
Resilient Data Collection in Smart Grid
Tianyuan Liu1, King-Shan Lui2, Haiming Jin1, and Klara Nahrstedt1

1Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

Abstract—Sensors and measurement devices are widely de-
ployed in Smart Grid (SG) to monitor the health of the system.
However, these devices are subject to damage and attack so that
they cannot deliver sensing data to the control center. In tree-
based data collection schemes, a relay failure can further lead
to unresponsiveness of all the devices in its sub-tree. In this
paper, we study the resiliency issue in collecting data from SG
measurement devices. We first design a protocol that guarantees
successful data collection from all non-faulty devices in a backup-
enabled tree structure. Then, we formulate the tree construction
problem to optimize data collection time. Since the formulated
problem is NP-hard, we propose a heuristic algorithm to solve it.
We evaluate our algorithm using a real utility network topology.
The experiment results show that our algorithm performs well
in large scale networks.

I. INTRODUCTION

To monitor the health of the Smart Grid (SG), massive
number of sensors or measurement devices will be installed
to collect various real-time data. These data have to be col-
lected efficiently and accurately to facilitate robust monitoring
and control. Nevetheless, as the sensors are deployed in an
open area, they may be subject to different forms of attack
and damage, and become faulty after installation. The data
collection infrastructure thus should be secure and resilient
that data should still be reported in a timely fashion when
some sensors, which also act as data relays, fail. In this paper,
we describe our resilient data collection protocol that allows
sensors to reconstruct their data reporting paths when some
nodes fail.

We consider the scenario where a large number of measure-
ment devices (MDs) are deployed in a large area. A mobile
data collector (DC), which is a device that has abundant
memory, is responsible to collect the data. The DC will follow
a certain fixed data collection path. When an MD falls in the
communication range with the DC, it can talk to the DC
directly. To save cost, the DC would not visit every MD.
Therefore, MDs that are not visited have to send their data first
to other MDs, and these MDs deliver the data to the DC in a
hop-by-hop manner. The paths that the data go through would
form multiple trees rooted at the MDs that can be directly
connected to the DC. Figures 1 and 2, where thickened lines
represent the tree links, illustrate two possible data collection
structures with different properties with the same network.
Only MD1, MD2, and MD3 can talk to the DC directly when

it passes through. They are all potential tree roots. However, it
is not necessary for all of them to be roots. In Figure 2, MD1

is a root but MD2 is not. Each MD is connected to at most
one root, and the MDs form multiple data collection trees.

We assume the same tree collection structure would be used
for multiple data collection instances. The frequency of data
collection would depend on the application and the accuracy
needed [1], [2]. Before the first data collection, the tree
collection structure is computed by the system adminstrator
(SA) based on the topology and the DC data collection path.
The SA then informs the MDs the tree structure. Each MD
then knows whether it has to serve as the root, and which
nodes are its parent and children on the tree. As the DC can
only talk to an MD when it moves to the proximity, we assume
the DC talks to the roots one by one. We further assume that
data is collected on demand, and thus a root node knows that
data have to be collected only when it is notified by the DC.
The time to collect data on a certain tree is thus related to
the height of the tree. The amount of time needed for the
whole data collection process is the sum of total height of
all trees. We will consider this performance metric in our
mechanism. We will also consider the key leakage probability
in the tree construction, which will be described in further
details in Section III.

Fig. 1. Tree structure with three roots.Fig. 2. Tree structure with two roots.

Since the MDs are exposed to an insecure environment, an
MD may fail and stop working. When this happens, the faulty
MD can no longer help other MDs to relay their data, and the
DC cannot collect the information needed. To avoid this from
happening, each MD is associated with a “backup parent” such
that when the parent MD in the original tree structure fails,

the backup parent will serve as the relay to send data to the
DC. The selection of backup parents should also minimize the
height of trees while preserving connectivity. Specifically, the
backup links should not introduce cycles into the data collec-
tion trees. A previous work [3] suggests selecting grandparent,
uncle and cousin nodes as backup parents on the same tree.
However, some nodes, e.g. the children nodes of a tree root, do
not have a grandparent/uncle/cousin such that they cannot find
proper backup parents. Due to the multi-tree structure, in this
work we consider an alternative to select backup parents for
a node from its neighbor trees. We formulate the problem as
Resilient Data Collection Tree Problem (RDCTP) and develop
Two-step Greedy Heuristic to solve it. We perform simulation
on real world power grid dataset.

II. RELATED WORK

Data collection in sensor networks by a mobile sink has
been actively studied [4]. Most work aim at optimizing energy
usage while reducing data reporting latency. Due to the mas-
sive number of sensors, a hierarchical data collection structure
is usually adopted. Cluster heads are selected to collect data
from sensors within its neighborhood. Cluster heads then
report the data to the sink/data collector. Some recent studies
on how to select cluster heads to balance energy and latency
can be found in [5], [6]. As energy harvesting has been
proposed to prolong the lifetime of a sensor, some researchers
study data collection with this emerging technology [7], [8]. To
reduce traffic, compression techniques are studied to improve
the data collection performance [9], [10]. To the best of our
knowledge, there is no representive study on resilient data
collection in sensor networks that can be applied in our data
collection scenario.

Data collection in smart grids has been studied in the
security and data aggregation aspects. Nevertheless, there are
not many studies on resilience identified. [11] studies where to
put extra relay nodes to provide fault tolerance in the overhead
transmission lines. As the topology of the transmission grid is
linear, the mechanism cannot be applied in the tree structure.
[12] considers the robustness of data collection in advanced
metering infrastructure. Similar to our work, data are collected
through a tree structure. A primary tree is first built and then
backup links are identified to provide resilience. The proposed
algorithm aims at finding the minimum set of links to form
the resilience tree. The authors in [3] study the performance
of different backup parent selection mechanisms. Our work
differ from these works in two aspects: first, [3], [12] focus
on backup selection in single tree structure and assume that
tree root does not fail. However in our problem, we aim at
selecting backup parents among multiple trees and we assume
tree roots can be faulty. Second, besides connectivity issue,
we also consider other objectives and constraints in backup
mechanisms such as security and latency.

III. SYSTEM MODEL

A. Security Model

Before we describe our resilient tree construction protocol,
we first explain the security requirement in data collection.
The data reported by each MD should be protected in both
integrity and privacy. The data should be read by the SA only,
but not intermediate MDs which help relaying the data. On
the other hand, to save bandwidth, it would be desirable for
intermediate MDs to verify whether the message has been
tampered and should be dropped. That is, intermediate MDs
should be able to authenticate the message but not read the
data carried in the message.

Similar to our earlier work [13], we developed the secure
tree-based data collection mechanism that allows MDs to
report private data to SA while facilitating intermediate MDs
to verify the messages. Diffie-Hellman key exchange is used to
establish an encryption key for the data. Integrity check along
the tree path is supported by a group key which is known by
all the members in the tree. If an adversary knows the group
key, he can forge messages without being detected by integrity
check. Although the SA can finally detect the data carried
in the message are not legitimate, network resource will be
wasted in transmitting the message. As the MDs may not be
in a very secure environment, there is a risk that the group
key is leaked from a group member. We model the leakage
probability of MDi to be pleak(i), and control the risk of group
key leakage under a security threshold.

B. Resiliency Model

Apart from security attacks, MDs are subject to physical
damages that they may fail and stop functioning. When an MD
fails and stops, it can no longer report data. It also cannot relay
information for other MDs. More precisely, a failed MD would
lead to the loss of the data of its whole subtree, which may be
very serious. To avoid this from happening, the data collection
structure has to be resilient that when a certain node fails, the
loss of data should be minimal. Our resilience strategy is to
identify a “backup parent” for each node. When the original
parent no longer works, a node would forward the data to the
backup parent so that the data can still reach the DC.

We consider the fail-stop model for all MDs, i.e., once an
MD fails, it may not recover until after several data collection
rounds. We assume that all MDs are collecting the same
types of data, and that MDs (including root) can fail with
a probability pfail identically and independently. Furthermore,
we consider at most one failure for each data collection round
and assume that failures are detected before a data collection
round happens, i.e., the backup links should have been turned
on when a data collection command arrives.

IV. PROTOCOL DESIGN

A. Protocol Overview

Our protocol can be described in four sub-routines: tree
computation, key distribution, secure data collection and
backup switch.

The tree computation is done at SA. The detail of how
trees are constructed in this sub-routine will be discussed in
Section V. In our previous work [13], we designed secure
protocols to distribute group keys and to collect data along
tree branches. We first briefly introduce the key distribution
and secure data collection protocol. Then, we describe the
backup switch protocol in detail. The detail of key distribution
and data collection protocol can be found in [13].

B. Key Distribution

After tree structure is computed at SA, it distributes two
types of keys to all the MDs before any data collection round.
Specifically, each MD gets a symmetric key sk and a group
key gk. The symmetric key is shared between the MD and SA
to encrypt and decrypt the data. Diffie-Hellman key exchange
is used to establish this key. The group key is shared among
all the members in a tree. This key is initiated by SA and sent
to every group member.

As keys are distributed, we also notify MDs about their
parents and children information. Such information for a non-
root MDi contains the identities and public keys of following
instances: (1) A primary parent P(i); (2) A backup parent
BP(i); (3) A list of primary children CH(i); (4) A list of
backup children BCH(i). When no failure is detected, the tree
structure is described by the primary parents and children.

C. Secure Data Collection

Suppose we have a data collection chain on a tree branch
DC←MD0← ···←MDk, where MD0 is the root of this tree.
The secure data collection protocol operates as follows:

a) Command Forward: As MD0 receives a data col-
lection command from DC, it first looks up the its primary
children CH(0) from memory, and forwards the data collec-
tion command to all its children. After that, it prepares the
data by encrypting its raw data by the symmetric key, i.e.,
DATA0 ← Enc(RAWDATA0,sk0). Meanwhile, it waits for all
the children to send data report. Every non-leaf MD follows
the same process on the tree branch until the data collection
command reaches the tree leaf MDk.

b) Data Report: To facilitate other MDs to check mes-
sage integrity without understanding the raw data, MDk com-
putes the hash of the encrypted data using the Diffie-Hellman
half key. The half key is encrypted using the group key. That
is, MDk−1 can use the group key to retrieve the Diffie-Hellman
half key and verify the hash sent by MDk. After collecting all
data from its children, MDk−1 sends its report to its parent.

D. Backup Switch

Once parent failure is detected by its child MD, the child
MD contacts its backup parent to obtain the group key of the
backup tree. It stores two group keys so that it uses the old
group key to verify hashes from its children, and uses the new
one to create hashes for its backup parent.

We use the example topology shown in Figure 3 to demon-
strate the backup switch protocol. In this topology, two trees
are constructed with roots MD1 and MD5 respectively. MD1 is
the primary parent of MD2, and MD5 is its backup parent. To
distinguish the group keys used in different trees, we denote
the group key shared by MD1, MD2, MD3, and MD4 as gk1
and the group key shared by MD5, MD6, and MD7 as gk2.

As soon as MD2 finds out that MD1 fails, it looks up
its backup parent BP(2) = MD5 from memory and sends a
backup switch request to MD5. Upon receiving the request,
MD5 first checks that MD2 is a legitimate backup child
if MD2 ∈ BCH(5). Then, MD5 marks MD2 as a primary
child and sends the group key gk2 to MD2 using public key
encryption. At this moment, MD2 possesses two group keys
gk1 and gk2.

When a new data collection command arrives at MD5, it
will forward the command to its children including MD2 since
MD2 is marked as a primary child. MD2 thus continues to
forward this command to MD3 and MD4 so that command
will reach all the MDs in the sub-tree of MD1 even though
MD1 has failed. In the data report process, MD3 and MD4

still use gk1. MD2 can authenticate their messages since it has
gk1. When MD2 reports data to MD5, it uses the new group
key gk2. Since MD5 possesses gk2, it is able to perform the
integrity check.

Fig. 3. Backup Topology Example. Fig. 4. Cycle Breaks Connectivity.

V. RESILIENT DATA COLLECTION TREE PROBLEM

In this section, we describe how data collection trees are
constructed in the tree computation phase. We formulate the
problem as Resilient Data Collection Tree Problem (RDCTP)
using integer programming, and propose a Two-step Greedy
Heuristic.

A. Problem Description

We assume that SA knows the locations of all MDs as well
as the route of DC. Hence, a set of MDs along the route can be
selected as candidate roots. We denote the topology of MDs
as a directed graph G = ⟨M,E⟩, where M is the set of MDs
and E is the set of edges. If MDi and MD j can communicate
directly without the help of any relay, two directed edges ei, j

and e j,i are present in E . In addition, we use R to denote the
set of candidate roots. Since DC does not traverse through the
whole graph, the number of candidate roots is much smaller
than the number of MDs, i.e., |R|<< |M|.

In order to achieve fast data collection, our objective is to
minimize the time to collect data from all the tree roots. The
data collection time on a tree depends on the height of the
tree. Once the tree structure is determined, the latency can be
calculated by the depth-first search (DFS) algorithm.

The resiliency issue is addressed as two constraints in the
construction. First, since MDs on a tree share the same group
key, the adversary can break the group key by compromising
any one of these MDs. We model the possibility that a group
key is leaked from MDi as a probability pleak(i), and we want
to control the probability that the group key is leaked from
any tree under a threshold Pth.

Second, we model the possibility that an MD fails as a
probability pfail. To tolerate primary parent failure, each MD
should have a backup data collection path.

The backup paths should not form any cycle with other
primary or backup paths. Figure 4 shows a how cycles can
affect connectivity of backup paths. The solid lines represents
the data collection links of primary parents, and the dashed
lines represent those of backup parents. When MD1 fails, both
MD2 and MD3 are not connected to any root node.

Previous work [3], [12] address the cycle issue by selecting
certain types of nodes as parent. Particularly, three types of
backup candidates are identified: (1) Grandparent – parent of
parent node; (2) Uncle – sibling of parent node; (3) Cousin –
children of uncle node. Unfortunately, this approach does not
work in our model since we assume tree roots can be faulty.
These three types of nodes do not exist for any child of a
tree root since the tree root does not have a parent or sibling.
Therefore, instead of selecting backup parents from the same
tree, we select backup parents from a different tree.

B. Problem Formulation

Before introducing the detail, we describe the general idea
of the formulation. We address the objective of minimizing
data collection time from a “path” perspective. Let Pk

i j be the
k-th pre-computed shortest path from MDi to MD j, Lk

i, j be the
latency of path Pk

i j, and use Ki j as a set of indices of all the
paths from MDi to MD j. Then, the time to collect data from
a sub-tree rooted at MD j depends on the longest path on the
sub-tree

D(j) = max
i∈M ∑

k∈Ki j

xk
i jL

k
i j, (1)

where xk
i j is an indicator variable such that

xk
i j =

{
1, if Pk

i j is selected as a path from MDi to MD j;

0, otherwise.

When there is no failure in the MD network, the total time
to collect data from all the candidate roots can be expressed
as ∑ j∈R D(j).

Now we consider the situation where MDi’s primary parent
fails. As described in the previous sections, as MDi detects
the failure of its primary parent, it contacts its backup parent
and joins the backup tree. As shown in Figure 3, when
MD2 switches to its backup parent MD5, it will introduce
more latency on the sub-tree rooted at MD5 if the latency
on path MD4 → MD2 → MD5 is larger than that on path
MD7→MD6→MD5. Following this intuition, we define the
“penalty” introduced when MDi’s primary parent fails as:

F(i) = max

{
∑

q∈Ni

yiqLiq +D(i)− ∑
q∈Ni

yiqD(q), 0

}
(2)

where Ni is the set of all neighbors of MDi and yiq is an
indicator variable such that

yiq =

{
1, if MDq is selected as backup parent of MDi;

0, otherwise.

∑q∈Ni yiqLiq +D(i) represents the latency introduced by the
sub-tree rooted at child MDi, and ∑q∈Ni yiqD(q) represents
the latency of the sub-tree rooted at backup parent MDq.
Therefore, if the latency introduced by MDi is larger than
the original latency of MDq, the penalty of switching MDi to
the backup parent will be non-zero.

We consider only single MD failure and suppose each MD
fails independently with an identical probability pfail. The total
penalty due to MD failure can be expressed as pfail ∑i∈M F(i).

As a security constraint, we formulate the key leakage
probability of MDi as pleak(i). Then, the key leakage prob-
ability of a tree T can be expressed as Pleak(T) = 1 −
∏i∈T (1− pleak(i)) .

In order to control the key leakage risk, we require the
leakage probability on every tree to be smaller than a pre-
defined threshold Pleak(T) ≤ Pth. Furthermore, we assume
identical leakage probability at each MD, so that the prob-
ability threshold is equivalent to a threshold of the maximum
number of nodes on a tree Nth. The relationship of Pth and
Nth can be expressed as Pleak(T) = 1−∏i∈T (1− pleak(i)) =
1− (1− p)|T | ≤ Pth. And thus, we have |T | ≤ log(1−Pth)

log(1−p) = Nth.

Now, we formally present the Resilient Data Collection Tree
Problem (RDCTP) as follows

min ∑
j∈R

D(j)+ pfail ∑
i∈M

F(i) (3)

s.t. ∑
j∈R

∑
k∈Ki j

xk
i j = 1,∀i ∈M (4)

∑
k∈Ki j

xk
i j ≤ 1,∀i, j ∈M (5)

∑
q∈Ni

yiq = 1,∀i ∈M (6)

∑
k∈Kiq

xk
iq + yiq ≤ 1,∀i ∈M,q ∈Ni (7)

yipxm
p j +

(
∑

k∈Kiq

xk
iq

)
xl

q j ≤ 1,∀i ∈M, p,q ∈Ni (8)

xk
i j ≤ xl

i′ j′ ,∀i, j, i′, j′ ∈M,P l
i′ j′ ⊆P

k
i j (9)

∑
i∈M

∑
k∈Ki j

xk
i j

(
xk

i j + ∑
q∈Ni

yqi

)
≤ Nth,∀ j ∈R (10)

The intuition of these constraints can be interpreted as
follows:
(4) Every MD has a valid primary path to some candidate

roots.
(5) Each MDi has at most one path to another MD j.
(6) Every MD has exactly one backup parent. Notice that

constraints (4) and (5) already guarantee every MD has
exactly one primary parent.

(7) The primary parent and backup parent cannot be identical.
(8) The primary parent and backup parent cannot be on the

same tree.
(9) The selected paths should together form a forest of trees.

This constraint ensures that if a path Pk
i j is selected, its

subpath P l
i′ j′ must be selected. Therefore, the computed

graph will be a tree.
(10) As described before, the number of MDs in the same

tree is upperbounded by a threshold Nth. This security
constraint considers both primary children and backup
children in a tree.

C. Algorithm

The RDCTP is an NP-hard mixed-integer programming
problem. To solve RDCTP, we propose a Two-step Heuristic:

1. Compute primary trees subject to the security constraint
(10).

2. Compute backup links based on primary trees obtained
from step 1.

Following the Two-step Heuristic, we propose a greedy
algorithm based on Prim’s Algorithm [14]. The algorithm is
described in Algorithm 1.

The algorithm takes the MD topology, candidate roots
and security threshold as input, and outputs a primary data
collection forest F and a map of backup links L, where
L[x] = y if y is selected as the backup parent of x.

Algorithm 1: Two-step Greedy Algorithm
input : MD topology G, a list of candidate roots R, a

security threshold Nth
output: Primary forest F , backup links L
// Initialization

1 F ← EmptyTree
2 L← EmptyMap

// Compute primary forest by extended
Prim’s Algorithm

3 while exist some non-root node not in F do
4 x ← ExtendedPrimIter()
5 Add x to F
6 r ← TreeRootOf(x)
7 if r.size() ≥ Nth then
8 R.remove(r)
9 end

10 end

// Select backup parent for each MD
11 foreach non-root node x do
12 y ← SelectBackup(x)
13 L[x]← y
14 r ← TreeRootOf(y)
15 if r.size() ≥ Nth then
16 R.remove(r)
17 end
18 end
19 return F ,L

For the first step, it computes the primary forest using an
extended Prim’s Algorithm. The Prim’s Algorithm is generally
used to compute minimum spanning tree given a network
topology. In each iteration, it selects a node with minimum
weight and adds it into the spanning tree.

Inspired by the Prim’s algorithm, we group all the candidate
roots as a root set R, and define ExtendedPrimIter() (line 4) to
find a non-root node x such that it introduces minimum extra
latency to the tree roots. One node is added to the forest per
iteration until all the non-roots are in the forest F . After each
iteration, if any tree root r has Nth nodes in its tree, we remove
r from R so that no more non-root node can be assigned to
tree r.

A similar approach is applied to construct backup links. For
each non-root node, SelectBackup(x) (line 12) enumerates all
the neighbors of x, and selects backup parent y on a different
tree of x such that attaching x to y introduces minimum extra
latency to the tree roots. After adding a backup link, if the
size of the tree of the backup parent has reached the threshold,
remove this root from root set.

VI. SIMULATION

We use the dataset of Utility Poles from Washington DC
[15], which describes the geo-location information for more

than 48,000 utility poles. We extract multiple portions from
the whole topology of size n, and randomly select m MDs as
candidate roots. The communication delay between two MDs
is defined proportional to their distance. In addition, we choose
the communication range of each MD to be identical as 100m.
Since the overall density of poles is 271.18/km2, each MD has
8.5 neighbors on average.

We randomly generate samples of sub-portions from the
dataset. The sizes of these samples vary from 500 to 1,400
nodes. For each sample size, we generate 10 different topolo-
gies and run simulations on them.

As described in the formulation, the size of each tree is
upper-bounded by the security parameter Nth. In the case
where Nth is relatively small to the total number of MDs n,
we select m candidate roots such that m = n

Nth
log(n).

Therefore, with high probability, the data collection forest
can be constructed successfully.

We use the total data collection time with one failure
as our evaluation metric. After the data collection forest is
constructed, we select an arbitrary node to fail and turn on
backup links for its children, and measure the total data
collection time. The data collection time demonstrated in our
result is normalized.

First, we compare the performance of Two-step Greedy
Algorithm with a base line referred as Random Algorithm.
In the random algorithm, each MD randomly selects two
distinct neighbors as its primary and backup parents. We
guarantee that the primary paths generated by the random
algorithm also follows the constraints mentioned in Section
V. We assume the leakage probability of each MD to be
pleak = 0.01 and set the security parameter as Nth = 20.
Therefore, the probability of leaking a group key from each
tree is Pleak(T) = 1− (1−0.01)20 = 0.182.

The result is shown in Figure 5. The data collection time of
Two-step Greedy Algorithm is significantly shorter than that
of random approach by around 70% on average.

Fig. 5. Comparison to Base Line. Fig. 6. Performance-Security Tradeoff.

Then, we run another simulation on the same topology
samples. We compare the data collection time with one
failure of Two-step Greedy Algorithm under different security
parameter Nth. We set Nth to be 20, 40 and 80. Thus, the
leakage probability of a data collection is 0.18, 0.33 and 0.55
respectively. It can be observed from Figure 6 that there is a

tradeoff between data collection time and security parameter.
Data can be collected faster if weaker security assumption is
required.

VII. CONCLUSION

In this paper, we propose a resilient data collection mech-
anism in Smart Grid network. We propose a resilient data
collection protocol to tolerate one-node failure in SG network.
We formulate the Resilient Data Collection Tree Problem
to optimize data collection time under security constraint,
and design a Two-step heuristic to solve the problem. The
simulation results show that our algorithm reduces the data
collection time significantly.

REFERENCES

[1] Q. Chen, D. Kaleshi, and Z. Fan, “Reconsidering the smart metering
data collection frequency for distribution state estimation,” in Proc. of
IEEE SmartGridComm, 2014.

[2] H. Gao, X. Fang, J. Li, and Y. Li, “Data collection in multi-application
sharing wireless sensor networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 2, Frebuary 2015.

[3] J. Silber, S. Sahu, J. Singh, and Z. Liu, “Augmenting overlay trees for
failure resilency,” in Proc. of IEEE Globecom, 2004.

[4] M. D. Francesco, S. K. Das, and G. Anastasi, “Data collection in wireless
sensor networks with mobile elements: A survey,” ACM Transaction of
Sensor Networks, vol. 8, no. 1, August 2011.

[5] R. Zhang, J. Pan, D. Xie, and F. Wang, “NDCMC: A hybrid data
collection approach for large-scale wsns using mobile element and
hierarchical clustering,” IEEE Internet of Things Journal, to appear.

[6] Z. Xu, L. Chen, C. Chen, and X. Guan, “Joint clustering and routing
design for reliable and efficient data collection in large-scale wireless
sensor networks,” IEEE Internet of Things Journal, to appear.

[7] A. Mehrabi and K. Kim, “Maximizing data collection throughput on a
path in energy harvesting sensor networks using a mobile sink,” IEEE
Transactions on Mobile Computing, vol. 15, no. 3, March 2016.

[8] C. Wang, S. Guo, and Y. Yang, “An optimization framework for mobile
data collection in energy-harvesting wireless sensor networks,” IEEE
Transactions on Mobile Computing, toappear.

[9] Y. Yao, Q. Cao, and A. V. Vasilakos, “Edal: An energy-efficient, delay-
aware, and lifetime-balancing data collection protocol for heterogeneous
wireless sensor networks,” Networking, IEEE/ACM Transactions on,
vol. 23, no. 3, pp. 810–823, 2015.

[10] X.-Y. Liu, Y. Zhu, L. Kong, C. Liu, Y. Gu, A. V. Vasilakos, and M.-Y.
Wu, “Cdc: Compressive data collection for wireless sensor networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 8,
August 2015.

[11] K. Wang, X. Qiu, S. Guo, and F. Qi, “Fault tolerance oriented sensors
relay monitoring mechanism for overhead transmission line in smart
grid,” Sensors Journal, IEEE, vol. 15, no. 3, pp. 1982–1991, 2015.

[12] J. Kamato, L. Qian, W. Li, and Z. Han, “Biconnected tree for robust
data collection in advanced metering infrastructure,” in Proc. of IEEE
WCNC, 2015.

[13] H. Jin, S. Uludag, K.-S. Lui, and K. Nahrstedt, “Secure data collection
in constrained tree-based smart grid environments,” in Proc. of IEEE
SmartGridComm, 2014.

[14] R. C. Prim, “Shortest connection networks and some generalizations,”
Bell system technical journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[15] DCGISopendata. (2002) Dcgis open data: Utility and
communication. [Online]. Available: http://opendata.dc.gov/datasets/
52a70a0438dc44818e97593d13d808ae 13

