
c© 2016 Shuting Li

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158314162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

STARL: TOWARD A WEB INTERFACE FOR DISTRIBUTED ROBOTICS

BY

SHUTING LI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Bachelor of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Adviser:

Sayan Mitra

ABSTRACT

Most first-time users find it complicated to use the StarL programming frame-

work, especially when they have little experience with Java. The major chal-

lenges for programming distributed robotic applications are (1) the learning

curve for Java,(2) setting up the StarL development environment (3) learning

curve for effectively using the Java functions in StarL. We therefore intro-

duce the StarL web interface that provides a more user-friendly access to

the StarL programming framework while emphasizing more on the StarL

high-level coordination of distributed robots. The StarL web interface en-

ables researchers to implement their applications on distributed robots in

the StarL high-level language, run the project and then plot the experiment

data for analyzing the robot’s traces. The main contribution of this thesis

is the user-friendly interface with syntax highlighting and data visualization

of the robots’ traces obtained through simulation. A Formation example

application will illustrate the many aspects of the StarL web interface.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I owe my gratitude to all those people who have provided generous help and

because of whom my research experience has been one that I will cherish

forever.

My deepest gratitude is to my adviser, Prof. Sayan Mitra. I have been

fortunate to have an adviser who gave me the freedom to explore on my

own and the guidance to meet high standards. His insightful comments and

constructive criticisms at different stages of my research helped me finish this

thesis.

The project lead, Yixiao Lin, has been always there to listen and give

advice. I am deeply grateful to him for the long discussions that helped

me sort out the technical details of my work. I am also thankful to him

for encouraging the use of correct grammar and consistent notation in my

writings and for teaching me how to express ideas.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivations for simulator for distributed robots 1
1.2 Introduction to the StarL web interface 1
1.3 Contributions of this thesis . 2

CHAPTER 2 FLOW OF THE STARL WEB INTERFACE 3
2.1 Example: Formation application 4
2.2 StarL high-level language . 5
2.3 Flow of StarL web interface 6
2.4 Deployment of different components 8

CHAPTER 3 ARCHITECTURE FOR WEB INTERFACE 10
3.1 Mapping between the interface and the StarL 10
3.2 File system . 11
3.3 Logging information . 13
3.4 Plotting . 14

CHAPTER 4 CONCLUSION . 17

REFERENCES . 18

v

CHAPTER 1

INTRODUCTION

1.1 Motivations for simulator for distributed robots

In the past few years, we are witnessing a large growth in the robotics indus-

try. In the effort to make robotic systems available to more users, combin-

ing robotic systems with easier access has become a recent trend. Faculty

and researchers at Georgia Tech developed “robotarium”[1], which allows

researchers and students from anywhere to upload their own programming

code and watch it compile on the robots in real-time via streamed video

and receive scientific data results. Researcher from Commotion Laboratory

at UCLA also conducts remote experiments on multiple mobile robots [2].

Such robot systems are generally able to provide users with a programming

environment including compiler, simulator and debugger. In addition to that,

importance in providing an easier access and stable environment on which

the robotic system runs also need to be addressed. Relative work has been

done on providing a distributed virtual environment and applies it to mobile

robot teleoperations over the Internet[3]. One such attempt is to use a vir-

tual reality world generator to mimic the system of an actual robotic system

settings. However our goal is to build the interface with more intuitive in-

structions and representations while at the same time maintain the powerful

features when developing distributed robotic system applications.

1.2 Introduction to the StarL web interface

With the ideas of building a distributed robotic system with easy access and

a user-friendly interface in mind, we hence introduce the StarL web interface,

a programming web interface for the StarL high-level language.

1

The StarL open-source programming framework[4] provides a Java-based

framework that is comprehensive for distributed robotic system development.

While the StarL web interface requires less knowledge of Java, with the

simpler web interface and StarL high-level language, users are able to use high

level language to develop their own applications and research on verification

problems.

1.3 Contributions of this thesis

This paper will provide a description on how to use the StarL web interface

with an example application, introduce several features that could improve

the user experience, such as syntax highlighting, error notifications, file sys-

tem and data visualization.

In chapter 2, we will introduce the StarL web interface with the Forma-

tion application, and mainly focus on the StarL high-level language and the

standard flow of applications. Then in chapter 3, the architecture of the

StarL web interface will be demonstrated with further explanation of the file

system, logging and visualization. Lastly, we will summarize the accomplish-

ments of the StarL web interface to conclude the paper and show the future

work in chapter 4.

2

CHAPTER 2

FLOW OF THE STARL WEB INTERFACE

Without the StarL web interface, users who are not familiar with Java have

to download the Java Environment first, and they need to learn the Java

programming language. To shorten the learning curve for implementing ap-

plications using the StarL framework, the StarL web interface, shown in

Figure 2.1, can handle editing coding scripts, compilation and data visual-

ization. The StarL web interface is constructed on Apache servers as an

integrated development environment providing a coding editor, build tools

and data visualization. Here we use the Formation application as an example

to explain the flow of the StarL web interface.

Figure 2.1: A screenshot of the StarL web interface

3

2.1 Example: Formation application

The formation application aims to form a regular polygon among the robots.

The following code will take the random position as initial position and then

update the position of robot accordingly, as stated in [5].

Figure 2.2: The Formation application code showan in the editor of the
StarL web interface

The code for the formation application is shown in the Figure 2.2, written

in StarL high-level language. There are three states in total: init, update and

wait. The first 11 lines are for initialization. In line 10, the function reads

the current positions of three robots and goes to the next stage. Then, the

update state will calculate the next target from the built-in function, bisector

in line 16. The path will be generated by the doReachAvoid function in line

4

17, which will take the target and obstacles as input, calculate a path that

can reach the target while avoiding the obstacles. The wait state will wait

until it receives the done signal from the simulation. The code will check the

condition in line 23. It will update the positions in line 24 and go back to

the update function in line 26.

2.2 StarL high-level language

When users first open the StarL web interface, it will automatically open an

example code with detailed comments, as shown in the figure 2.1, which can

provide information on how to implement project using the StarL high-level

language. The editor will also be able to show highlighting and detect syntax

error.

The syntax highlighting in the browser is provided by the Ace editor.

Among all the user-friendly editors, such as Sublime, Vim, Brackets, Ace

editor is a lightweight, open-source editor in JavaScript that can be easily

embedded into web interface. For the StarL high-level language used in the

web interface, we create a new mode with a set of highlighting rules.

Keyword agent, MW, SW, init, exit, pre, eff, else, if,

shared, atomic, failed, done

Data type float, int, boolean, Itemposition

Constant true, false

Built-in function getObstacles, getId, getPos, doReachAvoid,

size,

Table 2.1: Table for different types of highlighting

We will highlight the keyword, data type, constant and built-in function

with four different color, as shown in Table 2.1. The agent will be used for

application name. MW and SW stands for multi-writer and single-writer.

init and exit, are for initialization state and exit state respectively. Con-

ditional statements: pre and eff will be used together for the precondition

and effect; if and else are also permitted. Date status can be determined

as two categories: shared and atomic. The current state of the robot’s mo-

tion will be saved in failed, active and done. As stated in [6], the failed

5

status indicated the robot has hit the obstacles.The active status means the

ReachAvoid primitive is in grogress. When the robot has reached the tar-

get point, done will be true. There are four data types: float, int,double,

string, boolean and Itemposition in StarL high-level language for users to

declare. Constants are true, false and numbers. Built-in function can pro-

vide convenient use for coding. We can use the helper functions provided

by StarL: getObstacles, getId, getPos, doReachAvoid, and size . The primi-

tive getObstacles will return the positions of obstacles. The getId will return

the index of current robot. From getPos, we can get the current position of

the robot. The primitive doReachAvoid can calculate a path to the target

position avoiding the obstacles with the target and obstacles inputs. size

will return the size of data array. The web interface also provides a proper

syntax highlighting to give users a hint of what types of variable they are

using and where there is possibility that an error happens. Figure 2.2 serve

as an example for highlighting.

2.3 Flow of StarL web interface

Figure 2.3: The flow chart for the StarL web interface

The web interface will provide an easier access for StarL so that users can

analyze their app easily by using merely several buttons. The flow of the

StarL web interface is simple, as shown in Figure 2.3.

1. Users can write their own scripts. Or they can load the previous ap-

6

plication by typing the name of the project in the text-box and click

the “Load” button, which will evoke the load function to read the file

through the file system at the server side.

2. After programming, click the “Run” button. The server will save the

file the user is currently editing to the StarL server under the user-

specified file name in the text-box.

3. If compilation failed, an error message will appear beside the run but-

ton. Otherwise, a success message will be shown.

4. Then the server will compile the StarL high-level code into scripts in

Java. StarL will run the Java scripts and generate the log file before

the server analyzes the log file and outputs the data file.

5. After the file is successfully compiled and run, the user can then choose

how to plot the results. First, choose the robotID(s). Then, choose the

variables for the x and y axes. Finally, click “Plot” button.

6. After the Gnuplot function at the server side is evoked, the interface

will display the plotting. Users can freely change the setting for graphs

and research further with different plotting. For example, shown in 2.4,

is a y vs x plot of iRobot0.

7

Figure 2.4: Plot from formation application

2.4 Deployment of different components

Interface deployment follows the rule of providing intuitive meaning. The

interface is divided into two parts with the control on the left and editor

on the right. For the control panel, a text input cell is place to specify the

application name for loading or running a previous project. Underneath it a

“load” and a “run” button are placed to load the code or save, compile and

run the current scripts. A few check boxes are then place below to select

for diverse plotting mode. With the check boxes, users can choose the set of

data for a certain robot or a group of robots to be shown in the graph. An

additional button named “Plot” is placed beneath it to plot the patterns.

The data visualization will shown under the ”Plot” button, as shown in

Figure 2.5. Users can right-click on the plot and save the image.

8

Figure 2.5: The result of the formation application

9

CHAPTER 3

ARCHITECTURE FOR WEB INTERFACE

The architecture the for StarL web interface can be divided into two sides:

the client side and the server side. With the constant communication be-

tween the client and server, the StarL web interface can therefore provide

useful features such as file system, StarL simulation and data visualization.

The Apache HTTP server[7], a public-domain web server which is devel-

oped as an open-source software, is deployed on the Amazon Web Service

EC2 (Elastic Cloud Computing) [8]. The Apache web server is fast, reliable

and secure. It delivers contents that can be accessed through the Inter-

net. Apache is robust in handling large volumes of traffic on a single server.

Apache modules encapsulate a wide number of functionalities including cryp-

tographic protocols like SSL, server-side programming languages like PHP,

and load balancing across multiple servers to handle large amounts of traf-

fic. The StarL web interface mainly relies on PHP for the file system and

commands on a bash terminal.

3.1 Mapping between the interface and the StarL

1. First, on the client side, the web interface will send the contents of the

editor to the server side. The server side will save all the contents in

the file system as StarL high-level code.

2. Then the-high level code will be compiled to Java code through the

compiler. Also, in the setting of project, for example, the number of

robots will be used to generate the main.java file.

3. The StarL core component will then generate a simulation with these

java files. The log information generated will be used to plot some

graphs with Gnuplot. The graph will be sent to the client side and

10

displayed in the interface.

Figure 3.1: The structure of the StarL web interface

3.2 File system

During the research on different area with distributed robots, users might

implement multiple projects using the StarL web interface. The file system

on the server side allows the users to save or load a certain project or switch

between different projects.

Provided with only the name of the application, for example, myApplica-

tion, the file will be saved in the current folder of the working path with the

name of myApplication. If users would like to save the file in a new folder,

use newFolder/myApplication. The folder will be automatically created and

the file will be saved in the new folder. Since the ACE editor is using HTML,

we need to send XMLHttpRequest to evoke the PHP function. The Apache

server is used in supporting PHP scripts. In the PHP scripts, use the filepath

and the file contents from user inputs to save the file. The saveTo function in

JavaScript on the client side will save the script in the current editor to the

specific path on the server side. First, it will create the XMLHttpRequest

11

object in line 2. Then it can get the contents of current editor in line 5. The

path and the contents will be marked in line 6. Send the XMLHttpRequest

in line 11. The function in line 15 will check the status of the process and

display the return data.

1 function saveTo (fn) {
2 var hr = new XMLHttpRequest () ;

3 var u r l = "saveTo.php" ;

4 var ln = env . e d i t o r . g e t S e s s i o n () . getValue () ;

5 var vars = "path="+fn+"&contents="+ln ;

6 hr . open ("POST" , ur l , true) ;

7 hr . setRequestHeader ("Content-type" , "application/x-www-form-

urlencoded") ;

8 hr . onreadystatechange = function () {
9 i f (hr . readyState == 4 && hr . s t a t u s == 200) {

10 var r e tu rn data = hr . responseText ;

11 document . getElementById ("status") . innerHTML = return data ;

12 }
13 }
14 hr . send (vars) ;

15 document . getElementById ("status") . innerHTML = "processing...

" ;

16 }

The script in PHP file on the server side will save the file with contents and

file path. The function will open the file to get existing content in line 350.

Change the contents of the file in line 352 with the fileputcontents function.

Then the Savedto will be sent back to the client side and displayed in the

interface.

1 <?

2 i f ($ POST [’ path ’])

3 {
4 $ f i l e = $ POST [’ path ’] ;

5 $current = $ POST [’ contents ’] ;

6 f i l e p u t c o n t e n t s ($ f i l e , $cur rent) ;

7 echo Savedto ;

8 }
9 ?>

With the XMLHttpRequest and Php code above, we can have access to

the filesystem, and therefore provide a better editing experience for users.

12

3.3 Logging information

Table 3.1: An example of logging information for iRobot.

RobotID Timestamp Type X Y Z Orientation

iRobot0 660 POSITION 5 -7 0 8.25

iRobot0 760 POSITION 5 -5 0 16.5

Table 3.2: An example of logging information for quadcopter.

RobotID Timestamp Type X Y Z Roll Pitch Yaw Force
quadcopter0 530 POSITION 4519 1334 167 110.0 0 0 464
quadcopter0 605 POSITION 4519 1334 204 110.0 0 0 504

Logging file will be generated by the StarL after each run, which contains

certain formatted message with meaningful data. Tables 3.1 and 3.2 are ex-

amples of logging information generated by StarL core component. We have

two types of built-in models: iRobot and quad-copter. IRobot is a ground

robot, which is similar to the Roomba, the robotic vaccum cleaner. The

quad-copter is the standard research-used quad-copter. In table 3.1, logging

for iRobot contains the robotID, timestamp, information type, coordinates

x, y, z and the orientation in degree. In table 3.2, logging for quad-copter

contains the robotID, timestamp, information type, coordinates x, y, z and

the orientation in three dimensions(roll, pitch and yaw) and the force to lift

the quadcopter. The analyzing function in Python will deal with the logging

file and then output a data file that is readable for Gnuplot.

The Python program for extracting the data out of the logging files will be

called when the client side send a XMLRequest to evoke the PHP file. Then,

a command “python readFiles.py filePath” will give the path to the file for

Python program so that it can locate the file and analyze the data. With

the input file, readFile programme will extract the data from each different

robots and then save the data in separate files so that plotting programme

can easily read the data from different robots

13

3.4 Plotting

To generate the graphs in the web interface for further analysis, we employ

Gnuplot, a command-line driven plotting tool so that we can send bash

commands by PHP files to plot graphs. It is designed for scientists and

researchers to visualize mass data [9].

After the server finished running the project and analyzing the logging files,

Gnuplot can read the output data file and generate a graph with correspond-

ing variables for the x, y axes. Since the Gnuplot is command-line driven,

we can send commands to a terminal by using a similar method as stated

in Section 3.2. The project will use the same function for XMLHttpRequest

but with different PHP scripts. We will first use a Python function to write

the Gnuplot scripts with the settings from the front-end. Users can change

the number of robots they want to simulate by settings in control panel. In

the web interface, users get to choose the variable they would like to explore.

Figure 3.2: y vs x with iRobot

14

Figure 3.3: y vs x with quad-copter

Figure 3.4: x, y vs t with iRobot

15

Figure 3.5: Multiple robots

The user can choose how many robots to visualize in a graph. If we plot y

vs. x graph, it will show a graph of the trace and any obstacles in the current

map, as shown in Figure 3.2. Compared to the trace of iRobot (Figure 3.2)

and quad-copter (Figure 3.3), we can find that quad-copter can easily get

overshot since the speed is faster than iRobot. If we choose x vs. t or y

vs. t, users can estimate the speed or acceleration through the graph, as

shown Figure 3.4. The data visualization also supports plotting for multiple

robots, for example, Figure 3.5. We check all the boxes for the robots we

want to explore, and the plot will use different colors for various robots

and provide a color legend so that users can compare the behaviors among

different machines.

16

CHAPTER 4

CONCLUSION

The StarL web interface is intuitive, easy to use yet powerful and provides

the functionality and reliability from StarL. The features such as the file

system, logging analysis, and plotting data support the convenient operation

in the interface. The syntax highlighting, buttons and check boxes on the

client side also adds to the ease of use. Users who focus on the applications

of distributed robots can hence save a lot of time on simulation and analysis

of the robots’ behaviors since the StarL web interface shortens the learning

curve of programming. In the future, we will further develop the data visu-

alization with real-time animation of the simulation using WebGL. Syntax

check will also be a direction to provide a more helpful tool for programming

distributed robot applications.

For more information about StarL web interface click on the following link:

https://github.com/shutingli/StarLWebInterface/tree/master for further in-

formation.

17

https://github.com/shutingli/StarLWebInterface/tree/master

REFERENCES

[1] D. Pickem, E. Squires, and M. Egerstedt, “The robotarium: An open,
remote-access, multi-robot laboratory.”

[2] Y. Cao, T.-W. Chen, M. D. Harris, A. B. Kahng, M. Lewis, and
A. Stechert, “A remote robotics laboratory on the internet,” Proc. INET-
95, Honolulu, 1995.

[3] M. Matijasevic, K. P. Valavanis, D. Gracanin, and I. Lovrek, “Application
of a multi-user distributed virtual environment framework to mobile robot
teleoperation over the internet,” Machine Intelligence & Robotic Control,
vol. 1, no. 1, pp. 11–26, 1999.

[4] Y. Lin and S. Mitra, “Starl: Towards a unified framework for program-
ming, simulating and verifying distributed robotic systems,” in Proceed-
ings of the 16th ACM SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems 2015 CD-ROM. ACM, 2015,
p. 9.

[5] Y. Lin, S. Mitra, and S. Li, “Porting code across simple mobile robots,”
Submitted for review of the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), 2016, submitted for review.

[6] Y. Lin, G. Ritwika, and S. Mitra, “Starl framework for program-
ming,simulating and verifying distributed robotic applications,” in Sub-
mitted for review of the ACM Transactions on Embedded Computing Sys-
tems(TECS). ACM, 2016.

[7] R. T. Fielding and G. Kaiser, “The apache http server project,” Internet
Computing, IEEE, vol. 1, no. 4, pp. 88–90, 1997.

[8] E. Amazon, “Amazon web services,” Available in: http://aws. amazon.
com/es/ec2/(November 2012), 2015.

[9] J. Racine, “Gnuplot 4.0: A portable interactive plotting utility,” Journal
of Applied Econometrics, vol. 21, no. 1, pp. 133–141, 2006.

18

	CHAPTER 1 Introduction
	Motivations for simulator for distributed robots
	Introduction to the StarL web interface
	Contributions of this thesis

	CHAPTER 2 Flow of the StarL web interface
	Example: Formation application
	StarL high-level language
	Flow of StarL web interface
	Deployment of different components

	CHAPTER 3 Architecture for web interface
	Mapping between the interface and the StarL
	File system
	Logging information
	Plotting

	CHAPTER 4 Conclusion
	REFERENCES

