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ABSTRACT

In this work, we focus on applications of quickest change detection (QCD)

theory in the problem of line outage detection and identification. We start

by discussing fundamental results of sequential hypothesis testing and QCD,

and by proposing an algorithm for the QCD setting under transient dynam-

ics. Following, we apply these results in the line outage detection problem.

QCD algorithms are applied on measurements of voltage phase angles, which

are collected using phasor measurement units (PMUs), sampling units that

sample at an approximate rate of 30 samples per second and that are placed

in the buses of the system. The goal is to detect a line outage as fast as

possible, under false alarm constraints. First, we study the line outage set-

ting where no transient dynamics are present. Then, we propose a QCD

algorithm for the case where transient dynamics are present. Line outage

identification schemes are also discussed.
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CHAPTER 1

INTRODUCTION

The motivation behind this work stems from the increasing presence of pha-

sor measurement units (PMUs) across the power grid. The introduction of

this new measurement unit has led to significant advances in the stability

monitoring and state estimation capabilities for the power system. As a re-

sult, the integration of the PMUs has paved the way for the use of real-time

algorithms that can be exploited to detect line outages in an efficient and

robust manner. Furthermore, the statistical behavior of the observed mea-

surement process is another motivation. In particular, a line outage event

leads to a change in the statistical behavior of the observed sequence of obser-

vations. The detection of changes of this nature is a problem that is studied

thoroughly in the QCD literature.

1.1 Background

Timely detection of line outages in a power system is crucial for maintaining

operational reliability. In this regard, many online decision-making tools rely

on a system model that is obtained offline, which can be inaccurate due to

bad historical or telemetry data. Such inaccuracies have been a contribut-

ing factor in many recent blackouts. For example, in the 2011 San Diego

blackout, operators were unable to determine overloaded lines because the

network model was not up to date [1]. This lack of situational awareness

limited the ability of the operators to identify and prevent the next criti-

cal contingency, and led to a cascading failure. Similarly, during the 2003

US Northeastern blackout, operators failed to initiate the correct remedial

schemes because they had an inaccurate model of the power system and could

not identify the loss of key transmission elements [2]. These blackouts high-

light the importance of developing online measurement-based techniques to
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detect and identify system topological changes that arise from line outages.

In this work, we tackle such topology change detection problems by utilizing

measurements provided by PMUs.

1.2 Problem Statement

Our work extends the results of [3], where the authors developed a method for

line outage detection and identification based on the theory of quickest change

detection (QCD) [4], [5], [6]. In this method, the incremental changes in real

power injections are modeled as independent zero-mean Gaussian random

variables. Then, the probability distribution of such incremental changes is

mapped to that of the incremental changes in voltage phase angles via a linear

transformation obtained from the power flow balance equations. The PMUs

provide a random sequence of voltage phase angle measurements in real-time;

when a line outage occurs, the probability distribution of the incremental

changes in the voltage phase angles changes abruptly. The objective is to

detect a change in this probability distribution after the occurrence of a line

outage as quickly as possible while maintaining a desired false alarm rate. In

this work, we focus on the problem of line outage detection and identification

in two settings. First, we assume that after the outage the system changes

state instantaneously, and later we study a more realistic setting, where the

system model is characterized by transient behavior.

1.3 Related Work

Early approaches for topological change detection include algorithms based

on state estimation [7], [8], and rule-based algorithms that mimic system op-

erator decisions [9]. More recent methods exploit the fast sampling of voltage

magnitudes and phases provided by PMUs [10]–[12]. However, these schemes

do not exploit the persistent nature of line outages and do not incorporate

transient behavior. Only the most recent PMU measurement is used to de-

termine if an outage has occurred. The authors of [13] proposed a method to

detect line outages using statistical classifiers where a maximum likelihood

estimation is performed on the PMU data. The authors also considered the
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transient response of the system after a line outage by comparing synthe-

sized data against actual data. However, their method requires knowledge of

the exact time of the line outage before applying the algorithm, whereas our

proposed methods do not have this restriction.

1.4 Contribution of Thesis

We first study the line outage problem when no transient dynamics are

present, i.e., the shift from pre- to post- change distribution happens al-

most instantly. As in [3], the algorithm that is proposed as a solution is

based on adapting the Generalized Cumulative Sum (G-CuSum) test from

the QCD literature (see, e.g., [4], [6]) to the line outage detection problem.

Our algorithm not only takes the persistent covariance change into consid-

eration, but it also exploits past observations to detect the occurrence of

an outage. In [3], the statistics for each individual line are compared to a

common predetermined threshold, and an outage is declared if one of these

statistics crosses the threshold. In this work, we present a method for setting

a different threshold for each line outage statistic by taking the dissimilar-

ity between the pre- and post-change distribution into consideration. This

difference between pre- and post-change distributions is described by the

Kullback-Leibler (KL) divergence, a metric that quantifies the distance be-

tween two distributions. In addition, we compare the performance of our

test to that of the Shewhart test, the meanshift test, and the algorithm of

[3], and observe notable improvements in terms of performance.

Next, we study the line outage problem under the presence of an arbitrary

number of transient periods. We improve on the method proposed in [3]

by considering the power system transient response immediately following

the line outage. For example, after an outage, the transient behavior of the

system is dominated by the inertial response from the generators. This is

followed by the governor response and then the automatic generation control

(AGC). We incorporate these dynamics into the power system model by relat-

ing incremental changes in active power demand to active power generation.

We use this model to develop the Dynamic CuSum test (D-CuSum), which

is used to capture the transient behavior in the non-composite QCD problem

(see e.g., [4], [6]). Then, the Generalized Dynamic CuSum (G-D-CuSum) test
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is derived by calculating a D-CuSum statistic for each possible line outage

scenario; an outage is declared the first time any of the test statistics crosses

a pre-specified threshold. The proposed test has better performance because

it considers the transient behavior in addition to the persistent change in

the distribution that results from the outage. Furthermore, we discuss line

outage identification techniques that can be employed easily in practice.

The remainder of this thesis is organized as follows. In Chapter 2, we re-

view the problem of binary sequential hypothesis testing. In Chapter 3, we

study the problem of quickest change detection (QCD) and provide theoret-

ical results that are going to be used throughout this work. In Chapter 4,

we formulate the QCD problem under transient dynamics and propose the

D-CuSum test. In Chapter, 5 we study the problem of line outage detection

and identification when no transient dynamics are present, and propose a G-

CuSum based algorithm that uses varying thresholds to achieve performance

gains. In Chapter, 6 we introduce the G-D-CuSum test as a proposed algo-

rithm for detecting outages under transient behavior. We also demonstrate

methods for identifying outaged lines. In Chapter, 7 we provide simulation

results on the IEEE 14-bus and 118-bus systems. Finally, concluding remarks

are made in Chapter 8.
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CHAPTER 2

BINARY SEQUENTIAL HYPOTHESIS
TESTING

In this chapter, we provide a brief review of the problem of binary sequential

hypothesis testing, introduced in [14] (also see [15]). In this setting, mea-

surements following one of two candidate distributions are fed to a decision

maker sequentially. The goal is to design stopping procedures that dictate

when to stop sampling, and use the data available up to the time of stop to

decide in favor of one of the two hypotheses. Note that, in contrast to the

traditional detection theory techniques where the sample size is fixed before-

hand, in sequential hypothesis testing the sample size is determined online,

by managing a tradeoff between the number of samples and the desired level

of accuracy.

2.1 Problem Statement

In the present setting, the measurements come from a stream of observations

that is characterized by one of two potential statistical behaviors (in this

work we will focus on the binary testing problem). As a result, we have two

hypotheses on the sampled data:

H0 : Xk ∼ f0 i.i.d.

H1 : Xk ∼ f1 i.i.d.

The goal here is to design a sequential test (τ, δ), which is essentially a

stopping time τ accompanied by a decision rule δ. The notion of stopping

time is defined formally as follows:

Definition 1. A stopping time τ adapted on a random process {Xk}∞k=1 is

a random variable with the property that {τ = k} ⊂ σ(X1, . . . , Xk), where

σ(X1, . . . , Xk) the σ-algebra generated by X1, . . . , Xk. Intuitively, this means
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that no observations after time instant k are necessary to decide whether to

stop sampling at k.

The stopping time τ should be designed so that the observations {Xk}τk=1

are sufficient to make a correct decision with respect to given accuracy. Note

that the present problem is characterized by a pair of conflicting goals: on one

hand we need to make an accurate decision regarding the statistical behavior

of the process, which may require a large number of samples, on the other

hand, a larger sample size is more costly. Thus, we have to manage a tradeoff

which will depend on our budget and the desired level of accuracy.

2.2 Bayesian and non-Bayesian Formulation

In [14], two formulations are proposed to capture the tradeoff between sample

size and detection accuracy. For the first one, we follow a Bayesian approach,

meaning we assume known priors π0, π1, on the hypotheses. The second is

based on a Neyman-Pearson (NP) approach. The solution to both instances

is the Sequential Probability Ratio Test (SPRT) proposed in [14]. We start

by defining the Bayes risk for the first formulation:

Definition 2. For a sequential test (τ, δ), the Bayes risk is given by

r(τ, δ) = c[π0E0[τ ] + π1E1[τ ]] + π0PF (τ, δ) + π1PM(τ, δ), (2.1)

where E0 is the expectation under distribution f0, E1 is the expectation

under distribution f1, c is the cost that we suffer for each additional sample

measured, PF is the probability of false alarm, and PM is the probability of

misdetection. A Bayesian sequential test is the sequential test (τ, δ)B that

minimizes the Bayes risk, i.e.

(τ, δ)B = arg min
(τ,δ)

r(τ, δ). (2.2)

When no priors on the hypotheses are available, we can approach the se-

quential hypothesis testing problem through an NP approach. In particular,
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such a formulation is given as follows:

min E0[τ ] and E1[τ ]

subject to PF (τ, δ) ≤ α

PM(τ, δ) ≤ β,

(2.3)

where α, β ∈ (0, 1). In practical terms, the goal in this formulation is to find

the sequential test that minimizes E0[τ ] and E1[τ ] among all tests that have

sufficiently small PF and PM .

2.3 The Sequential Probability Ratio Test (SPRT)

Here, we present the Sequential Probability Ratio Test (SPRT), proposed in

[14], which is the solution to the two tradeoff formulations presented in Sec.

2.2. To define the SPRT, we use the log-likelihood ratio of X1, . . . , Xk as a

test statistic. Define the test statistic at time k as:

Sk =
k∑
j=1

log
f1(Xj)

f0(Xj)
. (2.4)

The corresponding stopping and decision rule for the SPRT is given by:

τSPRT = inf{k ≥ 1 : Sk 6∈ (a, b)} (2.5)

and

δSPRT =

1 if SτSPRT > b

0 if SτSPRT < a,
(2.6)

where a < 0 < b are the test thresholds.

The SPRT test involves calculating a test statistic Sk at each time instant,

with S0 := 0. The SPRT statistic is then compared to thresholds a and b.

If Sk > b, we stop and decide in favor of H1. If Sk < a, we stop and decide

in favor of H0. Otherwise, we continue sampling until we have accumulated

enough data for an accurate decision.

In [14] it was shown that the SPRT is optimal for both the Bayesian and the

non-Bayesian tradeoff formulations that were presented in Sec. 2.2. There, it

is shown that the optimal test with respect to (2.2) is derived by selecting a
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Figure 2.1: Typical evolution of the SPRT statistic with f0 = N (0, 1) and
f1 = N (0,

√
2).

and b, so that the Bayes risk is minimized. For (2.3) it is shown that selecting

thresholds that satisfy the inequality constraints with equality results in an

optimal scheme.

In Fig. 2.1 we show the evolution of the SPRT statistic for two different

hypotheses on the data, namely, H0 corresponding to f0 = N (0, 1) and H1

corresponding to f1 = N (0,
√

2). In particular, in Fig. 2.1(a) we see a sample

path for the case that the data is generated by the distribution f0 = N (0, 1).

Note how the test statistic decreases until threshold a = −10 is crossed and

decision in favor of H0 is taken. Similarly, when the data are generated by

f1, the test statistic grows until it crosses threshold b = 10 and we take a

decision in favor of H1.

For an intuitive interpretation of the detection algorithms discussed in

this work, we will be using the Kullback-Leibler (KL) divergence, which is
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an information theoretic measure of the discrepancy between two probability

distributions.

Definition 3. The KL divergence between two probability density functions,

f and g, is defined as:

D(f ‖ g) :=

∫
f(x) log

f(x)

g(x)
dx := Ef

[
log

f(X)

g(X)

]
. (2.7)

It is easy to show that D(f ‖ g) ≥ 0, with equality if and only if f = g. For

a detailed study of the KL divergence see, e.g., [16].

A simple justification as to why the SPRT is a suitable algorithm for the

binary sequential hypothesis testing problem can be given by examining the

expected value of the test statistic under both regimes. In particular, for

hypotheses H0 and H1, respectively, we have that

Ef0 [Sk] = Ef0
[ k∑
j=1

log
f1(Xj)

f0(Xj)

]
= −

k∑
j=1

Ef0
[

log
f0(Xj)

f1(Xj)

]
= −kD(f0 ‖ f1) < 0

and

Ef1 [Sk] = Ef1
[ k∑
j=1

log
f1(Xj)

f0(Xj)

]
=

k∑
j=1

Ef1
[

log
f1(Xj)

f0(Xj)

]
= kD(f1 ‖ f0) > 0.

As a result, when H0 is the true hypothesis, the test statistic will decrease

with an expected drift of −D(f0 ‖ f1), eventually passing a negative thresh-

old of a. Similarly, when H1 is the true hypothesis, the test statistic will

grow with an expected drift of D(f1 ‖ f0), eventually crossing a positive

threshold of b. Note that since the average drifts are fixed for a specific pair

of distributions, making b larger or a smaller will result in a larger number

of sampled measurements on average, thus improving the decision accuracy.

For a thorough analysis of the SPRT performance evaluation see [15].
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CHAPTER 3

QUICKEST CHANGE DETECTION

In this chapter, we study the problem of quickest change detection (QCD).

In QCD, the goal is to detect an abrupt change in the statistical behavior of

a sequentially observed process. Detection techniques aim to minimize the

delay under false alarm constraints, i.e., detect a change in the statistical

behavior of the process fast enough while maintaining a sufficiently low oc-

currence rate of false alarm events. The theoretical results of this chapter are

fundamental for the rest of the thesis. For a deeper analysis of QCD theory

we refer the reader to [4]; also see [5] and [6].

3.1 Problem Statement

In Chapter 2, we studied the problem of binary sequential hypothesis testing,

where a sequence of measurements is characterized by one of two statistical

behaviors, and we aim to detect the true behavior by processing samples in

a sequential manner. In QCD, we observe a random process that initially

follows a distribution f0 i.i.d. At some unknown time instant γ, the process

switches to a distribution f1 i.i.d. In summary, the statistical behavior of the

process is as follows:

Xk ∼ f0, for k < γ

Xk ∼ f1, for k ≥ γ.

This is also called the i.i.d. setting. For the traditional, non-composite

instance of the problem, both f0 and f1 are known beforehand. In Fig. 3.1

we generate a sequence of samples that are characterized by a distribution

shift of this form. In this work, we will focus on the minimax setting of the

problem, where it is assumed that γ ≥ 1 is unknown but not random.

The goal in QCD is to create a procedure that will be used to detect the
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Figure 3.1: Example of sample path of a process under the QCD setting.
At γ = 20 the distribution changes from N (0, 1) to N (0, 2).

abrupt statistical behavior change that occurs at γ. This procedure will have

the structure of a stopping time τ adapted on {Xk}, with the understanding

that instead of stopping sampling, we declare that a change has occurred.

3.1.1 Minimax QCD Tradeoff Formulations

The QCD problem is characterized by an underlying tradeoff: on one hand,

we want to detect distribution changes as fast as possible, while on the other

hand we want to avoid frequent false alarm events, i.e., avoid declaring a

change has occurred, when it has not occurred yet. To this end, we present

two popular delay–mean time to false alarm formulations that are used in

the QCD literature, due to Lorden [17] and Pollak [18] respectively.

Before presenting these two tradeoff formulations we need to define two

delay metrics that we will be using. The first delay metric, which was pro-

posed by Lorden, is based on the expected value of (τ − γ)+ conditioned on

the worst possible measurements before change. In particular, for a stopping

time τ , define the first delay metric as:

WADD(τ) = sup
γ≥1

ess supEγ
[
(τ − γ)+

∣∣∣∣X1, . . . , Xγ−1

]
, (3.1)
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where Eγ denotes the expected value when the underlying distribution is the

one induced on the sequence of observations when an outage occurs at γ,

and (x)+ := max{x, 0}. Note that (3.1) involves taking the expected value

of (τ −γ)+ after conditioning on a set of observations {X1, . . . , Xγ−1}. Using

the ess sup can be seen as choosing the worst possible set of observations to

condition on, i.e., the set of observations that maximize the expected delay for

given γ. Finally, since the time instant during which the distribution change

happens is unknown, we have to take the sup over all possible changepoints.

The second delay metric was proposed by Pollak, and is defined as follows:

CADD(τ) = sup
γ≥1

Eγ
[
τ − γ

∣∣∣∣τ ≥ γ

]
. (3.2)

It is easy to show that for any stopping rule τ we have that

CADD(τ) ≤ WADD(τ),

i.e., the WADD metric is a more pessimistic way of measuring the delay.

It should be noted that although the delay metrics of (3.1) and (3.2) are

generally difficult to compute, for the algorithms studied in this thesis, they

can be easily computed by Monte Carlo simulations (see [6] for more details).

With the two defined delays in mind we move on to present the related

tradeoff formulations. We start with Lorden’s formulation:

Formulation 1.
min
τ

WADD(τ)

subject to E∞[τ ] ≥ β.
(3.3)

Lorden’s formulation involves searching among the set of stopping times

that satisfy E∞[τ ] ≥ β, where E∞ the expectation under the measure that

no distribution change occurs, to find the one that minimizes WADD. The

inequality constraint is imposed to guarantee that false alarm events will be

sufficiently rare.

Similarly, for Pollak’s delay we have a respective tradeoff formulation:

Formulation 2.
min
τ

CADD(τ)

subject to E∞[τ ] ≥ β.
(3.4)

In the next section we present algorithms that are used in QCD theory.
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Figure 3.2: Shewhart test run for data of Figure 3.1.

3.2 QCD Algorithms

A simple QCD algorithm was proposed by Shewhart in [19]. In defining the

Shewhart test, only the current observation is used. In particular, define the

Shewhart test statistic by

W SH
k = log

f1(Xk)

f0(Xk)
. (3.5)

The Shewhart test is based on the fact that the expected value of the log-

likelihood ratio after change is given by D(f1 ‖ f0), which is a positive

quantity; thus, detection can be achieved by using a positive threshold. In

particular, the Shewhart stopping time is defined as

τSH = inf{k ≥ 1 : W SH
k > A}, (3.6)

where A > 0 the threshold. In Fig. 3.2, we show the evolution of the

Shewhart statistic for the samples shown in Fig. 3.1.

A detection scheme that enjoys optimality properties with respect to Pol-

lak’s and Lorden’s formulation is the so-called Cumulative Sum (CuSum)

algorithm, proposed by Page in [20]. The CuSum algorithm involves accu-

mulating log-likelihood ratios between the pre- and post-change distribution

(hence the name of the algorithm) to form the test statistic, and declaring

a distribution change has occurred when said test statistic crosses a posi-

tive threshold. In particular, the CuSum statistic at time k is given by the
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following recursion:

WC
k =

(
WC
k−1 + log

f1(Xk)

f0(Xk)

)+

, (3.7)

with WC
0 = 0. The corresponding CuSum stopping time is defined as

τC = inf{k ≥ 1 : WC
k > A}. (3.8)

In Fig. 3.3, we show the evolution of the CuSum statistic for the samples

shown in Fig. 3.1.

The notion of KL divergence can also be used here to provide an intu-

itive interpretation of the CuSum test. In particular, understanding the idea

behind the algorithm boils down to understanding the behavior of the log-

arithmic term of (3.7) before and after the distribution change. Before the

change occurs, we have that for the expected value of the logarithmic term

of (3.7):

Ef0
[

log
f1(Xk)

f0(Xk)

]
= −D(f0 ‖ f1) < 0,

which will cause the test statistic to take non-negative values around zero.

After the change occurs we have that

Ef1
[

log
f1(Xk)

f0(Xk)

]
= D(f1 ‖ f0) > 0.

Thus, the CuSum statistic will grow with a positive average drift ofD(f0 ‖ f1),
eventually crossing a positive threshold and declaring a distribution change

has occurred.

An algorithm that has a very strong connection to the CuSum algorithm

is the so called Shiryaev-Roberts (SR) algorithm. The SR test statistic is

given by the following recursion:

W SR
k = (1 +W SR

k−1) log
f1(Xk)

f0(Xk)
, (3.9)

with W SR
0 = 0. The corresponding SR stopping time is defined as

τSR = inf{k ≥ 1 : WC
k > A}. (3.10)
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Figure 3.3: CuSum algorithm run for data of Figure 3.1.
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Figure 3.4: Shiryaev-Roberts algorithm run for data of Figure 3.1.

In Fig. 3.4 we show the evolution of the SR statistic for the samples shown

in Fig. 3.1.

3.3 Optimality Properties of CuSum and

Shiryaev-Roberts Algorithms

In Sec. 3.2, we presented algorithms that can be used to detect an abrupt

change in the statistical behavior of a sequence of measurements under the

usual i.i.d. setting. In the current section, we provide theoretical justification

for the use of the CuSum and SR algorithms by reviewing properties regard-
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ing the optimality of the algorithms for Lorden’s and Pollak’s formulations

of the QCD problem.

For the i.i.d. setting, Lorden showed in [17] that the CuSum algorithm is

asymptotically optimal with respect to Formulation 1 as γ → ∞. In detail

we have the following theorem:

Theorem 1. With a threshold choice of A = log γ, the CuSum stopping rule

(3.8) satisfies

E∞[τC] ≥ γ

and

inf
τ :E∞(τ)≥γ

WADD(τ) ∼WADD(τC) ∼ log γ

D(f1 ‖ f0)
,

as γ → ∞, where the ∼ notation is used to denote that the ratio of the

quantities on the two sides of the ∼ approaches 1 in the limit as γ →∞.

A stronger result was proved in [21] and later in [22], where it was shown

that the CuSum algorithm is exactly optimal with respect to Formulation 1.

For the same QCD setting, Pollak showed in [18] that the SR algorithm is

asymptotically optimal with respect to Formulation 2 as γ → ∞. In detail,

we have the following theorem:

Theorem 2. With a threshold choice of A = γ, the SR stopping rule (3.10)

satisfies

E∞[τSR] ≥ γ

and

inf
τ :E∞(τ)≥γ

CADD(τ) ' CADD(τSR) ' log γ

D(f1 ‖ f0)
,

as γ →∞, where the ' notation is used to denote that the difference of the

quantities on the two sides of the ' approaches 0 in the limit as γ →∞.

Since the performance of both the CuSum and the SR algorithms are

asymptotically equal, we have that Theorem 1 and Theorem 2 imply that

both the algorithms are asymptotically optimal with respect to Formulation

1 and Formulation 2.
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CHAPTER 4

QUICKEST CHANGE DETECTION
UNDER TRANSIENT DYNAMICS

Up to now, we have studied the traditional QCD problem, where at some

time instant γ the distribution of the observed process changes from an ini-

tial distribution to a final distribution. In this section, we further generalize

the QCD problem by incorporating transient dynamics. As a result, the shift

from the initial to the final distribution does not happen instantaneously, but

after a series of cascading transient stages of finite duration, each one corre-

sponding to a different probability distribution. We study the non-composite

version of the transient QCD problem, where all distributions are known be-

forehand. We introduce the Dynamic CuSum (D-CuSum) algorithm as the

proposed algorithm.

4.1 The Dynamic CuSum Algorithm

Assume a random process {Xk}∞k=1 with the following statistical behavior:

Xk ∼



f0, if 1 ≤ k < γ0,

f (0), if γ0 ≤ k < γ1,
...

f (i), if γi ≤ k < γi+1,
...

f (T ), if γT ≤ k,

(4.1)

where γi ∈ N, i = 0, . . . , T . Note that the case of γi+1 = γi + 1 corresponds

to a transient stage with a duration of one time instant. The goal is to design

a stopping rule that will detect the change in the statistical behavior of the

observed process that takes place at time instant γ0.

A heuristic test solution can be derived by considering this problem as a

dynamic composite hypothesis testing problem. Thus, at every time instant
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k, choose between the following two hypotheses:

Hk
0 : k < γ0,

Hk
1 : k ≥ γ0.

The nominal hypothesis Hk
0 corresponds to the case that the time instant

γ0 has not been reached yet, while the alternative hypothesis Hk
1 corresponds

to the case that γ0 has been reached. Each hypothesis induces a different

set of distributions on the data X1, X2, . . . , Xk. In particular, Hk
0 is a single

hypothesis under which the data follow distribution f0 i.i.d. and Hk
1 is a

composite hypothesis, i.e., it induces one distribution belonging to a set of

distributions. The distribution that is induced depends on the values of the

γ’s and k. To find the test statistic we first form the likelihood ratio of this

hypothesis testing problem for an arbitrary choice of γ’s:

min{γ1−1,k}∏
j=γ0

f (0)(Xj) · · ·
k∏

j=min{γT−1,k}+1

f (T )(Xj)

k∏
j=γ0

f0(Xj)

.

Note that this likelihood ratio should be interpreted with the understanding

that
k∏

j=k+1

f (i)(Xj)

f0(Xj)
:= 1 for i = 0, . . . , T . This is a natural generalization of

the maximum likelihood interpretation of the CuSum statistic [6]. The test

statistic is derived by taking the maximum with respect to γ0, . . . , γT . An

equivalent test statistic can be derived by maximizing the logarithm of the

above quantity. As a result, we have that

Wk = max
γ0<···<γT

{min{γ1−1,k}∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ · · ·+

k∑
j=min{γT−1,k}+1

log
f (T )(Xj)

f0(Xj)

}
,

with the understanding that γ0 ≤ k holds. This maximization is the reason

the test is independent of the transient duration, as will be seen later. Wk

can be written in the following way:

Wk = max{Ω(0)
k , . . . ,Ω

(i)
k , . . . ,Ω

(T )
k }, (4.2)
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where

Ω
(i)
k = max

γ0<γ1<···<γi≤k

{ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ . . .

+
k∑

j=γi

log
f (i)(Xj)

f0(Xj)

}
, i = 0, . . . , T,

(4.3)

by using the fact that
k∑

j=k+1

log f (i)(Xk)
f0(Xk)

= 1. We claim that the (4.3) can be

written in a recursive manner as follows:

Ω
(i)
k = max{Ω(i)[k − 1],Ω(i−1)[k − 1]}+ log

f (i)(Xk)

f0(Xk)
,

for i = 0, . . . , T and Ω
(0)
k := 0 for all k ∈ Z. First, consider the case i = 0:

Ω
(0)
k = max

γ0≤k

{ k∑
j=γ0

log
f (0)(Xj)

f0(Xj)

}

= max
γ0≤k

{ k−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ log

f (0)(Xk)

f0(Xk)

}

= max
γ0≤k

{ k−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)

}
+ log

f (0)(Xk)

f0(Xk)

= max

{
max
γ0≤k−1

[ k−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)

]
,

k−1∑
j=k

log
f (0)(Xj)

f0(Xj)

}
+ log

f (0)(Xk)

f0(Xk)

= max{Ω(0)[k − 1], 0}+ log
f (0)(Xk)

f0(Xk)
.

Since Ω
(−1)
k := 0, the argument we attempt to prove holds for the case of

i = 0. Now for the case of an arbitrary i:
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Ω
(i)
k = max

γ0<γ1<···<γi≤k

{ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ · · ·+

k∑
j=γi

log
f (i)(Xj)

f0(Xj)

}
=

max
γ0<γ1<···<γi≤k

{ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ · · ·+

k−1∑
j=γi

log
f (i)(Xj)

f0(Xj)

}
+

log
f (i)(Xk)

f0(Xk)
.

Consider the first term of this expression. We have that:

max
γ0<γ1<···<γi≤k

{ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+ · · ·+

k−1∑
j=γi

log
f (i)(Xj)

f0(Xj)

}

= max

{
max

γ0<γ1<···<γi≤k−1

[ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+

k−1∑
j=γi

log
f (i)(Xj)

f0(Xj)

]

= max
γ0<γ1<···<γi−1≤k−1

[ γ1−1∑
j=γ0

log
f (0)(Xj)

f0(Xj)
+

k−1∑
j=γi−1

log
f (i−1)(Xj)

f0(Xj)

]}
= max{Ω(i)[k − 1],Ω(i−1)[k − 1]}.

Since the test statistic will be compared to a positive threshold, an equiv-

alent test can be derived by not allowing the test statistic to take negative

values. Thus, the final D-CuSum test statistic is defined as follows:

Wk = max

{
Ω

(0)
k , . . . ,Ω

(T )
k , 0

}
, (4.4)

where

Ω
(i)
k = max{Ω(i)

k−1,Ω
(i−1)
k−1 }+ log

f (i)(Xk)

f0(Xk)
, (4.5)

for i = 0, . . . , T , Ω
(−1)
k := 0 for all k ∈ Z and Ω

(i)
0 := 0 for all i.

The corresponding stopping time is given by comparing Wk against a pre-

determined positive threshold:

τ = min{k ≥ 1 : Wk > A}.

To demonstrate the performance of the algorithm we generate a process
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Figure 4.1: A typical realization of a sequence of i.i.d. Gaussian variables.
The statistics of the process are characterized by (4.6).
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Figure 4.2: D-CuSum test run for data of Figure 4.1.

with the following statistical behavior:

Xk ∼



N (0, 1), if 1 ≤ k ≤ 19,

N (0, 1.5), if 20 ≤ k ≤ 39,

N (0, 2), if 40 ≤ k ≤ 59,

N (0, 2.5), if 60 ≤ k ≤ 79,

N (0, 3), if 80 ≤ k.

(4.6)

A realization of this process up to sample 100 is shown in Fig. 4.1. The

evolution of the D-CuSum algorithm for this process realization is shown in

Fig. 4.2. We see that the D-CuSum statistic starts to grow after γ0 = 20,

eventually crossing a threshold of A = 100.
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CHAPTER 5

QCD ALGORITHMS FOR
NON-TRANSIENT POWER SYSTEM LINE

OUTAGE DETECTION

In this Chapter, we study the line outage detection problem in the case

of no transient dynamics. We start by presenting the complete underlying

power system model, which includes an arbitrary number of transient peri-

ods. Next, we propose a statistical algorithm for detecting line outages in a

power system, for the special case of one post-change stage, and show that it

has better performance than other schemes proposed in the literature. Our

algorithm is based on the Generalized Cumulative Sum (G-CuSum) test from

the quickest change detection (QCD) literature, a test which is formulated

by using the CuSum statistic in a generalized manner, i.e., by calculating a

test statistic for each post-change distribution, and comparing each statis-

tic with a corresponding threshold. Different methods of selecting the test

thresholds, including using the notion of KL divergence, are examined. Our

algorithm exploits the statistical properties of the measured voltage phase

angles before, during, and after a line outage, whereas other methods in the

literature only utilize the change in statistics that occurs at the instant of

outage. From now on, the time indexes for every process will be placed in

braces and not as a subscript, so that reading is made easier.

5.1 Power System Model

Let L = {1, . . . , L} denote the set of lines in a system with N buses. A

transmission line can be denoted either by an integer `, or by a couple of

integers (m,n) denoting that this line connects bus m to bus n. At time t,

let Vi(t) and θi(t) denote the voltage magnitude and phase angle at bus i

respectively, and let Pi(t) and Qi(t) denote the net active and reactive power

injection at bus i, respectively. Then, the quasi-steady-state behavior of the

system can be described by the power flow equations (see e.g., [23]), which
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for bus i can be compactly written as:

Pi(t) = pi(θ1(t), . . . , θN(t), V1(t), . . . , VN(t)),

Qi(t) = qi(θ1(t), . . . , θN(t), V1(t), . . . , VN(t)),
(5.1)

where the dependence on the system network parameters is implicitly cap-

tured by pi(·) and qi(·). The outage of line ` ∈ L at time t = tf is assumed to

be persistent (i.e., the line is not restored until it is detected to be outaged),

with γ0∆t ≤ tf < (γ0 + 1)∆t, where ∆t is the time between successive PMU

samples. In addition, assume that the loss of line ` does not cause islands

to form in the post-event system (i.e., the underlying graph representing the

internal power system remains connected).

5.1.1 Pre-outage Model

Let Pi[k] := Pi(k∆t) and Qi[k] := Qi(k∆t), ∆t > 0, k = 0, 1, 2, . . . , denote

the kth measurement sample of active and reactive power injections into bus

i. Similarly, let Vi[k] and θi[k], k = 0, 1, 2, . . . , denote bus i’s kth voltage

magnitude and angle measurement sample. Furthermore, define variations

in voltage magnitudes and phase angles between consecutive sampling times

k∆t and (k+1)∆t as ∆Vi[k] := Vi[k+1]−Vi[k], and ∆θi[k] := θi[k+1]−θi[k],

respectively. Similarly, variations in the active and reactive power injections

at bus i between two consecutive sampling times are defined as ∆Pi[k] =

Pi[k + 1]− Pi[k] and ∆Qi[k] = Qi[k + 1]−Qi[k].

Proceeding in the same manner as in [3], we linearize the power flow equa-

tions of (5.1) around (θi[k], Vi[k], Pi[k], Qi[k]), i = 1, . . . , N , and use the DC

power flow assumptions (see e.g., [23]), namely, (i) flat voltage profile, (ii)

negligible line resistances, and (iii) small phase angle differences, to decouple

the real and reactive power flow equations. Then, after omitting the equation

corresponding to the reference bus, the relationship between voltage phase

angles and the variations in the real power injection can be expressed as:

∆P [k] ≈ H0∆θ[k], (5.2)

where ∆P [k], ∆θ[k] ∈ R(N−1) and H0 ∈ R(N−1)×(N−1) is the imaginary part

of the system admittance matrix with the row and column corresponding to
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the reference bus removed.

In an actual power system, random fluctuations in the load drive the gen-

erator response. Therefore, in this thesis, we use the so-called governor power

flow model (see e.g., [24]), which is more realistic than the conventional power

flow model, where the slack bus picks up any changes in the load power de-

mand. In the governor power flow model, at time instant k, the relation

between changes in the load demand vector, ∆P d[k] ∈ RNd , and changes in

the power generation vector, ∆P g[k] ∈ RNg , is described by

∆P g[k] = B(t)∆P d[k], (5.3)

where B(t) is a time dependent matrix of participation factors. We ap-

proximate B(t) by quantizing it to take values Bi, i = 0, 1, . . . , T , where i

denotes the time period of interest. Let B(t) = B0 and M0 := H−10 during

the pre-outage period. Then, we can substitute (5.3) into (5.2) to obtain a

pre-outage relation between the changes in the voltage angles and the real

power demand at the load buses as follows:

∆θ[k] ≈M0∆P [k]

= M0

[
∆P g[k]

∆P d[k]

]

= [M1
0 M

2
0 ]

[
B0∆P

d[k]

∆P d[k]

]
(5.4)

= (M1
0B0 +M2

0 )∆P d[k]

= M̃0∆P
d[k],

where M̃0 = M1
0B0 +M2

0 .

5.1.2 Instantaneous Change During Outage

At the time of outage, t = tf , there is an instantaneous change in the mean

of the voltage phase angle measurements that affects only one incremental

sample, namely, ∆θ[γ0] = θ[γ0 + 1]− θ[γ0]. The measurement θ[γ0] is taken

immediately prior to the outage, whereas θ[γ0 + 1] is the measurement taken

immediately after the outage. Suppose the outaged line ` connects buses m
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and n. Then, the effect of an outage in line ` can be modeled with a power

injection of P`[γ0] at bus m and −P`[γ0] at bus n, where P`[γ0] is the pre-

outage line flow across line ` from m to n. Following a similar approach as

that in [3], the relation between the incremental voltage phase angle at the

instant of outage, ∆θ[γ0], and the variations in the real power flow can be

expressed as:

∆θ[γ0] ≈M0∆P [γ0]− P`[γ0 + 1]M0r`, (5.5)

where r` ∈ RN−1 is a vector with the (m−1)th entry equal to 1, the (n−1)th

entry equal to −1, and all other entries equal 0. Furthermore, by using the

governor power flow model of (5.3) and substituting into (5.5), and simpli-

fying, we obtain:

∆θ[γ0] ≈ M̃0∆P
d[γ0]− P`[γ0 + 1]M0r`. (5.6)

5.1.3 Post-Outage

Following a line outage, the power system undergoes a transient response

governed by Bi, i = 1, 2, . . . , T − 1 until quasi-steady-state is reached, in

which B(t) settles to a constant BT . For example, immediately after the

outage occurs, the power system is dominated by the inertial response of the

generators, which is then followed by the governor response. As a result of

the line outage, the system topology changes, which manifests itself in the

matrix H0. This change in the matrix H0 resulting from the outage can be

expressed as the sum of the pre-outage matrix and a perturbation matrix,

∆H`, i.e., H` = H0 + ∆H`. Then, by letting M` := H−1` = [M1
` M

2
` ], and

deriving in the same manner as the pre-outage model of (5.4), we obtain the

post-outage relation between the changes in the voltage angles and the real

power demand as:

∆θ[k] ≈ M̃`,i∆P
d[k], γi−1 ≤ k < γi, (5.7)

where M̃`,i = M1
`Bi +M2

` , i = 1, 2, . . . , T .
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5.1.4 Measurement Model

Since the voltage phase angles, θ[k], are assumed to be measured by PMUs,

we allow for the scenario where the angles are measured at only a subset of

the load buses, and denote this reduced measurement set by θ̂[k]. Suppose

that there are Nd load buses and we select p ≤ Nd locations to deploy the

PMUs. Then, there are
(
Nd

p

)
possible locations to place the PMUs. In this

thesis, we assume that the PMU locations are fixed; in general, the problem

of optimal PMU placement is NP-hard and its treatment is beyond the scope

of this thesis.

Let

M̃ =


M̃0, if 1 ≤ k < γ0,
...

M̃`,T , if k ≥ γT .

(5.8)

Then, the absence of a PMU at bus i corresponds to removing the ith row

of M̃ . Thus, let M̂ ∈ Rp×Nd be the matrix obtained by removing N − p− 1

rows from M̃ . Therefore, we can relate M̂ to M̃ in (5.8) as follows:

M̂ = CM̃, (5.9)

where C ∈ Rp×(N−1) is a matrix of 1’s and 0’s that appropriately selects the

rows of M̃ . Accordingly, the increments in the phase angle can be expressed

as follows:

∆θ̂[k] ≈ M̂∆P d[k]. (5.10)

The small variations in the real power injections at the load buses, ∆P d[k],

can be attributed to random fluctuations in electricity consumption. In

this regard, we may model the ∆P d[k]’s as independent and identically dis-

tributed (i.i.d.) random vectors. By the Central Limit Theorem [25], it can

be argued that each ∆P d[k] is a Gaussian vector, i.e., ∆P d[k] ∼ N (0,Λ),

where Λ is the covariance matrix. Note that the elements ∆P d[k] are roughly

independent. Since ∆θ̂[k] depends on ∆P d[k] through the linear relationship

given in (5.10), we have that:

26



∆θ̂[k] ∼



f0 := N (0, M̂0ΛM̂
T
0 ), if 1 ≤ k < γ0,

f
(0)
` := N (−P`[γ + 1]CM0r`,

M̂0ΛM̂
T
0 ), if k = γ0,

...

f
(T )
` := N (0, M̂`,TΛM̂T

`,T ), if k ≥ γT ,

(5.11)

It is important to note that for N
(

0, M̂ΛM̂T
)

to be a nondegenerate p.d.f.,

its covariance matrix, M̂ΛM̂T , must be full rank. We enforce this by ensuring

that the number of PMUs allocated, p, is less than or equal to the number of load

buses, Nd.

5.1.5 Non-transient Statistical Model

In this chapter, we focus on the special case where T = 1 (also note that due to

the meanshift γ1 = γ0 + 1), i.e., after an outage the distribution changes from

pre-change to a post-change distribution after going through the meanshift phase.

In particular, in this chapter we will develop line outage detection techniques for

the case that {∆θ̂[k]}∞k=1 is characterized by the following statistical behavior:

∆θ̂[k] ∼


f0 := N (0, M̂0ΛM̂

T
0 ), if 1 ≤ k < γ0,

f
(0)
` := N (−P`[γ + 1]CM0r`,

M̂0ΛM̂
T
0 ), if k = γ0,

f
(1)
` := N (0, M̂`,1ΛM̂

1
`,1), if k > γ0.

(5.12)

5.2 Line Outage Detection Using QCD

In the line outage detection problem setting of the present chapter, the out-

age induces a change in the statistical characteristics of the observed sequence

{∆θ̂[k]}k≥1 which is summarized by (5.12). The goal is to detect the outage in

line ` as quickly as possible subject to false alarm constraints. It is quite apparent

that the present statistical model is almost identical to the QCD setting studied

in Chapter 3. Thus, we will use QCD-based stopping rules to detect the statistical

behavior shift that occurs after the outage.
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5.2.1 Problem Setup

The goal in line outage detection is to design stopping rules that will detect line

outages as fast as possible under false alarm constraints. The false alarm constraint

that we choose is based on the mean time to false alarm; thus, we would like

E∞[τ ] ≥ β, where β > 0 is a pre-determined parameter, and E∞ is the expectation

under the probability measure where no outage has occurred.

In order to quantify the detection delay for line outages, we will be using Lor-

den’s delay metric:

WADD`(τ) = sup
γ0≥1

ess supEγ0,`
[
(τ − γ0)+

∣∣∣∣∆θ̂[1], . . . ,∆θ̂[γ0 − 1]

]
. (5.13)

The difference between the metric of (5.13) and (3.1) is that here we suffer a

different delay depending on which line is outaged.

5.3 QCD-based Line Outage Detection Algorithms

With the statistical model for {∆θ̂[k]}k≥1 in place, the problem of detecting a

line outage was formulated as a problem of detecting a change in the probability

distribution of the sequence of observations {∆θ̂[k]}k≥1 as quickly as possible given

false alarm constraints. As a result, we can use the QCD theory presented in this

work to design algorithms for line outage detection.

5.3.1 The Generalized CuSum Algorithm

In our setting, the line in which the outage occurs is unknown, i.e., the post-

change distribution induced on the observation sequence {∆θ̂[k]}k≥1 is unknown.

Since there are L lines, we have L different post-change scenarios, i.e., we have L

possible post-change distributions. The problem of detecting an abrupt change in

the distribution of a process, in which the post-change distribution belongs to a

known set of distributions is called the composite QCD problem. Since we have

a total of L post change scenarios, we use the generalized version of the CuSum

algorithm, namely, the Generalized CuSum (G-CuSum) algorithm. This algorithm

involves calculating a CuSum statistic for each possible post-change scenario. We

present two versions of this algorithm: one proposed in [3], in which a common

threshold is used for all CuSum statistics, and another in which the thresholds are

selected based on each line’s KL divergence.
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We define the G-CuSum statistic corresponding to line ` outage recursively as:

WGC
` [k] = max

{
WGC
` [k − 1] + log

f
(1)
` (∆θ̂[k])

f0(∆θ̂[k])
, log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])
, 0

}
, (5.14)

with WGC
` [0] = 0 for all ` ∈ L. Note that an extra log-likelihood ratio is added

inside the maximum. This term is used to capture the instantaneous meanshift

that occurs at the time of the outage. The G-CuSum stopping time is defined as:

τGC = min
`∈L

{
inf{k ≥ 1 : WGC

` [k] > AGC
` }

}
. (5.15)

We now present different ways of choosing the thresholds for the G-CuSum test.

It can be shown (see, e.g., [26]) that by choosing

AGC
` = log β − log ξ`, (5.16)

with ξ` being a positive constant independent of β, the expected delay for each

possible outage differs from the corresponding minimum delay among the class of

stopping times Cβ = {τ : E∞(τ) ≥ β}, as β →∞, by a bounded constant.

A choice of thresholds for the G-CuSum algorithm is obtained by setting β` = 1
L

for all ` ∈ L. This way we get a common threshold, i.e., AGC
` = AGC = log(βL)

for all ` ∈ L. It can be shown (see, e.g., [27]) that by choosing the thresholds this

way, we can guarantee that E∞[τGC] ≥ β.

Using the results in [26], another choice of the thresholds could be based on a

relative performance loss criterion, i.e.,

β` =
1

D(f
(1)
` ‖ f0)L(ζ`)2

, (5.17)

where

ζ` = lim
b→∞

E(1)
`

[
e{−(S`[τ

b
` ]−b)}

]
, (5.18)

with

τb` = inf{k ≥ 1 : S`[k] ≥ b}, (5.19)

and

S`[k] =

k∑
j=1

log
f
(1)
` (∆θ̂[j])

f0(∆θ̂[j])
. (5.20)

Note that this choice of threshold depends on the asymptotic overshoot of an

SPRT-based test. As we show later through case studies in Chapter 7, the thresh-

old choice of (5.17)-(5.20) results in performance gains compared to choosing a
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common threshold for all the lines.

5.4 Other Line Outage Detection Algorithms

In this section, we present some other change detection algorithms that can be

shown to be equivalent to other techniques proposed in the literature. For example,

the line outage detection algorithm proposed in [10] can be shown to be equivalent

to a log-likelihood ratio test that only uses the most recent measurements.

5.4.1 Meanshift Test

The meanshift test is a “one-shot” detection scheme in that the algorithm uses

only the most recent observation to decide whether a change in the mean has

occurred and ignores all past observations. The meanshift statistic corresponding

to line ` is defined as follows:

WMS
` [k] = log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])
. (5.21)

The decision maker declares a change when one of the L statistics crosses a corre-

sponding threshold, AMS
` . The stopping time for this algorithm is defined as:

τMS = min
`∈L

{
inf{k ≥ 1 : WMS

` [k] > AMS
` }

}
. (5.22)

The meanshift test ignores the persistent covariance change that occurs after

the outage. In particular, note that the meanshift test is using the likelihood ratio

between the distribution of the observations before and at the changepoint. More

specifically, assuming that an outage occurs in line `, the expected value of the

statistic at the changepoint is given by

E(0)
`

[
log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])

]
= D(f

(0)
` ‖ f0) > 0, (5.23)

where E(0)
` denotes the expectation under distribution f

(0)
` . On the other hand,

after the changepoint (k > γ0), the expected value of the statistic is given by

E(1)
`

[
log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])

]
= D(f

(1)
` ‖ f0)−D(f

(1)
` ‖ f (0)` ), (5.24)
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which could be either positive or negative.

5.4.2 Shewhart Test

Similar to the meanshift test, the Shewhart-based test presented here is also a “one-

shot” detection scheme. This test attempts to detect a change on the observation

sequence through the meanshift and the change in the covariance of the data. The

Shewhart test statistic for line ` outage is defined as:

W SH
` [k] = max

{
log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])
, log

f
(1)
` (∆θ̂[k])

f0(∆θ̂[k])

}
, (5.25)

where the first log-likelihood ratio is used to detect the meanshift, while the second

log-likelihood ratio is used to detect the persistent change in the covariance. The

stopping time is:

τSH = min
`∈L

{
inf{k ≥ 1 : W SH

` [k] > ASH
` }
}
. (5.26)

Since the Shewhart test exploits the covariance change in addition to the meanshift

statistic, it should perform better than the meanshift test, at least as the meantime

to false alarm goes to infinity, which is verified in the case studies.
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CHAPTER 6

LINE OUTAGE DETECTION AND
IDENTIFICATION UNDER TRANSIENT

DYNAMICS

In this section, we propose a quickest change detection (QCD) algorithm to ad-

dress the problem of detecting and identifying line outages in a power system when

transient dynamics are present, i.e., when we are using the general power system

model presented in Chapter 5. The proposed algorithm is applied to the mea-

surements of voltage phase angles, which are collected using phasor measurement

units (PMUs). This adaptive algorithm is based on the D-CuSum algorithm also

proposed in this work.

6.1 QCD–Based Line Outage Detection Algorithms

Under Transient Dynamics

In the present chapter, we assume that the underlying statistical model of the

observed process is given by (5.11) for an arbitrary value of T , i.e., we assume an

arbitrary number of transient periods post-change. In the setting described in Sec.

5.1, we assume that a sequence of observations {∆θ̂[k]}k≥1 is measured by PMUs

and passed sequentially to a decision maker. According to the statistical model in

(5.11), before an outage has occurred, ∆θ̂[k] ∼ f0. At an unknown time instant

tf , an outage occurs in line ` and the distribution of ∆θ̂[k] changes from f0 to f
(0)
` .

Then, the system undergoes a series of transient responses which corresponds to

the distribution of ∆θ̂[k] evolving from f
(0)
` to f

(T )
` . First, a meanshift takes place

during the instant of change tf , where the pdf is f
(0)
` . Then, the statistical behavior

of the process is characterized by a series of changes only in the covariance matrix

of the measurements.

As seen in Chapters 3 and 5, in classic QCD theory, the CuSum algorithm for

the non-composite setting (with known pre- and post-outage distribution) and the

Generalized CuSum (G-CuSum) algorithm for the composite setting (where pre-

outage distribution is known and post-outage distribution belongs to a known set

of distributions) are used to detect a persistent change in the distribution of a

sequence. These tests have optimality properties with respect to popular delay-
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false alarm formulations (see e.g., [18], [28], [21]). However, these algorithms are

derived for statistical models that do not consider the transient behavior of the

system following a line outage. Here, we modify the D-CuSum test proposed

in Chapter 4 to derive a line outage detection algorithm that incorporates the

transient phenomena.

To measure the delay of the line outage detection algorithms in this chapter, we

will be using the delay metric of (5.13).

6.1.1 Generalized Dynamic CuSum Test

Since the statistical model used in this chapter includes an arbitrary number of

transient periods with finite duration, each one corresponding to a respective tran-

sient distribution induced on the observations, it is clear that the proposed test

needs to be designed to take this transient behavior into consideration. Toward

this end, we introduce the Generalized Dynamic CuSum (G-D-CuSum) test. This

test is derived by using the Dynamic CuSum (D-CuSum) algorithm proposed in

Chapter 4 in a generalized test manner; i.e., we calculate a D-CuSum statistic

for each possible line outage in parallel, and declare an outage when one of the

statistics crosses a pre-determined positive threshold corresponding to the line.

By using the D-CuSum test statistic as a basis, we propose the G-D-CuSum

test. The statistic for line ` is given as follows:

WGD
` [k] = max

{
Ω
(1)
` [k], . . . ,Ω

(T )
` [k], log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])
, 0

}
, (6.1)

where

Ω
(i)
` [k] = max{Ω(i)

` [k − 1],Ω
(i−1)
` [k − 1]}+ log

f
(i)
` (∆θ̂[k])

f0(∆θ̂[k])
, (6.2)

for i ∈ {1, . . . , T}, Ω
(0)
` [k] := 0 for all k ∈ Z and Ω

(i)
` [0] := 0 for all ` ∈ L and all i.

The corresponding stopping rule is defined as

τGD = min
`∈L

{
inf{k ≥ 1 : WGD

` [k] > A`}
}
. (6.3)

Calculating the test statistic for line ` involves calculating the statistics Ω
(1)
` ,

. . . ,Ω
(T )
` . The final test statistic is given by taking the maximum of these terms

together with the log-likelihood ratio between the distribution at the outage and

the pre-outage distribution. Note that to renew each Ω statistic, the value of the
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statistic in the previous time instant and the value of the statistic used to detect

the previous distribution change are used. The basis of this algorithm is that each

statistic is used to capture one of the transient distributions. As a result, at each

different period that the process goes through, one of the Ω statistics will dominate

the others, leading to the adaptive nature of the algorithm. The test statistics are

designed to use prior information from other test statistics, exploiting the fact that

distribution changes occur in a sequential manner. It is also important to note

that the structure of the algorithm is not affected by the duration of any of the

transient periods. This is because the test statistic is calculated by maximizing a

log-likelihood ratio over all possible changepoint allocations.

6.1.2 Generalized CuSum Test

The Generalized CuSum (G-CuSum) based test we studied in Chapter 5 was pro-

posed as a line outage detection scheme with the understanding that the transition

between pre- and post-outage periods is not characterized by any transient behav-

ior other than the meanshift that occurs at the instant of outage. The meanshift

was captured by introducing an additional log-likelihood ratio term between the

distribution at the time of change and the distribution before the change. The fi-

nal test statistic takes the maximum of this log-likelihood ratio and the traditional

G-CuSum test recursion.

Although the G-CuSum algorithm does not take any transient dynamics into

consideration, it can still perform well when the transient distributions and the

final post-change distribution are “similar”, i.e., when the KL divergence between

f
(i)
` , i = 1, 2, . . . , T − 1, and f

(T )
` is small. As a result, it is useful to compare the

performance of the G-CuSum test with the performance of the G-D-CuSum test

that is proposed in the present chapter.

For the G-CuSum test in the present setting, we compute L CuSum statistics in

parallel, one corresponding to each line outage scenario. The CuSum recursion for

line ` is calculated by accumulating log-likelihood ratios between f
(T )
` and f0. In

particular, define the G-CuSum statistic corresponding to line ` outage recursively

as:

WGC
` [k] = max

{
WGC
` [k − 1] + log

f
(T )
` (∆θ̂[k])

f0(∆θ̂[k])
, log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])
, 0

}
, (6.4)

with WGC
` [0] = 0 for all ` ∈ L.

The goal is to declare an outage as soon as any line is outaged; thus, the al-

gorithm declares a detection the first time any of the line statistics crosses its

34



corresponding threshold. Accordingly, the stopping time of the test is as follows:

τGC = min
`∈L

{
inf{k ≥ 1 : WGC

` [k] > A`}
}
, (6.5)

with A` > 0 being the threshold corresponding to line `.

6.2 Other Algorithms for Line Outage Detection

Under Transient Dynamics

In this section, we study two additional change detection algorithms that are of

lower complexity than the G-D-CuSum test. First, we review the meanshift test

presented in Chapter 5. Next, we present a modified version of the Shewhart test

of Chapter 5 that accounts for transient dynamics. We also provide the main idea

behind the two algorithms as well as an intuition as to why the Shewhart test

might be superior to the meanshift test in the present setting.

6.2.1 Meanshift Test

For this algorithm, a single log-likelihood ratio between the distribution of the

observations at the changepoint and before the changepoint is used to detect the

outage. Thus, when using the meanshift test, the line outage detection problem

is treated as a problem of detecting the meanshift that occurs at the changepoint.

In particular, define the meanshift statistic corresponding to line ` as follows:

WMS
` [k] = log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])
. (6.6)

Since an outage can occur at any line, a generalized test structure is used; i.e.,

the decision maker declares a change when one of the L statistics crosses the

corresponding threshold, A`. Consequently, the stopping time for the meanshift

test is defined as

τMS = min
`∈L

{
inf{k ≥ 1 : WMS

` [k] > A`}
}
. (6.7)

A justification for this algorithm is given by examining the expected value of

the test statistic for line ` at the changepoint assuming an outage has occurred in

the same line. At the changepoint (k = γ0) the expected value of the ` statistic is
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given by

E(0)
`

[
log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])

]
= D(f

(0)
` ‖ f0) > 0. (6.8)

Since the expected value of (6.8) is positive, it is likely to cross a positive pre-

determined threshold and an outage is declared.

It is expected that the meanshift test will perform worse than the G-D-CuSum

test for the following reasons. First, the transient behavior is not incorporated

in the definition of the scheme, in contrast to the proposed G-D-Cusum test.

Furthermore, the meanshift test is designed without taking the persistency of

the covariance shifts into account and without exploiting past observations. As a

result, the log-likelihood ratio used in the test does not match the true distribution

of the observations after the time of change. For example, during the first transient

period (γ0 < k ≤ γ1) the expected value of the test statistic is given by

E(1)
`

[
log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])

]
= D(f

(1)
` ‖ f0)−D(f

(1)
` ‖ f (0)` ). (6.9)

By following the same line of reasoning, it can be argued that for every time

instant after the outage occurs, the expected value of the test statistic is given by

a difference of two KL divergences. Consequently, (6.9) can even take negative

values. In such cases, the algorithm suffers significant delay if a change is not

declared at the changepoint, since the test statistic will be negative post-outage

with high probability.

6.2.2 Shewhart Test

For the shewhart test under the classic QCD setting, where no transient dynamics

are present, a log-likelihood ratio between the persistent post-outage distribution

and the pre-outage distribution is used, as seen in Chapter 3. By modifying

the structure of the test to account for the meanshift and transient phenomenon

after an outage, we derive a test that is better in terms of performance compared

to the meanshift test. This is done by introducing an additional log-likelihood

ratio term for each transient response period and one for the meanshift. Similar

to the meanshift test, the Shewhart test is also a “oneshot” detection scheme;

thus, its performance is inferior to our proposed G-D-CuSum test. However, the

introduction of the additional log-likelihood ratio terms allows the Shewhart test

to have superior performance to that of the meanshift test.
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Define the Shewhart test statistic for line ` outage as:

W SH
` [k] = max

i∈{0,1,...,T}

{
log

f
(i)
` (∆θ̂[k])

f0(∆θ̂[k])

}
. (6.10)

The Shewhart test includes the meanshift log-likelihood ratio of (6.6) along with T

additional terms that are associated with different transient periods. From (6.10),

it is easy to see that the Shewhart test uses a matching log-likelihood ratio even

after the outage. The Shewhart stopping time is defined as:

τSH = min
`∈L

{
inf{k ≥ 1 : W SH

` [k] > A`}
}
. (6.11)

Assuming that an outage occurs in line `, the expected value of the statistic at the

changepoint (k = γ0) satisfies

E(0)
`

[
W SH
` [k]

]
≥ E(0)

`

[
log

f
(0)
` (∆θ̂[k])

f0(∆θ̂[k])

]
= D(f

(0)
` ‖ f0) > 0.

(6.12)

In addition, for some arbitrary transient period i, the expected value of the corre-

sponding test statistic satisfies

E(i)
`

[
W SH
` [k]

]
≥ E(i)

`

[
log

f
(i)
` (∆θ̂[k])

f0(∆θ̂[k])

]
= D(f

(i)
` ‖ f0) > 0.

(6.13)

6.3 Line Outage Identification

The detection algorithm proposed in Sec. 6.1.1 can also be used to identify the

outaged line. One strategy would be to declare the outaged line as the one corre-

sponding to the largest statistic; i.e., the line that is identified as outaged is given

by:

l̂ = arg max
`∈L

W`[τ ]. (6.14)

A drawback to this method of line identification is that the statistics for other

lines may also increase following a line outage. Due to the structure of a power

system, certain line outages may cause multiple line statistics, in addition to the

one corresponding to the true outaged line, to increase. Therefore, in order to

reduce the probability of false isolation, a set of lines can be identified as potentially

outaged. In this case, more than one line should be checked by the system operator
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after an outage is declared.

To this end, we generalize the idea behind (6.14) to account for the case of

multiple growing statistics. In particular, after an outage is declared, we create a

ranked list containing r entries of line indices, one for each of the large line statistics

at the stopping time, and the indices are ordered with respect to the values of these

statistics. The idea is similar to list decoding in digital communications (see e.g.

[29]). Define the ranked list for an outage in line ` as

R = {`1, . . . , `r}, (6.15)

where r is the cardinality of the ranked list. Either the cardinality r can be fixed

beforehand, or additional constraints can be added to make the size variable across

different sample paths (e.g., by imposing an additional constraint that a statistic

not only has to be among the largest, but also has to be comparable to the largest

one for the corresponding line to belong to the ranked list).

To quantify the performance of our algorithm with respect to its ability to

identify the outaged line accurately, we define the probability of false isolation

(PFI). For the case of line ` outage, a false isolation event occurs when ` is not

included in the ranked list R. Define the PFI when line ` is outaged as:

PFI`(τ) = P{` 6∈ R|line ` outage}. (6.16)

The maximum length of the ranked list should be chosen to optimize the tradeoff

between PFI and number of lines that need to be checked after an outage detection

has occurred. In particular, larger ranked lists lead to lower PFI, but to a larger

set of possibly outaged lines to check.
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CHAPTER 7

CASE STUDIES

In this chapter, we provide numerical results for the line outage detection al-

gorithms proposed in this work. In Sec. 7.1 we provide simulation results for

detection schemes that were proposed in this work for the line outage problem

without transients that was studied in Chapter 5. The algorithms are applied

on the IEEE 14-bus test system, with the power model of Chapter 5. We show

that the proposed G-CuSum based test offers superior performance to that of the

other detection algorithms. In Sec. 7.2 we provide simulation results for the line

outage detection problem under transient dynamics that was studied in Chapter

6. The detection algorithms that are presented in Chapter 6 are applied on the

IEEE 118-bus test system, while assuming transient dynamics after the outage.

We demonstrate the superiority of the G-D-CuSum test in terms of delay per-

formance. Finally, we show how this test can be combined with the line outage

identification techniques studied in Sec. 6.3 to achieve low probability of false iso-

lation values when identifying outaged lines. For our simulations, we found that

the error bounds for all the simulated values are within 5% of the means.

7.1 Simulation Results and Discussion for Chapter 5

In this section, we demonstrate the effectiveness of the proposed G-CuSum based

line outage detection algorithm, which was used as a solution for the line outage

problem presented in Chapter 5, where no transient behavior is present. We ap-

plied the G-CuSum algorithm to the IEEE 14-bus test system for an outage in the

line connecting bus 2 and 5, with the thresholds chosen according to (5.16). The

entries of ∆P [k] are sampled from a zero-mean Gaussian p.d.f. with covariance ma-

trix, Λ = diag(0.5). We simulate a line outage at k = 10 and the results are shown

in Fig. 7.1. The WGC
(2,5)[k] statistic (blue) crosses the threshold of AGC

(2,5) = 100 at

τGC = 57, resulting in a detection delay of 47 samples. As expected, all of the

other CuSum statistics (red) either remain close to zero, or increase at a slower

rate.
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Next, we perform Monte Carlo simulations for the Shewhart, meanshift, and G-

CuSum algorithms to obtain plots of average detection delay versus mean time to

false alarm. The values for the average detection delay are obtained by simulating

an outage in the line connecting buses 4 and 5 and running the corresponding

detection algorithms for different thresholds until a detection of the outaged line

is declared. For computing the mean time to false alarm, the detection algorithms

are executed for the power system under normal operation until a false alarm

occurs. Since false alarm events are in general rare, averaging many sample runs

would incur significant computation time. In order to reduce the simulation time,

importance sampling is used for the meanshift and Shewhart tests.

Figure 7.2 shows the average detection delay versus mean time to false alarm for

all of the detection methods mentioned in this work. We note that the meanshift

test performs better than the Shewhart test. It can be verified from QCD theory

that the slope of delay versus log(mean time to false alarm) for the Shewhart and

CuSum tests is given by 1

D(f
(1)
(m,n)

‖ f0)
for large mean time to false alarm [6].

From the plots, we conclude that for the same value of mean time to false

alarm, both CuSum-based algorithms have a much lower average detection delay

than the Shewhart and meanshift algorithms. In addition, the figure shows that

when we use varied thresholds for the G-CuSum test (red lines) as opposed to a

fixed threshold (green lines), even lower detection delay can be achieved for the

same mean time to false alarm. This illustrates that our KL threshold G-CuSum

based algorithm is an improvement over that of [3]. It should be noted that

simulation results demonstrate that the detection delay scales exponentially with

the selected thresholds for both the meanshift and Shewhart tests, and linearly for

the CuSum-based tests.
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Figure 7.1: Example of a run of the G-CuSum for the 14-bus system.
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7.2 Simulation Results and Discussion for Chapter 6

In this section, the algorithm proposed in (6.1)-(6.3) is applied to the IEEE 118-

bus test system (for the model data, see [30]). In order to compute the transient

dynamics following a line outage, we use the simulation tool Power System Toolbox

(PST) [31]. For simplicity, we used the statistical model in (5.11) with T = 2;

i.e., we assumed one transient period, with a duration of 100 samples, after the

line outage occurs. Additional transient periods could easily be incorporated into

the simulations. The power injection profiles at the load buses are assumed to

be independent Gaussian random variables with variance of 0.03 and the PMU

sampling rate is assumed to be 30 measurements per second.

7.2.1 Line Statistic Evolution

First, we simulate two different line outages, one in which the detection occurs

during the transient period and one in which the detection occurs after the tran-

sient period; the results are shown in Fig. 7.3. Figure 7.3(a) shows some typical

progressions of W180[k]s for the various line outage detection schemes discussed

earlier. The fault occurs at k = 10 and the threshold is A` = 120. From the

figure, we conclude that for this sample run, a line outage is declared after 50

samples when the G-D-CuSum stream crosses the threshold first. The other algo-

rithms incur a much larger detection delay since they do not cross the threshold

of A` = 120. Figure 7.3(b) shows the typical progressions of W32[k]s for an outage

in line 32. For a threshold of A` = 125, the G-D-CuSum detects a line outage 156

samples after the outage occurs. In this example, the detection occurs after the

transient dynamics have subsided. From the plots, we conclude that even though

detection takes place after the transient dynamics subside (at k = 110), the G-D-

CuSum algorithm still has a smaller detection delay than the G-CuSum algorithm.

Note that the G-CuSum statistic does not grow during the transient period, which
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Figure 7.2: Detection delay vs. mean time to false alarm.
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Figure 7.3: Sample paths of different algorithms for IEEE 118-bus system.
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Figure 7.4: Sample paths of the G-D-CuSum algorithm for IEEE 118-bus
system.

results in the G-CuSum having a large delay. Through close inspection, we also

notice that the slopes of the G-D-CuSum and G-CuSum statistics are identical

after the transient period is over, something that can be verified by the theory.

Next, we simulate two different line outages and demonstrate the evolution of

the G-D-CuSum statistic for different lines in Fig. 7.4. For an outage in line 180,

it is seen in Fig. 7.4(a) that W32[k] grows faster that other line statistics. An

outage is declared after 135 samples, when W32[k] crosses a threshold of A` = 250.

In Fig. 7.4(b), we show an example of a misdetection event. In particular, it can

be noted that, for an outage in line 36, other line statistics can sometimes cross

the test threshold before W36[k]. In particular, in Fig. 7.4(b) we see that W37[k]

crosses a threshold of A` = 13, thus a misdetection event occurs. This can be seen

as a justification of the use of a ranked list to identify outaged lines.

7.2.2 Delay Performance

We performed Monte Carlo simulations for outages in lines 36, 180, and 104, and

show detection delay versus mean time to false alarm results for all the detection

schemes presented in this work. We compared the performance of our proposed
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Figure 7.5: IEEE 118-bus Monte Carlo simulation results for an outage in
line 36.

algorithm against the Meanshift test, Shewhart test, and the G-CuSum algorithm

for an outage in line 36, which is the line outage case that corresponds to the largest

delay. The results are shown in Fig. 7.5. From Fig. 7.5(a), we conclude that the G-

D-CuSum algorithm achieves the lowest detection delays among all algorithms for

a given mean time to false alarm. The performances of the Meanshift and Shewhart

tests are considerably worse than those of the G-CuSum and G-D-CuSum tests.

In Fig. 7.5(b) we demonstrate the performance gain achieved when using the G-

D-CuSum test. For an outage in line 36, the G-D-CuSum test achieves more than

an order of magnitude less delay for given false alarm rate. Next, we evaluate

the performance of the proposed algorithm for different line outage cases. Among
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all the lines of the system, detection delay for line 104 is the lowest for a fixed

mean time to false alarm while line 36 has the worst detection delay. Line 180

was chosen as a representative line for intermediate delay values. The results are

shown in Fig. 7.6.

7.2.3 Probability of False Isolation

Finally, the PFI versus mean time to false alarm is obtained for outages in lines

36, 104, and 180; the results are recorded in Tables 7.1, 7.2, and 7.3. The PFI was

calculated by using the ranked list method discussed in Section 6.3 for a ranked

list of fixed length 1, 3, and 5. In Table 7.1 we demonstrate the PFI results for a

ranked lists of length 1. This is equal to identification using 6.14, i.e., identifying

as outaged the line with the highest statistic at the stopping time. We note that,

although some outages can be handled efficiently with this simple technique (e.g.

outage in line 180 and 104), some line outages may lead to large PFI values, e.g.

an outage in line 36. This happens due to the fact that many line statistics other

than the one corresponding to the outaged line grow post-outage, as was discussed

in Section 6.3. In Table 7.2 we demonstrate the PFI values for a ranked list of

length 3. The PFI is significantly reduced for line 36. Finally, in Table 7.3 the PFI

results for a ranked list of length 5 are shown. In this case, the PFI for line 36 is

below 5%. Note that the PFI decreases as the mean time to false alarm increases.

This is because larger mean time to false alarm corresponds to larger thresholds,

which result in smaller PFI values.
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Figure 7.6: 118-bus: Detection delay vs. mean time to false alarm for
different line outages.
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Table 7.1: Probability of false isolation for IEEE 118-bus system simulated
with a ranked list of length of 1.

E∞[τ ] [day] 1/24 1/4 1/2 1 2 7

Line 36 0.5999 0.5472 0.5266 0.5182 0.5102 0.4911

Line 180 0.0344 0.0237 0.0186 0.0160 0.0148 0.0091

Line 104 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6

Table 7.2: Probability of false isolation for IEEE 118-bus system simulated
with a ranked list of length of 3.

E∞[τ ] [day] 1/24 1/4 1/2 1 2 7

Line 36 0.1477 0.1392 0.1371 0.1303 0.1251 0.1219

Line 180 0.0197 0.0127 0.0112 0.0097 0.0062 0.0049

Line 104 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6

Table 7.3: Probability of false isolation for IEEE 118-bus system simulated
with a ranked list of length of 5.

E∞[τ ] [day] 1/24 1/4 1/2 1 2 7

Line 36 0.0295 0.0203 0.0158 0.0137 0.0108 0.0067

Line 180 0.0097 0.0074 0.0052 0.0041 0.0036 0.0027

Line 104 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6 < 10−6
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CHAPTER 8

CONCLUSIONS

PMUs provide synchronized real-time measurements of voltage and current phasors

across the power system. These measurements are used in a sequential manner to

detect and identify line outage events.

In this work, we demonstrate the use of theoretical tools from QCD theory to

tackle the line outage detection and identification problem in an efficient and robust

manner. We first study the line outage problem without considering transient

behavior. A G-CuSum based algorithm is proposed as a solution. Furthermore,

different techniques for choosing the test thresholds are discussed. In particular,

we exploit the notion of KL-divergence to choose the thresholds as a function of

the difference between the pre- and post-change distributions. This choice leads

to an algorithm that detects outages faster than other detection schemes proposed

in the literature. Finally, we study the problem of line outage detection under

transient dynamics. We introduce the G-D-CuSum algorithm, a scheme that is

designed after taking the transient behavior into consideration. We use this test to

introduce line outage identification techniques that can be easily implemented in

practice. Through numerical results and simulations, we show that this algorithm

is superior compared to other algorithms in the literature.

Future work in this area includes developing schemes to optimally place lim-

ited PMUs to maximize algorithmic performance in terms of detection delay and

probability of false isolation, as well as implementing low complexity solutions

for detecting multiple and cascading line outages. In addition, a more accurate

transient model for power system line outages should be developed so that more

appropriate detection schemes that are model specific could be used. Finally, dis-

tributed versions of the detection schemes presented in this thesis can be explored.
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