
c© 2016 Raymond Alexander Yeh

STABLE AND SYMMETRIC CONVOLUTIONAL NEURAL NETWORK

BY

RAYMOND ALEXANDER YEH

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Advisers:

Professor Minh N. Do
Professor Mark Hasegawa-Johnson

ABSTRACT

First we present a proof that convolutional neural networks (CNNs) with

max-norm regularization, max-pooling, and Relu non-linearity are stable to

additive noise. Second, we explore the use of symmetric and antisymmet-

ric filters in a baseline CNN model on digit classification, which enjoys the

stability to additive noise. Experimental results indicate that the symmetric

CNN outperforms the baseline model for nearly all training sizes and matches

the state-of-the-art deep-net in the cases of limited training examples.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank Professor Mark Hasegawa-Johnson and Professor Minh

Do for their guidance and support throughout the research process. Also, I

would like to thank the members in the Statistical Speech Technology Group

and the Computational Imaging Group for their valuable suggestions and

discussions. Lastly, I thank my parents and sister for their love and support.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . viii

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Background . 2

CHAPTER 2 STABLE CONVOLUTIONAL NEURAL NETWORK . 15
2.1 CNNs from Signal Processing Perspective 15
2.2 Stability to Additive Noise Motivation 17
2.3 Stability to Additive Noise in CNN 17

CHAPTER 3 SYMMETRIC FILTER CONVOLUTIONAL NEU-
RAL NETWORK . 20
3.1 Symmetric Constraint and Motivation 20
3.2 Experiments . 23

CHAPTER 4 CONCLUSION . 27
4.1 Stable Convolutional Neural Network 27
4.2 Symmetric Filter Convolutional Neural Network 27
4.3 Summary and Future Work 27

REFERENCES . 28

v

LIST OF TABLES

3.1 Percentage of Errors on MNIST Test Set vs. Training Size . . 25

vi

LIST OF FIGURES

1.1 Neural network with two hidden layers 4
1.2 Gradient descent visualization 7
1.3 Gradient descent large step size visualization 8
1.4 PCA visualization . 11

2.1 Neural network visualization 15
2.2 Feature transform illustration 16

3.1 Symmetric filter illustration 20
3.2 MNIST training examples . 23
3.3 CNN architecture used in experiments 24
3.4 First convolutional layer weights visualization from sym-

metric CNN . 26
3.5 Selected first convolutional layer weights visualization from

baseline CNN . 26

vii

LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

SGD Stochastic Gradient Descent

ReLU Rectified Linear Unit

PCA Principal Component Analysis

MNIST Mixed National Institute of Standards and Technology Database

viii

CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, deep learning has demonstrated state-of-the-art performance

a wide range of areas and tasks. Speech and image processing task bench-

marks are now dominated by deep learning models. In particular, deep

learning has the most significant impact on image recognition and speech

recognition research [1, 2, 3]. Many companies (e.g. Google, Facebook) are

now applying deep learning techniques to their services. The main advan-

tage or attraction of deep learning is the ability to learn the useful features

from the data; through the hierarchical structure, features of higher levels

can be learned. This is very different from the classical approach, in which

human experts design specific feature extraction processes based on domain

knowledge.

Empirically, deep learning has outperformed the classical approach; how-

ever, it is not without a cost: (1) Deep learning requires a lot of labeled train-

ing data, due to the usually large number of parameters. (2) Deep learning

is notorious for difficulty in training process, which is a non-convex optimiza-

tion problem, resulting in problems in local minimum and long training time

with gradient methods. (3) The learned features are hard to interpret and

lack theoretical support. In this thesis, we will attempt of tackle some of the

issues surrounding deep learning.

1

1.2 Background

1.2.1 Brief Overview of Statistical Learning

In this section, we will briefly review the setting of a learning problem to

understand the trade-off of model selection with Vapnik-Chervonenkis (VC)

dimension.

The following review is based on [4].

Given data set Dn = {(X1, Y1), (X2, X2), ..., (Xn, Yn)}, which comprises

independent identically distributed (i.i.d.) random pairs drawn from a dis-

tribution P (X ,Y), the goal for a machine learning algorithm is to find a

function g : X 7→ Y classifier that minimizes a loss function as l(g(X), Y)

that measure how “good” the classifier is at approximating the X 7→ Y
relationship.

We define the expected risk as follows:

L(g) = EP [l(g(X), Y)] =

∫
l(g(x), y)dP (x, y) (1.1)

Then the best classifier, g∗, can be denoted as

g∗ = arg min
g
L(g) (1.2)

In theory, if we know the distribution P , then we will just directly solve

for the best classier. However, in practice, we only get access to the dataset

that is drawn from P . We define the empirical risk of n samples as follows:

Ln(g) =
1

n

n∑
i=1

l(g(xi), yi) (1.3)

As minimization over all families of functions is impractical, a learning

algorithm will be restricted to certain families of functions, which we denote

G. Then the error of a classifier, g ∈ G, can be divided into two parts, the

estimation error, Eest, and the approximation error, Eapprox:

Eest = [L(g∗G)− L(gn)] (1.4)

2

Eapprox = [L(g∗)− L(g∗G)] (1.5)

where g∗G = arg min
g∈G
L(g), and gn is the produce function from n examples of

a machine learning algorithm.

As can be seen, there is a trade-off between Eest and Eapprox. If we choose

a very large family for G, then Eapprox will more likely be small, but Eest will

more likely be large. It turns out that the Eest can be upper bounded by the

VC dimension, which in a way describes the “size” of G [5].

Deep neural networks essentially choose a large G in order to get a closer

approximation to the true g∗, while still having a finite VC dimension, mean-

ing that learning is possible given enough examples. While the theoretical

bounds on Eest are too loose to be used in practice, it shows that learning is

possible with deep neural networks.

1.2.2 Neural Network

In this section, we will motivate the use of neural networks and review the

model definition.

Motivation

One of the incentives to use a neural network is that it is a universal approx-

imator. The universal approximation theorem states that a feed-forward

neural network with a single hidden layer, with a finite number of nodes, can

approximate any continuous function with a certain precision [6]. The larger

the network, the more accurate the approximation. However, this theorem

only shows the existence of such a network and does not give an algorithm to

find it; generally, the larger the network, the more difficult it is to optimize

the parameters.

Definition of Neural Network

The most vanilla version of a neural network can be thought as repetition of

linear transformation followed by an element-wise non-linear operator. Using

the notation in [7], we can define a neural network iteratively as

3

z(l) = W (l−1)a(l−1) + b(l−1) (1.6)

a(l) = f(z(l)) (1.7)

where a(l) is the input vector from layer l, W (l) are the weights at layer l,

b(l) are the biases at layer l, and the term f is an element-wise non-linear

function such as sigmoid, tanh or Relu(x) = max(0, x).

The computation of a(l+1) is commonly called the forward operation of the

neural network. Figure 1.1 is a visualization of a neural network with two

hidden layers, where each circle depicts an activation, a, and each connect

represents a weight, w.

Figure 1.1: Neural network with two hidden layers

1.2.3 Convolutional Neural Network

Motivation

In this section, we will motivate the use of convolutional neural network

(CNNs) and review the model definition [8]. Consider the case in which we

are applying neural network to an image classification task. Assume the

input image to be 250× 250× 3; this is small compared to a photo taken by

4

a typical smart phone, which consists of approximately 3264 × 2448 pixels.

This image size means that the input dimension of the neural network is

187500, which means for each hidden node in the next layer it will need

187500 weights. Further, assume one half dimension at each layer. Then, a

2-hidden-layer neural network would consist of 187500· 187500
2

+ 187500
2
· 187500

4
=

21, 972, 656, 250, which is an impractical number of parameters. One idea to

reduce the dimension is to assume stationarity in image patches (i.e. each

image patch is from the same distribution regardless of the location in the

overall image). Once we make this assumption, then it make sense that the

weights will only be the dimension of the local patch. Additionally, weights

are “shared” across the patches, which creates the sliding window operation

of a convolution, more formally defined below. Note that this stationarity

assumption is generally not true for images, but empirically CNN is the

state-of-the-art model for image related tasks.

Convolution Layer

We will follow the notation from [7].

Denote the following:

• a(l)j = the jth channel of the activation map at lth layer, where a
(l)
j is a

matrix.

• W (l)
ij = the ith channel of the jth filter at lth layer, where W

(l)
ij is a

matrix.

• b(l)j = the bias for jth filter at lth layer, where b
(l)
j is a scalar.

• f(·) = a element-wise non-linear function.

• ? = convolution

Then the forward operation of a convolution layer is

z
(l)
j = (

∑
i

a
(l−1)
i ? W

(l−1)
ij) + b

(l−1)
j (1.8)

a
(l)
j = f(z

(l)
j) (1.9)

Note that bl−1j is added to all outputs from the convolution.

5

As can be seen, one can think of a CNN as a stack of linear filter operations

followed by an element-wise non-linearity; again, Relu is the typical choice.

Pooling Operation

Pooling operation can be thought of as linear or non-linear filtering followed

by down-sampling. The main idea behind the use of a pooling layer is di-

mension reduction, to reduce the number of activations in the next layer

[9].

In particular, a common pooling operation is max pooling, which is a

maximum filter followed by a down-sampling operation.

Maximum filter is defined as:

yi,j,d = max
k,l∈N

x(i+k),(j+l),d (1.10)

where N denotes the neighborhood for pooling.

Max pooling is also advantageous for its approximate spatial invariant

property (i.e., if the max value does not shift outside the pooling window,

then the output remains the same). The spatial invariant property is par-

ticularly desirable when the location of the signal is irrelevant (e.g. object

recognition).

Similarly, average pooling is a mean filter, followed by down-sampling.

Mean filter is defined as

yi,j,d =
1

|N |
∑
k,l∈N

x(i+k),(j+l),d (1.11)

where N denotes the neighborhood for pooling.

1.2.4 Training Neural Networks

In this section, we will review the common tools for optimizing neural net-

works [10, 7].

6

Gradient Descent

Gradient descent is a first-order optimization method. The method is to

iteratively move in the direction of the negative of the gradient at the current

point of the function we wish to minimize.

Denote the following:

• Θ = The space of all possible parameters in the model.

• θ ∈ Θ = A specific instance of the model parameters.

• L : Θ 7→ R = The loss function to minimize.

• α ∈ R = the learning rate or step size.

The gradient descent algorithm starts at a random initial point θ0, then

repeatedly updates θt until convergence.

θt+1 = θt − α
∂

∂θt
L(θt) (1.12)

Figure 1.2 is a visualization of the gradient descent algorithm on a convex

L.

Figure 1.2: Gradient descent visualization

Note that the learning rate has to be chosen with care; Figure 1.3 shows

that large step-size can lead to divergence.

Stochastic/Batched Gradient Descent

The gradient descent algorithm described above is not practical from a com-

putational point of view. In a machine learning problem the loss function

7

Figure 1.3: Gradient descent large step size visualization

takes the form L(θ) =
n∑

i=0

l(xi, yi; θ), where n is the number of training ex-

amples. Hence, for every gradient step we will need to compute the gradient

for each training example; this is computationally unfeasible when we have

large amount of training data.

A solution is to approximate the gradient by using subsets of the training

data:

LDt(θ) =
∑

xi,yi∈Dt

l(xi, yi; θ) (1.13)

where Dt is some subset of the training data and |Dt| is the batch-size.

Again, stochastic gradient descent starts at a random initial point θ0; then

repeatedly update θt until convergence.

θt+1 = θt − α
∂

∂θt
LDt(θt) (1.14)

Back Propagation

We need an algorithm to compute the gradient for each of the parameters.

This is referred to as the backward operation in a neural network, where

the loss is “back propagated” from the top of the network to the input.

Essentially, back propagation is an application of the chain rule [11, 7].

Recall that the computation of the neural network involves

z
(l)
j =

∑
i

w
(l−1)
ji a

(l−1)
i + b

(l−1)
j (1.15)

a
(l)
j = f(z

(l)
j) (1.16)

8

Denote the back-propagated errors, δ, as

δlj =
∂L
∂z

(l)
j

(1.17)

Next, we can observe that

∂z
(l)
j

∂w
(l−1)
ji

= a
(l−1)
i (1.18)

Then using the chain rule, we can compute the gradient with respect to the

weights

∂L
∂z

(l)
j

·
∂z

(l)
j

∂w
(l−1)
ji

=
∂L

∂w
(l−1)
ji

(1.19)

Next, to compute the δj, again using the chain rule,

δj =
∑
k

∂L
∂z

(l+1)
k

· ∂z
(l+1)
k

∂z
(l)
j

(1.20)

Then, substituting in the definition of delta and expanding the ∂zk
∂zj

term

using the chain rule,

δlj = f ′(z
(l)
k)
∑
k

w
(l)
kj δ

(l+1)
k (1.21)

This is referred to as the back-propagation formula. This setup is partic-

ularly computation-efficient, as one will compute the δ back from the end of

the network to be used in computation for gradients earlier in the network.

Loss Functions

In the previous section, we used the term loss function, l(xi, yi; θ), as some

function we would like to optimize; here we will formalize the concept for

various tasks. Assume we have a machine learning model, g, with parameters

θ, that takes in an input, x, and makes a prediction, ŷ.

For a regression problem, one of the most common loss functions is the

squared difference,

l(x, y; θ) = ‖ŷ − y‖2 = ‖g(x; θ)− y‖2 (1.22)

9

For a classification problem, the common loss function is the cross entropy,

H(p, q) = −
∑
x

p(x) log q(x) (1.23)

where p is the true distribution and q is the predicted distribution.

Consider a multi-class classification with K classes. Then the model out-

puts a predicted probability for each class, denoted yk. Then the loss function

will be

l(x, y; θ) = −
K∑
k=0

[y = k] · log(yk) (1.24)

where [·] is the indicator function.

1.2.5 Practical Guide for Deep Learning

In this section we will review some of the common practices when training a

neural network with gradient descent, as suggested in [12].

Input Preprocessing

• Input Standardization

One of the commonly used preprocessing techniques is input standard-

ization. The main idea is to have all the input features in a similar

range, which leads to faster training convergence in practice.

Assume that we are given k dimensional input feature vectors de-

noted as x = [x1, ..., xk]ᵀ and N data samples denoted as DN =

{x(1), ...,x(N)}. The feature standardization is defined as

µxi
=

1

N

∑
x∈DN

xi (1.25)

σxi
=

√
1

N

∑
x∈DN

(xi − µxi
)2 (1.26)

x̃i =
xi − µxi

σxi

(1.27)

where x̃ is the standardized feature input.

10

• Principle component analysis (PCA) is also another popular prepro-

cessing technique as motivated in [13]. The main motivation for using

PCA is to decorrelate the input features, called principal components

[14]. Below, we visualize how PCA works.

(a) (b)

Figure 1.4: PCA visualization

In Figure 1.4 (a) is the original data, plotted on axes x1 and x2; as can

be seen, the two dimensions are correlated. Figure 1.4 (b) shows the

transform features after PCA. The two variables are now decorrelated.

This is useful if we wish to reduce the feature dimensions.

Now we will formally go over how to apply PCA and how to use it for

dimension reduction.

Given N samples of k dimension feature vectors, we can write this set

as

X =


x
(1)
1 . . . x

(N)
1

x
(1)
2 . . . x

(N)
2

...
. . .

...

x
(1)
k . . . x

(N)
k

 (1.28)

We hope to find a transformation W such that

(WX)(WX)ᵀ = I (1.29)

W (XXᵀ)W ᵀ = I (1.30)

WCov(X)W ᵀ = I (1.31)

11

As the Cov(X) is symmetric, then we can factorize it into

Cov(X) = UΛUᵀ (1.32)

where U are the eigenvectors of Cov(x) and Λ = diag(λi), where λi is

the eigenvalue of the ith eigenvector.

As can be seen,

W = Λ−1/2Uᵀ (1.33)

is a solution to decorrelate the variables.

Next, for dimension reduction, we should keep the dimension starting

from the largest eigenvalues, as these principal components preserve the

most information from the original signal, in the least-squares sense.

Proof is shown below.

Recall that we have N examples x = (x1, ...xk), a k dimensional vector,

and we are mapping it to a lower dimension space of m, z = (z1, ..., zm),

where m < k (i.e. we only keep m eigenvectors).

Next, we can represent the vector x, zero-mean, as a linear combination

of the orthonormal eigenvectors.

x =
k∑

i=1

ziui (1.34)

We define the approximation vector with only m dimensions as

x̃ =
m∑
i=1

ziui (1.35)

where zi = ui
ᵀx.

12

Then the sum of squares error is defined as

E =
N∑

n=1

∥∥x(n) − x̃(n)
∥∥2 (1.36)

=
N∑

n=1

d∑
i=m+1

∥∥∥z(n)i ui

∥∥∥2 (1.37)

=
N∑

n=1

d∑
i=m+1

(z
(n)
i)2 (1.38)

=
N∑

n=1

d∑
i=m+1

(ui
ᵀx(n))2 (1.39)

=
d∑

i=m+1

ui
ᵀCov(X)ui (1.40)

=
d∑

i=m+1

λi (1.41)

Here, ui are the eigenvectors of the covariance matrix; thus, Cov(x)ui =

λiui. Hence, to minimize the error, the dimension with the smallest

eigenvalues should be removed.

Hyperparameter

For a deep neural network to work properly, many hyperparameters have to

be chosen properly. Below, we will review the tuning procedure for several

of the common hyperparameters.

• Learning rate

Learning rate, or step-size parameter, is crucial to the success of train-

ing a neural network. A very high learning rate leads to divergence, and

a very lower learning rate leads to very slow convergence. A suggested

in [12], choose a large learning rate; if it diverges, decrease the learning

rate by a factor of 3 and repeat until a smooth learning curve is ob-

served. Note that before starting to tune the learning rate, one should

fix the batch-size. As a different batch-size will affect the learning rate,

this is typically chosen to be 64. Also, another common practice is to

have a learning rate schedule, where the learning rate is decreased de-

13

pending on the number of iterations; this heuristically leads to better

convergences.

• Weights initialization

The weights in the neural network need to be initialized carefully to

avoid symmetry in the network, leading to all the weights being exactly

the same. Typically, this is done by initializing with small random

values. Work in [15, 16] suggested various useful initialization schemes.

Next, biases are typically initialized with zeros. When using Relu, one

should begin with an initialization that results in positive activation,

to avoid all zero outputs after the Relu non-linearity.

• Hyperparameter searching

Hyperparameters in neural networks are typical selected through tuning

with a validation set. That is, one should try different hyperparameter

configurations, and settle on the best based on the performance of

the validation set. One typical method is doing grid search or random

search [13], which are usually computationally expensive as they involve

training multiple deep networks.

14

CHAPTER 2

STABLE CONVOLUTIONAL NEURAL
NETWORK

2.1 CNNs from Signal Processing Perspective

In the previous sections, we have reviewed deep learning and CNNs from a

machine learning point of view. In this section, we will present them from a

signal processing and feature engineering perspective.

Figure 2.1: Neural network visualization

Instead of viewing a deep neural network as a single model, we can view it

as two parts: (1) feature transformation/extraction, followed by (2) a simple

linear classifier, as illustrated in Figure 2.1.

Consider the “toy” example shown in Figure 2.2 (a); we see that a linear

classifier cannot perfectly separate the two classes, indicated by red and blue.

However, if we take the square-root of x1 and x2, then the feature has been

transformed into a space that is linearly separable, as seen in Figure 2.2 (b).

Thus, if we can find a feature transform that maps from the input space

to a space that is linearly separable, then all classification problems can be

15

(a) (b)

Figure 2.2: Feature transform illustration

solved with a linear classifier. The main difficulty is how to design this feature

transformation. For the two-dimensional case, we can visualize the data, and

if the pattern is simple then we can cleverly craft a transformation. However,

for high-dimensional data it is much more difficult. Thus, designing these

feature transformations is difficult and often takes expert domain knowledge

(e.g., MFCC in speech, or SIFT features in images [17, 18]).

Deep learning takes a different approach; instead of having expert de-

signing these features, we use data to optimize the feature extraction by

having many layers of non-linear transformation. However, we now have

less understanding of features we learned and why the features work, besides

minimizing the loss.

There are many studies attempting to understand the effectiveness of these

networks, both empirically by visualizing the activations, and theoretically

through analyzing the network properties [19, 20, 21]. In particular, Bruna

and Mallat addressed the scattering network [22], a specific type of CNN,

in which the weights in the hidden layers are fixed wavelet coefficients.

With this setup, they showed that the network creates a transformation

that is translation-invariant and stable to deformation/additive noise. They

matched state-of-the-art results in the MNIST dataset [23]. In the rest of the

chapter, we will provide a proof that a traditional CNN is stable to additive

noise.

16

2.2 Stability to Additive Noise Motivation

For a transformation, Φ, to be stable to additive noise x′(u) = x(u) + ε(u),

it needs a Lipschitz continuity condition as defined in [22]

‖Φx− Φx′‖2 ≤ C · ‖x− x′‖2 (2.1)

for a constant C > 0, and for all x and x′. Φx denotes the transformed

feature.

The intuition is that when noise is added to the signal, the transformed

feature is perturbed in a controlled manner.

2.3 Stability to Additive Noise in CNN

A standard CNN’s forward operation is a combination of the following op-

erations: (1) convolution with max-norm regularization, (2) element-wise

Relu non-linearity, and (3) max-pooling. We will prove that the sequence of

these operations can satisfy the Lipschitz continuity condition, as defined in

Equation 2.1.

2.3.1 Stability of Convolution with max-norm Regularization

Denote the output of a convolution as w?x. With l1 max-norm regularization,

the weights are renormalized to constant norm, κ. This means ‖w‖1 ≤ κ.

By Young’s inequality for convolutions [24],

‖w ? x‖2 ≤ ‖w‖1 · ‖x‖2 ≤ κ · ‖x‖2 (2.2)

Then by linearity of convolution

‖w ? x− w ? x′‖2 ≤ κ · ‖x− x′‖2 (2.3)

If x is multi-channel, the convolutional layer sums the convolution outputs

of each channel. Then, by triangle inequality, Lipschitz continuity condition

holds with C = κ· (number of channels).

17

2.3.2 Stability of Element-wise Relu non-linearity

Relu is an element-wise operation defined as

Relu(xi) = max(0, xi) (2.4)

where xi denotes an element in the input signal x. Next, it can be verified

that |Relu(xi)− Relu(x′i)| ≤ |xi − x′i|, by considering the four cases with xi

and x′i each positive or negative.

Case 1 xi > 0, x′i > 0 :

|relu(xi)− relu(x′i)| = |xi − x′i| (2.5)

Case 2 xi > 0, x′i < 0 :

|relu(xi)− relu(x′i)| = |xi − 0| < |xi + |x′i|| (2.6)

Case 3 xi < 0, x′i > 0 :

|relu(xi)− relu(x′i)| = |relu(x′i)− relu(xi)| < |x′i + |xi|| (2.7)

Case 4 xi < 0, x′i < 0 :

|relu(xi)− relu(x′i)| = 0 < |xi − x′i| (2.8)

Therefore, ‖Relu(x)−Relu(x′)‖2 ≤ ‖x− x′‖2. Thus, satisfying the Lips-

chitz continuity condition holds with C = 1

2.3.3 Stability of Max-pooling

Max-pooling operation divides the input signal into a set of overlapping or

non-overlapping windows, and for each window outputs the maximum value.

First consider the windows to be non-overlapping; then we only need to

show that the max operation for each window, following a Relu operation,

is Lipschitz continuous. Recall that the max-pooling operation follows the

Relu operation, and therefore x > 0 and x′ > 0, where x and x′ denote the

signals in each window.

18

Denote i∗ = arg max
i
xi and j∗ = arg max

j
x′j. We claim that

|max
i
xi −max

j
x′j| ≤ max(|xi∗ − x′i∗|, |xj∗ − x′j∗|) (2.9)

Then,

|max
i
xi −max

j
x′j| ≤ max

i
|xi − x′i|

= ‖x− x′‖∞ ≤ ‖x− x
′‖2

(2.10)

If the inequality is true, then the max-pooling operator satisfies the Lips-

chitz continuous condition. The inequality can be proved by considering the

following two cases:

1.

xi∗ > x′j∗ → |max
i
xi −max

j
x′j| = xi∗ − x′j∗ ≤ xi∗ − x′i∗ (2.11)

As x and x′ are all greater than 0 and x′j∗ is the largest in x′.

2.

x′j∗ > xi∗ → |max
i
xi −max

j
x′j| = x′j∗ − xi∗ ≤ x′j∗ − xj∗ (2.12)

Therefore, max-pooling operation with non-overlapping windows satisfies

the Lipschitz continuity condition with C = 1

Next, consider overlapping windows, with k overlaps, where k is less than

the window size. As the contribution of each overlapping term to the norm

is less than or equal to ‖x− x′‖2, we can show that

‖maxPoolk(x)−maxPoolk(x′)‖2 ≤ (k + 1) · ‖x− x′‖2 (2.13)

where k is the number of overlapping elements in the pooling window.

2.3.4 Summary

In this section, we have shown that each of the operations (1) convolution

with l1 max-norm regularization, (2) Relu-non-linearity and (3) Max-pooling

satisfies the Lipschitz continuity condition. As CNNs are stacks of these

operators, they satisfy the Lipschitz continuity condition and thus are stable

to additive noise.

19

CHAPTER 3

SYMMETRIC FILTER CONVOLUTIONAL
NEURAL NETWORK

3.1 Symmetric Constraint and Motivation

The symmetric filter CNN is motivated by recent results showing that a

scattering net, with weights set equal to wavelet coefficients and untrained,

was able to reach state-of-the-art performance in handwritten digit recog-

nition [22]. As wavelets have symmetric or antisymmetric structure, we

speculate that the hypothesis space of the CNN model can be restricted

to only symmetric and antisymmetric convolution layers. Let W denote a

weight (filter) coefficients centered at (0, 0). By “antisymmetric” we mean

W (i, j) = −W (−i,−j) and by “symmetric” we mean W (i, j) = W (−i,−j);
as illustrated in Figure 3.1.

Figure 3.1: Symmetric filter illustration

Symmetric and antisymmetric filters with odd height and width have gen-

eralized linear phase.

20

Consider the symmetric case,

H(ejω) =
∑
n

W [n]e−jωn (3.1)

=
∑
n>=0

W [n]e−jωn +W [−n]ejωn (3.2)

=
∑
n>=0

W [n](e−jωn + ejωn) (3.3)

=
∑
n>=0

W [n]2 cos(ωn) (3.4)

As can be seen, the symmetric filter has linear phase. A similar derivation

can be done for the anti-symmetric case.

This ensures that no phase distortion occurs at the convolutional layer;

hence, the structure of the signal is maintained. This is a very common

practice in filter design [25]. Furthermore, when enforcing this symmetric

constraint, the number of parameters to train is reduced and the potential

to accelerate training and decoding by using a symmetric convolution op-

erator is gained, as convolution on symmetric filters requires half as many

multiplications as convolution with arbitrary filters.

Model Reasonableness

At first glance, a constraint of symmetric and antisymmetric filters with

respect to the origin seems like a very strong condition. However, the overall

model can represent approximately the same set of functions as a model that

has symmetric or antisymmetric weights with respect to a certain point, not

necessarily the origin; many of the learned CNN filters published as examples

in image recognition papers have approximately this property, as do the many

of the filters learned in our own baseline experiments. The reasoning is as

follows: Denote the translation operator T~c, such that T~c(W (~x)) = W (~x−~c).
Then, for a filter symmetric to some point ~c, we can translate the filter

to be centered at the origin. From the translation invariance property of

convolution, T~c(W) ? g = T~c(W ? x), i.e., the output from the convolution

layer is translated. Therefore, we see that centering the filter will result in a

translated output and no loss of information.

Relu is an element-wise operator, and thus the output continues to be a

21

translated version. For max-pooling of window size N × N , if ~c happens

to be a multiple of N , then the output from the centered model will again

be the translated version of the non-centered model. On the other hand,

if ~c is less than N , then as long as the max element does not move out of

the max-pooling window, the output will be equivalent; hence the output

is approximately the same as the one from the non-centered model. Lastly,

the fully connected layers are not affected by reordering of the inputs, as

reordering the weights in the same manner will give equivalent output.

Gradient for Symmetric Convolutional Layer

In this section, we derive the gradient formula for the symmetric/antisymmetric

convolutional layer, using back propagation notation of [7] reviewed in the

background section. Denote the following:

• J = overall loss function

• δ(l)j (u, v) = ∂J

∂z
(l)
j (u,v)

= backprop error

Recall that the forward convolutional operation without symmetric con-

straint can be defined as

z
(l)
j = (

∑
i

a
(l−1)
i ? W

(l−1)
ij) (3.5)

a
(l)
j = f(z

(l)
j) (3.6)

Then the gradient of J with respect to the filter weight is

∂J

∂W
(l−1)
ij (u, v)

=
∑
u′

∑
v′

∂J

∂z
(l)
j (u′, v′)

·
∂z

(l)
j (u′, v′)

∂W
(l−1)
ij (u, v)

(3.7)

From equation 3.6, we can see that

∂z
(l)
j (u′, v′)

∂W
(l−1)
ij (u, v)

= a
(l−1)
i (u′ − u, v′ − v) (3.8)

as the gradient is non-zero when û = u, and v̂ = v. Lastly, for the simplicity

of indexing, let W̃ l−1
ij (u, v) be the weights of the symmetric convolution layer,

constrained so W̃
(l−1)
ij (−u,−v) = W̃

(l−1)
ij (u, v).

22

The gradient with respect to the symmetric filter weight can be written in

terms of the gradient of the general convolution layer as follows:

∂J

∂W̃
(l−1)
ij (u, v)

=
∑
u′

∑
v′

∂J

∂z
(l)
j (u′, v′)

·
∂z

(l)
j (u′, v′)

∂W
(l−1)
ij (u, v)

+

∑
u′

∑
v′

∂J

∂z
(l)
j (u′, v′)

·
∂z

(l)
j (u′, v′)

∂W
(l−1)
ij (−u,−v)

(3.9)

The gradient for the antisymmetric convolution layer can be derived similarly.

3.2 Experiments

3.2.1 Dataset and Experiment Setup

MNIST dataset

Figure 3.2: MNIST training examples

The MNIST database of hand-written digits contains 60,000 training sam-

ples and 10,000 test samples [23], some of which are visualized in Figure 3.2.

We evaluated the model on different training sizes and report the results in

Table 3.1. For each training size, we randomly sampled from the training

set with a constraint that all digits occur the same number of times [22],

which is to avoid very skewed distribution possibly resulting from random

sampling. Also, no distortion of any kind was used to enhance the training

data; preprocessing done to the data was normalization.

23

Figure 3.3: CNN architecture used in experiments

3.2.2 Model architecture

The model architecture we used is shown in Figure 3.3. In order to directly

observe the effect of the proposed symmetric filter CNN model, we have

chosen a simple network architecture modified from LeNet [8], using Relu

as the non-linearity operation, and max-pooling with 2x2 non-overlapping

windows. We used this model as the baseline benchmark. Experimental

results for the comparison are shown in Table 3.1.

The symmetric filter CNN model follows the same architecture as the base-

line described except that, at each convolutional layer, half of the filters are

forced to be symmetric and the others to be antisymmetric. The model

weights were randomly initialized. No pre-training or dropout was used.

3.2.3 Learning procedure

We trained our networks using stochastic gradient descent with momentum.

We used 10,000 random examples from the training data as a holdout set

for tuning hyperparameters; this includes learning rate, regularization pa-

rameters (max-norm and l2 regularization), momentum and batch size. The

24

Table 3.1: Percentage of Errors on MNIST Test Set vs. Training Size

Training Sym-Conv. Base-line. State-of-art
Size Net Conv. Net Conv. Net
300 9.95 10.30 10.63

1,000 4.31 4.40 4.48
2,000 3.25 3.20 3.05
5,000 2.15 2.21 1.98
10,000 1.45 1.30 0.84
20,000 1.01 1.06 0.70
40,000 0.82 0.85 0.64
60,000 0.70 0.74 0.62

tuning procedure follows the suggested techniques mentioned in [12]. The

identical tuning procedure is performed on the baseline model and the sym-

metric model, to control for the effect of tuning on the performance of the

models.

3.2.4 Results and Discussions

Table 3.1 reports the results from the symmetric convolutional network, the

baseline network without symmetric filters, and the state-of-the-art convo-

lutional network model (5-layers) with no pre-training, no image distortion,

and no other improvement techniques [26], which is a reasonable comparison

to our model.

The symmetric convolutional network outperforms the baseline model for

nearly all training sizes; the difference in error rates between the symmetric

and the baseline models decreases as training set size increases.

For small training size (e.g. 300 and 1,000), both the symmetric and base-

line models outperform the state-of-the-art deep-net in [26]. These results

support the intuition that more complex models are more prone to overfit-

ting, and simpler models perform better with limited training data.

Next, Figure 3.4 presents the weights visualization of the first convolutional

layer from the trained symmetric CNN on size 20,000, where the first four

rows are for symmetric filters, and the bottom four rows are for antisymmetric

ones. These weights are matched with our signal processing intuition. Denote

(i, j) as the ith row jth column in Figure 3.4. Consider (3, 4); the middle

3 × 3 pixels exactly resemble a high pass filter. Overall, the weights are

25

Figure 3.4: First convolutional layer weights visualization from symmetric
CNN

Figure 3.5: Selected first convolutional layer weights visualization from
baseline CNN

very interpretable, i.e., they are all roughly edge detections in a particular

direction, which is very reasonable as the edges of a digit are likely the most

discriminant classification features. Furthermore, we compared the weights

learned from the symmetric CNN and baseline CNN; we observed that some

of the weights, Figure 3.5, are identical, but symmetric CNN has the weights

centered at the origin (e.g. (5, 1), (5, 2)).

Lastly, we have also examined models with only symmetrical filters and

with only antisymmetric filters. Overall, the convolutional network with

half antisymmetric filters and half symmetric filters outperforms the models

with only antisymmetric filters or with only symmetric filters. Furthermore,

the network with only antisymmetric filters outperforms the one with only

symmetric filters. These findings lead to the conclusion that antisymmetric

filters are important for correctly identifying the digits, but antisymmetric

filters are not sufficient without the complementary information provided by

symmetric filters.

26

CHAPTER 4

CONCLUSION

4.1 Stable Convolutional Neural Network

We present a proof that CNNs with max-norm regularization, Relu non-

linearity, and max-pooling are stable to additive noise. This proof provides a

reasonable explanation for why the CNN feature transform works in practice,

and a mathematical guarantee on stability of the extracted feature.

4.2 Symmetric Filter Convolutional Neural Network

We investigate the use of symmetric and antisymmetric filters in CNN model

on the MNIST dataset. State-of-the-art results were achieved for handwritten

digit classification in the cases of very small training sizes. We also show that

the network with symmetric and antisymmetric filters is generally better

than the baseline benchmark model. Lastly, we analyzed the model weights

and verified our understanding that the set of functions that the symmetric

models have learned are empirically similar to those of the baseline model.

4.3 Summary and Future Work

Deep learning has demonstrated strong empirical performance in image and

speech recognition, and other applications; however, very often these are

“black-box” models, where we do not have strong understanding of the in-

ternal workings of the learned classifier. We believe that understanding the

effectiveness of the model could lead to future architectural improvements.

In particular, we hope to incorporate traditional signal processing tools to

have interpretable deep models with strong performance.

27

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[2] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catan-
zaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,”
arXiv preprint arXiv:1512.02595, 2015.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[4] P. Liang, “Statistical learning theory lecture notes,” Stanford University,
Winter 2016.

[5] V. Vapnik, The Nature of Statistical Learning Theory. Springer Science
& Business Media, 2013.

[6] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991.

[7] C. M. Bishop, Neural Networks for Pattern Recognition. New York,
NY, USA: Oxford University Press, Inc., 1995.

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[9] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling opera-
tions in convolutional architectures for object recognition,” in Artificial
Neural Networks–ICANN 2010. Springer, 2010, pp. 92–101.

[10] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,”
2016, book in preparation for MIT Press. [Online]. Available:
http://goodfeli.github.io/dlbook/

[11] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient back-
prop,” in Neural Networks: Tricks of the Trade. Springer, 2012, pp.
9–48.

28

[12] Y. Bengio, “Practical recommendations for gradient - based training of
deep architectures,” in Neural Networks: Tricks of the Trade. Springer,
2012, pp. 437–478.

[13] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” The Journal of Machine Learning Research, vol. 13, no. 1,
pp. 281–305, 2012.

[14] I. Jolliffe, Principal Component Analysis. Wiley Online Library, 2002.

[15] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International Conference on Artificial
Intelligence and Statistics, 2010, pp. 249–256.

[16] G. Hinton, “A practical guide to training restricted Boltzmann ma-
chines,” Momentum, vol. 9, no. 1, p. 926, 2010.

[17] S. B. Davis and P. Mermelstein, “Comparison of parametric represen-
tations for monosyllabic word recognition in continuously spoken sen-
tences,” Acoustics, Speech and Signal Processing, IEEE Transactions
on, vol. 28, no. 4, pp. 357–366, 1980.

[18] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Computer Vision, 1999, The Proceedings of the Seventh IEEE Interna-
tional Conference on, vol. 2. IEEE, 1999, pp. 1150–1157.

[19] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision–ECCV 2014. Springer, 2014,
pp. 818–833.

[20] I. Goodfellow, H. Lee, Q. V. Le, A. Saxe, and A. Y. Ng, “Measuring
invariances in deep networks,” in Advances in Neural Information Pro-
cessing Systems, 2009, pp. 646–654.

[21] I. J. Goodfellow and O. Vinyals, “Qualitatively characterizing neural
network optimization problems,” arXiv preprint arXiv:1412.6544, 2014.

[22] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 35, no. 8, pp. 1872–1886, 2013.

[23] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of hand-
written digits,” 1998.

[24] W. Beckner, “Inequalities in Fourier analysis,” Annals of Mathematics,
vol. 102, pp. 159–182, 1975.

[25] J. Kovacevic, V. Goyal, and M. Vetterli, in Fourier and Wavelet Signal
Processing. Cambridge University Press, 2014.

29

[26] M. A. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsuper-
vised learning of invariant feature hierarchies with applications to object
recognition,” Computer Vision and Pattern Recognition (CVPR), 2007.
IEEE Conference on, pp. 1–8, 2007.

30

