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Abstract

Machine learning (ML) software, used to implement an ML algorithm, is widely
used in many application domains such as financial, business, and engineering
domains. Faults in ML software can cause substantial losses in these application
domains. Thus, it is very critical to conduct effective testing of ML software to
detect and eliminate its faults. However, testing ML software is difficult, espe-
cially on producing test oracles used for checking behavior correctness (such as
using expected properties or expected test outputs).
To tackle the test-oracle issue, in this paper, we present a novel black-box ap-
proach of multiple-implementation testing for supervised learning software. The
insight underlying our approach is that there can be multiple implementations (in-
dependently written) for a supervised learning algorithm, and majority of them
may produce the expected output for a test input (even if none of these implemen-
tations are fault-free). In particular, our approach derives a pseudo-oracle for a test
input by running the test input on n implementations of the supervised learning
algorithm, and then using the common test output produced by a majority (de-
termined by a percentage threshold) of these n implementations. Our approach
includes techniques to address challenges in multiple-implementation testing (or
generally testing) of supervised learning software: definition of a test case in test-
ing supervised learning software, along with resolution of inconsistent algorithm
configurations across implementations. The evaluations on our approach show
that our multiple-implementation testing is effective in detecting real faults in
real-world ML software (even popularly used ones), including 5 faults from 10
NaiveBayes implementations and 4 faults from 20 k-nearest neighbor implemen-
tations.

1 Introduction

The importance of machine learning (ML) has soared in many fields besides computer science. ML
software plays a crucial role in marketing, stock trading, heart-failure identification, fraud iden-
tification, etc. Given this growing application, the consequences of software failures could have
significant implications and unpleasant effects.

For example, in early 2016, Microsoft released Tay, an intelligent chat bot developed to conduct
research on conversational understanding through interactions with millions of users in Twitter.
However, within hours, Twitter users trained Tay to post offensive comments causing a flurry of
uproar forcing it to be pulled from Twitter [1]. In August 2012, the Knight-Capital group lost $440
million within only 4 hours because of a software fault in their trading system [2]. Additionally,
faults in ML software commonly exist. An empirical study [3] of faults in ML software shows that a
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non-trivial percentage (22.6%) of faults are due to implementations that do not follow the expected
behavior.

Software testing remains the most widely used mechanism for software quality assurance; it is
very critical to conduct effective testing of ML software to detect faults. However, ML software
is known to suffer from the “no oracle problem” [4]. A category of machine learning, supervised
learning, learns a classification model from training data (i.e., labeled data) and then applies the
classification model to predict the label for a future entry of application data1. In the context of
supervised learning, a test oracle is not easily obtainable. Future entires of application data can be
labeled (manually or automatically); however, using such labels as the test oracle is not feasible. The
reason is that there exists some inaccuracy (i.e., predicting a wrong label) in the learned classification
model. This inaccuracy is inherent and sometimes desirable to avoid the overfitting problem2 (i.e.,
the classification model performs perfectly on the training data but undesirably on future application
data).

To tackle the test-oracle issue, we present a novel black-box approach of multiple-implementation
testing for supervised learning software. The insight underlying our approach is that there are multi-
ple implementations available for a supervised learning algorithm, and majority of them produce the
expected output for a test input (even if none of these implementations are fault-free). In particular,
our approach derives a pseudo-oracle for a test input by running the test input on n implementa-
tions of the supervised learning algorithm, and then using the common test output produced by a
majority (determined by a percentage threshold) of these n implementations. To conduct multiple-
implementation testing, our approach provides a definition of a test case for testing supervised learn-
ing software, along with resolution of inconsistent algorithm configurations across implementations.

This paper makes the following main contributions:

• The first approach of multiple-implementation testing for supervised learning software.
• The first definition of a test case in testing supervised learning software for unifying fun-

damental concepts from the ML and software testing communities.
• Evaluations for showing that our approach detects real faults in real-world ML software

(even popularly used ones), including 5 faults from 10 NaiveBayes implementations and 4
faults from 20 k-nearest neighbor implementations.

The rest of this paper is organized as follows. Section 2 provides illustrating examples. Sections 3
and 4 present our approach and its implementation, respectively. Section 5 presents our evaluations.
Section 6 discusses some issues. Section 7 presents related work, and Section 8 concludes.

2 Examples

In this section, we present illustrating examples for multiple-implementation testing.

2.1 Multiple-Implementation Testing

We use an example to illustrate the process of applying our approach on a small sample data set.
As shown in Table 1, a specific training data set3 (with the label of -1 or +1) is fed to 6 different
implementations: A, B, C, D, E, F (one of which is the implementation under test, in short as IUT) of
the same classification algorithm (e.g., the kNN algorithm) to build 6 different classification models.
In software testing, a test case consists of test input (also called test data) and test oracle. Here for
testing supervised learning software, the test input in a test case consists of the training data set and
an unlabeled entry of the application data. The unlabeled application data entries are also fed to
these 6 different classification models (produced with the training data set) to produce the predicted
labels. A predicted label from an implementation is the actual label. Note that these data sets can be
manually or automatically constructed, or borrowed from some ML benchmark datasets such as the
UCI benchmarks [5, 6, 7, 8].

1Application data refer to the data whose labels are to be predicted by the classification model.
2Overfitting generally occurs when a model is excessively complex, such as having too many parameters

relative to the number of observations.
3To simplify the illustration, we omit the use of a validation or test data set.
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Table 1: Classification Model Predictions from all implementations

App Data
Entry ID A B C D E F

1 -1 -1 -1 +1 +1 +1
2 -1 -1 +1 -1 -1 +1
3 -1 -1 +1 -1 -1 -1
4 +1 +1 +1 +1 +1 +1
5 -1 -1 -1 -1 -1 -1
6 +1 +1 -1 +1 +1 +1

1. Input: D = (x1, c1),.., (xN, cN)
2. x = (x1,.., xn) new entry to be classified
3. FOR each labelled entry (xi,ci) calculate d(xi,x)
4. Order d(xi, x) from lowest to highest, (i = 1,..,N)
5. Select the K nearest instances to x: DKx
6. Assign to x the most frequent class in DKx

Figure 1: The kNN Algorithm Pseudocode[9]

2.2 Consistent Configuration Parameters

We ensure that each implementation makes use of the same configuration parameters before per-
forming multiple-implementation testing. Below is the kNN algorithm along with the configuration
parameters that need to be set for all implementations before performing multiple-implementation
testing.

Line 3 from the kNN algorithm pseudocode above includes a step that requires the use of a distance
function to calculate distance between x1 and x, it provides a variation of the algorithm and is not
configurable. In which case, we describe this as an implicit setting. We only perform multiple-
implementation testing on multiple implementations with the same implicit and explicit configura-
tion parameter. Line 5 includes a step that selects K, which is an explicit parameter that has to be
set during the execution of the implementation. We ensure that all implementations have consistent
explicit settings. Each implementation builds a classification model.

Suppose that each classification model makes predictions for 6 application data entries from the
application data set as shown in Table 1 with each row representing the predicted labels (i.e actual
output) for an entry by a classification model produced by each implementation (denoted as Imple-
mentations A to F ). The first column of the table denotes the application data entry’s unique ID
from the application data set.

Each implementation produces a predicted label, treated as test actual output, for each data entry
in the application data set. The final output of our approach, as shown in Table 1, is the majority-
voted label predicted for an application data entry and the names of implementations producing
classification models that predict a label different from the majority-voted label. The majority-
voted label predicted for an application data entry is treated as a proxy for the algorithm-expected
label for that application data entry. Note that the number of votes for each predicted label for
the first application data entry in Table 1 is equally split. In such case, we say that the majority-
voted label is “undecidable”. We then treat the majority-voted and “undecideable” labels as the
correct predictions and add the appropriate implementations that produce classification models with
deviated predictions to Table 1.

From Table 1, we can see mis-classifications (i.e., deviate predictions) for both implementation C
and implementation F .

3 Approach

To solve the test-oracle issue in testing of supervised learning software, we propose a test case for-
mulation setup for Multiple-Implementation Testing (a black-box approach) for supervised learning
software. Our approach runs independently-written programs that follow the same specifications
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Figure 2: Test Input and Output for Multiple-Implementation Testing of Supervised Learning Soft-
ware

with the same test input, configurations, and parameters. We derive a pseudo-oracle for a test input
by running such input on n implementations of the same algorithm, and then use the majority-
voted output (determined by a percentage threshold) of these n implementations as the “expected-
algorithm label”. Next, we discuss our test case formulation in particular how we generate a test
oracle. Then, we describe our application of Multiple-Implementation testing.

3.1 General Framework

We detail how we form a test case for multiple-implementation testing of ML software. To test an
implementation (i.e implementation under test- IUT), we must use the same test inputs for the n
implementations (independently written, including IUT) of a particular algorithm. Additionally, we
test these n-implementation under the same conditions and setting. Then, we derive a pseudo-oracle
by using the common test output produced by a majority (determined by a percentage threshold) of
these n implementations.

Test Case. A test case entails the combination of test inputs and expected results needed to evaluate
the software under test[10]. In multiple-implementation testing, we set a test case to be n imple-
mentations of the same specifications, one of which is the implementation under test (IUT). The
sequence of steps is to obtain a test input, run every implementation, including the IUT with the
given test input, then determine if the IUT produces outputs that deviate from the majority outputs
from all the n implementations. If the majority cannot be determined on this test input (the output
value that has the high percentage is below the percentage threshold), we will say that the IUT’s
output does no deviate from the majority output on this test input.

Test Input. In testing supervised learning algorithms, we define test input as the training data set
and an unlabeled application1 entry. We use the same training data set and an unlabeled application1

entry for all implementations in multiple-implementation testing. Each entry in the training data set
has an assigned label.

Test Oracle. The test oracle is a mechanism for determining whether a test has passed or failed. We
use test oracles in comparing the output of the IUT, for a given test input, to the output that the oracle
determines that implementation should have. The expected output is the output an implementation
should have. One or more ML algorithms are implemented in supervised learning software. In
supervised learning, the algorithm-expected label is treated as the expected output for a given test
input. In multiple-implementation testing of supervised learning software, the majority-voted label
is used as a proxy for the algorithm-expected label. A percentage threshold is used to decide the
majority-voted label. The actual output, given a test input, is the predicted application entry label of
the IUT. A failed test is a condition when the actual output is inconsistent with the expected output.
There are three test cases in Figure 2, a test input corresponds to the training data and a single
application entry. To create a more test inputs, we create additional application entries. The actual
output(s) corresponds to the three application entry labels. In Figure 2, we use the same training
data and application entries for all implementations, including IUT.
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3.2 Consistent Configuration Parameters

All implementations should be executed under the same conditions, therefore, in addition to giving
them the same test input data, we provide the implementations with the same test input configuration
parameters. Software may implement one or more configuration options, in which case configura-
tions are said to be implicit. Software may have explicit configuration parameter values that should
be set before or during its execution.

Implicit Settings. Prior to performing multiple implementation testing, we group implementations
by there different configurations. We perform multiple implementation testing on the group with the
same configuration as the IUT. A common configuration is the normalization procedure used by the
implementations (e.g., z-score normalization and min-max normalization).

Explicit Settings. Input configuration parameters are algorithm specific (e.g., k in the kNN algo-
rithm). We set the same value for all input parameters including k for all kNN implementations.
We performed an empirical study used to understand the symptoms for the deviations and deter-
mine whether the deviations are fault symptoms or due to inconsistent configuration parameter
values. Due to page limit of this paper, the result of our study is on our project website5. Our
evaluation results in this paper (RQ1.3 and RQ2.1), also describes how majority-voted oracle per-
form, in multiple-implementation testing, when all the implementations still have there default (non-
modified) implicit and explicit settings, and when all the implementations have consistent implicit
and explicit settings. Furthermore, we present results on the effectiveness of our learning-based
multiple-implementation monitoring technique in detecting deviations of the implementation under
test’s predicted class label from the majority-voted class label (when implementation’s default (non-
modified) implicit and explicit settings are used, and when all the implementations have consistent
implicit and explicit settings).

4 Implementation

We have implemented the techniques in the proposed multiple-implementation testing framework
so they may be applied on supervised learning algorithms. Our framework partitions different data
sets and randomly selected entries from the different partitions. Our framework performed input
document and data set transformation so as to use the same input data for all implementations.
We run the different implementations with test input. Our framework then computes the majority-
voted output with the output of each implementation while also reporting implementations deviating
output.

Data set generation. Our benchmark data were obtained from the UCI machine learning repository.
This repository is used by the ML community for the empirical analysis of ML algorithms[4]. Fur-
thermore, the data in this repository is representative of real world situations. Our framework creates
partitions from the benchmark data. Each partition contains data with a certain equivalence class.
Equivalence classes such as small vs. large data sets; missing vs. non-missing attribute values; re-
peating vs non-repeating attribute values; and a combination thereof. These equivalence classes can
be used to guide the generation of appropriate input data sets [11]. In particular, we chose the Iris,
Adult and Poker data sets that created partitions of these data sets so they address different equiv-
alence classes. Finally, our framework randomly selects entries from the partitioned data set. The
randomly selected entries from the Iris data set is used as the input data set (training and application)
in our evaluation.

Threshold for computing majority-voted output. We set a threshold of 0.5 in our test result
analysis, i.e., The majority-voted label L is treated as the expected output, if at least half of the
implementations produce the same L. This heuristic is adapted from previous work of multiple-
implementation testing [12]. We ignore test cases (and treat the test result as uncertain) when there
are two candidates for the expected output or if we were unable to reach a threshold of 0.5. Our
framework obtains and compares the predicted labels for all entries in application data 4 set of each
implementation. Our framework then computes the expected output based on the threshold and
informs us if the output of the IUT matches with the expected output.

4In this paper, Application data may be referred to as validation/test data set in ML community, we address
it as application data set to prevent confusion with Test Input, which is used in the traditional software testing.
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Data set transformation. Some implementations may have varying input document and data set
formats because they were independently-written. In order to run the generated data set on each
implementation we have to perform document and data set format transformations. Some commonly
used document formats are arff, csv, and libsvm. In addition to creating such documents from the
initially generated data sets, some implementations may still require minor changes to the data in
the document, e.g., moving the column containing all labels to become first (or last) column in a csv
document. Our framework performs the input document and data set format transformation.

5 Evaluations

To assess the effectiveness of our multiple-implementation testing in detecting faults in supervised
learning software, we conduct evaluations on 30 open-source projects. In our evaluations, we inves-
tigate the following research questions:

• RQ1: How does the majority-voted oracle perform compared with an alternate approach
(using the actual output from the benchmark dataset as the oracle)?

• RQ2: How does the majority-voted oracle perform when all the implementations are
faulty?

• RQ3: How does the majority-voted oracle perform when all the implementations still have
there default (non-modified) explicit parameter settings?

5.1 Evaluation Setup

5.1.1 Evaluation Subjects

We selected popular supervised learning algorithms for our evaluation. A ranked list of supervised
learning algorithms was constructed based on the algorithms popularity on the well-known project
repository service - Github [13]. We searched for implementations of the several supervised learning
algorithms listed on Wikipedia [14] on the repository service website (Github [13]) and ranked each
algorithm by the number of implementations available on the website. The keywords used to search
for each algorithm are its name, as seen, on Wikipedia [14]. The ranked list is available on our
project website 5. Additionally, we filtered the implementations based on its programming language,
selecting only subjects implemented with Java, C#, and Python. This filtering requirement was
devised because the researchers possess debugging tools that support these programming languages.

We selected 30 implementations of each of the top two algorithms from our filtered ranked list as
our evaluation subjects. In particular, we gathered 30 implementations of the kNN algorithm and
30 implementations of the Naive Bayes algorithm. All the available implementations from Github
[13] were selected as our evaluation subjects, in addition, to reach the aim of 30 implementations,
we searched the algorithm keyword found on Wikipedia [14] (plus the word ’implementation’) on
Google.com [15]; selecting the top indexed results that included an implementation of the searched
algorithm.

Of the 30 kNN implementations, we were unable to run 10 as the execution of such implementa-
tions required non-trivial code changes to its source code in order to run them with our datasets.
For example, one of our subject (kNN2) accepts only input datasets with two class labels (i.e., it ac-
cepts only binary datasets). Our black-box approach maintains the integrity of the implementation,
and for evaluation purposes our source code modification was to only set the explicit parameter k
for kNN implementations. To perform multiple-implemenation testing for kNN implementations,
we ran our evaluation with explicit parameter k as 1. Of the 30 NaiveBayes implementations, 20
implementations required non-trivial code changes to its source code in order to run them with our
datasets.

Our evaluation subjects also include three ML packages found from Google.com[15]: Weka, Rapid-
Miner, and KNIME. Each of these three packages contains implementations for both the kNN and
Naive Bayes algorithm. Our final evaluation subjects include 10 implementations for Naive Bayes
and 20 implementations for kNN. The implementations included in our evaluation subjects range
from well-tested applications developed by industry professionals to student projects, with varying

5The project website: https://sites.google.com/site/multimptest/
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input data set formats and varying output formats. The programming languages used in the imple-
mentations cover Java, C#, and Python. Note that our multiple-implementation testing technique
and the developed framework can be generalized for any language. Columns Algorithm and Im-
plementation in Table 2 contain information about the implementations in our evaluation subjects.
Detailed information of these implementations can be found on our project website6.

In the evaluation, we treat each implementation in our evaluation subjects as the implementation
under test (IUT) one at a time. We apply our multiple-implementation testing approach on each IUT
using the UCI dataset mentioned in Section 4. Note that the application data entries are selected
from the UCI dataset. The class labels for these selected entries are removed in our application data.
Due to space limit, we report the evaluation result on the Iris dataset in this paper. Please refer to
our project website for the evaluation results on the Adult and Poker dataset.

5.1.2 Fault Detection

To assess the effectiveness of our multiple-implementation testing approach in detecting faults in
machine-learning applications, we measure the number of IUT that fail the test (i.e., the actual
output is inconsistent with the expected output). We also report the number of faults in these IUT.
These faults are detected in the diagnosis phase of our multiple-implementation testing approach.

For RQ1, we compare the majority-voted oracle for each entry of the application data to the expected
labels of that entry. Note that the expected labels are obtained from the UCI benchmark dataset. We
also compare each majority-voted oracle with the corresponding algorithm expected label.

5.2 Evaluation Results

5.2.1 Fault Detection

Among the 30 implementation under tests in our evaluation subjects, 14 implementations have fail-
ing test cases. Column #Failure in Table 2 indicates the number of failing test cases for each im-
plementation under test. Among these 14 implementations, our approach can uncover 9 previously
unknown faults. In particular, we detect 5 faults for the Naive Bayes implementations and 4 faults
for the kNN implementations. Column #Fault in Table 2 indicates the number of detected faults for
each implementation under test. We file a bug report for each implementation involved. The report
includes solution as to how to fix the uncovered fault.

The fault detection capability of our multiple-implementation testing approach can depend on
whether the majority-voted oracle (an approximation of the algorithm expected label) for an ap-
plication data entry is consistent to the expected label for that entry. Our evaluation reveals that
95% of the majority-voted oracles are consistent with the expected labels. Please refer to our project
website for more detailed results. Overall, using majority-voted oracles as pseudo test oracles can
achieve consistent test results as using the expected labels or algorithm expected label for most of
the cases.

For RQ2, we are interested to see how the majority-voted oracle would perform if we do not have
any fault-free implementations in our multiple implementations. To see this, we compare both of
the faulty majority-voted oracle (without fault-free implementations) and the majority-voted oracle
for each application data entry to the expected prediction (ground-truth) of that entry by running
the experiment on the kNN algorithm and NaiveBayes algorithm with the Iris dataset, and count
the number of correct predictions (the predictions that match the expected predictions). Note that
the majority-voted oracle is an approximation of the algorithm expected label. The result is shown
in Table 3. Note that For NaiveBayes, there are four faulty implementations out of 10 implemen-
tations. For kNN, there are seven faulty implementations out of 20 implementations. We notice
that for KNN, even though we remove all the fault-free implementations, the faulty majority-voted
oracle has 96.67% accuracy, which is the same as the majority-voted oracle’s accuracy. One reason
is that there are not many overlappings of failing tests. The majority of the predictions are still cor-
rect. However, the faulty majority-voted oracle for NaiveBayes is less accurate, 76.67%, which is
lower than that of the majority-voted oracle (93.33%). The reasons that faulty majority-voted ora-
cle does not work well on this case are that we have only four implementations (without fault-free
implementations) for NaiveBayes, and three of the four implementations output incorrect predic-

6The project website: https://sites.google.com/site/multimptest/
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Table 2: Evaluation Results on Subjects

Algorithm Implementation #Failure #Fault Acc(%)

kNN

kNN1 3 0 90.00
kNN3 20 2 96.67
kNN4 1 0 96.67
kNN5 0 - -
kNN6 0 - -
kNN8 10 1 93.33
kNN12 8 0 73.33
kNN15 1 0 96.67
kNN16 20 1 96.67
kNN18 0 - -
kNN22 1 - 96.67
kNN23 0 - -
kNN24 0 - -
kNN26 0 - -
kNN27 1 0 96.67
kNN28 0 - -
kNN29 1 0 96.67
Weka 0 - -
RapidMiner 0 - -
KNIME 0 - -

NB

NaiveBayes1 10 2 60.00
NaiveBayes5 4 1 86.67
NaiveBayes13 10 1 73.33
NaiveBayes17 0 - -
NaiveBayes18 7 1 76.67
NaiveBayes19 0 - -
NaiveBayes21 0 - -
Weka 0 - -
RapidMiner 0 - -
KNIME 0 - -

Table 3: The number of correct predictions of from the majority-voted oracle and the faulty majority-
voted oracle.

Prediction Algorithm
kNN NaiveBayes

The majority-voted oracle
Correct 29 28
Incorrect 1 2
%Correct Prediction 96.67% 93.33%
The faulty majority-voted oracle
Correct 29 23
Incorrect 1 7
%Correct Prediction 96.67% 76.67%

tions. This implies that the multiple implementation oracle works reasonably well, when we have
non-trivial number of implementations regardless of the number of fault-free implementations. The
higher number of implementations we have (even though they are all faulty), the more effective the
majority-vote oracle becomes. More statistics about the failing tests for each faulty implementations
can be found on our project website 5.

For RQ3, we are interested to see how the majority-voted oracle would perform if we do not
modify the explicit parameters of implementations when performing multiple-implementation test-
ing. We aimed to investigate the impact of default (i.e non-modified) explicit parameters on our
multiple-implementation testing. Table 2 presents evaluation subjects and results for multilple-
implementation testing with modified configuration parameters. The table with evaluation results
and subjects for multilple-implementation testing with default explicit parameters can be found on
our project website 5. A summary of our result is described here: (1) With our 20 kNN subjects, 11
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of them required k as an explicit parameter before running the algorithm (i.e an exception is thrown
if the input arguments are not set). Four of the subjects had a default value of ‘3’. Two of the sub-
jects had value of ‘1’. There were two outliers, kNN4 with default value ‘10’ and kNN6 with default
value ‘90’. Keep in mind, when performing multiple-implementation testing in our approach (with
consistent explicit parameter), we set the value of k to be 1 for all the implementations. The output
for all subjects with their default explicit parameters are the same except with kNN6 which has an
outlier value of k of ‘90’. Only 56.7% of the output label of the default kNN6 is the same as the
modified kNN6. The majority-voted oracle produced by the subjects is the same when multiple-
implementation testing is performed with default explicit parameters and when it is performed with
modified explicit parameters. The NaiveBayes algorithm does not require any explicit parameter.

6 Discussion

Multiple-implementation testing only assumes that a “majority" of the implementations are correct
for a given test input so there is not a guarantee that they are indeed correct. This problem is
inherent to the general approach of multiple-implementation testing. Another issue is on the nature
of multiple-implementation testing, of which has to do with the problem or cost of obtaining more
than one implementation of a specification. Therefore, a concern is whether developers are able to
obtain multiple (independently written) implementations in order to test a particular implementation.
There are many implementations such as smaller open source projects, likewise larger ML packages
(e.g., Weka, KNIME), and also ML libraries (e.g., scikit in python) that can used for multiple-
implementation testing.

7 Related Work

Differential Testing [16] is a testing approach closely related to multiple implementation testing.
During differential testing, developers would like to generate tests that exhibit the behavioral differ-
ences between two versions, if any differences exist, e.g., regression testing. As such, if developers
choose a specific implementation as a reference implementation, then they are not doing multiple-
implementation testing but just doing differential testing or testing against the reference implemen-
tation. In multiple-implementation testing, all implementations are treated equally and each places
an equal vote to the test output.

Murphy and Kaiser [4] proposed an approach for testing ML applications based on metamorphic
testing, parameterized random testing, and niche oracle based testing. Their approach conducts a
set of analyses on the problem domain, the algorithm as defined, and runtime options. From the
analyses, they derive equivalence classes to guide the aforementioned testing techniques.

Further related work includes the investigation of applying metamorphic testing to different domains
such as testing epidemiological models by Pullum [17] for the verification and validation of disease
spread models and testing of phylogenetic inference programs by Sadi [18] whereby the approach
is used to test models that predict the evolutionary history of species. In addition, metamorphic
testing has been investigated on specific ML algorithms such as kNN and NB [19]. Groce et al. [20]
proposed test selection techniques that provide very good failure rates for end user interactive ML
systems. This research focused on the problem of testing machine-generated programs when there
exists an oracle, which is an end user.

Multiple-implementation testing has been used for non-ML subjects, e.g., in detecting faults in
XACML implementations [12], web input validators [21], and cross-browser issues [22]. By using
multiple-implementation testing, we detected faults in ML software as described in our evaluation
section.

8 Conclusion

In this paper, we have proposed a novel black-box approach of multiple-implementation testing for
supervised learning software. Our approach includes techniques to address challenges in multiple-
implementation testing: the definition of test case, resolution of inconsistent algorithm configura-
tions across implementations. The evaluation results show that our approach is effective in detecting
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real faults in real-world supervised learning software (even popularly used ones): 5 faults from 10
NaiveBayes implementations and 4 faults from 20 k-nearest neighbor implementations.
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