
VStorm: Video Traffic Management By
Distributed Data Stream Processing Systems

Le Xu Klara Nahrstedt Indranil Gupta

Department of Computer Science, University of Illinois at Urbana-Champaign
{lexu1, klara, indy}@illinois.edu

Abstract
Recent published work shows that Quality of Expe-
rience (QoE) has become one of the major concerns
in the area of large-scale multimedia Internet services.
Due to the significant increase of video traffic and con-
tinuously growing need of video quality experience, we
need new management platforms for multimedia traf-
fic. Recent studies propose a variety of solutions that
address this challenge. However, due to the complexity
of algorithms, these solutions require large amount of
computational resources. On the other hand, we have
also witnessed the emergence of large-scale distributed
stream processing systems. These systems provide
real-time results for nearly all types of data streams
and computation in a massive scale. In this project,
we explore the possibility of deploying distributed data
stream processing (DSP) systems in a large-scale mul-
timedia network with dynamically changing Internet
resource.

In this paper, we use a popular distributed stream
processing system, Apache Storm to implement mul-
tiple frameworks proposed by recent published work.
Simulation results on our frameworks show that imple-
menting complex stream control strategy in DSPs can
be efficient and flexible.

1. Introduction
As more users choose Internet over cable as main re-
source of video streaming service, Internet video ser-
vice quality has now become a major concern. Studies
show that in year 2014, consumer Internet video traf-
fic has occupied 64% of all consumer Internet traffic,
while this number may rise to 80% by year 2019 [5].
The scale of the video traffic makes it challenging to
build a fully scalable platform to enable traffic monitor-
ing, analysis and control. Moreover, different from reg-

ular data transmitting model, user expectation towards
video traffic can no longer be defined by throughput
or end-to-end latency, but restrictions such as video
quality (frame rate and frame size), re-buffering rate,
and quality variations, etc. [13]. We categorize these
metrics as Quality of Experience (QoE), a quantifiable
measurement designed for Quality of Service for video
streaming services. QoE can be affected by a variety
of factors, especially unpredictable network throughput
and latencies. One of the most common approaches to
address this issue efficiently is by using bit-rate adap-
tion [10, 12, 13]; e.g., maximizing the bitrate when
network connection has sufficient bandwidth in order
to improve QoE; minimizing the bitrate when network
become congested to prevent re-buffering events. Many
recent studies [13] [10] propose designs and techniques
to address these challenges. However, these solutions
are mostly implemented inside a lower layer proto-
col [13], which may cause large computational over-
head during data transmitting.

In parallel with the emergence of Internet video
streaming network, the big data era has also witnessed
the development of distributed stream processing sys-
tems (DSPs). These systems are designed to process
queries and data streams in real time, which makes it
naturally compatible with multimedia streams (video
and audio). In the past decade there has been a wave of
studies to build this type of systems, targeting shorter
query latencies, higher throughput, and scalability. This
design leads us to question whether there exists an
DSP solution to address the bit-rate adaption chal-
lenge. In this project, we choose Apache Storm [3]
and GStreamer [8] to implement an application-layer
solution based on two existing projects. There are a
large number of techniques proposed by multimedia
system area to improve video quality in general. In

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158314184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


this work, we are going to majorly focus on solutions
proposed by two work, [13] and [10]. [13] proposes
a QoE model that defines client-side bit-rate adaption
strategy, while [10] proposes an Internet control plane
that enables bit-rate adaption and video source adap-
tion simultaneously based on prediction to the server
performance.

Note that the goal of this work is not to implement
these methods using the identical metric or techniques
described in [13] and [10], but to build a prototype
framework enabling the possibility of leveraging these
computational complex techniques with an scalable,
application-level solution. In the following sections we
are first going to explored these two works and the
systems we are going to deploy in the implementation.
Then Section 3 is going to discuss the design of these
model in terms of Storm Topologies. Finally we are
going to demonstrate simulation results and address
some questions and discussions.

2. Related Work
2.1 Client-side Bitrate Adaption
Recent published work [13] has proposed a new no-
tion of Quality of Experience for video streaming sys-
tems. Instead of using a single metric that measures the
QoE of these systems, this work proposes a flexible
mathematical model to combine multiple sub-metrics
in the same equation by different contributing param-
eters. This gives a much more general model for users
with different needs to evaluate their QoE in a single
metric, while also provides a convenient way to use a
optimization algorithm (MPC) to compute a bitrate that
can potentially optimize its QoE.

However, this optimization algorithm is rather com-
putationally heavy so that multiple techniques have to
be applied to the algorithm for it to become practical.
Specifically, in the FastMPC proposed by the paper, it
predetermines the range of possible values of each sub-
metrics, e.g., buffer level, bitrate, server throughput,
etc. The optimization computation is completed before
streaming starts, which introduces potential large start-
up time. Moreover, the paper also suggests that the
video player cannot be bundled with an external solver
due to the licencing issue.

One way to solve this problem is to implement the
algorithm itself in an underlying transmission proto-
col such as DASH [12]. However, embedding compu-
tationally heavy workload inside DASH protocol may

introduce complexity for the user to tune their QoE
metric as needed and is not recommended to achieve
an End-to-End architecture [11]. In the next section we
discuss a design to use a compositional QoE model for
bit-rate adaption by a Storm Topology. In this imple-
mentation have expanded the source of video stream
from one server to multiple servers.

2.2 Internet Video Control Plane
Work [10] discussed another solution to improve stream-
ing video quality. Instead of merely measuring the
video quality and network bandwidth from the client
side, [10] suggests adapting a middle layer between
clients and servers carrying the logic of optimization,
i.e., bitrate adaption and selection of CDNs. The paper
demonstrates examples from the real-world workload
that proves network performances from different CDNs
are unpredictable and can be largely varied by space
and time. Hence the paper proposes a control plane to
1. select target CDN based based on each client’s his-
torical CDN quality data, and 2. select proper bitrate
for the stream in order to achieve user-defined global
optimization.

The paper proposes a concrete design plan for the
control plane. Nevertheless, the paper does not address
a detailed implementation of such design, which en-
tails multiple interesting potential opportunities for fu-
ture research. These problems include the scalability of
the algorithm, interactions with CDNs, syncing among
different controllers, etc. In this project we aim to ex-
plore whether distributed stream processing systems
can tackle these challenges.

2.3 Selection of Existing Tools
GStreamer [8] is an open-source multimedia frame-
work that provides programming support for develop-
ers to build complex multimedia pipelines (as exam-
ple shown in Figure 2). In a GStreamer, each element
can serve as processing unit and has both source(s) and
sink(s) that serves as input and output of video(audio)
streams.

We also introduce Apache Storm [3], one of the
fastest and most scalable distributed stream processing
(DSP) systems. We compare the nature of this program-
ming paradigm (as example shown in Figure 2) with
Apache Storm’s programming model. The similarities
between these systems are obvious: both models pro-
cess real-time data and both models use acyclic graph
of computational component to perform tasks. In the

2



following sections we discuss the possibility of using
Storm (or other DSPs) to perform multimedia stream-
ing tasks.

Figure 1. An Example GStreamer Pipeline [4]

Figure 2. An Example Storm Topology [9]

3. Architecture and Implementation
In this section, we are going to introduce two frame-
works built to accommodate computationally-heavy al-
gorithms such as the ones proposed in [13] and [10].
Note that the the goal of this work is not to imple-
ment the algorithms proposed in these work, but to
demonstrate the possibility of leverage complex video
streaming optimization efficiently, on an application-
level system. In these frameworks, video/audio clients
are implemented by GStreamer [8]. The video qual-
ity control and resource management logic are imple-
mented by Storm [3] topology.

3.1 A Client-side Bitrate Adaption Model

Figure 3. Client-side Bitrate Adaption Architecture

Figure 3 illustrates an architecture enabling client-
side bitrate adaption. In this architecture, QoE control

and adaption algorithm is run inside a Storm Topol-
ogy on each client in parallel with the GStreamer video
client. This topology relies on statistics periodically
measured and pushed by video clients. After receiv-
ing statistics input from video client, Storm runs QoE
approximation to evaluate the quality of the video
stream, selecting appropriate frame rate and source of
the streaming. The logical workflow of the storm topol-
ogy is illustrated in Figure 4.

Figure 4. Client-side Bitrate Adaption Topology

The current implementation of a client-side bitrate
adaption is composed by 6 components:

• ClientStatRender - This operational component pe-
riodically collects and propagates client statistics.
These statistics includes client-side bandwidth, buffer
size (buffer occupancy) and current rate. Each set of
statistics collected from a client are stored in a data
structure called tuple.
• ClientQoECalculation - This operational component

collects video client statistics from ClientStatRender
and apply user-defined QoE calculation algorithm.
In our implementation, QoE can be calculated by:
QoE = α · bandwidth + β · buffer size + γ ·
frame rate

In this equation, α, β, γ are user defined parameters
specifying the importance of each sub-metric. This
bolt can also be implemented to read these parame-
ters periodically from a file so that users can change
these parameters dynamically without interrupting
current workload.
• FinalCollect - This operational component collects

the computational results and logs processing la-
tencies. It also overwrites configuration file for
GStreamer client if bitrate rate adaption operation
needs to be carried out.
• FrameRateAdjust - This operational component

handles all tuples that fail QoE checks in Clien-
tQoECalculation. It checks whether the there ex-

3



ists a frame rate that can optimize current video
stream’s quality and satisfy its QoE constraints. If
this frame rate is different from the current frame
rate but within the user defined range then the new
frame rate is propagate to FinalCollect. If the frame
rate is not within the user defined range the tuple
will be further handled by ServerSearching.
• ServerSearching - This operational component serves

tuples that cannot achieve their QoE goals streaming
from their current sources. This component pulls re-
source (available bandwidth) data from all sources
and searches source servers with adequate band-
width to improve current streaming quality. All tu-
ples processed by this component are propagated to
ServerChange. This process is placed in the down-
stream of the flow to avoid unnecessary communi-
cation with the servers.
• ServerChange - This operational component final-

izes server searching process by first overwrites con-
figuration file for GStreamer in order to notify the
new target server. It also logs the processing laten-
cies for analyzing purposes.

3.2 A Middle Layer Resource Management
Model

Figure 5. Middle Layer Resource Management Archi-
tecture

A middle layer streaming resource management
model is shown in Figure 5. A control plane between
CDNs and video clients, originally proposed by [10],
alleviates heavy computation from both clients and
servers. With the knowledge of both servers and clients
globally, the control plane runs global optimization al-
gorithm, such as traffic load balance among servers.

Figure 6. Middle Layer Resource Management Topol-
ogy

In our implementation, we Storm topology is run in
a cluster with connection to both clients and servers.
The initial design of Storm topology is shown in Fig-
ure 6. Currently, the topology workflow is similar to
the topology presented in subsection 3.1. However, in
topology deployed in a control plane, we add a com-
putational component ”ClientInfoCollectSpout” to pe-
riodically collect the information of current client in the
system. Once the data is collected, it will be processed
by the similar workflow shown in Figure 4.

3.3 Middle Layer Resource Management: An
Improved Model

Figure 7. Improved Middle Layer Resource Manage-
ment Topology

Figure 7 shows a Storm workflow enabling global
optimization. In this topology, ClientInfoCollectSpout
and ServerInfoCollectSpout learn the number of clients
and servers in the system . Then ClientStatCollect and
ServerStatCollect collect statistics from both clients
and servers. Then all data are delivered to Server-
ThroughputPredictionBolt. This component predicts
performance (bandwidth, throughput) of each server
towards every client in the system. As explained in [10],
this step is necessary since network condition var-
ied by complex factors. Another component, Clien-
tQoECalculationBolt checks QoE restrictions for ev-
ery client. Then GlobalOptimizationBolt will subse-
quently collect clients that fail to satisfy their QoE
requirements and assign new target servers based on

4



user-defined global optimization strategy, e.g., traffic
load-balancing. Finally ServerChangeSink and Final-
CollectSink finalize the computation and apply com-
putational result to configuration of every GStreamer
client.

3.4 Current Development Progress
The integration between GStreamer servers/clients and
Storm cluster for some of the models are currently be-
ing implemented. All GStreamer servers and clients
discussed in this section is largely developed from an
implemented architecture from [1]. The model dis-
cussed in subsection 3.3 is currently under develop-
ment and will not be involved in the simulation.

4. Simulation
In order to measure possible performance of Storm
topologies discussed in Section 3 we perform groups of
simulation for both middle layer resource management
model and middle layer resource management model.
In order to serve real time video streaming application,
it is critical for the control platform to process with
minimal latencies. As a result in our simulation we are
going to use latencies as our main metric.

4.1 Evaluation Setup
We perform evaluation on a 12-node cluster on Emu-
lab [7]. Each node [6] in the cluster is equipped with
2.4 GHz quad core processor, 12 GB RAM, and 750
GB storage space. The cluster is internally linked by
100 Mb LAN network.

Among 12 nodes, 9 of the nodes are used to set up a
Storm cluster (1 for Nimbus host and 8 for Supervisor
hosts). We varied the number of servers (in Client-side
model) and the number of both clients and servers (in
Middle layer model) by increasing the number of asyn-
chronous threads updating the client statistic file and
server bandwidth file. These files are synced to Storm
cluster (and pushed back to clients) by underlying NFS.

4.2 Execution Latency
Figure 8 and Figure 9 show performance of Storm
topology by total execution latencies for Client-side bi-
trate adaption and middle layer resource management
model respectively. In these figure vertical axis marked
the number of servers we use in each simulation run,
while horizontal axis marked the total execution la-
tency in milliseconds. We performed two sets of ex-
periments with varied fetching rate: 500 ms (show in

Figure 8. Client-side Bitrate Adaption Model: Total
Execution Latencies

Figure 9. Middle Layer Resource Management
Model: Total Execution Latencies

the plot as blue bars) and 100 ms (show in the plot as
red bars). Fetching rate indicates the time period be-
tween each data fetch initiated by the Storm topology.
And the total execution latency we measure indicates
the total amount of time each tuple spends in opera-
tional components discussed in Figure 3 and Figure 6.

From Figure 8 we observe client-side bitrate adap-
tion model achieves sub-second latencies: less than
12ms for all scenarios for 500ms fetching period and
less than 7ms for all scenarios for 100ms fetching pe-
riod. Interestingly, we can also conclude from this plot
that neither increasing number of servers nor increasing
the number of data fetchings necessarily affect topol-
ogy’s latency. This is possibly caused by non-congested
execution under abundant resources. From Figure 9 we
can also make the similar conclusion for middle layer
management model.

5



Figure 10. Middle Layer Resource Management
Model: Total End-to-End Latencies

4.3 End-to-End Latency
Figure 10 illustrates the average End-to-End latency of
middle layer management model. End-to-End latency
indicates the difference between the time when the tu-
ples being generated and the time when the tuples be-
ing processed by the last component in the topology.
Comparing to execution latency, end-to-end latency in-
volves both processing time and network transmission
time.

Based on Figure 10 we observe that similar to ex-
ecution latency, end-to-end latency is not affected by
increasing amount of servers or fetching rate. Both
latency measurements indicate that under changing
workload of video streaming network, Storm’s perfor-
mance can be good and stable.

Comparing to Figure 9 the latencies we observe in
Figure 10 are generally shorter in the same condition,
due to the fact that two measurement methods are used
to generate these results. We use Storm internal metric
to measure execution latency, this value would also in-
volve initial large outliers generated when the topology
starts. For measuring end-to-end latency we manually
select data points after the topology has stabilized.

4.4 Varied Data Update Rate
Finally, we study the impact of data update rate towards
client-side bitrate adaption model. Figure 11 shows the
performance of Storm topology under different data
update frequencies. In group A experiment, statistics
is updated by clients every 5 seconds and bandwidth
information is updated by server every 1 second. In
group B experiment we decrease the update period to
become 50% of the original. Based on result shown in

Figure 11. Client-side Bitrate Adaption Model: Varied
Update Rate

Figure 11, we can conclude that the data update rate
has little effect on topology performance.

5. Discussion
Using Storm To Build Video Streaming Pipeline:
One of the initial goals for this work is to explore
whether there is a possibility to use Storm (or other
distributed data stream processing systems like Spark
Streaming [14], Apache Flink [2]). After investigation
on GStreamer framework I found it is possible to adapt
these framework to video data streaming. However it
will take more effort discovering lower level API to
combine fundamental video streaming functionality
into these applications.

References
[1] CS414: Multimedia System Design. https:

//courses.engr.illinois.edu/cs414/sp2014/,
2014. ONLINE.

[2] Apache Flink. https://flink.apache.org, 2016.
ONLINE.

[3] Apache Storm. http://storm.apache.org, 2016.
ONLINE.

[4] Bins and pipelines. https://gstreamer.

freedesktop.org/data/doc/gstreamer/head/

manual/html/section-intro-basics-bins.

html, 2016. ONLINE.
[5] Cisco Visual Networking Index: Forecast

and Methodology, 2014-2019 White Pa-
per. http://www.cisco.com/c/en/us/

solutions/collateral/service-provider/

ip-ngn-ip-next-generation-network/white_

paper_c11-481360.html, 2016. ONLINE.
[6] D710. https://wiki.emulab.net/wiki/d710,

2016. ONLINE.

6

https://courses.engr.illinois.edu/cs414/sp2014/
https://courses.engr.illinois.edu/cs414/sp2014/
https://flink.apache.org
http://storm.apache.org
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/section-intro-basics-bins.html
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/section-intro-basics-bins.html
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/section-intro-basics-bins.html
https://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/section-intro-basics-bins.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
https://wiki.emulab.net/wiki/d710


[7] Emulab. http://emulab.net/, 2016. ONLINE.
[8] GStreamer, open source multimedia framework.

https://gstreamer.freedesktop.org, 2016.
ONLINE.

[9] Storm Tutorial. http://storm.apache.org/

releases/current/Tutorial.html, 2016. ON-
LINE.

[10] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Sto-
ica, and H. Zhang. A case for a coordinated internet
video control plane. In Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communica-
tion, pages 359–370. ACM, 2012.

[11] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-
end arguments in system design. ACM Transactions
on Computer Systems (TOCS), 2(4):277–288, 1984.

[12] I. Sodagar. The mpeg-dash standard for multimedia
streaming over the internet. IEEE MultiMedia, (4):62–
67, 2011.

[13] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-
theoretic approach for dynamic adaptive video stream-
ing over http. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communi-
cation, pages 325–338. ACM, 2015.

[14] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Sto-
ica. Discretized streams: An efficient and fault-tolerant
model for stream processing on large clusters. In Pro-
ceedings of the 4th USENIX conference on Hot Topics
in Cloud Computing, pages 10–10. USENIX Associa-
tion, 2012.

7

http://emulab.net/
https://gstreamer.freedesktop.org
http://storm.apache.org/releases/current/Tutorial.html
http://storm.apache.org/releases/current/Tutorial.html

	Introduction
	Related Work
	Client-side Bitrate Adaption
	Internet Video Control Plane
	Selection of Existing Tools

	Architecture and Implementation
	A Client-side Bitrate Adaption Model
	A Middle Layer Resource Management Model
	Middle Layer Resource Management: An Improved Model
	Current Development Progress

	Simulation
	Evaluation Setup
	Execution Latency
	End-to-End Latency
	Varied Data Update Rate

	Discussion

