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Abstract

We present a new implementation of MiniAMR, a miniapp for adap-
tive mesh refinement (AMR) that mimics commonly found workloads and
communication patterns in AMR applications. We obtain significant per-
formance improvements by using new data structures and algorithms. One
of our important areas of focus in this work is the use of low-overhead dis-
tributed load balancing schemes for octree partitioning. We evaluate this
new implementation by comparing its performance to that of the Mini-
AMR code in the Mantevo suite of miniapplications for three realistic test
cases. In addition, the new code supports refinement in time (sub-cycling).

1 Introduction

Adaptive Mesh Refinement is a frequently used technique for efficiently solving
partial differential equations (PDEs): A finer mesh is used in regions that require
a higher resolution (e.g., because of turbulence), and a coarse mesh is used
to cover less sensitive regions. This reduces both computation and storage,
compared to a mesh with uniform resolution. Since the regions requiring a finer
mesh may vary during the course of a simulation, the mesh is adaptively refined
or coarsened to reflect these changes. This affects the amount of computation
done by each processor; over time, it becomes necessary to re-partition the mesh
across processors.

A good partition minimizes the amount of communication between processes
and balances their computational load, thus reducing execution time. This
has to be balanced against the overhead of computing the partition, migrating
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data and re-constructing the distributed data structures that are used by the
application. Many AMR frameworks use Space filling curves (SFC) for mesh
partitioning, as they achieve a good compromise between these conflicting goals.

We focus in this paper on octree-based AMR [18, 25, 23, 19, 1, 21, 5]. Our
paper makes the following contributions:

1. We present an improved linearized data structure for representing octrees.
We also describe a low-overhead refinement and coarsening algorithm for
octree based AMR.

2. We propose an amortized load balancing scheme that lowers the total
execution time by reducing the frequency of re-partitioning.

3. We provide a low-overhead distributed weighted slicing algorithm for SFC
that can be used for load balancing AMR applications which use sub-
cycling.

These changes do not affect the numerical properties of the algorithms in
any way, but only change their performance.

We evaluate the improvements by using the miniAMR benchmark in the
Mantevo benchmark suite [10]. We compare the performance of the miniAMR-
code in Mantevo to our new code, for three realistic test cases, using the same
SFC (Morton order) for both. With the improved data structure and algorithms
we could reduce the refinement time of MiniAMR by more than half. The com-
putation time of the kernel also showed significant improvement by almost 1.8X.
Amortized load balancing was able to improve the running time of the simu-
lation by a maximum of 3X for one of the test cases. We obtained significant
performance improvements for the test cases with sub-cycling. The weighted
slicing algorithm was able to reduce the execution time of the simulation by a
maximum of 3X. In addition to performance improvements, our code is more
general as it provides support for sub-cycling.

The remainder of the report is organized as follows:
We discuss octree-based AMR in the next section; it also includes a short ex-

planation of parallel octree partitioning using Morton order. Section 2 describes
the performance model that we used for measuring execution time. Section 3
describes in detail the improvements we made to the Mantevo miniAMR code.
Section 4 contains our experimental results. We finish with a short survey of
related work in Section 5 and a brief conclusion.

1.1 Adaptive Mesh Refinement (AMR)

While many of our techniques generalize to other mesh-based algorithms, we
shall focus in this work on octree-based AMR. Results for other AMR variants
will be quantitatively different but we expect them to show improvements as
well.

The miniAMR mini-app from the Mantevo suite is a compact proxy for
octree-based AMR. It exhibits computation and communication patterns that
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are typical of the application while being shorn of many of the details of a full
application. MiniAMR uses 3D meshes with an octree structure: contiguous
mesh cells are grouped into cubic blocks, the granularity of which can be decided
by the user. Each block has a halo region defined around its mesh cells, which
is used for exchanging boundary information with neighboring blocks. If a
block needs to be refined, then it is split into 8 cubic sub-blocks; if blocks are
coarsened, then the 8 adjacent sub-blocks are replaced by the original parent
block. The refinement preserves a 2:1 balance condition: The refinement levels
of adjacent blocks differ by at most one. The mini-app uses a 7-point stencil so
that any two blocks are neighbors if they share a face. Computation typically
involves only the leaves of the octree. Our mini-app also models applications
which perform sub-cycling.
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Figure 1

On an abstract level, the mesh data structure is a dynamic forest of octrees
with the roots of the forest being the initial coarse blocks of the mesh. In our
discussion, octree nodes are equivalent to the mesh blocks defined earlier. We
will be using these terms interchangeably. This data structure should support
the following operations:

• Refinement: 8 nodes are created as children of a previous leaf node.

• Coarsening: 8 sibling nodes are deleted and their parent becomes a leaf
node.

Figures 1a and 1b provide an example for an adaptively refined mesh that
satisfies the 2:1 balance criterion and its corresponding quad-tree in 2D.

For a parallel computation, the octree data structure is distributed across
the compute nodes. The distribution should balance the amount of computation
performed by each node, while reducing communication. The major communi-
cation overheads in octree-based AMR are the following:

• Balancing: The refinement and coarsening operations have to preserve
the 2:1 balance condition. The refinement of a node could trigger further
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refinement of its coarse neighbors. Similarly, the coarsening of a group of
nodes could enable the coarsening of a neighboring group. Both operations
require communication between a node and its neighbors.

• Updating block halo regions: Blocks exchange boundary data with their
neighbors in every timestep of the simulation. The communication over-
head involved depends on the type of finite difference scheme used. In
the simplest case, the simulation is advanced only at the leaf nodes of
the octree. In this case, only the leaf blocks perform boundary exchange.
If the kernel performs refinement in time as well, then the rate of halo
exchange between neighboring blocks depends on their relative refinement
levels. The overheads are different for each kernel type. But all variants
benefit from having a domain decomposition of the octree mesh that is
load balanced and has good locality, i.e adjacent blocks are mostly stored
on the same node.

Typically, a parallel octree meshing framework starts with an initial par-
tition of octree nodes across processes and adaptively modifies it by refining
and coarsening the tree nodes during the course of the simulation. This could
result in partitions with load imbalance and worsened communication during
balancing and halo exchange. Therefore, the octree needs to be re-partitioned
periodically. This involves computing a new partition, migrating data, and re-
establishing the information required for halo-exchanges. Space-filling curves
are widely used for partitioning adaptively refined meshes. An SFC is used
to create a linear ordered list of mesh blocks (tree leaves) which are then dis-
tributed among the participating processes in a load balanced manner. We also
maintain the invariant that an internal block is stored on the same node as one
of its children.

1.2 Octree Partitioning

SFCs can be used to partition rectilinear grids: each grid cell is represented
by a point, usually located at its center of gravity. The curve is generated
using the spatial co-ordinates of the points. A monotonic mapping function is
used to convert the spatial co-ordinates into unique keys. The values of keys
generated by the function should preserve the traversal order of the curve. The
points are then partitioned into p subsets by partitioning the set of keys into
p segments each containing roughly the same number of points, ensuring load
balance. The partitions have good locality, so that, if the computation requires
communication between adjacent grid cells, they will have low communication.

A Discrete k-dimensional Space Filling Curve (SFC) is a bijective mapping
C : {1 . . . Nk} → {1 . . . N}k such that d(C(i), C(i + 1)) =1 for all 0 < i < Nk,
where d is the Euclidean distance [9]. We define good locality by the requirement
that any k consecutive points C(i), . . . , C(i+k−1) on the SFC are contained in
a hypercube of dimension O(k1/m), where m is any non-zero integer. Some of
the popular SFCs include Hilbert, Peano and Sierpinski [20]. Although Morton
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order [2] does not fit into the above definition, it is widely used due to its
ease of computation. The mapping function for Morton order is a simple bit-
interleaving of the spatial co-ordinates of the points.

In this discussion, we have used Morton order for all of our experiments.
We are currently working on replacing Morton order with SFCs having better
locality in MiniAMR. For the adaptive octree mesh, we avoid re-computing the
SFC from scratch whenever the octree is refined or coarsened. To do so, when a
block with key ` is refined, it is replaced on the SFC by the eight children with
keys `xyz labeled in the traversal order of the curve (Morton order in this case).
When 8 sibling blocks are coarsened, then the coarse block (parent) replaces
one of the children blocks on the SFC, and the other children are deleted. For
Morton order, since the 8 siblings were contiguous on the SFC, they had binary
keys `xyz and the coarse block is re-labeled `; the lexicographic order of keys is
preserved. Furthermore, each process can perform these updates independently
in parallel, for those blocks it owns.

1.2.1 Sorting

In order to re-partition, we need to compute the (weighted) index of any point
(leaf node) on the SFC. When a node is refined, its children are stored on the
same process as their parent; when nodes are coarsened, the parent node already
is stored on the same process as one of the children. Therefore, refinement and
coarsening operations maintain the invariant that all nodes stored at process
Pi have keys that are strictly less, in lexicographic order, than nodes stored at
process Pi+1. As a result, it is sufficient to sort keys locally at each process, in
order to obtain a global sort.

Each process locally numbers its keys in sorted order. A parallel prefix
operation is then used to compute the global rank of the last key. After this
step, processes can independently compute the global ranks of their local nodes
and re-distribute them in a load balanced manner.

In the case where the mesh is refined in time, we treat the blocks as having
a weight value proportional to their refinement level (since finer blocks are up-
dated more often). The curve should then be sliced into equal weight segments.

2 Performance Metrics

In this section we discuss the performance model and the metrics we used to
evaluate the performance of our mini-app. The AMR kernel consists of the
following non-overlapping phases that are performed at different frequencies.
The kernel iterates until convergence and we consider each iteration to be a
single time step.

1. Refinement/Coarsening: The kernel checks for the refinement criteria ev-
ery ref freq time steps, and, if indicated, performs the refinement and
coarsening of blocks. The addition and/or deletion of blocks is subject to
the 2:1 balance criteria discussed earlier.
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2. Load Balancing: Re-partitioning of nodes may be performed after refine-
ment/coarsening. This includes computing the new partition, re-partitioning
the data and computing the new communication pattern to be used in
subsequent timesteps.

3. Computation: At every timestep each leaf node updates its data points
based on neighbor values, as defined by a stencil pattern (7-point in this
discussion). This step requires data exchange across the shared faces of
leaf nodes (referred to as halo-update).

We measure, at each time step i and each process j, the time Tcomp(i, j)
spent computing, time Tcomm(i, j) spent in halo-updates, time Tref (i, j) spent
refining and coarsening the mesh, and time Tlb(i, j) spent load balancing. Let
n be the total number of timesteps, ref freq = r, and let t1, . . . , tk be the
timesteps where load balancing occurs. Then, the total execution time, Texec,
can be defined as

Texec =

n∑
t=1

Titer(t) +

n
r∑

t=1

Tref (rt) +

k∑
i=1

Tlb(ti)

where,

Titer(i) = maxj(Tcomp(i, j) + Tcomm(i, j)),

Tref (i) = maxjTref (i, j), and

Tlb(i) = maxjTlb(i, j).

The equations presented here are for a general case without any computation-
communication overlap in the kernel. However, our implementation uses a
computation-communication overlap in the stencil code. If there is full over-
lap then the equation for Titer becomes

Titer(i) = maxj(max(Tcomp(i, j), Tcomm(i, j)))

We used these equations to compute the total execution time for all the test
cases in this report.

3 MiniAMR

We have developed an improved implementation of the MiniAMR mini-app
that is part of the Mantevo suite [10]. This mini-app was designed to better
understand the communication overheads in an octree-based AMR, and use the
insights to design better algorithms with lower communication costs. Therefore,
the computation kernel is a simple 3D 7-point averaging stencil. It accepts
an initial distribution of blocks and a refinement pattern in the domain. The
refinement criteria (rate) and load balancing frequency are also inputs to the
application. The blocks which overlap with the refinement pattern are marked
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for refinement. The shape and area of refinement can be controlled to generate
different test cases; it can be made to expand or move with a constant velocity
in the domain. In the next subsection we discuss critical design decisions and
optimizations which significantly improved the performance of MiniAMR over
its counterpart in the Mantevo suite. Better partitions should have a more
significant impact on communication time if a more complex stencil pattern is
used. On the other hand, the use of a more compute-intensive kernel will reduce
the relative weight of communication (but not its total weight).

We present in the following section optimizations we introduced in the mini-
AMR code and next section discusses their impacts. These improvements are
specific to octree-based AMR.

3.1 Optimizations

3.1.1 SFC Key-indexed Data Structure

Distributed pointer-based data structures like trees, are typically implemented
by explicitly maintaining their node locations, i.e remote process id and global
node index. This requires additional book-keeping during updates to the data
structures; refinement and coarsening in this case: After every refinement and
balancing phase, the neighborhood information is updated by sending and re-
ceiving messages containing the global ids of new blocks. Also, one needs ad-
ditional communication after load balancing to update the new locations of
neighbors.

The use of SFC keys instead of pointers reduces the overhead of these oper-
ations, since the keys provide a level of abstraction that is independent of the
underlying data decomposition. The only information required at every process
is a mapping function/table that can derive the location of a block given its SFC
key. This idea was explored in [16], but they stored the entire block dataset in
a hashtable which affected memory locality and performance. In our implemen-
tation, each process maintains a local two-level data structure. The first level is
a dictionary of its local SFC keys and the second level is the contiguous blocks
array in memory. Look-up is performed using the dictionary that converts an
SFC key into a location in memory. We have implemented the dictionary as
a sorted array and for all of our test cases, it was small enough to fit entirely
in cache, so that search for a key is very fast. An alternative implementation
would be to use a hash table. This data structure reduces the work required
to compute the new communication pattern after data migration during a load
balancing phase. The only information required at each process is the key range
(minimum and maximum keys) of the other partitions. This information is ex-
changed using a single all-to-all communication after data migration. For all
the test cases considered in this report the non-terminal nodes of the octree do
not perform any computation, therefore, we do not store them.
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3.1.2 Refinement-Coarsening Algorithm

The algorithm has two phases: the consensus phase and the refinement-coarsening
phase. This algorithm is executed during every refinement phase of the kernel.

Consensus Phase: This phase of the algorithm is iterative and is repeated
until quiescence (termination). We define what we mean by quiescence later.

Blocks are initially marked for refinement based on whether or not their
centers coincide with the current refinement region. The blocks that are not
marked for refinement or are forced to stay at their current level to satisfy bal-
ance constraints are assumed to coarsen since their refinement levels are higher
than the desired level. Therefore, a block can be in one of three states - re-
fine,stay or coarsen. The default state of a block is assumed to be coarsen. Any
change in the state of a block will need to be communicated to its neighbors
and siblings. Each block stores the current states of its neighbors and updates
this information as the algorithm executes. This communication is highly lo-
calized and can be executed concurrently for different regions of the mesh. In
other words, the region of influence of a refining or coarsening block is limited.
We make two assumptions here, that the mesh is balanced before entering a
refinement-coarsening phase and that the refinement level of a block can change
by at most one during a refinement phase. Our algorithm is similar to the pri-
oritized ripple propagation algorithm in [25], but we have lower communication
overheads due to the following :

• Neighbors are informed only during a change of state

• There is no synchronization between levels

Besides, the algorithm in [25] does not perform coarsening of leaf blocks.
Each process maintains a local queue of blocks marked for change. A single

iteration of the consensus algorithm performs the following steps :

1. Process entries in the local queue until it is empty.

2. Update the states of neighbors and siblings that are local (on the same
process)

3. Aggregate messages to non-local neighbors and siblings in message queues.
We maintain a message queue for each neighbor in the communication
graph.

The messages aggregated by a process during an iteration are exchanged using
the Sparse Collective routines [11] in MPI. This exchange of states could trigger
the refinement of more blocks at every process. The new blocks marked for
refinement are added to the local queue for processing in the next iteration.
The consensus algorithm terminates when the local queues and message queues
on every process are empty. We define this state as quiescence; when all the
processes in the system are idle. We check for quiescence at the end of every
iteration of the consensus algorithm. This is the only synchronization point in

8



this algorithm. Each process exchanges a short integer indicating whether it is
idle (its local queue and message queues are empty) or not. This integer value
is reduced to check if all the processes are idle. This is done using a single
MPI Allreduce function call. A pseudo-code for the algorithm is provided
below (Algorithm 1).

Algorithm 1 Parallel Consensus Algorithm

1: procedure ParallelConsensus
2: while ¬Terminate do
3: while ¬q.empty() do
4: n = q.pop()
5: nbrs = blocks[n].nbrlist()
6: sibs = blocks[n].slist()
7: for all nbr ∈ nbrs do
8: if nbr.is local() then
9: local update(n, nbr)

10: else
11: aggregate msg(nbr)
12: end if
13: end for
14: for all sib ∈ sibs do
15: if sib.is local() then
16: local update(n, sib)
17: else
18: aggregate msg(sib)
19: end if
20: end for
21: end while
22: MPI Neighbor alltoallw()
23: MPI alltoall(terminate)
24: end while
25: end procedure

There are non-iterative versions of the parallel-consensus algorithm [4], [21].
However, in practice we found our algorithm converges quickly since refinement
and coarsening are localized operations. Also, since processes communicate
only with their nearest neighbors (same communication pattern as halo-update),
the number of messages and message sizes per process are very small. The
only information a block sends to its neighbor is its state (one integer). The
non-iterative version on the other hand has fewer iterations, but the number
of messages and message sizes per process can be quite high. We intend to
perform a more detailed comparison between our algorithm and the non-iterative
algorithm in future.
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Figure 2: Refinement Time on Vesta and Stampede

Refinement-Coarsening Phase: This is the phase where the addition and
deletion of blocks takes place along with an update of the neighborhood infor-
mation. New blocks are added locally and blocks that are marked for coarsening
delete themselves. Since each block is aware of the final decision of its neighbor
blocks, the SFC keys of the neighbors can be updated locally by manipulating
their current keys (adding or deleting bits). There is no communication in this
stage.

3.1.3 Stencil

We implemented the stencil phase using complete overlap of computation and
communication to reduce execution time. The messages for halo-updates are
aggregated (packed) and sent. While waiting for halo-updates from remote
neighbors, the processes perform local halo-updates and stencil computation
within the interior of the block. The remote halo regions are updated when
messages arrive. This is beneficial for AMR when the blocks have good volume
to surface ratio, so that communication is fully covered by local computation.

3.2 Results

In this section we present a detailed comparison of our optimized AMR imple-
mentation against the equivalent mini-app from Mantevo, which will be referred
to as Mantevo AMR for the rest of this discussion.

Mantevo AMR uses a regular pointer-based data structure for its AMR tree
with explicit neighbor updates after refinement and load balancing. For a fair
comparison, we used Morton ordering to enumerate and partition the blocks in
both versions. Also, we triggered load balancing after every refinement, so that
the executions of both programs exhibit the same behavior at all time steps.

10



Figure 3: Stencil Time on Vesta and Stampede

The differences between the two versions is therefore in the tree representation,
refinement algorithm and stencil phase. Also, Mantevo AMR does not aggregate
messages. Both codes are MPI only, with a process per core, and each process
owning one partition of the mesh.

The test case used was that of an immersed moving sphere with refinement
along its surface (where it interacts with the domain). The frequency of checks
for refinement was set to 3 time steps, although addition and deletion of blocks
took place only every 6− 9 timesteps.

Our experiments were carried out on Vesta which is a BG/Q machine at Ar-
gonne National Laboratory and Stampede, which is a supercomputer built from
Intel SandyBridge NUMA processors, at the University of Texas, Austin. We
used the version of MPI that has optimized on-node communication (MPICH+Nemesis
on Vesta and MVAPICH+Nemesis on Stampede) [3]. All experiments in this
section show weak scaling results where the number of blocks per process was
kept roughly the same (approximately 300 blocks per process). Each block
had 4 × 4 × 4 grid cells. The compute nodes and interconnection networks in
these machines differ greatly. Hence, the comparisons are relevant and give us
valuable insights into useful program optimizations for each machine.

The graphs in figure 2 show the total refinement time for 100 time steps on
both machines. V stands for Vesta and S for Stampede. Mantevo AMR does
refinement in stages, starting from the lowest refinement level to the highest.
Refinement decisions are taken at the parent nodes instead of the leaf blocks
themselves which results in additional communication between terminal and
non-terminal blocks of the tree during refinement iterations. Besides, the lo-
cations of non-terminal blocks in the AMR tree are not updated during load
balancing. So, they could potentially lie on any process irrespective of SFC
order. This leads to a lot of communication overhead for Mantevo AMR which
worsens with increasing number of partitions. In addition to replacing commu-
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nication for neighbor updates with local computation, our refinement algorithm
also avoids communication with non-terminal nodes completely. Our refine-
ment times are lower on both machines, probably due to these reasons. Vesta
has slower processors with higher memory access times than Stampede. There-
fore, we believe that the predominant cost on Vesta is due to memory accesses
and cache misses. Off-node communication is a relatively significant bottleneck
on Stampede due to its faster processors and slower network. This is evident in
the graph in figure 2, where the refinement times for Mantevo AMR on Stam-
pede vary drastically, due to its irregular tree decomposition (non-terminals vs
terminals) and inefficient algorithm.

The next set of graphs in figure 3 compare the time taken for stencil com-
putation and communication for both miniapps on Vesta and Stampede. In
Mantevo AMR, each leaf block stores pointers to its data instead of the data
itself which leads to pointer chasing and loss of memory locality. This affected
its performance greatly on Vesta. Our results are better on Vesta; this seems
to be due to the computation-communication overlap and contiguous layout of
blocks in memory. On Stampede, we used the NUMA aware memory alloca-
tion policy to allocate blocks close to the sockets on which the corresponding
processes were mapped. Once again, the performance of Mantevo AMR suffers
due to its inefficient communication routines and data structures. The stencil
communication in Mantevo AMR does not use full message aggregation, which
meant there could be multiple messages between any two processes during a
single communication step. This irregularity in communication shows up in its
stencil time on Stampede. The stencil time for our mini-app on Stampede shows
a slight increase at 4096 processes, which we believe is due to the discontinuities
in Morton ordering which increases the off-node communication time.

4 Test Cases

This section explores additional test cases and techniques to lower the total
execution time of an AMR simulation. We have used Morton order as the SFC
of choice along with the performance model described earlier, i.e refinement
time, stencil time and load balancing overheads for MiniAMR. All of our test
cases use a simple computation kernel that performs a 7-point stencil operation.
We used blocks with dimensions 4 × 4 × 4, i.e, 4 grid cells in each dimension,
maximum of 6 refinement levels and a single halo layer. All the graphs presented
in this section show strong scaling results with total execution time over 800
time steps vs number of partitions. We measure total execution time as the sum
of the time spent in refinement, stencil computation, halo-exchange and load
balancing, following our performance model explained in section 2.

4.1 Test Case 1 – Hierarchical Partitioning

The first test case we considered is that of an expanding sphere, which closely
mimics an explosion. Blocks are refined along the boundary of the expanding
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Figure 4: Test case 1 on Stampede for Morton with and without NUMA aware-
ness

front. We checked for refinement/coarsening at even time steps (ref req = 2).
The rate of expansion was based on measurements from real applications; there
were 8− 10 time steps between addition/deletion of blocks. During expansion,
blocks are added along the entire circumference of the sphere and removed
from its interior. This leads to a uniform change in load along the SFC. We
used this test case to study the impact of data locality on the total execution
time. Since the nodes on Stampede are NUMA aware, we conducted the same
experiment with and without numa-aware data placement. Morton order is
naturally hierarchical - all subcells generated from a parent cell are traversed
before visiting a neighbor of the parent. Therefore, when pieces of the curve are
assigned to nodes, the partitions within a node are guaranteed to be connected
by the SFC. What matters is the order of assignment of partitions within a node
to individual cores. Since each node on Stampede has 16 cores, we assigned 16
MPI processes to it;one process per core. Each node on Stampede has two
sockets;each socket having 8 cores. As expected, the best performance was
obtained when the data resided on the same socket as the MPI process using it.
We compared two different assignments : round-robin and contiguous. Round-
robin alternates the assignment of partitions between the two sockets whereas
in contiguous assignment, all the cores on a single socket are assigned before
switching to the next socket. The results are presented in figure 4. This test
case had an initial coarse mesh of 64X64X64 blocks and simulated close to
200000 blocks.

The graph in figure 4 clearly shows the advantage of a contiguous assignment.
It has better locality that matches the hierarchical nature of the SFC partitions.
We used contiguous assignment for the remaining test cases in this report.
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Figure 5: Test cases a and b for amortized load balancing

4.2 Test case 2 – Amortization of Load Balancing

This subsection introduces amortized load balancing to AMR. One of the con-
tributing factors to the total execution time is the number of load balancing
steps taken during the course of the simulation. We attempt to minimize the
frequency of load balancing by amortizing the cost of a load balancing phase (in-
cluding data migration) over the subsequent computation and communication
steps. In the extreme case, one could trigger load balancing after every refine-
ment/coarsening phase. This strategy will create good partitions at the cost
of frequent re-partitioning overheads. In order to balance the two competing
needs, we introduce the idea of Amortization [24] to load balancing. Formally,
we split the computation into segments of ref reg iterations, with a refinement
check at the end of each segment; assume that load balancing is executed at the
end of segment t0; let Clb denote the load balancing cost and let T (t) be the
time taken for the execution of segment t. The next load balancing phase will
be at the end of segment t1 where t1 is the first time that

Clb ≤
t∑

t0+1

(Tt − Tt0+1)

This equation essentially captures by how much the current partition devi-
ates from the good partition that was obtained immediately after load balancing,
and when the difference is large enough, it automatically triggers load balancing.
Amortization lowered the execution time of the simulations considerably.

The graphs in figure 5 show the execution times obtained for a simulation
with 800 time steps on Stampede.

Both test cases had an initial domain covered by 64 × 64 × 64 blocks and
created a mesh with 220000 blocks (14080000 points). The explosion started as
a point located at the center of this domain. For our measurements, we skipped
the first 100 time steps to allow the simulation to attain a reasonable size (steady
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Figure 6: Snapshot of the adaptive mesh generated for Test Case 3

state). Both experiments use Morton ordering of blocks. The base case performs
load balancing once every 6 time steps (matches with the rate of refinement).
The difference between test cases a and b is in the rate at which the explosion
front expands. This affects the rate at which computational load changes in
the domain. The rate of expansion for test case a is much slower than that of
test case b. In the case of test case b, frequent load balancing resulted in higher
data migration to balance the load. Therefore, we obtained much better results
with amortized load balancing for test case b. To benefit from amortization, the
re-partitioning phase should be cheap compared to the stencil and refinement
phases. This will allow the amortization equation to quickly detect variations in
load across the partitions and trigger the next load balancing phase. We could
achieve both goals without introducing additional overheads.

4.3 Test Case 3 – Weighted Partitions

This test case uses refinement in time and space dimensions. We use the term
refinement ratio to define the ratio between the refinement levels (space or
time) of adjacent blocks in the mesh. For this test case, both space and time
dimensions have the same refinement ratio of 2. When an adaptive mesh does
sub-cycling, the number of time steps executed by a mesh cell (block) is pro-
portional to its refinement level. Therefore, the computational load is no longer
uniform through out the mesh, which affects the load balance of the partitions.
We assigned a non-zero weight to each block to capture its computational load.
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The weight of a block, w, is computed as

w = rl

where r is the refinement ratio of the mesh and l is the refinement level of the
block.

Algorithm 2 Parallel Weighted Slicing Algorithm

1: procedure Parallel W-Slicing
2: my load = sum local weights()
3: total load = Allreduce(my load)
4: load per proc = total load/num procs
5: left = 0
6: left = Ex Scan(lmy load)
7: c in = 0
8: cur wt = left
9: cur bin = 1

10: while c in < blocks.size() do
11: my wt = weight of block(c in)
12: if cur wt + my wt <= cur bin ∗ load per proc then
13: assign pid(c in) = cur bin− 1
14: c in = c in + 1
15: else
16: cur bin = cur bin + 1
17: end if
18: end while
19: end procedure

We then slice the space-filling curve (Morton) into equal weight pieces. The
pseudo code for our slicing algorithm is provided in (Algorithm 2). This is a
distributed algorithm, with low-overheads and suitable for use with our amor-
tized load balancing scheme. my load is the sum of weights of all blocks owned
locally by any process. Ex Scan is an exclusive scan operation performed on
the value of my load.

We used a different scenario for this test case. This experiment models a
spherical object of fixed size moving in a fluid domain and refinement is done
along the boundary of the object with the domain. The simulation started
with an initial mesh of 64X64X64 blocks and reached a steady state size of
approximately 200000 blocks (1280000 points). The graph in figure 7 compares
the execution time obtained for weighted slicing of the curve against unweighted
slicing. As expected, weighted slicing gives much better load balance for an
AMR simulation that does sub-cycling. This experiment does load balancing
at fixed intervals, i.e every 2 time steps. We also compared the performance of
this test case with amortized load balancing.

Although amortization reduced the total execution time for the unweighted
curve slicing by a small amount, it still performed poorly compared to the
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Figure 7: Test case 3 : Execution Time for weighted vs unweighted slicing

Figure 8: Test case 3 : Execution Time for weighted vs unweighted slicing with
Amortized load balancing
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weighted curve slicing. The results are presented in the graph in figure 8.

5 Related Work

Octree-based AMR is an area of active research and there are many frameworks
available which have displayed scaling to large process counts. LibMesh [12]
and deal.II [1] are libraries for finite element mesh generation that use adap-
tive refinement. But both libraries replicate the entire mesh information across
all processes which affects their scalability. They use graph partitioners like
Metis [22] to partition the mesh. GrACE [16] and Paramesh [13] are frameworks
for octree-based AMR that use space filling curves for partitioning. Paramesh
has an octree implementation that uses pointers and Morton ordering on the
leaf nodes. The locations of neighboring octants are maintained explicity using
their global ids and process ids. The refinement algorithm used in Paramesh is
synchronous and does not aggregate messages sent and received during refine-
ment. GrACE uses a Peano-Hilbert ordering of the domain and the octree is
implemented as a hash table indexed using SFC keys. Although their octree
does not use pointers, since the entire block data is stored in the hash table,
it is large and therefore expensive to maintain. Octor [25] has a pointer-based
octree data structure that is partitioned using Morton order and proposes a
prioritised ripple propagation algorithm for 2:1 balancing. Their implementa-
tion is communication intensive since all blocks (irrespective of their refinement
criteria) perform a neighbor search. The algorithm is level-synchronous which
could potentially increase the number of iterations until consensus is achieved.
P4est [4] is a software library for forest of octrees mesh generation that uses
Morton ordering on the leaf nodes. Their data structures are similar to our im-
plementation, however the refinement algorithm is considerably different. They
use a non-iterative scheme for refinement instead of the ripple algorithm. The
implementation by default does not allow coarsening of blocks distributed across
processes, which is a slight deviation from the problem we address in this work.
Dendro [21] has schemes for bottom-up construction of the octree mesh and a
global coarsening algorithm in addition to non-iterative refinement. They use
linear octrees constructed from Morton ordering of the leaf nodes. [6] has ex-
plored the use of Hilbert curves for partitioning octrees. They have shown the
lower surface area of hilbert partiitons compared to Morton order. However,
their implementation will work only for regular 2D and 3D meshes. The curve
will have discontinuities if used on an unstructured mesh. Also, the hilbert
keys used are not location codes which results in explicit communication to
update neighbors during refinement as well as re-partitioning. [8] provides a
good overview of some of the openly available state-of-the-art AMR libraries
and codes.

There has been work in the algorithms community to define parallel graph
partitioners that minimize edge-cut [26, 14, 22]. They have high re-distribution
costs. [7] describes a parallel algorithm based on graph partitioning that re-
duces re-distribution cost. [17] explored SFC partitions to some extent, but

18



their parallel algorithm was not effective. New partitions were computed by
exchanging additional workload with neighboring processes. [15] discusses an
SFC-like mapping to generate quick partitions, but locality may be lost when
new points are added or when they move.

6 Conclusion

This report presents a new version of the miniAMR benchmark for adaptive
mesh refinement that can be used to study new partitioning schemes and load
balancing strategies for AMR. This version is more general, as it supports sub-
cycling. Being more optimized, it is representative of well-tuned AMR codes.
We also describe optimizations to improve the performance of Octree based
AMR - two-level SFC key indexed data structure, improved algorithm for mesh
refinement and coarsening and amortized distributed load balancing. We have
presented three different test cases for Octree-based AMR with varying load
distributions to illustrate the advantages of the above optimizations. The load
balancing strategies presented in this report, seem to have significantly improved
the execution times of the simulations for all test cases. Further work is needed
to separate the contributions of the various improvements, and to push addi-
tional optimizations, such as the use of a hybrid shared-memory/distributed-
memory programming model. We are also working on using similar techniques
for unstructured adaptively refined meshes.
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