
An Experimental Comparison of Partitioning Strategies in
Distributed Graph Processing [Experiments and Analyses]

Shiv Verma
1

, Luke M. Leslie
1

, Yosub Shin
2∗

, Indranil Gupta
1

1 University of Illinois at Urbana-Champaign, Urbana, IL, USA
2 Samsara Inc., San Francisco, CA, USA

{sverma11, lmlesli2}@illinois.edu, yosub@samsara.com, indy@illinois.edu †

ABSTRACT
In this paper, we study the problem of choosing among par-
titioning strategies in distributed graph processing systems.
To this end, we evaluate and characterize both the perfor-
mance and resource usage of different partitioning strate-
gies under various popular distributed graph processing sys-
tems, applications, input graphs, and execution environ-
ments. Through our experiments, we found that no single
partitioning strategy is the best fit for all situations, and
that the choice of partitioning strategy has a significant ef-
fect on resource usage and application run-time. Our exper-
iments demonstrate that the choice of partitioning strategy
depends on (1) the degree distribution of input graph, (2)
the type and duration of the application, and (3) the cluster
size. Based on our results, we present rules of thumb to help
users pick the best partitioning strategy for their particular
use cases. We present results from each system, as well as
from all partitioning strategies implemented in one common
system (PowerLyra).

1. INTRODUCTION
There is a vast amount of information around us that

can be represented in the form of graphs. These include
graphs of social networks, bipartite graphs between buyers
and items, graphs of road networks, dependency graphs for
software, etc. Moreover, the size of these graphs has rapidly
risen and can now reach up to hundreds of billions of nodes
and trillions of edges [5]. Systems such as PowerGraph [8],
Pregel [22], GraphX [9], Giraph [1], and GraphChi [16] are
some of the plethora of graph processing systems being used
to process these large graphs today. These frameworks allow
users to write vertex-programs which define the computation
to be performed on the input graph. Common applications

†This work was supported in part by the following grants:
NSF CNS 1319527, NSF CNS 1409416, AFOSR/AFRL
FA8750-11-2-0084, and a generous gift from Microsoft.
∗Work performed while a student at UIUC.

System Partitioning Strategies

PowerGraph (§5) Random, Grid, Oblivious, HDRF, (PDS)
PowerLyra (§6) Random, Grid, Oblivious, Hybrid, Hybrid-Ginger, (PDS)

GraphX (§7) Random, Canonical Random, 1D, 2D

Table 1: Systems and their Partitioning Strategies.

including PageRank or Single Source Shortest Path can be
easily expressed as these vertex-programs.

To be able to compute on large graphs, these systems
are typically run in a distributed manner. However, to dis-
tribute graph computation over multiple machines in a clus-
ter, the input graph first needs to be partitioned before com-
putation starts by assigning graph elements (either edges or
vertices) to individual machines.

The partitions created have a significant impact on the
performance and resource usage in the computation stage.
To avoid excess communication between different partitions
during computation, systems typically use vertex mirroring,
whereby some vertices may have images in multiple parti-
tions. If a partitioning strategy results in a large number
of mirrors, then it will lead to higher communication costs,
memory usage, and synchronization costs. These synchro-
nization overheads and communication costs, in turn, lead
to higher job completion times. Besides reducing the num-
ber of mirrors, the partitioning strategy needs to make sure
that the partitions are balanced in order to avoid overload-
ing individual servers and creating stragglers.

Graph partitioning itself must also be fast and efficient;
for some graph applications, the time it takes to load and
partition the graph can be much larger than the time it takes
to do the actual computation. In particular, the authors of
[12] found that when they ran PageRank for 30 iterations
with PowerGraph on 10 servers, around 80% of the time
was spent in the ingress and partitioning stage. Our own
experiments reveal similar observations.

The characteristics of the graph also play an important
role in the determining the efficiency of a partitioning tech-
nique. For example, many real world graphs, such as social
networks or web graphs [7], follow a power-law distribution.
Gonzalez et. al. demonstrate in [8] that the presence of
very high-degree vertices in power-law graphs present unique
challenges from a partitioning perspective, and motivate the
use of vertex-cuts in such cases. A large amount of research
has been done to improve graph partitioning for distributed
graph processing systems, e.g., [4, 8, 24]. Current research is
typically aimed at reducing the number of mirrors and thus
improving graph processing performance while still keeping
the graph ingress phase fast.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158314261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Today, many of the aforementioned graph processing sys-
tems [4, 8, 9] offer their own set of partitioning strategies.
For instance, as shown in Table 1, PowerGraph [8] offers
five different partitioning strategies, GraphX [9] offers four,
and PowerLyra [4] six. Even after a user has decided which
system to use, it is rarely clear which partitioning strategy
is the best fit for any given use case. In this paper, we
aim to address this dilemma. Our first goal is to compare
partitioning strategies within each system. This holds value
for developers planning to use each system. While it is not
our goal to compare graph processing systems against each
other – they release new versions frequently, and there is
sufficient literature on this [11] – we do implement all parti-
tioning strategies in one common system (PowerLyra) and
present experiments and observations (with caveats).

The main contributions of this paper are:

• We present experimental comparisons of the partitioning
strategies present in three distributed graph processing
systems (PowerGraph, GraphX, PowerLyra);

• For each system we provide rules of thumb to help de-
velopers pick the right partitioning strategy;

• We implement PowerGraph’s and GraphX’s partitioning
strategies into PowerLyra (along with new variants);

• We present experimental comparisons of all strategies
across all systems, and discuss our conclusions.

In particular, we find that the performance of a partition-
ing strategy depends on: (1) the degree distribution of the
input graph, (2) the characteristics of the application being
run, and (3) the number of machines in the cluster. Our
results demonstrate that the choice of partitioning strategy
has a significant impact on the performance of the system;
e.g., for PowerGraph, we found that selecting a suboptimal
partitioning strategy could lead to an overall slowdown of
up to 1.9× times compared to an optimal strategy, and a
>3× slowdown in just computation time alone. Similarly,
we have observed significant differences in resource utiliza-
tion based on the partitioning strategy used, e.g., there is a
2× difference in PageRank peak memory utilization between
different partitioning strategies in PowerLyra. Finally, when
all partitioning strategies are implemented in one system we
find that our per-system decision trees do not change, but
partitioning strategies tightly integrated with the underly-
ing engine perform better. This means that our per-system
results still hold value.

2. SUMMARY OF RESULTS
We now provide a brief summary of the results of our

experiments. These results are from experiments performed
on three systems and their associated partitioning strategies:
PowerGraph, PowerLyra, and GraphX, as well as multiple
different algorithms and real-world graphs. Table 1 lists the
individual partitioning strategies we evaluate in this paper.

For PowerGraph, we found that heuristic-based strate-
gies, i.e., HDRF and Oblivious, perform better (in terms of
both ingress and computation time) with graphs that have
low-degree distribution and large diameters such as road
networks. Grid incurs lower replication factors as well as
a lower ingress time for heavy-tailed graphs like social net-
works. However, for power-law-like graphs such as UK-web,
the two heuristic strategies deliver higher quality partitions
(i.e., lower replication factors) but have a longer ingress

phase when compared to Grid. Therefore, for power-law-
like graphs, Grid is more suitable for short running jobs and
HDRF/Oblivious are more suitable for long running jobs.

For PowerLyra, we need to additionally consider if the
application being run is natural or not; Hybrid is signifi-
cantly more efficient when used with natural applications.
Natural applications are defined as applications which Gather
from one direction and Scatter in the other (terms explained
later in Section 3). We have provided two decision trees
based on these findings: PowerGraph (Figure 9) and Pow-
erLyra (Figure 15). These decision trees and the results
that build up to them have been discussed in more detail in
Sections 5.4 and 6.4, respectively.

For GraphX, all partitioning strategies have similar par-
titioning speed, i.e., the partitioning phases took roughly the
same amount of time. So, the choice of partitioning strat-
egy is based primarily on computation time. Our results
indicate that Canonical Random works well with low degree
graphs, and 2D edge partitioning with power-law graphs.
These results are discussed in Section 7.4.

When all partitioning strategies are implemented and
run in a common system (PowerLyra), we find that decision
trees do not change, asymmetric random performs worse
than random, and that the engine enhances some partition-
ing strategies more than others. Finally, we find that CPU
utilization is not a good indicator of performance.

3. BACKGROUND
This section provides background information on (1) the

Gather-Apply-Scatter (GAS) model, (2) the difference be-
tween edge-cuts and vertex-cuts, and (3) the different graph
applications used in the evaluation.

3.1 The GAS Decomposition
The Pregel [22, 26] model of vertex-centric computation

involves splitting the overall computation into supersteps.
Vertices communicate with each other by passing messages,
where messages sent in one superstep are received in the
by neighbors in the next. This model is also available in
systems such as Giraph and GraphX.

Similarly to Pregel, Gather-Apply-Scatter (GAS) is a model
for vertex-centric computation used by systems such as Pow-
erGraph, GraphLab [20, 21], and PowerLyra. In this model,
the overall vertex computation is divided into iterations, and
each iteration is further divided into Gather, Apply and Scat-
ter stages (also called minor-steps).

In the Gather stage, a vertex essentially collects informa-
tion about adjacent edges and neighbors and aggregates it
using the specified commutative associative aggregator. In
the Apply stage, the vertex receives the gathered and ag-
gregated data and uses it to update its local state. Finally,
in the Scatter stage, the vertex uses its updated state to
trigger updates on the neighbouring vertices’ values and/or
activate them for the next iteration. The vertex program
written by the user specifies to which neighbouring vertices
to gather or scatter. The user specifies the gather, apply
and scatter methods to be executed in their corresponding
stages. The user also specifies a commutative associative
aggregator for the gather stage.

3.2 Edge Cuts and Vertex Cuts
There are two main partitioning and computational ap-

proaches in distributed graph processing: (1) edge-cuts, as

2

used by systems such as GraphLab, LFGraph, and the origi-
nal version of Pregel, and (2) vertex-cuts, as used by systems
such as PowerGraph and GraphX. For systems that utilize
edge-cuts, vertices are assigned to partitions and thus edges
can span partitions. For systems that utilize vertex-cuts,
edges are assigned to partitions and thus vertices can span
partitions. Unlike edges which could be cut across only two
partitions, a vertex can be cut across several as its edges
may be assigned to several partitions.

Edge-cuts and vertex-cuts are preferable in different sce-
narios as pointed out by [4]. Edge-cuts are better for graphs
with many low-degree vertices since all adjacent edges of
a vertex are allocated to the same machine. However, for
power-law-like graphs with several very high degree nodes,
vertex-cuts allow better load balance by distributing load
for those vertices over multiple machines.

3.3 Graph Applications
Graph applications differ along multiple axes: initial con-

ditions, direction of data-flow, presence of edge-mutation,
and synchronization. To capture a wide swathe of this space,
we have selected the following applications for use in our
subsequent experimental evaluations.

3.3.1 PageRank
PageRank is an algorithm used to rank vertices in a graph,

where a vertex is ranked higher if it has incoming edges from
other high-rank vertices. PageRank first starts by assign-
ing each vertex a score of 1, and then updates the vertex
score p(v) in each superstep using v’s neighboring vertices

as: p(v) = (1−d)+d ·
∑

v′∈Ni(v)
p(v′)

|No(v′)| . Here, d is a damp-

ening factor (typically set to 0.85) and No(v) and Ni(v) are
the set of out- and in-neighbors, respectively, of vertex v.

3.3.2 Weakly Connected Components
This identifies all the weakly connected components of a

graph using label propagation. All vertices start out with
their vertex id as their label id. Upon receiving a message
form a vertex with a lower label id, they update their label
id and propagate that label to all of their neighbours. At
the start of computation, all vertices are active and send
out their label IDs. The update rule can be formalized as
p(v) = min

v′∈N(v)
(p(v′)) where N(v) is the set of all neighbours

of v. After convergence, all vertices have the the lowest
vertex ID in its weakly connected component as its value.

3.3.3 K-Core Decomposition
A graph is said to have a k-core if it contains a subgraph

consisting entirely of nodes of degree at least k; such a sub-
graph is called a k-core. K-core decomposition is the process
of finding all such k-cores, and is performed for a given k by
repeatedly removing nodes of degree less than k. The Pow-
erGraph application accepts a kmin and kmax value and
finds all k-cores for all values of k in between.

3.3.4 SSSP
Single Source Shortest Path (SSSP) finds the shortest

path given a source vertex to all reachable vertices. SSSP
first starts by setting the distance value of the source vertex
to 0 and all other vertices to ∞. Initially only the source
is active. In each superstep, all active vertices send to their
neighbours their current distance from the source. In the

next step, if a vertex receives a distance smaller than its
own, it updates its distance and propagates the new dis-
tance value. This continues until there are no more ac-
tive vertices left. The update step for any active vertex
is: p(v) = min

v′∈N(v)
(p(v′) + 1) This update step can be easily

modified for cases that involve directed or weighted edges.

3.3.5 Simple Coloring
The Simple Coloring application assigns colors to all ver-

tices such that no two adjacent vertices have the same color.
Minimal graph coloring is a well-known NP-complete prob-
lem [14]. This application, therefore, does not guarantee a
minimal coloring. All the vertices initially start with the
same color and, in each iteration, each active vertex as-
signs itself the smallest integer (color) different from all of
its neighbours’: p(v) = arg mink{k|k 6= p(v′)∀v′ ∈ N(v)}

4. EXPERIMENTAL METHODOLOGY
In this section we describe the clusters and datasets used

for the experiments as well as the metrics we measure during
our experiments. Several system-specific metrics and setup
details are covered in their respective sections.

4.1 Clusters
Detailed descriptions of our experimental environments

are provided in Table 2. For both PowerGraph and Power-
Lyra, we performed our experiments on three different clus-
ters: (1) a local cluster of 9 machines (to accommodate the
perfect-square machine requirement for Grid partitioning),
(2) an EC2 cluster consisting of 16 m4.2xlarge instances, and
(3) an EC2 cluster consisting of 25 m4.2xlarge instances. For
GraphX we used a local cluster of 10 machines.

4.2 Datasets
The datasets were obtained from SNAP (Stanford Net-

work Analysis Project) [19], LAW (Laboratory for Web Al-
gorithmics) [17] and DIMACS challenge 9 [6]. We used a
mixture of low-degree and power-law-like graphs. A sum-
mary of the datasets has been provided in Table 3. All the
datasets were stored in plain-text edge-list format.

4.3 Metrics
The primary metrics used in our experiments are:

• Ingress time: the time it takes to load a graph to
memory (how fast a partitioning scheme is).
• Computation time: the time that it takes to run

any particular graph application and always excludes
the ingress/partitioning time.
• Replication factor: the average number of images

per vertex for any partitioning strategy.
• System-wide resource usage: we measured mem-

ory consumption, CPU utilization and network usage
at 1 second intervals.

To measure the system-wide resource metrics, we used a
python library called psutil1. The peak memory utilization
(per-machine) for an application was calculated by taking
the difference between the maximum and minimum mem-
ory used by the system during experiment. This allows us
to filter out the background OS memory utilization and still

1https://github.com/giampaolo/psutil

3

Table 2: The Cluster Specifications.

Cluster Sizes Memory Storage vCPUs

Local 9 & 10 64GB 500GB SSD 16 (2 X 4-core Intel Xeon 5620 w/ hyperthreading)
EC2 (m4.2xlarge) 16 & 25 32GB 250GB EBS SSD 8 (2.4 GHz Intel Xeon E5-2676 v3 (Haswell))

Table 3: The graph datasets used.

Graph Dataset Edges Vertices Type

road-net-CA [19] 5.5M 1.9M Low-Degree
road-net-USA [6] 57.5M 23.6M Low-Degree
LiveJournal [19] 68.5M 4.8M Heavy-Tailed

Enwiki-2013 [2, 3] 101M 4.2M Heavy-Tailed
Twitter [15] 1.46B 41.6M Heavy-Tailed

UK-web [2, 3] 3.71B 105.1M Power-Law

A

B

D

A

C

D

M1 M2

A

B C

D

(a) An example graph (b) Vertex cut between two machines

Figure 1: PowerGraph’s vertex replication model.

measure memory in an system independent way. For net-
work IO, we found the incoming and outgoing IO patterns
to be similar. So, we focus only on the incoming traffic.

We launched the system monitors on all machines a few
seconds before the experiment begins and terminated the
monitors a few seconds after the experiment ended. This
ensured that the monitoring overhead was small and con-
stant and also helped us accurately estimate background
memory utilization. This method is similar to the one used
by Han et. al. in [11].

5. POWERGRAPH
In this section we introduce the PowerGraph graph pro-

cessing system, the partitioning strategies it ships with, and
our experimental results.

5.1 System Introduction
PowerGraph [8] is a distributed graph processing frame-

work written in C++ and designed to explicitly tackle the
power-law degree distribution typically found in real-world
graphs. The authors of PowerGraph discuss how edge-cuts
perform poorly on power-law graphs and lead to load imbal-
ance at the servers hosting the high-degree vertices. To solve
the load-imbalance, they introduced vertex-cut partitioning,
where edges instead of vertices were assigned to partitions.

5.1.1 Vertex Replication Model
Vertex cuts allow an even load balance but result in repli-

cation of the cut vertices. Whenever an edge (u, v) is as-
signed to a partition, the partition maintains a vertex replica
for both u and v. For vertices which have images in more
than one partitions, PowerGraph randomly picks one of them
as the master and the remainder are called mirrors.

For a vertex, the total number of mirrors plus the master
is called the vertex’s replication factor. A common metric
to measure the effectiveness of partitioning in PowerGraph
is to calculate the average replication factor over all vertices

[4, 8, 23]. Lower replication factors are associated with lower
communication overheads and faster computation.

5.1.2 Computation Engine
PowerGraph follows the GAS model of computation, and

allows the Gather and Scatter operations to be executed in
parallel among machines. More specifically, all of a vertex’s
mirrors perform a local Gather, and then send the partially
aggregated data to the master which will in turn perform
another aggregation over the partial aggregates. Then in
the Apply step, the master updates its local value and syn-
chronizes all its mirrors. Thereafter, all the mirrors perform
the Scatter step in parallel.

PowerGraph can be used with both synchronous and asyn-
chronous engines. When run synchronously, the execution
is divided into supersteps, each consisting of the Gather,
Apply, and Scatter minor-steps. There are barriers between
the minor-steps as well as the supersteps. When run asyn-
chronously, these barriers are absent.

5.2 Partitioning Strategies
PowerGraph provides five partitioning strategies: (1) Ran-

dom, (2) Oblivious, (3) Grid, (4) PDS, and (5) HDRF.

5.2.1 Random
In PowerGraph’s Random hash-partitioning implementa-

tion, an edge’s hash is the function of the vertices it con-
nects. The hashing function ignores the direction of the
edge, i.e., directed edges (u, v) and (v, u) hash to the same
machine. Random is often appealing because it: (1) is fast,
(2) distributes edges evenly, and (3) is highly parallelizable.
However, Random creates a large number of mirrors.

5.2.2 Oblivious
The Oblivious graph partitioning strategy is based on a

greedy heuristic with the objective of keeping the replica-
tion factor as low as possible. Oblivious incrementally and
greedily places edges in a manner that keeps the replica-
tion factor low. The heuristic devolves to a few simple cases
which are described in Appendix A in detail.

The heuristic requires some information about previous
assignments to assign the next edge. Therefore, unlike Ran-
dom, this is not a trivial strategy to parallelize and dis-
tribute. In the interest of partitioning speed, Oblivious does
not make machines send each other information about pre-
vious assignments, i.e., each machine is “oblivious” to the
assignments made by the other machines and thus makes
decisions based on its own previous assignments.

5.2.3 Constrained
Constrained partitioning strategies hash edges, but re-

strict edge placement based on vertex adjacency in order to
reduce the replication factor. This additional restriction is
derived by assigning each vertex v a constraint set S(v). An
edge (u, v) is then placed in one of partitions belonging to
S(u) ∩ S(v). As a result, Constrained partitioning imposes
a tight upper bound of |S(v)| on the replication factor of

4

h(u) == 1 2 3

4 5 6

7 8 h(v) == 9

Figure 2: Grid Partitioning example: u hashes to 1, v hashes
to 9. The edge (u, v) can be placed on machines 7 or 3.

v. There are two popular strategies from constrained family
offered by PowerGraph: Grid and PDS.

Grid [13] organizes all the machines into a square ma-
trix. The constraint set for any vertex v is the set of all the
machines in the row and column of the machine v hashes
to. Thus, as shown in Figure 2, all edges can be stored on
at least 2 machines. As a result, Grid manages to place an
upper bound of (2

√
N − 1) on the replication factor where

N is the total number of machines.
While Grid partitioning can generally work for any non-

prime number of machines, whereby we construct an (m×n)
rectangle (m and n are integers such thatm×n = N and nei-
ther m nor n equals 1), the version offered by PowerGraph
only works with a perfect square number of machines.

PDS uses Perfect Difference Sets [10] to generate con-
straint sets. However, PDS requires (p2 + p + 1) machines
where p is prime. Since we were unable to satisfy the con-
straints of both PDF and Grid on the number of machines
simultaneously, and therefore could not directly compare the
two strategies, we have not included PDS in our evaluation.

5.2.4 HDRF
HDRF is a recently-introduced partitioning strategy that

stands for High-Degree Replicated First [23]. HDRF is sim-
ilar to oblivious, but while Oblivious breaks ties by looking
at partition sizes (to ensure load-balance), HDRF looks at
vertex degrees as well as partition sizes. As the name sug-
gests, it prefers to replicate the high degree vertices when
assigning edges to partitions. So, while assigning an edge
(u, v), HDRF may make an assignment to a more loaded
machine instead, if doing so results in less replication for
the lower degree vertex between u and v.

However, a full pass over the graph is needed to calculate
the vertex degree. To avoid making HDRF a multi-pass
algorithm, the authors use partial-degrees. HDRF updates
partial-degree counters for vertices as it processes edges and
uses these counters in its heuristics. The authors found no
significant difference in replication factor, upon using actual
degree instead of partial degree. Details are in Appendix B.

5.3 Experimental Setup
We ran all graph applications mentioned in the Section

3.3 with all partitioning strategies from Section 5.2. All ap-
plications were run until convergence. k-core decomposition
was run with kmin and kmax set to 10 and 20 respectively.
PowerGraph, by default, uses a number of threads equal
to two less than the number of cores. We used the Road-
net-CA, Road-net-USA, LiveJournal, Twitter, and UK-web
datasets. All datasets were split into as many blocks as there
are machines in the cluster to allow parallel loading.

5.4 Experimental Results
In this section, we discuss the results for PowerGraph.

2 4 6 8 10 12 14

Replication Factors

0

5

10

15

20

25

In
b
o
u
n
d
 N

e
t

I/
O

 (
G

B
s)

R
a
n
d
o
m

H
D

R
F

O
b
liv

io
u
s

G
ri

d

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 3: Incoming Network IO vs. Replication Factors.
(PowerGraph, EC2-25, UK-Web).

3000
3500
4000
4500
5000
5500
6000
6500

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s)

2 4 6 8 10 12 14

Replication Factors

0

50

100

150

200

250

300

R
a
n
d
o
m

H
D

R
F

O
b
liv

io
u
s

G
ri

d

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 4: Computation Time in seconds vs. Replication
Factors. (PowerGraph, EC2-25, UK-Web).

5.4.1 Replication Factor and Performance
Figures 3, 4, and 5 show per-machine network IO, com-

putation time and per-machine peak-memory usage plotted
against replication factor as it is varied by picking different
partitioning strategies. We see that all three performance
metrics are increasing linear functions of replication factor.

All plots illustrate results with UK-Web on the EC2-25
cluster. We found similar behaviors for all graphs and clus-
ter sizes, and we elide redundant plots. The choice of ap-
plication only affects the slope of the line. We can see
that this is true for all applications except Simple Color-
ing, which deviates from the trend due to its execution on
the asynchronous engine. The asynchronous engine some-
times ‘hangs’ and consequently takes much longer to finish
(Oblivious) and sometimes just fails (HDRF).

The linear correlation between network usage and replica-
tion factors (Figure 3) results from synchronization between
mirrors and masters after each step. In the Gather step,
(n − 1) replicas will send their partially aggregated values
to the master; after the Apply step, the master will send
its (n − 1) replicas the updated vertex state (where n is
the vertex’s replication factor). The linear correlation be-
tween replication factor and computation time (Figure 4)

2 4 6 8 10 12 14

Replication Factors

15

20

25

30

P
e
a
k

m
e
m

o
ry

 u
sa

g
e
 (

G
B

s)

R
a
n
d
o
m

H
D

R
F

O
b
liv

io
u
s

G
ri

d

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 5: Memory usage vs Replication Factors. (Power-
Graph, EC2-25, UK-Web).

5

Figure 6: Replication Factors in Powergraph.

Figure 7: Ingress Time in seconds in PowerGraph.

(a) LiveJournal (b) Twitter (c) uk-web

100 102 104

In-Degree
106100

103

106

109

100 102 104
100

103

106

109

100 102 104 106

C
ou

nt

100

102

104

106

108

In-Degree In-Degree

C
ou

nt

C
ou

nt

Figure 8: In-degrees of the three powerlaw graphs used.

can be explained by: (1) the additional computation re-
quirements because of having more replicas, and (2) having
to wait longer for network transfers to finish as the amount
of data to be transferred is larger. The linear correlation be-
tween vertex replication and memory usage occurs because
all vertex replicas are stored in memory (hence, having more
replicas leads directly to higher memory consumption).

In light of the observation that replication factors are a
reliable indicator of the resource usage due to partitioning
(Figures 3, 4 and 5), from here on we will primarily use repli-
cation factor to compare the partitioning strategies. Figure
6 shows the replication factors for all of PowerGraph’s par-
titioning strategies on all graphs and cluster sizes.

5.4.2 Minimizing Replication Factor
For Twitter and LiveJournal, Grid delivers the best (low-

est) replication factor. For UK-web however, Grid’s repli-
cation factor is worse than that of HDRF/Oblivious.2 Al-
though all the three graphs are skewed, heavy-tailed, and
natural, they differ when it comes to low-degree nodes. In
Figure 8, we see that relative to the power-law regression
line, Twitter and LiveJournal have fewer low-degree nodes
(unlike UK-web). This is why HDRF and Oblivious perform
better than Grid for UK-web but not for Twitter and Live-
Journal. The heuristic strategies perform better with low-
degree vertices. In fact, HDRF was explicitly designed to
lower the replication factor for low-degree vertices. As a re-
sult HDRF/Oblivious also deliver better replication factors
for the entirely low-degree road-network graphs. Therefore,
in terms of replication factor, HDRF/Oblivious are better

2HDRF is a parameterized variant of Oblivious, and we use
the recommended value of the parameter λ = 1. In practice,
this causes HDRF and Oblivious to perform similarly.

for power-law-like graphs and low-degree graphs while Grid
is preferable for heavy-tailed graphs.

5.4.3 Partitioning Quality vs Partitioning Speed
In Figure 7, we have plotted the ingress times for all the

partitioning strategies. Hash-based partitioners are faster
for power-law graphs in all cluster sizes, while all strategies
perform similarly on low degree road network graphs. From
Figure 7, we can see that Grid is usually the fastest in terms
of ingress speed, followed by Random.

For low-degree road-network graphs, HDRF and Oblivi-
ous have the lowest replication factors (Figure 6) as well as
fast ingress (Figure 7). Meanwhile, for heavy-tailed graphs
like social networks, Grid delivers the lowest replication fac-
tors as well as the fastest ingress speed. However, for UK-
web, Grid has the fastest ingress but HDRF has the best
replication factors. Thus, for graphs like UK-web we need
to look at the type of applications being run. If the appli-
cation spends more time in the compute phase than in the
partitioning phase, it will benefit more from lower replica-
tion factor; if it spends longer in the partitioning phase, it
will benefit more from faster ingress.

Let us use the following example to demonstrate the effect
of job duration on the choice of partitioning strategy: run-
ning PageRank and k-core decomposition with UK-web on
the EC2-25 cluster. We show the ingress and computation
times in Table 4. We see that for short running PageR-
ank, the ingress phase is much longer than the computa-
tion phase. Therefore Grid, which has faster ingress, has a
better total job duration, even though HDRF has a faster
compute phase. On the other hand, for applications with
a high compute/ingress ratio like k-core, a faster compute
phase is better for the overall job duration. Therefore, when
the compute/ingress ratio is lower, faster ingress is better.

When a graph may be partitioned, saved to disk, and
reused later, such cases should be treated similar to the high
compute/ingress ratio case (assuming that partitions will be
reused enough times, compute becomes larger than ingress)
and lower replication factor should be the priority.

5.4.4 Picking a Strategy
On the basis of these results, we present a decision tree to

help users select a partitioning strategy (Figure 9). For low-

6

Strategy
PageRank (Conv.) K-Core Decomp.

ingress compute total ingress compute total
Grid 206.4 146.0 352.4 203.6 3794.9 3998.5

HDRF 322.0 103.6 425.6 320.6 3225.1 3545.7

Table 4: Time taken (seconds) by HDRF and Grid in the
ingress and compute phases. Bold font highlights the stage
which had the largest impact on the total runtime. (Power-
Graph, EC2-25, UK-web).

Start HDRF/
Oblivious

Grid

HDRF/
Oblivious

Yes

Yes

High (>1)

Yes

No

No

No

Low (≤1)

Low degree graph?

Heavy-tailed graph? N2 machines?

Power-law/other graph Compute/Ingress?

Figure 9: Our decision tree for picking a partitioning strat-
egy with PowerGraph.

degree graphs we recommend HDRF/Oblivious. For heavy-
tailed graphs like social networks, we recommend Grid, if the
cluster size permits. If Grid is not possible, then fall back
on HDRF/Oblivious. For graphs that follow the power-law
distribution more closely, HDRF/Oblivious are the strategy
of choice. Finally, we note that because of Random’s consis-
tently high replication factor, it should generally be avoided.
Even though Random has fast ingress, Grid demonstrates
similar (or better) ingress times consistently, while deliver-
ing better replication factors.

6. POWERLYRA
We introduce PowerLyra, its partitioning strategies, the

setup used for it, and present our experimental results.

6.1 System Introduction
PowerLyra [4] is a graph analytics engine built on Pow-

erGraph that seeks to further address the issue of skewed
distribution in power-law graphs by performing differenti-
ated processing and partitioning for high- and low-degree
vertices. Its authors argue that applying vertex-cuts to low-
degree vertices can lead to high communication and synchro-
nization costs. Similarly, applying edge-cuts to high-degree
vertices leads to imbalanced load and high contention. As
a result, PowerLyra takes a best-of-both-worlds hybrid ap-
proach and applies edge-cuts to low-degree vertices and vertex-
cuts to high-degree vertices.

PowerLyra’s new partitioning strategies follow the hybrid
philosophy. Two new strategies are proposed: (1) Hybrid,
a random hash based strategy, and (2) Hybrid-Ginger, a
heuristic-based strategy. Both partitioning strategies aim
to perform vertex-cuts on high-degree vertices and edge-
cuts on low-degree vertices; we discuss both in more detail
in the next section. In addition, PowerLyra’s new hybrid
computation engine differentially processes high-degree and
low-degree vertices by performing a distributed gather for
high-degree vertices (as in PowerGraph), and a local gather
for low-degree vertices (as in GraphLab/Pregel). PowerLyra
implements both synchronous and asynchronous versions of
this hybrid engine.

6.2 Partitioning Strategies
The latest version of PowerLyra, at the time of our writ-

ing, comes with PowerGraph’s Random, Grid, PDS and

Oblivious partitioning strategies, along with its own novel
Hybrid and Hybrid-Ginger partitioning algorithms. As was
the case with PowerGraph, we exclude PDS because of the
reasons explained in Section 5.2.3.

6.2.1 Hybrid
Hybrid performs vertex-cuts for high-degree vertices, edge-

cuts for low-degree vertices, and assigns each edge exclu-
sively to its destination vertex. Hybrid places the edges
with low-degree destinations by hashing the destination ver-
tex, and the edges with high-degree destinations by hashing
the source vertex. Using this approach, Hybrid minimizes
the replication factor for low-degree vertices. Similarly to
HDRF (Section 5.2.4), Hybrid also ensures that high-degree
vertices have high replication factors in order to allow for
better distribution and load balance for such vertices.

Unlike HDRF, Hybrid uses the actual degree of a vertex,
rather than the partial degrees. Consequently, the strat-
egy requires multiple passes over the data. During the first
phase, Hybrid performs edge-cuts on all vertices and also
updates the degree counters. In the second phase, called
the reassignment phase, Hybrid performs vertex-cuts on the
vertices whose degree is above a certain threshold. We use
the default threshold value of 100.

6.2.2 Hybrid-Ginger
Hybrid-Ginger seeks to improve on Hybrid using a heuris-

tic inspired from Fennel [25], a greedy streaming Edge-cut
strategy. Hybrid-Ginger first partitions the graphs just like
Hybrid but then in an additional phase, tries to further re-
duce the replication factors for low degree vertices through
the heuristic. The heuristic is not used for high-degree ver-
tices and is also modified to account for load-balance.

The heuristic tries to place a low degree vertex v in the
partition that has more of its in-neighbours. Here, v gets
assigned to a partition p that maximizes c(v, p) = |Ni(v) ∩
Vp|−b(p) whereNi(v) is the set of v’s in-edge-neighbours and
Vp is the set of vertices assigned to p. The first term (|Ni(v)∩
Vp|) is the partition specific in-degree and the second term
b(p) is the load-balance factor. b(p) represents the cost of
adding another vertex to p by accounting for the number

vertices and edges in p: b(p) = 1
2
(|Vp|+ |V |

|E| |Ep|) [4, 18].

6.3 Experimental Setup
The setup for PowerLyra was identical to that for Power-

Graph (Section 5.3). We enabled PowerLyra’s new hybrid
computational engine and fixed a minor bug with Hybrid-
Ginger that prevented it from running on UK-web.3

6.4 Experimental Results
In this section, we discuss the results for PowerLyra.

6.4.1 Hybrid Strategies and Natural Algorithms
We generally see a correlation between replication fac-

tors and performance for PowerLyra, similar to PowerGraph
(Section 5.4.1). Unlike PowerGraph, PowerLyra is opti-
mized for when Hybrid strategies are paired with natural
algorithms which Gather from one direction and Scatter in
the other (Section 6.1). Hybrid colocates the master replica
of low-degree vertices with all in-edges, allowing PowerLyra

3The integer type used to store the number of edges from
the command-line options overflowed with UK-web.

7

2 4 6 8 10 12 14

Replication Factors

0

5

10

15

20

25

In
b
o
u
n
d
 N

e
t

I/
O

 (
G

B
s)

H
-G

in
g
e
r

H
y
b
ri

d

G
ri

d

R
a
n
d
o
m

O
b
liv

io
u
s

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 10: Incoming network IO vs. Replication Factor.
(EC2-25, PowerLyra, UK-web).

2 4 6 8 10 12 14

Replication Factors

15

20

25

30

P
e
a
k

m
e
m

o
ry

 u
sa

g
e
 (

G
B

s)

R
a
n
d
o
m

H
y
b
ri

d
H

-G
in

g
e
r

O
b
liv

io
u
s

G
ri

d

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 11: Peak memory utilization vs. Replication Factor.
(EC2-25, PowerLyra, UK-web).

to perform a local gather instead of the usual distributed
gather. As a result, PowerLyra eliminates associated net-
work and synchronization costs for low-degree vertices.

We can see the effect of this optimization when we look
at compute-time network usage plotted against replication
factors (Figure 10). The Hybrid and Hybrid-Ginger data-
points have been intentionally ignored by the regression line
to better highlight the effect of the optimization. We can
see that Hybrid and Hybrid-Ginger use less network IO than
Oblivious while running PageRank (a natural application),
even though their replication factors are higher. Therefore,
Hybrid strategies perform well when paired with natural al-
gorithms. Since we used the undirected version of SSSP
(which is not a natural algorithm) for the PowerGraph and
PowerLyra experiments, we are unable to see network sav-
ings of similar magnitude.

6.4.2 Hybrid Strategies and Memory Overheads
From Figure 11, we can see that Hybrid and Hybrid-

Ginger have a higher peak memory utilization than expected
from their replication factor. We have again ignored the hy-
brid data points while drawing the regression line to high-
light how much they deviate from the trend. In the timeline
plot of memory utilization (Figure 12), we see that peak
memory utilization is reached during the ingress phase (be-
fore the black dot) for each partitioning strategy. There-
fore, we attribute Hybrid and Hybrid-Ginger’s higher peak-
memory usage to their partitioning overheads from addi-
tional phases. Unlike the other partitioning strategies (Sec-
tion 5.2) which are all streaming single-pass strategies, Hy-
brid and Hybrid-Ginger have multiple phases. Hybrid reas-
signs high-degree vertices in its second-phase and Hybrid-
Ginger has an additional phase on top of Hybrid to perform
low-degree vertex reassignments on the basis of the Ginger
heuristic. These additional phases contribute to the mem-
ory overhead. We can see the Hybrid-Ginger which has more
phases also has a higher overhead.

0 50 100 150 200 250 300 350 400

Time (s)

0

5

10

15

20

25

30

35

M
e
m

o
ry

 U
ti

liz
a
ti

o
n
 (

G
B

s)

Random
Oblivious

Grid
Hybrid

H-Ginger

Figure 12: Average memory utilization over time. The black
dots mark the end of ingress phase for each partitioning
strategy. (EC2-25, PowerLyra, UK-web, PageRank).

6.4.3 Minimizing Replication Factor
Barring the above exceptions, replication factors are still

a good indicator of performance in terms of network usage,
memory and computation time. We have therefore provided
ingress times and replication factors for PowerLyra’s strate-
gies on all graphs and cluster sizes in Figures 13 and 14.

Here, as in PowerGraph, Oblivious delivers the best repli-
cation factors for the low-degree road networks and UK-
web graph. On the other hand, Grid and Hybrid both have
low replication factors for LiveJournal and Twitter graphs.
Thus, for heavy-tailed graphs, Grid would be preferable
when possible as it has lower memory consumption even
when it has a higher replication factor.

6.4.4 Picking a Strategy
We have provided a decision tree for PowerLyra in Fig-

ure 15. Most of the tree is similar to that for PowerGraph,
but for PowerLyra, we also take into account if the applica-
tion is natural as Hybrid synergizes well with such applica-
tions. Even so, Oblivious is a better choice for low-degree
graphs because of the lower replication factors. Thus, the
we place the “Natural Application?” decision node after
the “Low degree graph?” node. For heavy-tailed graphs we
again pick Grid if the cluster size allows it. When the clus-
ter size is not a perfect square, we choose to fall back on
Hybrid because of its similar performance (except for the
higher memory usage). We also note that Hybrid-Ginger
should generally be avoided in favor of Hybrid. Unlike [4],
we do not find Hybrid-Ginger to be an improvement over
Hybrid. Our results demonstrate that Hybrid-Ginger has
significantly slower ingress (Figure 13), has a much higher
memory footprint (Figure 12), and, in return, delivers only
slightly better replication factor than Hybrid (Figure 14).

7. GRAPHX
In this section, we introduce GraphX and its partitioning

strategies, discuss the experimental setup and present the
experimental results.

7.1 System Introduction
GraphX [9] is a distributed graph processing framework

built on top of Apache Spark that enables users to perform
graph processing while taking advantage of Spark’s data
flow functionality. The GraphX project was motivated by
the fact that using general dataflow systems to directly per-
form graph computation is difficult, can involve several com-
plex joins, and can miss optimization opportunities. Mean-
while, using a specialized graph processing tool in addition
to a general dataflow framework leads to data-migration
costs and additional system complexity in the overall data
pipeline. GraphX addresses these challenges by providing
graph processing APIs embedded into Spark.

8

Figure 13: Ingress Times for PowerLyra.

Figure 14: Replication Factors for PowerLyra.

Oblivious

Grid

Hybrid

Yes

Yes

High (>1)

Yes

No

No

No

Low (≤1)

Yes

No

Low degree graph?

Natural Application?

Heavy-tailed graphs?

Power-law-like/other graphs Compute/Ingress?

N2 machines?

Start

Oblivious

Figure 15: Our decision tree for PowerLyra’s partitioning
strategies.

GraphX leverages Spark’s Resilient Distributed Datasets
(RDDs) [27] to store the vertex and edge data in mem-
ory. RDDs are a distributed, in-memory, lazily-evaluated
and fault-tolerant data structure provided by Spark. RDDs
are connected via lineage-graphs (logs recording which op-
erations on which old RDDs created the new RDD) and,
through them, support lazy computation as well as fault-
tolerance (based on checkpointing and recomputation). There-
fore, unlike PowerGraph/PowerLyra which only support slow
checkpointing, GraphX benefits from the fault-tolerance in-
herent to RDDs. Thus GraphX is structurally significantly
different from PowerGraph/PowerLyra. GraphX also uti-
lizes vertex-cuts to divide graph data into partitions.

7.2 Partitioning Strategies
GraphX comes with a variety of graph partitioning strate-

gies: (1) Random, (2) Canonical Random, (3) 1D, and (4)
2D partitioning. These strategies are hash-based and state-
less (they assign each edge independent of previous assign-
ments), making them highly parallelizable streaming graph
partitioning strategies. Moreover, as opposed to Power-
Graph and PowerLyra, which typically assign one partition
to each machine, GraphX allows for an arbitrary number of
partitions per machine. A recommended rule of thumb is to
use one partition per core in order to maximize parallelism.

7.2.1 Random and Canonical Random
GraphX’s Random partitioning strategy assigns edges to

partitions by hashing the source and vertex IDs. The Canon-
ical Random strategy is similar, except that it hashes the

Local-9

Road-net-CA

0
10
20
30
40
50
60
70
80
90

C
o
m

p
u
te

 t
im

e
 (

w
/o

 i
n
g
re

ss
)

(s
)

1D 2D Canonical Random Random

Local-9

Road-net-USA

0

50

100

150

200

250

Local-9

LiveJournal

0

50

100

150

200

250

Local-9

enwiki-2013

0

20

40

60

80

100

120

140

Figure 16: Computation times for PageRank on GraphX.

source and vertex IDs in a canonical direction, e.g., edges
(u, v) and (v, u) hash to the same partition under Canoni-
cal Random, but not necessarily under Random. Therefore,
the Canonical Random strategy from GraphX is similar to
PowerGraph’s Random partitioning strategy (Section 5.2.1).

7.2.2 1D Edge Partitioning
1D Edge partitioning hashes all edges by their source ver-

tex. As a result, this partitioning strategy ensures that all
edges with the same source are collocated in the same par-
tition. This strategy is similar to how PowerLyra’s Hybrid
strategy (Section 6.2.1) partitions its low-degree vertices.

7.2.3 2D Edge Partitioning
2D Edge partitioning is similar to PowerGraph’s Grid

(Section 5.2.3). This strategy also arranges all the parti-
tions into a square matrix, and picks the column on the
basis of the source vertex’s hash and the row on the basis
of the destination vertex’s hash. As with the Grid parti-
tioning strategy, this ensures a replication upper bound of
(2
√
N − 1) where N is the number of partitions. More-

over, the strategy works best if the number of partitions is a
perfect square otherwise the next largest square number is
used to build the grid and then the assignments are mapped
back down to the correct number of partitions (potentially
leading to imbalanced load).

7.3 Experimental Setup
For GraphX, we used SSSP, PageRank and WCC with 10

iterations to evaluate all of its partitioning strategies. We
ran our on experiments on a local cluster of 10 machines.
GraphX ran out of memory while trying to load Twitter and
UK-web on our cluster. So we used Enwiki-2013 instead
(Table 3). In GraphX, the partitioning phase is separate

9

Application Road-net-ca Road-net-usa LiveJournal Enwiki-2013
PageRank (1D,CR),(2D,R) (1D,CR),(2D,R) 2D,1D,(CR,R) (2D,1D),(CR,R)
SSSP (CR,1D),(2D,R) CR, (1D,R,2D) CR,2D,1D,R (1D,2D),(CR,R)
WCC CR, 1D, 2D, R CR, 1D, 2D, R (2D,1D,CR),R (1D,2D),(CR,R)

Table 5: Computation time-based rankings for GraphX.

from, and follows after, the ingress phase. As a result we
measured the partitioning time separately from ingress time
and computation time.

7.4 Experimental Results
Unlike PowerGraph/PowerLyra, GraphX only has hash-

based partitioning schemes. Since all of GraphX’s partition-
ing strategies are stateless and hash-based, they all run at
similar speeds. The differences in peak memory utilizations
were also not found to be noticeably large. Thus, com-
putation time becomes the only metric on which to base
the choice of partitioning strategy especially because, in
GraphX, computation time was always found to be much
larger than partitioning time. We show in Figure 16 the
compute times for PageRank with all graphs used. The
plots for other applications have been elided. We arrange,
for each combination of graph application and input graph,
the partitioning strategies in ascending order of computa-
tion time in Table 5. Partitioning strategies with perfor-
mance close to each other parenthesized. We see that for
road-network graphs, Canonical Random is consistently the
fastest or the second fastest. Similarly for power-law graphs
2D edge partitioning is fastest or close to fastest.

This can be explained by the fact that for low-degree
graphs, replication factor of a vertex is naturally bounded
by its degree–thus the upper bound imposed by 2D edge
partitioning (25 for 160 partitions) is not effective for road-
networks (max degree 12). On the other hand, for the heavy-
tailed and power-law-like graphs, where the max degree is
much greater than 25, the upper bound helps keep the repli-
cation factor and thus execution time low.

Thus, we recommend Canonical Random for low-degree
and high-diameter graphs such as road-networks and 2D
partitioning for power-law-like graphs. Due to the straight-
forward conclusions we do not provide a decision tree.

8. POWERLYRA: ALL STRATEGIES
In order to provide a uniform platform to compare par-

titioning strategies from across all three systems, we im-
plemented all strategies in PowerLyra. This target choice
was motivated by the fact that PowerGraph’s and GraphX’s
strategies were significantly simpler than PowerLyra’s.

8.1 Partitioning Strategies
From GraphX, we implemented 1D, 2D and Asymmetric

Random (referred to as just ‘Random’ in GraphX). From
PowerGraph we implemented HDRF. We also implemented
a new strategy called 1D-Target (Section 8.2.3).4 For GraphX,
we used the Scala implementations as reference and ported
it to C++ in PowerLyra. Since PowerLyra is a fork of
PowerGraph, migrating the latter’s strategies required fewer

4See https://gitlab-beta.engr.illinois.edu/sverma11/powerlyra-
extra-partitioners for source code.

changes. We did not implement GraphX’s “Canonical Ran-
dom” as it is equivalent to PowerLyra’s “Random”. Sim-
ilarly, PowerGraph’s Random, Grid, and Oblivious are al-
ready present in PowerLyra.

8.2 Experimental Results
We ran all experiments on Local-9 and EC2-25 clusters,

with the same setup as in Section 6.3. The plots comparing
all 9 strategies appear in Figures 18 and 17. We describe
below our key observations.

8.2.1 No Effect on Decision Trees
We observe that a non-native strategy almost never out-

perform best pre-existing PowerLyra strategy. The only ex-
ception is HDRF, which has similar performance to Oblivi-
ous. As a result, the decision tree for PowerLyra including
all partitioning strategies is almost identical to that without
(Figure 15), with the only difference being the replacement
of ‘Oblivious’ with ‘HDRF/Oblivious’. The relative perfor-
mance of PowerGraph’s strategies remained similar. The
relative performance of GraphX’s strategies were different
after they were implemented in PowerLyra. This could have
been due to multiple reasons: (1) GraphX’s use of RDDs,
which are not present in the Hybrid engine; and (2) Power-
Lyra’s Hybrid engine favors 2D and 1D (see Section 8.2.3).

This indicates to us that the performance of a partition-
ing strategy in real life is correlated to how tightly it is
integrated into its native system. It is possible that with
further effort and optimizations the non-native strategies
performance in PowerLyra could be improved (but this is
beyond the scope of this paper).

8.2.2 Asymmetric Random worse than Random
While Random initially was the partitioning strategy that

consistently incurred the highest replication factors in Pow-
erLyra (Figure 14), Asymmetric Random (which doesn’t
guarantee that edges (u, v) and (v, u) get placed to the same
partition) yields even higher replication factors (Figure 17).
Thus, we recommend avoiding both of these strategies while
running PowerLyra.

8.2.3 Hybrid Engine Enhances 1D/2D Partitioning
PowerLyra’s Hybrid Engine has low network traffic for

natural applications when using a partitioning strategy that
tends to co-locate “Gather-edges”. PageRank, for example,
gathers along only the in-edges, thus they are the gather-
edges. Hybrid partitioning accounts for the gather direction
of the application and accordingly co-locates gather-edges.
On the other hand, 1D hashes edges by their source vertex
and thus co-locates all the out-edges. Thus, the standard
1D implementation uses more network I/O. This is further
evident in Figure 19, where we interpolate (linear curve-fit)
a line using the points; any performance point above the
interpolation line is worse than expected according to its
replication factor (this is true for 1D PageRank(C)).

10

Local-9 EC2-25

Road-net-CA

0

1

2

3

4

5

6

1D 2D Assym-Rand Grid HDRF Hybrid H-Ginger Oblivious Random

Local-9 EC2-25

Road-net-USA

0

1

2

3

4

5

6

Local-9 EC2-25

LiveJournal

0

2

4

6

8

10

12

Local-9 EC2-25

Twitter

0

2

4

6

8

10

12

14

Local-9 EC2-25

UK-web

0

2

4

6

8

10

12

14

16

Figure 17: Replication Factors for PowerLyra with all Strategies.

Local-9 EC2-25

Road-net-CA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
a
rt

it
io

n
in

g
 t

im
e
s

(s
)

1D 2D Assym-Rand Grid HDRF Hybrid H-Ginger Oblivious Random

Local-9 EC2-25

Road-net-USA

0

5

10

15

20

25

30

35

40

Local-9 EC2-25

LiveJournal

0
2
4
6
8

10
12
14
16
18

Local-9 EC2-25

Twitter

0

50

100

150

200

250

300

350

Local-9 EC2-25

UK-web

0

100

200

300

400

500

600

700

800

Figure 18: Ingress Times for PowerLyra with all Strategies.

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Replication Factors

0

5

10

15

20

25

30

35

40

In
b
o
u
n
d
 N

e
t

I/
O

 (
G

B
s)

2
D

1
D

H
y
b
ri

d

R
a
n
d
o
m

O
b
liv

io
u
s

H
D

R
F

A
ss

y
m

-R
a
n
d

G
ri

d

H
-G

in
g
e
r

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 19: Incoming network IO vs. Replication Factor.
(Local-9, PowerLyra, Twitter).

To confirm this hypothesis, we implemented a variant of
1D, called 1D-Target, that hashes edges by their target ver-
tex, thus co-locating in-edges. As demonstrated in Figure
19, this strategy performs better and is below the interpola-
tion line for PageRank.

Next, we observe that 2D is also able to benefit from the
Hybrid engine (2D for PageRank is below the line in Figure

19). This is since 2D, in addition to imposing a (2
√
N − 1)

upper bound on the overall replication factor, also imposes
a tighter

√
N upper bound on the number of machines a

vertex’s in-edges (or out-edges) can be assigned to. Having
a smaller set of machines on which the in-edges have to
be placed increases the probablity that in-edges will be co-
located (especially for very low-degree vertices). Thus, we
see 2D performing slightly better than the trend.

8.2.4 CPU Utilization Patterns
In Figure 20 we test the hypothesis of whether average

CPU utilization is correlated with computation time. Here
we see that the correlation to replication factor (and thus
compute time) varies by application: increasing (Figure 20(b))
or decreasing (Figure 20(a)). We also note there are no
clear correlations between load imbalance and compute time
(spread of boxes’ ranges in Figure 20).

9. CONCLUSIONS
There are a significant number of partitioning strategies

available to the users of graph processing systems. It is

100 150 200 250 300 350 400

Compute time (s)

25

30

35

40

45

50

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

H
y
b
ri

d

A
ss

y
m

-R
a
n
d

O
b
liv

io
u
s

G
ri

d

2
D

1
D

R
a
n
d
o
m

H
D

R
F

H
-G

in
g
e
r

(a) PageRank

2400 2600 2800 3000 3200 3400 3600

Compute time (s)

10

15

20

25

30

35

40

45

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

H
y
b
ri

d

A
ss

y
m

-R
a
n
d

O
b
liv

io
u
s

G
ri

d

2
D

1
D

R
a
n
d
o
m

H
D

R
F

H
-G

in
g
e
r

(b) K-core

Figure 20: CPU utilization vs Compute phase duration
(Local-9, UK-Web, PowerLyra-All). The box plots show
min, 25th percentile, median, 75th percentile, and max but
excluding outliers which can be seen as flier points.

not often clear which strategy is adequate, given the use-
case at hand. In order to address this dilemma, we per-
formed a thorough experimental evaluation and comparison
of the partitioning strategies found in three leading systems,
namely PowerGraph, PowerLyra and GraphX.

For PowerGraph, we found that replication factor is a
good indicator of partitioning quality as it is linearly cor-
related with network usage, computation time and mem-
ory utilization. We showed that HDRF/Oblivious strate-
gies are ideal for low-degree graphs while Grid is ideal for
heavy-tailed graphs. For power-law-like graphs, job dura-
tion should be taken into account: Grid is better for short
jobs due to its fast ingress and HDRF/Oblivious are better
for long jobs due to lower replication factors (this includes

11

when partitions are reused across jobs). For PowerLyra, we
need to additionally consider if the application is natural
or not, as Hybrid strategies synergize well with natural ap-
plications. We also show that Random and Hybrid-Ginger
should generally be avoided due to high replication factors
and memory overheads, respectively. We present two deci-
sion trees to help users of these systems pick a partitioning
strategy. For GraphX, Canonical Random should be used
with low-degree graphs and 2D partitioning with power-law-
like graphs.

10. REFERENCES
[1] Apache Giraph. http://giraph.apache.org/. Last

accessed 2016-04-18.

[2] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered
Label Propagation: A MultiResolution
Coordinate-Free Ordering for Compressing Social
Networks. In Proc. Int’l. Conf. on World Wide Web
(WWW). ACM, 2011.

[3] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In Proc. Int’l. Conf. World
Wide Web (WWW). ACM, 2004.

[4] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra:
Differentiated graph computation and partitioning on
skewed graphs. In Proc. European Conf. on Computer
Systems, (EuroSys), pages 1:1–1:15. ACM, 2015.

[5] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One trillion edges: graph
processing at Facebook-scale. Proc. VLDB
Endowment, 2015.

[6] DIMACS Challenge 9 - Shortest Paths.
http://www.dis.uniroma1.it/challenge9/. Last
Accessed 2016-05-30.

[7] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
Proc. Conf. on Applications, Technologies,
Architectures, and Protocols for Computer
Communication (SIGCOMM), pages 251–262. ACM,
1999.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In Proc. Symposium
on Operating Systems Design and Implementation
(OSDI). USENIX, 2012.

[9] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. GraphX: Graph
processing in a distributed dataflow framework. In
Proc. Symposium on Operating Systems Design and
Implementation (OSDI). USENIX, 2014.

[10] H. Halberstam and R. R. Laxton. Perfect difference
sets. Proc. Glasgow Mathematical Association,
6:177–184, July 1964.

[11] M. Han, K. Daudjee, K. Ammar, M. T. Özsu,
X. Wang, and T. Jin. An experimental comparison of
pregel-like graph processing systems. In Proc. VLDB
Endowment, volume 7, pages 1047–1058. VLDB
Endowment, Aug. 2014.

[12] I. Hoque and I. Gupta. LFGraph: Simple and fast
distributed graph analytics. In Proc. Conf. on Timely
Results In Operating Systems (TRiOS). ACM, 2013.

[13] N. Jain, G. Liao, and T. L. Willke. Graphbuilder:
scalable graph ETL framework. In First Int’l.

Workshop on Graph Data Management Experiences
and Systems, (GRADES), 2013.

[14] R. M. Karp. Reducibility among combinatorial
problems. In Proc. a Symposium on the Complexity of
Computer Computations, pages 85–103, 1972.

[15] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In Proc.
Int’l. Conf. on World Wide Web (WWW). ACM,
2010.

[16] A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi:
Large-scale graph computation on just a PC. In Proc.
Symposium on Operating Systems Design and
Implementation (OSDI). USENIX, 2012.

[17] Laboratory For Web Algorithms.
http://law.di.unimi.it/datasets.php. Last
Accessed 2016-04-18.

[18] M. LeBeane, S. Song, R. Panda, J. H. Ryoo, and L. K.
John. Data partitioning strategies for graph workloads
on heterogeneous clusters. In Proc. Int’l. Conf. for
High Performance Computing, Networking, Storage
and Analysis, (SC ’15), pages 56:1–56:12. ACM, 2015.

[19] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[20] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,
A. Kyrola, and J. M. Hellerstein. Distributed
GraphLab: A framework for machine learning and
data mining in the cloud. In Proc. VLDB Endowment.
VLDB Endowment, 2012.

[21] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. GraphLab: A new
parallel framework for machine learning. In Conf. on
Uncertainty in Artificial Intelligence (UAI), 2010.

[22] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A
system for large-scale graph processing. In Proc. Int’l.
Conf. on Management of Data (SIGMOD). ACM,
2010.

[23] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and
G. Iacoboni. Hdrf: Stream-based partitioning for
power-law graphs. In Proc. 24th ACM Int’l. on Conf.
on Information and Knowledge Management (CIKM),
pages 243–252. ACM, 2015.

[24] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl. All
roads lead to Rome: Optimistic recovery for
distributed iterative data processing. In Proc. Int’l.
Conf. on Information and Knowledge Management
(CIKM). ACM, 2013.

[25] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. Fennel: Streaming graph partitioning for
massive scale graphs. In Proc. 7th ACM Int’l. Conf.
on Web Search and Data Mining (WSDM), pages
333–342. ACM, 2014.

[26] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, Aug.
1990.

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proc. Conf. on Networked Systems
Design and Implementation (NSDI). USENIX, 2012.

12

http://giraph.apache.org/
http://www.dis.uniroma1.it/challenge9/
http://law.di.unimi.it/datasets.php
http://snap.stanford.edu/data

APPENDIX
We describe PowerGraph’s Oblivious and HDRF strategies
from Section 5.2 here in more detail.

A. OBLIVIOUS
Consider the task of placing the i + 1th edge after hav-

ing placed i edges. The objective function for Oblivious [8]
reduces to:

arg min
k

[
|A(v)|+ |A(u)|

∣∣∣Ai, A(ei+1) = k
]
,

where A(v) is the set of machines v is replicated on, Ai is
the set of edge placements we have done so far, A(ei+1) is
where we will assign the i + 1th edge (u, v). This devolves
into a few simple cases.

Case 1: A(v) ∩ A(u) 6= φ. I.e. on at least one machine,
replicas of u and v both are already present. The edge
is placed at the least loaded machine in A(v) ∩A(u).

Case 2: Only one of the vertices have been placed so far. So,
without loss of generality: A(v) = φ and A(u) 6= φ.
The edge will be placed on the least loaded machine in
A(u).

Case 3: A(v) = A(u) = φ. The edge will be placed on the
least loaded machine.

Case 4: A(u) 6= φ and A(v) 6= φ but A(u) ∩ A(v) = φ.
The edge will be placed on the least loaded machine in
A(u) ∪A(v).

Ties are broken randomly. In this context, least loaded refers
to the machine which has been assigned the fewest edges.

B. HDRF
When processing edge (u, v) the partial degree counters

(δ) of u and v are incremented. Then they are assigned a
normalized value θ :

θ(v) =
δ(v)

δ(u) + δ(v)

Each machine M is assigned a score C as follows:

C(u, v,M) = CREP (u, v,M) + λ× CBAL(M)

CREP (u, v,M) = g(u,M) + g(v,M)

g(v,M) =

{
1 + (1− θ(v)) ifM ∈ A(v)

0 else

CBAL is a score in [0, 1) assigned to a machine on the
basis of the number of edges assigned to it so far. A more
loaded machine will have a lower CBAL. The machine with
the higher C score is selected.

Thus the λ parameter is used to tune the systems pri-
oritization towards load-balance. When λ ≤ 1 the balance
parameter is used as a tie breaker. After that point balance
importance rises in proportion to λ. In the PowerGraph
implementation, λ is hardcoded to 1.

13

	Introduction
	Summary of Results
	Background
	The GAS Decomposition
	Edge Cuts and Vertex Cuts
	Graph Applications
	PageRank
	Weakly Connected Components
	K-Core Decomposition
	SSSP
	Simple Coloring

	Experimental Methodology
	Clusters
	Datasets
	Metrics

	PowerGraph
	System Introduction
	Vertex Replication Model
	Computation Engine

	Partitioning Strategies
	Random
	Oblivious
	Constrained
	HDRF

	Experimental Setup
	Experimental Results
	Replication Factor and Performance
	Minimizing Replication Factor
	Partitioning Quality vs Partitioning Speed
	Picking a Strategy

	PowerLyra
	System Introduction
	Partitioning Strategies
	Hybrid
	Hybrid-Ginger

	Experimental Setup
	Experimental Results
	Hybrid Strategies and Natural Algorithms
	Hybrid Strategies and Memory Overheads
	Minimizing Replication Factor
	Picking a Strategy

	GraphX
	System Introduction
	Partitioning Strategies
	Random and Canonical Random
	1D Edge Partitioning
	2D Edge Partitioning

	Experimental Setup
	Experimental Results

	PowerLyra: all strategies
	Partitioning Strategies
	Experimental Results
	No Effect on Decision Trees
	Asymmetric Random worse than Random
	Hybrid Engine Enhances 1D/2D Partitioning
	CPU Utilization Patterns

	Conclusions
	References
	Oblivious
	HDRF

