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INTRODUCTION 

 

Yellow perch (Perca flavescens) is an important commercial and sport fish throughout 

much of its range in North America. Its schooling behavior promotes sizable captures in 

commercial gears such as trap nets and gill nets, and the tendency of yellow perch to congregate 

nearshore in the spring makes this species accessible to shore anglers. The majority of yellow 

perch harvested in North America are taken from the Great Lakes; yellow perch provide the most 

important sport fisheries in the four states bordering Lake Michigan and until 1997 supported 

large-scale commercial fisheries in three of those states. 

Lake Michigan yellow perch have undergone severe fluctuations in abundance in the past 

few decades. The population in the southern basin increased dramatically in the 1980s (McComish 

1986), and the sport and commercial fisheries expanded accordingly. In Illinois waters alone, the 

estimated annual catch by sport fishermen doubled between 1979 and 1993, from 600,000 to 1.2 

million fish (Muench 1981, Brofka and Marsden 1993). Between 1979 and 1989, the commercial 

harvest in Illinois tripled, in Wisconsin (excluding Green Bay) it increased six-fold, and in Indiana 

the harvest increased by over an order of magnitude (Brazo 1990, Hess 1990). However, the yellow 

perch fishery in Illinois waters during the early and mid-1990’s was primarily supported by a 

strong year class spawned in 1988 (Marsden and Robillard 2004). Few or no young-of-the-year 

(YOY) yellow perch were found in lake-wide sampling efforts during 1994-1997 (Hess 1998), but 

significantly greater survival of the 1998 year class occurred. The 1998 year class dominated Lake 

Michigan Biological Station (LMBS) spring adult assessments between 2000 and 2004 (previous 

segments of F-123-R). During this period, LMBS trawling efforts detected moderate year class 

strength during 2002 and 2004. In 2005, the age structure of yellow perch began to shift towards 

younger fish so that 52% of the catch was age 3 (2002 year class) and the 1998 year class (age 7) 

only contributed 37% of the catch. Additionally, age-0 CPUE from trawling assessments during 

2005 and 2010 were the highest recorded in Illinois waters since 1988. During 2006-2008, the 

2002 and 2003 year classes dominated LMBS spring adult assessments and sport harvest 

collections. Then, in 2009 and 2010 LMBS yellow perch samples (fishery independent and sport 

harvest) were dominated by the 2005 year class, while the 2002 and 2003 year classes also 

contributed significantly to the fishable population (Redman et al. 2011a). Despite the presence of 

multiple year classes within the population, lake wide assessments show that current yellow perch 

abundance remains low, particularly in comparison to abundance observed in the late 1980s and 

early 1990s (Makauskas and Clapp 2010). Thus, there continues to be concern about the survival 

and growth of yellow perch and sustainability of the population in Lake Michigan. 

 To protect yellow perch stocks, fisheries managers should set harvest targets in accordance 

with fluctuating population sizes. However, the ability to successfully set these harvest targets for 

yellow perch is hampered by insufficient information about population size, natural mortality, 

reproductive potential, and factors effecting the growth and survival of juveniles. The continued 

decline of the yellow perch population due to reduced survival of larvae to the age-0 stage has 

prompted researchers to narrow the focus of investigation to spawning behavior and success along 

with age-0 interactions and survival. Reproductive potential influences the ability of the population 

to respond to external forces such as overfishing or environmental fluctuations. Thus, accurate 

estimates of fecundity and knowledge of how reproductive potential varies over the life of yellow 

perch in Lake Michigan are crucial to the preservation of this species. Fecundity (Brazo et al. 1975) 

and egg quality (Heyer et al. 2001) have been shown to increase with age in yellow perch. 

Additionally, marine larvae produced by younger spawners have been shown to experience higher 
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mortality than larvae produced by older, more experienced spawners (O’Farrell and Botsford 

2006). Thus, estimates of reproductive potential based on biomass estimates alone risk 

oversimplifying and overestimating reproductive output. Assessment of pelagic and demersal age-

0 yellow perch along with additional juvenile (age 1 and age 2) life stages may permit prediction 

of future year-class strength. However, variability of larval yellow perch abundance data and age-

0 catches is very high, and much remains unknown about the early life history of yellow perch in 

large lakes. Particularly, how the hydrodynamics of Lake Michigan influence the advection of 

larval yellow perch from nearshore spawning sites to the offshore pelagic zone as well as eventual 

settlement into benthic nearshore nursery habitat. The ability to couple physical and biological 

data will not only enhance our understanding of pelagic age-0 fish feeding behavior and early life-

stage movement and survival rates, but also contribute to our ability to monitor year-class strength 

relative to other years. Characterizing the mechanisms influencing ontogenetic diet and habitat 

shifts will contribute to our basic understanding of the offshore pelagic stage of age-0 yellow perch 

in Lake Michigan. Annual assessment of pelagic larval yellow perch drifting offshore, abundance 

of age-0 yellow perch returning to nearshore habitat in the fall, and abundance and diet of age-1 

and age-2 yellow perch, coupled with 20+ years of data collected on yellow perch in Illinois waters 

of Lake Michigan will help to identify critical bottlenecks that limit survival between early life 

stages and recruitment to the sport fishery. 

 Concurrent with the decline in larval fish recruitment, zooplankton density in southern 

Lake Michigan has been consistently lower, and the assemblage structure has shifted. Nearshore 

densities of zooplankton in southern Lake Michigan during 1990–2010 were consistently lower 

than densities in the late 1980s, when yellow perch abundance and harvest were dramatically 

higher (Dettmers et al. 2003, Clapp and Dettmers 2004, Redman et al. 2011a). Furthermore, 

zooplankton taxonomic composition in June shifted from abundant cladocerans (about 30% by 

number) mixed with large-bodied copepods during 1988–1990 to abundant smaller copepods and 

rotifers, but few cladocerans during 1996-1998. Daphnia retrocurva dominated the daphnid 

community in nearshore waters of southern Lake Michigan during 1972-1984, but huge declines 

in abundance occurred following the invasion of Bythotrephes cederstroemi in 1986 (Madenjian 

et al. 2002, Barbiero and Tuchman 2004). Declines in several other Cladocerans species, such as 

Eubosmina coregoni, Daphnia pulicaria, and Leptodora kindti, have also been attributed to the 

invasion of this predatory cladoceran (Makarewicz et al. 1995, Barbiero and Tuchman 2004). 

Additionally, in earlier studies we evaluated how the shift in southern Lake Michigan’s 

zooplankton assemblage influenced growth and survival of larval yellow perch using laboratory 

experiments (Graeb et al. 2004). One observation made during these experiments was that some 

yellow perch larvae failed to inflate their swim bladder (Czesny et al. 2005). Swim bladder 

inflation is usually associated with the nutritional state of fish larvae and can affect survival of 

these fish to later life stages. Thus, the status and composition of the zooplankton community in 

both nearshore and offshore waters of Lake Michigan greatly impacts the recruitment success of 

yellow perch. 

Results of this project will help strengthen management strategies for this important sport 

fish species. These findings will be incorporated into yellow perch management decisions through 

multi-agency collaboration, which reflects a changing philosophy in the Great Lakes fisheries from 

jurisdictional to lake-wide management. 

 

METHODS & RESULTS 

 



 

Redman et al.  7  

Study 101. Yellow perch population assessment in southwestern Lake Michigan 

 

Job 101.1A:  Improve annual assessments of the yellow perch spawning population: Spring 

spawning assessment 

Objective:  Monitor the age and size structure of the spawning population on spawning grounds 

and evaluate reproductive potential. 

 

Adult yellow perch were collected from 11 – 23 May, 2011 at Waukegan and Lake Forest, 

IL using gill nets. We deployed monofilament gill nets consisting of 100-ft panels of 2.0, 2.5, 3.0, 

and 3.5-in mesh. Gill nets were set in 10, 15, and 20 meters of water on three occasions. Gill nets 

set on May 11 and 12 were fished for the typical 24 hour period. However, nets set on May 19 

were fished for almost 96 hours due to dangerous weather conditions. Yellow perch collected 

during the May 19 deployment were excluded from calculations of annual effort and CPUE due to 

possible confounding effects of extra net nights on catch rate. However, these fish were included 

in analysis that examined the age, size and sex structure of the spawning population. 

Annual effort during spring 2011 was six net nights and mean CPUE (fish/net night) was 

18.5 ± 15.1 (SD) yellow perch (Figure 1). A total of 111 yellow perch were caught and seventy 

percent of these fish were females. Mean total length was 268 ± 44 mm for females and 234 ± 34 

mm for males. A total of 622 yellow perch were caught during the 96 hour net sets deployed on 

May 19, and the average length of these females and males was similar to those caught on May 11 

and 12.  However, the gender composition of fish collected during the May 19 deployment was 

quite different with 71% of the fish being males. 

We collected otoliths from all 733 yellow perch caught during May 2011 and were able to 

assign ages to 711 of these fish. Otoliths from the remaining fish (N=22) were eliminated from 

age analysis either due to damage during the preparation process or <75% reader agreement. Fish 

ranged in age from 3 to 13 years old (Figure 2). The dominant age groups observed in our catch 

were age 4 (2007 year class) and age 6 (2005 year class) fish followed by 5, 7 and 8 year olds. 

Mean TL of the 2007 year class at age 4 was 225 ± 25 (SD) mm TL. Mean TL was 236 ± 38 mm 

TL for age 6 fish. In 2011, ovaries were taken from 42 females that averaged 275 ± 42 (SD) mm 

in length and ranged in age from 3 to 13 years. Mean fecundity of yellow perch collected during 

2011 was 49,960 ± 29,483 (SD) eggs. 

In an effort to better understand the distribution of female and male yellow perch during 

spawning aggregations we compiled CPUE, gender, and total length data for yellow perch caught 

during 2008-2011 at the Waukegan and North Lake Forest sampling sites (N = 1,413 fish). Mean 

CPUE was compared among sampling locations and years and no significant differences were 

observed between Waukegan and Lake Forest or among sampling years using a Repeated 

Measures ANOVA. Thus, data from both sampling sites and all sampling years were combined 

for subsequent analysis. To investigate whether CPUE, sex ratio and mean length of females 

changed throughout the spawning season we divided the 36 day sampling window (30 April – 4 

June) across years into three, 12 day periods: 1) 30 April - 11 May, 2) 12 - 23 May, and 3) 24 May 

- 4 June; referred to as sample periods from this point forward. We then tested for differences in 

yellow perch CPUE (RM ANOVA), sex ratio, reproductive state (Chi-square) and mean total 

length (TL) of females (RM ANOVA) among sample periods and water depths (10, 15 and 20 m). 

Although mean annual CPUE of yellow perch decreased slightly as sampling depth 

increased, no significant differences in CPUE were detected among depth stations (p = 0.78; Figure 

3a). Mean CPUE of yellow perch typically increased as the annual sampling window progressed, 
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but again no significant differences were detected among sample periods (p = 0.71; Figure 3b). In 

total, 693 females and 584 males were caught during 2008 - 2011. Gender composition was similar 

among sample periods (3.03; df = 2; p = 0.22; Figure 4a), but a gender bias was detected among 

depth stations (28.3; df = 2; p < 0.001). A higher proportion of females were caught in 15 and 20 

meters of water (sex ratio 1.25:1 and 1.84:1, respectively), while males dominated catches at the 

10m depth station (1:1.16; Figure 4b) regardless of sample date.  

Mean TL of females did not differ among depth stations (p = 0.28) or sample periods (p = 

0.96), but female TL was affected by a significant interaction between water depth and sample 

period (p < 0.001). More specifically, during the second sample period (12 - 23 May) mean TL of 

females at the 20 m station was significantly higher than that at the 10 m station, which suggests 

some size separation among females during the spawning season (Figure 5a). Additionally, the 

length of females caught at the 20 m station varied temporally. Mean TL of females caught in 20 

meters of water during 12 - 23 May was significantly greater than that during the first and third 

sample periods (Figure 5a). The proportion of green females was high throughout the sampling 

window with 98% of females being green during 30 April – 11 May and 72-77% of fish being 

green during subsequent sample periods (Figure 5b). The percentage of spent females increased 

throughout the sampling window and peaked at 26% during 24 May - 4 June.  Spent females were 

significantly larger (294 ± 50 mm TL) than green (269 ± 47 mm TL) and ripe females (273 ± 36 

mm TL) throughout the spawning window (30 April – 4 June), suggesting that larger females may 

be spawning earlier than their smaller counterparts. Our results indicate that a large proportion of 

female yellow perch are in deeper water (≥ 15 m) during spawning aggregations and that those 

caught in shallow water (10 m), particularly during mid-May, tended to be smaller females.  

However, a longer sampling window (including entire month of June) and video documentation 

of spawning is necessary before we can conclude that egg deposition is occurring in deeper water 

than historically observed. 

We compiled CPUE, length and fecundity data from 339 yellow perch collected during 

2007-2011 to examine annual variation in relative abundance and size of gravid females as well 

as estimate the relationship between female length and fecundity. Mean CPUE of females was 

similar among collection years (p = 0.07) ranging from 10 – 14 fish/net night annually (Figure 6). 

However, the length distribution of these fish differed considerably among years (p < 0.005; Figure 

7). Over the course of the study, we caught mature females ranging from approximately 175 - 365 

mm TL. During 2007, the length distribution of females was slightly skewed towards fish less than 

270 mm and skewed towards females over 250 mm during 2008. A slightly bimodal distribution 

was observed in 2009 with a significant contribution from females less than 210 mm and greater 

than 270 mm. The 2010 length distribution was slightly skewed towards smaller females while in 

2011 the majority of females were 230-320 mm. Based on these annual differences we would 

expect reproductive output to vary annually given that fecundity increased exponentially with 

length (Figure 8). A slope heterogeneity test showed that the length-fecundity relationship of 

yellow perch differed among collection years, so regression equations were estimated separately 

for each year (Table 1). Fecundity ranged from approximately 12,156 eggs for a 178 mm female 

to 141,067 eggs for a 336 mm female. Our results showed that annual relative abundance of female 

spawners was similar during 2007-2011, but the size distribution of these fish varied considerably 

among years. Larger yellow perch produced more eggs and as such temporal changes in the size 

structure of the spawning stock have the potential to impact egg production at the population level 

in Lake Michigan. 
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Job 101.1B:  Improve annual assessments of the yellow perch spawning population: Fall 

assessment 

Objective:  Monitor the age, size and sex structure of the population during a period when male 

and female yellow perch are more evenly distributed. 

 

We sampled for adult yellow perch on 11 and 19 September, 2011 at Waukegan, IL using 

gill nets. We deployed monofilament gill nets consisting of 100-ft panels of 2.0, 2.5, 3.0, and 3.5-

in mesh. Gill nets were set in 10, 15, and 20 meters of water and fished for approximately 24 hours. 

Total effort during the 2011 fall assessment was 6 net nights during which only 45 yellow perch 

were caught. All fish were processed in the laboratory and ages were assigned to 42 of these fish. 

Seventy-three percent of the yellow perch collected were females. Mean total length of females 

was 269 ± 49 mm and 235 ± 34 mm for males, which was similar to the average size of females 

and males collected during the 2011 spawning season (reported above). Fish ranged in age from 2 

to 12 years old (Figure 9). Age 4 (2007 year class) and age 3 (2008 year class) fish dominated our 

catch comprising 24% and 21%, respectively. Age 6 fish were the next most abundance age class 

(19%) followed by age 5 fish (14%). 

 

Job 101.2:  Develop angler-caught age and sex distribution 

Objective:  Estimate age composition and, if possible, sex composition of angler-caught fish to 

better parameterize a lake-wide catch-age model in its final stages of development. 

 

During 2011, anal spines were collected from 21 yellow perch harvested by launched 

anglers using Waukegan Harbor during 28 April – 19 May. We also collected spines from 102 

yellow perch harvested by pedestrian anglers at Waukegan and Montrose Harbors, IL during June 

and August. All yellow perch spines were cleaned, sectioned, and mounted for age analysis.  Three 

spines were eliminated from age analysis due to damage during the preparation process or <75% 

reader agreement (N = 120). Yellow perch from this subsample ranged in age from 1 - 13 years 

and 120 - 370 mm in length (Figure 10). Age 3 and age 4 fish dominated the subsample and each 

comprised about 29% of the catch. Similar to that detected during 2008 – 2010, mean age of yellow 

perch harvested by boat anglers using Waukegan launch ramp (7.9 ± 2.5 years, SD) was 

significantly greater than that of yellow perch harvested by pedestrian anglers at Waukegan and 

Montrose Harbors (3.9 ± 1.3 years; t-value = 7.04, P < 0.0001). Additionally, mean length of 

yellow perch harvested by boat anglers (303 ± 49 mm TL) was significantly greater than that of 

yellow perch harvested by pedestrian anglers (229 ± 47 mm TL; t-value = 6.34, p < 0.0001). 

 

Job 101.3:  Sample pelagic age-0 yellow perch and their food resources in offshore waters 

Objective:  Monitor the relative abundance of pelagic age-0 yellow perch and their zooplankton 

prey in offshore waters (≥ 3 miles from shore) of Lake Michigan. 

 

Pelagic age-0 yellow perch and zooplankton were collected at fixed stations about 9 miles 

offshore of Waukegan, IL on three occasions between 1 – 30 July, 2011. Pelagic, age-0 fish were 

collected at the surface (0-2 m) using a 1-m x 2-m fixed frame floating neuston net equipped with 

1000-µm mesh. A multi-net, opening/closing 1-m x 1.4-m mid-water Tucker trawl was used to 

sample pelagic, age-0 fish at the depth range of 2 to 38 m of water. This portion of the water 

column was separated into 6 depth strata (2-8, 8-14, 14-20, 20-26, 26-32, and 32-38 m) and each 

of these depth bins was sampled for 30 minutes. Both nets on the mid-water trawl were equipped 
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with 1000-μm nitrex mesh nets. Each depth strata was sampled for zooplankton using replicate 

vertical hauls of a 0.5 diameter plankton net (64-µm mesh) equipped with an opening/closing 

mechanism. Fish and zooplankton were preserved in the field and sorted to species, enumerated, 

and measured in the laboratory. In the lab, fish were identified to species and total length was 

measured. Zooplankton samples were processed by examining up to three 5-ml subsamples taken 

from adjusted volumes that provided a count of at least 20 individuals of the most dominant taxa. 

Zooplankton were enumerated, identified to the lowest taxon possible and measured.  

In 2011, the most common species collected was burbot (Lota lota), followed by bloater 

(Coregonus hoyi), yellow perch, deepwater sculpin (Myoxocephalus thompsonii) and alewife 

(Alosa pseudoharengus). Both yellow perch and alewife were only collected within 2-8 meters of 

water and day time densities of both species were low over all (< 0.1 fish/100m3; Figure 11). 

Densities of bloater larvae increased with depth and were collected in water as deep as 32-38 

meters. Larval burbot densities decreased with depth, but this species was collected in water as 

deep as 28-32 meters.  Densities of deepwater sculpin larvae increased with depth and were not 

collected in waters shallower than 26 meters.   

Mean annual crustacean zooplankton density was low, 5.14 ind./L ± 7.73 (std), throughout 

the study period. Overall, copepod nauplii (40%), calanoid copepods (33%), and cyclopoid 

copepods (27%) represented the majority of zooplankton captured. Few cladocerans were found 

throughout the study (< 1%) and this group was composed mainly of bosmina, daphnia, and 

polyphemus. The daytime distribution of crustacean zooplankton was heterogeneously distributed 

among depths and the highest densities were detected on July 15 at depths ≥ 20 meters (Figure 

12). 

 

Job 101.4:  Sample demersal age-0 yellow perch and their food resources in nearshore waters 

Objective:  Determine the relative abundance of demersal age-0 yellow perch and the availability 

of their macroinvertebrate and zooplankton prey. 

 

A bottom trawl with a 4.9-m head rope, 38-mm stretch mesh body, and 13-mm mesh cod 

end was used to sample age-0 yellow perch north of Waukegan Harbor. Daytime bottom trawling 

for age-0 yellow perch was conducted weekly between 5 August – 5 October, 2011 at four depth 

stations (3, 5, 7.5 and 10 m). Water temperature was also recorded at each depth station. All fish 

collected were counted and total length was measured to the nearest 1 mm for a subsample (30 

individuals per species) of fish. Total effort during 2011 was approximately 131,016 m2 and 8 age-

0 yellow perch were collected. Mean annual CPUE of age-0 yellow perch during 2011 was 5.5 

fish/100,000 m2 (Figure 13). 

 Forty-four zooplankton samples were collected at two historical sites near Waukegan 

Harbor, IL between 2 June – 5 October, 2011. Samples were immediately preserved in 10% sugar 

formalin. A 64-μm mesh, 0.5-m diameter plankton net was towed vertically from 0.5 m off the 

bottom to the surface at 10 m depth sites. In the lab, samples were processed by examining up to 

three 5-ml subsamples taken from adjusted volumes that provided a count of at least 20 individuals 

of the most dominant taxa. Zooplankton were enumerated, identified to the lowest taxon possible 

and measured. Mean June-July zooplankton density in 2011 was 7.0 ind./L (Figure 14), which 

continues to be below the minimum density (10/L) suggested for age-0 yellow perch foraging 

success (Bremigan et al. 2003). Mean June-July crustacean zooplankton density was only 1.1 

ind./L during 2011. Monthly density of total zooplankton was low during June and July and then 

peaked during August and October at approximately 59 and 50 ind./L, respectively (Figure 15). 
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Mean monthly density of veligers was low during June (3.2 ind./L), increased to 10.0 ind./L in 

July, peaked at 83.1 ind./L in August and then declined to about 40.0 ind./L in September and 20.3 

ind./L in October. Mean monthly crustacean zooplankton density was also low during June and 

July (< 2 ind./L), but increased to approximately 12 ind./L during August and September and 

peaked at around 30 ind./L in October (Figure 15). Copepod nauplii dominated the zooplankton 

assemblage during June (Figure 16), but densities declined significantly by July. During July and 

August rotifers dominated the zooplankton assemblage followed by copepod nauplii and bosmina. 

These taxa remained abundant throughout September and October, and adult calanoid and 

cyclopoid copepods also contributed significantly to the zooplankton assemblage during this time 

period. Other cladocerans (e.g. Polyphemus, Ceriodaphnia, Leptodora, Diaphanosoma, 

Chydoridae) that were commonly found in samples during 1988-1990 remain either rare or absent 

in samples. 

 Benthic invertebrates were collected monthly August through October in 7.5 meters of 

water at a site north of Waukegan Harbor. When possible, SCUBA divers collected benthic 

invertebrates using a 7.5-cm (3-in) diameter core sampler. Four replicate samples from the top 7.5 

cm (3 in) of the soft substrate were collected and preserved in 95% ethanol. When weather 

conditions did not allow collection by divers benthic invertebrates were sampled using a petite 

ponar grab with 232-cm2 sampling area. During each sampling event, two replicate ponar grabs 

were collected and preserved in 95% ethanol. During 2011, August samples were collected by 

SCUBA divers, while September and October samples were collected using a ponar grab.  In the 

lab, all samples were sieved through a 363-m mesh net to remove sand. Organisms were then 

sorted from the remaining sediment debris and identified to the lowest taxon possible, typically to 

genus. Total length (mm) and head capsule width (where applicable) were measured for each 

individual. All taxa were enumerated and total density estimates were calculated by dividing the 

total number of organisms counted by the sample area. Based on benthic core collections, the most 

abundant taxa in substrate near Waukegan during August were chironomids followed by ostracods, 

nematods, and mollusks (Figure 17a). Individuals of Sphaeriidae made up all of the mollusks 

collected during August. Unlike in 2010, Diporeia were not detected in the substrate near 

Waukegan during August. Oligochaetes and Hydracarina were also found during August, but in 

much smaller abundances (collectively <10% of total density). Based on ponar grabs, mollusks, 

nematods and chironomids dominated the benthic invertebrate community near Waukegan during 

September and October, but their percent composition varied monthly (Figure 17b). Most of the 

mollusks (91%) collected during September were identified as members of Pelecypoda; members 

of Sphaeriidae were also collected, but in much smaller quantities. Conversely, Sphaeriidae was 

the most dominant mollusk collected during October and densities of Pelecypoda were relatively 

low. Oligochaetes and ostracods were also collected during September and October with 

Oligochaetes being most abundant during October and densities of ostracods relatively low during 

September and October. 

We examined the stomachs of all 8 age-0 yellow perch collected during 5 August – 5 

October, 2011. Due to such a small sample size seasonal variation in diet was not examined. Mean 

length of yellow perch used for diet analysis was 69 ± 5 mm TL (SD). Overall, the diet of age-0 

yellow perch was dominated by zooplankton (66%) and smaller quantities of benthic invertebrates, 

which is consist with previous trends. More specifically, age-0 yellow perch primarily consumed 

copepods, chironomids and smaller quantities of cladocerans (Figure 18). Hydracarina and 

ostracods were also found in the diet of age-0 yellow perch, but in much smaller quantities (<1% 

of all items). The majority of copepods consumed by age-0 yellow perch were Calanoida spp. 
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(94% of copepods consumed) and Chydoridae spp. was the most dominant cladoceran taxa found. 

 

Job 101.5:  Sample juvenile (age-0 through age-2) yellow perch in nearshore waters 

Objective:  Collect age-0 yellow perch in nearshore waters in a manner consistent with guidelines 

developed by the Yellow Perch Task Group’s lakewide age-0 yellow perch assessment. Monitor 

the abundance and diet of juvenile yellow perch. 

 

2011 sampling 

To fulfill our commitment to the Yellow Perch Task Group’s lakewide age-0 yellow perch 

assessment, we sampled yellow perch on three occasions during 1 – 31 August, 2011. We fished 

10-m gill net panels of 6, 8, 10, and 12 mm mesh, but to achieve gear consistency among the four 

jurisdictions only yellow perch caught in 6 and 8 mm mesh are reported to the Yellow Perch Task 

Group. During each sampling event, nets were fished for approximately four hours in 3-10 meters 

of water at historical sites near Waukegan Harbor, IL. Total effort during August 2011 was 43.6 

hours during which we caught 72 yellow perch in 6 and 8 mm mesh and 444 yellow perch in 10 

and 12 mm mesh. We also sampled juvenile yellow perch on two occasions during both September 

and October. Total effort during September and October was 23.0 hours during which we captured 

53 yellow perch and 233 fish from other species (mainly spottail shiner and round goby). All fish 

collected in these assessments were processed in the laboratory for size information and a 

subsample of fish was used for diet analysis. CPUE of yellow perch (all mesh sizes combined) 

peaked in August at 12 fish/hr and then declined to approximately 2 fish/hr in September and 

October (Figure 19). Yellow perch collected in small mesh gill nets during 2011 ranged from 55-

200 mm TL.  Mean length of yellow perch caught in 6 and 8 mm mesh panels was 76 ± 19 (SD) 

and 83 ± 12 mm TL, respectively. Mean length of yellow perch caught in 10 and 12 mm panels 

was 95 ± 12 and 117 ± 20 mm TL, respectively. 

 

Stomach analysis  

We examined the stomachs of a subset of juvenile yellow perch (N=22) collected during 

August - October, 2011. Length of yellow perch used for diet analysis ranged from 69-162 mm 

TL and mean length was 107 ± 29 mm TL (SD). Fish were divided into two size classes for diet 

description: < 80 mm and > 80 mm TL. In 2011 juvenile yellow perch consumed large quantities 

of chironomids as they comprised 72-89 % of the prey items consumed by fish < 80 mm and > 80 

mm TL. Many of these yellow perch had 50-200 larval chironomids packed into their stomachs. 

Zooplankton, mainly cladocerans, and other benthic invertebrates were also found in the diet of 

these fish, but in much smaller quantities (Figure 20). One notable difference between the diet of 

these two size classes of yellow perch that is inconspicuous in Figure 20 was the presence of fish 

in the diet of perch > 80 mm TL. Several yellow perch ranging in length from 102- 162 mm had 

consumed round gobies that were approximately 20 mm in length. 

 

 

Size-at-age and size-selective mortality 
 A total of 1,404 yellow perch collected in small mesh gill nets from 2006-2010 near 

Waukegan, Illinois during August and September (collected and processed during previous 

segments of F-123) and in Muskegon, Michigan during September 2010 were used to examine 

spatial and temporal size variability and size-selective mortality of juvenile (age-0 to age-2) yellow 

perch. Total length was measured to the nearest 0.01 mm and sagittal otoliths were removed. 
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Following a modified version from Secor et al. (1991), otoliths were polished until a clear view of 

the focus and any annuli were evident using 800 grit sandpaper and 3 µm lapping film. Then, each 

otolith was photographed using a digital camera attached to a compound microscope and otolith 

radius as well as distance from focus to any annuli was measured to the nearest 0.001 mm. All 

otoliths were then aged by counting annuli and a random subset (200) of otoliths was aged by 

independent readers; 95% agreement was met among readers. During 2006 - 2010, we collected 

yellow perch ranging from approximately 50 to 160 mm in length and 0 – 2 years old. The 6 mm 

mesh collected age-0 yellow perch almost exclusively while age-0 and age-1 fish were caught in 

8 mm mesh (Figure 21). Most of the yellow perch collected in 10 mm mesh were age-1 while age-

1 and age-2 fish were collected in 12 mm mesh. Our small mesh gill net configuration was effective 

at targeting age-0 through age-2 yellow perch, but it is possible that we are not efficiently sampling 

some of the biggest age-2 fish with this gear. 

 Size-at-age was back-calculated for yellow perch older than age-0 using the Dahl-Lea 

(Direct Proportion) method. Temporal variation of juvenile yellow perch total length at capture 

was examined each year using a one-way ANOVA with a Tukey-Kramer HSD mean separation 

test. A two-sample t-test was used to investigate spatial variation of age-0 total length between 

yellow perch sampled in Illinois and Michigan waters of Lake Michigan in 2011. First-year 

overwinter mortality was investigated using Kolmogorov-Smirnov (K-S) two-sample asymptotic 

tests, comparing length-frequency distributions from age-0 yellow perch sampled in the fall to 

back-calculated length distributions at the start of age-1 the following year (Fitzgerald et al. 2004). 

Pre and post winter distributions were then converted to quantile distributions (quantiles: 1, 5, 10, 

25, 50, 75, 90, 95, and 99); these quantiles have a linear relationship and when plotted against each 

other (Q-Q plot) and allow for a separation of growth and mortality by testing whether the slope 

and intercept are different from 1 and 0 respectively (Fitzgerald et al. 2004; Post and Evans 1989). 

Annual size-selective mortality of a given year-class between age-1 and age-2 was examined by 

first back-calculating total length at the start of age-1 from fall caught age-1 fish. The same year-

class was then resampled a year later, at age-2, and used to back-calculate total length at the start 

of age-1. By comparing total length at the same point in time, start of age-1, influences of growth 

between sampling events are eliminated and, as a result, distributions and mean total length were 

compared directly using K-S tests and t-tests, respectively. Significant differences in the 

distributions and mean back-calculated total lengths are indicative of size-selective mortality 

between sampling events (Sinclair et al. 2002). 
Within Illinois, mean total length of age-0 yellow perch differed significantly between 

years ranging from 60.2 mm to 64.6 mm (p < 0.001) with the largest age-0 fish observed during 

2006 and 2008 (Table 2). Although annual differences in mean total length at capture were not 

detected at age-1 (P=0.24), length at capture varied significantly for age-2 yellow perch (p = 

0.003). The largest age-2 total length at capture was observed during 2008 (124.6 mm) and the 

smallest during 2010 (113.4 mm). Mean total length of age-0 yellow perch during 2010 differed 

spatially between the eastern and western shores of Lake Michigan with yellow perch sampled 

near Muskegon, Michigan 20 mm on average, larger than those sampled near Waukegan, Illinois 

(p < 0.001; Table 2). 

Overwinter mortality was not observed for any year-class; however, pre- and post-winter 

length frequency distributions differed significantly each year with Q-Q plots suggesting this 

difference was largely due to growth between sampling events (Figure 22). Pre-winter length 

distribution of the 2006 year-class was bimodal with peaks at 55 mm and 65 mm, which differed 

significantly from the unimodal post-winter distribution that was shifted up the length axis (Figure 
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22a). The Q-Q plot of these distributions indicated a line shifted above the 1-1 line with a slope 

not significantly different from 1 and an intercept different from 0 (Figure 22a). A proportionate 

shift of all quantiles above the 1-1 line is most likely indicative of a scenario where there is equal 

growth of all size-classes between sampling events (Post and Evans, 1989). Pre- and post-winter 

distributions of the 2007 year-class were distinctly unimodal and differed significantly with the 

post winter distribution, positively drawn out along the length axis (Figure 22b). Examination of 

the Q-Q plot of these distributions revealed a slope significantly greater than 1 and an intercept 

different from 0 (Figure 22b). A disproportional increase of the upper quantiles relative to the 

lower quantiles is often indicative of size-specific growth where larger individuals are growing 

faster than their smaller counterparts (Post and Evans, 1989). Pre- and post-winter distributions of 

the 2008 year-class were significantly different though few age-1 yellow perch were captured in 

2009 (Figure 22c). The Q-Q plot of these distributions revealed a similar trend to the 2007 year-

class with a slope significantly greater than 1 and an intercept not significantly different from 0, 

indicating size-specific growth between sampling events. Lastly, pre- and post-winter distributions 

of the 2009 year-class differed significantly, with the post winter distribution again shifted up the 

length axis (Figure 22d). The Q-Q plot revealed a slope significantly greater than 1 and an intercept 

significantly different from 0, which again suggest size-specific growth between sampling events. 

Total length distribution of the 2005 year-class at age-1 did not differ significantly from 

the back-calculated age-1 total length distribution from collections of the 2005 year-class in 2007 

at age-2 (Figure 23a). Similarly, comparisons of mean total length between the sampling events 

revealed no significant differences, providing little evidence of size-selective mortality between 

ages-1 and ages-2 (Figure 23a). Conversely, the 2006 year-class provided strong evidence of size-

selective mortality between ages-1 and ages-2. Examination of the age-1 distribution in 2007 and 

age-1 distribution back-calculated from age-2 in 2008 revealed significant differences between 

distributions with an abrupt truncation at less than 70 mm of yellow perch surviving to age-2. 

These results suggest that yellow perch less than 70 mm at the start of age-1 were not surviving to 

age-2 (Figure 23b). Further evidence of size-selective mortality was observed when comparing 

back-calculated mean total lengths. On average, fish from the 2006 year-class sampled at age-1 

were 6.8 mm smaller than those sampled at age-2 and back-calculated to age-1; this is indicative 

of a scenario where small individuals have been removed resulting in a back-calculated size-at-

age that is larger than what was actually observed. Lastly, the age-1 distribution of the 2008 year-

class differed significantly from the age-1 back-calculated distribution from age-2 yellow perch 

sampled in 2010 with the length distribution shifting towards smaller sizes on the length axis. This 

suggests removal of the largest individuals between sampling events, though a similar trend was 

not observed when comparing back-calculated mean total lengths (Figure 23c). Disagreement 

between length distribution and mean total length comparisons may be partially attributed to small 

sample size, making inferences regarding annual mortality in 2008 ambiguous.  

 

Job 101.6:  Data analysis and report preparation 

Objective:  Analyze data and prepare reports, manuscripts and presentations. 

  

 Data from the above jobs were processed, analyzed, and summarized.  This annual report 

was prepared from the data. 
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CONCLUSIONS 

Spawning stock 

To improve our annual assessments of the yellow perch population we targeted fish in 

deeper waters (10-20m) with gill nets during spring and fall. Mean CPUE was 18.5 fish per net 

night in the spring and 7.5 fish per net night during the fall. The dominate year-classes observed 

in our spring assessment were the 2007 and 2005 year classes while the 2005, 2007 and 2008 year-

classes were most abundant during the fall. Based on high CPUE during the fall of 2009 and very 

low fall CPUE during 2010 and 2011, utilization of the nearshore zone by adult yellow perch 

during September seems quite variable. Although few fish were caught during September 2011 

(N=45), the sex ratio of yellow perch was highly skewed towards females. Similarly, the 

Wisconsin Department of Natural Resources reported has an increase in the percent of female 

yellow perch collected during their winter assessment since 2007. More specifically, female 

yellow perch made up 50% of the catch in 2007 and this increased to 70% by 2010 which surpasses 

that detected in the late 1980s and early 2000s (Makauskas and Clapp 2010). Overall, lakewide 

CPUEs show a long-term decline in the abundance of adult yellow perch and current abundance 

remains well below levels detected in the late 1980s and early 1990s. 

 Investigation of the female spawning stock in southwestern Lake Michigan during 2007-

2011 indicated that fecundity increased exponentially with length. Fecundity ranged from 

approximately 12,000 eggs for a 178 mm female to over 140,000 eggs for a 336 mm fish. Our 

results also indicated that relative abundance of female spawners was similar among years, but the 

size distribution of these fish differed considerably on an annual basis. As such the size 

composition of the female spawning stock can potentially impact reproductive potential at the 

population level. Our data set does support the contention that estimates of population level 

reproductive potential should account for size composition of spawners rather than spawner 

biomass alone. 

 Analysis of yellow perch catch data from 2008-2011 (spring assessment) suggest that 

larger females may be spawning earlier than their smaller counterparts and that females are 

dominating our catch in 15 and 20 meters of water between 30 April – 4 June.  The latter result 

may provide some evidence that egg deposition is occurring in deeper water than historically 

observed. However, an extended sampling period and video documentation of spawning events 

are needed to corroborate this theory. If a shift to deeper spawning habitat is occurring than this 

finding may partly explain why divers could no longer find egg skeins on the Waukegan Wiremill 

intake pipe during the mid-2000s (previous segments of F-123-R) and raises concerns about how 

hatching success and larval survival might be affected by deeper egg deposition. Williamson et al. 

(1997) found that yellow perch egg deposition was deeper in a lake with high-damaging solar 

ultraviolet radiation (UVR), which is associated with low dissolved organic carbon and high water 

clarity. The establishment and expansion of Dreissenid mussels has been linked to significant 

increases in water clarity across the Great Lakes (Dobiesz and Lester 2009) and as such, these 

invasive mussels may be indirectly affecting the spawning behavior of yellow perch in Lake 

Michigan through increased levels of UVR. Given our recent evidence that female size may 

influence the timing of egg deposition and the potential that egg deposition is occurring in deeper 

water within southwestern Lake Michigan it is imperative that we continue to monitor the 

spawning stock and learn more about the availability of yellow perch spawning habitat in the 

deeper, understudied portions of the lake bottom surrounding historical spawning grounds.  

 To determine the age structure of yellow perch caught by boat anglers, anal spines were 



 

Redman et al.  16  

collected from fish at the Waukegan launch ramp between late April and mid-May. Fish harvested 

by boat anglers during 2011 were 5-13 year old and data collected since 2008 (previous segments 

of F-123R) indicates that this harvest is skewed towards larger females. Collection of yellow perch 

spines from pedestrian anglers at Waukegan and Montrose harbors was conducted during June and 

August 2011 and 97% of these fish were harvested at Montrose harbor. Pedestrian anglers 

primarily harvested age 3, 4 and 5 fish. Overall, sport anglers (boat and pedestrian combined) 

primarily harvested yellow perch from the 2006-2008 year-classes and fish from these year classes 

will be extremely important for future spawning and should be protected. 

 

2011 Year class 

CPUE of age-0 yellow perch collected in bottom trawls during 2011 was low compared to 

that detected with 2005 and 2010. Previously, relatively high CPUE in 1998 led to a comparatively 

strong year class as seen by its dominance in LMBS 2000-2004 fyke netting (previous segments 

of F-123-R). A similar pattern occurred with the 2002 and 2005 year classes. Both of these year 

classes were caught in relatively high abundance at age-0 and were detected at significant levels 

in our adult assessments by age 4. The 2002 year class contributed significantly to adult 

assessments and angler catches during 2006-2008 and 2009 was the first year the 2005 year class 

dominated both our adult assessment and sport harvest collections (previous segments of F-123-

R). These results suggest that strong CPUE of age-0 yellow perch is a reasonable indicator of 

recruitment success. Thus, because CPUE levels were higher in 2010 compared to during 1998, 

within a few years hopefully the 2010 year class will appear more readily in our adult assessments 

as we saw with the 1998, 2002 and 2005 year classes. Despite all this, yellow perch year class 

strength remains very erratic from year to year and recent CPUEs are extremely low compared to 

sampling in the late 1980s (1987 and 1988). So even with measureable year classes in 2002, 2004, 

2005, and 2010, their levels were nowhere near that of the late 1980s; as such, they probably are 

not sufficiently strong to support extensive fishing pressure. 

 The forage base available to young yellow perch has changed in species composition and 

abundance over the last several decades, and many of these changes are linked to exotic species 

invasions. Mean zooplankton densities were significantly higher during 1988 in comparison to 

1989-1990 and 1996-2011 (Dettmers et al. 2003, previous segments of F-123-R). Zooplankton 

densities since 1996 have barely reached even half of the densities found during the late 1980s 

when multiple strong year classes were produced. These shifts within the zooplankton community 

may be related to the establishment of several recent invaders. The spiny water flea (Bythotrephes 

longimanus) was first detected in Lake Michigan during 1986 and was established in offshore 

waters lake-wide by 1987 (Barbiero and Tuchman 2004). Barbiero and Tuchman (2004) attributed 

a dramatic reduction in several native cladocerans species to the establishment of this exotic 

cladoceran in offshore waters of Lake Michigan. Declines in once dominant benthic 

macroinvertebrate groups such as Diporeia, cladocerans and sphaeriids in nearshore waters of 

Lake Michigan are attributed to bottom-up effects of decreased phosphorus loading during 1980-

1987 and continued declines of Diporeia coinciding with the invasion of zebra mussels during the 

1990s (Madenjian et al. 2002) and quagga mussels during the early 2000s (Nelepa et al. 2009). 

Dreissenid mussels have drastically reduced phyto- and zooplankton levels (Vanderploeg et al. 

2012) and altered the abundance of benthic macroinvertebrates in the Great Lakes (Leach 1993; 

Stewart et al. 1998). The presence of these invaders and other exotic species have had major 

impacts on the food web and may exacerbate and alter the complex set of factors that affect yellow 

perch year-class strength. Over the last three decades, yellow perch year class strength has been 
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linked to zooplankton availability for first feeding larvae (Dettmers et al. 2003; Redman et al. 

2011b). Foraging success of yellow perch larvae in Green Bay was poor when zooplankton density 

dropped below 10 ind./L (Bremigan et al. 2003) and June-July zooplankton densities in six of the 

last ten years have been at or below this level within Illinois waters of Lake Michigan. Thus, 

continued monitoring of nearshore zooplankton and benthic invertebrate densities is needed to 

further explore the role of food availability in yellow perch recruitment success. 

 

Juvenile yellow perch 

 Our results from investigation of age and length data from yellow perch collected in small 

mesh gill nets during 2006-2010 revealed that mean total length of age-0 yellow perch varied 

annually, over winter mortality was not observed for any year-class and indicated size-selective 

mortality occurred only for the 2006 year class between age-1 and age-2. Within Lake Michigan, 

investigations into the juvenile life-stage of yellow perch have been rare, limited to the first 

growing season or based off back-calculations from adults. Earliest predictors of year-class 

strength are of the most use to management, however there is a trade-off between early notice and 

quality of data (Bradford 1992; Makauskas and Clapp 2006). As such, CPUE of age-0 yellow 

perch may not provide the most accurate representation of year-class strength if significant 

mortality occurs beyond the first growing season like that observed for the 2006 year class. 

Additionally inferences into the juvenile life-stage based off back-calculations from adult otoliths 

may be significantly biased if size-selective mortality occurred between back-calculated and 

sample dates. Future research should provide a better understanding of the unique contributions 

and magnitude of size-selective mortality spatially and temporally during the juvenile life stage 

and Efforts should be made to incorporate results of the juvenile life-stage dynamics to those found 

at earlier points in development. 

 

Management Implications 

 In summary, the fishable yellow perch population consisted of multiple consecutive year 

classes (2005-2008) with the 2007 year class being the dominate age group. During 2011, our age 

data from sport harvested yellow perch suggested that anglers primarily harvested fish from the 

2006-2008 year classes. Based on annual creel surveys, yellow perch harvest in Illinois waters of 

Lake Michigan was near a record low in 2011 (<40,000 fish); harvest has not been that low since 

the enforcement of the slot limit during 1997-2000 (based on results from previous segments of F-

52-R). Our long-term data still clearly demonstrate that recruitment is highly variable and low, 

particularly when compared to that in the 1980s. While we show evidence that the Lake Michigan 

yellow perch population is being supported by multiple year classes, the production of strong year 

classes is only occurring periodically (2005 and 2010). Poor recruitment taken with the continued 

trend of low abundance and harvest of adult yellow perch in Illinois waters as well as lakewide 

(Makauskas and Clapp 2010) raises concerns about the growth and survival of yellow perch. Thus, 

it remains important to conserve the adult stock to the greatest degree possible so that the spawning 

stock can reach full reproductive potential and their offspring can take advantage of beneficial 

recruitment conditions when they occur. Given the current population characteristics, management 

for limited harvest is necessary to protect the future of the Lake Michigan yellow perch population. 

 

ACKNOWLEDGEMENTS 

 

We wish to thank the permanent and temporary staff of the Lake Michigan Biological Station 



 

Redman et al.  18  

who assisted with data collection, sample processing, and data entry for this project. We also 

thank M. Kneuer for her administrative support. 

 

 

REFERENCES 
Barbiero, R. P. and M. L. Tuchman. 2004. Changes in the crustacean communities of Lakes Michigan, 

Huron, and Erie following the invasion of the predatory Cladocerans Bythotrephes longimanus. 

Can. J. Fish. Aquat. Sci. 61:2111-2125. 

Bradford, M. 1992. Precision of recruitment predictions from early life stages of marine fishes. Fish. B-

NOAA 90:439-453. 

Brazo, D. C., P. I. Tack, and C. R. Liston. 1975. Age, growth, and fecundity of yellow perch, Perca 

flavescens, in Lake Michigan near Ludington, Michigan. T. Am. Fish. Soc. 1975(4):726-730. 

Brazo, D. C. 1990. Fisheries research and management report for the Indiana waters of Lake Michigan, 

1989. Report to the Great Lake Fishery Commission. Lake Michigan Committee Meeting, March 

1990. 

Bremigan, M. T., J. M. Dettmers, and A. L. Mahan.  2003.  Zooplankton selectivity by larval yellow 

perch in Green Bay, Lake Michigan. J. Great Lakes Res. 29:501-510. 

Brofka, W. A. and J. E. Marsden. 1993. Creel survey of the Illinois waters of Lake Michigan.  

 Annual report to Illinois Department of Natural Resources. INHS Technical Report 93/4. 40 p. 

Clapp, D. F. and J. M. Dettmers. 2004. Yellow perch research and management in Lake Michigan: 

evaluating progress in a collaborative effort, 1997-2001. Fisheries 29(11):11-19. 

Czesny, S. J., B. D. S. Graeb, and J. M. Dettmers. 2005. Ecological consequences of swim bladder 

noninflation for larval yellow perch. T. Am. Fish. Soc. 134:1011-1020. 

Dettmers, J. M., M. J. Raffenberg, and A. K. Weis. 2003. Exploring zooplankton changes in southern Lake 

Michigan: implications for yellow perch recruitment. J. Great Lakes Res. 29:355-364. 

Dobiesz, N. E., and N. P. Lester. 2009. Changes in mid-summer water temperature and clarity across the 

Great Lakes between 1968-2002. J. Great Lakes Res. 35:371-384. 

Fitzgerald D.G., Clapp D.F., Belonger B.J., 2004. Characterization of growth and winter survival of age-0 

yellow perch in southeastern Lake Michigan. J. Great Lakes Res. 30 (2), 227-240. 

Graeb, B. D. S., J. M. Dettmers, D. H. Wahl, and C. E. Cáceres. 2004. Fish size and prey availability 

affect growth, survival, prey selection, and foraging behavior of larval yellow perch. T. Am. Fish. 

Soc. 133:504-514. 

Hess, R. 1990. Fisheries research and management report for the Illinois waters of Lake Michigan, 1989. 

Report to the Great Lake Fishery Commission. Lake Michigan Committee Meeting, March 1990. 

Hess, R. 1998. Status of Yellow Perch in Lake Michigan and Yellow Perch Task Group Progress report. 

Annual report to the Lake Michigan Technical Committee. Great Lakes Fishery Commission 

meeting, May 1997, Thunder Bay, ONT. 19 p. 

Heyer, C. J., T. J. Miller, F. P. Binkowski, E. M. Caldarone, and J. A. Rice. 2001. Maternal effects as a 

recruitment mechanism in Lake Michigan yellow perch (Perca flavescens). Can. J. Fish. Aquat. 

Sci. 58:1477-1487. 

Leach, J. H. 1993. Impacts of the zebra mussel (Dreissena polymorpha) on water quality and fish spawning 

reefs in western Lake Erie. In: T. F. Nalepa and D. Schloesser, eds. Zebra mussels: biology, 

impacts, and control. Lewis Publishers, Boca Raton, FL. 

Madenjian, C. P., G. L. Fahnenstiel, T. H. Johengen, T. F. Nalepa, H. A. Vanderploeg, G. W. Fleischer, P. 

J. Schneeberger, D. M. Benjamin, E. B. Smith, J. R. Bence, E. S. Rutherford, D. S. Lavis, D. M. 

Robertson, D. J. Jude, M. P. Ebener. 2002. Dynamics of the Lake Michigan food web, 1970-2000. 

Can. J. Fish. Aquat. Sci. 59:736-753. 

Makarewicz, J. C., P. Bertram, T. Lewis, and E. H. Brown, Jr. 1995. A decade of predatory control of 

zooplankton species composition of Lake Michigan. J. Great Lakes Res. 21:620-640. 

Makauskas, D. & Clapp, D. 2006. Status of Yellow Perch in Lake Michigan, and Yellow Perch Task 



 

Redman et al.  19  

Group Progress Report. Minutes of the Lake Michigan Committee. 

Makauskas, D., and D. Clapp. 2010. Status of yellow perch in Lake Michigan, 2009. Annual Report to the 

Lake Michigan Committee. 20 p. 

Marsden, J. E., and S. R. Robillard. 2004. Decline of yellow perch in southwestern Lake Michigan, 1987-

1997. N. Am. J. Fish. Manage. 24(3):952-966. 

McComish, T. S. 1986. A decade of dramatic change in the yellow perch population in Indiana waters of 

Lake Michigan. Presented to a joint meeting of the Indiana, Illinois, and Michigan chapters of the 

American Fisheries Society, March 1986.  

Muench, B. 1981. 1979 sport fishing creel survey on the Illinois portion of Lake Michigan. Technical 

Report, Division of Fisheries and Wildlife, Illinois Department of Conservation. 17p. 

Nelepa, T. F., D. L. Fanslow, and G. A. Lang. 2009. Transformation of the offshore benthic community in 

Lake Michigan: recent shift from native amphipod Diporeia spp. to the invasive mussel Dreissena 

rostriformis bugensis. Freshwater Biol. 54:466-479. 

O’Farrell, M. R., and L. W. Botsford. 2006. The fisheries management implications of maternal-age-

dependent larval survival. Can. J. Fish. Aquat. Sci. 63:2249-2258. 

Post, J., and D., Evans. 1989. Size-dependent overwinter mortality of young-of-the-year yellow perch 

(Perca flavescens): laboratory, in situ enclosure, and field experiments. Can. J. Fish. Aquat. Sci. 

46:1958-1968. 

Redman, R. A., S. J. Czesny, and J. M. Dettmers. 2011a. Yellow perch population assessment in 

southwestern Lake Michigan. Annual report to Illinois Department of Natural Resources. INHS 

Technical Report. 36 p. 

Redman, R. A., S. J. Czesny, J. M. Dettmers, M. J. Weber, D. Makauskas. 2011b. Old tales in recent 

context: current perspective on yellow perch recruitment in Lake Michigan. T. Am. Fish. Soc. 

140:1277-1289. 

Secor, D., Dean, J., Laban, E., Institute, E. P. R. & Research. 1991. Manual for otolith removal and 

preparation for microstructural examination. 

Sinclair A.F., D. P., Swain, and J. M. Hanson. 2002. Disentangling the effects of size-selective mortality, 

density, and temperature on length-at-age. Can. J. Fish. Aquat. Sci. 59: 372-382. 

Stewart, T. W., J. G. Miner, and R. L. Lowe. 1998. Quantifying mechanisms for zebra mussel effects on 

benthic macroinvertebrates: organic matter production and shell-generated habitat. J. N. Am. 

Benthol. Soc. 17:81-94. 

Vanderploeg, H. A., S. A. Pothoven, G. L. Fahnenstiel, J. F. Cavaletto, J. R. Liebig, C. A. Stow, T. F. 

Nalepa, C. P. Madenjian, D. B. Bunnell. 2012. Seasonal zooplankton dynamics in Lake Michigan: 

disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical 

ecosystem transition. J. Great Lakes Res. 38: 336-352. 



 

Redman et al.  20  

TABLES 

 

 

Table 1. Linear regression equations describing the relationship between female total length and 

fecundity of yellow perch collected in gill nets during 2007-2011. 

 

 

Year 

 

No. Ovaries 

 

Slope (α) 

 

Intercept (β) 

 

P-value 

 

Adj. R2 

 

2007 

 

13 3.921 -4.925 <0.001 0.87 

2008 

 

75 3.500 -3.936 <0.001 0.83 

2009 

 

104 3.120 -3.153 <0.001 0.92 

2010 

 

105 3.768 -4.502 <0.001 0.92 

2011 42 3.345 -3.517 <0.001 0.79 
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Table 2. Number, mean total length at capture, and standard error (in parenthesis) of juvenile 

yellow perch sampled each year and location within Lake Michigan. Letters denote annual 

differences in total length between years within an age group and an asterisk indicates length 

differences between age-0 fish collected in Waukegan, Illinois and Muskegon, Michigan during 

2010. 

 

 

 

Year-class 

 

Age 0 

  

Age 1 

  

Age 2 

N TL  N TL  N TL 

Waukegan         

2005 - -  12 99.72 (2.25)  8 119.00ab (5.70) 

         

2006 244 64.07a  (0.46)  75 92.65  (1.13)  42 124.58a (1.95) 

 

2007 65 60.15b  (0.61)  257 91.86  (0.84)  - - 

 

2008 43 64.58ac (1.08)  12 90.28  (2.86)  23 113.38b (1.93) 

 

2009 43 61.18bc (0.77)  22 94.40  (2.90)  - - 

 

2010 

 

Muskegon 

121 61.18b  (0.48)  - -  - - 

 

2010 

 

437 

 

81.17*  (0.48) 

 - -  - - 
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FIGURES 

 

 
 

 

Figure 1. Annual mean CPUE (+ 1 SD) of yellow perch collected in gill nets at Waukegan and 

Lake Forest, Illinois during spring 2007-2011. 
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Figure 2. Age composition of adult yellow perch collected using gill nets at Waukegan and Lake Forest, IL during the spring of 2011. 
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Figure 3. Mean CPUE (+ 1 SD) of yellow perch collected near Waukegan and Lake Forest, Illinois during 2008-2011 by a) water 

 depth and b) sample period. 
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Figure 4. Gender composition of adult yellow perch collected in gill nets during 2008-2011 

among a) sample periods and b) depths. 
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Figure 5. a) Mean total length (+ 1 SD) of female yellow perch among sample depths and periods 

and b) reproductive status of females among sample periods. 
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Figure 6. Annual mean CPUE (+ 1 SD) of female yellow perch collected using gill nets at 

Waukegan and Lake Forest, IL during 2007-2011. 
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Figure 7. Annual length distributions of gravid females collected during 2007-2011 using gill nets at Waukegan and Lake Forest, IL. 

 Length distributions with different letters were significantly different. 
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Figure 8. Relationship between total length and fecundity of yellow perch collected in gill nets 

 during 2007-2011. 
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Figure 9. Age composition of adult yellow perch collected using gill nets at Waukegan, IL 

during the fall of 2011. 
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Figure 10. Age and length distributions of yellow perch harvested by boat anglers using the launch ramp at Waukegan Harbor and 

pedestrian anglers at Waukegan and Montrose Harbors during 2011. 
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Figure 11. Vertical distribution of yellow perch, alewife, bloater, burbot and deepwater sculpin 

 larvae collected 9 miles offshore of Waukegan during July 2011. 
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Figure 12. Vertical distribution of crustacean zooplankton collected 9 miles offshore of 

 Waukegan during each sampling event in 2011.  Bar colors represent the composition of 

 each zooplankton group: calanoid copepods (black), cyclopoid copepods (grey), copepod 

 nauplii (white), cladocerans (dark grey, cross-hatched).  
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Figure 13. Relative abundance of age-0 yellow perch collected by daytime bottom trawls north 

of Waukegan Harbor, IL during 1987-2011. 
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Figure 14. Mean density of zooplankton (+ 1 SE) present in Illinois waters of Lake Michigan 

near Waukegan during June-July for years 1988-2011. 
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Figure 15. Mean monthly zooplankton density (± 1 SD) in nearshore Illinois waters of Lake 

Michigan near Waukegan during June-October 2011. Closed circles () represent total 

zooplankton, whereas open circles () represent crustacean zooplankton. 
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Figure 16. Monthly percent composition of zooplankton found in nearshore Illinois waters of 

Lake Michigan near Waukegan during June-October 2011. 
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Figure 17. Percent composition of benthic invertebrates found in substrate of Lake Michigan 

near Waukegan using a) benthic core collection methods during August and b) a ponar 

grab during September and October 2011. 
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Figure 18. Diet composition of age-0 yellow perch collected in a bottom trawl north of  

 Waukegan Harbor, IL during late July - October, 2011. 
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Figure 19. Mean monthly CPUE (+ 1 SD) of yellow perch collected in small mesh 

 gill nets fished in 3-10 meters of water near Waukegan Harbor, IL during August - 

 October, 2011. 
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Figure 20. Diet composition of juvenile yellow perch collected in small mesh gill nets near 

 Waukegan Harbor, IL during August -October, 2011. Size classes represented are ≤ 80 

 mm and > 80 mm TL. 
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Figure 21. Age and length of yellow perch captured in each mesh size of small mesh gill nets 

 fished near Waukegan, IL during 2008-2010.
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Figure 22. First-year overwinter comparison of length distributions and quantile-quantile  plots of the a) 2006, b) 2007, c) 2008, and 

 d) 2009 year-classes. Significant differences of distributions (Kolmogorov-Smirnov tests) and slope ≠1 and intercept ≠0 (t-

 tests) of the quantile-quantile plots were declared at α=0.05 and are indicated within each panel.
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Figure 23. Annual comparison of length distributions and mean total length at age of age-1 yellow perch back-calculated to the start of 

 age-1 and age-2 yellow perch sampled a year later and back-calculated to the start of age-1 from the (a) 2005, (b) 2006, and (c) 

 2008 year-classes. Significant differences of distributions (Kolmogorov-Smirnov KSa) and differences in mean back-

 calculated total lengths (two-sample t-tests) were declared at =0.05 and are indicated within each panel. Error bars denote one 

 standard error. 

 

 


