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ABSTRACT 

This research builds on the work of Meyer and Brill [I9881 and subsequent work by 

Meyer et al. [1990], Meyer et al. [1992], and Meyer [I9921 on the optimal location of a network 

of groundwater monitoring wells under conditions of uncertainty. A method of optimization is 

developed using genetic algorithms (GAS) which allows consideration of the two objectives of 

Meyer et a1 . [1992], maximizing reliability and minimizing contaminated area, separately yet 

simultaneously. The GA-based solution method can generate both convex and non-convex 

points of the tradeoff curve, can accommodate non-linearities in the two objective functions, and 

is not restricted to the peculiarities of a weighted objective function. Furthermore, GAS can 

generate large portions of the tradeoff curve in a single iteration and may be more efficient than 

methods that generate only a single point at a time. 

Four multi-objective GAS formulations are investigated and their performance in 

generating the multi-objective tradeoff curve is evaluated for the groundwater monitoring 

problem using two example data sets. The GA formulations are compared to each other and to 

simulated annealing on both performance and computational intensity. 

The simulated annealing based technique used by Meyer et al. [I9921 relies on a 

weighted objective function which finds only a single point along the tradeoff curve for each 

iteration, while the multiple-objective GA formulations are able to find many convex and non- 

convex points along the tradeoff curve in a single iteration. Each iteration of simulated annealing 

is approximately five times faster than an iteration of the genetic algorithm, but several simulated 

annealing iterations are required to generate the tradeoff curve. GAS are able to find a larger 

number of non-dominated points on the tradeoff curve in a single iteration, and are therefore just 

as computationally efficient as simulated annealing in terms of generating the tradeoff curves. 

None of the GA formulations demonstrate the ability to generate the entire tradeoff curve 

in a single iteration, but they yield either a good estimation of all regions of the tradeoff curve 

except the very highest and very lowest reliability ends or a good estimation of the high 

reliability end alone. 
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Chapter 1 

Introduction 

The solution to many environmental problems is not as simple as finding the single best 

solution to a given situation. There are likely to be many competing objectives that interact in 

complicated ways. Managers are forced to examine problems that incorporate multiple and often 

conflicting objectives. It becomes important, therefore, to provide these decision makers with 

tools and information that will allow them to make informed decisions on how much of a given 

objective must be sacrificed to obtain improvement in other objectives. An optimization tool that 

allows us to generate an entire tradeoff curve in a single iteration will be more useful to the 

decision-making process than methods, such as those discussed in Cohon [1978], that generate 

just a single point at a time. 

This paper builds on the work of Meyer and Brill [I9881 and subsequent work by Meyer 

et al. [I9901 on the optimal location of a network of groundwater monitoring wells under 

conditions of uncertainty. Given an unknown hydraulic flow field surrounding a potentially 

leaky landfill their objective is to maximize the predicted reliability of the monitoring network, 

where reliability is determined by the percentage of Monte Carlo plume realizations that are 

detected by the monitoring network. Meyer et al. [I9921 extend these works by considering an 

objective function that consists of a weighted sum of reliability and a contaminated area 

objective. 

This research investigates a method of optimization using genetic algorithms (GAS) and 

considers the two objectives, maximizing reliability and minimizing contaminated area at the 

time of first detection, separately yet simultaneously. The GA-based solution method has a 

distinct advantage over traditional multi-objective programming approaches discussed by Cohon 

[1.978], because it can generate both convex and non-convex points of the tradeoff curve, 

accommodate non-linearities in the two objective functions, and is not restricted by the 

peculiarities of a weighted objective function. Steuer's [I9861 Tchebycheff method is also able 



to generate non-convex points on the tradeoff curve, but it relies on a weighting factor. Since the 

optimal point may remain unchanged over a wide range of weighting factors, weighted objective 

functions require proper scaling of the objective functions or the weighting factor in order to 

obtain good results. Furthermore, GAS have the ability to generate large portions of the tradeoff 

curve in a single iteration, while weighted objective functions generate only a single point per 

iteration. 

In Chapter 2, we begin by introducing the groundwater monitoring problem. Chapter 3 

contains an introduction to genetic algorithms, how they work, and a discussion of their strengths 

and weaknesses. Chapter 4 describes the more advanced GA operators used in solving the multi- 

objective problem. In Chapter 5, five GA codings are presented for generating the tradeoff curve 

for the groundwater monitoring problem and each is used to generate the tradeoff curve between 

reliability and contaminated area for two example data sets. Chapter 6 presents the results, and 

the performance of the formulations are compared to each other and to the results Meyer et al. 

[I9921 obtained using simulated annealing. Finally, Chapter 7 presents some conclusions and 

identifies possible directions for future research. 



Chapter 2 

The Groundwater Monitoring Problem 

The basic groundwater monitoring problem can be described as follows. Given a 

potential contaminant source and an unknown hydraulic conductivity field, where should 

monitoring wells be located to maximize the probability of leak detection while minimizing the 

area contaminated by the plume? The groundwork for this discussion has been already laid. 

Massman and Freeze [I9871 use Monte Carlo simulation to take into account the uncertainty in 

the hydraulic conductivity field of an aquifer and determine the reliability of any given 

monitoring network. Meyer and Brill [I9881 and Meyer et al. [I9901 extend this work by 

seeking to optimally place the groundwater monitoring wells, under these conditions of 

uncertainty, in order to maximize the reliability of the monitoring network. The single-objective 

groundwater monitoring optimization problem they develop is an extension of Church and 

Revellers [I9741 maximal covering location problem (MCLP). Meyer et al. [I9921 further 

extend these works by incorporating both a reliability and a contaminated area objective into the 

optimization problem. They refer to the two-objective problem as the extended p-median 

problem (EPMP) which they adapted from Revelle and Swain's [I9701 integer formulation of the 

p-median problem. 

The problem is depicted in Figure 1, adapted from Meyer and Brill [1988]. Monte Carlo 

simulation is used to generate several hundred plume realizations by randomly sampling from the 

assumed distributions of aquifer parameters and leakage events. During this simulation a data 

file is generated that contains the plumes that are detected by each potential monitoring well, and 

the amount of area that is contaminated when each well first detects each plume. Reliability is 

characterized by the percentage of simulated plumes that are detected by a network of wells. 

Since the number of simulated plumes is held constant this is the same as minimizing the number 

of undetected plumes. Contaminated area is measured by the area contaminated when a plume is 

first detected, summed over all plumes. 





From this analysis we can develop the following multiple objective optimization problem 

that Meyer et al. [I9921 adapted from ReVelle and Swain's [I9701 integer formulation of the p- 

median problem for use on the groundwater monitoring problem: 

subject to: 

Minimize Z1 = C wi 
i~ I 

Minimize Z2 = C Aij yij 
i~ I j~ Ni 

QW,+ Z x j  5 Q V i ~ 1  
j~ Ni 

Z X j = a  
je J 

Xj = (0,l) V jEJ 

Yij = (oyl) b' i ~ 1 ,  V JEJ  

wi = (0,l) V itz1 

where: 
I - - 
J - - 

- - 

set of distinct plumes. 
set of potential well sites. 
1 if a well is installed at site j; 
otherwise. 
1 if plume i is undetected; 
otherwise. 
1 if plume i is initially detected at location j, 
otherwise. 
the area contaminated by plume i when it is frrst 
detected by potential well location j. 
set of potential well locations, j, that detect plume i; 
if no wells detect plume i. 
total number of simulated plumes 
the number of wells to be installed in the monitoring 
network. 

The problem has two separate objectives, Z1 and Z2, both of which are to be minimized. 

Z1 is the total number of undetected plumes. Minimizing the number of undetected plumes is 

equivalent to maximizing the reliability of the monitoring network. Z2 is the total area 



contaminated by all detected plumes which Meyer et al. [I9921 explain is equivalent to 

minimizing the average area of contamination by detected plumes. 

Z1 and Z2 are competing objectives, which therefore necessitates the construction of a 

tradeoff curve of reliability vs. contaminated area. The tradeoff between reliability and 

contaminated area occurs because, in general, as the monitoring wells move further down 

gradient of the landfill the plume has more time to disperse. This dispersion increases the area of 

contamination, but allows detection by more potential well sites, hence, decreasing the number of 

undetected plumes for the same number of monitoring wells (i.e., Z1 decreases as Z2 increases). 

At potential well locations a large distance from the contaminant source both the reliability and 

the contaminated area objectives are degraded (Meyer et al. [ I  9921). The reason for this is that 

clean water in the aquifer dilutes the strength of the contaminant source and the concentration 

profiles of the contaminant a large distance from the leak fall below the hypothetical detection 

limit of the measurement apparatus. 

Constraint (3) requires that each plume be detected by at least one well location or else go 

undetected. Constraint (4) prevents a plume from being detected at a well location that does not 

have an active well located at it. Constraint (5) requires that a plume be detected if there is an 

active well present in the network which can detect the plume. This constraint avoids the 

perverse situation of ignoring a plume if the resulting improvement in Z2 would warrant the 

deterioration of Z1. Constraint (6) limits the number of active well locations to Q, while 

constraints (7), (8), and (9) require that the decision variables be either zero or one. [Meyer et 

al., 19921. 

Meyer et al. ['1.992] incorporate the two objectives from the EPMP formulation into a 

single weighted objective function corresponding to the expected cost of a contaminant leak, 

given by: 



where p is the cost of any undetected plume simulation. This optimization problem has a large 

number of Pareto-optimal solutions (i.e., no other solution performs better on both objectives), 

each corresponding to a unique range of p, that will form a tradeoff curve of reliability versus 

contaminated area. By changing the weighting factor for the cost of an undetected plume Meyer 

et al. [I9921 are able to generate a tradeoff curve of reliability versus expected contaminated area 

for the EPMP. 

Meyer and Brill [I9881 were able to solve the MCLP using traditional linear 

programming techniques since the solutions, without the integer restrictions, were often all 

integer. However, this is not true of the EPMP, as Meyer et al. [I9921 found the EPMP 

intractable to solve using the "conventional" branch-and-bound-linear-programming approach. 

They successfully apply simulated annealing to solve the EPMP. Simulated annealing, however, 

is limited to using a weighted sum objective function like the one presented above. A major 

shortcoming of their weighted-objective method is that it misses all non-convex portions of the 

tradeoff curve due to the linear combination of the two objectives. 

Steuer [I9861 presents the Tchebycheff weighting method that allows for the generation 

of convex and non-convex portions of a tradeoff curve by measuring the weighted distance in 

objective space from new solutions to some ideal point. The resulting Tchebycheff objective 

function is: 

Minimize:Z4 = M~X((~-P)(Z;'-ZI) , P(z;*-z~)) (1 1) 

where, Z1** and Z2** are the values obtained by separately solving the EPMP optimization 

problem for optimal Z1 and Z2. 

Both of these weighting methods suffer from shortcoming(s) common to most weighting 

methods; (1) the optimal point does not change over a wide range of weighting factor values, 

and/or (2) the optimal point changes several times over a small range of weighting factor values 

thus requiring the successive solution of the problem for a large number of different values of the 

weighting factor. 



This paper investigates the ability of genetic algorithms to generate the entire tradeoff 

curve for the EPMP in a single iteration, following the hypothesis that GA's have the power to 

consider both objective functions separately yet simultaneously. 



Chapter 3 

Introduction to Simple Genetic Algorithms 

3.1 Basic Operators of Genetic Algorithms 

Genetic Algorithms (GAS) are a search technique developed by Holland [1975], that uses 

the mechanisms of natural selection to search through decision space for optimal solutions 

[Goldberg, p. 11. GAS have been shown to be valuable tools for solving complex optimization 

problems in a broad spectrum of fields, including recent papers by Ranjithan et al. [:l.992], Wang 

[:l.991], and McKinney and Lin [1.992] .in the field of water resources. 

GAS consist of three basic operations: 

1. Selection 
2. Crossover (Mating) 
3. Mutation 

In using genetic algorithms, several "strings" (usually binary vectors) are formed which represent 

different decision sets. These strings are evaluated on their performance (or "fitness") with 

respect to some objective function(s). Using this fitness value the strings compete in a 

selection tournament where strings having high fitness values are more likely to enter the mating 

population and strings with low fitness values are less likely to mate. The mating strings are 

randomly assigned a mating partner from within the mating population and a random crossover 

location is selected on the strings. Genetic information is exchanged between the two parent 

strings (crossover) to form children as shown in Figure 2. The parents are usually, but not 

always, deleted from the population and replaced in the population by the children to keep a 

stable population size. Mating between two strings takes place with a probability of P,,,,. If 

mating does not take place the parent strings survive into the next generation. 

Genetic algorithms are a very aggressive search technique and might quickly converge to 

a local optimum if the only components operating were selection and crossover. This is because 

GAS rapidly weed out stings with poor fitness values until all the strings of a population are 

identical, and in doing so may lose some important genetic information. Therefore, in order to 



cros 

Parents Children 

Figure 2. GA Crossover Operation 

maintain some diversity in the string population some of a string's alleles are randomly mutated, 

with a probability of Pmt,, to keep a population from converging too quickly. In Figure 2 each 

of the strings contains four alleles, the individual information locations on a string . The process 

of selection, crossover, and mutation is repeated for many generations in hopes of improving the 

performance of the population. 

The basic outline of a simple GA computer formulation is given below: 

Start Program 
Create Initial Population of Decision Strings 
Loop for N Generations 

Calculate String Fitness Function 
Select Top Performing Strings 
Shuffle Population to Create Random Mating Pairs 
Perform Crossover Operation 
Randomly Mutate String Alleles 

End Loop 
Output Results 

End Program 

The general theory behind this process is that strings with a high fitness values-contain allele 

groupings ("building blocks") that are important to optimizing the objective function. By 

exchanging important building blocks between two strings that perform well, the GA attempts to 



produce children strings which contain the important building blocks from both parents and, 

therefore, perform even better than the parent strings. In this way GAS use Darwin's "survival 

of the fittest" theory to search through a decision space for an optimal solution. It is through this 

process of assembling strings with important building blocks that an optimal solution is found. 

This process also renders GAS intrinsically more computationally efficient than total 

enumeration. 

3.2 Crossover and Selection Schemes 

Goldberg [1989, p. 102-1201 describes many different methods of performing the GA 

crossover operation. The most straightforward method is the single-point crossover illustrated in 

Figure 2. In single point crossover the same crossover location is selected on both parent strings. 

Two child strings are then created from the two parents strings, each containing information from 

both of the parent strings. 

The selection scheme used in this research is binary tournament selection. Binary 

tournament selection is a very aggressive type of selection which Goldberg and Deb [I9891 

found helps eliminate the random noise from the selection process and improves the efficiency of 

the GA search algorithm. Under binary tournament selection each string in the current 

population is given two copies in the tournament population. The tournament population is then 

shuffled in order to create random tournament pairings. For each tournament pair the two strings 

compete directly with each other, and the string with the best fitness function survives into the 

mating population. The tournament loser is eliminated from the population. In this way the best 

performing of all strings will win both of its tournaments and be represented twice in the mating 

population. The worst performing of all strings will lose both of its tournaments and will be 

eliminated from the population. If two strings involved in a tournament have the same fitness 

value, the tie is broken randomly. 



3.3 Genetic Algorithm Shortcomings 

GAS generally have a shortcoming in regards to handling constraints. The only way that 

constraints may be included in a mathematical sense is by a formulation which uses the length of 

the string as a constraint, or which limits the values placed into each of the strings' allele 

locations. More commonly, penalty functions [Goldberg, 1989, p. 85-86] are used to assign a 

poor fitness value to strings that violate constraints. This implies an inherent weakness of the 

method in accommodating multiple constraints. 

In the problem addressed here, Constraints (3) through (9) are intrinsically insured by the 

coding method and the objective function evaluation. Only feasible solutions are allowed in the 

initial population, the string length limits the number of active monitoring wells, and the 

objective function evaluations consider all detected plumes. There would be a problem in 

handling either of the objective functions as a constraint, but our intention, as stated above, is to 

consider the objective functions simultaneously in an attempt to determine the entire tradeoff 

curve at once. 

Another general shortcoming of the GAS is the large number of objective function 

evaluations it must perform. For each generation the performance of each string must be 

evaluated. This function evaluation is very time-consuming and is often the limiting operation 

for the genetic algorithm. This bottleneck may be removed by performing the function 

evaluations in a parallel fashion since these evaluations are not interdependent. GAS are by 

nature, highly parallel, but have traditionally been run on serial machines only because of the 

limited availability of parallel computers. 

A third shortcoming of genetic algorithms is that they are a heuristic search technique and 

are not theoretically guaranteed to find the optimal solution to a given problem. However, GAS 

are normally applied to problems, such as the EPMP, that are intractable using solution 

techniques that guarantee the theoretical optimum. GAS' performance are documented on a wide 

range of difficult problems in many different fields. [Goldberg, 1989, p. 125-1421 



Chapter 4 

Advanced GA Operators 

Simple GAS with their three basic operators have proved to be a powerful tool for solving 

many single objective problems regardless of the problem's complexity. An area of GAS which 

has recently attracted attention is their ability to generate a tradeoff curve for a multi-objective 

optimization problem. The rest of this chapter describes the research that has been done in the 

area of multi-objective optimization and introduces the advanced GA operators that are needed in 

addition to selection, crossover, and mutation in order to generate multi-objective tradeoff 

curves. 

4.1 Multiple Objective GAS 

Two techniques have been suggested to allow GAS to incorporate multi-objective 

optimization problems; vector evaluated GAS and Pareto-optimal ranking GAS. Although 

previous research has found that these techniques produce some promising preliminary results, 

the methods have not yet been fully investigated. These two methods are described below along 

with a method that attempts to capitalize on the individual strengths of each of the two 

techniques by combining the two approaches into a single formulation. 

4.1.1 Vector Evaluated GA Formulation 

This formulation was introduced by Schaffer [1.985] who refers to it as the Vector 

Evaluated Genetic Algorithm (VEGA). This formulation derives its fitness functions directly 

from the objective functions Z1 and Z2. During the tournament selection process, this 

formulation randomly selects one or the other objective, with a specified probability, to 

determine the binary tournament winner. Prel is the probability that the winner of the tournament 

will be determined by the string with the highest reliability score. Correspondingly, (1 - Prel) is 

the probability that the winner is selected based on lowest average contaminated area. 



For each tournament pair the fitness function is chosen randomly. Therefore, the 

population at each generation contains strings which perform well in the reliability objective and 

those which perform well with regard to the contaminated area objective. It is hoped that 

through cross-mating between the two groups a population of strings will evolve that performs 

well on both objective functions. Care must be exercised not to pressure the population towards 

the knee of the tradeoff curve by only cross-mating. Therefore, a string's mating partner is 

randomly chosen, and it is possible that two strings that perform well on the same attribute will 

be partners. 

4.1.2 Pareto-Optimal Ranking Formulation 

The ranking scheme discussed by Goldberg [:1.989, p. 2011 uses the idea of Pareto- 

optimality to assign a fitness function to each GA string. More specifically it uses the ideas of 

Pareto domination and inferiority to determine which strings outperform other strings. For a 

multiple objective problem with J objectives, and assuming maximization of all objectives 

without loss of generality, solution A dominates solution B if: 

and ZAj > Z B ~  for at least one j€ J 

where, 
&j = the objective function value of solution i for objective j 

If a given solution is not dominated by any other solutions it is said to be non-dominated. A 

solution is inferior if at least one solution dominates it. 

To incorporate the Pareto-optimal ranking scheme, the current population is searched and 

all non-dominated solutions are given a rank of 1. These solutions are then temporarily removed 

from the population and the population is searched again. This time all non-dominated solutions 

are given a rank of 2. The procedure continues until all solutions have been ranked. Figure 3 

graphically illustrates the rank of several solutions (shown in objective space) for the 
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Figure 3. Graphical Representation of Pareto-Optimal Ranking Scheme 

groundwater monitoring problem where reliability is to be maximized and average contaminated 

area is to be minimized. Liepins et al. [I9881 found that this formulation outperforms VEGA in 

the solution of a constrained set covering problem. 

4.1.3 Combination of the VEGA and Ranking Formulations 

The third formulation is based on a combination of the VEGA and the Pareto-optimal 

ranking formulations. It operates as follows: 

1. For the first Nchm e generations use a VEGA selection criteria with the probability 
of selecting for refiability, PEI, set between 0.50 and 0.90. 

2. After Nchmge generations switch to the Pareto-optimal ranking formulation. 



This formulation is an attempt to make use of the strengths of both the VEGA and Pareto optimal 

ranking formulations. VEGA allows the programmer to force the search towards a certain 

portion of the tradeoff curve, in this case the high reliability end, achieved by a high value for 

PX1. By switching back to Pareto-optimal ranking the GA is then able to search the Pareto- 

optimal space and trickle back down the tradeoff curve. 

Care must be taken to insure that the population does not converge to a single optimum 

before switching selection schemes. In our problem we noticed that the GA population would 

begin to lose much of its genetic diversity by approximately the 70th generation, so we 

investigate Nchange values around 70. This value must be selected individually for each GA 

application since the speed of convergence seems to be correlated to the length of the strings and 

population size [Goldberg et al., 19921. 

4.2 Maintaining Diversity in the GA Population using Sharing 

As the GA's population of strings proceeds through a large number of generations it 

begins to lose its genetic diversity which is vital to the GA's problem solving ability. After a 

large number of generations the population will converge to a single solution. Mutation can help 

maintain some diversity, but mutation is random and cannot assure that a diverse set on good 

building blocks is maintained. An advanced GA operator called sharing was introduced by 

Goldberg and Richardson [I9871 as a means of maintaining a stable population of good building 

blocks. 

Sharing is based on the idea of niche formation in the natural world. Species which 

depend on the same resources for survival occupy the same niche. These species must then 

compete with each other for the resources represented by that particular niche. As more and 

more species begin to occupy a particular niche the chances of survival of each individual is 

degraded. This forces a diversity of species that each make use of different resources. By 

forming many different niches and limiting the number of individuals in a particular niche, the 



natural world is able to maintain a diverse range of species that make optimal use of all available 

resources. 

The idea of GA sharing works in the same manner. Strings that are very similar to one 

another degrade each other's fitness function and, therefore, decrease each other's chance of 

survival. By degrading the fitness function of similar strings, sharing forces diversity in the GA 

population by rewarding the dissimilar strings. Goldberg and Richardson [I9871 and Deb and 

Goldberg [I9891 use sharing GAS to maintain a stable population of diverse strings that find all 

peaks of a multi-modal, single-objective test function. 

4.3 Implementation of Sharing 

To implement sharing in GAS a distance measure is used to determine the similarity of 

strings in the population (the distance measure is chosen individually for each problem). The 

parameter oshare is used to set the maximum distance between strings at which sharing occurs. 

Strings that are a less than a distance of o s h m  away from each other are said to occupy the same 

niche and degrade each other's fitness function. Strings that are more than a distance of o s h m  

away from each other occupy different niches and do not degrade each other's fitness function. 

Sharing may be applied to the GA fitness function using a sharing function such as 

Goldberg and Richardson's [ I  9871 triangular sharing function shown in Figure 4. Each string 

is compared to every other string in the current population, and a given string's fitness function is 

now penalized in proportion to how similar it is to the rest of the strings in the population. A 

string's new fitness is now given as: 

f(xi 1 
%ew(xi) = (from Goldberg [1989, p. 1921) (12) 

C share(d(xi7 xj)) 
j=l 

where fnew(xi) is the degraded fitness function of string i, f(xi) is the original fitness function of 

string i, d(xi,xj) is the measure of distance between strings i and j, share(d(xi,~j)) is the sharing 
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Figure 4. Triangular Sharing Function from Goldberg and Richardson [I9871 

function contribution of string j on string i using the triangular sharing function, and N is the 

number of strings in the current population. 

Oei et al. [I9891 found that this method of sharing produces instability in the population 

when used in conjunction with tournament selection. In order to obtain a stable population they 

suggest using a method called continuously updated sharing when using tournament selection. 

In continuously updated sharing the current population is shuffled to produce random tournament 

pairings. The first tournament is held without performing a sharing function calculation and the 

winner is placed into the mating population. The rest of the tournaments are held one by one 

with only the strings already in the mating population contributing to the sharing function 

calculations of the strings in the other tournaments. In this way the strings participating in the 

first tournaments do not have their fitness function degraded by strings in the current population. 

However, as the mating population begins to fill up, the fitness functions of strings that are 



similar to those already in the mating population are degraded, while the fitness functions of 

dissimilar strings, as well as strings already present in the mating population, are not degraded. 

Continuously updated sharing specifically maintains diversity in the mating population. 

For most single-objective problems the distance measure is defined in terms of decision 

space values. Horn and Nafpliotis [I9931 and Fonseca and Fleming [I9931 were able to 

maintain a diverse population of strings for multiple objective problems by computing the 

distance measure in terms of objective function values. By sharing in objective space they 

directly force the solutions to spread out across a wide range of objective function values. Their 

formulations appear to maintain a stable population of non-dominated solutions along the 

tradeoff curve, but neither paper compares the GA solutions to a previously determined true 

tradeoff curve. 

4.4 Pareto Optimal Ranking with Sharing 

The only difference between the basic Pareto-optimal ranking GA and the Pareto-optimal 

ranking with sharing is the use of a sharing function. The GA formulation presented here uses 

Oei's continuously updated sharing scheme and Goldberg and Richardson's triangular sharing 

function in conjunction with Goldberg's Pareto-optimal ranking scheme. 

At the beginning of each generation the contaminated area and reliability score is 

calculated for each string in the population. The strings are then ranked according to Pareto non- 

dominance, and the population is shuffled to create random tournament pairings. Before the 

winner of each binary tournament is determined the competing strings have their ranks degraded 

by comparing each string to the strings already in the mating population. The following sharing 

function is used 



where, 
W I X ~  -dj 

share. = 
j=1 

%hare 

and 

dj = I Reliabilityi - Reliabilityj I, if I Reliabilityi - Reliabilityj I I Oshare 

otherwise 

Reliability is given as a percentage of the simulated plume realizations that are detected by each 

monitoring well system. 

Note that the sharing function is based solely on the reliability objective and does not 

include the contaminated area objective. This is because our intent is to find the tradeoff curve 

along the entire range of the reliability objective. By sharing in only the reliability objective we 

can obtain this diversity and then allow the Pareto-optimal ranking selection scheme to improve 

the contaminated area objective so that the population stays close to the tradeoff curve while 

being dispersed along the entire curve. 

4.5 Maintaining the Pareto Optimal Set 

The GA search method tends to converge to a single Pareto-optimal solution after a large 

number of generations (in our particular case full convergence has taken place after 

approximately 70 generations). At this point the random mutation is the only source left to 

maintain diversity in the population, and the power of the GA to find new Pareto-optimal points 

on the tradeoff curve is greatly diminished since a diverse population of "good" building blocks 

is essential for GAS to work properly. A high mutation rate can maintain a diverse population, 

but does not insure that the required "good" building blocks will be maintained. For this reason 

"Pareto-optimal re-injection" is used to maintain a diverse set of "good" building blocks. 



In order to incorporate Pareto-optimal re-injection the GA searches through the current 

population at the end of each generation. All Pareto-otimal solution strings are extracted from 

the population and recorded to a file. These strings are then compared to the Pareto-optimal 

strings of previous generations and the non-dominated strings are recorded in a best-of-run file. 

These best-of-run strings are re-injected back into the current population by randomly replacing 

strings in the current population. In this way all Pareto-optimal strings previously found in any 

generation are now present in the current population. Pareto-opitmal re-injection allows the GA 

population to maintain a set of the best building blocks. This is something that sharing alone 

cannot guarantee since crossover between Pareto-optimal strings may result in a degradation of 

both solutions and a loss of the best building blocks. 

At the end of a GA iteration, consisting of a fued number of generations with constant 

parameter values, the final population is sorted and all non-dominated strings are combined to 

form a best-of-run set which comprises the tradeoff curve for that iteration. 



Chapter 5 

GA Codiig and Formulations for the Monitoring Problem 

5.1 Coding of Decision Set Strings 

The first step in formulating a GA is to determine how to code the GA decision set 

(coding, here, refers to determining how a given decision set of active wells is to be represented 

as a GA string). For coding convenience we hold the number of active wells constant, so that we 

can generate tradeoff curves of reliability vs. contaminated area. Under this coding each 

potential well location is represented by a X-Y integer pair corresponding to its row and column 

location in the set of potential monitoring wells. The length of a string is two times the number 

of active wells in the monitoring system. An integer, corresponding to a column or row number 

in the potential well field, is placed in each of the string's alleles. Integers between one and the 

number of rows of potential monitoring wells are placed in each string's x-positions and integers 

between one and the number of columns of potential monitoring wells are placed in each string's 

y-positions. Each string now represents a system of monitoring wells which map to their real- 

world potential well locations as shown in Figure 5. Several runs can be made varying the length 

of the string to find the three-way tradeoff of reliability vs. contaminated area vs. number of 

wells. 

5.2 Selection of Parameter Values 

Performance of the formulations above relies on proper setting of the P,,, and Pmt, 

parameters. Initial test runs indicate that values of Pcro,, in the range of 0.70-0.90 produce the 

best results, and that the performance of the GA is robust across this range of PC,,, values. For 

all of our runs we will be using a PC,,, value of 0.80. This PC,,, value means that, on average, 

one of every five strings that survive into the mating population will not participate in the mating 

operation. Instead these strings will survive into the next generation. 





When selecting a Pmuk value the goal is to maintain genetic diversity while attempting to 

avoid making the mutation operator the primary search technique. Initial runs showed that best 

results were obtained when, on average, one in every four to one in every eight strings is mutated 

each generation. This means that for a string of length five Pmute would range between 0.05 and 

0.025. Performance of our GA is also robust within this range of values. A value of 

Pmut,=0.2/(string length) will be used for all runs (i.e., for a string of length five Pmute = 0.04), 

resulting in an average of one out of every five strings being mutated each generation. 

When performing the mutation the GA steps through each allele on every string. A 

random number is drawn from a uniform distribution between zero and one, and if it is less than 

Pmute the allele is mutated. When mutation occurs the mutated allele is replaced by a random 

integer between one and the number of monitoring well rows is selected if the allele is an x-allele 

is selected. If the allele is a y-allele then the GA randomly selects an integer between one and 

the number of monitoring well columns to replace the old allele value. Each allele is mutated 

independently from all other alleles. Therefore, it is possible for two or more alleles on the same 

string to be mutated in the same generation. 

When incorporating sharing into the Pareto-optimal ranking GA the value of oshare must 

be carefully chosen. Too small a value of oShm diminishes the effects of sharing, because not 

enough strings will contribute to each other's sharing function calculations. Too high a value for. 

(&hare will cause too many strings to contribute to the sharing function calculation and the GA 

population will become chaotic. Values of osha= 2.5%, 1.0%, and 0.5% are investigated to 

determine the optimal setting of ash, for this particular problem. 

5.3 Genetic Algorithm Formulations 

Using the coding, crossover, and selection schemes discussed above, five genetic 

algorithm formulations were developed to attempt to find the two-way tradeoff of reliability vs. 

contaminated area. The only difference between the formulations is in the method that each 

formulation uses to determine a string's fitness value. All five of the GA formulations follow the 



basic procedure shown in Figure 6. A generation is defined as one trip through the flowchart 

loop, while completion of the entire flowchart constitutes an iteration. The first GA formulation 

is a reference formulation to test the power of the GA and to record a performance baseline by 

which to evaluate the other four formulations. 

5.3.1 Weighted Objective Function 

The first step in the investigation is to determine if genetic algorithms have the problem 

solving power required to solve the EPMP. This is done by duplicating the results Meyer et a1 . 
[I9921 obtain through the use of simulated annealing using equation (10). Reliability is 

measured in the number of realizations whose plumes are detected divided by the total number of 

simulated plumes. Contaminated area is calculated by summing the normalized contaminated 

areas of all detected plumes. The GA is run several times changing P to find the tradeoff curves 

for Q=5. 

This formulation is run a second time using Steuer's 119861 Tchebycheff weighting 

method function as its sole fitness function. The weighting factor, P, is allowed to vary from 0.0 

to 1.0 with uniform steps of 0.05. (Tchebycheff weighting factors are limited to a range from 0.0 

to 1.0). 

5.3.2 Multi-Objective GA Formulations 

The four multi-objective GA formulations discussed in Chapter 4 will be tested for their 

ability to generate the multi-objective tradeoff curve for two example data sets for the EPMP 

groundwater monitoring problem. The four formulations: Vector Evaluated GA, Pareto-optimal 

Ranking GA, Combination Vector Evaluated GA and Pareto-optimal Ranking GA, and the 

Pareto-optimal Ranking GA with Sharing will be referred to as the VEGA, Ranking, 

Combination, and Ranking with Sharing formulations, respectively, in the remainder of this 

paper. 



I Create Initial 
String Population I 

I Calculate reliability I 
and Contaminated area 

11111111 1 

Calculate fitness 
value of each string u 
Save pareto-optimal I strings to file I 

t (OPTIONAL) I 

I 

T 

1 

) Randomly pair genes I 

Hold tournament 
selection with winners 
entering mating pop. 

in mating population 
I 

Perform crossover at + 
I I 

Calculate sharing 
function & degrade 
strings' fitness func. 

I a random point, with I 

I 
I 

prob=Pcross, to create 
a new pop. of strings u 
Kill old population 

I 

I 
Re~eat for 

reqdred number 
of generations 

I 

bits with prob=pmute 1111111111 

Print best-of-run I file and Stop I 
Figure 6. GA Flow Diagram 



Chapter 6 

Results 

For the five GA formulations discussed in Chapter 5, two separate data sets are generated. 

The first set consisting of 200 simulated plume realizations and 135 potential well locations is 

thoroughly investigated. Several different values for each of the GA parameters are tested in 

order to determine the optimal setting for these parameters. The first data set is thoroughly 

investigated to insure that the GAS are working properly and that the correct setting for each 

parameter is chosen. This investigation focuses on finding a tradeoff curve of reliability vs. 

contaminated area for the case where Q = 5. This case is more difficult than lower values of Q, 

and provides a good baseline by which to judge the GA's performance. 

The second data set corresponds to a more difficult problem consisting of 1000 simulated 

plume realizations and 470 potential well locations for Q = 10. This problem is much more 

computationally intensive, in terms of CPU, so the parameter settings are not investigated quite 

as thoroughly as for the first data set. Instead the best parameter settings determined from the 

first data set are applied to this more difficult problem. This allows us to determine if parameter 

settings can be generalized from the simpler problem to the more difficult one. 

The modeled data sets are from the work of Meyer et al. [I9921 and Meyer [I9921 which 

incorporate uncertainty by allowing for spatial variability of hydraulic conductivity and random 

leak locations. The hydraulic conductivity fields are generated using TUBA (Zimmerman and 

Wilson [ 19901) which incorporates the Turning Bands method of Mantoglou and Wilson [ 19821. 

Hydraulic conductivity is a log-normally distributed parameter with a covariance that 

exponentially decreases with separation distance, as suggested by Freeze [1975]. Leak location 

is randomly drawn from a uniform distribution over the down gradient boundary of the landfill, 

and Meyer [I9921 model groundwater solute transport using Sudicky's [I9891 Laplace Transform 

Galerkin computer code. Table 1 lists the significant hydraulic parameter values used for 

simulating the plume realizations for the data sets. Meyer et al. [I9921 found that the reliability 



Parameter 
Number Pot. Mon. Wells 
Number of Pot Mon. Well Rows 
Number of Pot. Mon. Wells Per Row 
X-dimension 
Y-dimension 
X-spacing of wells 
Y-spacing of wells 
Source length 
Source concentration 
Number of Source nodes 
Zero flux boundaries 
Avg. gradient in x-direction 
Source flowrate 
Detection limit 
Diffusion coefficient 
Mean of In(&) 
Variance of In(Ks) 
Correlation Scale of In(&) 
Longitudinal Diipersivity 
Transverse Dispersivity 

Data Set #1 
135 
9 
15 

2000 m 
1000 m 
150 m 
25 m 
100 m 

1.0 mass units/mA3 
41 

y=Omand lOOOm 
0.00 167 

0.00 18 mA3/day 
0.005 mass units/mA3 

2.16 x 1 OA(-5) mA2/day 
0.79 
0.96 

20.0 m 
2.0 m 
0.2 m 

Data Set #2 
470 
10 
47 

400 m 
250 m 

2 -  10m 
2.5 m 
100 m 

1.0 mass units/mA3 
4 1 

y =Omand250m 
0.00 167 

0.001 8 mA3/day 
0.005 mass unitslmA3 

2.16 x lW(-5) mA2/day 
0.79 
0.96 

20.0 m 
2.0 m 
0.2m 

Table 1. Hydraulic Parameters for Groundwater Flow Simulation 

and contaminated area estimates are sensitive to the number of plume realizations and the 

assumed probability distribution for hydraulic conductivities. 

These data sets are used for each of the formulations to allow for comparisons between 

the methods. Using these data sets, all GAS and the simulated annealing algorithm were run on 

the same model of HP-UX workstation in order that results and computational time could be 

properly compared. GA parameter settings for the two data sets are listed in Table 2. 

6.1 First Data Set: 200 Plumes, 135 Potential Well Locations 

6.1.1 Weighted Objective Function 

The weighted GA tradeoff curve corresponds exactly to that of the simulated annealing 

procedure developed by Meyer et al. [1992]. The results are shown in Figure 7. Only the 

points on the tradeoff curves are obtainable solutions. The lines connecting these points are 

included only to show the general trend of the curves. These curves are referred to as  the "true" 



Parameter 
Number Pot. Mon. Wells 
Number of Pot Mon. Well Rows 
Number of Pot. Mon. Wells Per Row 
Pcross 
Pmute 
Sigma Share 
Nchange I Prel (Combination) 
Prel (VEGA) 

Data Set #1 
135 
9 
15 

0.80 
0.04 

O.S%,l.O%,and 2.5% 
30,50,and 70 /0.50,0.70,and 0.90 

0.50,0.70,and 0.90 

Data Set #2 
470 
10 
47 

0.80 
0.04 
1 .O% 

30 I 0.90 
0.70 

Table 2. GA Parameters 

tradeoff curves in the remainder of this paper, and will be shown as dashed lines connecting large 

open points in all other graphs. Because the weighting method misses non-convex portions of 

the tradeoff curve and because neither GAS nor simulated annealing guarantees the theoretical 

maximum these curves are not necessarily the true tradeoff curve. However, the fact that both 

method find the same points provides some evidence that the obtained points are Pareto-optimal. 

The results of the other four genetic algorithm formulations are compared to these results. 

Using Steuer's [I9861 Tchebycheff method to obtain the non-convex portions of the 

tradeoff curve produced some disappointing results. Steuer's method produced only the two 

different Pareto-optimal points (both already found using the linear weighting method) over the 

range of weighting factors discussed in Section 4.4.1. These results will be re-examined later in 

this section. 

6.1.2 Vector Evaluated GA 

Three separate runs were made using the VEGA formulation to investigate the effect of 

changing Prel, the probability of selecting the binary tournament winner based on reliability, on 

the performance of the GA. The settings of this parameter are; 0.50,0.70, and 0.90 

(corresponding to probabilities of selecting for lowest contaminated area of 0.50,0.30, and 0.10, 

respectively). A probability of selecting for reliability of 0.70 means that, on average, 70% of 

the selections will pick the tournament winner on the basis of a higher reliability score, while the 
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Figure 7. "True" Tradeoff Curve (Q = 5, NPOTW=135) 

other 30% of the selections will choose the winner based on lower average contaminated area. 

The results of the Prel= 0.50 and 0.70 are shown in Figure 8 (Prel = 0.90 is not shown because 

the results are poor and including the results makes the graph difficult to interpret). 

It is difficult to determine which setting for Prel is best. A setting of 0.50 is best for 

finding the lower reliability end of the tradeoff curve, but suffers somewhat near the high , 

reliability end of the curve (performance is evaluated according to the degree to which the GA 

finds the actual points on the Pareto-optimal frontier). A setting of 0.70 leads to better 

performance at the upper and middle reliability portions of the tradeoff curve, but this gain is 

offset by poorer performance at the low reliability end. Finally, a setting of Prel = 0.90 leads to 

poor performance everywhere except the highest reliability end of the tradeoff curve. This is 

most likely due to the fact that at this high Prel value, contaminated area plays an insignificant 

role in determining the survival of a string. 

Intuitively we would think that a higher value of Prel will cause the population to focus at 

a higher reliability solution, and this may be the reason that different settings of Prel perform 

better at different portions of the tradeoff curve. As the population focuses on a particular 

30 



1 1 1 1 1 , 1 ~ 1 1  "True" 

-.-. n-.- Prel = 0.50 

Prel = 0.70 

20000 
40 50 60 70 80 90 100 

Reliability as % of Plumes Detected 

Figure 8. VEGA vs. "True" (Q=5, NPOTW=135) 

solution the GA continues to search for solutions near the focal point in objective space, thus 

doing a good job of generating the tradeoff curve closest to the focal point of the VEGA search. 

6.1.3 Pareto-Optimal Ranking 

The Pareto-optimal ranking formulation uses a fitness value that is quite different from 

the one used in the VEGA formulation and the final results appear better than those obtained 

using the VEGA formulation (see Figure 9). The Pareto-optimal ranking scheme is able to 

generate all but the very highest reliability end of the tradeoff curve. This may be because no 

significant genetic pressure for improvement exists to force the solution towards the highest 

reliability end of the tradeoff curve. 

6.1.4 Combination of VEGA and Ranking 

The combination VEGA and Pareto-optimal ranking formulation evolved because of the 

inability of either VEGA or Pareto-optimal ranking to find the entire tradeoff curve, especially 

near the high reliability end. By combining the two schemes the population may be forced to 

3 1 
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Figure 9. Ranking vs. "True" (Q=5, NPOTW=135) 

the high reliability end of the tradeoff curve in the early generations, using the VEGA 

formulation with a high value for PE1, and in later generations the population is allowed to drift 

back towards the knee and lower reliability end of the tradeoff curve, using the Pareto-optimal 

ranking scheme. 

Values of 30,50, and 70 are used for Nchmge, and 0.50,0.70,0.90 are used for PE1. All 

combinations of these parameters are investigated for Q = 5. Best results were obtained for 

Nchmge=30 and Prel =0.90. These results are compared to the results of Nchmge=50 and Pre1=0.70 

in Figure 10. 

Once again the GA, after adjustment of the parameters, performs well in finding the 

lower and middle reliability portions of the tradeoff curve. Performance suffers only at the very 

highest reliability portions of the curve. When Prel is increased, Nchange must be reduced or else 

performance begins to suffer at the low reliability end of the tradeoff curve. 
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Figure 10. Combination vs. "True" (Q=5, NPOTW=135) 
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6.1.5 Pareto-Optimal Ranking with Sharing 

Each of the ashae values are run for two different random number seeds. Figure 1 1 

shows a comparison of the best tradeoff curve generated by each oshare value for the EPMP and 

the "true" tradeoff curve. A value of oshare = 1 .O% of the total plume realizations outperform 

oshare = 2.5% and 0.5% (which is not shown in Figure 11 for purposes of clarity) in terms of 

generating the tradeoff curve. 

A value of oshare = 0.5% is too small and defeats the purpose of sharing by severely 

limiting the number of strings that contribute to the sharing function of other strings. Too high a 

setting degrades performance by allowing contribution by too many adjoining strings. A value 

of ashare = 1 .O% seems to allow the sharing process to work most effectively. 

6.2 Comparison of Results 

c 

: 

I ' I ' l ' l ' I '  

6.2.1 Genetic Algorithm Formulations 

"True" 

* Nchange=50,Prel=0.70 
-- - m - -  Nchange=30,Prel=0.90 

All four of the multiple-objective GA formulations were able to find large portions of the 

tradeoff curve of reliability vs. contaminated area, although none were able to find the entire 
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Figure 11. Ranking wl Sharing vs. "True" (Q=5, NPOTW=135) 

tradeoff curve. All four formulations lack the ability to find both ends of the tradeoff curve 

simultaneously. The combination formulation performs better than any of the others. Figure 12 

shows a comparison of the tradeoff curve generated by each of the four formulations: Pareto- 
I 

optimal ranking, Combination (Pre1=0.90,Nchange=30), VEGA (Pre1=0.70), and Pareto-optimal 

ranking with sharing (oshare=l.O%). As performance increases at one end of the curve it suffers 

at the other end, although the combination and the ranking with sharing formulations come very 
I 

close to finding the entire tradeoff curve. However, in many cases the decision maker is i 

interested in a specific region of the tradeoff curve (e.g., in our case we are particularly interested 
I 

in the high reliability end). If this is true, both the VEGA and the combination formulations 

allow us to specify Prel in order to force the population to the portion of the curve that the I 
I 

I 

decision maker is most interested in. 

The VEGA, combination, and ranking with sharing formulations require the adjustment 1 
I 

of additional parameters (oshare, Prel and Nchange). The addition of these parameters may 

require additional GA iterations in order to find the best settings for each particular problem. 1 
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Figure 12. Comparison of Multi-Objective GA Formulations 

Workstation run time for all four formulations were similar in magnitude. Average run 

times for 1000 strings and 100 generations were approximately two to three minutes for the 

VEGA, ranking, ranking with sharing, and combination formulations (See Table 3 for 

comparison of CPU requirements). Note that the 100,000 objective function evaluations of the 

multiple objective GA formulations represent only a fraction of the 3.47~108 possible well 

combinations for Q=5. The Pareto-optimal ranking with sharing formulation requires the most 

computation of any of the multiple-objective GAS. This is because the population must be sorted 

and ranked and the sharing calculations must be performed during each generation. 

Approximately 60-70% of the computational time is spent doing objective function evaluations. 

Since this operation is highly parallelizable time-savings could be realized through use of parallel 

computers. 



Formulation CPU, units Pop. Size # Generations 
VEGA 130.5 1000 100 100,000 
Ranking without 200.5 1000 100 100,000 
Sharing 
Ranking with Sharing 245.7 1000 100 100,000 
Combination 164.2 1000 100 100,000 
Weighted GA 923.4 750 100 900,000 
Simulated Annealing 242.9 --- --- 7 1,433 

Table 3. Comparison of Computational Requirements 

6.2.2 Ranking with Sharing vs. Ranking 

The "true" tradeoff curve is compared to the curves generated using the sharing GA 

( ~ ~ h ~ ~ ~  = 1.0%) and the simple Pareto-optimal ranking GA in Figure 13. Neither of the multi- 

objective GAS are able to generate the highest reliability end of the tradeoff curve, and the 

sharing GA only marginally outperforms the simple Pareto-optimal ranking GA. Since the 

sharing GA is 20% more computationally intensive, in terms of CPU, than the simple Pareto- 

optimal GA, why should one consider using the sharing GA? 

The answer becomes clear when examining the final population of solutions for the 

sharing GA and the simple Pareto-optimal ranking GA. The distribution of final populations in 

objective space is shown in Figures 14 and 15 for the GAS with and without sharing. Although 

the figures make it appear that the sharing GA has a larger population this is not the case. Both 

GAS have a population of 2000 strings, but the GA without sharing has more identical solutions 

in the final population than the sharing GA. Therefore, many of the points plotted in Figure 15 

lie directly on top of one another. 

In order to compare the diversity of the final populations objectively the final populations 

of the Pareto-optimal ranking and the Pareto-optimal ranking with sharing formulations were 

evaluated using the following diversity measure. 
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Figure 13. Comparison of Sharing vs. No Sharing 

N N 
Diversity = I Reliabilityi - Reliabilityj I 

i=1 j=1 

where N is the number of strings in the population. Diversity scores for the formulations are 

32,129,386 and 136,010,362 for the Pareto-optimal ranking and Pareto-optimal ranking with 

sharing formulations, respectively. The diversity measure shows that the final population of the 

Pareto-optimal ranking with sharing formulation is much more diverse than the formulation 

without sharing. What exactly does this diversity obtain us if the tradeoff curves of the two GAS 

are so similar? 

Both the sharing GA (o,h, = 1.0%) and the GA without sharing were run for five 

different random number seeds. While the sharing GA consistently generated approximately the 

same tradeoff curve all five runs, the GA without sharing only generated its best tradeoff curve in 

two out of the five trials. This suggests that the diversity helps maintain consistency in 

generating the tradeoff curve, probably because a diverse population is so essential for a GA to 

find new solutions. 
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6.2.3 Genetic Algorithms vs. Simulated Annealing 

Genetic algorithms have a distinct advantage over simulated annealing in that they are 

able to consider both objective values simultaneously. The simulated annealing algorithm 

requires a single weighted objective function. This necessitates running the simulated annealing 

algorithm several times with different weights to find the tradeoff curve. The Pareto-optimal 

ranking tradeoff curve (and also the VEGA and combination curves) captures these non- 

convexities of the tradeoff curve and is, therefore, more accurate in this region than the "true" 

tradeoff curve. 

Simulated annealing does have a computation time advantage over the genetic algorithm. 

Each simulated annealing iteration requires approximately 10 to 15 seconds run time on the HP- 

UX workstation to converge to an optimal solution. Therefore, approximately 10-12 different 

weights can be tried in the time it takes the multiple-objective GAS to complete a single iteration. 

However, simulated annealing finds only a single Pareto-optimal point each iteration while GAS 

find a large number of Pareto-optimal points each iteration. Therefore, the multi-objective GAS 

are just as efficient, in terms of computer time, in generating the tradeoff curve of reliability 

versus contaminated area. CPU times for Q = 5 are shown for simulated annealing, and the four 

GA formulations in Table 3. For simulated annealing and the weighted GA formulation the run 

time constitutes the time it takes to run 12 different weighting factors in series (i.e., 12 

iterations). 

The sharing GA also has an advantage over simulated annealing because the final 

population contains a large number of alternatives that are near the tradeoff curve, but different 

from each other in decision space. This diversity of solutions allows the decison maker to 

evaluate several different alternative that are similar to each other in objective space but very 

different in decision space. Simulated annealing converges to a single, optimal solution rather 

than a population of solutions. Therefore, simulated annealing does not find alternatives that are 

near the tradeoff curve and different form each other in decision space. 



The speed of the GA can be increased by parallelizing the fitness function evaluations 

which are independent of each other. This would decrease the GA run time by approximately 

60-70%. It should be noted that simulated annealing with a weighted objective function could 

also be parallelized by running different weighting function values in parallel, but the simulated 

annealing search method for a particular weighting factor values is inherently serial. 

The weighted GA performs identically to simulated annealing in terms of results, but 

simulated annealing is approximately four times faster than the weighted GA. Both methods 

were able to find the tradeoff curves, except where they miss non-convexities. 

6.3 The Tchebycheff Method Revisited 

After obtaining the results from all four of the multi-objective GA formulations a data set 

was compiled of all Pareto-optimal points found by any of the GA formulations for Q = 5. These 

results were examined to determine the values of p required in the Tchebycheff method in order 

to obtain all of the Pareto-optimal points found by any of the GA formulations. The Tchebycheff 

weighted GA was then run with each of these weighting factors to determine if the multi- 

objective GA's were indeed finding non-convexities of the tradeoff curve and not simply sub- 

optimal points. 

These results, shown graphically in Figure 16, indicate that the multi-objective GAS are 

finding non-convexities of the tradeoff curve since the results match those to the Tchebycheff 

method. Some of the P values required to find all of these non-convex points must be extended 

to the fifth decimal place. In order to find all of Pareto-optimal points using the Tchebycheff 

method, without a priori knowledge of where these points were, would require an interactive 

trial-and-error method of trying a P value, studying the results, and then trying new values of P. 

The GA based method allows us to avoid this iterative type approach. 
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Figure 16. Tchebycheff Method vs. Multi-Objective GAS 

6.4 Second Data Set: 1000 Plumes, 470 Potential Well Locations 

This data set represents a much more difficult problem than the first data set. Choosing 

10 active wells from a system of 470 potential monitoring wells yields 1.3 1x1020 possible 

combinations of active wells as compared to 3.47~108 possible combinations of 5 active wells 

out of 135 potential wells. For this reason the parameter setting response sensitivity is not 

investigated as thoroughly as for the first data set. A population size of 5000 strings will be 

used for each of the GA formulations due to the increased complexity of the problem. Since 

population size affects convergence time the GAS will be run for 200 generations. 

Also, the "true" tradeoff curve is obtained by using simulated annealing and the weighted 

objective function of Meyer et al. [I9921 for 14 different weighting factors ranging from 0.02 to 

20.0. This "true" tradeoff curve is compared to the four different multi-objective GA 

formulations: VEGA (P,1= 0.5 and 0.7), Ranking, Ranking with Sharing (oShae = 1.0%), and 

Combination (Nchange=30 and Pre1=0.9, and Nchange=50 and Pre1=0.9). The "true" tradeoff curve 

suffers from the same limitation as the "true" curve for the previous data set; it does not find all 



of the convex and non-convex, non-dominated points of the actual tradeoff curve. It does, 

however, provide a good baseline by whlch to measure the performance of the GAS. 

6.4.1 Performance of Multi-Objective GAS 

Figures 17 through 22 compare the performance of the multi-objective GA formulations 

to the "true" tradeoff curve. Examination of each of the graphs shows that none of the 

formulations is able to generate the entire tradeoff curve for this problem. This result is to be 

expected since the GAS were not able to generate the entire tradeoff curve for the simpler 

problem either. However, all of the GA formulations, with the exception of the VEGA 

formulation with Pre1=0.7, were able to generate large portions of the tradeoff curve and give a 

very good estimation of the shape of the "true" tradeoff curve. 

The GAS' performance suffers only at the very highest and very lowest reliability ends of 

the tradeoff curve. It is at the ends that the largest degradation of one objective must be accepted 

in order to obtain a small improvement in the other objective. Often times when decision makers 

are seeking a compromise solution, they are not even interested in the points at the very ends of 

the tradeoff curve since other objectives would suffer so greatly. 

Comparing the performance of the GA formulations to each other, it seems that the 
1 

Ranking and Ranking with Sharing formulations outperform the other formulations. The VEGA 

and Combination formulations suffer quite a bit at one end of the tradeoff curve or the other. 

The two Ranking formulations perform better than the VEGA at both ends of the tradeoff curve. 

Ranking with sharing outperforms the Ranking formulation at both ends. 

The CPU requirement for the GAS for thls problem were in the range of 7800-9200 CPU 

units, with the VEGA formulations having the lowest requirements and the Ranking with 

Sharing Formulation requiring the most CPU. This is approximately a 40-fold increase in CPU 

requirements compared to the previous example problem. The increase in CPU requirements is 

due to the increase in population size, the increase number of generations, and the increase in the 

number of simulated plumes. 
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Figure 17. VEGA (Prel=0.5) vs. "True" (Q=10, NPOTW=470) 
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Figure 18. VEGA (Prel=0.7) vs. "True" (Q=10, NPOTW=470) 
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Figure 19. Pareto-Optimal Ranking vs. "True" (Q=10, NPOTW=470) 
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Figure 20. Pareto-Optimal Ranking w/ Sharing vs. "True" (Q=10, NPOTW=470) 
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Chapter 7 

Final Remarks 

7.1 Research Contributions 

This paper has investigated the use of four different formulations of multi-objective GAS 

for solving a real-world groundwater monitoring problem. It represents one of the first efforts to 

compare the results of a multi-objective GA to a predetermined tradeoff curve for a complex 

real-world example problem. The GA-based solution method was shown to be able to generate 

both convex and non-convex points of the tradeoff curve, accommodate non-linearities in the two 

objective functions, and find several Pareto-optimal points in a single iteration. The research 

also introduced the combination formulation which attempts to capitalize on the individual 

strengths of the VEGA and Pareto-optimal ranking formulations. Finally the effects of sharing in 

conjunction with Pareto-optimal ranking were investigated to determine the effects sharing has 

on maintaining the diversity of the GA population and the performance of the GA in generating 

the multi-objective tradeoff curve. 

The use of genetic algorithms to generate the tradeoff curve for the multi-objective 

groundwater monitoring problem yields both encouraging and challenging results. Although the 

GAS were able to generate a large number of convex and non-convex points along the tradeoff 

curve without resorting to a weighted objective function, none of the four multi-objective GA 

formulations were able to generate the entire tradeoff curve for either of the example data set for 

Meyer et al's. [I9921 EPMP. Even after manipulation of the parameter settings, no single GA 

formulation was able to generate the entire tradeoff curve. 

The fact that the GAS were able to generate large portions of the tradeoff curve and 

suffered only at the ends of the tradeoff curve is encouraging news. Often times decision makers 

are interested in determining a compromise solution to a given problem. Under these conditions 

the decision maker will not be interested in the very ends of the tradeoff curve because one 

objective often must be severely degraded in order to obtain a small improvement in the other. 

46 



Economists refer to this type of phenomenon as a case of diminishing returns. If a decision 

maker is interested in a compromise solution, multi-objective GAS are a very promising tool for 

generating a tradeoff curve. 

All four multi-objective GA formulations were able to generate large portions of the 

tradeoff curves. Of the four formulations VEGA probably performed worst, although VEGA 

does allow us to focus at the ends of the tradeoff curve by manipulation of the PR1 parameter. 

The Pareto-optimal ranking formulation generated all but the very highest and very lowest 

reliability end of the tradeoff curve without requiring the adjustment of any new parameters. The 

combination formulation was able to take advantage of the strengths of the VEGA and ranking 

methods to obtain slightly better results at the high reliability end of the tradeoff curve without 

loss of performance at the low reliability end. 

Of the four multi-objective GA formulations the Pareto-optimal Ranking with Sharing 

Formulation seems most promising for further research. This formulation produces results as 

good or better than the other three formulations and has one added advantage; lversity in its 

population even after many generations. This diversity will be of great benefit to the GA for use 

in interactive decision making, an area that should be specifically targeted for future research. 

7.2 Recommendations for Future Research 

Just like natural systems need genetic and physical diversity in order to adapt to changing 

environmental conditions, GAS will require a diverse population of solutions after many 

generations if they are to be able to adjust to changing objective functions. I believe that 

Fonseca and Fleming [I9931 seem to have only scratched the surface of GAS ability to 

incorporate a decision makers soft information into a deterministic objective function. They 

allow the GA to proceed through many generations in an attempt to generate a multi-objective 

tradeoff curve. After the decision maker gets a good idea of the shape of a tradeoff curve he is 

able to change the problem constraints in order to target portions of the tradeoff curve that are of 

particular interest. While Fonseca and Fleming [I9931 use constraints to direct a GA to a certain 



portion of the tradeoff curve, GAS have the power to adapt directly to changing objective 

functions. Therefore, changes in objective function can be used in place of constraints (which 

are difficult for GAS to handle) to direct the GAS search to a particular region of decision space. 

Selection of optimal parameter settings is vital to insure the proper performance of GAS. 

A simple GA requires the selection of only two parameters, pmt, and p,,,,. However, as we 

begin adding advanced operators to the GAS we need to determine the settings for more and 

more parameters. Perhaps the best approach to finding these values is to include the parameters 

as decision variables in the coding of the string. In this way we would allow the GA to find the 

optimal parameter settings on its own. This seems to be a logical approach to the problem of 

parameter selection, since GAS are better suited to the task than we are, and such an approach 

would eliminate the headache of trial-and-error parameter tuning. 

Another area that should receive research attention is the extension of multi-objective 

GAS to more than two objective functions. Fonseca and Fleming [ I  9931 investigated a four 

objective problem, but they do not compare the GA's performance to a predetermined tradeoff 

curve. Although it is true that it is more difficult to find a "true" tradeoff curve as we add more 

objectives to a problem, this is exactly the reason we need to compare GA performance to the 

performance of other techniques. We must determine if GAS can advance beyond a two- 

objective problem without the degradation of performance associated with conventional 

weighting techniques. 

Finally, as we use GAS to investigate more and more complicated problems we will find 

the need to study the performance of GAS on parallel computers. For the example problem in 

this research with 1000 simulated plumes and 470 potential well locations, a single GA run took 

over two hours on an HP-UX workstation. It would be very difficult to convince a decision 

maker to spend two hours in front of a computer to work interactively with the GA to find the 

portion of the tradeoff curve he is interested in. Running GAS on parallel computers for which 

they are perfectly suited will address this shortcoming. 
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