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ABSTRACT

Anonymized user datasets are often released for research or industry applications.
As an example, t.qq.com released its anonymized users’ profile, social interaction,
and recommendation log data in KDD Cup 2012 to call for recommendation al-
gorithms. Since the entities (users and so on) and edges (links among entities) are
of multiple types, the released social network is a heterogeneous information net-

work. Prior work has shown how privacy can be compromised in homogeneous
information networks by the use of specific types of graph patterns. We show
how the extra information derived from heterogeneity can be used to relax these
assumptions. To characterize and demonstrate this added threat, we formally de-
fine privacy risk in an anonymized heterogeneous information network to identify
the vulnerability in the possible way such data are released, and further present a
new de-anonymization attack that exploits the vulnerability. Our attack success-
fully de-anonymized most individuals involved in the data. We further show that
the general ideas of exploiting privacy risk and de-anonymizing heterogeneous
information networks can be extended to more general graphs.

ii



To my family, for their love and support.

iii



ACKNOWLEDGMENTS

I would like to express my gratitude to the following people for their great support
and contributions in my thesis:

• Professor Carl A. Gunter, for his insightful advice, constant help, invalu-
able encouragement and sharing of his knowledge. With his invaluable
guidance, I made some achievements in my research and published a few
research papers.

• Professor Jiawei Han, for his utmost support throughout my research. His
ideas and guidance kept my research in the right heading and his enthusi-
asm towards research always motivated me to move forward and further,
especially during difficult times.

• Dr. Xing Xie, a senior researcher at Microsoft Research, for his comments
and help during my research.

• Mr. Hao Fu, a Ph.D. candidate working with Dr. Xing Xie, for his contri-
butions in extending and generalizing the key component of this research.

This thesis was supported by HHS 90TR0003-01 (SHARPS) and NSF CNS
0964392 (NSF EBAM).

Last but not least, I would like to thank all my friends for their help and encour-
agement.

Without any of them, this work would not be possible.
Thank you all.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Limitations of k-Anonymity . . . . . . . . . . . . . . . . . . . . 3
1.3 New Settings, New Threats . . . . . . . . . . . . . . . . . . . . . 4
1.4 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

CHAPTER 2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Relational Data Anonymization . . . . . . . . . . . . . . . . . . 6
2.2 Graph Structural Attacks . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Graph Data Anonymization . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 3 HETEROGENEOUS INFORMATION NETWORKS . . . 9

CHAPTER 4 PRIVACY RISK ANALYSIS . . . . . . . . . . . . . . . . 13
4.1 Attribute-Metapath-Combined Values of Target Entities . . . . . . 13
4.2 Privacy Risk in General Anonymized Datasets . . . . . . . . . . . 15
4.3 Privacy Risk in Anonymized Heterogeneous Info Networks . . . . 18
4.4 Discussions of the Analysis . . . . . . . . . . . . . . . . . . . . . 21
4.5 Practical Implications to Reduce Privacy Risk . . . . . . . . . . . 22

CHAPTER 5 DE-ANONYMIZATION ALGORITHM . . . . . . . . . . 23
5.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

CHAPTER 6 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1 Case Study of t.qq Dataset . . . . . . . . . . . . . . . . . . . . . 27
6.2 Beating Complete Graph Anonymity . . . . . . . . . . . . . . . . 32
6.3 Defending DeHIN by Sacrificing Utility . . . . . . . . . . . . . . 33
6.4 “Security by Obscurity”? . . . . . . . . . . . . . . . . . . . . . . 33

v



CHAPTER 7 EXTENSION TO GENERAL GRAPHS . . . . . . . . . . 35
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 De-anonymizing Simple Graphs . . . . . . . . . . . . . . . . . . 37
7.3 De-anonymizing Rich Graphs . . . . . . . . . . . . . . . . . . . 41

CHAPTER 8 FURTHER EVALUATION ON GENERAL GRAPHS . . . 44
8.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Simple Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.3 Rich Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

CHAPTER 9 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . 60

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



LIST OF TABLES

6.1 Privacy Risk of the Anonymized t.qq Dataset (density: 0.01,
size: 1000) increases as the amount of utilized target network
schema link types increases (in percentage) . . . . . . . . . . . . 28

6.2 Performance of DeHIN on t.qq anonymized dataset (in percent) . 29
6.3 Performance of DeHIN on t.qq anonymized dataset (density:

0.01) improves as the amount of utilized target network schema
link types increases (in percent) . . . . . . . . . . . . . . . . . . 30

6.4 Performance of DeHIN on t.qq dataset of complete graph anonymity
(in percent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



LIST OF FIGURES

1.1 The heterogeneous information network in t.qq . . . . . . . . . . 2

3.1 The corresponding network schema for the heterogeneous in-
formation network in Figure 1.1 . . . . . . . . . . . . . . . . . . 10

3.2 The target network schema for Figure 3.1 . . . . . . . . . . . . . 12

4.1 The neighbors of the target entity A1X are generated along
target meta paths . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 The bottleneck scenarios . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Comparing neighbors via multiple types of target network schema
links from target and auxiliary datasets . . . . . . . . . . . . . . . 25

6.1 Privacy risk increases with more link types . . . . . . . . . . . . . 29
6.2 DeHIN Precision Improves with More Link Types . . . . . . . . . 31
6.3 Precision of DeHIN against different anonymized heteroge-

neous information networks of different densities (CGA: Com-
plete Graph Anonymity; VW-CGA: Varying Weight Complete
Graph Anonymity; KDDA: KDD Cup 2012 t.qq Original Anony-
mization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.1 Precision of attacks with different M (the number of map-
pings) and node overlap on msas graph . . . . . . . . . . . . . . 48

8.2 Precision of attacks with different M (the number of map-
pings) and node overlap on lj graph . . . . . . . . . . . . . . . . 49

8.3 Precision of attacks with different M (the number of map-
pings) and node overlap on enron graph . . . . . . . . . . . . . 50

8.4 Precision of identity disclosure grouped by the auxiliary graph’s
normalized eigenvector centrality (100% overlap, msas). Re-
sults for other graphs were similar. . . . . . . . . . . . . . . . . . 52

viii



8.5 Performance of NeighborMatch(NM) and NS attacks (25%
overlap, msas). The curves for NM and NS attacks are gen-
erated by varying the number of mappings (M = 100, 300,
500, 800, 1000, 1500, 2000, 2500, 3000, 4000, 5000) and the
quality of seed mappings (Q = 0%, 10%, ..., 100%) respec-
tively. Note that the curves for NS attacks are not standard
precision/recall curves due the different parameters for differ-
ent data points. Results for other anonymization algorithms
and datasets are similar and thus omitted. . . . . . . . . . . . . . 55

8.6 Attack precision with different node overlap (tweibo, K = 107) . . 57
8.7 Attack precision with different attribute perturbation (tweibo,

K = 107, 5,000 overlap). Results for other overlaps show
similar behavior and are thus omitted. . . . . . . . . . . . . . . . 58

8.8 Precision and running time of attacks for naı̈ve anonymization
(tweibo, K = 103, 104, ..., 108) . . . . . . . . . . . . . . . . . . . 59

ix



CHAPTER 1

INTRODUCTION

The world is getting more inter-connected. Tons of social network data are gener-
ated through people’s interactions, and different entities are linked across multiple
relations, forming a gigantic information-rich, inter-related and multi-typed het-

erogeneous information network [1]. Is there any risk in the current efforts to
avoid privacy intrusion upon the anonymized copy of a heterogeneous informa-
tion network? We start with a motivating example.

1.1 Motivating Example

Various datasets containing micro-data, that is, information about specific indi-
viduals, have been released for different research purposes or industry applica-
tions [2]. Some datasets contain individual profiles, preferences, or transactions,
which many people consider sensitive or private. In the recent KDD Cup 2012,
t.qq.com (a popular microblogging site, hereinafter referred to as t.qq) released its
2.3 million users’ profile, social interaction, and recommendation preference log
data to call for more efficient recommendation algorithms [3]. In a microblog-
ging site like t.qq as depicted in Figure 1.1, entities (nodes) correspond to users,
tweets or comments, and edges correspond to different types of links (post, men-

tion, retweet, comment, and follow) among them1. Since both nodes and links are
of multiple types, such a social network is essentially a heterogeneous informa-
tion network [4]. Besides identifying information such as user ID which has been
anonymized by randomly assigned strings, some other attributes are also replaced
with meaningless IDs, such as user tags.

In the released anonymized target dataset, consider an adversary that is inter-
ested in breaching privacy of some selected target users based on their preferences.

1The terms edge and link are used interchangeably in this work, while the term entity is pre-
ferred over node here to reflect more realistic scenarios where each node contains multiple at-
tributes rather than a single identifier in the settings of a heterogeneous information network.
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Figure 1.1: The heterogeneous information network in t.qq

The preference can be inferred from the target users’ recommendation preference
(acceptance/rejection) log included in the target dataset. This information is sen-
sitive and not accessible on the t.qq site (the rejection log cannot be inferred from
the site). Suppose the adversary obtains the non-anonymized auxiliary dataset

from t.qq exactly containing the users from the same time-synchronized target
dataset. To de-anonymize the users of interests in the target dataset, the adversary
has to match the meaningless user IDs in the target dataset with the real user names
in the auxiliary dataset. Given the rich information available in the heterogeneous
information network as demonstrated in Figure 1.1, suppose the adversary locks
his target on an anonymized user (say, A3H) in the target dataset who accepted the
“follow Citibank” recommendation but rejected all other bank recommendations.
The adversary may search in the auxiliary dataset by specifying A3H’s entity pro-
file (A3H’s year of birth, hereinafter referred to as yob: 1980, gender: male, etc.)
combined with A3H’s multiple social links (mention, retweet, comment, follow)
and profile information of its neighbor entity to whom the target user connects via
these links—A3H gave 15 comments to an anonymized female user F8P born in
1985 and retweeted an anonymized male user M7R 10 times that is born in 1970.
If Ada in the non-anonymized auxiliary dataset is the only one that satisfies the
matching—Ada has both the same profile information as A3H and Ada has the
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same social interactions with the other users of the same gender and age as those
of F8P and M7R correspondingly; thus, the adversary successfully de-anonymizes
A3H by establishing a unique matching between it in the target dataset and the real
user Ada in the auxiliary dataset. Now the adversary knows Ada probably has a
Citibank account or is interested in applying for it. The leak of such private infor-
mation may allow scammers to spam Ada with phishing URLs camouflaged with
the Citibank online-banking interface. In fact, 8% of some sampled 25 million
URLs posted to microblogging sites point to phishing, malware, and scams [5].

Therefore, there is privacy risk in an anonymized heterogeneous information
network if such unique matchings can be easily established. Users in a network
of high privacy risk that can be easily de-anonymized may be vulnerable to exter-
nal threats. In this work, we experimentally substantiate adversaries can exploit
the privacy risk to de-anonymize over 90% users in a 1,000-user t.qq network of
density 0.01 from a 2,320,895-user auxiliary network.

1.2 Limitations of k-Anonymity

To formalize privacy risk observed in Section 1.1, directly using the existing met-
ric seems possible at first thought. A dataset is said to be k-anonymous if on the
minimal set of attributes in the table that can be joined with external information
to de-anonymize individual records, each record is indistinguishable from at least
k − 1 other records within the same dataset [6]. The larger the value of k, the
better the privacy is preserved.

Consider target dataset T1000 that satisfies 1000-anonymity and another target
dataset T2 that satisfies 2-anonymity, together with their original non-anonymized
counterparts. Imagine a new tuple t∗ is created and inserted into both T1000 and
T2. After anonymization processes still no any other tuple in either dataset has
the same value of t∗, and the new datasets are T ∗1000 and T ∗2 respectively. Both
T ∗1000 and T ∗2 are now 1-anonymity simply because of the injection of t∗—both
T ∗1000 and T ∗2 are same vulnerable in terms of the same k-anonymity. Suppose
a selective adversary is not interested in de-anonymizing t∗, then the remaining
T ∗1000 of 1000-anonymity seems much less vulnerable than the remaining T ∗2 of
2-anonymity, which may be misled by the same 1-anonymity.

Due to limitations of k-anonymity in differentiating individuals in the same
target dataset, it is not suitable to formalize privacy risk in a more general scenario
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where adversaries may not be equally interested in de-anonymizing all users. In
this work we define privacy risk in a more general sense, and prove it can be very
high in the anonymized heterogeneous information network.

1.3 New Settings, New Threats

Social media are getting popular with more and more functionalities. As shown
in Section 1.1, t.qq allows its over 500 million users to connect with one another
in different ways such as follow, mention, retweet, and comment. The grow-
ing multi-typed heterogeneous information networks out of the growing social
media functionalities may render the existing homogeneous information network
anonymization algorithms no more effective.

Existing de-anonymization attacks on social networks made several assump-
tions, such as both target and auxiliary graphs are large-scale so random graphs
or non-trivial cliques can be re-identified from both graphs [7, 8]. It should be
highlighted that, in the new settings of a heterogeneous information network, if
new attacks are feasible while relaxing these assumptions, such attacks must be
addressed in the proposal of all relevant anonymization algorithms.

1.4 Our Contributions

In this work we make three unique contributions. First, we propose a definition
of privacy risk tuned to the concerns of heterogenous information networks. In
particular, this definition considers a more general situation where adversaries
may not be equally interested in compromising all users’ privacy. We show that
the privacy risk can be high in an anonymized heterogeneous information network,
and can be exploited in practice.

Second, we present a de-anonymization algorithm against heterogeneous infor-
mation networks which exploits the identified privacy risk without requiring cre-
ating new accounts or relying on easily-detectable graph structures in a large-scale
network. While central in illuminating the privacy issue for a heterogeneous in-
formation network, we also expect our algorithm to be applied to de-anonymizing
a homogeneous information network (with slight performance degradation).

Our third contribution is a practical evaluation of the KDD Cup 2012 t.qq
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anonymized dataset, which contains 2.3 million users and over 60 million mul-
tiple types of social links among them. To demonstrate the effectiveness of the
de-anonymization algorithm, we apply the state-of-the-art graph anonymization
algorithms to the t.qq dataset, which were claimed effective by their designers
for defending graph structural attacks. The experiments show that our algorithm
is able to beat the investigated graph anonymization algorithms in the settings
of a heterogeneous information network even without knowledge of the specific
anonymization technique in use. It undermines the notion of “security by obscu-
rity” for privacy preservation: ignorance of the anonymization does not prevent
an adversary from de-anonymizing successfully.

Last but not least, we further theoretically and empirically show that the ideas of
exploiting privacy risk and de-anonymizing heterogeneous information networks
can be extended to general graphs.
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CHAPTER 2

RELATED WORK

Simply replacing sensitive information with random strings cannot guarantee pri-
vacy and how to release data for different research purposes or industry applica-
tions without leaking any privacy information has been an interesting problem.

2.1 Relational Data Anonymization

Privacy preservation on relational data has been studied extensively. A major
category of privacy attacks on relational data is to de-anonymize individuals by
joining a released table containing sensitive information with some external ta-
bles modeling the auxiliary dataset of attackers. Table joining attacks include de-
anonymization of a Massachusetts hospital discharge database by joining it with
a public voter database [9] and privacy intrusions on the AOL search data [10].
To mitigate this type of attacks, k-anonymity was proposed [6]. Further enhanced
techniques include l-diversity [11] and t-closeness [12].

Narayanan and Shmatikov proposed de-anonymization attacks against high-
dimensional micro-data and showed success in Netflix Prize dataset [2]. They
pointed out micro-data are characterized by high dimensionality and sparsity. A
recent study by Narayanan et al. further demonstrated the feasibility of internet-
scale author identification via linguistic stylometry [13]. However, all the afore-
mentioned studies assume that an adversary utilizes attribute information of micro-
data and can deal with relational data only.

2.2 Graph Structural Attacks

In a large-scale social network, it is hard to observe non-trivial random subgraphs
or cliques [14]. Hence they easily stand out if they exist. Backstrom et al. dis-
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cussed active attacks where adversaries create users and establish connections
randomly among them and attach such random subgraphs (“sybil nodes”) into
the target nodes in the auxiliary graph data [7]. Since such random subgraphs can
be easily detected from the anonymized counterpart of the original data, the tar-
get nodes connected to the sybil nodes are then de-anonymized by consulting the
original auxiliary graph. Narayanan and Shmatikov pointed out the main draw-
back of this active attack is that, creating accounts, links among themselves and
links to target nodes, is not feasible on a large-scale [8]. They designed an attack
propagating the de-anonymization process via neighbor structure from the initial
precisely-matched “seed nodes”. Hence success of this attack heavily depends on
if such seed nodes can be detected precisely; thus, seed nodes must stand out eas-
ily both in the target and auxiliary dataset. So non-trivial cliques are chosen [8].
Since there is no guarantee that the released anonymized network is always large,
this attack is not always successful because non-trivial cliques cannot always be
detectable.

2.3 Graph Data Anonymization

For graph-based social network data, the degree of nodes in a graph can reveal
the identities of individuals. Liu and Terzi studied a specific graph-anonymization
problem and called a graph k-degree anonymous if for every node v, there exist
at least k − 1 other nodes in the graph with the same degree [15]. This defini-
tion of anonymity prevents de-anonymization of individuals by adversaries with a
background knowledge of the degree of certain nodes.

Zhou and Pei identified a structural neighborhood attack and tackled it by
proposing k-neighborhood anonymization [16]. They assumed an adversary may
know the neighbors of the target nodes and their inter-connections. The privacy
preservation goal is to protect neighborhood attacks which use neighbor struc-
ture matching to de-anonymize nodes. For a social network, suppose an adver-
sary knows the neighbor structure for a node. If such neighbor structure has at
least k isomorphic copies in the anonymized social network, then the node can
be de-anonymized in the target dataset with confidence at most 1/k [17]. Due
to its heavy isomorphism testing computation, a limitation of this attack is only
distance-1 neighbors can be evaluated effectively.

Zou et at. assumed an attacking model where an adversary can know any sub-
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graph that contains the targeted individual and proposed k-automorphic anonymity
that the graph must has k− 1 non-trivial automorphism and no node is mapped to
itself under the k− 1 non-trivial automorphism [18]. Wu et al. proposed a similar
k-symmetry [19].

Cheng et al. identified that k-automorphism approach is insufficient for protect-
ing link privacy and proposed the k-security anonymity [20]. In their approach,
an anonymized graph satisfies k-security if for any two target individuals and
any subgraphs containing either individual, the adversary cannot determine either
whether a node that is linked to either target individual (NodeInfo Security) or
whether both target individuals are linked by a path of a certain length (LinkInfo
Security), with probability higher than 1/k.

Although these recent graph data anonymization algorithms can be applied to
social network data against graph structural attacks in Section 2.2, their applicabil-
ity has not been demonstrated in the more challenging settings of a heterogeneous
information network. Our evaluation in Section 6 shows that these graph data
anonymization algorithms are not effective to preserve privacy of an anonymized
heterogeneous information network.
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CHAPTER 3

HETEROGENEOUS INFORMATION
NETWORKS

In this section, we formalize the general anonymized heterogeneous information
network settings that are frequently discussed in the remaining of the thesis and
illustrate them with the motivating example discussed in Section 1.1.

Definition 1. The information network is a directed graph G = (V,E) with

an entity type mapping function τ : V → E and a link type mapping function

φ : E → L, where each entity v ∈ V belongs to one particular entity type

τ(v) ∈ E , and each edge e ∈ E belongs to a particular link type φ(e) ∈ L. If two

edges belong to the same link type, they must share the same starting and ending

entity types.

Definition 2. The heterogeneous information network is an information network

where |E| > 1 or |L| > 1.

A sample heterogeneous information network for the t.qq dataset is depicted in
Figure 1.1. Given a complicated heterogeneous information network, it is nec-
essary to provide its meta level (i.e., schema-level) description for better under-
standing the network, and network schema is to describe the meta structure of a
network.

Definition 3. The network schema, denoted as TG = (E ,L), is a meta template

for a heterogeneous information networkG = (V,E) with the entity type mapping

τ : V → E and the link mapping φ : E → L, which is a directed graph defined

over entity types E , with edges as links from L.

Figure 3.1 shows the network schema for the heterogeneous information net-
work in Figure 1.1. In practice data publishers may not release information about
all the entities and links in the original network schema while links among the
same entity type (also the target entity type of adversaries’ interests) are gener-
ally available either directly or indirectly via summarization over different entity
types [3]. In view of this, although we believe providing richer information about

9



Figure 3.1: The corresponding network schema for the heterogeneous information
network in Figure 1.1

multiple types of entities could further facilitate de-anonymization, in this work,
we consider a more challenging and practical scenario where data publishers only
provide limited information about how the same type of entity (i.e., target entity

type E∗) can be linked via different types of links or over different types of en-
tities. Thus, a simplified network schema is needed such that it reflects only the
relationships over the target entity type.

Definition 4. The target meta paths (target network schema links) P(E∗), are

paths defined on the graph of network schema TG = (E ,L), denoted by E∗ L1−→
E1

L2−→ ...
Ln−→ E∗.

Definition 5. The target network schema T ∗G = (E∗,L∗) is projected from TG =

(E ,L) where L∗ are reproduced or short-circuited from target meta paths P(E∗)
and target entity type E∗.

To illustrate, we take the released target t.qq dataset as an example. This
anonymized dataset contains the following files and attributes (anonymized at-
tributes are marked with underlines):

• recommendation preference data: user ID(A),
recommended item ID(R), result (whether A likesR)

• user profile data: user ID, yob, gender, tweet count (no. of tweets), tag IDs
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• user mention data: user ID(A), user ID(B), the number of times A men-
tioned B either in A’s tweets or comments (mention strength)

• user retweet data: user ID(A), user ID(B), the number of timesA retweeted
B’s tweets (retweet strength)

• user comment data: user ID(A), user ID(B), the number of times A com-
mented B either in B’s tweets or comments (comment strength)

• user follow data: user ID(follower), user ID(followee)

In the above dataset, besides user entities’ profile information, users’ multiple
social interactions are also available. Thus, the adversary can decide to project
the original network schema in Figure 3.1 to only reflect relationships among his
target user entity. Navigating the original network schema based on the above user
mention, retweet, comment, and follow data, these target meta paths connecting
users across different types of entities are possible:

• user mention path: User
post−−→ Tweet

mention−−−−→ User or User
post−−→

Comment
mention−−−−→ User (short-circuited feature: mention strength)

• user retweet path: User
post−−→ Tweet

retweet−−−−→ Tweet
posted by−−−−−→ User (short-

circuited feature: retweet strength)
• user comment path: User

post−−→ Comment
comment−−−−−→

Tweet
posted by−−−−−→ User or User

post−−→ Comment
comment−−−−−→ Comment

posted by−−−−−→ User (short-circuited feature: comment strength)
• user follow path: User

follow−−−→ User

The target meta paths allow the adversary to produce a new network schema by
projecting the original network schema to a simplified one to only reflect partic-
ular few relationships over the target entity type. Specifically, the user mention,
retweet and comment paths can be short-circuited to produce new links over users
respectively while the user following path can be reproduced in the projection. It
is also emphasized that, the target meta paths are able to greatly enrich the fea-
tures (attributes) of the target entity by utilizing different distances of neighbors

from the target entity along the specified meta paths. Specifically, target meta
paths that are short-circuited across different types of entities and different types
of links, may preserve the link heterogeneity information of the network by gen-
erating new short-circuited feature (attribute) and further enrich the features of
the target entity. For instance, the short-circuited feature mention strength can be
newly generated from the user mention path.

11



Figure 3.2: The target network schema for Figure 3.1

The target network schema for Figure 3.1 is shown in Figure 3.2. Since tar-
get meta paths may span across multiple types of entities, entity heterogeneity
information is still preserved, although not fully, in target network schema only
containing the target entity type.

Therefore, the de-anonymization problem in the settings of a heterogeneous
information network can be formulated as follows. Detailed illustrations are pro-
vided in Section 5.

Definition 6. The de-anonymization problem in heterogeneous information net-
work is utilizing the background knowledge of the public graph G = (V,E), the

private graph G′ = (V ′, E ′), and the target network schema T ∗G to de-anonymize

a target entity v′ ∈ V ′ by establishing matches between v′ and a candidate set

C ⊆ V where the anonymized v′’s counterpart v ∈ C. If |C| = 1 and the only

element v ∈ C is the correct counterpart of v′, the de-anonymization is successful.
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CHAPTER 4

PRIVACY RISK ANALYSIS

Intuitively, privacy risk in a heterogeneous information network is the ease of for-
mulating unique attribute-metapath-combined values as formalized in Section 3.
Formal analysis is derived from the definition of privacy risk in general anonymized
datasets.

4.1 Attribute-Metapath-Combined Values of Target
Entities

Data publishers anonymize data through generalization, suppression, adding, delet-
ing, switching edges or nodes [21][17]. Naturally, such modifications cause infor-
mation loss and for a certain privacy preservation goal they should be minimized
to ensure the anonymized data still satisfy the need for how they are expected to
be used, i.e., the need for utility. Generally, a certain level of utility has to be
preserved for the anonymized t.qq dataset in order to design effective and reliable
recommendation algorithms; thus, an adversary is expected to be able to com-
promise some sacrificed privacy due to the natural tradeoff between utility and
privacy preservation [17]. In the t.qq dataset case, the utility is preserved in the
sense that, some attribute values of user entities and most of the social interactions
among different user entities are preserved (non-anonymized) as in the available
target dataset descriptions in Section 3 (e.g., non-anonymized attributes are not
underlined).

Based on the target network schema in Figure 3.2, Figure 4.1 describes an ex-
ample of how user entities are directly inter-connected via part of different types
of links in the t.qq dataset. Here m, r, c, f stands for mention, retweet, comment,
follow links in the target network schema shown in Figure 3.2.

As mentioned in Section 3, target meta paths that are short-circuited across dif-
ferent types of entities and different types of links preserve the link heterogeneity
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information of the information network and further enrich the features of the tar-
get entity. It should be noted that, following the user mention path identified in
Section 3, 5m in Figure 4.1 from A1X to U2V indicates a new numerical feature
(attribute) short-circuited from the user mention path—the mention strength from
A1X to U2V in the target dataset of value 5 either through the tweet entity or com-
ment entity. Thus, multiple meta-paths inject richer heterogeneity information for
target entities in the settings of a heterogeneity information network.

If target user entities in the target dataset can form unique attribute-metapath-

combined values across the entire network, these users can be de-anonymized
from the auxiliary dataset by establishing unique matches and the dataset is not
secure. To analyze the privacy risk of a heterogeneous information network,
which can be intuitively considered similar to the ease of formulating unique
attribute-metapath-combined values, one way is to expand the attribute dimen-
sions of micro-data by navigating from user entities to their neighbors, neighbors’
neighbors, and so on, via their multiple types of target meta paths.

With the assumption made in Section 1.1 that the target and auxiliary datasets
are time-synchronized counterparts, take A1X in Figure 4.1 as an example. With-
out utilizing meta paths and only utilizing profile attribute information, the fea-
tures of A1X are:

• Max. Distance-0: yob, gender, ...

After utilizing his immediate distance-1 neighbors along target meta paths, the
features of A1X are expanded to (here “5-time-mentionee” means a mentionee
mentioned 5 times by the target entity, i.e., mention strength = 5):

• Max. Distance-1: yob, gender, ..., 5-time-mentionee (U2V)’s yob, 5-time-

mentionee’s gender, ..., 15-time-mentionee (P3M)’s yob, 15-time-mentionee’s

gender, ..., 10-time-retweetee (E4G)’s yob, 10-time-retweetee’s gender, ...

Further utilizing his distance-2 neighbors (neighbors of distance-2 along target
meta paths from A1X), the features of A1X are further expanded to:

• Max. Distance-2: yob, gender, ..., 5-time-mentionee’s yob, 5-time-mentionee’s

gender, ..., 15-time-mentionee’s yob, 15-time-mentionee’s gender, ..., 10-

time-retweetee’s yob, 10-time-retweetee’s gender, ..., 10-time-retweetee’s

followee (B8R)’s yob, 10-time-retweetee’s followee’s gender, 10-time- retwee-

tee’s 1-time-mentionee (Y9Z)’s yob, 10-time-retweetee’s 1-time-mentionee’s

gender, ...
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Figure 4.1: The neighbors of the target entity A1X are generated along target meta
paths

Consistent with the idea by Narayanan and Shmatikov that large dimensions of
micro-data give rise to risks of privacy [2], the expansion of dimensions by prop-
agating via multiple types of target meta paths seems to increase the possibility
for a user entity to form a unique attribute-metapath-combined value under all the
expanded features across the entire dataset, which can be considered as privacy
risk. In the remaining of this section, we formally prove this intuition from the
observations.

4.2 Privacy Risk in General Anonymized Datasets

Privacy Risk indicates risk that privacy of a given dataset can be compromised—
the higher privacy risk, the lower security and vice versa. Hence it might be tempt-
ing to directly adopt the notion of widely-used k-anonymity and simply reverse
its value to obtain the measure of privacy risk. Here we state that, k-anonymity is
not able to differentiate users from one another in terms of their different levels of
security or privacy risk.

As discussed in Section 1.2, k-anonymity may be misleading in more general
situations where adversaries may not be equally interested in compromising all
users’ privacy. To address its limitations, when quantifying risk of any user in any
dataset, we consider factors that influence privacy risk both socially and mathe-
matically.

In real life, it is highly possible that an adversary is not equally interested in
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compromising everyone’s privacy in a dataset. As illustrated in Section 1.1, an
adversary may be more motivated to de-anonymize an anonymized user who prob-
ably has a Citibank account. We denote the loss function of tuple ti by l(ti), with
values between 0 and 1. l(ti) can be considered as the potential loss of a user
whose privacy is compromised given that this user does care about his loss of pri-
vacy. Therefore, in a social network, l(ti) is a certain user’s privacy need because
such need is positively correlated with the cost of privacy breach; hence, it is the
social factor of a user’s privacy risk.

Similar to the concept of k-anonymity, we make the same assumption that the
target dataset is an anonymized copy of the same auxiliary dataset. In any given
dataset T , if there are k(ti) − 1 other tuples of the same value of tuple ti, the
probability that each of these k(ti) tuples, say ti, can be de-anonymized by random
guessing with probability no higher than 1

k(ti)
. Therefore, the higher value of 1

k(ti)
,

the higher possibility that the privacy of user ti can be compromised—hence the
higher privacy risk of the user ti. 1

k(ti)
is the mathematical factor. Mathematical

factor can be considered positively correlated with the attack incentive as well:
given the same social factor, the adversary is more motivated to de-anonymize the
user with a higher mathematical factor because the potential attack precision is
higher.

Combining both social and mathematical factors, we define the privacy risk of
a tuple in a dataset as follows.

Definition 7. We define the privacy risk R(ti) of tuple ti in dataset T as follows:

R(ti) =
l(ti)

k(ti)
,

where k(ti) is the number of tuples in T with the same value of tuple ti, and l(ti)
is the loss function of tuple ti.

Averaging the risk R(ti) for each tuple ti in dataset T , the risk R(T ) for dataset
T is defined as follows.

Definition 8. The privacy risk R(T ) of dataset T is

R(T ) =

∑N
i=1R(ti)

N
,

where size N is the number of tuples ti in T .
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It is noted that the privacy risk value R(T ) ∈ [0, 1]. Denoting by C(T ) the
cardinality of T—the number of distinct values, or distinct combined values under
different attributes, describing each tuple ti in T , we give the following lemma.

Lemma 1. Given dataset T with the cardinality C(T ), for each tuple ti in T ,

assuming the loss function is independent of 1
k(ti)

with mean value µ, the expected

privacy risk
E(R(T )) =

µC(T )

N
.

Proof. By Definition 7 and 8,

R(T ) =

∑N
i=1

l(ti)
k(ti)

N
.

E(R(T )) =

∑N
i=1 E( 1

k(ti)
)E(l(ti))

N

=

∑N
i=1 µE( 1

k(ti)
)

N

=
µE(

∑N
i=1

1
k(ti)

)

N

=
µE(C(T ))

N

=
µC(T )

N
.

Lemma 1 provides an estimation of dataset privacy risk in a relatively general
sense. For instance, if the loss function for each tuple is a random number be-
tween 0 and 1 and independent of 1

k(ti)
, the expected privacy risk of the dataset is

C(T )
2N

. Although it may be interesting to quantify the social factor in other ways, to
guarantee the highest possible privacy need from all users has been considered, in
the remaining analysis we focus on the mathematical factor and set the value of
every loss function l(ti) to 1. Adversaries may still have varying attack incentives
in terms of different mathematical factors as discussed earlier in this section.

Theorem 1. The privacy risk R(T ) of dataset T is

R(T ) =
C(T )

N
, (R(T ) ∈ [

1

N
, 1]),
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where in T , N is the number of tuples, and cardinality C(T ) is the number of

distinct (combined) attribute values describing tuples.

Proof. The proof can be completed by applying Lemma 1 and mathematical deriva-
tion with l(ti) = 1. R(T ) is lowest when all the tuples are of the same value; in
contrast, if every ti has a unique value in T , R(T ) = 1.

Back to the example of T1000 and T2 in Section 1.2, suppose they are both of the
same size 1000—T1000 has 1000 tuples of the same value while T2 has 500 same-
value tuple pairs and values from different pairs are distinct. By Definition 8,
R(T1000) = 0.001 and R(T2) = 0.5 and the result is consistent with k-anonymity
in terms of relative privacy risk. After inserting the unique tuple t∗, R(T ∗1000) =
2

1001
and R(T ∗2 ) = 501

1001
, reasonably indicating T ∗1000 is in general still much less

vulnerable than T ∗2 . It addresses the identified limitations of k-anonymity when
adversaries may not select some users to de-anonymize in the target dataset.

4.3 Privacy Risk in Anonymized Heterogeneous Info
Networks

Section 4.1 informally shows entity attribute dimensions grow fast when neigh-
bors are utilized. It is highlighted that, rather than the exact value of privacy risk,
it is the growth of privacy risk with respect to max. distances of utilized neighbors
n that we focus on. Hence, given any anonymized dataset, the number of tuples
N is fixed as a constant. So Theorem 1 implies that privacy risk R(T ) is of the
same order of growth as that of the cardinality C(T ).

Theorem 2. For power-law distribution of the user out-degree, the lower and up-

per bounds for the expected heterogeneous information network cardinality grows

faster than double exponentially with respect to the max. distance of utilized

neighbors.

Proof. Given a network schema T ∗G = (E∗,L∗) projected from its original schema
TG = (E ,L) and the network entity size N is ideally large enough and all possi-
ble distinct values describing E∗ appear in T ∗G. LetA(E∗)j andA(L∗i )j denote the
j-th attribute of the entity type E∗ and the link type L∗i . We assume independence
among entity attributes and link types with attributes along target meta paths. To
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focus on the analysis of key factors that may affect the bounds of network cardi-
nality, we also assume an entity has at most in-degree 1, the link among each pair
of entities is of all types and the out-degree k of each entity follows the power-
law distribution PK(k) = ck−α, which are commonly adopted in social network
analysis with α ∈ [2, 3] [14][16].

To analyze the number of distinct attribute-metapath-combined values describ-
ing E∗, or the cardinality C(T ∗G), of the network schema T ∗G, we begin with the
network cardinality C(T ∗G) without utilizing any neighbors (distance-0); it is equal
to the entity cardinality C(E∗), which is the actual observed number of distinct
combined attribute values describing entities:

C(T ∗G)0 = C(E∗).

Theoretically, C(E∗) can be as high as the product of each entity attribute’s cardi-
nality:

C(E∗) ≤
|A(E∗)|∏
j=1

C(A(E∗)j).

After utilizing the distance-1 neighbors from the entity, let C(L∗i ) denote the
homogeneous link cardinality, which is the actual observed number of distinct
combined attribute values describing the link L∗i . Likewise, the maximum value
of L∗i is the product of each attribute cardinality of the link type L∗i :

C(L∗i ) ≤
|A(L∗i )|∏
j=1

C(A(L∗i )j).

Since entities are connected to one another via different target meta paths, het-

erogeneous link cardinality is no greater than the product of each homogeneous
link cardinality:

C(L∗) ≤
|L∗|∏
i=1

C(L∗i ).

Thus, the number of distinct values that an entity can have when distance-1
neighbors are utilized is:

C(T ∗G)1 = C(T ∗G)0 · (C(E∗)C(L∗))k.

By utilizing neighbors of next distance iteratively, generally when max. dis-
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tance of utilized neighbors from target entities n > 0,

C(T ∗G)n = C(T ∗G)n−1 · (C(E∗)C(L∗)n)k
n

. (4.1)

Based on the distribution function of power law for the out-degree PK(k) =

ck−α, we estimate the expected value E[C(T ∗G)n] of (4.1) as follows:

E[C(T ∗G)n] = C(T ∗G)n−1 · E[(C(E∗)C(L∗)n)k
n

]

≥ C(E∗) · E[(C(E∗)C(L∗)n)k
n

]

= E[C(E∗) · (C(E∗)C(L∗)n)k
n

]

=
N∑
k=1

PK(k) · C(E∗) · (C(E∗)C(L∗)n)k
n

>
N∑
k=2

ck−α · C(E∗) · (C(E∗)C(L∗)n)k
n

≥
N∑
k=2

ck−α · (C(E∗)C(L∗)n)k
n

.

Let f = ck−α · (C(E∗)C(L∗)n)k
n
, k ∈ R, 2 ≤ k ≤ N ,

∂f

∂k
=

c(C(E∗)C(L∗)n)k
n
(nknln(C(E∗)C(L∗)n)− α)

kα+1

> 0 (nknln(C(E∗)C(L∗)n) > α).

Hence,

E[C(T ∗G)n] > 2−α(N − 1)c · (C(E∗)C(L∗)n)2
n
.

Since the vertex size N is given, the lower bound of the expected network
cardinality is

Ω{E[C(T ∗G)n]} = (C(E∗)C(L∗)n)2
n

. (4.2)

To establish the upper bound of the expected network cardinality, since k ≤ N

and we assume N is large, solving the recursion of (4.1) we have

C(T ∗G)n ≤ C(E∗)
Nn+1−1

N−1 C(L∗)
Nn+1((N−1)n+1)−N

(N−1)2

≈ (C(E∗)C(L∗)n)N
n
.

Hence the upper bound of the expected network cardinality is the same as that
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of the network cardinality when all k is set to N :

O{E[C(T ∗G)n]} = (C(E∗)C(L∗)n)N
n

. (4.3)

(4.2) and (4.3) complete the proof.

Recalling the positive linear relationship between privacy risk and cardinality
from Theorem 1, we obtain the following corollary.

Corollary 1. For power-law distribution of the user out-degree, the lower and

upper bounds for the expected privacy risk of a heterogeneous information net-

work grows faster than double exponentially with respect to the max. distance of

utilized neighbors.

Corollary 1 substantiates the privacy risk growth in a heterogeneous informa-
tion network as observed in Section 4.1. It should be emphasized that, it is the
heterogeneity of information network links, which is in the mathematical form
of C(L∗)n, that makes both bounds even a higher order than double exponential
growth.

4.4 Discussions of the Analysis

While it may be tempting to conclude that, as long as the max. distance of utilized
neighbors grows infinitely, the dimensions for each entity will grow more than
double exponentially until the privacy risk R(t) becomes 1; it should be pointed
out that it is not feasible in practice.

First, the assumption that N is large and all possible distinct values describing
E∗ appear in T ∗G may not hold. Then the observed cardinality depends on how
to sample from a pool of all possible distinct values. The extreme case is that
such “sampling” is so biased that each entity is assigned a value from a very small
subset of the pool. However, such a “sampling” bias hardly happens because
both C(E∗) and C(L∗) are actual observed cardinalities which are generally of
reasonable sizes in practice.

Second, the assumption that in-degree is at most 1 may not hold and a large-
scale information network in practice often has small average diameters [22]. For
instance, in Figure 4.2, if user v′1 and user v′2 have the same attribute-metapath-
combination value after utilizing their distance-1 neighbors, further utilizing their
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Figure 4.2: The bottleneck scenarios

longer-distance neighbors will not make them unique from each other since they
will share the same neighbors of distances longer than 1. In addition, the existence
of leaf nodes which do not have outgoing edges also prevents utilizing longer-
distance of entity neighbors, such as user v′4 and v′5 in Figure 4.2. However, in
Section 6 we show in practice this concern can be addressed because a slight
increase of n renders the actual cardinality very close to N .

We show the empirical findings in Table 6.1 and Figure 6.1 that R(t) grows
very fast when n ∈ {0, 1} and after n > 1, R(t) grows towards 1 asymptotically
until the bottleneck scenarios keep R(t) from growing. Nonetheless, the growth
order of bounds is consistent with the actual growth during n ∈ {0, 1} so R(t)

can soon get very close to 1.

4.5 Practical Implications to Reduce Privacy Risk

To reduce privacy risk, following the two bounds established in (4.2) and (4.3),
either the entity cardinality C(E∗) or link cardinality C(L∗) has to be reduced.
Since preventing users from sharing their profile information may restrain the
growth of online communities, practical efforts should focus on reducing C(L∗)
which makes both bounds grow more than double exponentially. Instead of mak-
ing heterogenous types of links fully accessible from the public, online forums
may only allow premium users to access all or partial types of relationships, so
C(L∗) decreases.
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CHAPTER 5

DE-ANONYMIZATION ALGORITHM

To exploit the privacy risk in a heterogeneous information network as identified
in Section 4, a de-anonymization algorithm is presented with a threat model.

5.1 Threat Model

In the privacy risk analysis, we assume the auxiliary dataset is exactly the non-
anonymized counterpart of the target dataset. Although this assumption may hold
in real attack scenarios, we consider a more challenging scenario where there is
a time gap between the time data publishers release the target dataset and the
time adversaries start to collect the auxiliary dataset from the web. Since a social
network generally grows over time, we assume the later collected auxiliary dataset
contain all the target users and links among them. Other or newly formed users
and links can be included in the auxiliary dataset as well.

We emphasize that de-anonymizing with the auxiliary dataset larger than the
target dataset is a non-trivial and more challenging task than both datasets are of
the same size, especially when allowing certain attribute values and links to grow.
First, when the auxiliary dataset becomes a superset of the target dataset without
increasing the cardinality of each tuple from the target dataset, the actual risk
should be lower because each tuple ti in the target dataset has potentially more
matches with users in the auxiliary dataset. Second, allowing certain attribute or
link growth gives rise to potentially more candidate users in the auxiliary dataset
that may match a certain target user. For instance, for a user in the target dataset
that posted 3 tweets and only followed 5 users, any user in the auxiliary dataset
with more than 3 tweets and more than 5 followees could be a candidate match if
we consider number of tweets and number of followers grow over time. Section 6
demonstrates that the proved privacy risk can still be exploited even when the task
is more challenging.
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Algorithm 1: De-anonymizing entity v′ in a Heterogeneous Information
Network: DeHIN (G, G′, T ∗G, v′, n)

Input: G = (V,E): auxiliary graph, G′ = (V ′, E ′): target graph,
T ∗G = (E∗,L∗): target network schema, v′ ∈ G′: target entity, n:
max. distance of utilized neighbors

Output: C: candidate set from the auxiliary dataset matching v′

begin
C

set←− ∅;
foreach v ∈ V

if entity attribute match(v′, v, E∗)
if n > 0

if link match(n, v′, v, G,G′, T ∗G)

C
add←−− v;

else
C

add←−− v;

return C;

5.2 Algorithm

In Algorithm 1 we formulate a general de-anonymization algorithm DeHIN to
prey upon the risk of a heterogeneous information network as identified in Sec-
tion 4.

The attribute values of the target entity and the entity from the auxiliary dataset
is compared by function entity attribute match. This function can be configured
by users depending on different scenarios. We consider the auxiliary dataset grows
from the target dataset in the threat model. So some attribute values may grow
over time, such as number of tweets.

The recursive Algorithm 2 is to assist DeHIN to compare the distance-n neigh-
bors from a target entity and an entity in the auxiliary dataset whose attributes are
matched with those of the target. Likewise, function link attribute match com-
pares the attribute values of target meta paths (links in the target network schema),
if any, and is configurable. The challenge lies in how to compare the neighbors of
two entities, after their own entity and link attribute values are matched. Consider
the case depicted in Figure 5.1, the target entity v′8 is matched with entity v9 in
the auxiliary dataset for function entity attribute match, and the target’s neighbor
v′5 is matched with v1 and v2 (entity v9’s neighbors) via the same type of link for
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Figure 5.1: Comparing neighbors via multiple types of target network schema
links from target and auxiliary datasets

the same function, v′6 matched with v2, v′7 matched with v3 and v4. For a growing
network, v9 in the auxiliary dataset may be the “grown” target: v9 itself matches
v′8 in profile attributes, v9’s neighbors v1 and v2 in fact are the non-anonymized v′5
and v′6, who are the neighbors of the target via the same type of link. Although v′7
may be either v3 or v4 since they are matched via the same type of link, we can
consider the remaining neighbor of v9, either v4 or v3, to be the newly developed
relationships during the time gap of the target and auxiliary datasets. Therefore,
it is a maximum bipartite matching problem in graph theory (the candidate set for
v′5, C(v′5) = {v1, v2}, C(v′6) = {v2}, C(v′7) = {v3, v4}), and the most efficient
Hopcroft-Karp algorithm is employed to decide whether such a maximum bipar-
tite matching exists [23]. As long as a maximum bipartite matching exists (e.g.,
v′5, v

′
6 and v′7 match v1, v2 and v3 respectively; or v′5, v

′
6 and v′7 match v1, v2 and v4

respectively), v9 is considered as a candidate of v′8. Finally DeHIN returns a can-

didate set containing all entities from the auxiliary dataset that may be the target
entity. If the size of the correct candidate set is 1, a unique matching is found and
the target entity is successfully de-anonymized.

It should be pointed out that, DeHIN is suitable for the general information
network and is also applicable to a homogeneous information network, when it is
considered as a special case of the general information network whose number of
entity type and link type are 1. Besides, DeHIN does not employ isomorphism
testing algorithms due to its high computational cost although we believe it can
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Algorithm 2: Comparing neighbors of entities v′ and v via heterogeneous
links: link match(n, v′, v, G,G′, T ∗G)

Input: n: max. distance of utilized neighbors, v′ ∈ G′: target entity, v: the
entity in auxiliary graph under comparison, G = (V,E): auxiliary
graph, G′ = (V ′, E ′): target graph, T ∗G = (E∗,L∗): target network
schema

Output: is match: a boolean value
begin

is match
set←− true;

GB
set←− ∅ (The bipartite graph modeling neighborhood matching);

Nb(v′, L∗i )
set←− v′’s neighbors via the link type L∗i ;

Nb(v, L∗i )
set←− v’s neighbors via the link type L∗i ;

foreach link type L∗i ∈ L∗
foreach neighbor b′i ∈ Nb(v′, L∗i )
∅ ← C(b′i); (C(b′i): candidate set for b′i);
foreach neighbor bi ∈ Nb(v, L∗i )

if link attribute match(b′i, bi)
if entity attribute match(b′i, bi)

if n = 1

C(b′i)
add←−− bi;

else
if link match(n− 1, v′, v, G,G′, T ∗G)

C(b′i)
add←−− bi;

GB
add←−− C(b′i);

if max bipartite match(GB) 6= |Nb(v′, L∗i )|
is match

set←− false;

return is match;

further enhance the accuracy. In the next section, we show DeHIN is effective in
the settings of a heterogeneous information network even without incorporating
isomorphism tests.
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CHAPTER 6

EVALUATION

In this section, we evaluate the privacy risk and DeHIN performance on t.qq

dataset. Then we show DeHIN is able to beat the investigated graph anonymiza-
tion algorithms in the settings of a heterogeneous information network, while fur-
ther sacrificing utility is able to defend the attack. It is also shown that DeHIN
undermines the notion of “security by obscurity” for privacy preservation.

6.1 Case Study of t.qq Dataset

Following the motivating example in Section 1.1, we first evaluate the privacy
risk as formalized in Section 4. Details of the anonymized KDD Cup 2012 t.qq

dataset is depicted in Section 1.1 and Section 3. 500 target graphs of 1,000 vertices
are sampled from t.qq dataset where vertices are randomly sampled and all the
edges among them are preserved. Although a power-law out-degree distribution
is assumed in the analysis (Section 4), since increasing privacy risk requires more
edges to utilize different distances of neighbors from a target user, the privacy risk
may vary when in reality heterogeneous information networks are of different
densities:

density =
|E|

m |V |2 + (|L| −m) |V | (|V | − 1)
(6.1)

In (6.1), |E| and |V | are the number of edges and vertices in the network. |L|
indicates the total number of link types in the network and m denotes the number
of link types which allow nodes to self-link. The denominator of (6.1) represents
the maximum possible number of edges in the network and the value of density is
always between 0 and 1.

57 of the sampled target graphs have density 0.01. The average cardinality of
gender, yob, number of tweets, and number of tags for these 57 samples are 3,
87, 643, and 11 respectively. Considering the relatively small size of the target
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Table 6.1: Privacy Risk of the Anonymized t.qq Dataset (density: 0.01, size:
1000) increases as the amount of utilized target network schema link types in-
creases (in percentage)

Types of Links max. distance 1 max. distance 2 max. distance 3
f 84.4 93.8 93.8
m 85.4 93.6 93.8
c 87.6 93.6 93.9
r 90.2 94.2 94.3
f-m 96.0 98.5 98.6
f-c 95.6 98.5 98.5
f-r 96.8 98.5 98.5
m-c 89.9 94.0 94.2
m-r 91.2 94.4 94.5
c-r 91.8 94.4 94.5
f-m-c 96.5 98.5 98.6
f-m-r 96.9 98.6 98.6
f-c-r 96.8 98.6 98.6
m-c-r 92.3 94.5 94.6
f-m-c-r 96.9 98.6 98.6
*f: follow; m: mention; r: retweet; c: comment
*Max. Distance n: max. distance of utilized neighbors to target entities
*n = 0: only target entities’ profiles are utilized and risk is always 1.1%

dataset, to better observe the growth of risk and variation in terms of different
amounts of link types, only the number of tags is used in computing the entity
cardinality C(E∗). Results in Table 6.1 and Figure 6.1 (Figure 6.1 averages the
privacy risk utilizing the same amount of link types) show that privacy risk cal-
culated by Theorem 1 increases as the utilized heterogeneity information grows,
which is the amount of target network schema link types. The drastic growth from
distance 0 to 1 is consistent with the established order of growth in (4.2) and (4.3),
then risk grows asymptotically towards 1 until it remains unchanged. Recall Sec-
tion 4.5, the results also justify the practical efforts of reducing accessible link
types is able to reduce C(L∗) and hence privacy risk. When no link information
is accessible, n = 0 and privacy risk is reduced efficiently given that the entity
cardinality is not large as compared with the entity size.

To evaluate the performance of DeHIN proposed in Section 5 on t.qq dataset,
the entire anonymized t.qq dataset is used as the auxiliary dataset while the tar-
get dataset is the sampled 500 target graphs and none of them contains cliques
of size over 3. We will show DeHIN works effectively without the need to cre-

28



0 1 2 3
0

10

20

30

40

50

60

70

80

90

100

Max. Distance of Utilized Neighbors n

P
riv

ac
y 

R
is

k 
(in

 P
er

ce
nt

ag
e)

 

 

1 link type
2 link types
3 link types
4 link types

Figure 6.1: Privacy risk increases with more link types

Table 6.2: Performance of DeHIN on t.qq anonymized dataset (in percent)
Density Max. Distance 0 Max. Distance 1 Max. Distance 2 Max. Distance 3

Precision Reduction Precision Reduction Precision Reduction Precision Reduction
0.001 4.1 99.836 12.6 99.848 12.6 99.848 12.6 99.848
0.002 5.1 99.925 22 99.947 22.7 99.948 22.7 99.948
0.003 6.5 99.917 32.8 99.944 33.5 99.945 33.5 99.945
0.004 4.3 99.907 39.4 99.941 40.8 99.942 40.9 99.942
0.005 4.3 99.927 48.7 99.969 49.8 99.969 49.9 99.969
0.006 7 99.920 59.4 99.979 61.6 99.980 61.7 99.980
0.007 5.1 99.908 65.6 99.977 68.8 99.978 68.9 99.978
0.008 5.3 99.921 76.6 99.989 78.8 99.989 79 99.989
0.009 6.4 99.914 86.2 99.997 88.6 99.997 88.8 99.997
0.01 5.4 99.892 92.5 99.989 95.6 99.990 95.7 99.990
*Max. Distance n: max. distance of utilized neighbors to target entities; when n = 0, only target entities’ profile
attributes are utilized

*Reduction: Reduction Rate

ate any “sybil nodes” or to rely on easily-detectable graph structures in a large-
scale network as required in the existing attacks [7, 8]. The anonymized user IDs
(randomly assigned strings) in both target and auxiliary datasets are not used for
attribute value matching. After DeHIN employs the remaining attribute and link
information described in the motivating example (user profile, mention, retweet,

comment, follow data) to establish the unique matching between the target user in
the target dataset and a user in the auxiliary dataset, the anonymized user IDs will
serve as the ground truth to decide if the unique matching is correct.

Since a social network generally grows over time, we intentionally consider at-
tributes such as tweet count, mention strength, retweet strength, comment strength

may grow between the time gap of the auxiliary and target datasets. Therefore,
the attribute matching functions are configured to allow any user entity in the aux-
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Table 6.3: Performance of DeHIN on t.qq anonymized dataset (density: 0.01)
improves as the amount of utilized target network schema link types increases (in
percent)

Types of Links Max. Distance 1 Max. Distance 2 Max. Distance 3
Precision Reduction Precision Reduction Precision Reduction

f 68.1 99.982 77.6 99.983 77.7 99.983
m 80.9 99.976 87.8 99.976 88 99.976
c 82.8 99.975 88.7 99.976 88.8 99.976
r 81.1 99.976 88.7 99.976 88.9 99.976

f-m 89.3 99.989 94.2 99.990 94.2 99.990
f-c 90.1 99.989 94.6 99.990 94.6 99.990
f-r 89.2 99.989 94.9 99.990 95 99.990
m-c 84.7 99.976 89.6 99.976 89.7 99.976
m-r 83.2 99.976 89.5 99.977 89.7 99.977
c-r 85.2 99.976 90.3 99.976 90.5 99.976

f-m-c 91.6 99.989 94.8 99.990 94.8 99.990
f-m-r 90.6 99.989 95.1 99.990 95.2 99.990
f-c-r 91.5 99.989 95.4 99.990 95.5 99.990

m-c-r 86.5 99.977 91 99.977 91.2 99.977
f-m-c-r 92.5 99.989 95.6 99.990 95.7 99.990

*f: follow; m: mention; r: retweet; c: comment
*Max. Distance n: max. distance of utilized neighbors to target entities;

when n = 0, only target entities’ profile attributes are utilized
*n = 0: only target entities’ profiles are utilized—precision and

reduction rate are always 5.4% and 99.892%
*Reduction: Reduction Rate

Table 6.4: Performance of DeHIN on t.qq dataset of complete graph anonymity
(in percent)

Density Max. Distance 0 Max. Distance 1 Max. Distance 2 Max. Distance 3
Precision Reduction Precision Reduction Precision Reduction Precision Reduction

0.001 4.1 99.836 11.5 99.847 11.9 99.847 11.9 99.847
0.002 5.1 99.925 19.7 99.941 20.9 99.941 20.9 99.941
0.003 6.5 99.917 29.8 99.938 31.6 99.938 31.6 99.938
0.004 4.3 99.907 35.8 99.936 38.3 99.936 38.4 99.936
0.005 4.3 99.927 44.1 99.963 47.1 99.963 47.1 99.963
0.006 7 99.921 54.3 99.973 57.8 99.973 57.9 99.973
0.007 5.1 99.908 59.5 99.971 64.2 99.971 64.2 99.971
0.008 5.3 99.921 70.3 99.978 74.8 99.978 74.8 99.978
0.009 6.4 99.914 78.1 99.985 83.4 99.986 83.5 99.986
0.01 5.4 99.892 84.4 99.976 89.8 99.976 89.8 99.976
*Max. Distance n: max. distance of utilized neighbors to target entities; when n = 0, only target entities’
profile attributes are utilized

*Reduction: Reduction Rate

iliary dataset with values of these attributes greater than or equal to those of the
target user to be a candidate. Likewise, we also intentionally consider links may
be newly formed in the auxiliary dataset for link matching. These considerations
make the de-anonymization scenario more practical and more challenging since
they will potentially introduce more candidates comparing with the exact attribute
or link value matching.

The entire auxiliary dataset contains 2,320,895 user entities. With random
guessing, the adversary may de-anonymize a user from the target dataset with
probability no higher than 1

2,320,895
. If the candidate size can be reduced to 100 in-
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Figure 6.2: DeHIN Precision Improves with More Link Types

cluding the target, the random guessing may be correct with a drastically increased
chance of 1

100
. If the candidate size is exactly 1 and such a unique matching is cor-

rect, the de-anonymization is successful. Hence, we define two metrics for the
experiments:

Precision =

∑|V ′|
i=1 s(v

′
i)

|V ′|
,

Reduction Rate =
1

|V ′|

|V ′|∑
i=1

(1− |C(v′i)|
|V |

),

where |V ′| and |V | are the size of the target and auxiliary dataset, s = 1 if v′i ∈
V ′ is successfully de-anonymized, otherwise s = 0, and |C(v′i)| is the size of
candidate set for the target v′i.

The performance of DeHIN on target datasets of different densities is shown in
Table 6.2. Clearly, the general performance improves as the density of the target
dataset increases because higher density indicates DeHIN may be able to utilize
more neighbors to expand the dimensions of each target user to achieve unique
matchings. It reveals an important problem that, if a group of people have rich so-
cial connections, they may have higher social values and may cause adversaries’
attention; however, their privacy can be compromised more easily. Generally, the
reduction rate looks promising as compared with the original candidate size of 2.3
million; so even when precision is relatively low on a low-density network, high
reduction rate makes manual investigation of matched candidates possibly prac-
tical. For a certain density level, precision increases drastically when distance-1
neighbors are utilized, particularly for a higher-density network where there may
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be more neighbors. Due to the bottleneck scenarios discussed in Section 4.3 and
Figure 4.2, the performance improves much more slowly or remains unchanged
when DeHIN utilizes neighbors of longer distances.

To evaluate whether the heterogeneity of an information network improves the
performance, we selectively employ different types of links in DeHIN and grad-
ually increase the number of links in de-anonymizing the target dataset with po-
tentially a higher social value (density = 0.01). The results in Table 6.3 and Fig-
ure 6.2 (Figure 6.2 averages the precision of DeHIN utilizing the same amount
of link types) justifies that the performance improves as the utilized heterogene-
ity information grows, which is the amount of target network schema link types.
Moreover, the observed growth trend is consistent to that of privacy risk in Fig-
ure 6.1.

6.2 Beating Complete Graph Anonymity

The utility of t.qq dataset has to be preserved to a certain level to ensure effective
recommendation algorithms can be designed. We now lower their utility and apply
the state-of-the-art graph anonymization algorithms in Section 2.3 on t.qq dataset.
Since adding edges to link all the users will make the entire network safer from
all the structural attacks as identified in the work of k-degree, k-neighborhood,
k-symmetry, k-automorphism, and k-security, to ensure the best case of defence,
we formulate complete graphs under different types of links. Complete Graph

Anonymity can be considered as one of the best case for the investigated graph
anonymization algorithms. For instance, when the graph becomes a complete
graph after fake links are added, the k turns to be the largest possible value,
which is the number of vertices in the graph, for anonymization like k-degree,
k-neighborhood, etc, as surveyed in Section 2.3. To be consistent with these orig-
inal algorithms that do not consider short-circuited features and to preserve certain
utility, we set short-circuited attribute values to be the same random number and
keep the existing short-circuited attribute values.

To address the enhanced anonymity, DeHIN is now re-configured to remove all
the links with the majority short-circuited attribute value in the entire network be-
fore taking effect. Since a social network is generally of density lower than 0.5, it
can almost be ensured that all the newly added fake links will be removed from the
target dataset. However, this step will mistakenly remove the real links that have
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the same short-circuited attribute values as the fake links from the target dataset
and C(L∗) decreases in (4.2) and (4.3); thus the performance of DeHIN degrades
slightly as shown in Table 6.4 and Figure 6.3(a)—Figure 6.3(j). In Figure 6.3(a)—
Figure 6.3(j), complete graph anonymity is able to lower the attack precision ef-
fectively when DeHIN only utilizes a single homogeneous link. However, DeHIN
still poses great threats to complete graph anonymity, when heterogeneous links
are fully utilized.

6.3 Defending DeHIN by Sacrificing Utility

To enhance preserved privacy against DeHIN, we have to further lower the util-
ity of the target dataset by assigning randomly generated varying weights to the
short-circuited attributes of each newly added fake links. It can be observed from
Figure 6.3(a)—Figure 6.3(j) that this Varying Weight Complete Graph Anonymity

renders DeHIN ineffective when utilizing neighbors because most faked links are
still preserved in the target dataset and n is clear to 0 in (4.2) and (4.3). However,
varying weight values in the fake links cause much higher information loss than
assigning the same values; thus the anonymized data utility is sacrificed much
more.

6.4 “Security by Obscurity”?

While DeHIN can be launched successfully against certain anonymization (e.g.,
DeHIN v.s. KDD Cup Original anonymization), it may be (slightly) less effec-
tive against other anonymizations (e.g., complete graph anonymity) even when it
is re-configured as in Section 6.2. Researchers might be tempted to suggest that,
because the adversary might not know what anonymity is employed, he might
not be able to launch an attack. Here, we hope to dispel this notion. Suppose an
adversary always uses the re-configured DeHIN in Section 6.2, the performance
on the original t.qq anonymization will be exactly the same as that of complete
graph anonymity because likewise only the real edges of the same majority at-
tribute values will be affected during de-anonymization. Since DeHIN still poses
great threats, this is an extremely important indication that privacy preservation
requires more attention from researchers.
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(a) Density: 0.001
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(b) Density: 0.002
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(c) Density: 0.003
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(d) Density: 0.004
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(e) Density: 0.005
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(f) Density: 0.006
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(g) Density: 0.007
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(h) Density: 0.008
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(i) Density: 0.009
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(j) Density: 0.01

Figure 6.3: Precision of DeHIN against different anonymized heterogeneous in-
formation networks of different densities (CGA: Complete Graph Anonymity;
VW-CGA: Varying Weight Complete Graph Anonymity; KDDA: KDD Cup 2012
t.qq Original Anony-mization)
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CHAPTER 7

EXTENSION TO GENERAL GRAPHS

We have demonstrated that privacy risk can be exploited theoretically and empir-
ically in anonymized heterogeneous information networks. A natural question is,
are we safe in general graphs that are not heterogeneous? To address this question,
we further extend our theoretical and empirical analysis to general graphs. We
categorize general graphs into two broad classes: simple graphs and rich graphs.
Specifically, rich graphs contain rich information on nodes and links but are not
necessarily heterogeneous information networks or directed; thus, rich graphs are
still more general than heterogeneous information networks.

We start with new concepts, definitions, and notations in the technical discus-
sions.

7.1 Preliminaries

Social Graphs Two models for social networks are described in [24]. A simple

graph is an undirected graph G = (V,E) without any descriptive information.
Nodes in V correspond to users, and an edge (i, j) ∈ E indicates there is a social
tie between users i and j.

A rich graph is the combination of a directed or undirected graph, and two
attribute sets X and Y . User i’s descriptive information (or node-attribute) is
denoted as X(i), and the description of a social tie (i, j) (or edge-attribute) is rep-
resented as Y (i, j). For example, if a user’s profile contains fields such as name,
gender, and birth year, the correspondingX(i) may look like {Alice, female, 1990}.
If user i marks user j as a “friend” and has sent the friend 5 messages, the edge
attributes Y (i, j) can be represented as {friend, 5}.
Node Similarity There are a number of works on graph node similarity for pur-
poses other than de-anonymization in literature. Blondel et al., [25] proposed a
graph node similarity measurement which is calculated iteratively by summing
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up the similarity scores between the neighbors of two nodes. The “SimRank”
proposed by Jeh and Widom [26] compares nodes in the same graph, so it is in-
feasible for de-anonymization (in which two graphs are compared). Melink et al.

[27] proposed a general framework of graph node similarity named “Similarity
Flooding”, which takes graph structure, node and edge attributes into considera-
tion, and can be viewed as a generalization of the above two measurements. In our
initial experiments, we evaluated the above measurements, and found empirically
that they are not suitable for de-anonymization (Section 7.2.2), so we decided to
find a new node similarity measurement that is effective in de-anonymization.
Data Publishing We refer to the published social graph as the target graph. In
order to preserve privacy, social graphs are anonymized before publishing. The
anonymization usually involves modification of a graph’s structure and attributes,
and can be summarized in two steps:

1. Modify the original social graph with a certain anonymization algorithm,
e.g., algorithms that achieve some kind of k-anonymity, or randomization.

2. Assign new random identifiers to nodes.

Threat Model It is commonly assumed that an adversary knows some kind of
prior knowledge about the target nodes. The adversary can then use the knowledge
to locate the target nodes in the anonymized social graph. We assume that an
adversary can always collect a subgraph nearby target nodes. The collected graph,
in which the real identities of nodes are known, is referred to as the auxiliary

graph. This assumption is practical because online social networking sites are
usually partially or fully accessible. Note that this is the only prior knowledge:
The adversary do not know the real identity, or seed mapping, of any node in the
target graph.
Problem Formulation Given an auxiliary graphG1 = (V1, E1) and a target graph
G2 = (V2, E2), the goal of de-anonymization is to find identity disclosures in the
form of 1-1 mappings as many and accurate as possible. An identity disclosure
(i, j) indicates that the two nodes i ∈ V1 and j ∈ V2 actually correspond to the
same user.
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7.2 De-anonymizing Simple Graphs

Most anonymization algorithms for simple graphs achieve their anonymization
goals by adding and/or deleting edges. For algorithms where either edge addition
or deletion is involved, the anonymized or the original graph is sub-isomorphic
to the other. In theory, the graph can be perfectly de-anonymized by solving the
subgraph isomorphism problem. However, as the subgraph isomorphism problem
is known to be NP-complete, this approach is infeasible for large-scale graphs.
Once both edge addition and deletion are involved, the problem becomes com-
plicated and the sub-isomorphism no longer holds. The basic assumption in this
paper is that the published graph is “similar” to the original graph, otherwise the
data utility will be low. Motivated by this assumption, we propose a measurement
for node similarity with respect to the graph structure. We then introduce a heuris-
tic to produce node mappings as the final output for de-anonymization. Finally,
we discuss the relation between node similarity and privacy risks. Different from
[28], no initial seed mappings are required in our approach.

7.2.1 Node Similarity

Suppose we are trying to compare graphs G1 = (V1, E1) and G2 = (V2, E2).
Although swapping the two graphs will not change the output, we still prefer to
denote the auxiliary graph as G1 and the target graph as G2. For nodes i ∈ V1 and
j ∈ V2, we introduce the node similarity score S(i, j) as a structural measurement
of how similar the two nodes are. In order to make the measurement effective for
de-anonymization, the following properties are required:

1. If a graph is compared to itself, every node should be the most similar to
itself. This property is naturally required by most similarity measurements
but lacked by the measurements mentioned in Section 7.1.

2. Two nodes are as similar as their neighbors are. This intuitive property
is commonly assumed by all the node similarity measures we investigated
above.

Based on the above requirements, we propose our definition of the node simi-
larity. Denoting i’s neighbor nodes as N1(i) and j’s neighbor nodes as N2(j), we
try to match similar nodes in N1(i) and N2(j) in effort to maximum the overall
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similarity score. The similarity score S(i, j) is then assigned with such an over-
all score. Because the similarity score is calculated by matching neighbors, we
refer to the de-anonymization algorithm as NeighborMatch (see Algorithm 3
for pseudocode).

Algorithm 3: The NeighborMatch algorithm
Input : Auxiliary graph G1, target graph G2, number of expected

mappings M
Output: Identity disclosres in the form of 1-1 mappings
foreach (i, j) ∈ V1 × V2
S(0)(i, j)← 1

k ← 1
repeat

foreach (i, j) ∈ V1 × V2
Bi,j ← (N1(i), N2(j), N1(i)×N2(j)) where w(i′, j′) = S(k)(i′, j′)
θi,j ← MaxMatch(Bi,j)

S(k+1)(i, j)←
∑

l∈N1(i)
S(k)(l, θi,j(l))

k ← k + 1

until normalized S(k) converges
B ← (V1, V2, V1 × V2) where w(i, j) = S(k)(i, j)
θ ← MaxMatch(B)
return (top M mappings in θ with largest scores)

The NeighborMatch algorithm is iterative and updates S(i, j) in each iter-
ation. First, the initial values are taken as S(0)(i, j) = 1. In the kth iteration, the
algorithm starts matching i’s neighbor nodes N1(i) and j’s neighbor nodes N2(j)

by constructing a complete bipartite graph Bi,j = (N1(i), N2(j), N1(i)×N2(j)),
where each edge (i′, j′) is weighted as S(k)(i′, j′). The MaxMatch procedure is
then invoked to find the maximum weighted match ofBi,j . We denote the match as
a bijection θi,j , where node l ∈ N1(i) is matched to node θi,j(l) ∈ N2(j). Finally,
S(k+1)(i, j) is calculated as the sum of matched neighbors’ similarity scores:

S(k+1)(i, j) =
∑

l∈N1(i)

S(k)(l, θi,j(l)) (7.1)

where the match θi,j is re-calculated in every iteration with the node similarity
scores S(k). The above procedures are repeated until the normalized scores con-
verge, and the normalization is done by dividing S(k) by the maximum S(k)(i, j).
As the diameter of a social graph is usually small, we found it unnecessary to
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repeat the iteration that many times, so we limited the number of iterations to 5 in
experiments.

We regard the identity disclosures in the form of 1-1 mappings. Basically, we
try to match V1 and V2 by maximizing the overall similarity score. Specifically, a
complete bipartite graph B = (V1, V2, V1 × V2) is constructed by weighting edge
(i, j) ∈ V1 × V2 with similarity score S(i, j). The match θ which reveals the
real identities of users is taken as the maximum weighted matching of B. The
algorithm outputs the top M node mappings in θ in the sense of node similarity
score, since node pairs with higher similarity score are more likely to be correct.

In addition, methods to produce identity disclosure are not limited to the pro-
posed approach. For example, a ranking of candidates for each node can be pro-
duced by sorting the candidates’ similarity scores. The adversary can later check
top candidates manually by comparing the profiles with domain knowledge.

To the best of our knowledge, the maximum weighted bipartite matching prob-
lem can be solved by the Hungarian algorithm in O(n3) time. The overall running
time of a single iteration is then O(|V1||V2|d3), where d is the upper bound of
node degrees. The running time can be reduced to O(|V1||V2|d2 log d) by utiliz-
ing a greedy approximation algorithm instead: the edges of the bipartite graph
are added to the matching one by one in descending order of weight. We found
empirically that this approximation works better that expected in our algorithm.

7.2.2 Privacy Risk

We conduct a study on the relation between privacy risks and the proposed node
similarity. For the sake of simplicity, we assume that G2 has the same labeling as
G1 for nodes that appear in both graphs, i.e., node i ∈ V1 corresponds to i ∈ V2.
We start with the case where G1 is a subgraph of G2. We define the similarity
score between node i and its real image as self-similarity score T (i) = S(i, i).
We study the property of T (i) and find:

Theorem 3. A node is always among the most similar candidates to itself, i.e.,
T (k)(i) ≥ S(k)(i, j) for any nodes i ∈ V1, j ∈ V2 in kth iteration.

Proof. Theorem 3 is proved by induction. For k = 0, every S(0)(i, j) equals 1, so
the claim holds in this case. For k ≥ 0, we assume the claim is true for k. Consider
the edge weight of bipartite graph Bi,j in the (k + 1)th iteration. The assumption
indicates edge (l, l) has the maximum weight among {(l, l′)|l′ ∈ N2(j)}, so one
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of the optimal matches for T (k)(i) is θi,i(l) = l. As all optimal matches have the
same overall scores, the updated self-similarity score is

T (k+1)(i) =
∑

l∈N1(i)

S(k)(l, l)

=
∑

l∈N1(i)

T (k)(l) (7.2)

We can then devise

S(k+1)(i, j) =
∑

l∈N1(i)

S(k)(l, θi,j(l))

≤
∑

l∈N1(i)

T (k)(l)

= T (k+1)(i)

Theorem 3 shows that S(i, j) is bounded by T (i). The following theorem fur-
ther explains what T really is.

Theorem 4. Self-similarity score T is the principal eigenvector ofG1’s adjacency

matrix.

Proof. (Sketch) The updating rule of self-similarity scores in Equation (7.2) can
be rearranged in the matrix form T (k+1) = A1T (k), where A1 is the adjacency
matrix of G1. It is identical to the power iteration algorithm which solves the
principal eigenvector of a matrix, except for the scaling factor for normalization,
so normalized T (k) converges to A1’s principal eigenvector.

We now proceed to the general case where G1 and G2 have arbitrary overlap.
The auxiliary graph G1 is regarded as the combination of a subgraph G′1 = (V1 ∩
V2, E1 ∩ E2) of G2 and additional noise N = (V1 − V2, E1 − E2). The noise
N is caused by (1) the modifications that are made by anonymization algorithms
and (2) extra nodes and edges that are involved during the process of collecting
auxiliary graph. With the existence of the noise N , Theorems 3 and 4 no longer
hold, and it is possible that T (k)(i) < S(k)(i, j) for some i 6= j. In addition, we
find empirically that this usually happens when i’s and j’s corresponding values
in the principal eigenvector are close to each other. In this case, we are unable to
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identify the real image of node i only by examining the similarity scores, so we
perform a bipartite matching between V1 and V2 to maximize the overall similarity
score, since each node is supposed to have at most one image. However, this
method could still not distinguish them if there are reasonably many such nodes.
Above discussions motivate a possible anonymization approach against our attack
which modifies the graph structure so that the value of every node is close to
(e.g., less than a threshold) a sufficient number of other values in the principal
eigenvector.

Recall the properties required by de-anonymization in Section 7.2.1. The first
property is proven to be satisfied directly by Theorem 3, and apparently the sec-
ond property is also satisfied. For the node similarity measurements mentioned
in Section 7.1, the first property is not guaranteed to be satisfied, since one can
easily construct graphs where some nodes are less similar to themselves than the
other nodes. As a consequence, they failed to provide reasonably accurate results
for de-anonymization. For example, the node similarity proposed by Blondel et

al. [25] can only identify less than 2% nodes in a co-author graph from Microsoft
Academic Search, once the graph is modified by any of the anonymization algo-
rithms listed in Section 8.1.2. Only when the graph structure is not modified at
all (naı̈ve anonymization), the measurement could identify about 45% nodes. We
also obtained similar result for “Similarity Flooding” [27].

7.3 De-anonymizing Rich Graphs

In order to incorporate graph structure and attributes for de-anonymization, we
extend the algorithm described in Section 7.2 to process directed or undirected
rich graphs. We start by introducing a framework of attribute similarity measure-
ment, and then modify the updating rule of node similarity score to utilize attribute
information.

7.3.1 Attribute Similarity

The node-attribute similarity SX(i, j) represents similarity between node-attribute
sets X(i) and X(j). Analogously, the edge-attribute similarity SY (i1, j1, i2, j2)

measures how similar edge-attribute sets Y (i1, j1) and Y (i2, j2) are. We assume
both measurements range from 0 to 1 inclusively. Determining the exact definition
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of similarity measurement requires the comprehension and domain knowledge of
the attributes. Therefore, we do not make any assumption on how the attributes
are measured or combined but only specify that two attribute sets are more similar
if the corresponding similarity score is larger, e.g., value 0 indicates completely
different and 1 suggests possible equivalence.

In directed graphs, there could be two edges of opposite directions between
two nodes. In order to combine the information of the two edges, we introduce
the concept of relation, which is an ordered nodes pair. Relation (i1, j1) is similar
to (i2, j2) does not necessarily mean that it is similar to (j2, i2). We then propose
the relation similarity SR(i1, j1, i2, j2), which measures the similarity of relations
(i1, j1) and (i2, j2) in conjunction with edges. Again, determining the exact defi-
nition of relation similarity is non-trivial, so we only assume that it ranges from 0
to 1 and relies on edge-attribute similarity.

Basically, we try to utilize the attribute information of graphs by introducing the
above similarity measurements. SX and SY are supposed to measure similarity
of nodes and edges respectively, with respect to attributes. SR is proposed for
combining the information of opposite edges between a node pair in a directed
graph. The way these similarity scores are calculated depends on the adversary’s
comprehension and domain knowledge of the graph.

7.3.2 Generalized Node Similarity

Given rich graphs G1 = (V1, E1) and G2 = (V2, E2), we still use the notation
S(i, j) to represent the generalized similarity score of node i ∈ V1 and j ∈ V2,
which utilizes both structural and attribute information. The idea of neighbor
matching is generalized to adopt attribute information. Two nodes are considered
similar if (a) their attributes are similar, (b) their neighbors are similar, and (c)
their relations with neighbors are similar.

In a directed graph, two nodes are considered to be adjacent if there is an edge
between them, regardless of the edge’s direction. The neighbor set notationsN1(i)

and N2(j) are generalized by regarding adjacent nodes as neighbors. In order to
calculate S(i, j), a bipartite graph Bi,j = (N1(i), N2(j), N1(i) × N2(j)) is con-
structed by weighting edge (i′, j′) ∈ N1(i)×N2(j) as S(i′, j′)SR(i, i′, j, j′). De-
noting the maximum matching as θi,j , the generalized node similarity is calculated
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iteratively as

S(k+1)(i, j) = α ·
∑

l∈N1(i)

S(k)(l, θi,j(l)) · SR(i, l, j, θi,j(l)) + SX(i, j) (7.3)

The constant factor α trades off the importance of node-attribute against graph
structure and edge-attribute. The initial values are taken as S(0)(i, j) = SX(i, j).
The identity disclosures are obtained in exactly the same manner as described in
Section 7.2.1. Suppose G1 is obtained by removing the nodes and edges from G2

without attribute perturbation. It can be proven analogously, as in Section 7.2.2,
that Theorem 3 still holds in this case, so the generalized node similarity score
still guarantees that a node is always one of the most similar candidates to itself
in this case.

We refer to a node pair (i, j) as a candidate pair, where i ∈ V1 and j ∈ V2,
and the similarity score of the candidate pair is S(i, j). We introduce a heuristic
which limits the number of candidate pairs to enhance the scalability of the pro-
posed algorithm with a little cost of accuracy. We find empirically that only a few
candidate pairs have significantly large similarity scores and tend to be correct
mappings, while candidate pairs with small similarity scores are very likely to be
incorrect. This observation implies that we may simply maintain the top K can-
didate pairs with largest similarity scores in a set C during the algorithm process,
and update their similarity scores only. For simple graphs, the initial set C can be
obtained by searching for similar nodes in the sense of node features such as node
degrees, clustering coefficients [29], centralities [30], and recursive structural fea-
tures proposed in [31]. For rich graphs, additional attribute information can be
combined with structural features to obtain C. Denoting dc as the upper bound of
the node degree that is counted only with respect to the nodes in C, the running
time of a single iteration is reduced to O(Kd2c log dc), and the space requirement
for similarity scores is reduced to O(K).
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CHAPTER 8

FURTHER EVALUATION ON GENERAL
GRAPHS

In this section, we start by introducing experiment settings like the datasets, anony-
mization algorithms to be attacked, graph extraction algorithms, and evaluation
criteria. We then evaluate the performance of the proposed algorithm on both
simple graphs and rich graphs in various scenarios. Finally, we present empirical
results about the relation between privacy risk and eigenvector centrality.

8.1 Experiment Settings

8.1.1 Dataset

We used four public datasets for evaluation: a co-author graph from Microsoft
Academic Search (msas), a friendship graph from LiveJournal (lj), the Enron
email dataset (enron), and user profile and relationship data from Tencent Weibo
(tweibo).

The msas graph was published in WSDM 2013 Data Challenge. It was ex-
tracted from a snapshot (of May 18, 2012) of the Microsoft Academic Search
database. The graph is undirected, consists of 8,248 nodes and 18,732 edges,
and does not contain any attribute. Every node corresponds to an author in the
database. Two authors are linked by a single edge only if they have collaborated
at least one paper.

The lj dataset was analyzed in [32] and published at:

http://snap.stanford.edu/data/.

The nodes correspond to users and the edges represent friendship between
users. The original dataset contains about 4 million nodes, from which we ran-
domly extracted a subgraph for our evaluation, and it contains 10,000 nodes and
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72,831 edges.
The enron dataset is derived from emails sent from and to managers in Enron

Corporation, and it is available at http://www.cs.cmu.edu/˜enron/. We
regarded unique email addresses as nodes and an edge was added between two
nodes if they have exchanged at least one pair of emails. The resulting graph
contains 8,678 nodes and 29,400 edges.

The tweibo dataset was published in KDD Cup 2012 and contains a social
graph and recommendation records. The dataset was naı̈vely anonymized, i.e.,
all keywords and user identifiers were replaced by random unique numbers, but
attributes like gender and birth year were preserved as they were. We model the
tweibo dataset as a directed graph. The nodes correspond to user profiles, and
the directed edges describe the relation between two users. An edge (i, j) is de-
scribed by a set of attributes, including whether user i is following user j, how
many times j is mentioned in i’s tweets, how many times i has retweeted j’s
tweets, and the number of comments that i has sent to j. In total, 2.3 million
nodes and 55.4 million directed edges were extracted from the dataset.

8.1.2 Anonymization

In our experiments, we chose the following typical algorithms to generate anony-
mized target graphs.

Naı̈ve Anonymization The naı̈ve approach simply shuffles the identifiers of nodes,
and leaves the structure as it was. Since this is the simplest approach, we
would expect the best de-anonymization result for this approach.

k-degree Anonymity(k) The k-degree anonymity requires that for every node i
in the anonymized graph, there are at least k − 1 other nodes of the same
degrees with i. We implemented two versions of the algorithms proposed
by Liu and Terzi [33]: the one that only adds edges, and the one that adds
and deletes edges simultaneously.

Sparsification(p) The sparsification approach removes p|E| edges randomly, where
the parameter p controls the level of anonymization.

Perturbation(p) The perturbation approach first removes edges in exactly the
same way as the sparsification does, and then adds false edges until the
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number of edges of the anonymized graph is the same as the original graph.
This approach can be viewed as a kind of simulation of social graph evolu-
tion, or “unintended” anonymization.

Switching(p) The switching approach randomly selects two edges (i1, j1) and
(i2, j2), provided that (i1, j2) and (i2, j1) are not in the graph. The selected
edges are then “switched”, i.e., (i1, j1) and (i2, j2) are deleted, and (i1, j2)

and (i2, j1) are added to the graph. Such procedure is repeated p|E|/2 times,
resulting p|E| edge additions and p|E| edge deletions.

Spectrum Preserving(p) Ying and Wu [34] proposed two spectrum preserving
randomization algorithms which can be viewed as variants of random per-
turbation and switching, and they were shown empirically to keep better
data utility. We implemented the two algorithms and used parameter p to
control the number of modifications as the above.

The change of attributes in rich graphs (tweibo) was simulated by randomiza-
tion. For each node or edge in the target graph, we perturbed a field in its attribute
set independently with a probability t as follows:

Following As it was binary, the value was simply flipped.

Gender The gender was chosen arbitrarily between male and female if the orig-
inal value was unknown, or it was changed to unknown if it was originally
known.

Birth Year The birth year was assigned with an arbitrary value from 1900 to
2000.

Other Numeric Attributes The new value of numeric attributes such as the num-
ber of tweets, comments, etc. was chosen arbitrarily in range [x−xt, x+xt],
provided that the original value was x.

8.1.3 Graph Extraction

The test data were generated from the original graph (msas, lj, enron, or
tweibo) by extracting subgraphs. For a certain experiment setting, a pair of
graphs G1 = (V1, E1) and G2 = (V2, E2) with specified overlap were extracted
from the original graph. We took G1 as the auxiliary graph and G2 as the target
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graph. Copies of G2 were anonymized with different combinations of algorithms
and parameters.

We defined the node overlap as βV = |V1∩V2|/|V1∪V2|. Given βV , V1’s desired
size n1, and the original graph G = (V,E), we first extracted a subgraph GO =

(VO, EO) of size βV |V | from G, using the Breadth-first Search (BFS), which is
a strategy in online social network crawling. The other |V | − |VO| nodes were
randomly partitioned into two groups of size n1− |VO| and |V | − n1 respectively.
The node sets V1 and V2 were then obtained by combining the corresponding
groups with VO. Finally, G1 and G2 were obtained by projecting G on V1 and V2.

8.1.4 Evaluation Criteria

We measured how successful an attack is by its precision and recall. The preci-
sion was defined as the proportion of correctly matched nodes among all matched
nodes, and the recall was defined as the proportion of correctly matched nodes
among all overlapping nodes of G1 and G2. To save space, in most of our ex-
periments, we only reported the precision p under various M (the number of
outputted mappings, see Algorithm 3), and the recall can be then calculated as
r = pM/|V1 ∩ V2|. All experiments were performed 10 times with independently
extracted graphs.

8.2 Simple Graphs

The msas, lj, and enron graphs were used to evaluate the performance of
our algorithm on simple graphs. We started by evaluating the performance when
the overlap of the auxiliary and the target graphs varied. We then compared our
algorithm with the algorithms proposed by Narayanan et al. [35, 28]. Empirical
results about the relation between privacy risks and eigenvector centrality were
also reported.

8.2.1 Overlap

We assumed that the auxiliary graph G1 = (V1, E1) might have arbitrary overlap
with the target graph G2 = (V2, E2). We generated test data by extracting graph
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Figure 8.1: Precision of attacks with different M (the number of mappings) and
node overlap on msas graph
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Figure 8.2: Precision of attacks with different M (the number of mappings) and
node overlap on lj graph
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Figure 8.3: Precision of attacks with different M (the number of mappings) and
node overlap on enron graph
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pairs with different overlap (25%, 50%, 100%). Although the auxiliary graph
does not have to be equal sized with the target graph in a practical attack, we took
the case where the two graphs were equal sized for illustration, i.e., each of the
graphs from msas contains 5,155, 6,186, or 8,248 nodes, 6,250, 7,500, or 10,000
nodes for the lj graph, or 5,424, 6,509, and 8,678 nodes for the enron graph,
depending on the overlap. For each graph pair, copies of G2 was sanitized with
different anonymization algorithms. The results (Figure 8.1, 8.2, and 8.3) showed
that the precision and the recall (see Section 8.1.4) for identity disclosure of our
algorithm were reasonably high, even if the overlap was relatively small.

Provided that the adversary knows only the degree of nodes, the k-degree anony-
mity guarantees a node to be identified with a probability of at most 1/k. However,
with extra structure knowledge, such probability was increased dramatically. As
there is usually no guarantee of what kind of information that an adversary has in
practice, the result showed the potential privacy risks in such situations.

It was expected that the first few mappings that the algorithm outputted were
very likely to be correct, but this appeared not true for the k-degree anonymization
algorithm which only adds edges. Our algorithm appeared to favor large degree
nodes first, e.g., about half of the first 100 mappings corresponded to the top 100
degree nodes. As node degree in a real-world graph is usually skewed [36], the
degree difference between top nodes tended to be large, so significantly more
edge additions were required to achieve k-degree anonymity. Taking the msas
graph and k = 10 for example, the average degree of the top 100 nodes was
increased by 34%, while the overall degree increment was only 3%. Therefore,
the neighborhood of the top degree nodes were greatly changed and they were
difficult to be identified.

For a given randomization parameter p, the sparsification seemed to be the eas-
iest one to be attacked, since it made the least modifications to the graph by only
deleting edges. Although the switching adds and deletes the same numbers of
edges as perturbation, it provided less protection. We believed it is due to that
it preserved node degrees. For the spectrum preserving approach, switching also
seemed to provide less protection than perturbation does. With the same number
of modifications, the spectrum preserving approach was thought to better preserve
the graph’s utility, but it was also shown to provide less protection than the uni-
form randomization approach. For all anonymization algorithms here, increasing
the level of anonymization indeed brought more difficulty to attacks. The random-
ization methods were supposed to protect privacy in a probabilistic manner, but
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Figure 8.4: Precision of identity disclosure grouped by the auxiliary graph’s nor-
malized eigenvector centrality (100% overlap, msas). Results for other graphs
were similar.

the result showed that the nodes could still be identified with high precision even
if 20% of the edges were modified.

8.2.2 Subgraph attack

As the subgraph attack was widely studied in previous works, we have also eval-
uated the performance of our algorithm on subgraph attacks. We extracted sub-
graphs containing fractions of 25%, 50%, and 100% nodes of the original graphs
(2,062, 4,124, and 8,248 nodes for the msas graph, 2,169, 4,339, and 8,678 nodes
for the enron graph, or 2,500, 5,000, and 10,000 nodes for the lj graph), and
anonymized copies of the original graph with the same anonymization algorithms
and parameters to obtain the target graphs. The results showed similar accuracy
and behaviors, and were thus omitted here.

8.2.3 Eigenvector Centrality

Bonacich [30] proposed a family of centrality measurements, which measure the
importance or influence of a node in a graph. One of them is the eigenvector

centrality, which is defined as the principal eigenvector of a graph’s adjacency
matrix. We grouped the nodes in the auxiliary graph by their normalized eigen-
vector centrality and calculated the average de-anonymization precision for every
group. The ranges of bins were selected in an exponential manner to balance the
number of nodes in different bins. The result (Figure 8.4) showed that important
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nodes (with high eigenvector centrality) were more likely to be identified.
We studied the distribution of eigenvector centrality of the msas, lj, and

enron graphs and found that, while a few nodes had unusually high centrality,
the others’ centralities were rather low. We also found that those nodes with high
centrality were very distinguishable from each other, since the centralities were
diverse. As discussed in Section 7.2.2, nodes with similar eigenvector centrality
could be confused with each others. Therefore, it was expected that nodes with
larger eigenvector centrality were easier to be identified.

8.2.4 Efficiency

We implemented our algorithm in C++ with multi-threading. The experiments
were performed on a server equipped with an Intel Xeon X5660 CPU (6 cores,
2.8 GHz), and 2 GB memory was actually used. For the sake of simplicity, we
kept all |V1||V2| candidate pairs, so the time complexity of a single iteration is
O(|V1||V2|d2 log d) and the total running time is propositional to the graph size.
As mentioned in Section 7.2.1, we limited the number of iterations to 5. Taking
the experiment on the lj graph presented in Section 8.2.1 for example, where the
auxiliary and the target graphs contain 6,250, 7,500, or 10,000 nodes. The total
running time for a single attack ranged from 10 to 20 minutes.

8.2.5 Comparison

Narayanan and Shmatikov [28] proposed a de-anonymization algorithm (denoted
as NS) which requires a certain number of seed mappings to invoke large-scale re-
identification. Collecting seed mappings can be viewed as a kind of small-scale
de-anonymization which is not always feasible in practice. Taking the tweibo
dataset as an example, we were only able to match a few dozens of user pro-
files, and the mappings were proven to be incorrect after manual checking. That
means, even if an adversary managed to collect a few seed mappings, there was
no guarantee on the quality of mappings, i.e., the mappings could be incorrect.

In our experiments, we assumed an ideal situation where seed mappings were
given in advance. We generated 50 mappings by randomly sampling the overlap-
ping nodes, provided that their degrees were at least 10. We were interested in the
impact of seed mapping quality, so we randomly picked 0%, 10%, to 100% of the
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given mappings and made them incorrect (by replacing one of the two nodes with
an arbitrary node). We evaluated the precision and recall of the NS algorithm in
such settings, and the process was repeated 10 times independently. We set the
parameter theta in the NS algorithm to 0.1 after trying various choices.

To compare with NS, we reported the performance of our algorithm with dif-
ferent values of M (the number of outputted mappings). The result (Figure 8.5)
showed that for NS, both precision and recall increased as the quality of seed map-
pings increased. However, its recall was low even all seed mappings were correct
(we have tried to use more than 50 seed mappings but the result was similar). The
result also showed that only when high quality seed mappings were provided, the
NS algorithm could outperform ours. Note that such comparison is actually unfair
for us, since additional information is provided to the NS algorithm. We believe
the observed differences are mainly due to two aspects:

• Our algorithm represents the node mappings with the similarity scores,
while the NS only maintains a set of discrete 1-1 mappings. Therefore,
our algorithm is able to capture more information about the graph structure.

• The NS algorithm accepts a mapping only when the two nodes are both the
most similar to each other. This constraint is so strict that the algorithm only
accepts mappings that are very certain to be correct. Therefore, it prevents
the propagation through uncertain nodes. On the contrary, our algorithm
provides more flexibility as one may tune the parameter M to trade off
between precision and recall depending on the application.

Narayanan et al. [35] later proposed a graph matching algorithm based on
simulated annealing (denoted as SA). The algorithm was used to generate seed
mappings by matching the top n degree nodes (n ≤ 100), since the top degree
nodes of the both graphs were observed to roughly correspond to each other. We
measured the performance by accuracy which was defined as the fraction of cor-
rect mappings among all actual mappings between the top n degree nodes of the
both graphs. In our experiments, we ran the SA algorithm with n = 20 on graph
pairs with 100% overlap, and the result was reported as the median of 30 trials.
For most of the anonymization algorithms mentioned in Section 8.1.2, the result
showed that the average accuracy of our algorithm for the top 20 nodes was at least
99%, 95%, and 94% for the msas, lj, and enron graphs respectively, while the
highest accuracy of the SA algorithm, which turned out to be obtained against the
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Figure 8.5: Performance of NeighborMatch(NM) and NS attacks (25% overlap,
msas). The curves for NM and NS attacks are generated by varying the number of
mappings (M = 100, 300, 500, 800, 1000, 1500, 2000, 2500, 3000, 4000, 5000)
and the quality of seed mappings (Q = 0%, 10%, ..., 100%) respectively. Note that
the curves for NS attacks are not standard precision/recall curves due the different
parameters for different data points. Results for other anonymization algorithms
and datasets are similar and thus omitted.

naı̈ve anonymization, was 32%, 84%, and 60%. For the k-degree anonymization
algorithm which only adds edges, both of the algorithms performed poorly on the
top 20 nodes (≤ 8%), and this was expected as discussed in Section 8.2.1. We
also tried other values for n and node overlap, and obtained similar results. We
further took the output of the SA algorithm (n = 50) as seed mappings for the NS
algorithm. The resulting precision varies from 2% to 76% depending on datasets
and anonymization algorithms, but the recall was always lower than 10%.

8.3 Rich Graphs

We further explored the performance of our algorithm on rich graphs. As de-
anonymizing the actual tweibo graph was infeasible, we simulated the process
of auxiliary graph collection and de-anonymization instead.

8.3.1 Algorithm Settings

As mentioned in previous sections, the attribute similarity measurements are de-
termined by the adversary’s domain knowledge of the graph. Herein, we introduce
the exact definitions for node-attribute similarity, edge-attribute similarity, and re-
lation similarity used in our experiments.
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Node-attribute Similarity We used three attributes, gender, birth year, and num-
ber of tweets, to measure node-attribute similarity. The similarity of gen-
der was measured in a trivial way: 1 for equal values, 1/2 if either value
is unknown, or 0 otherwise. The birth years of two users were com-
pared in this way: 1 for equal values, 1/2 if the absolute difference is
1, or 0 otherwise. The numbers of tweets were compared by r(x, y) =

min{x, y}/max{x, y}. The node-attribute similarity score SX was then
taken as the average of the three scores.

Edge-attribute Similarity The attribute of “following” relation was measured as
1 for equal values, or 0 if not equal. The other three numeric attributes were
all measured by r(x, y). The edge-attribute similarity score SY was taken
as the average of the four scores.

Relation Similarity To compare relations (i1, j1) and (i2, j2), we first calculated
the edge-attribute similarity scores of two edge pairs in opposite directions,
which were denoted as SY 1 = SY (i1, j1, i2, j2) and SY 2 = SY (j1, i1, j2, i2).
SR was then taken as the average of SY 1 and SY 2, if both edge pairs were
presented. Otherwise, the pair with a missing edge was omitted, or zero if
too many edges were missing.

8.3.2 Parameters

We kept the top K = 107 candidate pairs (see Section 7.3.2) to reduce run-
ning time and space requirement. In order to determine the proper parameter
α (see Equation (7.3)), we carried out an experiment over different choices of α
to find the best α in the sense of overall precision. We randomly extracted graph
pairs with different overlaps (2,500, 5,000, and 10,000 nodes), where the auxil-
iary graph was limited to 10,000 nodes and the target graph contained the other
nodes (about 2.3 million). The result showed that any value greater than 10−4

would decrease the overall precision. It turned out that a smaller value would not
decrease the overall precision significantly, but it disregarded the importance of
node-attributes, so we took α = 10−4 as a modest choice.
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Figure 8.6: Attack precision with different node overlap (tweibo, K = 107)

8.3.3 Evaluation

For rich graphs, we were interested in evaluating the impact of altering graph
structure and attributes on the de-anonymization performance. We modified the
graph structure by applying anonymization algorithms described in Section 8.1.2.
The k-degree anonymity approach was infeasible for rich graphs due to the at-
tributes, so we omitted it here. For the perturbation approach, it was hard to decide
the attributes of new edges, so we took the approach proposed in [28]. Briefly, for
a desired perturbation proportion p, we removed a proportion of q = p/(2 − p)
edges in both the auxiliary and target graphs independently, therefore the expected
proportion of edge overlap was (1− q)2/(1− q2) = 1− p.

Considering the node overlap is between only 0.1% and 0.4%, the result (Fig-
ure 8.6) showed reasonable precision and recall in de-anonymizing rich graphs.
Modifying the graph structure did not bring much difficulty to de-anonymization
compared with the naı̈ve approach, and different randomization strategies did not
differ much in terms of precision. Further result (Figure 8.7) showed that attributes
played important roles in de-anonymization and attribute perturbation decreased
the precision to a considerable extent. As the attributes of nodes and edges pro-
vided meaningful information to distinguish them, it was expected that attacking
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Figure 8.7: Attack precision with different attribute perturbation (tweibo, K =
107, 5,000 overlap). Results for other overlaps show similar behavior and are thus
omitted.

would be easier with such additional information even if the auxiliary graph was
rather smaller than the target graph.

8.3.4 Efficiency

According to Section 7.3.2, the running time highly depends on K (the number
of maintained top candidate pairs). We used naı̈ve anonymization as a case study
to demonstrate the performance of our algorithm with different values of K. The
result (Figure 8.8) showed that our algorithm was efficient, provided that a reason-
able amount of the outputted mappings were correct. It can also be seen that the
number of correct mappings did not increase when a certain number of candidate
pairs were reached.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

Heterogeneous information networks abound in real life but privacy preservation
in such new settings has not received the due attention. In this work, we de-
fined and identified privacy risk in anonymized heterogeneous information net-
works and presented a new de-anonymization attack that preys upon their risk.
We further experimentally substantiated the presence of privacy risk and success-
fully tested the attack in the KDD Cup 2012 t.qq dataset. In addition, we also
extended the ideas of exploiting privacy risk and de-anonymizing heterogeneous
information networks to more general graphs both theoretically and empirically.
One might find surprising the ease with which the devised attack can beat the
investigated anonymization algorithms. While we have selected a small number
of anonymization for this initial study, we have no reason to believe that other
anonymization will prove impervious to this attack. Hence, our results make a
compelling argument that privacy must be a central goal for sensitive heteroge-
neous information network publishers.

This thesis presents early results of our investigation. Planned future work in-
cludes: a) explore properties of the privacy risk metric and extend its applications;
b) identify possible solutions for defending DeHIN, particularly without much
utility loss.

A conference paper version of the key component of this thesis appears in Pro-
ceedings of the 17th International Conference on Extending Database Technology
[37]. Two extensional papers on generalizing this key component appear in Pro-
ceedings of the 23rd International World Wide Web Conference (poster paper)
[38] and ACM Transactions on Intelligent Systems and Technology [39].
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