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ABSTRACT

Scaling of logic devices has enabled tremendous improvement in compu-

tational efficiency. However, computational scaling beyond the electronics

based on Moore’s law requires the adoption of alternate state variables includ-

ing spin. Spin based devices offer several advantages such as low device count

and non-volatility, and have the potential to beat the energy-delay product

of CMOS. However, thermal noise in these devices makes their switching

delay a random variable. Deterministic von Neumann style computing re-

quires them to operate at worst case delay (and low error-rate), thereby com-

pletely offsetting the energy-delay benefits of spin devices and making them

non-competitive against CMOS. In this thesis, we show that, by exploiting

inherent device characteristics and architectural-level techniques, it is pos-

sible to shape the system-level output error distribution, thereby enabling

effective error compensation and reliable system behavior. In particular, we

demonstrate that, for a simple binary classifier, 33× improvement in accu-

racy over conventional design can be achieved while tolerating device error

rate of 10%. This work paves a way towards the design of reliable spin-based

systems using highly error prone, but energy-efficient spin devices.
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Chapter 1

INTRODUCTION

1.1 Motivation

Exponential scaling of CMOS-based logic devices in accordance with Moore’s

law has enabled tremendous improvement in computational efficiency. This

has led to innovative designs significantly enhancing sensing, acquisition and

monitoring capabilities of embedded platforms such as watches, glasses, flex-

ible substrates etc. (see Figure 1.1(a)). These platforms have a diverse set of

sensors continuously gathering a vast amount of data. However, extracting

relevant information by processing the raw data in an energy-efficient man-

ner remains a challenge. The portable embedded platforms, being severely

constrained in terms of available battery power, often have very limited data-

processing resources. Hence, the conventional approach is to transmit all the

sensed data to the cloud to extract information. The resulting energy and la-

tency costs are significant. For example, recent projections indicate that the

traffic to the cloud consumes 9× more energy compared to that in the data

center [1]. Hence, it is necessary to enhance the energy-efficiency of embed-

ded information processing platforms (see Figure 1.1(b) without degrading

their portability or battery-life.

Computational energy-efficiency via CMOS scaling has been driven by the

fact that the reduction in device dimensions, accompanied by proportionate

scaling of supply voltage Vdd, enables increased device density and reduced

switching energy while keeping power density constant [4]. However, as the

device dimensions reduce beyond few tens of nanometers, maintaining this

scaling trend is becoming significantly more difficult [5,6]. Some of the chal-

lenges involved include increased leakage power and power density [7]. Re-

duction in Vdd requires a proportionate reduction in threshold voltage Vt in

order to preserve the performance of CMOS devices [8]. Since leakage current
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Figure 1.1: Energy-efficient computing challenge in emerging applications:
(a) embedded information processing platforms (reproduced from
Wikipedia under Creative Commons License), and (b) illustration of
concept of embedded information processing (the images are reproduced
with permission from http://vision.middlebury.edu/).
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Figure 1.2: Barriers to CMOS scaling: (a) increased contribution of leakage
power [2], and (b) stagnant supply voltage Vdd and energy scaling [3].
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Figure 1.3: An all spin logic (ASL) device: (a) a buffer, and (b) its
delay-vs-energy characteristics [13].

increases exponentially with decreasing Vt, the leakage power begins to dom-

inate as device dimensions scale below a few tens of nanometers, as is evident

from Figure 1.2(a). This stalls Vt scaling, making Vdd stagnant around 1 V

for technology nodes beyond 65 nm, as indicated in Figure 1.2(b). Scaling

device dimensions without proportionate decrease in Vdd causes a prohibitive

increase in power density [9].

It has been argued in [10] that the power density barrier is fundamental

to charge-based computing irrespective of the choice of any particular device

such as CMOS. Hence, there is much interest in exploring the use of alterna-

tive state variables such as electron spin for energy-efficient computation [11].

Spintronic devices are especially considered as a promising beyond-CMOS al-

ternative from a scaling perspective [12]. In contrast to present-day CMOS

devices, spin-devices store information in terms of aligned magnetic moments

(spins) of unpaired electrons in ferromagnets and rely upon spin diffusion

in non-magnetic metallic channel connecting two magnets for information

transfer.

1.2 Previous work

One example of spin-based devices proposed for Boolean logic computation

is all spin logic (ASL) [14]. An ASL device stores binary information in the

direction of magnetization state of tiny ferromagnets. Figure 1.3(a) shows

a simple ASL buffer consisting of two ferromagnets separated by a nonmag-

netic conducting channel. As negative supply voltage is applied to the input
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magnet, it polarizes the supply current passing through it; i.e., it allows

only the electrons having spin aligned to its own magnetization to enter in

the channel. This creates a spin concentration gradient in the channel and

propagates spin alignment along the same. This, in turn, exerts torque on

the magnetization of output magnet, forcing it to switch. The same device

works as an inverter for positive supply voltages. All logic gates can be de-

signed using ASL devices [15]. ASL devices offer unique advantages such

as high density, low device count and non-volatility, that were previously

very difficult to achieve with CMOS technology [12]. Hence, there have been

multiple research efforts to build highly energy efficient computing systems

using ASL [16]. However, ASL is found to be non-competitive compared

to CMOS in terms of energy consumption and delay for Boolean logic im-

plementations [17]. Some of the key reasons for ASL designs being inferior

to CMOS are low switching speeds of nanomagnets, exponential decay of

spin alignment propagation along the channel, and the fact that ASL gates

consume power independent of activity [12,17].

Multiple research efforts are ongoing to improve the performance of ASL

gates. For channel improvements, proposals include the use of graphene [18]

and automated domain walls [19]. Manipatruni et al. [13] show that the

energy-delay product of an ASL based inverter can be made better than

that of a 20 nm CMOS inverter with material engineering of the nanomag-

nets as shown in Figure 1.3(b). However, in [13], they only consider average

switching delay of the nanomagnet. In fact, thermal noise in the output nano-

magnets makes switching delay of an ASL gate a random variable. When

operated at an average switching delay, the gate has 50% probability of not

switching appropriately. Hence, although average delay of the ASL gate im-

proves over CMOS for the same energy of operation, von Neumann style

computing would require ASL gates to operate at worst case delay, in order

to have negligible probability of switching failure. Worst case delay being

significantly greater than average delay, ASL would remain non-competitive

with CMOS even after average delay improvements, if conventional von Neu-

mann style computing is employed.

Some research efforts have tried to exploit the randomness in the delay

of ASL gates as well as their unique functionality to achieve useful system

functionality [20]. For example, in [21], ASL gates are used to design energy-

efficient random number generators for the implementation of spin-based
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stochastic computing. In [22,23], the design of a spin-based neuron has been

proposed and an energy-efficient implementation of an artificial neural net-

work has been demonstrated. Such approaches, although interesting and

exploratory, do not attempt to develop key insights about controlling and

quantifying the impact of switching delay variations on system-level perfor-

mance and do not establish the possibility of using error-prone spin logic

gates for conventional computing without significant deterioration in perfor-

mance.

1.3 Thesis contributions and organization

In this thesis, we determine the energy penalty of operating ASL gates at

the worst-case delay instead of at their average delay to be 25×. We also

adopt an ε-noisy model in order to capture the impact of randomness in the

switching delay on the system-level performance. Using the ε-noisy model,

we show that it is possible to shape the statistics of errors at the system level

by controlling the randomness in the component ASL gates. We propose to

employ statistical error compensation (SEC) [24] to effectively compensate

errors having shaped statistics. This enables the use of highly error prone

(ε ≈ 10%) ASL gates operating at average delay, while maintaining the

system-level performance. We demonstrate that, for a binary classifier, the

proposed approach achieves 33× improvement in classification error proba-

bility over conventional 7-modular redundancy based design at an average

spin-device error rate of ≈ 10%. This result represents 100× improvement

in average device error rate tolerance compared to the conventional design.

This thesis is organized as follows. In Chapter 2, we briefly review existing

error-resiliency techniques that will be employed or compared with later. In

Chapter 3, we introduce the ε-noisy device model to capture the erroneous

behavior of spin devices. In Chapter 4, we propose an approach for shaping

error statistics that enables reliable computation using highly erroneous ASL

gates via application of statistical error compensation. We demonstrate the

benefits of our approach for an ASL-based binary classifier in Chapter 5 and

conclude this thesis in Chapter 6.
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Chapter 2

BACKGROUND

Conventionally, digital circuits are designed with a constraint that the prob-

ability of an individual logic gate making a logic error is negligibly small [4].

Here, we define logic error as an incorrect computation/representation of

one or more output bits in a hardware implementation. However, as the

logic device dimensions and operating energy scale below a few nm and a

few aJ, respectively, the constraint of having negligibly small probability of

logic error starts becoming prohibitively expensive [25, 26]. For example, in

CMOS-based digital circuits, simply reducing supply voltage till the thresh-

old voltage results in a 5× increase in delay variations, which in turn results

in timing violations if the circuit is operated at the average delay [3]. In ASL

implementation, as the nanomagnet switching delay is a random variable,

logic errors can occur due to the nanomagnets taking more time to switch

than the clock period [26]. The conventional approach of introducing de-

sign margins to suppress the probability of logic errors often involves large

penalty in terms of either energy or throughput. Hence, there have been

several research attempts investigating the design of reliable systems using

unreliable components, both in theory [27–29] as well as to enable highly

energy-efficient practical computing systems [30–32].

In this section, we briefly review two approaches of error-resilient design,

namely N-modular redundancy (NMR) and statistical error compensation

(SEC).

2.1 N-modular redundancy (NMR)

NMR is a fault tolerant technique, in which a logic circuit consisting of

erroneous gates is replicated N times and the final output is obtained by

taking a bitwise majority vote of corresponding N outputs. For example,
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Figure 2.1: Block diagram of N-Modular Redundancy (NMR) for N = 3.

as illustrated in Figure 2.1, when N = 3 (denoted as 3-MR), three identical

replicas of an erroneous computational block having N k-bit inputs generate

three outputs y1, y2 and y3, which are p bit binary numbers. Each bit of final

output ym is generated by taking a majority vote over corresponding bits of

y1, y2 and y3.

This approach of using replication and majority voting to enhance error

resiliency of logic circuits was first proposed by von Neumann [27]. He showed

that reliable networks, i.e., networks having system-level error probability

pe,sys < 0.5, can be designed via replication of individual noisy components

and majority voting of their outputs if the component error probability ε ≤
0.0073 and that reliable computation is impossible if ε ≥ 1

6
. A series of

works [28,33] investigated tighter upper bounds on ε until a precise formula

for threshold εo was derived by Evans and Schulman [29], such that if ε < εo

any Boolean function can be reliably computed using k-input ε-noisy gates.

In practice, NMR is observed to enhance the fault tolerance effectively if

the probability of component noisy gates being in error is sufficiently small

(<1%) [34] albeit with at least N× area and high energy penalty. This high

area and energy penalty prohibits the application of NMR as a fault tolerant

technique for energy-constrained applications.
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2.2 Statistical error compensation (SEC)

SEC is an approach where the constraint of having zero probability of logic er-

ror is relaxed in order to achieve significantly energy-efficient implementation,

while maintaining system-level performance by using algorithmic techniques

to compensate for logic errors [24]. Figure 2.2(a) shows a block diagram

of SEC where the erroneous hardware implementation is referred to as the

main block. The output of the main block is denoted by ya, while the output

of the corresponding error-free implementation is denoted by yo. Computa-

tional error η captures the impact of logic errors in the hardware on the final

output and is defined as the difference between ya and yo. It is a random

variable with probability distribution Pη(η). In order to compensate for η, a

statistical error compensator, comprising an estimator and a fusion block, is

introduced. The estimator is a low-complexity block (typically 5%-to-20% of

the main block complexity [35]) generating a statistical estimate of yo. Thus,

we have

ya = yo + η (2.1)

ye = yo + e (2.2)

where ye and e denote the output of the estimator and the estimation error,

respectively.

The fusion block implements an estimation function, which computes an

estimate of yo (denoted by ŷo) in terms of ya and ye. Several estimation

functions have been proposed [36]. In this thesis, we consider an estimation

function, called algorithmic error cancellation (AEC) [37], which is given as

follows:

ŷo = ya − 2k−m+1

⌊
ya − ye
2k−m+1

+
1

2

⌋
(2.3)

where k and m are design parameters of the main block and the estimator

(bit precisions if corresponding blocks are adders) respectively and b c denotes

floor operation. It has been shown that the above estimation function is a

low-complexity approximation of maximum a-posteriori (MAP) estimation,

9



which theoretically maximizes the posterior probability P (ŷo = yo|ya, ye) [36].

The complexity of the fusion block is quite small, as evident in Figure 2.2(c),

which shows the corresponding architecture. For AEC to be effective, the

estimation error e needs to be bounded while distribution of η needs to be

sparse, as illustrated in Figure 2.2(b).
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Chapter 3

MODELING ASL DEVICES AS ε-NOISY
DEVICES

In this chapter, we first introduce an approximate analytical expression char-

acterizing the randomness in the switching delay of ASL devices. We then

describe an ε-noisy model that can be used to capture the impact of random

switching delay on the circuit and system-level behavior.

3.1 Switching error probability of ASL devices

The ASL gate is operated by passing the supply current Isupply through the

input nanomagnet for duration Tg (referred to as gate delay) in order to

achieve the appropriate switching of output nanomagnet, as illustrated in

Figure 3.1(a). However, thermal noise in the nanomagnet makes the switch-

ing delay, denoted by T , a random variable. The switching is erroneous

when T is greater than Tg. The resulting error is referred to as write er-

ror and its probability of a occurance is the write error rate (WER). Hence,

WER = Pr{T > Tg}. Naturally, if the probability density function of switch-

ing delay T is denoted by fT (t), the WER is the area under fT (t) curve for

t > Tg, as illustrated in Figure 3.1(b). The average delay Tavg = E[T ], where

expectation is taken with respect to fT (t).

The WER depends upon material parameters, volume of the nanomagnet,

Isupply as well as Tg, and its approximate analytical expression is given as

follows [26]:

WER(Tg(ns), Isupply(µA)) = 1− exp

[
−β1(Isupply − Icrit)

Isupplyeβ2Tg(Isupply−Icrit) − Icrit

]
(3.1)

where β1, β2 and Icrit are device dependent constants and their values for

Eb = 70 kT are given in Table 3.1. In particular, Eb is an energy barrier

11
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Figure 3.1: Illustration of: (a) operation of an ASL device, and (b)
relationship between delay and the write error rate (WER) of an ASL
device.

Table 3.1: Values of device dependent constants in (3.1)

Name Symbol Value Unit

Energy barrier Eb Eb = 70 kT J
Critical current Icrit 35.23925782850948 µA

Boltzmann’s constant k 1.38× 10−23 JK−1

Temperature T 300 K
- β1 172.7180770190638 -
- β2 0.06669890278819406 A−1s−1

12



between two stable states of the magnetization vector of the ferromagnet,

while Icrit denotes the critical current required to switch the nanomagnet.

This choice of Eb guarantees the probability of retention error to be smaller

than one in a billion device hours of operation [12].

It is also to be noted that equation (3.1) was originally derived in [26] as a

switching error rate of a ferromagnet under the influence of spin torque. By

considering it as the error probability of an ASL device, we are ignoring any

effects of the conduction channel between the two magnets. This assumption

allows us to assume the same error model for all types of ASL-based logic

gates.

3.2 Energy-robustness tradeoff for ASL devices

The energy consumption during the switching of an ASL-based logic gate is

given by

E = I2supplyRTg (3.2)

where R is the resistance of logic gate and its value is assumed to be 10 kΩ

in this thesis, irrespective of the type of logic gates or number of inputs.

Figure 3.2(a) shows the delay vs. energy characteristics of an ASL device

for a constant WER computed using equations (3.1), (3.2). The average

delay for a given Isupply is estimated as follows:

Tavg =

∫ ∞
0

(1−WER(t, Isupply)) dt (3.3)

It can be observed that, for the same delay, the switching energy for an

ASL gate operating at average delay (WER=0.5) is 25× smaller than when

operating at a WER= 10−14. This clearly indicates the energy-robustness

trade-off for ASL gates, thereby underscoring the large energy penalty asso-

ciated with the constraint of highly reliable operation of ASL gates.
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3.3 The ε-noisy model for ASL logic gates

The ε-noisy model for logic gates was first introduced by von Neumann [27]

by defining ε as the probability of error at the output of a given logic gate.

Thus, ε is the error rate of the logic gate. Operation of an ε-noisy gate is

equivalent to an XOR operation on the output of the corresponding error-

free gate and a Bernoulli random variable θ with Pr{θ = 1} = ε as shown in

Figure 3.2(b).

We adopt the ε-noisy gate model of Figure 3.2(b) for ASL-based logic

gates by assuming ε = WER(Tg, Isupply). Thus, ASL-based ε-noisy logic

gates are unique in the way that the error rate of each individual gate can be

controlled by its delay Tg as well as supply current Isupply. Since switching

errors are caused by random thermal perturbations of magnetization state of

an output nanomagnet, all ASL-based logic gates make errors independent of

each other. We also assume switching errors to be independent of the inputs.
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Chapter 4

SHAPING ERROR STATISTICS

In this chapter, we describe our proposed technique for significantly enhanc-

ing error-resiliency of any given logical architecture, when component ASL-

based gates are highly error-prone. While there have been many research

attempts exploring the theoretical aspects of achieving reliable computation

using ε-noisy gates [28, 29, 33], they all consider the case of having identical

error rate ε for all the component gates. However, in our approach, we exploit

a physics-based approximate analytical expression of error rate ε for ASL-

based gates to control it effectively for different logic gates via appropriate

choice of gate delay Tg for each gate. Recall that gate delay Tg for ASL-based

gates is the duration for which supply current is applied to the gate. Since

ASL gates are non-volatile, it is more energy-efficient if ASL gates are turned

on only for the time of operation [38]. Hence, the designer has direct control

over the gate delay Tg. This fact is exploited to shape the error distribution

in the proposed techniques.

We first describe our model of computation using ε-noisy gates. We then

describe the proposed design technique to achieve a desired error distribution

at the system level, thus paving a way towards enhanced error resiliency.

Computation	
Block

𝝐-noisy	gates	

𝑥# 𝑦% = 𝑦' + 𝜂

𝑥*

…

Erroneous output

Correct output

Computation error
𝑘

𝑘

𝑝

Figure 4.1: A model of computation using ε-noisy gates.
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𝑃#(𝜂)
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𝑃#(𝜂)𝑃#(𝜂) 1

(a) (c)(b)

Figure 4.2: Illustration of Pη(η) when: (a) all gates are highly error prone,
(b) all gates are reliable, and (c) when it is shaped to be sparse.

4.1 Model of computation

Consider a computation block in Figure 4.1 consisting of ASL-based ε-noisy

logic gates. We denote N inputs of this block as x1, x2 . . . , xN , where each

xi is a k-bit binary number. Since the logic gates are ε-noisy, the output

of this computation block is erroneous and it is denoted as ya. We define

correct output yo as the output when ε = 0 for all gates, i.e., when all the

logic gate are reliable. Adopting the definitions in the SEC framework, the

computation error η is defined as the difference between erroneous output

(ya) and correct output (yo); η is a random variable having probability mass

function (PMF) Pη(η). The system-level performance depends upon the dis-

tribution of η. For example, at one extreme, if all the logic gates are equally

error prone with ε ≈ 40%, the η will have a dense distribution (illustrated in

Figure 4.2(a)) resulting in very low system-level performance. At the other

extreme, if all the logic gates are highly reliable, the system-level performance

will be maintained but will also result in very high energy consumption (cor-

responding in Figure 4.2(b)). We propose design techniques to shape the η

statistics to be sparse (as illustrated in Figure 4.2(c)) and then use SEC-

based error-compensation to achieve energy-efficient implementation while

maintaining system-level performance even though constituent ε-noisy gates

are operating at high error-rate. Sparse PMF of η enables low-complexity

and effective error compensation, which is a key requirement to minimize the

energy overhead of the error compensation block.
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Figure 4.3: Illustration of: (a) path and critical path terminology, (b) delay
assignments for inter-path delay balancing (IPDB), and (c) delay
assignments for intra-path delay redistribution (IPDR).

4.2 Path delay balancing and redistribution

In this section, we propose inter-path delay balancing (IPDB) and intra-path

delay redistribution (IPDR) techniques. These are the architectural-level

techniques to shape the PMF of η to be sparse. These techniques enable

effective error compensation using SEC.

A path in a logic circuit is a chain of cascaded logic gates starting at a

primary input and ending at one of the primary outputs. A critical path in

a logic circuit is the path with the maximum delay. If all gates are assumed

to have the same delay, the critical path will have the maximum number

of cascaded gates. Figure 4.3(a) illustrates the concept of path and critical

path. We define path delay as the sum of delays of individual cascaded gates

in that path while average gate delay along that path is the ratio of path

delay to the number of gates along that path. Given a combinational logic

circuit, we classify the constituent logic gates in two classes, namely, the

logic gates in the critical path and those that are not in the critical path.

We apply the IPDB technique to those gates that are not in the critical path

and the IPDR technique to those gates that are in the critical path.

Definition 1. Inter-path delay balancing (IPDB) is a technique in which the

delays of all the gates that are not in the critical path are increased such that

every gate lies on at least one path whose delay is equal to the critical path

delay.

Thus, an application of IPDB makes the gates on the critical path be the

most error prone gates in the circuit. This is because gate error rate ε reduces
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Figure 4.4: Architecture of a ripple carry adder (RCA).

exponentially with increasing gate delay Tg. Figure 4.3(b) illustrates possible

delay assignments for IPDB in the logic circuit in Figure 4.3(a).

Definition 2. Intra-path delay redistribution (IPDR) is a technique in which

the delays of gates in the critical path are made unequal such that the critical

path delay is unaltered. This unequal delay assignment is made such that the

distribution of η becomes sparse.

IPDR is illustrated in Figure 4.3(c), where instead of operating all gates

with equal delay T , gates G1 and G2 are operated slower at the expense of

faster operation of gates G3 and G4.

It is to be noted that once the IPDR is applied, the delays of gates on

the non-critical paths need to be adjusted to keep the delays of all the paths

equal. Also, even after the application of IPDB and IPDR, the average gate

delay along the critical path remains the same. We define the average error

rate (εcrit−avg) as the error rate corresponding to the average gate delay along

the critical path (Tcrit−avg), i.e. εcrit−avg = ε(Tcrit−avg, Isupply).

4.3 Error statistics shaping for a ripple carry adder

We now apply IPDB and IPDR techniques to a ripple carry adder (RCA) in

order to demonstrate the error statistics shaping at the output of the adder.

Figure 4.4 shows the architecture of a 15-bit RCA. Its critical path consists

of carry evaluation blocks of individual full adders and it starts at the inputs
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Figure 4.5: Illustration of gate delay assignments for RCA after application
of: (a) IPDB for all non-critical paths, and (b) IPDR for the critical path.

19



of the least significant bit (LSB) full adder and terminates at the output of

the most significant bit (MSB) full adder. Figure 4.5(a) illustrates the gate

delay assignments for all the gates in non-critical paths after application of

IPDB, while Figure 4.5(b) illustrates the same for the gates in the critical

path after application of IPDR. It is to be noted that, in this case, sparse

distribution is achieved by assigning smaller gate delays for the gates in the

first few MSB full adders, thus making those MSBs more erroneous compared

to remaining output bits.

The statistics of error η at the output of RCA under various gate delay

assignments is shown in Figure 4.6. It can be observed in Figure 4.6(a)

that, when all gate-delays are equal, distribution of error η is very dense,

making error compensation extremely difficult and severely degrading the

system-level performance. After application of IPDB, error distribution does

improve partially (Figure 4.6(b)), while IPDB and IPDR together achieve

the most sparse error distribution (Figure 4.6(c)). Thus, after application of

IPDB and IPDR, one can employ SEC to effectively compensate the errors

with shaped statistics and maintain system-level performance, as described

in the next chapter.
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Figure 4.6: Distribution of error η in RCA: (a) having equal gate delays,
(b) with IPDB, and (c) with IPDB and IPDR for εcrit−avg = 0.1.

21



Chapter 5

APPLICATION: SPIN-BASED BINARY
CLASSIFIER

In this chapter, we apply error statistics shaping techniques and SEC to a

binary classifier in order to demonstrate the improvement in system-level

performance compared to conventional and NMR-based designs.

5.1 Architecture of spin-based binary classifier

We consider the following classification problem. For two fixed k-bit binary

numbers w1 and w2, the classification decision Zo on k-bit input x is made

as follows:

Zo =

0, if x− w1 ≥ w2 − x

1, otherwise

where w1 ≤ x ≤ w2. The corresponding architecture is shown in Figure 5.1.

Two 1’s complement and RCA blocks constitute the feature extractor (FE),

which is designed using erroneous ASL gates, while the final comparator is

assumed to be error-free.

Figure 5.2 shows the architecture of the SEC for a binary classifier. We

apply IPDB and IPDR techniques to the FE block in order to shape the error

statistics at the outputs d1a and d2a. We use reduced precision replica (RPR)

estimator [35] so that the estimator error distribution remains bounded over

smaller range. Since the critical path of the estimator is smaller than that of

the main block, the ASL gates in the estimator can be run slower and, hence,

at lower error rate. In particular, we make the estimator gates slow enough

such that the critical path delay of the estimator becomes equal to that of the

main block. For simulations, we choose k = 15 and m = 4. We also make the

gates in the fusion block reliable by setting their error rate ε = 10−6. These

choices are justified since both estimator and fusion block have proven to be
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Figure 5.1: ASL-based binary classifier.
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33×

100×

Figure 5.3: Simulation results comparing the performance of serial
architecture, NMR and proposed approach of shaping error statistics and
SEC.

of much smaller complexity for large system implementations [37], allowing

the associated energy overhead to be amortized.

We refer to the conventional design consisting of gates having equal delays

(and hence equal error rates) as the serial architecture. In the case of NMR,

we replicate the serial architecture N times and take bitwise majority vote

on the output of each replica. We assume a fixed error rate of ε ≤ 10−6 for

the component ASL gates in the majority voter.

5.2 Simulation results

We study the performance of different techniques in terms of classification

error rate defined as Pr{Ẑ 6= Zo}, where Ẑ is the decision made by the

ASL-based implementation while Zo is the correct decision. We measure the

average spin device error rate of a design in terms of error rate corresponding

to average gate delay along the critical path of the design (εcrit−avg).

As observed in Figure 5.3, the proposed approach of statistics shaping

techniques together with SEC achieves 33× improvement in performance as

24



compared to the NMR-based design with N = 7, when the average spin-

device error rate is as high as 10%. This demonstrates the effectiveness of

IPDB and IPDR in shaping the error statistics and of SEC in compensat-

ing for the errors. Such significant improvement in system-level performance

translates into 100× improvement in the tolerance of average error rate of

spin-devices compared to the conventional design while achieving the same

system-level performance. In particular, the proposed approach achieves the

classification error rate of 0.6% even though the average spin device error

rate (εcrit−avg) is 10%. It is also to be noted that the performance of NMR-

based implementations improves faster as εcrit−avg is reduced, indicating the

effectiveness of NMR at low error rates, albeit with high area and energy

overhead. This result also confirms that application of only IPDB indeed

improves the system-level performance marginally over the conventional de-

sign. This is because, after applying IPDB, the highly erroneous gates are

restricted to the critical path while all the gates on other paths operate at

lower error rate.
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Chapter 6

CONCLUSION

In this thesis, we proposed an approach to shape the error statistics of a

spin-based system via architectural-level delay assignment techniques. Such

statistics shaping enables low-complexity, effective error compensation via

the SEC framework, allowing the use of highly error prone but energy efficient

devices.

This work began at device-level and culminated in achieving improvements

in system-level performance. In Chapter 3 we used a physics-based analytical

framework to justify the use of an ε-noisy model for error prone ASL devices

in order to capture their behavior at circuit/system-level. In Chapter 4, we

proposed delay assignment techniques, namely IPDB and IPDR, to achieve

error statistics shaping at the output of a given logic network. We applied

these techniques to a scalar binary classifier in Chapter 5 to demonstrate 33×
improvement in robustness over NMR-based design and 100× higher device

error rate tolerance over the conventional design.

Although this work establishes the prospects of maintaining system-level

performance in the presence of error-prone components, the energy benefits

of such technology need to be carefully studied. In particular, techniques

such as IPDB and IPDR need to applied such that delay adjustments do not

incur energy overheads. The cost of an additional control unit, required to

appropriately control gate delays, also needs to be evaluated.

This ability to control the error statistics opens up many possibilities for

future work. For example, one can exploit this ability to enhance the gener-

alization behavior with limited training data in machine learning algorithms.

One can also explore the use of noise to enhance certain information process-

ing tasks.
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