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Abstract

In this thesis I investigate potential optimizations for the K-SVD algorithm (using 

Orthogonal Matching Pursuit) to create a sparse basis representation of probability density 

functions (PDFs), as implemented by NCSA research affiliate Matias Carrasco Kind and Professor 

Robert J. Brunner. The implementation these scientists engineered is currently being used to 

compress PDFs of photometric redshifts (i.e., distance estimates) for galaxies by about 90%. 

This implementation allows end-users to easily reconstruct the original PDF with accuracies 

better than 98%. As we continue to mine large, photometric sky surveys, photometric redshift 

PDF storage will need to scale appropriately; thus, meaningful advances in this algorithm's 

implementation will serve to demonstrably benefit our scientific ability to explore the Universe 

and to expand our cosmological understanding. However, the existing implementation of the 

algorithm is limited by run time—an issue that continues to grow more important as the 

amount of data surveys acquired becomes larger. The existing implementation utilizes SciPy, a 

scientific computing Python library. This past semester, I have explored this implementation by 

developing and testing alternative approaches to the core algorithms in C++, beginning with 

different linear algebra libraries. In my initial tests, I found that limitations in Eigen, a C++ linear 

algebra library, make it difficult to accurately reproduce both the results and the exaction speeds 

due to the optimizations that NumPy, the Python numerical library, already has implemented.  

Next, I pivoted to Armadillo, another C++ linear algebra library, where I discovered that the 

primary algorithm runs slightly quicker than its Python counterpart. This research is an ongoing 

project, and I am excited to continue my investigations into hardware assists, specifically in 

testing the efficiency of GPU-accelerated computation (NVBLAS). Once I have identified an 

optimization, I look forward to implementing Batch Orthogonal Matching Pursuit, an algorithm 

more suited for large sets of PDFs over a single dictionary, and, if time permits, an algorithm 

that can be extended to support two-dimensional PDF representations. 

Subject Keywords: Signal Processing, PDF Compression, Photometric Redshift Estimations, NumPy, SciPy, 

Armadillo, Eigen  



iii 
 

 

Acknowledgments 

Special thanks to NCSA research affiliate Matias Carrasco Kind and Professor Robert J. Brunner for all 

their mentorship throughout the research. 

Thank you to Professor Smaragdis for co-signing my ECE Senior Thesis.  

 

  



iv 
 

Contents 

 

1. Introduction…………………………………………………………………………………………………………………………………………1 

1.1 Purpose………………………………………………………………………………………………………………………………………….1  

2. Core Algorithm…………………………………………………………………………………………………………………………………….3 

2.1 Introduction to Algorithm….…………………………………………………………………………………………………………..3 

2.2 K-SVD...…………………………………………………………………………………………………………………………………….......3 

2.3 Orthogonal Matching Pursuit with Cholesky Decomposition………………………………………………………….4 

3. Design Decisions………………………………………………………………………………………………………………………………….7 

3.1 Original Implementation………………………………………………………………………………………………………………..7 

3.1.1 NumPy…………………………………………………………………………………………………………………………………….7 

3.2 Choice of C++…………………………………………………………………………………………………………………………………8 

3.3 Choice of Linear Algebra Library…………………………………………………………………………………………………....9 

3.3.1 Eigen……………………………………………………………………………………………………………………………………….9 

3.3.2 Armadillo………………………………………………………………………………………………………………………………10 

3.4 Data……………………………………………………………………………………………………………………………………………..11 

4. Results…………………………………………………………………………………………………………………………………………......12 

   4.1 Numba………………………………………………………………………………………………………………………………………….12 

   4.2 Eigen.…………………………………………………………………………………………………………………………………………….12 

   4.3 Armadillo………………………………………………………………………………………………………………………………………13 

   4.4 Running Time Comparisons…………………………………………………………………………………………………………..14 

   4.5 Comparison of Original PDF with Sparse Basis PDF………………………………………………………………………..15 

5. Conclusion…………………………………………………………………………………………………………………………………………18 

References……………………………………………………………………………………………………………………………………….......19 

  



v 
 

 

Abbreviations/Definitions 

 GPU - Graphics Processing Unit 
 SVD - Singular Value Decomposition 
 GCC - GNU Compiler Collection 
 PDF - Probability Distribution Function 
 NCSA - National Center for Supercomputing Applications 
 BLAS - Basic Linear Algebra Subprograms 
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1. Introduction  

In this chapter, I will introduce the issues surrounding the recent growth in galaxy surveys and 

photometric redshift PDFs, which are estimations of the cosmological redshift, or approximate distance, 

of galaxies by applying statistical techniques to photometric sources [1].  A redshift is an effect by which 

the frequency of a signal, such as a sound or light wave is affected by its’ movement towards or away 

from the receiver [2]. More specifically, as a sound wave, for example, moves away from you, the 

frequency is stretched into lower frequencies [2].   

1.1 Problem 

As technology to mine photometric surveys continues to advance, the digital storage needed to house 

photometric redshift PDFs is becoming increasingly expensive. Photometric survey sizes have grown at a 

seemingly exponential rate. In the 1980s, the DPOSS survey was created at roughly 3 TB of data. It is 

expected that newer sky survey projects, such as SKA, will require data storage units of an estimated 4.6 

exabytes [3]. Even further, the LSST, or Large Synoptic Survey Telescope, will observe tens of billions of 

objects and several billion galaxies [4]. As observations continue to grow, it has become a much more 

considerable challenge to store the data and process it within a reasonable amount of time.  NCSA 

research affiliate Matias Carrasco Kind and Professor Robert J Brunner present the K-SVD algorithm 

(using Orthogonal Matching Pursuit) to create a sparse basis representation of probability density 

functions (PDFs) as a potential solution to the large storage complexity. In this paper, I will discuss my 

potential optimizations to Professor Brunner and Carrasco Kind’s work.  

1.2 Purpose 

The need for photometric redshift PDFs is increasing. Large photometric surveys like the Dark Energy 

Survey are probing galaxies that are often too distant to be observed spectroscopically [1].  

Furthermore, many cosmological measurements such as galaxy clustering, weak lensing, and more rely 



2 
 

on the accuracy of measured distances to the galaxies; these measured distances rely on photometric 

redshift PDFs to get accurate results [1]. Carrasco Kind and Brunner’s paper refers to a paper done by 

Meyers et al. that mentions that the measurement of a two-point angular quasar correlation function 

has been improved by nearly a factor of four by using full redshift PDFs instead of a single redshift 

estimation [1],[5]. In conclusion, astronomers are thus able to probe into much larger volumes of 

photometric survey data with these large scale estimations.  
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2. Core Algorithm 

2.1 Introduction to Algorithm 

 This thesis investigates potential speed optimizations for the K-SVD algorithm (using orthogonal 

matching pursuit) to create a sparse basis representation of probability density functions (PDFs), as 

implemented by NCSA research affiliate Matias Carrasco-Kind and Professor Robert J. Brunner. Their 

implementation is based on an optimized version of the K-SVD algorithm, developed by the Israel 

Institute of Technology. This optimized version utilizes orthogonal matching pursuit with Cholesky 

decompositions.  

2.2 K-SVD 

K-SVD is an algorithm based on the k-means algorithm used to construct dictionaries for sparse 

representations of signals. More specifically, the algorithm creates an over-complete dictionary that 

contains a satisfactory amount of prototype signals, which are referred to as atoms, to represent the 

data [6]. Over-complete dictionaries are key to the algorithm as they allow for higher sparsity of signal 

representation than other options such as orthogonal basis dictionaries [71].  Signals are then able to be 

described by linear combinations of these atoms, thus reducing the storage complexity [6]. 

Mathematically, the algorithm relies on a sparsity assumption, which can be described by the following 

mathematical statement: 

𝛾 = 𝐴𝑟𝑔𝑚𝑖𝑛𝛾  ||𝛾||0 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑇𝑜 ||𝑥 − 𝐷𝛾||2
2 ≤ 𝜖  . 

𝛾 is the sparse representation of x, 𝜖 is the error tolerance, and || ⋅ ||0 is the pseudo norm which counts 

the number of non-zero entities [6]. In other words, we are trying to find a sparse representation of x 

that maintains a sparse vector and maintains a low error from the original signal. One method to solve 

the sparse approximation problem is to utilize the orthogonal matching pursuit algorithm [8]. 
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2.3 Orthogonal Matching Pursuit with Cholesky Decomposition 

Orthogonal matching pursuit with Cholesky decomposition presents a much faster alternative to K-SVD 

while achieving the same results. In a paper by primary author Ron Rubinstein, a Ph.D. graduate in 

Computer Science at Israel Institute of Technology focusing on image and signal modeling, he reports on 

a more efficient approach to K-SVD approximations and the use of batch orthogonal matching pursuit to 

perform sparse coding operations [8]. The goal of the algorithm is to represent a PDF using a set of basis 

functions defined by the following mathematical expression:  

𝑝𝑧𝑘  =  𝐷𝛿𝑘  +  휀𝑘   

 D represents the dictionary of basis functions. This can also be described as a matrix of basis 

functions of size n x m, where m > n. Each 𝑑𝑗  column in the sparse matrix represents a basis function 

that is 𝑙2 normalized. I.e. √∑ |𝑥𝑘|2𝑛
𝑘=1 = 1 [8] .  

 The goal of orthogonal matching pursuit is to find, for each galaxy, an optimal vector 𝛿𝑘that 

minimizes the amount of non-zero entities to maintain the sparsity constraint and reduce the amount of 

residual error given 휀𝑘[9]. Orthogonal matching pursuit does this by taking a given PDF, searching 

through the dictionary to find the basis function that best reduces the residual vector at the current 

iteration, then recalculating the residual vector 휀𝑘 excluding the new basis function[9].  

Mathematically, at the high level, orthogonal matching pursuit boils down to the following: 

i. Define the residual vector 휀𝑘 = 𝑝𝑧𝑘. Create an empty set of basis functions 𝐵𝑘, an 

empty vector 𝛿𝑘and set i = 0, which represents the current iteration [94].  
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ii. Compute the current set of basis functions through matrix multiplication. Here, we want 

to find the column vector 𝑑𝑏 from the dictionary D that maximizes the projection of the 

residual vector, 𝜖𝑘. Thus, we come across the following mathematical expression [9]:  

  𝑑𝑏
𝑖 = 𝑚𝑎𝑥 |𝑑𝑗

𝑇 ⋅ 휀𝑘
𝑖 |, where 𝑑𝑗  𝜖 𝐷 

 Add the basis function selected from 𝑑𝑏
𝑖  to the set 𝐵𝑘[9]. 

iii. Orthogonally project the original PDF with all selected basis functions, where 𝑤𝑘  is a 

temporary vector holding the coefficients of the selected basis functions. 

 𝑤𝑘
𝑖 = 𝐵𝑘

𝑇 ⋅ 𝑝𝑧𝑘 [9] 

iv. Update the residual vector by using the temporary vector. 

휀𝑘
𝑖+1 =  𝑝𝑧𝑘 − 𝐵𝑘 ⋅ 𝑤𝑘

𝑖  [9] 

v. Check the stopping criterion ||휀𝑘
𝑖+1||2 < 휀𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. If the stopping criterion is met we 

then set 𝛿𝑘 =  𝑤𝑘
𝑖  and finally 𝑝𝑧𝑘  =  𝐷 ⋅ 𝛿𝑘 +  휀𝑘

𝑖+1 where 𝛿𝑘  is sparse. If the stopping 

criterion is not met, we increment i and repeat steps 2-5. Steps 1-5, are repeated for 

every galaxy [9].  

Finally, once the sparse basis representation is complete, Carrasco-Kind and Professor Brunner’s 

work refers to compression techniques to further reduce the size of storing these sparse vectors. In 

order to do so, the paper refers to a compression technique where, for each basis function chosen, it 

compresses the basis function so that the first 16 bits refer to the scaling factor or amplitude of the basis 

function, while the next 16 bits refer to the basis function selected. This is valuable as we can shrink the 

size down for a single basis function to just a 32 bit or 4-byte integer.  
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Figure 1: Taken from Carrasco-Kind and Professor Brunner’s paper on Sparse Representation of 

Photometric Redshift PDFs: Preparing for Petascale Astronomy [9]. Depicts the compression technique 

for a single basis function.  

  

Figure 2: Taken from Carrasco-Kind and Professor Brunner’s paper on Sparse Representation of 

Photometric Redshift PDFs: Preparing for Petascale Astronomy [9]. Depicts the bases functions selected 

and the sparse represented PDF.  

This chapter goes over the high level design decisions I made to develop an optimized version of NCSA 

research affiliate Matias Carrasco Kind and Professor Robert J. Brunner's implementation of the 

orthogonal matching pursuit algorithm. This includes programming language decision, library decisions, 

and data.  
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3. Design Decisions 

3.1 Original Implementation 

The original implementation of the orthogonal matching pursuit algorithm is written in Python with 

NumPy/SciPy. Both NumPy and SciPy contain scientific and numerical tools for Python. Due to the fact 

that Python is an interpreted language, it is inherently slower than compiled languages such as C. In 

order to combat this, NumPy and SciPy have C implementations for many of their more algorithmically 

complex functions [10]. During my research, I spent a significant amount of time reading about NumPy 

optimizations to explain any run-time differences between NumPy and C++.  

3.1.1 NumPy  

 NumPy relies on a very efficient memory model for its arrays that allows the programmer to 

assign specific portions of an array to a variable without copying data [11]. Ensuring that the code is only 

copying data when necessary is instrumental to ensuring an optimized run time.  

 NumPy also features vectorized operations that are implemented in C. As stated by Scipy’s 

online tutorials, vectorized operations are utilized when operations are applied to every element in an 

entire NumPy array [12]. Van Der Falt, an author of the publication on NumPy performance, describes 

that instead of using a traditional for loop, one should use a vectorized operation as the operation is 

broadcast across the entire array for significant performance improvement [11].  

 For larger datasets, NumPy supports manipulating arrays stored on disk without copying all of its 

data to faster memory units such as RAM [11]. Van Der Falt refers to this technique as memory mapping 

[11]. The algorithm works by loading only the part of the large array that the programmer wants to 

access onto memory. It then performs any operations that the programmer requires and then, when the 

programmer calls flush(), flushes the modifications over to disk [11]. This is potentially quite valuable for 

the K-SVD algorithm for a large amount of basis functions or dictionary size that cannot be held on 

expensive RAM.  
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3.2 Choice of C++ 

Average Run Time (Seconds) 
 

Programming Language Compiler Time 

C++ GCC-4.9.0 0.73 

Fortran GCC-4.9.0 0.76 

Fortran Intel Fortran 14.0.3 0.95 

Java JDK8u5 1.95 

Julia 0.2.1 1.92 

Matlab 2014a 7.91 

Python Pypy 2.2.1 31.90 

Python Cpython 2.7.6 269.31 

Mathematica 9.0,base 588.57 

Matlab 2014a 1.19 

Rcpp 3.3.1 2.66 

Python Numba 0.13 1.18 

 Cython 1.03 

Mathematica 9.0, Idiomatic 1.67 

Figure 3: Describes the average run time for each programming language for the stochastic growth 

model from Professor Fernandez-Villaverde’s work on financial programming languages [13]. 
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 For the optimized implementation this publication focuses on, the code was developed in C++ 

[13]. This decision was based on a variety of factors. At the high level, I investigated the differences in 

performance times of the various programming languages. In a paper developed by Professor 

Fernandez-Villaverde, he investigates the use of multiple programming languages to implement a 

probabilistic model known as stochastic neoclassical growth model [13]. This model relies on many 

similar mathematical functions that orthogonal matching pursuit requires such as max, summation, and 

linear algebra operations. In their study, they found that C++ using GCC-4.9.0 as a compiler maintained 

the fastest run time on average [13]. Although Fortran with Intel's compiler came in at a close second by 

only .03 seconds, this difference could cause issues as the data scales.  

3.3 Choice of Linear Algebra Library 

 Choosing the proper linear algebra library in C++ can have a dramatic effect on run time. My 

decision in choosing a particular linear algebra library largely relied on investigating what optimizations 

and support for a wide variety of linear algebra operations the library contains. After looking through 

documentation, I came across two major linear algebra libraries largely recommended by my peers, 

Eigen and Armadillo [14],[15].   

3.3.1 Eigen 

 Eigen presents enticing optimizations. The library supports explicit vectorization, optimizations 

in chained operations such as multiplication, a wide variety of compiler support, and support for other 

linear algebra libraries it can call underneath such as: BLAS, LaPACK, Intel MKL, etc. [16]. These libraries 

are highly optimized and are able to perform multi-threaded mathematical routines for x86 machines 

[16]. In addition, Eigen's algorithms are able to utilize multiple cores via OpenMP, a parallel 

programming library in C/C++ [16].  
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 Above all, utilizing Eigen as a top level library over optimized and well documented libraries is 

especially valuable as Eigen's syntax and supported functions are similar to those in NumPy/SciPy. 

Decompositions that Orthogonal Matching Pursuit requires (Cholesky and Triangular), are both available 

in Eigen [16]. Furthermore, basic linear algebra functions that NumPy contains such as linspace, sum, 

and min have nearly identical syntax and function in Eigen [14].  

3.3.2 Armadillo 

 Similarly, Armadillo is a library that contains efficient optimizations. Armadillo supports 

optimizations in chained operations, SIMD vectorisation (vectorizes elementary operations such as 

matrix addition into SSE2, SSE3, SSE4, or AVX instructions), and support for various high speed linear 

algebra such as BLAS or multithreaded libraries such as OpenBLAS, Intel MKL, or AMD ACML [15]. 

Furthermore, for my research as I am using a Macintosh, Armadillo supports Mac OS X's accelerate 

framework which leverages optimizations in the Mac architecture for further optimizations [17]. 

Described later, Armadillo also contains support for NVIDIA NVBLAS which is a GPU accelerated version 

of BLAS [15]. For computers with quick GPUs, this could allow users to run any algorithm with Armadillo 

even more quickly.  

Table 1 Examples of syntax conversion 

Armadillo Numpy 

A.cols(p,q) A[:,p:q] 

A[p:q,r:s] A(span(p,q),span(r,s)) 

 

 Again, Armadillo also contains syntax and functionality that closely mirror NumPy/SciPy. 

Armadillo's website contains documentation for syntax conversion between Armadillo and Matlab, 
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which contains similar syntax to NumPy/SciPy [18]. Explained later in the paper, Armadillo's data 

structures follow NumPy/SciPy's more closely which has proven quite valuable for OMP's 

implementation.  

3.4 Data 

In this section, I introduce an overview over the data that I used to test if my results maintain the same 

consistency that the original implementation outputs. The dataset, provided by Dr. Brunner and Kind's 

Github repository, holds a subset of photo-z PDFs for different galaxies.  

 The dataset, saved in a NumPy data frame, originates from the Canada-France-Hawaii Telescope 

Lensing Survey known as CHFTLens [19]. CHFTLens is an accumulation of images over five years via a 

340-megapixel camera. This sophisticated dataset contains about 10 million galaxies that are typically six 

billion light years away [19]. For my focus, the original implementation Drs. Brunner and Kind developed 

utilizes a dataset that takes 49,686 galaxies from CHFTLens and then utilizes an algorithm called TPZ 

which uses decision trees with random forest to develop redshift PDFs for each of the galaxies [9].  

 Because the data is saved in a NumPy data frame, relying on C++ standard libraries do not apply 

here. Instead, I rely on Cnpy, an open source C++ library that reads NumPy data frame files onto 

memory in an easy to use array of bytes [20].  

 The data is shaped by 200 floating points, each equally spaced from 0 to 2. As stated earlier, the 

goal of the implementation is to reduce this data size down to just 20 4-byte integers.   
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4. Results 

 

I developed multiple implementations of the orthogonal matching pursuit algorithm with Numba, a 

Python library that allows the code to be compiled in LLVM, with Eigen, and with Armadillo [21]. I 

discovered that each implementation has their pros and cons that I will discuss in the following sections. 

4.1 Numba   

Numba is a Python library that generates optimized machine code using the LLVM compiler architecture 

at run time [21]. Here, I utilized Numba to compile the orthogonal matching pursuit algorithm from the 

original code in Python. Because most of the algorithm relies on NumPy and SciPy calls, the code is 

mostly optimized already, as these calls are implemented in C and maintained by an avid open source 

community [11]. Instead, we utilize Numba to remove the remaining Python code, the for loop. By using 

Numba I am thus able to optimize the loop in machine code leading to faster results.  

4.2 Eigen 

Eigen presented an easy way of converting the Python code to C++; however, it lacked certain 

functionality that led Eigen to being an invalid solution. The algorithm employs a progressive Cholesky 

Factorization which allows for performance boosts [8]. Thus, the algorithm relies on a Cholesky solver 

that, given a cholesky factorization matrix and a column vector, will solve the system of equations [8]. 

Because Eigen only allows the user to call the solve function when the underlying data structure is some 

sort of decomposition, it disallows users to call solve on a simple matrix that is assumed to already be 

factorized. This led to a lot of issues, until finally I realized that this was no longer a viable option.  
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4.3 Armadillo 

Armadillo, the other C++ linear algebra library, provides a more complete implementation than Eigen 

provided for this problem set, but it came with its own problems [8]. Armadillo provides a very 

comprehensive assortment of functions that allow the user to perform various linear algebra 

computations. Implementing the orthogonal matching pursuit algorithm was mostly straightforward. 

One downside was that the Cholesky solver in Python relies on forward and back substitution to solve 

for the equation [22]. 

The function call cholesky_solve instead works as follows [22]: 

If the matrix is upper triangular, 𝐴 =  𝑈𝑈𝑇where U is upper triangular, the solution X is calculated by 

𝑈𝑇𝑌 = 𝐵 → 𝑈𝑋 =  𝑌 

If  the matrix is lower triangular  𝐴 =  𝑈𝐿where U is upper triangular, the solution X is calculated by 

𝐿𝑌 =  𝐵 → 𝑈𝑋 =  𝑌𝐿𝑇𝑋 = 𝑌 

Thus, I had to implement this function in the order of matrix multiplication the above mathematical 

statements describe. 
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4.4 Running Time Comparisons 

Here, I focus on a comparison of the performance differences between Python with Numba, Python, and 

C++ with Armadillo.  Figure 5 shows the performance difference over an average of three iterations for 

each of the implementations. In the end, the C++ code presents a quicker solution, with running time 

improvements of about 14%. Although the test data was only one hundred galaxies/PDFS, the data sets 

that astronomers mine are much larger. Thus, shaving 2 seconds here may result in significant 

performance gains for larger, more realistic, data sets.   

 

 

Figure 5: Average running time performance comparison of the three implementations in milliseconds. 
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4.5 Comparison of Sparse Basis PDF to Original PDFs 

This section will focus on comparing the sparse representation of the photometric redshift PDF’s across 

the three implementations with the original PDFs to see if there are any differences in error 

performance. Because Python with Numba and Python are inherently the same code, we only need to 

compare one of their results.  

 

Figure 6: A random galaxy example showing the original PDF, the Python sparse representation, and the 

C++ sparse representation. Plot generated from Matias Kind Sparse-Z implementation [23]. 
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Figure 7 is a difference plot for the first galaxy between the original PDF and the C++ sparse basis 

representation. As we can see, the sparse basis representation is not perfect, and loses some 

information at earlier redshift values.  

 

Figure 7: Difference plot between original PDF and C++ Sparse Basis representation 

 

Figure 8 compares the mean squared error between the original PDF and C++’s sparse basis 

representation for each galaxy. Notice that for some PDFs there are larger MSE difference spikes than 

for others. This could result from the greater complexity of some signals.  
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Mean Squared Error Difference 

 

Figure 8: Mean squared error difference plot between original PDF and C++ code 

For all galaxies, the aggregate mean squared error difference between the original PDF and the 

C++ code is1.245347 ⋅ 10−5. Interestingly enough, the original Python implementation results in an 

aggregate mean squared error of 1.132906 ⋅ 10−5. Although the additional error in the C++ code is 

quite small, we believe that the code might give slightly different results in terms of the basis functions 

selected.  

 In conclusion, we notice that the C++ code is slightly less accurate than the original Python code. 

Although the C++ solution is quicker, the Python code remains the most accurate. However, this error 

may be acceptable within the errors of measured photo-z as the difference is significantly smaller than 

the data we are using.  
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5. Conclusion 

The research presented in this paper is only a start to the greater project of delivering faster 

performance to the orthogonal matching pursuit algorithm. Although the optimized C++ code with 

Armadillo provides performance gains to the Python code, it is only 14%. We believe that this code 

could be sped up even further through a variety of other methods. In the future, I plan on continuing my 

work and testing out other techniques such as NVBlas, a NVIDIA GPU accelerated library, which my C++ 

implementation supports. Another exciting, potentially significant fix would be to test out the new beta 

for Intel MKL, a linear algebra library for Python.  If we are able to get performance boosts in linear 

algebra operations by utilizing different libraries, the code could potentially be significantly faster than 

the original Python implementation. In the meantime, Numba provides a temporary speed boost to the 

problem. Although the time difference is small, we can see that if we apply this algorithm to many 

PDF’s, there could be significant performance gains.  
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