 illustrates 

these findings more clearly. The number of latent variables didn’t show any pattern across all 

conditions in estimating location parameters of LMA models.   

The mean RMSE of PLE for location parameters ranges from 0.1459 to 0.3344. The 

largest mean RMSE of PLE occurs in the 3 dimensional 3 response category model with 50 

items and 200 persons (i.e., RMSE = 0.3344) while the smallest does in the 2 dimensional binary 

response model with 50 items and 1000 persons (i.e., RMSE = 0.1327). The larger sample sizes 

generally resulted in smaller mean RMSE of PLE for location parameters.   

Figure 23 shows the mean RMSE of PLE for location parameters of multidimensional 

models with large numbers of items. The dimensions of models didn’t show any particular 

pattern in estimating location parameters of LMA models.  Given the sample size, the mean 

RMSE values of PLE for binary and 5 response category models with 50 items tend to increase 

over time with an increase of dimensions. Regardless of the dimensions, however, irregular  
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Table 23. Mean bias, RMSE and their (SDs) and correlation coefficients of PLE for location parameters of 

multidimensional models with 20 and 50 items 

 

(a) 2 categories 

  20 items   50 items 

  Bias RMSE 𝑟(𝜆,�̂�)   Bias RMSE 𝑟(𝜆,�̂�) 

            
     Sample size (N) =200     

            
2D_PLE -0.1206 (0.2621) 0.2991 (0.1302) 0.957  -0.1202 (0.0598) 0.2174 (0.0541) 0.998 

3D_PLE -0.0986 (0.1083) 0.1977 (0.0815) 0.992  -0.1249 (0.0998) 0.2226 (0.0723) 0.995 

4D_PLE -0.1255 (0.2021) 0.2612 (0.1208) 0.978  -0.1179 (0.1752) 0.2476 (0.1120) 0.983 
            
     Sample size (N) = 500     

            
2D_PLE -0.1195 (0.2593) 0.2667 (0.1395) 0.957  -0.1217 (0.0576) 0.1670 (0.0505) 0.998 

3D_PLE -0.1154 (0.1455) 0.1919 (0.0797) 0.986  -0.1238 (0.0891) 0.1737 (0.0706) 0.996 

4D_PLE -0.1321 (0.2097) 0.2362 (0.1239) 0.975  -0.1246 (0.1641) 0.1965 (0.1248) 0.985 
            
     Sample size (N) = 1000     

            
2D_PLE -0.1203 (0.2598) 0.2499 (0.1491) 0.957  -0.1205 (0.0534) 0.1459 (0.0492) 0.998 

3D_PLE -0.1152 (0.1493) 0.1785 (0.0856) 0.985  -0.1262 (0.0925) 0.1541 (0.0817) 0.995 

4D_PLE -0.1388 (0.2174) 0.2258 (0.1397) 0.972  -0.1273 (0.1663) 0.1804 (0.1301) 0.985 

 

 

(b) 3 categories 

  20 items   50 items 

  Bias RMSE 𝑟(𝜆,�̂�)   Bias RMSE 𝑟(𝜆,�̂�) 

            
     Sample size (N) =200     

            
2D_PLE -0.0211 (0.1495) 0.2896 (0.1031) 0.992  0.0080 (0.2347) 0.3081 (0.1497) 0.972 

3D_PLE -0.0228 (0.1127) 0.2733 (0.0816) 0.995  -0.0178 (0.2648) 0.3344 (0.1620) 0.964 

4D_PLE 0.0037 (0.2596) 0.3282 (0.1311) 0.973  -0.0181 (0.2364) 0.3148 (0.1589) 0.971 
            
     Sample size (N) = 500     

            
2D_PLE -0.0235 (0.1215) 0.1946 (0.0593) 0.992  0.0008 (0.2299) 0.2421 (0.1407) 0.973 

3D_PLE -0.0381 (0.1121) 0.1906 (0.0560) 0.995  -0.0259 (0.2668) 0.2655 (0.1660) 0.964 

4D_PLE -0.0070 (0.2477) 0.2525 (0.1385) 0.976  -0.0239 (0.2320) 0.2322 (0.1557) 0.972 
            
     Sample size (N) = 1000     

            
2D_PLE -0.0234 (0.1186) 0.1530 (0.0618) 0.992  -0.0045 (0.2253) 0.2068 (0.1411) 0.974 

3D_PLE -0.0349 (0.1157) 0.1561 (0.0531) 0.995  -0.0244 (0.2662) 0.2304 (0.1733) 0.964 

4D_PLE -0.0040 (0.2578) 0.2372 (0.1447) 0.974  -0.0179 (0.2292) 0.1945 (0.1598) 0.973 
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Table 23. (cont.) 

 

(c) 5 categories 

  20 items   50 items 

  Bias RMSE 𝑟(𝜆,�̂�)   Bias RMSE 𝑟(𝜆,�̂�) 

            
     Sample size (N) =200     

            
2D_PLE 0.0081 (0.1891) 0.3337 (0.1179) 0.975  0.0160 (0.1440) 0.2849 (0.1105) 0.983 

3D_PLE 0.0130 (0.1889) 0.3275 (0.1190) 0.977  0.0179 (0.1467) 0.2897 (0.1059) 0.987 

4D_PLE 0.0143 (0.1923) 0.3199 (0.1205) 0.976  0.0102 (0.1682) 0.3035 (0.1086) 0.980 
            
     Sample size (N) = 500     

            
2D_PLE 0.0009 (0.1821) 0.2284 (0.0960) 0.976  0.0170 (0.1243) 0.1919 (0.0762) 0.985 

3D_PLE 0.0116 (0.1808) 0.2277 (0.1093) 0.978  0.0142 (0.1288) 0.1921 (0.0767) 0.988 

4D_PLE 0.0066 (0.1834) 0.2272 (0.1115) 0.978  0.0093 (0.1526) 0.2107 (0.0868) 0.982 
            
     Sample size (N) = 1000     

            
2D_PLE -0.0010 (0.1810) 0.1964 (0.0952) 0.974  0.0127 (0.1166) 0.1507 (0.0670) 0.989 

3D_PLE 0.0068 (0.1821) 0.1873 (0.1106) 0.978  0.0112 (0.1168) 0.1509 (0.0681) 0.990 

4D_PLE 0.0035 (0.1843) 0.1865 (0.1154) 0.978  0.0054 (0.1506) 0.1697 (0.0877) 0.982 

 

patterns of the mean RMSE were found in most of other models. It suggests that increasing 

dimensionality may not affect estimation accuracy of PLE.       

The correlation coefficients (𝑟) between the estimated and true parameters for location 

parameters are also presented in Table 23. All of the location parameter estimates obtained from 

PLE were highly correlated with their corresponding true parameters, ranging from 0.957 to 

0.998. Of all multidimensional models with large numbers of items, the two-dimensional binary 

response models with different sample sizes resulted in the lowest and the highest coefficients 

for location parameters, which were 0.957 and 0.998, respectively.  For 3 response category 

models with 20 items, most of the coefficients were as high as 0.99 for 2- and 3 dimensional 

models and around 0.97 for 4 dimensional models. For 5 response category models, the 

correlation coefficients were 0.974 or above.  
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                                                              (a) 2 categories 

                      

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 22. Mean bias of PLE for location parameters of multidimensional models with 20 and 50 items 
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                                                               (a) 2 categories 

                      

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 23. Mean RMSE of PLE for location parameters of multidimensional models with 20 and 50 items 
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The correlations between location parameter estimates of PLE and true parameters are 

shown in Figure 24. Given the number of dimensions and sample size, longer test length of 50 

items yielded higher correlations under all binary and 5 response category models while shorter 

test length of 20 items resulted in higher correlations in most of 3 response category models.      

Slope parameters. Table 24 presents mean bias, mean RMSE and their standard 

deviations, and the correlations between the estimates (�̂�𝑖𝑗) and true parameters (𝜈𝑖𝑗) for slope 

parameters of multidimensional models with 20 and 50 items.  

The mean bias of PLE for slope parameters of multidimensional models were relatively 

small across all polytomous response models, ranging from −0.0132 to 0.0355 while those 

values associated with binary response models were large relative to ploytomous models.  This is 

the same pattern found in the mean bias for location parameters. Regardless of the dimensions, 

slope parameters of binary response models were generally underestimated, whereas those of 3 

response category models were overestimated. The large mean bias values were found in all 

three multidimensional binary response models with 50 items and 200 persons, which are 0.1491 

for 2 dimensions, −0.1390 for 3 dimensions, and −0.1251 for 4 dimension. The absolute values 

of the mean bias for slope parameters were less than 0.01 for most of multidimensional 5 

response category models, indicating that slope parameter estimates of the models were 

recovered with the least amount of errors by PLE.   

Figure 25 illustrates the mean bias of PLE for slope parameters of multidimensional 

models with large numbers of items. For polytomous response models, slope parameters under 

different number of dimensions and test lengths were estimated by PLE, showing a similar and 

small amount of mean bias values.  The slope parameters of multidimensional binary response  
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                                                              (a) 2 categories 

                      

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 24. Correlation coefficients (r) of PLE for location parameters of multidimensional models                              

with 20 and 50 items 
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Table 24. Mean bias, RMSE and their (SDs) and correlation coefficients of PLE for slope parameters of 

multidimensional models with 20 and 50 items 

 

(a) 2 categories 

  20 items   50 items 

  Bias RMSE 𝑟(𝜈,�̂�)   Bias RMSE 𝑟(𝜈,�̂�) 

            
     Sample size (N) =200     

            
2D_PLE -0.0786 (0.0890) 0.2899 (0.0481) 0.989  -0.1491 (0.0736) 0.2652 (0.0653) 0.989 

3D_PLE -0.1266 (0.0803) 0.3230 (0.0791) 0.987  -0.1390 (0.0924) 0.2690 (0.0642) 0.974 

4D_PLE -0.0661 (0.1194) 0.4736 (0.1496) 0.973  -0.1251 (0.0772) 0.2835 (0.0626) 0.989 
            
     Sample size (N) = 500     

            
2D_PLE -0.0560 (0.0514) 0.2057 (0.0356) 0.994  -0.0498 (0.0380) 0.1608 (0.0362) 0.997 

3D_PLE -0.0571 (0.0451) 0.2265 (0.0409) 0.996  -0.0644 (0.0484) 0.1747 (0.0376) 0.993 

4D_PLE -0.0142 (0.0676) 0.3237 (0.0872) 0.991  -0.0289 (0.0498) 0.1840 (0.0351) 0.992 
            
     Sample size (N) = 1000     

            
2D_PLE -0.0032 (0.0266) 0.1419 (0.0223) 0.998  -0.0116 (0.0265) 0.1189 (0.0202) 0.998 

3D_PLE 0.0110 (0.0369) 0.1951 (0.0530) 0.997  -0.0303 (0.0285) 0.1280 (0.0245) 0.998 

4D_PLE -0.0112 (0.0323) 0.2210 (0.0937) 0.997  -0.0051 (0.0300) 0.1288 (0.0221) 0.997 

 

 

(b) 3 categories 

  20 items   50 items 

  Bias RMSE 𝑟(𝜈,�̂�)   Bias RMSE 𝑟(𝜈,�̂�) 

            
     Sample size (N) =200     

            
2D_PLE 0.0355 (0.1152) 0.3168 (0.1079) 0.994  0.0246 (0.1448) 0.2976 (0.1215) 0.988 

3D_PLE 0.0296 (0.1222) 0.3416 (0.1246) 0.993  0.0286 (0.1389) 0.3040 (0.1261) 0.991 

4D_PLE 0.0195 (0.1191) 0.3145 (0.1179) 0.992  0.0163 (0.1155) 0.2885 (0.1192) 0.993 
            
     Sample size (N) = 500     

            
2D_PLE 0.0274 (0.0885) 0.1960 (0.0675) 0.996  0.0278 (0.1249) 0.2013 (0.0922) 0.992 

3D_PLE 0.0128 (0.0864) 0.2093 (0.0829) 0.996  0.0245 (0.1237) 0.2025 (0.0891) 0.992 

4D_PLE 0.0127 (0.0909) 0.2041 (0.0806) 0.996  0.0136 (0.0921) 0.1865 (0.0707) 0.996 
            
     Sample size (N) = 1000     

            
2D_PLE 0.0243 (0.0953) 0.1536 (0.0641) 0.996  0.0211 (0.1183) 0.1535 (0.0778) 0.992 

3D_PLE 0.0239 (0.0859) 0.1610 (0.0617) 0.997  0.0283 (0.1143) 0.1551 (0.0780) 0.993 

4D_PLE 0.0095 (0.0928) 0.1584 (0.0697) 0.996  0.0144 (0.0938) 0.1373 (0.0613) 0.996 
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Table 24. (cont.) 

 

(c) 5 categories 

  20 items   50 items 

  Bias RMSE 𝑟(𝜈,�̂�)   Bias RMSE 𝑟(𝜈,�̂�) 

            
     Sample size (N) =200     

            
2D_PLE -0.0072 (0.1233) 0.3644 (0.1477) 0.992  0.0021 (0.1374) 0.3391 (0.1304) 0.989 

3D_PLE -0.0132 (0.1332) 0.3810 (0.1687) 0.992  0.0019 (0.1302) 0.3366 (0.1314) 0.994 

4D_PLE -0.0026 (0.1319) 0.3779 (0.1427) 0.991  0.0008 (0.1238) 0.3339 (0.1259) 0.994 
            
     Sample size (N) = 500     

            
2D_PLE -0.0062 (0.0949) 0.2283 (0.0871) 0.994  0.0084 (0.1059) 0.2126 (0.0834) 0.992 

3D_PLE 0.0002 (0.1013) 0.2334 (0.0918) 0.994  0.0079 (0.1209) 0.2186 (0.0909) 0.993 

4D_PLE 0.0020 (0.0938) 0.2410 (0.0999) 0.995  0.0024 (0.0956) 0.2184 (0.0794) 0.996 
            
     Sample size (N) = 1000     

            
2D_PLE -0.0063 (0.0908) 0.1676 (0.0652) 0.994  0.0043 (0.1037) 0.1605 (0.0696) 0.992 

3D_PLE 0.0022 (0.0874) 0.1680 (0.0669) 0.995  0.0062 (0.1035) 0.1663 (0.0728) 0.995 

4D_PLE 0.0002 (0.0887) 0.1792 (0.0799) 0.995  0.0024 (0.0897) 0.1584 (0.0643) 0.996 

 

models, however, were more underestimated in the test length of 50 items than 20 items, 

showing fluctuation in mean bias values with an increase of dimensions. 

The four-dimensional binary response model with 20 items and 200 persons resulted in 

the largest mean RMSE of PLE for slope parameters with a value of 0.4736 while the two- 

dimensional binary response model associated with 50 items and 1000 persons had the smallest 

mean RMSE value of 0.1189. Except the models involving 20 items and 2 categories, given the 

test length and the number of categories, all of the models yielded similar mean RMSE values 

across all dimensions.  

Figure 26 illustrates the mean RMSE for slope parameters by the number of category. As 

shown in the mean RMSE for location parameters, the larger sample sizes generally yielded 

smaller mean RMSE of PLE for slope parameters in all multidimensional models. For binary  
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                                                                          (a) 2 categories 

                      

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 25. Mean bias of PLE for slope parameters of multidimensional models with 20 and 50 items 
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                                                              (a) 2 categories 

                      

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 26. Mean RMSE of PLE for slope parameters of multidimensional models with 20 and 50 items 
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response models, the test length of 20 items were less accurate than 50 items in estimating slope 

parameters. For polytomous response models, both test lengths showed similar mean RSME 

across all dimensions, indicating that the test length didn’t affect estimation accuracy of PLE for 

slope parameters.     

The correlation coefficients (𝑟) between the estimated and true parameters for slope 

parameters are also presented in Table 24. Again, PLE yielded high correlations for slope 

parameters across all conditions. Given sample size of 200, the correlation coefficients for slope 

parameters of binary response models ranged from 0.973 to 0.989, but the correlations were as 

high as 0.99 in all conditions associated with larger sample sizes of 500 and 1000 persons. For 

polytomous models, all of the correlations of PLE for slope parameters were very high, ranging 

from 0.988 to 0.997. 

Figure 27 illustrates the correlations between slope parameter estimates of PLE and true 

parameters of multidimensional models with large numbers of items. Except for binary response 

models with sample size of 200, the correlation coefficients between different test lengths were 

very close or equal in all conditions, and it appears that the number of dimensions didn’t affect 

the correlations for slope parameters of LMA models.  

In summary, Simulation study 4 supports that the parameters of multidimensional LMA 

models with large numbers of items are successfully estimated by the full algorithm of PLE, 

showing again that PLE overcome the limitation of MLE of LMA models. The findings of the 

simulation study are similar to those found in Simulation study 2 for unidimensional models with 

large numbers of items; that is, PLE yields almost unbiased item parameter estimates and high 

correlations between the estimates and the parameters used to simulate the data in most of the 

conditions.  
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                                                              (a) 2 categories 

                      

                                                                           (b) 3 categories 

 

                                                               (c) 5 categories 

 
Figure 27. Correlation coefficients (r) of PLE for slope parameters of multidimensional models with 20 and 50 items 
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Estimation of Standard Errors of Pseudo-Likelihood Estimates 

This section describes the results of the jackknife standard errors which were obtained to 

correct the standard errors given by PLE.  To estimate the standard errors for the estimates from 

PLE, the jackknife procedure was performed for 18 unidimensional models with 4 and 6 items. 

The correlation coefficients (r) were computed to evaluate the jackknife standard errors with the 

standard errors given by MLE and MMLE. The results for the models involving 4 items are 

basically the same as those for 6 items; therefore, only the results for the 6 items are presented in 

this section.    

Comparisons of Jackknife Standard Errors with MLE Standard Errors   

In Figures 28, 29, and 30, the jackknife standard errors for the estimates from PLE are 

plotted against the MLE standard errors for 6 items with 2, 3, and 5 response categories. In the 

plots, the x-axis represents the MLE standard errors, y-axis represents the standard error 

estimates from jackknife for each parameter estimated by PLE, and the lines are trend lines. The 

PLE standard errors are also plotted against the MLE standard errors to examine the standard 

errors from PLE and MLE before the jackknife procedure is performed. 

The jackknife standard errors for parameter estimates from PLE are strongly correlated 

with MLE standard errors over all conditions. For the binary response models, the correlations 

between the jackknife standard errors and MLE standard errors are above r = 0.99 under all 

three conditions with 6 items and different sample sizes, and the standard errors from jackknife 

are slightly smaller than those from MLE. For the polytomous response models, the correlations 

between the standard errors from jackknife and MLE range from r = 0.968 to r = 0.998 for 

location parameters andr = 0.978 to r = 0.993 for slope parameters. For a given number of 

response categories, the lowest correlations between two standard errors resulted in the  
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(a) 2 categories 

 

 
 

                 

       

                                                               

 
                                                                  

               

Figure 28. Jackknife standard errors from PLE vs. MLE standard errors for 6 items and 2 response categories 
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(b) 3 categories 

 

 

 

 

 

 

 

Figure 29. Jackknife standard errors from PLE vs. MLE standard errors for 6 items and 3 response categories 
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(c) 5 categories 

 

 
 

 

 

 

 

Figure 30. Jackknife standard errors from PLE vs. MLE standard errors for 6 items and 5 response categories 
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conditions associated with the smallest sample size of 200.  Larger sample sizes are associated 

with smaller standard errors from both procedures and also higher correlations between the 

jackknife standard errors and MLE standard errors. When comparing with correlations between 

PLE standard errors and MLE standard errors, except for the 5 response category models, the 

correlations between the jackknife standard errors and MLE standard errors are higher than those 

between the standard errors from PLE and MLE.  

In all plots, PLE standard errors are small relative to MLE standard errors, indicating that 

the standard errors for the parameter estimates obtained from PLE are underestimated.  One 

noticeable result is, however, that PLE standard errors are strongly correlated with MLE standard 

errors even though they are underestimated. For the binary response models with 6 items and 

different sample sizes, the correlation coefficients between the standard errors from PLE and 

MLE are as high as r = 0.97 for location parameters and r = 0.99 for slope parameters.  High 

correlations between two standard errors are also found in the polytomous response models, 

ranging from r = 0.964 to r = 0.996for location parameters and r = 0.929 to r = 0.997. The 

correlations resulted from the 5 response category models are as very high as r = 0.99 for both 

location and slope parameters and, surprisingly, PLE standard errors are more strongly correlated 

with MLE standard errors than the corrected standard errors by jackknife procedure. This finding 

indicates that even though PLE underestimates standard errors for the estimates, they may not be 

problematic.     

Comparisons of Jackknife Standard Errors with MMLE Standard Errors  

         

Figures 31, 32, and 33 show the plots of the jackknife standard errors for the parameter 

estimates from PLE against the MMLE standard errors for 6 items with 2, 3, and 5 response 

categories. In the plots, the x-axis represents the MMLE standard errors, y-axis represents the  
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(a) 2 categories 

 

 

 
 

 

                                                                                      

 

 
                                                                  

   Figure 31. Jackknife standard errors from PLE vs. MMLE standard errors for 6 items and 2 response categories 
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(b) 3 categories 

 

 

 

 

 

 

 

Figure 32. Jackknife standard errors from PLE vs. MMLE standard errors for 6 items and 3 response categories 
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(c) 5 categories 

 

 
 

 

 

 

 

Figure 33. Jackknife standard errors from PLE vs. MMLE standard errors for 6 items and 5 response categories 
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jackknife standard errors for parameter estimates from PLE, and the lines are trend lines. The 

standard errors given by PLE are also plotted against the MMLE of IRT standard errors. 

Overall, the correlations between the standard errors from the jackknife and MMLE are 

not as high as those between those from the jackknife and MLE. While the correlations between 

the jackknife standard errors and MLE standard errors were consistently high across all 

unidimensional models with 6 items, the correlations between those given by the jackknife and 

MMLE tend to vary with the models considered.  

For the binary response models, the jackknife standard errors are moderately negatively 

correlated with MMLE standard errors for location parameters (i.e., r = −0.766,−0.770, and 

−0.740 for the sample size of 200, 500, and 1000, respectively). According to the plots of the 

jackknife standard errors against MMLE standard errors for location parameters of the binary 

response model with 6 items in Figure 31, PLE yielded very small standard errors over all 6 

items, and some of the PLE standard errors are saliently small relative to those from MMLE. It 

also appears that only slight differences exist between the corrected standard errors by the 

jackknife and the original PLE standard errors. These findings may suggest that only small 

amount of improvement would be expected in correcting PLE standard errors by the jackknife 

procedure when they are extremely small. On the other hand, the standard errors for slope 

parameters estimated by the jackknife and MMLE are strongly positively correlated, yielding 

r = 0.99 in all three binary response models with 6 items and 3 different sample sizes. 

 For the polytomous response models, the correlations between the standard errors from 

jackknife and MMLE range from r = 0.883 to r = 0.958 for location parameters andr = 0.761 

to r = 0.935 for slope parameters. For the 3 response category models, the standard errors for 

location parameters between the jackknife and MMLE show as high correlations as r = 0.91 
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above whereas those for slope parameters between two methods yield moderately high 

correlations. For the 5 response category models, it is illustrated in Figure 33 that MMLE yielded 

smaller standard errors than the jackknife overall. With the sample size of 1000, the correlations 

between the jackknife standard errors and MMLE standard errors are as high as r = 0.91 for 

both location and slope parameters.  

In sum, except for the location parameters of the binary response models, the jackknife 

standard errors showed strong correlations with MMLE standard errors under the models 

associated with the sample size of 1000, ranging from r = 0.821 to r = 0.996. It can be inferred 

that, with much larger sample sizes, the PLE standard errors corrected by the jackknife procedure 

would be close to those from MMLE. Further research on this is needed.     

Computational Time of PLE for Large Numbers of Items 

The simulation studies for large numbers of items were conducted on desktop computers 

with a 3.5 GHz CPU and 8 GB of RAM and a 3.6 GHz CPU and 16 GB of RAM. One problem 

occurred is that PLE wasn’t successful in fitting models with 50 items with a 3.5 GHz CPU and 

8 GB of RAM.  Therefore, the desktop computer with a 3.5 GHz CPU and 8 GB of RAM was 

used for 20 items and the one with a 3.6 GHz CPU and 16 GB of RAM for 50 items.  

Table 25 summarizes the computational time of PLE for 20 and 50 items. Based on the 

convergence criteria described in Chapter 4, the number of iterations for convergence and 

computational time were recorded for each of 30 replications over all 72 uni- and 

multidimensional models with 20 and 50 items.  The table contains the average number of 

iterations and computational time for convergence. Generally, different replication data sets 

showed different number of iterations for convergence. To simplify the information, the average 

number of iterations for convergence was computed over 30 replications.  
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Table 25. Computational time of PLE for large numbers of items 

 

  20 items (3.5 GHz CPU & 8 GB of RAM)   50 items (3.6 GHz CPU & 16 GB of RAM) 

  
No. of iterations for 

convergence 
Average 

computational time  
for convergence 

No. of iterations for 
convergence 

Average 
computational time 

for convergence Dim. Min. Max. Average Min. Max. Average 

                 2 categories    

    Sample size (N) =200    

          
1D 12 14 13 23 secs  10 16 13 1 min 45 secs 

2D 11 17 14 55 secs  14 20 17 3 mins 30 secs 

3D 31 93 57 3 mins 10 secs  19 32 23 4 mins 30 secs 

4D 28 90 48 2 mins 20 secs  26 50 37 8 mins 
          
    Sample size (N) = 500    

          
1D 11 13 13 39 secs  11 14 13 3 mins 12 secs 

2D 12 16 14 1 min  14 20 16 6 mins 

3D 11 18 16 1 min  17 25 21 7 mins 30 secs 

4D 26 55 36 2 mins 30 secs  25 44 33 13 mins 45 secs 
          
    Sample size (N) = 1000    

          
1D 11 14 13 1 min 5 secs  11 13 12 6 mins 30 secs 

2D 14 16 14 1 min 15 secs  11 16 14 10 mins 30 secs 

3D 14 22 18 1 min 35 secs  17 22 20 12 mins 

4D 23 49 32 4 mins  24 32 28 21 mins 

    3 categories    

    Sample size (N) =200    

          
1D 11 14 12 42 secs  10 13 12 4 min 50 secs 

2D 11 20 15 1 min 10 secs  11 15 14 5 mins 

3D 15 27 21 1 mins 30 secs  12 23 16 7 mins 

4D 28 60 45 3 mins 15 secs  18 38 27 11 mins 15 secs 
          
    Sample size (N) = 500    

          
1D 11 14 13 1 min 15 secs  10 12 12 12 mins 

2D 12 16 14 1 min 30 secs  11 15 13 9 mins 

3D 14 22 17 2 mins  7 16 13 9 mins 30 secs 

4D 24 58 39 5 mins  18 37 26 24 mins 
          
    Sample size (N) = 1000    

          
1D 11 14 13 2 mins 10 secs  10 13 12 23 mins 15 secs 

2D 12 15 14 2 min 30 secs  11 14 12 20 mins 

3D 14 20 17 3 min 30 secs  11 16 14 24 mins 15 secs 

4D 22 46 33 8 mins  21 30 25 50 mins 
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Table 25. (cont.) 

  

  20 items (3.5 GHz CPU & 8 GB of RAM)   50 items (3.6 GHz CPU & 16 GB of RAM) 

  
No. of iterations for 

convergence 
Average 

computational time  
for convergence 

No. of iterations for 
convergence 

Average 
computational time 

for convergence Dim. Min. Max. Average Min. Max. Average 

    5 categories    

    Sample size (N) =200    

          
1D 10 13 12 58 secs  10 12 11 6 min 25 secs 

2D 10 17 13 1 min 20 secs  10 17 13 10 mins 

3D 7 28 15 1 mins 40 secs  9 15 11 11 mins 

4D 14 27 21 2 mins 10 secs  10 17 14 12 mins 
          
    Sample size (N) = 500    

          
1D 11 13 13 2 min 50 secs  9 11 11 17 mins 35 secs 

2D 10 14 13 3 mins  11 13 13 30 mins 

3D 10 15 13 3 mins  8 12 11 26 mins 

4D 13 27 19 5 mins  10 15 12 28 mins 
          
    Sample size (N) = 1000    

          
1D 11 14 12 6 mins   10 13 12 48 mins 50 secs 

2D 11 14 13 6 min 30 secs  11 13 13 2 hours 45 mins 

3D 10 14 13 6 min 45 secs  10 12 11 2 hours 20 mins 

4D 13 28 19 12 mins  10 14 12 2 hours 32 mins 

 

Each time the analysis was done by PLE with a different replication data set, time per 

iteration with the data set was also measured.  The average computational time for each 

condition was computed by multiplying the average number of iterations for convergence and 

time (in seconds or minutes) per iteration together. For example, the average computational time, 

6 minutes 30 seconds for two-dimensional models with 20 items, 5 categories, and 1000 people 

was obtained by 30 seconds (time per iteration) × 13 (average number of iterations for 

convergence). In addition to these two pieces of information, the minimum and maximum 

number of iterations for convergence are also presented in the table, which were obtained from 

30 replication data sets for each condition.  
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For unidimensional models with 20 items and the largest sample size of 1000 people, the 

convergence occurred in 1 minute, 2 minutes, and 6 minutes for 2 categories, 3 categories, and 5 

categories, respectively.  Unidimensional models with 20 and 50 items were also fit with 

flexMIRT for binary items and MULTILOG for polytomous items to compare PLE with MMLE 

in terms of parameter recovery, and it took about 1 to 5 seconds to get estimates of 

unidimensional models with those software.  Even though PLE takes more time to fit 

unidimensional models with 20 items than flexMIRT or MULTILOG does, the computational 

time appears to be reasonable, which ranges from 23 seconds to 6 minutes.  

For multidimensional models with 20 items, 4-dimensional models with 1000 people 

resulted in the longest computational time, which are 4 minutes, 8 minutes, and 12 minutes for 2 

categories, 3 categories, and 5 categories, respectively. It implies that parameters of all other 

models with a smaller number of latent variables than 4 or smaller sample sizes than n = 1000 

would converge in less than 12 minutes by PLE using a computer with a 3.5 GHz CPU and 8 GB 

of RAM.   

The models with 50 items need much more time and better computers for PLE. With 4-

dimensions and the largest sample size of 1000, it required 21 minutes and 50 minutes for 2 

categories and 3 categories. For 5 categories with 1000 people, the convergence occurred in less 

than 3 hours with the average number of iterations of 11 to 13. When considering the complexity 

of the latent structures and the performance of SAS, the computational time of PLE for 

multidimensional models with large numbers of items is reasonable.                      

As anticipated, the models associated with longer test lengths, more latent variables, and 

larger sample sizes generally require more computational time. Given the number of items, 

categories, and latent variables, however, the number of iterations for convergence is similar 
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across the sample sizes. Given the number of categories and sample size, the models with more 

complicated latent structures would be expected to need more time until parameter estimates 

converge. The simulation studies show, however, that this anticipation may not occur in all 

models.  For 20 items given the number of categories and sample sizes, similar amount of 

computational time is found among uni-, 2-, and 3-dimensional models while much more time is 

required in 4-dimensional models. It is also found in the uni- and multidimensional models with 

the sample size of 500 and 1000 given 50 items and 3 categories. For 50 items and 5 categories 

given the sample size, there is a big gab in computational time between uni- and 2-dimensional 

models, but small amount of increase in time among multidimensional models. It suggest that 

item parameters of LMA models could be estimated by PLE with reasonable amount of increase 

in time as the number of latent variables increases given the same number of items, categories, 

and sample sizes.           
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Chapter 7 

Empirical Studies 

Two sets of empirical studies were conducted to demonstrate the practical use of PLE for 

uni- and multidimensional LMA models. Again, the focus is on showing that PLE behaves 

similarly to MLE and estimates parameters successfully for long tests where MLE is infeasible. 

To achieve these goals, both small and large numbers of items were considered in each set of 

empirical studies. For the empirical studies, the dataset from a study on aggression during early 

adolescence (Espelage, Holt, & Henkel, 2003) was used. The dataset consists of polytomous 

responses to 18 items assessing bullying, victimization, and fighting and they were obtained 

from 384 middle school students (196 boys and 188 girls). The response categories to these items 

are “Never”, “1 or 2 times”, “3 or 4 times”, “5 or 6 times”, and “7 or more times”. All analyses 

were conducted on a desktop computer with a 3.5 GHz CPU and 8 GB of RAM.     

Unidimensional Models with Bullying Items 

For the analysis of unidimensional models, the 9 items were chosen from bullying sub-

scale (Espelage, Holt, & Henkel, 2003): 

▪  I upset other students for the fun of it. 

▪  I teased other students. 

▪  In a group I teased students. 

▪  I helped harass other students. 

▪  I was mean to someone when angry. 

▪  I spread rumors about others. 

▪  I started arguments or conflicts. 

 
▪  I encouraged people to fight. 

▪  I excluded others. 
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Unidimensional Model with Small Numbers of Items 

The first portion of the empirical study for unidimensional models focuses on showing 

how well Step 1 of the algorithm performs for unidimensional models using existing data as well 

as how similarly PLE behaves to MLE. To achieve this goal, the responses by 319 students to the 

first 4 items of 9 items on bullying sub-scale were analyzed using Step 1 of PLE. Since the 

model involves 4 items and 5 response categories, the number of possible item response patterns 

equals 54 = 625, which MLE is still feasible. The number of response patterns that were 

actually responded by the students is 86. For identification in this study, 𝜆𝑖𝑗 and 𝜈𝑖𝑗  are centered 

as the location constraint (i.e., ∑ 𝜆𝑖𝑗 = 0𝑗  and  ∑ 𝜈𝑖𝑗 = 0𝑗 ) and 𝜎11 = 1 as the scaling constraint.  

  In Figure 34, the location and slope parameter estimates from PLE are plotted against 

the corresponding estimates from MLE for 4 bullying items. In the plots, the x- and y-axis 

represent the parameter estimates from MLE and PLE, respectively, and the lines are identity 

lines. The estimated parameters by PLE are very close to the corresponding estimated parameters 

by MLE with r = .997 for location parameters and r = .998 for slope parameters.  

  

Figure 34. Parameter estimates of a unidimensional model from PLE vs. MLE for 4 bullying items 
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The jackknife procedure was performed to correct the standard errors for the estimates 

from PLE and to compare the corrected standard errors with those from MLE. Since the sample 

size for the unidimensional model with 4 bullying items was n = 319, PLE was performed 319 

times, leaving one subject out of the sample. To ensure full convergence, the number of 

iterations was set to 40 and it required 1 hour 40 minutes of run time to complete the jackknife 

procedure. The item parameter estimates with 319 different data sets converged in 20 ~ 25 

iterations. With the actual number of iterations for convergence, the expected run time to 

complete jackknife procedure would be 50 ~ 60 minutes.   

Figure 35 shows the plots of the jackknife standard errors for the parameter estimates 

from PLE against the MLE standard errors for 4 bullying items. In the plots, the x-axis represents 

the MLE standard errors, y-axis represents the jackknife standard errors for parameter estimates 

from PLE, the symbols represent specific parameters, and the lines are identity lines. The PLE 

standard errors are also plotted against the MLE standard errors to examine the standard errors 

from PLE and MLE before the jackknife procedure is performed. 

   

Figure 35. Jackknife standard errors from PLE vs. MLE standard errors for 4 bullying items 
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The jackknife standard error estimates from PLE are very close to those from MLE for 

location and slope parameters, which was also found in the simulation studies. The correlation 

coefficients between the corrected standard errors by jackknife and the corresponding MLE 

standard errors are r = .978 for location parameters and r = .952 for slope parameters, showing 

that the jackknife standard error estimates are strongly correlated with MLE standard errors 

across 4 bullying items.  In the Figure, the small PLE standard errors relative to MLE standard 

errors indicate that the standard errors are underestimated by PLE, but they still tend to be close 

to the MLE standard errors.   

Unidimensional Model with Large Numbers of Items 

For large numbers of items, the MLE fails because the number of possible response 

patterns increases exponentially as the number of items and response options per item increase. 

For example, the number of possible response patterns of the model used in the first empirical 

study is 54 = 625 and it grows to 55 = 3,125, … ; 58 = 390,625; and to 59 = 1,953,125 each 

time one more items is added to the model, which makes the MLE of LMA models infeasible.  

The second portion of the empirical study for unidimensional models was performed to 

illustrate that PLE overcomes the limitation of MLE when fitting unidimensional LMA models 

for polytomous items with large numbers of items. For this study, the responses by 315 students 

to 9 bullying items were analyzed, repeating the same procedure in the first portion of the 

empirical study (i.e., only Step 1). The number of response patterns that were actually responded 

by the students is 186.    

With the results of the simulation studies in previous chapter, the first analysis for a 

unidimensional model with 4 bullying items has also shown that the parameter estimates from 

PLE using only Step 1 and their standard errors corrected by jackknife are very close to those 
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from MLE. Therefore, the parameter estimates obtained by PLE and the jackknife standard error 

estimates for 9 bullying items can be treated as those that are close to those from MLE.  

 

 

 

 

 

 

Figure 36. Estimated location parameters of a unidimensional model by PLE for 9 bullying items 
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Figure 37. Estimated slope parameters of a unidimensional model by PLE for 9 bullying items 

 

The estimated location and slope parameters for each item by PLE are illustrated in 

Figures 36 and 37, respectively. The x-axis represents the number of iterations and the y-axis 

represents the estimated values for the parameters by iteration. The four lines in the legend on 
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each figure correspond to response categories, “1 or 2 times”, “3 or 4 times”, “5 or 6 times”, and 

“7 or more times”, respectively. Most of the location and slope parameter estimates for 9 

bullying items converged in 15 iterations, and it took about 20 seconds for convergence on a 

desktop computer with a 3.5 GHz CPU and 8 GB memory.  It indicates that PLE can estimate 

parameters very fast for unidimensional models with large numbers of items.   

 

 

Figure 38. Jackknife standard errors from PLE vs. PLE standard errors for 9 bullying items 

 

Figure 38 shows the plots of the jackknife standard errors from PLE and the original PLE 

standard errors for 9 bullying items. In the plots, x-axis presents the location and slope 

parameters to be estimated and y-axis represents the standard error estimates from the jackknife 

and PLE. With the sample size of 315, 9 items, and the number of iterations of 35 for full 

convergence, it required 4 hours of computation time on a desktop computer with a 3.5 GHz and 

8 GB of RAM to finish the jackknife procedure. 

  As expected, the PLE standard errors tend to be smaller than the corresponding 

jackknife standard error estimates. The PLE standard errors ranged from 0.1856 to 1.0073 for 

location parameters and 0.0400 to 0.2763 for slope parameters. The ranges, however, has 
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changed by jackknife procedure from 0.1791 to 1.4453 for location parameters and 0.0447 to 

0.4215 for slope parameters. The wider ranges of the jackknife standard error estimates imply 

that the underestimated standard errors from PLE were corrected by jackknife, which is also 

supported by simulation studies.      

Multidimensional Models with Bullying and Victimization Items 

The second set of the empirical studies involves multidimensional models and was 

intended to illustrate how well full algorithm of PLE (i.e., Steps 1 and 2) performs for 

multidimensional models using existing data. For the analysis of multidimensional models, four 

items from victimization sub-scale were added to the 9 bullying items used for unidimensional 

models and two correlated latent variables, bullying and victimization were assumed. The added 

victimization items are:  

▪  Other students picked on me.  

▪  Other students made fun of me.  

▪  Other students called me names. 

▪  I got hit and pushed by other students. 

 

Multidimensional Model with Small Numbers of Items 

The first portion of the empirical study for multidimensional models examines the 

similarity of the parameter estimates between PLE and MLE. For this analysis, the responses by 

322 students to 3 items from bullying sub-scale and 3 items from victimization sub-scale were 

selected, and those two latent variables were assumed to be correlated. Since it is a simple 

multidimensional model with two items and two correlated latent variables, not only MLE was 

feasible but also the performance of the full algorithm of PLE was examined by comparing 

similarity of the parameter estimates obtained from PLE and MLE. For identification constraints, 
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zero-sum constraint was imposed and 𝜎11 and 𝜎22 were set equal to 1 for scaling constraints, 

which means only 𝜎12 is estimated. The number of response patterns that were actually 

responded by students is 165. 

  

Figure 39. Parameter estimates of a multidimensional model from PLE vs. MLE for 6 bullying and victimization items 

 

In Figure 39, the location and slope parameter estimates from PLE are plotted against the 

corresponding estimates from MLE for a multidimensional model with 6 items and two 

correlated latent variables. In the plots, the x- and y-axis represent the parameter estimates from 

MLE and PLE, respectively, and the lines are identity lines. The estimates for location and slope 

parameters from PLE are almost identical to the corresponding estimates from MLE. The 

correlations between PLE and MLE are r = 0.998 for location parameters and r = 0.999 for 

slope parameters. The estimated association parameter (𝜎12) is 𝜎12 = 0.006 from PLE and 𝜎12 =

0.003 from MLE. The standard errors of the estimated association parameters from PLE and 

MLE are S.E.=0.1717 and S.E.=0.0054, respectively. Based on the standard errors, it appears 

that two latent variables, bullying and victimization are not correlated.     
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Multidimensional Model with Large Numbers of Items 

The second portion of the empirical study for multidimensional models involves large 

numbers of items to demonstrate that PLE overcomes the limitation of MLE that it fails to 

estimate parameters of LMA models with large numbers of items. As in the first portion of the 

empirical study for multidimensional models, parameter estimates were obtained using the full 

algorithm of PLE for a multidimensional model with a 9 bullying items, 4 victimization items, 

and two correlated latent variables. The number of response patterns that were actually 

responded by 322 students is 133. 

Based on the results of the simulation studies and the empirical study with 6 bullying and 

victimization items, the parameter estimates obtained from PLE for the 13 items in the model can 

be treated as those that are close to those from MLE.  

The estimated location and slope parameters for each item by PLE are illustrated in 

Figures 40 and 41, respectively. The x-axis represents the number of iterations and the y-axis 

represents the estimated values for the parameters by iteration. The four lines in the legend on 

each figure correspond to response categories, “1 or 2 times”, “3 or 4 times”, “5 or 6 times”, and 

“7 or more times”, respectively. The rapid ascent (or descent) in parameter estimates are shown 

at the early stage of the estimation, but most of the parameter estimates for 13 bullying and 

victimization items converged in 25 iterations. One noticeable thing is that the order of response 

categories switch after first few iterations.  

It shows that even if the initial order is not correct, PLE fixes it (i.e., PLE is not sensitive 

to starting values). For computational time, it took about 1 minute 10 seconds for convergence 

with a desktop computer equipped with 3.5 GHz CPU and 8 GB of RAM, indicating that PLE 

can also fit multidimensional models with large numbers of items very fast.  
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Figure 40. Estimated location parameters of 2-dimensional model by PLE for bullying and victimization items 
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Figure 41. Estimated slope parameters of 2-dimensional model by PLE for bullying and victimization items 
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Chapter 8 

Discussion and Conclusions 

Throughout this study, the performance of the proposed PLE algorithm for more general 

LMA models as MIRT models was examined.  Three main goals were set for the study: (1) how 

well does the newly proposed step for estimating slope parameters perform?; (2) how well does 

PLE of LMA models using the new two-step algorithm perform relative to MLE of LMA 

models?; and lastly, (3) how well and fast does the algorithm of PLE perform for LMA models 

as MIRT models with large numbers of items? In this chapter, the findings and their implications 

about these goals are summarized.  Additionally, the possible further research is provided.   

Estimation of Slope Parameters by PLE 

The first goal of the study was to determine that how well slope parameters are estimated 

by the newly proposed step (i.e., Step 1). The parameter estimation requires only Step 1 of the 

full PLE algorithm for unidimensional LMA models while it does full steps (i.e., Step 1 and Step 

2) of PLE for multidimensional LMA models. In this section, the findings of the simulation 

studies for uni- and multidimensional models with small numbers of items are provided, focusing 

on the estimation of slope parameters of PLE.    

Unidimensional Models for Small Numbers of Items 

Parameters of unidimensional LMA models were estimated by using only Step 1 of PLE. 

The mean bias of PLE for slope parameters were relatively small, where the absolute values of 

the mean bias were less than 0.04 for most of unidimensional models. It implies that the 

estimated slope parameters of unidimensional LMA models by PLE were almost close to the 

corresponding parameters used to simulate the data and that the newly proposed step of PLE 
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(i.e., Step 1) performs successfully in estimating slope parameters of unidimensional LMA 

models.  

The excellence of Step 1 of PLE in slope parameter estimation is supported again when 

the mean bias values and correlations for slope parameters are compared with those for location 

parameters of unidimensional models with small numbers of items. Overall, the simulation 

conditions with the models resulted in smaller mean bias values and higher correlations for slope 

parameters than those for location parameters. It suggests that PLE using Step 1 yielded more 

unbiased estimates for slope parameters than for location parameters of unidimensional LMA 

models.  

Simulation studies also showed that PLE performed as well as MMLE or outperformed 

MMLE in slope parameter estimation. For several unidimensional models with 6 items, the mean 

bias values of PLE for slope parameters were as small as MMLE. Another successful example 

was found in the comparison of the mean RMSE values of PLE with those of MMLE. For 

polytomous items, the mean RMSE values of PLE for slopes were equal to or smaller than those 

of MMLE, suggesting that not only the new step of PLE estimated slope parameters successfully 

but also its performance was as good as MMLE for unidimensional polytomous models.   

 Multidimensional Models for Small Numbers of Items 

The simulation studies involving multidimensional LMA models with small numbers of 

items have shown that the slope parameters of the models were successfully estimated by PLE 

using full steps (i.e., Steps 1 and 2). Especially, PLE was more excellent in polytomous items 

than in binary items when it estimated slope parameters of the models. More of smaller mean 

bias values and higher correlations for slope parameters were found in the conditions associated 

with polytomous items. Based on these findings, it can be inferred that the estimation of slope 
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parameters of PLE would be better for polytomous items than binary items when considered 

multiple latent variables.   

In summary, the previous PLE implemented for LMA models in the Rasch family has 

been successfully extended to more general models (i.e., 2PL).  The slope parameters of LMA 

models have been estimated well by PLE using the newly proposed step (i.e., Step 1) which 

performs conditional (multinomial) logistic regression for each item. In addition, the 

performance of the extended PLE was as good as MMLE for unidimensional polytomous 

models.    

Comparison of PLE with MLE 

The second goal of the study was to demonstrate that how similarly PLE behaves relative 

to MLE (the gold standard) in estimating parameters of LMA models.  Since MLE is feasible to 

estimate item parameters of LMA models with small numbers of items, both simulation and 

empirical studies for small numbers of items were conducted and the performance of PLE was 

compared with MLE.    

In terms of similarity of the estimates between PLE and MLE, the correlations between 

the parameter estimates from PLE and MLE were 0.999 or 1.000 across all simulation conditions 

with 4 and 6 items, indicating the parameter estimates between PLE and MLE are highly linearly 

related. There were also found very small mean RMSDiff of the parameter estimates between 

MLE and PLE, suggesting that that the parameter estimates obtained from MLE and PLE are not 

only linearly related but also nearly equivalent (i.e., equal to 2 or 3 decimal points). 

The results of the empirical studies with small numbers of items also support that PLE 

behaves similarly to MLE. As illustrated in Figure 30 for a unidimensional model with 4 

bullying items and in Figure 34 for a two-dimensional model with 3 bullying and 3 victimization 
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items, all of the estimates from PLE plotted against those from MLE fell on 45 degree line on the 

figures with r = .99, indicating the parameter estimates by PLE are very close to the 

corresponding estimates by MLE for all parameters.  

In summary, it has been shown that the parameter estimates from PLE are almost 

identical to those from MLE with the same amount of estimation accuracy in both simulation and 

empirical studies for small numbers of items.  

Performance and Estimation Time of PLE for Large Numbers of Items 

The third goal of the study was to examine how well PLE overcomes the limitation of 

MLE when fitting LMA models for large numbers of items and also how fast the parameter 

estimates of PLE converge for the models. In this section, the findings of the simulation studies 

for uni- and multidimensional models with large numbers of items are described, followed by the 

computational time of PLE.    

Unidimensional Models for Large Numbers of Items 

Simulation studies for unidimensional models with large numbers of items showed that 

PLE yielded nearly unbiased item parameter estimates and very high correlations between 

estimates and true parameters in most of the conditions.  Especially, PLE showed more excellent 

performance in the conditions for polytomous items when it recovered the parameters used to 

simulate the data.  

The results of the simulation studies also support that PLE performed as well as MMLE 

for unidimensional models with large numbers of items. Overall, MMLE consistently yielded 

smaller mean bias values than PLE. For all conditions with 5 category items, however, most of 

the mean bias values of PLE were as small as those of MMLE, where the absolute values of the 
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mean bias of both estimation methods are less than 0.02 for location parameters and 0.01 for 

slope parameters. 

When comparing the mean RMSE of PLE with those of MMLE, the mean RMSE values 

of PLE for polytomous items were slightly larger than those of MMLE. However, for binary 

items with sample sizes of 500 and 1000, PLE showed smaller mean RMSE values than MMLE, 

indicating that PLE recovered location and slope parameters used to simulate the data with less 

amount of estimation errors than MMLE. Even though these patterns were found in only several 

conditions of the unidimensional models for large numbers of items, the results imply that PLE 

not only performs well but also it may behave as well as MMLE for large numbers of items.  

Multidimensional Models for Large Numbers of Items 

PLE resulted in unbiased parameter estimates for location and slope parameters across 

most of the multidimensional models with large numbers of items. When comparing the mean 

bias values of PLE by number of categories, the models involving 5 response category items 

resulted in the most unbiased estimates for location and slope parameters. It appeares that sample 

size affects estimation accuracy but the number of dimensions doesn’t. Given the test length and 

the number of categories, smaller mean RMSE values for the estimates of PLE were generally 

associated with larger sample sizes. When the number of dimensions was varied, however, any 

consistent pattern was not found in terms of estimation accuracy. For example, there were 

irregular increase or decrease in mean RMSE values for location parameters but similar mean 

RMSE values for slope parameters across all dimensions.   

In terms of correlation between estimates of PLE and true parameters, PLE consistently 

showed as high correlations as 0.957 to 0.998 for location parameters and 0.973 to 0.997 for 

slope parameters. Overall, more numbers of higher correlations were found in slope parameters 
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than in location parameters. As the number of dimensions increased, there were some changes in 

the correlations for location parameters. The correlations for slope parameters, however, stayed 

similar across all the dimensions.  

In the previous studies (Anderson, Li, & Vermunt, 2007; Li, 2010), it was shown that 

PLE was feasible for large number of items, but their application of PLE was limited to the 

models in Rasch family. Anderson (2013) fit more general LMA models where slope parameters 

were estimated by MLE using nonlinear programming (e.g., Proc NLP in SAS) and reported that 

the estimation of LMA models for eight 5-category items was successful, but it failed for nine 5-

category items. In this study, the extended PLE for more general LMA models successfully 

estimated both location and slope parameters of LMA models for large numbers of items, 

overcoming the limitation of MLE. It yielded nearly unbiased estimates and high correlations 

between the estimates and true parameters and performed better for polytomous items than for 

binary items. For unidimensional models with large numbers of items, it worked as well as 

MMLE. 

Computational Time of PLE for Large Numbers of Items  

The PLE algorithm was implemented in SAS using a series of SAS macros.  From the 

simulation studies for large numbers of items, the computational time of PLE appeared to be 

reasonably good. For all of the uni- and multidimensional models with 20 items, the estimation 

time of PLE ranged from 23 seconds to 12 minutes using a desktop computer with a 3.5 GHz 

CPU and 8 GB of RAM. For 50 items, PLE was performed on a better desktop computer with a 

3.6 GHz CPU and 16 GB of RAM and the computational time ranged from 1 minute 45 seconds 

to 2 hours 45 minutes.  
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PLE also performed fast with real datasets for large numbers of items. The computer used 

for empirical studies was equipped with a 3.5 GHz CPU and 8 GB memory. For a 

unidimensional model with 9 bullying items, 5 response categories, and the sample size of 315, 

most of the location and slope parameter estimates converged in 15 iterations and it took about 

20 seconds for convergence. For 2-dimensional models with 13 items (i.e., 9 bullying and 4 

victimization items), 5 response categories, and the sample size of 322, the parameter estimates 

converged in 1 minute 10 seconds for convergence with 25 iterations.  

One of the issues that have been reported often regarding the estimation of MIRT models 

is that computational time increases exponentially with the number of latent variables (Wang, 

Chen, & Cheng 2004; Glass 2005). In this study, PLE provides a promising approach for this 

issue. Of 72 simulation conditions for large numbers of items, the models that would be expected 

to need much more time for convergence were the ones involving 50 items, 5 categories, and 

1000 people. On average, the parameter estimates of PLE for these models converged in 13 

iterations and it took less than 50 minutes for a unidimensional model and 3 hours for 

multidimensional models until convergence. One noticeable thing is that the computational time 

of PLE doesn’t increase sharply, but moderately, or even stays similar among the models as the 

number of dimensions increases. The moderate amount of increase in estimation time is assumed 

to be due to the advantage of LMA models that they don’t require multiple numerical 

integrations in parameter estimation for MIRT models. When considering the heavy 

computational work in MMLE/EM algorithm and Bayesian estimation procedure with Markov 

chain Monte Carlo (MCMC) methods for higher dimensionality, the findings suggest that PLE 

can be an alternative way to estimate parameters in MIRT models with less heavy computational 

work and time.  
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Future Direction 

One extension of this study is to compare the performance of PLE with the current 

standard IRT estimation method (i.e., MMLE) which was limited to unidimensional models. To 

get the estimates of unidimensional models by MMLE, nonlinear mixed procedure in SAS (i.e., 

Proc NLMIXED) was performed for small numbers of items and flexMIRT and MULTILOG for 

large numbers of items. Several software packages were developed for MIRT model estimation 

(e.g., Mplus, IRTPRO, flexMIRT, EQSIRT, etc.) and they are commercially available. They 

offer different estimation algorithms for MIRT models, which are based on marginal maximum 

likelihood or Bayesian approaches. It would be interesting to examine and compare the 

performance of PLE with other standard MIRT estimation procedures with respect to parameter 

recovery and run time. Even though great progress in development of software packages and 

computer hardware has enabled MIRT model estimation, the heavy computational work still 

remains due to numerical integrations, leading to lack of flexibility in estimation such as 

limitation of dimensionality, categories, sample size, items, and so on.   

Another area for future work is the standard error estimation of PLE. The standard errors 

of the estimates from PLE are underestimated because the dependency among responses from a 

single person that exists in a stacked dataset is ignored when the MLE of the stacked regression 

procedure is performed. In this study, jackknife procedure was conducted to obtain correct 

standard errors of PLE, but only unidimensional models with small numbers of items were 

considered for the procedure.  As known, the jackknife procedure was also extremely time 

consuming for PLE in this study. PLE algorithm implemented in this study allows us to control 

the number of iterations for convergence.  In this study, the number of iterations was set to 30 to 

ensure full convergence and three desktop computers were used. With 5 categories and the 
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sample size of 1000, it required about 8 hours for 4 items and 13 hours for 6 items per 

replication. Since each simulation condition was replicated 30 times, almost seven month was 

required to complete jackknife procedures for 18 unidimensional models with small numbers of 

items. Since jackknife procedure continues by removing one observation from the sample at a 

time and re-estimating parameters until the very last observation of the sample is left out, the 

computational time increases exponentially as sample size gets larger. Improvement in efficiency 

of the current SAS macros that were written to implement the PLE algorithm would partially 

relieve the computational time to run jackknife procedure. In addition to this, more theoretical 

and technical explorations are needed to find a reasonable way to correct standard error of PLE.      

Another area for future work is in more efficient programming of the algorithm in SAS or 

possibly R. There also exist a few of technical limitations in computer hardware and SAS 

macros.  As mentioned earlier, when fitting models with 50 items by PLE, a better computer was 

required than the one used for 20 items. In this study, a desktop computer with a 3.6 GHz CPU 

and 16 GB of RAM was used for 50 items with any number of categories and sample sizes. It 

implies that much better computer would be needed when the number of items gets larger than 

50 items. However, this is only temporary limitation because computers keep getting faster.  

Regarding the limitation of the SAS macros, no termination rules are implemented in the current 

PLE algorithm. The current SAS macros allow users to set the number of iterations by defining 

the value as one of SAS global macro variables for PLE execution. The parameter estimation is 

terminated when the algorithm has been iterated as many times as the number of iterations 

defined by users. During execution, SAS macros generate a series of datasets necessary for re-

iterative process of the algorithm and history datasets for each item that contain up-dated 

estimates and log-likelihood ratio from each iteration cycle. By examining the history datasets 
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for each item, users can decide whether or not item parameter estimates converge based on the 

convergence criteria described in Chapter 4, and if they converged, in what iteration number the 

convergence occurs. Users can reset the number of iterations with any new value in case the 

convergence doesn’t occur. When considering that most of software packages employ 

termination rules for estimation and the estimation process ends automatically when the 

convergence of estimates is fully achieved, the current way of terminating PLE algorithm needs 

an improvement. Based on the termination criteria in Chapter 4, termination rules should be 

implemented in the algorithm so that some hassles caused by the current way can be removed.   

Finally, throughout the study, it has been shown that PLE is easy to implement by using 

conditional logistic regression and can handle models with high dimensionality for polytomous 

items. For future studies, the algorithm could add options for LMA models with covariates, 

ordinal constraints on response categories (i.e., 𝜈𝑖𝑗’s), linearly transformed 𝜈𝑖𝑗’s , and so on. 

These inclusions in LMA models were examined by Anderson (2013) to propose LMA models 

as a MIRT model. The models with covariates, ordinal constraints, and linear transformation, 

however, were fit by MLE in the study. The future studies that include PLE will not only add the 

justification for the advantages of LMA models as latent variable models relative to traditional 

factor analytic and item response theory methods but also provide a solution that leads to better 

measurement.  
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Appendix. SAS Macros for PLE 
 

/******************************************************* 

  Basic Macro 1 : Data Conversion for PLE - Polytomous items 

******************************************************/ 

 

%macro Data_Poly_MDC(responses,  ItemTraitAdj, traitAdj, items, ncat = ); 

 

proc iml; 

 

use &items; 

read all var _char_ into varnames; 

close &items; 

 

use &responses; 

read all var _all_ into personByitem; 

close &responses; 

 

use &traitAdj; 

  read all into traitA; 

close &traitAdj; 

 

use &ItemTraitAdj; 

  read all into ItemTraitA; 

close &ItemTraitAdj; 

 

 

/******************* Set-up  *****************************/ 

 

/* Basic information necessary for data conversion */ 

 

nitems = nrow(ItemTraitA); 

npersons = nrow(personBYitem); 

ncat = &ncat; 

ntraits = nrow(traitA); 

MaxNphi= (ntraits##2-ntraits)/2 + ntraits; 

 

 

/* Index for person */ 

 

nrepeats = ncat*nitems; 

personi = (1:npersons)`; 

personhold=J(1,1,0); 

do person = 1 to npersons; 

  persontmp = REPEAT(personi[person],nrepeats); 

  personhold = personhold // persontmp; 

end; 

ni = nrow(personhold); 

personid = personhold[2:ni]; 

 

/* Index for case*/ 

 

nrepeats = ncat; 

casei = (1:npersons*nitems)`; 

casehold=J(1,1,0); 
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do case = 1 to npersons*nitems; 

  casetmp = REPEAT(casei[case],nrepeats); 

  casehold = casehold // casetmp; 

end; 

ni = nrow(casehold); 

caseindex = casehold[2:ni]; 

 

/* Index for items */ 

 

itemi = 1:nitems; 

itemhold = J(1,1,0); 

do item = 1 to nitems; 

  itemtmp= REPEAT(itemi[item],ncat); 

  itemhold = itemhold // itemtmp; 

end; 

ni = nrow(itemhold); 

itemtmp = itemhold[2:ni]; 

itemindex = REPEAT(itemtmp,npersons); 

 

/* Index for categories */ 

 

cati = (1:ncat)`; 

catindex = REPEAT(cati,nitems*npersons); 

Nstack = nrow(catindex); 

 

 

/* Creating effect codes for responses on each item */ 

 

do person =1 to Npersons; 

 

ECodeR_1 = J(nitems*ncat, nitems*ncat, -1); 

ij=1; 

 

do item = 1 to nitems; 

   do cat = 1 to (ncat); 

     if cat = personBYitem[person, item] then ECodeR_1[, ij]=1; 

  ij=ij+1; 

   end; 

   end; 

   ECodeR=ECodeR//ECodeR_1; 

   end; 

 

/* Need some names for effect codes for responses in the data set */ 

 

Letter_E={"E"}; 

Letter_cat={"cat"}; 

ECRList = char(J(1,nitems*ncat,0)); 

clevels = char(1:ncat); 

 

ij = 1; 

do i=1 to nitems; 

 do j=1 to (ncat); 

  tmp = concat(Letter_E, varnames[1,i],Letter_cat,clevels[1,j]); 

  ECRList[1,ij]=rowcatc(tmp,1,1); 

  ij = ij+1; 

 end; 
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end; 

 

/* Creating effect codes for location indicators*/ 

 

blocki = I(ncat-1) ; 

minusonerow = J(1,ncat-1,-1) ; 

miblock=minusonerow // blocki ; 

 

block1 = J(1, 1, 1) ; 

block2 = J(ncat-1, 1, 0) ; 

onecol=block1//block2 ; 

 

unit = onecol ||miblock ; 

 

iblocks =block(unit, unit); 

 

do i=3 to nitems; 

  iblocks = block(iblocks,unit); 

end; 

 

ELamda= REPEAT(iblocks,npersons,1); 

 

/* Need some names for location parameters in the data set */ 

 

Letter_A={"Lamda"}; 

ItemNo = char(1:nitems); 

CatLevels = Char(1:ncat); 

Lamda_Names = char(J(1, nitems*ncat, 0)); 

 

p=1; 

 

do i = 1 to nitems; 

  do j = 1 to ncat; 

    tmp = concat(Letter_A, ItemNo[1,i], CatLevels[1,j]); 

    Lamda_Names[1,p] = rowcatc(tmp, 1, 1); 

    p=p+1; 

   end; 

  end; 

 

/* Creating variables for Lamda estimates on each item */ 

 

LamdaEst = J(NStack, nitems*ncat, 0); 

 

/* Need some names for Lamda estimates in the data set */ 

 

Letter_Lamda={"NewLam"}; 

ItemNo = char(1:nitems); 

CatLevels = Char(1:ncat); 

Lamda_Estimates = char(J(1, nitems*ncat, 0)); 

 

p=1; 

 

do i = 1 to nitems; 

  do j = 1 to ncat; 

    tmp = concat(Letter_Lamda, ItemNo[1,i], CatLevels[1,j]); 

    Lamda_Estimates [1,p] = rowcatc(tmp, 1, 1); 
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    p=p+1; 

   end; 

  end; 

 

 

  /* Response vector Y */ 

 

Y = J(NStack,1,0); 

istack=1; 

 

do person =1 to Npersons; 

 do item = 1 to nitems; 

   do cat = 1 to (ncat); 

     if cat = personBYitem[person,item] then Y[istack,1]=1; 

  istack=istack+1; 

   end; 

  end; 

end; 

 

/**** Setting starting value of phis ****/ 

 

/* Create item by correlated trait matrix and variable names */ 

 

itemCorTraitA = itemTraitA * TraitA - itemTraitA; 

 

Letter_CorTrait={"CorTrait"}; 

CorTList = char(J(1,ntraits,0)); 

theta = char(1:ntraits); 

 

do i=1 to ntraits; 

   tmp = concat(Letter_CorTrait, theta[1, i]); 

  CorTList[1,i]=rowcatc(tmp,1,1); 

 end; 

 

itemByphi=J(nitems, MaxNphi, 0); 

 

do item = 1 to nitems; 

  do j=1 to MaxNphi; 

   iphi=1; 

      do p=1 to ntraits; 

        do q=p to ntraits; 

          if q=p then do; itemBYphi[item,iphi]=itemTraitA[item,q]; end;  

          else; do;  

             if (itemTraitA[item,p] & itemCorTraitA[item,q]=1) then 

itemBYphi[item,iphi]=traita[p,q]*0.5;  

             else if  (itemtraita[item,p]=0 & itemCorTraitA[item,p]=1) then 

itemBYphi[item,iphi]=traita[p,q]*0.5*itemCorTraitA[item,p]; end; 

             iphi=iphi+1; 

             end; 

           end; 

         end; 

   end; 

 

 

do i=1 to npersons; 

do item=1 to nitems; 
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Phis_1=repeat(ItemBYphi[item ,], ncat, 1); 

Phis = Phis//Phis_1; 

end; 

end; 

 

/* Need some names for the phi parameters in the data set */ 

 

Letter_Phi={"Phi"}; 

TraitNo1 = char(1:ntraits); 

TraitNo2 = char(1:ntraits); 

Phis_Names = char(J(1, MaxNphi, 0)); 

i=1; 

 

do p = 1 to ntraits; 

   do q = p to ntraits; 

    tmp = concat(Letter_Phi, TraitNo1[1,p], TraitNo2[1,q]); 

    Phis_Names[1,i] = rowcatc(tmp, 1, 1 ); 

 i=i+1; 

   end; 

end; 

 

 

/* Setting starting value of categories on each item */ 

 

/* ncat = 3 */ 

 

%if &ncat=3 %then %do;   

 

do person =1 to Npersons; 

 

Nu_1 = J(nitems*ncat, nitems, -1); 

i=1; 

 

do item = 1 to nitems; 

  do cat = 2 to (ncat); 

     if cat = personBYitem[person, item] then Nu_1[, i]= cat*0.2; 

 end; 

  i=i+1; 

 end; 

Nu = Nu//Nu_1; 

end; 

%end; 

 

/* ncat = 4 */ 

 

%if &ncat=4 %then %do;   

 

do person =1 to Npersons; 

 

Nu_1 = J(nitems*ncat, nitems, -1); 

i=1; 

 

do item = 1 to nitems; 

  do cat = 2 to (ncat); 

     if cat = personBYitem[person, item] then Nu_1[, i]= cat*0.111; 

 end; 
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  i=i+1; 

 end; 

Nu = Nu//Nu_1; 

end; 

%end; 

 

 

/* ncat = 5 */ 

 

%if &ncat=5 %then %do; 

 

do person =1 to Npersons; 

 

Nu_1 = J(nitems*ncat, nitems, -1); 

i=1; 

 

do item = 1 to nitems; 

  do cat = 2 to (ncat); 

     if cat = personBYitem[person, item] then Nu_1[, i]= cat*0.1-0.1; 

 end; 

  i=i+1; 

 end; 

Nu = Nu//Nu_1; 

end; 

 

%end; 

 

 

/* Need some names for Nu in the data set */ 

 

Letter_Nu = {"Nu"}; 

ItemNo = char(1:nitems); 

Score_Nu = char(J(1, nitems, 0)); 

 

do i = 1 to nitems; 

    tmp = concat(Letter_Nu, ItemNo[1,i]); 

    Score_Nu[1,i] = rowcatc(tmp, 1, 1); 

end; 

 

 

/********* Concatenate All *******************/ 

 

 

/* Create data file for ItemCorTraitA */ 

 

create itemCorTraitA from itemCorTraitA [colname=CorTList]; 

append from itemCorTraitA; 

close itemCorTraitA; 

 

/*Create datafiles for master data file*/ 

 

create personid from personid [colname="personID"]; 

append from personid; 

close personid ; 

 

create caseindex from caseindex [colname="caseID"]; 
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append from caseindex ; 

close caseindex ; 

 

create itemindex from itemindex [colname="itemID"]; 

append from itemindex; 

close itemindex ; 

 

create catindex from catindex [colname="catID"]; 

append from catindex; 

close catindex ; 

 

create Y from Y [colname="Y"]; 

append from Y ; 

close Y ; 

 

create ECodeR from ECodeR [colname=ECRList]; 

append from ECodeR; 

close ECodeR ; 

 

create ELamda from ELamda [colname=Lamda_Names]; 

append from ELamda; 

close ELamda ; 

 

create LamdaEst from LamdaEst [colname=Lamda_Estimates]; 

append from LamdaEst; 

close LamdaEst ; 

 

create Phis from Phis [colname=Phis_Names]; 

append from Phis; 

close Phis ; 

 

create Nu from Nu [colname=Score_Nu]; 

append from Nu; 

close Nu ; 

 

/*Create master datafile*/ 

 

data PolyMaster ; 

merge personid caseindex itemindex catindex Y ECodeR ELamda LamdaEst Phis Nu 

; 

run ;  

 

 

%mend Data_Poly_MDC; 

 

/******************************************************* 

  Basic Macro 2 : Computing Weighted Rest Scores 

******************************************************/ 

  

 

%macro ComputeWrest (responses, TraitAdj, ItemTraitAdj, ItemCorTraitA, 

itemNum= );  

 

proc sql; 

create table Nu (drop = itemID)  as 

select * 
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from &masterdata (keep= itemID Nu1-Nu&nitems) 

where itemID=&itemNum; 

quit; 

 

proc sql; 

create table Phis (drop = itemID)  as 

select * 

from &masterdata (keep= itemID phi: ) 

where itemID=&itemNum; 

quit; 

 

proc iml; 

 

use Nu; 

read all var _all_ into Nu ; 

close Nu; 

 

use Phis; 

read all var _all_ into Phis ; 

close Phis; 

 

use responses; 

read all var _all_ into personByitem; 

close responses; 

 

use TraitAdj; 

  read all into TraitA; 

close TraitAdj; 

 

use ItemTraitAdj; 

  read all into ItemTraitA; 

close ItemTraitAdj; 

 

use ItemCorTraitA; 

  read all into ItemCorTraitA; 

close ItemCorTraitA; 

 

/* Basic information necessary for data conversion */ 

 

nitems = nrow(ItemTraitA); 

npersons = nrow(personBYitem); 

ncat = &ncat; 

ntraits = nrow(traitA); 

MaxNphi= (ntraits##2-ntraits)/2 + ntraits; 

nstack=npersons*nitems*ncat; 

 

/** Compute individual's weighted rest score **/ 

 

personBYnu=J(npersons, nitems, 0); 

 

do p = 1 to npersons; 

personBYnu[p ,]=nu[p*ncat ,]; 

end; 

 

/* Rest score */ 
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Nu_total = personBYnu*itemTraitA;   

 

Rest_1 = J(1, MaxNphi,0); 

item=&itemNum; 

 

do i= 1 to npersons; 

   iphi=1; 

    do p=1 to ntraits; 

        do q=p to ntraits; 

          if p=q then do; 

          Rest_1[1,iphi] =  (Nu_total[i,p]-personBYnu[i, 

item])*itemTraitA[item,p]; end; 

       else if q=p+1 then do; 

            if (itemTraitA[item,p] & ItemCorTraitA[item,q]=1) then Rest_1[1, 

iphi] = Nu_total[i,q]*traitA[p,q]; 

            else if (itemTraitA[item,p]=0 & ItemCorTraitA[item,p]=1) then 

Rest_1[1, iphi] = (Nu_total[i,q-1]*traitA[p,q])*itemTraitA[item,q]; end; 

          else if q=p+2 then do; 

            if (itemTraitA[item,p] & ItemCorTraitA[item,q]=1) then Rest_1[1, 

iphi] = Nu_total[i,q]*traitA[p,q]; 

            else if (itemTraitA[item,p]=0 & ItemCorTraitA[item,p]=1) then 

Rest_1[1, iphi] = (Nu_total[i,q-2]*traitA[p,q])*itemTraitA[item,q]; end;  

       else if q=p+3 then do; 

            if (itemTraitA[item,p] & ItemCorTraitA[item,q]=1) then Rest_1[1, 

iphi] = Nu_total[i,q]*traitA[p,q]; 

            else if (itemTraitA[item,p]=0 & ItemCorTraitA[item,p]=1) then 

Rest_1[1, iphi] = (Nu_total[i,q-3]*traitA[p,q])*itemTraitA[item,q]; end;  

          iphi=iphi+1; 

      end; 

   end; 

    Rest=Rest//Rest_1; 

    end;  

 

 

/* Weighted rest score : Phi times Rest score */ 

 

itemBYphi=J(1, maxnphi, 0); 

iphi=1; 

 

do j=1 to maxnphi; 

itemBYphi[1, iphi]=phis[1, j]; 

iphi=iphi+1; 

end; 

 

Wrest=J(npersons, 1, 0); 

 

do i=1 to npersons; 

    Wrest[i, 1]=itemBYphi[1 ,]*Rest[i ,]`; 

end; 

 

catBYitemRest=J(npersons*ncat, ncat, 0); 

istack=1; 

 

do i=1 to npersons; 

   do j=1 to ncat; 

     catBYitemRest[istack,j]=diag(wrest[i, 1]); 
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     istack=istack+1; 

   end; 

end; 

 

 

istack=1; 

do i=1 to npersons; 

       catBYitemRest[istack, 2:ncat]=-1*catBYitemRest[istack, 1]; 

       istack=istack+ncat; 

end; 

 

Letter_Wrest={"Wrest"}; 

WrestList = char(J(1,ncat,0)); 

clevels = char(1:ncat); 

 

do i=1 to ncat; 

   tmp = concat(Letter_Wrest, clevels[1, i]); 

  WrestList[1,i]=rowcatc(tmp,1,1); 

 end; 

 

 /* Create data file for weighted rest score */ 

 

create Wrest from catBYitemRest [colname=WrestList]; 

append from catByitemRest; 

close Wrest; 

 

 

/* Create dataset for Step 1 */ 

 

proc sql; 

create table Itemdata as 

select * 

from &masterdata (keep= caseID itemID catID Y Lamda&itemNum: phi: Nu1-

Nu&nitems) 

where itemID=&itemNum; 

quit; 

 

data itemdata ; 

set itemdata ; 

merge itemdata Wrest; 

run; 

 

%mend ComputeWrest ;  

 

/*********************************************************************** 

  Basic Macro 3 : Step 1 - Conditional Multinomial Logistic Regression for 

Each Item 

************************************************************************/ 

 

%macro Step1 (itemNum=, print= );   

 

 

/****** Step 1 : Conditional Multinomial Logistic Regression for Each Item 

********/ 

 

/* Conduct Proc MDC for each item */ 
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proc mdc data=itemdata outest=itemest &print ; 

model &response = Lamda&itemnum&cat2-Lamda&itemNum&ncat wrest2-wrest&ncat / 

type=clogit  nchoice=&ncat covest=hess; 

id &idnum; 

run; 

 

/* Create tempory data file for estimated Nu for each category */ 

 

data tmpNu ; 

set itemest ; 

keep wrest1- wrest&ncat; 

wrest1=-1*sum(of wrest2 - wrest&ncat); 

run; 

 

/* Reorder variable names in tmpNU dataset : wrest1 comes first  */ 

 

data tmpNu; 

retain wrest1 - wrest&ncat; 

set tmpnu; 

run; 

 

/* Create dataset for estimated Nu of all items : This will be used in Step 2 

*/ 

 

 

proc append base=tmpItemNu data=tmpNu; 

run; 

 

 

/* Dataset : Effect code for responses on each item */ 

 

proc sql; 

create table EResponse as 

select * 

from &masterdata (keep= Ey&itemNum:) ; 

quit; 

 

/* Update Nu on master dataset */ 

 

proc iml; 

 

/* Read datafile for basic information */ 

 

use responses; 

read all var _all_ into personByitem; 

close responses; 

 

use TraitAdj; 

  read all into TraitA; 

close TraitAdj; 

 

use ItemTraitAdj; 

  read all into ItemTraitA; 

close ItemTraitAdj; 
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use ItemCorTraitA; 

  read all into ItemCorTraitA; 

close ItemCorTraitA; 

 

 

/* Basic information */ 

 

nitems = nrow(ItemTraitA); 

npersons = nrow(personBYitem); 

ncat = &ncat; 

ntraits = nrow(traitA); 

MaxNphi= (ntraits##2-ntraits)/2 + ntraits; 

nstack=npersons*nitems*ncat; 

 

 

/* Read information necessary for updating Nu */ 

 

use Eresponse; 

read all var _all_ into ER ; 

close Eresponse; 

 

use tmpNu; 

read all var _all_ into tmpNu ; 

close tmpNu; 

 

/* Update examinee's Nu score for item based on selected category */ 

 

istack=1; 

 

do i = 1 to npersons; 

 

New_NuScore_1 = J(nitems*ncat,1,0); 

 

    do j = 1 to ncat; 

    if ER[istack, j]=1 then New_NuScore_1[, 1] = repeat(tmpNu[1,j], 

nitems*ncat, 1); 

    end; 

 

New_NuScore=New_NuScore//New_NuScore_1; 

istack=istack+(nitems*ncat); 

 

end; 

 

/* Update Nu estimates for each category */ 

 

New_CatNu = J(nstack, ncat, 0); 

istack = 1; 

 

do i=1 to npersons; 

do item=1 to nitems; 

do j = 1 to ncat; 

New_CatNu[istack, j] = diag(tmpNu[1,j]); 

istack=istack+1; 

end; 

end; 

end; 
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/* Create names for each nu estimate */ 

 

Letter_Nu={"NewNu"}; 

ItemNo = char(&itemNum); 

CatLevels = Char(1:ncat); 

Nu_Estimates = char(J(1, ncat, 0)); 

 

icat=1; 

 do j = 1 to ncat; 

    tmp = concat(Letter_Nu, ItemNo, CatLevels[1,j]); 

    Nu_Estimates[1,icat] = rowcatc(tmp, 1, 1); 

    icat=icat+1; 

  end; 

  

 

/* Concatenate new Nu score for each person and new Nu estimates for each 

category */ 

  

All_New_Nu = New_NuScore || New_CatNu;  

Nu_Name={"Nu&itemNum"}; 

colnames=Nu_Name || Nu_Estimates; 

 

create All_New_Nu from All_New_Nu[colname=colnames]; 

append from All_New_Nu; 

close All_New_Nu; 

 

 

/* Put new Nu score and estimates in Master dataset */ 

 

data &masterdata; 

set &masterdata; 

merge All_New_Nu; 

run; 

 

 

 /* Up-date item history */ 

 

proc append base=history&itemNum data=itemest ; 

run; 

 

%mend Step1; 

 

 

/************************************************* 

  Basic Macro 4 : Step 2 - Stacked Logistic Regression 

*************************************************/ 

 

 

%Macro Step2 (print= ) ; 

 

/****** Step 2 : Stacked Conditional Multinomial Logistic Regression for All 

Items ********/ 

 

proc sql; 

create table NewNu as 
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select * 

from &masterdata (keep= Nu1-Nu&nitems ) 

quit; 

 

/** Compute Rest scores for each item and trait **/ 

 

/* Read basic matrices */ 

 

Proc iml; 

 

use responses; 

read all var _all_ into personBYitem; 

close responses; 

 

use TraitAdj; 

  read all into TraitA; 

close TraitAdj; 

 

use ItemTraitAdj; 

  read all into ItemTraitA; 

close ItemTraitAdj; 

 

use ItemCorTraitA; 

  read all into ItemCorTraitA; 

close ItemCorTraitA; 

 

use tmpItemNu; 

read all var _all_ into ItemNu ; 

close tmpItemNu; 

 

use NewNu; 

read all var _all_ into NewNu; 

close NewNu; 

 

/* Basic information */ 

 

nitems = nrow(ItemTraitA); 

npersons = nrow(personBYitem); 

ncat = &ncat; 

ntraits = nrow(traitA); 

MaxNphi= (ntraits##2-ntraits)/2 + ntraits; 

nstack=npersons*nitems*ncat; 

 

 

/* Create new Nu socres by person for Step 2 */ 

 

personBYnewnu=J(npersons, nitems, 0); 

 

do p = 1 to npersons; 

personBYnewnu[p ,]=NewNu[p*nitems*ncat, 1:nitems]; 

end; 

 

Nu_total = personBYnewnu*itemTraitA;   

 

nphi = J(Nstack,MaxNphi, 0); 
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istack=1; 

do i= 1 to npersons; 

  do item= 1 to nitems; 

     do j = 1 to ncat; 

       iphi=1; 

         do p=1 to ntraits; 

            do q=p to ntraits; 

             if p=q then do; 

             nphi[istack,iphi] =  ItemNu[item,j]*(Nu_total[i,p]-

personBYnewnu[i,item])*itemTraitA[item,p]; end; 

          else if q=p+1 then do; 

                if (ItemTraitA[item,p] &  ItemCorTraitA[item,q]=1) then 

nphi[istack,iphi] = ItemNu[item,j]*Nu_total[i,q]*traitA[p,q]; 

                else if (ItemTraitA[item,p]=0 &  ItemCorTraitA[item,p]=1) 

then nphi[istack,iphi] = ItemNu[item,j]*(Nu_total[i,q-

1]*traitA[p,q])*ItemTraitA[item,q]; end; 

             else if q=p+2 then do; 

                if (ItemTraitA[item,p] &  ItemCorTraitA[item,q]=1) then 

nphi[istack,iphi] = ItemNu[item,j]*Nu_total[i,q]*traitA[p,q]; 

                else if (ItemTraitA[item,p]=0 &  ItemCorTraitA[item,p]=1) 

then nphi[istack,iphi] = ItemNu[item,j]*(Nu_total[i,q-

2]*traitA[p,q])*ItemTraitA[item,q]; end;  

          else if q=p+3 then do; 

                if (ItemTraitA[item,p] &  ItemCorTraitA[item,q]=1) then 

nphi[istack,iphi] = ItemNu[item,j]*Nu_total[i,q]*traitA[p,q]; 

                else if (ItemTraitA[item,p]=0 &  ItemCorTraitA[item,p]=1) 

then nphi[istack,iphi] = ItemNu[item,j]*(Nu_total[i,q-

3]*traitA[p,q])*ItemTraitA[item,q]; end;  

             iphi=iphi+1; 

          end; 

          end; 

          istack=istack+1; 

       end; 

     end; 

  end; 

 

/* Need some names for the nphi values in the data set */ 

 

Letter_nphi={"nphi"}; 

TraitNo1 = char(1:ntraits); 

TraitNo2 = char(1:ntraits); 

 nphis_Names = char(J(1, MaxNphi, 0)); 

 i=1; 

 

do p = 1 to ntraits; 

   do q = p to ntraits; 

    tmp = concat(Letter_nphi, TraitNo1[1,p], TraitNo2[1,q]); 

    nphis_Names[1,i] = rowcatc(tmp, 1, 1 ); 

 i=i+1; 

   end; 

end; 

 

/* Create dataset for nphis */ 

  

create New_nphis from nphi[colname=nphis_Names]; 

append from nphi; 
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close New_nphis; 

 

 

/* Put new nphi values in Master dataset  and create stacked dataset*/ 

 

data stack; 

set &masterdata; 

merge &masterdata New_nphis; 

run; 

 

/* Conduct Stacked Regression */ 

 

proc mdc data=stack outest=stackest &print ; 

    model &response = &mymodel &allnphis / type=clogit nchoice=&ncat 

covest=hess; 

 id &idnum; 

  

 restrict &scaling_constraint ; 

 

run; 

 

 

/*Temporary dataset for estimated phis*/ 

 

proc sql; 

create table tmpPhi as 

select * 

from stackest (keep= nphi: ); 

quit; 

 

/* The number of item by estimated phis */ 

 

data MorePhi; 

set tmpPhi; 

 do i=1 to &nitems; 

 output; 

 end; 

drop i; 

run; 

 

/* Update estimated phis */ 

 

proc iml; 

 

use responses; 

read all var _all_ into personByitem; 

close responses; 

 

use TraitAdj; 

  read all into TraitA; 

close TraitAdj; 

 

use ItemTraitAdj; 

  read all into ItemTraitA; 

close ItemTraitAdj; 
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use ItemCorTraitA; 

  read all into ItemCorTraitA; 

close ItemCorTraitA; 

 

use tmpItemNu; 

read all var _all_ into ItemNu ; 

close tmpItemNu; 

 

use MorePhi; 

read all var _all_ into MorePhi ; 

close MorePhi; 

 

 

/* Basic information */ 

 

nitems = nrow(ItemTraitA); 

npersons = nrow(personBYitem); 

ncat = &ncat; 

ntraits = nrow(traitA); 

MaxNphi= (ntraits##2-ntraits)/2 + ntraits; 

nstack=npersons*nitems*ncat; 

 

 

*tmpOne=J(nitems, MaxNphi, 1); 

 

itemBYallPhi=J(nitems, MaxNphi, 0); 

 

do item = 1 to nitems; 

  do j=1 to MaxNphi; 

   iphi=1; 

      do p=1 to ntraits; 

        do q=p to ntraits; 

          if q=p then do; itemBYallPhi[item,iphi]=ItemTraitA[item,q]; end;  

          else; do;  

             if (ItemTraitA[item,p] & itemCorTraitA[item,q]=1) then 

itemBYallPhi[item,iphi]=TraitA[p,q];  

             else if  (ItemTraitA[item,p]=0 & itemCorTraitA[item,p]=1) then 

itemBYallPhi[item,iphi]=TraitA[p,q]*itemCorTraitA[item,p]; end; 

             iphi=iphi+1; 

             end; 

           end; 

         end; 

   end; 

 

/* Need some names for phi parameters */ 

 

Letter_Phi={"Phi"}; 

TraitNo1 = char(1:ntraits); 

TraitNo2 = char(1:ntraits); 

Phis_Names = char(J(1, MaxNphi, 0)); 

i=1; 

 

do p = 1 to ntraits; 

   do q = p to ntraits; 

    tmp = concat(Letter_Phi, TraitNo1[1,p], TraitNo2[1,q]); 

    Phis_Names[1,i] = rowcatc(tmp, 1, 1 ); 
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 i=i+1; 

   end; 

end; 

 

/*Create basic datasets necessary for updated phis*/ 

 

create EstPhi from MorePhi [colname=phis_names]; 

append from MorePhi; 

close EstPhi; 

 

create itemPhi from itemBYallPhi [colname=phis_names]; 

append from itemBYallPhi; 

close itemPhi; 

 

proc iml; 

 

/* Read basic matrices */ 

 

use responses; 

read all var _all_ into personByitem; 

close responses; 

 

use TraitAdj; 

  read all into TraitA; 

close TraitAdj; 

 

use ItemTraitAdj; 

  read all into ItemTraitA; 

close ItemTraitAdj; 

 

use ItemCorTraitA; 

  read all into ItemCorTraitA; 

close ItemCorTraitA; 

 

 

/* Basic information */ 

 

nitems = nrow(ItemTraitA); 

npersons = nrow(personBYitem); 

ncat = &ncat; 

ntraits = nrow(traitA); 

MaxNphi= (ntraits##2-ntraits)/2 + ntraits; 

nstack=npersons*nitems*ncat; 

 

use EstPhi; 

read all var _all_ into EstPhi; 

close Estphi; 

 

use itemPhi; 

  read all var _all_ into itemPhi; 

close itemPhi; 

 

upPhi_1 = EstPhi#ItemPhi; 

 

do i=1 to npersons; 

    do item=1 to nitems; 
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      upPhi_2=repeat(upPhi_1[item ,], ncat, 1); 

      upPhi = upPhi//upPhi_2; 

     end; 

end; 

 

 

/* Need some names for phi parameters */ 

 

Letter_Phi={"Phi"}; 

TraitNo1 = char(1:ntraits); 

TraitNo2 = char(1:ntraits); 

Phis_Names = char(J(1, MaxNphi, 0)); 

i=1; 

 

do p = 1 to ntraits; 

   do q = p to ntraits; 

    tmp = concat(Letter_Phi, TraitNo1[1,p], TraitNo2[1,q]); 

    Phis_Names[1,i] = rowcatc(tmp, 1, 1 ); 

 i=i+1; 

   end; 

end; 

 

create updatedPhi from upPhi [colname=phis_names]; 

append from upPhi; 

close updatedPhi; 

 

 

/* Update phi values in master dataset */ 

 

data &masterdata; 

 merge &masterdata updatedPhi; 

 run; 

 

/* Up-date item history */ 

 

proc append base=stackhistory data=stackest ; 

run; 

 

/* Delete tmpItemNu for proper use in the following iterations */ 

 

proc datasets lib=work noprint ; 

delete tmpItemNu; 

quit; 

 

%mend Step2; 

 

/*********************** 

   Execution Macro  

 ***********************/   

%macro Execute_PLE  ; 

 

%Data_Poly_MDC(responses,  ItemTraitAdj, traitAdj, items, ncat =&ncat ); 
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/*******************************************************  

  Uni : The main loop to iterate Step 1  

 ********************************************************/   

 

%if &step=1 %then %do;   

 

%do i = 1 %to &iterations ; 

 

     %do item=1 %to &nitems; 

 

         %ComputeWrest (responses, TraitAdj, ItemTraitAdj, ItemCorTraitA, 

itemNum=&item);   

 

         %Step1 (itemNum=&item, print=noprint ); 

 

      %end; 

 

   %end; 

 

/***************************************************** 

  Final estimates of Nu and Phi 

 *****************************************************/ 

 

  %do item=1 %to &nitems; 

 

   title "Item &item : Final Est. of Nu" ; 

 

         %ComputeWrest (responses, TraitAdj, ItemTraitAdj, ItemCorTraitA, 

itemNum=&item);   

 

         %Step1 (itemNum=&item, print= ); 

 

   %end; 

 

 %end; 

 

/*******************************************************  

  Multi : The main loop to iterate between Step 1 and Step 2  

 ********************************************************/   

 

%if &step=2 %then %do;   

 

%do i = 1 %to &iterations ; 

 

     %do item=1 %to &nitems; 

 

         %ComputeWrest (responses, TraitAdj, ItemTraitAdj, ItemCorTraitA, 

itemNum=&item);   

 

         %Step1 (itemNum=&item, print=noprint ); 

 

      %end; 

 

      %Step2 (print=noprint ); 

 

%end; 
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/***************************************************** 

  Final estimates of Nu and Phi 

 *****************************************************/ 

 

  %do item=1 %to &nitems; 

 

   title "Item &item : Final Est. of Nu" ; 

 

         %ComputeWrest (responses, TraitAdj, ItemTraitAdj, ItemCorTraitA, 

itemNum=&item);   

 

         %Step1 (itemNum=&item, print= ); 

 

   %end; 

 

   title "Final estimates of Phi" ; 

 

      %Step2 (print= ) ; 

 

%end; 

 

%mend Execute_PLE  ; 
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Table A. PLE Execution Macro: Descriptions and examples for global variables 

Variable name Description Value (or Characer) & example Note 

masterdata master dataset to be used during 

execution 

‘masterdata = polymaster’ ; 

default 

 

cat2 Assigns ‘2’ to 

‘Lamda&itemnum&cat2’ in MDC 

procedure 

‘cat2 = 2’ ; default  

response response variable for MDC 

procedure 

‘response = y’ ; default  

idnum id variable for MDC procedure ‘idnum = caseID’ ; default  

step ‘1’ = Perform only Step 1  ‘step = 1’  for unidimensional 

models or  

 

 ‘2’ = Perform full steps  ‘step = 2’ for multidimensional 

models 

 

nitems Specifies the number of item in the 

model  

‘nitems = any number’ (e.g., 

‘nitems = 6’ for 6 items in the 

model) 

 

ncat Specifies the number of response 

categories per item  

‘ncat = any number between 2 

and 5’ (e.g., ‘ncat = 5’ for 5 

categories per item in the 

model) 

 

iterations Specifies the number of iterations 

that users want to run  

‘iterations = any number’ (e.g., 

‘iterations = 30’) 

 

scaling_constraint Impose scaling constraints by 

setting ‘nphi##’ to 1;The number of 

‘nphi##’ depends on 

dimensionality.   

‘scaling_constraint = nphi11=1, 

nphi22=1, … nphi##=1’ for #-

dimensional models 

Only for 

multidimensional 

models 

allnphis Specifies all possible association 

parameters; the number of 

‘allnphis’ depends on 

dimensionality  

For 2-dimensional models, 

‘allnphis = nphi11, nphi12, 

nphi22’. For 3-dimensional 

models,  ‘allnphis = nphi11, 

nphi12, nphi13, nphi22, 

nphi23, nphi33’, and so on 

Only for 

multidimensional 

models 

mymodel Specifies all location parameters to 

be estimated in the model; the 

number of location parameters 

depends on the number of items 

and categories per item 

For six 3-category items, 

‘mymodel = lamda12 lamda13 

lamda22 lamda23 … lamda62 

lamda63’  

Only for 

multidimensional 

models 

 


