
Strand Spaces with Choice via a Process Algebra Semantics ˚

Fan Yang
University of Illinois at

Urbana-Champaign, USA
fanyang6@illinois.edu

Santiago Escobar
Universitat Politècnica de València,

Spain
sescobar@dsic.upv.es

Catherine Meadows
Naval Research Laboratory,

Washington DC, USA
meadows@itd.nrl.navy.mil

José Meseguer
University of Illinois at Urbana-Champaign, USA

meseguer@illinois.edu

Sonia Santiago
University of Illinois at Urbana-Champaign, USA

sosanpi@gmail.com

Abstract
Roles in cryptographic protocols do not always have a linear execu-
tion, but may include choice points causing the protocol to continue
along different paths. In this paper we address the problem of rep-
resenting choice in the strand space model of cryptographic pro-
tocols, particularly as it is used in the Maude-NPA cryptographic
protocol analysis tool.

To achieve this goal, we develop and give formal semantics to
a process algebra for cryptographic protocols that supports a rich
taxonomy of choice primitives for composing strand spaces. In our
taxonomy, deterministic and non-deterministic choices are broken
down further. Non-deterministic choice can be either explicit, i.e.,
one of two paths is chosen, or implicit, i.e. the value of a variable
is chosen non-deterministically. Likewise, deterministic choice can
be either an (explicit) if-then-else choice, i.e. one path is chosen if
a predicate is satisfied, while the other is chosen if it is not, or im-
plicit deterministic choice, i.e. execution continues only if a certain
pattern is matched. We have identified a class of choices which in-
cludes finite branching and some cases of infinite branching, which
we address in this paper.

Our main theoretical results are two bisimulation results: one
proving that the formal semantics of our process algebra is bisim-
ilar to the forwards execution semantics of its associated strands,
and another showing that it is also bisimilar with respect to the
symbolic backwards semantics of the strands such as that supported
by Maude-NPA. At the practical level, we present a prototype im-
plementation of our process algebra in Maude-NPA, illustrate its
expressive power and naturalness with various examples, and show
how it can be effectively used in formal analysis.

Keywords cryptographic protocol analysis, rewriting-based model
checking, narrowing-based reachability analysis, process algebra

1. Introduction
Formal analysis of cryptographic protocols has become of the most
successful applications of formal methods to security, with a num-
ber of tools available and many successful applications to the anal-
ysis of protocol standards. In the course of developing these tools it
has become clear that cryptographic protocols that there are certain

˚ S. Escobar has been partially supported by the EU (FEDER) and
the Spanish MINECO under grants TIN 2015-69175-C4-1-R and TIN
2013-45732-C4-1-P, and by Generalitat Valenciana under grant PROME-
TEOII/2015/013. J. Meseguer has been partially supported by NSF grant
CNS-131910.

universal features that can best be handled by accounting for them
directly in syntax and semantics of the formal specification lan-
guage, e.g. unguessable nonces, communication across a network
controlled by an attacker, and support for the equational properties
of cryptographic primitives. Thus a number of different languages
have been developed that include these features.

At the same time, it is necessary to provide support for more
commonly used constructs, such as choice points that cause the pro-
tocol to continue in different ways, and to do so in such a way that
they are well integrated with the more specifically cryptographic
features of the language. However, in their original form most of
these languages do not support choice, or support it only in a lim-
ited way.

In particular the strand space model [10], one of the most pop-
ular models designed for use in cryptographic protocol analysis,
does not support choice in its original form; strands describe linear
sequences of input and output messages, without any branching.
One response to dealing with this limitation, and to formalizing
strand spaces in general has been to embed the strand space model
in some other formal system that supports choice, e.g. event-based
models for concurrency [4], Petri nets [11], or multi-set rewriting
[3]. However, we believe that there is an advantage in introducing
choice in the strand space model itself, while proving soundness
and completeness with another formal system in order to validate
the augmented model. This allows us to concentrate on handling
the types of choice that commonly arise in cryptographic protocols.
In this paper we describe such a choice model that we have de-
veloped for the Maude-NPA cryptographic protocol analysis tool,
which uses a strand space semantics. Such an approach allows us
to represent not only finitely branching choice, but various types of
infinitely branching choice that arise in cryptographic protocols.

Previous to this work, Maude-NPA offered a number of ways
of handling choice, but its scope was limited, and a uniform se-
mantics of choice was lacking. Many kinds of branching could be
handled by a protocol composition method [20], in which a single
parent strand could be composed with one or more child strands.
Although it was designed for the modular construction of proto-
cols, it could also, with the appropriate restrictions, be used to ex-
press both non-deterministic branching and deterministic branch-
ing predicated on pattern matching of output parameters of the par-
ent with the input parameters of the child. However, repurposing
composition to branching had its limitations. First of all, it was pos-
sible to inadvertently introduce non-deterministic choice into what
was intended to be deterministic choice by unwise choice of input
and output parameters. Secondly, the limitation to pattern matching

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158314074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ruled out certain types of deterministic choice conditioned on pred-
icates that could not be expressed this way, e.g. disequality predi-
cates. Finally, implementation of choice via composition can also
be inefficient, since Maude-NPA must evaluate all possible child
strands that match a parent strand.

Maude-NPA, in common with many other cryptographic proto-
col analysis tools, also offers a type of implicit choice that does not
involve branching: non-deterministic choice of the values of certain
variables. For example, a strand that describes an initiator com-
municating with a responder generally uses variables for both the
initiator and responder names; this represents a non-deterministic
choice of initiator responder identities. However, the semantic im-
plications of this kind of choice were not that well understood,
which made it difficult to determine where it could safely be used.
Clearly, a more unified treatment of choice was necessary, together
with a formal semantics of choice.

In support of this work we have developed a taxonomy of choice
in which the categories of deterministic and non-deterministic
choice are further subdivided. First of all, non-deterministic choice
is subdivided into explicit and implicit non-deterministic choice. In
explicit non-deterministic choice a role chooses either one branch
or another at a choice point non- deterministically. In implicit non-
deterministic choice a logical choice variable is introduced which
may be non-deterministically instantiated by the role. Deterministic
choice is subdivided into (explicit) if-then-else choice and implicit
deterministic choice. In if-then-else choice a predicate is evaluated.
If the predicate evaluates to true one branch is chosen, and if it
evaluates to false another branch is chosen. Deterministic choice
with more than two choices can be modeled by concatenation of
if-then-else choices. In implicit deterministic choice, a term pattern
is used as an implicit guard, so that only messages matching such
pattern can be chosen i.e., accepted, by the role. Although implicit
deterministic choice can be considered a special case of if-then-
else choice in which the second branch is empty, it is often simpler
to treat it separately. Classifying choice in this way allows us to
represent all possible behaviors of a protocol by a finite number of
strands modeling possible executions, while still allowing the vari-
ables used in implicit non-deterministic and deterministic choice to
be instantiated in an infinite number of ways.

Consider the following example, which exhibits all four types
of choice:

pInitq pp`pA? ; B? ; PubKeyq ¨ ´ppkpA?, B? ; SK qq

?

p`pA? ; B? ; SharedKeyq ¨ ´pepkeypA?, B?q, B? ; SK qq

pRespq ´ pA ; B ; TEncq ¨

if TEnc “ PubKey

then p`ppkpA,B ; skeypA,B , r 1qqq

else p`pepkeypA,Bq, B ; skeypA,B , r 1qqqq

In the initiator role the principal names are chosen using implicit
nondeterministic choice. This is represented by choice variables of
the formX?. The initiator role then uses the explicit nondeterminis-
tic choice operator ? to determine whether or not to initiate a public
or shared key version of the protocol. The responder role in turn
uses implicit deterministic choice to determine whether to proceed
after receiving the first message, proceeding only if that message
satisfies the pattern specified by A ; B ; TEnc, where A, B, and
TEnc are pattern variables. It then uses if-then-else deterministic
choice to decide whether to execute the public or shared key ver-
sion of the protocol, depending on the value of TEnc.

We can see that the possible paths through the protocol can be
described using two types of principals for each role: one principal

that executes the public key version, and one that executes the
shared key version. This allows us to encode choice directly in
the Maude-NPA semantics, with one slight addition: strands must
now include the predicates evaluated when if-then-else choices are
made, and the truth value of each such predicate is treated as a
constraint that must be satisfied by the result of any further state
transition. We refer to this as the constrained backwards semantics,
since Maude-NPA performs backwards search.

The problem still remains of verifying that this method of han-
dling choice corresponds to standard notions of the way choice is
made. To this end we develop a process algebra semantics that in-
corporates the different types of choice, and we prove soundness
and completeness of the strand space choice semantics with respect
to the process algebra semantics. This is nontrivial, since there are
two major ways in which the two semantics differ. The first is that
a process algebra “forgets” its past, while strands remember theirs.
The second is that Maude-NPA uses backwards search, while the
process algebra proceeds forward. We deal with these issues by in-
troducing an intermediate semantics, a forward strand space seman-
tics originally introduced in [7] and augmented here with choice
operators and operational semantic rules to produce a constrained
forwards semantics. We first prove soundness and completeness of
the process algebra semantics with respect to the forwards seman-
tics, using labeled transitions to keep track of the history of the
process algebra execution. We then generalize the soundness and
completeness proof in [7] to prove soundness and completeness of
the forwards semantics with respect to the backwards strand se-
mantics with choice incorporated.

The rest of the paper is organized as follows. After some pre-
liminaries in Section 2 and a high level introduction of the Maude-
NPA tool in Section 3, we first define the process algebra syntax
and operational semantics in Section 4. In Section 5 we extend
Maude-NPA’s strand space syntax to include choice operators. In
Section 6 we introduce the constrained forwards semantics and
prove bisimilarity of the process algebra semantics and the con-
strained forwards semantics. In Section 7 we define the constrained
backwards semantics for Maude-NPA. We then prove that the con-
strained backwards semantics is sound and complete with respect
to the constrained forwards semantics, and therefore, by the results
of Section 6, is sound and complete with respect to the process
algebra semantics. Finally, in Section 8 we describe some prelimi-
nary experiments we have run using Maude-NPA on various proto-
cols exhibiting both deterministic and non-deterministic choice and
give some results. In Section 9 we discuss related and future work,
in particular the potential of using the process algebra syntax as a
specification language. Finally, we conclude in Section 10.

1.1 Motivating Example
In this section we introduce a protocol that we will use as a running
example in this paper. It is a simplified version of the handshake
protocol in TLS 1.3 [19] a proposed update to the TLS standard
for client-server authentication. This protocol, like most other pro-
tocol standards, offers a number of different choices that are ap-
plied in different situations. In order to make the presentation and
discussion manageable within the confines of a conference paper,
we present only a subset here: the client chooses a Diffie-Hellman
group, and proposes it to the server. The server can either accept
it or request that the client proposes a different group. In addition,
the server has the option of requesting that the client authenticates
itself. We present the protocol at a high level similar to the style
used in [19].

Example 1.1. We let a dashed arrow 99K denote an optional
message, and an asterisk * denote an optional field.

1. C Ñ S : ClientHello, Key Share
The client sends a Hello message containing a nonce and the
Diffie-Hellman group it wants to use. It also sends a Diffie-
Hellman key share.
• 1.1 S 99K C : HelloRetryRequest

The server may optionally reject the Diffie-Hellman group
proposed by the client and request a new one.
• 1.2 C 99K S : DHGroup, Key Share

The client proposes a new group and sends a new key share.
2. S Ñ C : ServerHello, Key Share,

{AuthReq*},{CertificateVerify}, {Finished}
The server sends its own Hello message and a Diffie-Hellman
key share. It may optionally send an AuthReq to the client to au-
thenticate itself with a public key signature from its public key
certificate. It then signs the entire handshake using its own pub-
lic key in the CertificateVerify field. Finally, in the Finished field
it computes a MAC over the entire handshake using the shared
Diffie-Hellman key. The tu notation denotes a field encrypted
using the shared Diffie-Hellman key.

3. C Ñ S : tCertificateVerify*u, tFinishedu
If the client received an AuthReq from the server it returns its
own CertificateVerify and Finished fields.

2. Preliminaries
We follow the classical notation and terminology from [21] for
term rewriting, and from [15] for rewriting logic and order-sorted
notions. We assume an order-sorted signature Σ “ pS,ď,Σq with
poset of sorts pS,ďq. We also assume an S-sorted family X “

tXsusPS of disjoint variable sets with each Xs countably infinite.
TΣpX qs is the set of terms of sort s, and TΣ,s is the set of ground
terms of sort s. We write TΣpX q and TΣ for the corresponding
order-sorted term algebras. For a term t, Varptq denotes the set
of variables in t.

A substitution σ P SubstpΣ,X q is a sorted mapping from a
finite subset of X to TΣpX q. Substitutions are written as σ “

tX1 ÞÑ t1, . . . , Xn ÞÑ tnu where the domain of σ is Dompσq “
tX1, . . . , Xnu and the set of variables introduced by terms t1, . . . ,
tn is written Ranpσq. The identity substitution is denoted id. Sub-
stitutions are homomorphically extended to TΣpX q. The applica-
tion of a substitution σ to a term t is denoted by tσ. For simplic-
ity, we assume that every substitution is idempotent, i.e., σ satis-
fies Dompσq X Ranpσq “ H. Substitution idempotency ensures
tσ “ ptσqσ. The restriction of σ to a set of variables V is σ|V .
Composition of two substitutions σ and σ1 is denoted by σσ1. A
substitution σ is a ground substitution if Ranpσq “ H.

A Σ-equation is an unoriented pair t “ t1, where t, t1 P TΣpX qs
for some sort s P S. Given Σ and a set E of Σ-equations, order-
sorted equational logic induces a congruence relation “E on terms
t, t1 P TΣpX q (see [16]). The E-equivalence class of a term t is
denoted by rtsE and TΣ{EpX q and TΣ{E denote the corresponding
order-sorted term algebras modulo E. Throughout this paper we
assume that TΣ,s ‰ H for every sort s, because this affords a
simpler deduction system. An equational theory pΣ, Eq is a pair
with Σ an order-sorted signature and E a set of Σ-equations. The
E-subsumption preorder ĚE (or just Ě if E is understood) holds
between t, t1 P TΣpX q, denoted t ĚE t1 (meaning that t is more
general than t1 modulo E), if there is a substitution σ such that
tσ “E t1; such a substitution σ is said to be an E-match from t1 to
t.

An E-unifier for a Σ-equation t “ t1 is a substitution σ such
that tσ “E t1σ. For Varptq YVarpt1q ĎW , a set of substitutions
CSUW

E pt “ t1q is said to be a complete set of unifiers for the equal-
ity t “ t1 modulo E away from W iff: (i) each σ P CSUW

E pt “ t1q
is an E-unifier of t “ t1; (ii) for any E-unifier ρ of t “ t1

there is a σ P CSUW
E pt “ t1q such that σ|W ĚE ρ|W ; (iii) for

all σ P CSUW
E pt “ t1q, Dompσq Ď pVarptq Y Varpt1qq and

Ranpσq X W “ H. If the set of variables W is irrelevant or is
understood from the context, we write CSUEpt “ t1q instead of
CSUW

E pt “ t1q. An E-unification algorithm is complete if for any
equation t “ t1 it generates a complete set of E-unifiers. A uni-
fication algorithm is said to be finitary and complete if it always
terminates after generating a finite and complete set of solutions.

A rewrite rule is an oriented pair l Ñ r, where1 l R X and
l, r P TΣpX qs for some sort s P S. An (unconditional) order-
sorted rewrite theory is a triple pΣ, E,Rq with Σ an order-sorted
signature, E a set of Σ-equations, and R a set of rewrite rules.

The rewriting relation on TΣpX q, written tÑR t
1 or tÑp,R t

1

holds between t and t1 iff there exist p P PosΣptq, lÑ r P R and a
substitution σ, such that t|p “ lσ, and t1 “ trrσsp. The subterm t|p
is called a redex. The relation ÑR{E on TΣpX q is “E ;ÑR;“E ,
i.e., tÑR{E t1 iff there exists u, u1 s.t. t “E uÑR u

1
“E t1. Note

thatÑR{E on TΣpX q induces a relationÑR{E on the free pΣ, Eq-
algebra TΣ{EpX q by rtsE ÑR{E rt

1
sE iff tÑR{E t1. The transitive

(resp. transitive and reflexive) closure of ÑR{E is denoted Ñ`

R{E

(resp.Ñ˚
R{E).

TheÑR{E relation can be difficult to compute. However, under
the appropriate conditions it is equivalent to the R,E relation [13]
in which it is enough to compute the relationship on any represen-
tatives of two E-equivalence classes. A relation ÑR,E on TΣpX q
is defined as: t Ñp,R,E t1 (or just t ÑR,E t1) iff there exist
p P PosΣptq, a rule l Ñ r in R, and a substitution σ such that
t|p “E lσ and t1 “ trrσsp.

Let t be a term and W be a set of variables such that Varptq Ď
W , theR,E-narrowing relation on TΣpX q is defined as t;p,σ,R,E

t1 (;σ,R,E if p is understood, ;σ if R,E are also understood,
and ; if σ is also understood) if there is a non-variable posi-
tion p P PosΣptq, a rule l Ñ r P R properly renamed s.t.
pVarplqYVarprqqXW “ H, and a unifier σ P CSUW 1

E pt|p “ lq
for W 1

“ W Y Varplq, such that t1 “ ptrrspqσ. For convenience,
in each narrowing step t ;σ t

1 we only specify the part of σ that
binds variables of t. The transitive (resp. transitive and reflexive)
closure of ; is denoted by ;` (resp. ;˚). We may write t;k

σ t
1

if there are u1, . . . , uk´1 and substitutions ρ1, . . . , ρk such that
t;ρ1 u1 ¨ ¨ ¨uk´1 ;ρk t

1, k ě 0, and σ “ ρ1 ¨ ¨ ¨ ρk.

3. Overview of Maude-NPA
Here we give a high-level summary of Maude-NPA. For further
information, please see [6].

Given a protocol P , states are modeled as elements of an initial
algebra TΣSSP {ESSP

, where ΣSSP “ ΣSS Y ΣP is the signature
defining the sorts and function symbols (ΣP for the cryptographic
functions, ΣSS for strand constructor symbols and for all the state
constructor symbols), ESSP “ EP Y ESS is a set of equations
where EP specifies the algebraic properties of the cryptographic
functions and ESS denotes properties of constructors of states. The
set of equationsEP may vary depending on different protocols, but
the set of equationsESS is always the same for all protocols. There-

1 Note that we do not impose here the standard condition Varprq Ď
Varplq, since extra variables will be introduced in the righthand side of a
rule as we will make explicit in the paper. Rewriting with extra variables
in righthand sides is handled by allowing the matching substitution to
instantiate these extra variables in any possible way. However, this may
produce an infinite number of one-step rewrites from a term due to the
infinite number of possible instantiations of an extra variable. In Maude-
NPA this is avoided by restriction to topmost rewriting, which can be shown
to be complete for the tool.

fore, a state is an ESSP -equivalence class rtsESSP
P TΣSSP {ESSP

with t a ground ΣSSP -term.
In Maude-NPA a state pattern for a protocol P is a term t

of sort State (i.e., t P TΣSSP {ESSP
pX qState) which has the form

tS1 & ¨ ¨ ¨ &Sn & tIKuu where & is an associative-commutative
union operator with identity symbol H. Each element in the set is
either a strand Si or the intruder knowledge tIKu at that state.

The intruder knowledge tIKu belongs to the state and is rep-
resented as a set of facts using the comma as an associative-
commutative union operator with identity element empty. There
are two kinds of intruder facts: positive knowledge facts (the in-
truder knows m, i.e., mPI), and negative knowledge facts (the
intruder does not yet know m but will know it in a future state, i.e.,
mRI), where m is a message expression.

A strand [10] specifies the sequence of messages sent and
received by a principal executing the protocol and is represented
as a sequence of messages

rmsg˘1 ,msg˘2 ,msg˘3 , . . . ,msg˘k´1,msg˘k s

with msg˘i either msg´i (also written ´msgi) representing an input
message, or msg`i (also written `msgi) representing an output
message. Note that each msgi is a term of a special sort Msg.

Strands are used to represent both the actions of honest princi-
pals (with a strand specified for each protocol role) and the actions
of an intruder (with a strand for each action an intruder is able to
perform on messages). In Maude-NPA strands evolve over time; the
symbol | is used to divide past and future. That is, given a strand

r msg˘1 , . . . , msg˘i | msg˘i`1, . . . , msg˘k s

, messages msg˘1 , . . . ,msg˘i are the past messages, and messages
msg˘i`1, . . . ,msg˘k are the future messages (msg˘i`1 is the immedi-
ate future message). A strand rmsg˘1 , . . . ,msg˘k s is shorthand for
rnil | msg˘1 , . . . ,msg˘k , nils. An initial state is a state where the
bar is at the beginning for all strands in the state, and the intruder
knowledge has no fact of the form mPI. A final state is a state
where the bar is at the end for all strands in the state and there is no
intruder fact of the form mRI.

Since the number of states TΣSSP {ESSP
is in general infi-

nite, rather than exploring concrete protocol states rtsESSP
P

TΣSSP {ESSP
Maude-NPA explores symbolic strand state pat-

terns rtpx1, . . . , xnqsESSP
P TΣSSP {ESSP

pX q on the free pΣSSP ,

ESSP q-algebra over a set of variables X . In this way, a state pat-
tern rtpx1, . . . , xnqsESSP

represents not a single concrete state but
a possibly infinite set of such states, namely all the instances of the
pattern rtpx1, . . . , xnqsESSP

where the variables x1, . . . , xn have
been instantiated by concrete ground terms.

The semantics of Maude-NPA is expressed in terms of rewrite
rules that describe how a protocol moves from one state to another
via the intruder’s interaction with it. One uses Maude-NPA to find
an attack by specifying an insecure state pattern called an attack
pattern. Maude-NPA attempts to find a path from an initial state
to the attack pattern via backwards narrowing (narrowing using the
rewrite rules with the orientation reversed). That is, a narrowing
sequence from an initial state to an attack state is searched in
reverse as a backwards path from the attack state to the initial
state. Maude-NPA attempts to find paths until it can no longer form
any backwards narrowing steps, at which point it terminates. If
at that point it has not found an initial state, the attack pattern is
judged unreachable. Note that Maude-NPA places no bound on the
number of sessions, so reachability is undecidable in general. Note
also that Maude-NPA does not perform any data abstraction such
as a bounded number of nonces. However, the tool makes use of
a number of sound and complete state space reduction techniques

that help to identify unreachable and redundant states [8], and thus
make termination more likely.

4. A Process Algebra for Protocols with Choice
In this section we define a process algebra that can specify proto-
cols exhibiting choice points. Throughout the paper we refer to this
process algebra as the protocol process algebra.

The rest of this section is organized as follows. First, in Sec-
tion 4.1 we define the syntax of the protocol process algebra and
state the requirements that a well-formed process must satisfy. Then
in Section 4.2, we explain how the protocol specifications can be
defined in this process algebra. In Section 4.3 we then define the
operational semantics of the protocol process algebra.

4.1 Syntax of Protocol Process Algebra
In the protocol process algebra the behavior of both honest prin-
cipals and the intruder is represented by labeled processes. There-
fore, a protocol is specified as a set of labeled processes. Each pro-
cess performs a sequence of actions, namely, sending or receiv-
ing a message, and may perform deterministic or non-deterministic
choices. The protocol process algebra’s syntax is parameterized by
a sort Msg of messages and has the following syntax:

ProcConf ::“ LProc | ProcConf & ProcConf | H

LProc ::“ pRole, I, Jq Proc

Proc ::“ nil | `Msg | ´Msg | Proc ¨ Proc |

Proc ? Proc | if Cond then Proc else Proc

Cond ::“ Msg ‰ Msg |Msg “ Msg

• ProcConf stands for a process configuration, that is, a set of
labeled processes. The symbol & is used to denote set union for
sets of labeled processes. It is associative-commutative withH
as its identity element.
• LProc stands for a labeled process, that is, a process Proc with

a label pRole, I, Jq. Role refers to the role of the process in
the protocol (e.g., initiator or responder). I is a natural number
denoting the identity of the process, which distinguishes differ-
ent instances(sessions) of a process specification. J indicates
that the action at stage J of the process specification will be the
next one to be executed, that is, the first J ´ 1 actions of the
process for role Role have already been executed. Note that we
omit I and J in the protocol specification when both I and J
are 0.
• Proc defines the actions that can be executed within a process.
`Msg , and´Msg respectively denote sending out or receiving
a message Msg . We assume a single channel, through which all
messages are sent or received by the intruder. “Proc ¨ Proc”
denotes sequential composition of processes, where symbol
. is associative and has the empty process nil as identity.
“Proc ? Proc” denotes an explicit nondeterministic choice,
whereas “if Cond then Proc else Proc” denotes an explicit
deterministic choice, whose continuation depends on the sat-
isfaction of the constraint Cond .
• Cond denotes a constraint that will be evaluated in explicit de-

terministic choices. In this work we only consider constraints
that are either equalities (“) or disequalities (‰) between mes-
sage expressions.

Let PS, QS, andRS be process configurations, and P, Q, and
R be protocol processes. Our protocol syntax satisfies the following
structural axioms:

PS&QS “ QS&PS (1)

pPS&QSq&RS “ pPS&QSq&RS (2)

pP ¨ Qq ¨ R “ P ¨ pQ ¨ Rq (3)

PS&H “ PS (4)

P ¨ nil “ P (5)

nil ¨ P “ P (6)

The specification of the processes defining a protocol’s behavior
may contain some variables denoting information that the principal
executing the process does not yet know, or that will be different in
different executions. In all protocol specifications we assume three
disjoint kinds of variables:

• fresh variables: these are not really variables in the standard
sense, but names for constant values in a data type Vfresh of
unguessable values such as nonces. A fresh variable r is always
associated with a role ro P Role in the protocol. For each
protocol session i, we associate to r a unique name r.ro.i
for a constant in the data type Vfresh. What is assumed is that
if r.ro.i ‰ r1.ro1.j (including the case r.ro.i ‰ r.ro.j),
the values interpreting r.ro.i and r1.ro1.j in Vfresh are both
different and unguessable. In particular, for role ro P Role, the
interpretation mapping I : tr.ro.i | i P Nu Ñ Vfresh is injective
and random. In our semantics, a constant r.ro.i denotes its
(unguessable) interpretation Ipr.ro.iq P Vfresh. Throughout this
paper we will denote this kind of variables as r, r1, r2,
• choice variables: variables first appearing in a sent message
`M , which can be substituted by any value arbitrarily chosen
from a possibly infinite domain. A choice variable indicates an
implicit non-deterministic choice. Given a protocol with choice
variables, each possible substitution of these variables denotes a
possible continuation of the protocol. We always denote choice
variables by uppercase letters postfixed with the symbol “?” as
a subscript, e.g., A?, B?,
• pattern variables: variables first appearing in a received mes-

sage ´M . These variables will be instantiated when matching
sent and received messages. Implicit deterministic choices are
indicated by pattern variables, since failing to match the pat-
tern may lead to the rejection of a message. The pattern plays
the implicit role of a guard, so that, depending on the differ-
ent ways of matching, the protocol can have different continua-
tions. This kind of variables will be written as uppercase letters,
e.g. A,B,NA,

Note that fresh variables are distinguished from other variables
by having a specific sort Fresh. Choice variables or pattern vari-
ables can never have sort Fresh.

To guarantee the requirements on different kinds of variables
that can appear in a given process, we consider only well-formed
processes. We this notion more precise by defining a function wf :
Proc Ñ Bool checking whether a given process is well-formed. A
labeled process is well-formed if the process in it is well-formed.
A process configuration is well-formed if all the labeled process in
it are well-formed. The definition of wf uses an auxiliary function
shVar : Proc Ñ VarSet , retrieving the “shared variables” of a
process, i.e., the set of variables that show up in all branches. Below
we define both functions, where P, Q, and R are processes, M is
a message, and T is a constraint.

shVarp`M ¨ P q “ VarpMq Y shVarpP q

shVarp´M ¨ P q “ VarpMq Y shVarpP q

shVarppif T then P else Qq ¨Rq

“ VarpT q Y pshVarpP q X shVarpQqq Y shVarpRq

shVarppP ? Qq ¨Rq “ pshVarpP q X shVarpQqq Y shVarpRq

shVarpnilq “ H

wf pP ¨ `Mq “ wf pP q if pVarpMq XVarpP qq Ď shVarpP q

wf pP ¨ ´Mq “ wf pP q if pVarpMq XVarpP qq Ď shVarpP q

wf pP ¨ pif T then Q else Rqq “ wf pP ¨Qq ^ wf pP ¨Rq

if P ‰ nil and Q ‰ nil and VarpT q Ď shVarpP q

wf pP ¨ pQ ? Rqq “ wf pP ¨Qq ^ wf pP ¨Rq if Q ‰ nil orR ‰ nil

wf pP ¨ nilq “ wf pP q

wf pnilq “ True.

Remark 1. Note that the well-formedness property implies that
if a process begins with a deterministic choice action if T then
Q else R, then all variables in T must be instantiated, and thus
only one branch may be taken. For this reason, it is undesirable to
specify processes that begin with such an action. Furthermore, note
that the well-formedness property avoids explicit choices where
both possibilities are the nil process. That is, processes containing
either (if T then nil else nil), or (nil ? nil), respectively.

We illustrate the notion of well-formed process below.

Example 4.1. The behavior of a Client initiating an instance of
the handshake protocol from Example 1.1 with the Server, where
the Server may or may not request the Client to authenticate itself,
may be specified by the well-formed process shown below:

pClientq ` phs;npC?, r1q;G?; genpG?q; keyGpG?, C?, r2qq¨

´ phs;N ;G?; genpG?q;E;ZpAReq, G?, E, C?, r1, S,HMqq¨

if pAReq “ authreqq

then

` pepkeyEpG?, E, C?, r1q,

sigpC,W pHM,AReq, S?, G?, E, C?, r1qq;

macpkeyEpG?, E, , C?, r1q,

W pHM,AReq, S,G?, E, C?, r1qqqq¨

else

` pepkeyEpG?, E, C?, r2q,

macpkeyEpG?, E, C?, r2q,

W pHM,AReq, S,G?, E, C?, r1qqqq

where KeyG , Z and W are macros used to construct messages
sent in the protocol. The variables C? and G? are choice variables
denoting the client and Diffie-Hellman group respectively, and the
variables r1 and r2 are fresh variables. All other variables are
pattern variables. In particular, the variable AReq is a pattern
variable which can be instantiated to either authreq or noauthreq .
The Client makes a deterministic choice whether or not to sign its
next message with its digital signature, depending on which value
of AReq it receives.

Example 4.2. The behavior of a Server who may or may not
request a retry from a Client in an instance of the handshake
protocol from Example 1.1 may be specified as follows:

pServerq : ´ phs;N ;G; genpGq;Eq¨

ppp`phs; retryq ¨ ´phs;N 1;G1; genpG1q;E1q¨

` phs;npS?, r1q;G
1; genpG1q; keyGpG1, S?, r2q;

ZpAReq?, G
1, E1, S, r2, S?, HMqqq

?

p`phs;npS?, r1q;G; genpGq; keyGpG,S, r2q;

ZpAReq?, G,E, S, r2, S?, HMqqqqq

In this case the server nondeterministically chooses to request or
not to request a retry. In the case of a retry it waits for the retry mes-
sage from the client, and then proceeds with the handshake message

using the new key information from the client. In the case when it
does not request a retry, it sends the handshake message immedi-
ately after receiving the client’s Hello message. The variable r2 is
a fresh variable, while S? and AReq? are choice variables. S? de-
notes the name of the server, and AReq? is nondeterministically
instantiated to authreq or noauthreq .

Finally, we give an example of a process that does not satisfy
the well-formedness property.

Example 4.3.
pRespq ´ ppkpB,A;NAqq¨

p`ppkpA, 1;npB, rqqq ? ` ppkpA, 2qqq ¨

` ppkpC?, npB, rqqq

The problem with this process is the fresh variable r appearing in
message `ppkpC?, npB, rqqq, since r R shVarp´ppkpB,A;NAqq ¨
p`ppkpA, 1;npB, rqqq ? ` ppkpA, 2qqqq (more specifically, be-
cause it does not appear in message `ppkpA, 2qq), but r P

Varp´ppkpB,A;NAqq ¨ p`ppkpA, 1;npB, rqqq ? ` ppkpA, 2qqqq.

4.2 Protocol Specification in Process Algebra
Given a protocol P , we define its specification in the protocol
process algebra, written PPA, as a tuple of the form PPA “

ppΣPAP , EPAP q, PPAq, where PPA is a term denoting a well-
formed process configuration representing the behavior of the hon-
est principals as well as the capabilities of the attacker. That is,
PPA “ pro1 qP1 & . . . & proiqPi, where each rok, 1 ď k ď i,
is either the role of an honest principal or identifies one of the
capabilities of the attacker. PPA cannot contain two processes
with the same label, i.e., the behavior of each honest principal,
and each attacker capability are represented by a unique process.
EPAP “ EPYEPA is a set of equations withEP denoting the pro-
tocol’s cryptographic properties and EPA denoting the properties
of process constructors. The set of equationsEP may vary depend-
ing on different protocols, but the set of equations EPA is always
the same for all protocols. ΣPAP “ ΣP Y ΣPA is the signature
defining the sorts and function symbols as follows:

• ΣP is an order-sorted signature defining the sorts and function
symbols for the messages that can be exchanged in protocol P .
However, independently of protocol P , ΣP must always have
a sort Msg as the top sort in one of its connected components.
We call a sort S a data sort iff it is either a subsort of Msg, or
there is a message constructor c : S1...S...Sn Ñ S1, with S1

a subsort of Msg. The specific sort Fresh for fresh variables is
an example of data sort. Choice and pattern variables have sort
Msg or any of its subsorts.
• ΣPA is an order-sorted signature defining the sorts and func-

tion symbols of the process algebra infrastructure. ΣPA cor-
responds exactly to the BNF definition of the protocol process
algebra’s syntax in Section 4.1. Although it has a sort Msg for
messages, it leaves this sort totally unspecified, so that different
protocols P may use completely different message constructors
and may satisfy different equational properties EP . Therefore,
ΣPA will be the same signature for any protocol specified in the
process algebra. More specifically, ΣPA contains the sorts for
process configurations (ProcConf), labeled processes (LProc),
processes (Proc), constraints (Cond), and messages(Msg), as
well as the subsort relations LProc ă ProcConf. Furthermore,
the function symbols in ΣPA are also defined according to the
BNF definition.

Therefore, the syntax ΣPAP of processes for P will be in the union
signature ΣPAYΣP , consisting of the protocol-specific syntax ΣP ,
and the generic process syntax ΣPA through the shared sort Msg.

4.3 Operational Semantics of the Protocol Process Algebra
Given a protocol P , a state of P consists of a set of (possibly
partially executed) labeled processes, and a set of terms in the
intruder’s knowledge tIKu. That is, a state is a term of the form

tLP1 & ¨ ¨ ¨ &LPn | tIKuu
Given a state St of the form shown above, we abuse notation
and write LPk P St if LPk is a labeled process in the set
LP1 & ¨ ¨ ¨ &LPn.

The intruder knowledge IK models the single channel through
which all messages are sent and received. We consider an active
attacker who has complete control of the channel, i.e, can read,
alter, redirect, and delete traffic as well as create its own messages
by means of intruder processes.

State changes are defined by a set RPAP of rewrite rules, such
that the rewrite theory pΣPAP`State , EPAP , RPAP q characterizes
the behavior of protocol P , where ΣPAP`State extends ΣPAP by
adding state constructor symbols. We assume that a protocol’s
execution begins with an empty state, i.e., a state with an empty
set of labeled processes, and an empty intruder knowledge. That is,
the initial state is always of the form shown below:

tH | temptyuu

Each transition rule in RPAP is labeled with a tuple of the form
pro, i , j , a,nq, where:

• ro is the role of the labeled process being executed in the
transition.
• i denotes the identifier of the labeled process being executed in

the transition. Since there can be more than one process instance
of the same role in a process state, i is used to distinguish
different instances, i.e., ro and i together uniquely identify a
process in a state.
• j denotes the process’ step number since its beginning.
• a is a ground term identifying the action that is being performed

in the transition. It has different possible values: “`m” or
“´m” if the message m was sent (and added to the intruder’s
knowledge) or received, respectively; “m” if the message m
was sent but did not increase the intruder’s knowledge, “?” if
the transition performs an explicit non-deterministic choice, or
“T” if the transition performs a explicit deterministic choice.
• n is a number that, if the action that is being executed is an

explicit choice, indicates which branch has been chosen as the
process continuation. In this case n takes the value of either 1
or 2. If the transition does not perform any explicit choice, then
n “ 0.

Below we describe the set of transition rules that define a pro-
tocol’s execution in the protocol process algebra, that is, the set
of rules RPAP . Note that in the transition rules shown below, PS
denotes the rest of labeled processes of the state (which can beH).

• The action of sending a message is represented by the two tran-
sition rules below. Since we assume the intruder has complete
control of the network, it can learn any message sent by other
principals. Rule (PA++) denotes the case in which the sent mes-
sage is added to the intruder’s knowledge. Note that this rule
can only be applied if the intruder has not already learnt that
message. Rule (PA+) denotes the case in which the intruder
chooses not to learn the message, i.e., the intruder’s knowledge
is not modified, and, thus, no condition needs to be checked.
Since choice variables denote messages that are nondeterminis-
tically chosen, all (possibly infinitely many) admissible ground
substitutions for the choice variables are possible behaviors.

tpro, i, jq p`M ¨ P q & PS | tIKuu

ÝÑpro,i,j,`Mσ,0q tpro, i, j ` 1q Pσ & PS | tMσPI, IKuu
if pMσPIq R IK

where σ is a ground substitution binding choice variables in M
(PA++)

tpro, i, jq p`M ¨ P q & PS | tIKuu

ÝÑpro,i,j,Mσ,0q tpro, i, j ` 1q Pσ & PS | tIKuu

where σ is a ground substitution binding choice variables in M
(PA+)

• As shown in the rule below, a process can receive a message
matching a pattern M if there is a message M 1 in the intruder’s
knowledge, i.e. a message previously sent either by some hon-
est principal or by some intruder process, that matches the pat-
tern message M . After receiving this message the process will
continue with its variables instantiated by the matching substi-
tution, which takes place modulo the equations EP . Note that
the intruder can “delete” a message via choosing not to learn it
(executing Rule PA+ instead of Rule PA++) or not to deliver it
(failing to execute Rule PA-).

tpro, i, jq p´M ¨ P q & PS | tM 1PI, IKuu
ÝÑpro,i,j,´Mσ,0q tpro, i, j ` 1q Pσ & PS | tM 1PI, IKuu
if M 1 “EP Mσ (PA-)

• The two transition rules shown below define the operational
semantics of explicit deterministic choices. That is, the op-
erational semantics of an if T then P else Q expression.
More specifically, rule (PAif1) describes the then case, i.e.,
if the constraint T is satisfied, the process will continue as P .
Rule (PAif2) describes the else case, that is, if the constraint
T is not satisfied, the process will continue as Q. Note that,
since we only consider well-formed processes, these transition
rules will only be applied if j ě 1. Note also that since T
has been fully substituted by the time the if-then-else is exe-
cuted, and the constraints that we considered in this paper are
of the form m ‰EP m1 or m “EP m1, the satisfiability of T
can be checked by checking whether the corresponding ground
equality or disequality holds.

tpro, i, jq ppif T then P else Qq ¨Rq & PS | tIKuu

ÝÑpro,i,j,T,1q tpro, i, j ` 1q pP ¨Rq & PS | tIKuu if T

(PAif1)

tpro, i, jq ppif T then P else Qq ¨Rq & PS | tIKuu

ÝÑpro,i,j,T,2q tpro, i, j ` 1q pQ ¨Rq & PS | tIKuu if T

(PAif2)

• The two transition rules below define the semantics of explicit
non-deterministic choice P ? Q. In this case, the process can
continue either as P , denoted by rule (PA?1), or as Q, de-
noted by rule (PA?2). Note that this decision is made non-
deterministically.

tpro, i, jq ppP ? Qq ¨Rq & PS | tIKuu

ÝÑpro,i,j,?,1q tpro, i, j ` 1q pP ¨Rq & PS | tIKuu

(PA?1)

tpro, i, jq ppP ? Qq ¨Rq & PS | tIKuu

ÝÑpro,i,j,?,2q tpro, i, j ` 1qpQ ¨Rq & PS | tIKuu

(PA?2)

• The transition rules shown below describe the introduction of a
new process from the specification into the state, which allows
us to support an unbounded session model. Recall that fresh
variables are associated with a role and an identifier. Therefore,
whenever a new process is introduced: (a) the largest process
identifier piq will be increased by 1, and (b) new names will be
assigned to the fresh variables in the new process. The function
MaxProcIdpPS, roq in the transition rule below is used to get
the largest process identifier piq of role ro in the process con-
figuration PS. The substitution ρro,i`1 in the transition rule
below takes a labeled process and assigns new names to the
fresh variables according to the label. More specifically, pro, i`
1, 1q Pkpr1, . . . , rnqρro,i`1 “ pro, i ` 1, 1q Pkpr1, . . . , rnq
tr1 ÞÑ r1.ro.i` 1, . . . , rn ÞÑ rn.ro.i` 1u. In a process state,
a role name together with an identifier uniquely identifies a pro-
cess. Therefore, there is a unique subset of fresh names for each
process in the state. In the rest of this paper we will refer to this
kind of substitutions as fresh substitutions.

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

@ proq Pk P PPA

tPS | tIKuu
ÝÑpro,i`1,1,A,Numq tpro, i` 1, 2q P 1k & PS | tIK1uu

IF tpro, i` 1, 1q Pkρro,i`1 | tIKuu
ÝÑpro,i`1,1,A,Numq tpro, i` 1, 2q P 1k | tIK

1uu

where ρro,i`1 is a fresh substitution,
i “ MaxProcIdpPS, roq

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

(PA&)

Note thatA denotes the action of the state transition, and can be
of any of the forms explained above. The function MaxProcId
is defined as below:

MaxProcIdpH, roq “ 0

MaxProcIdppro, i, jqP&PS, roq “ maxpMaxProcIdpPS, roq, iq

MaxProcIdppro1, i, jqP&PS, roq “ MaxProcIdpPS, roq

if ro ‰ ro1

where PS denotes a process configuration, P denotes a pro-
cess, and ro, ro1 denote role names.

Therefore, the behavior of a protocol in the process algebra is de-
fined by the set of transition rules RPAP “ t(PA++),
(PA+), (PA-), (PAif1), (PAif2), (PA?1), (PA?2)u Y (PA&)

5. Constrained Protocol Strands with Choice
To specify and analyze protocols with choices in Maude-NPA, in
this section we extend Maude-NPA’s strand notation by adding new
symbols to support explicit choices. We refer to the strands in this
extended syntax as constrained protocol strands.

In Section 5.1 we describe the syntax for constrained protocol
strands. Then, in Section 5.2 we define a mapping from a protocol
specification in the protocol process algebra, as described in Sec-
tion 4.2, to a specification based on constrained protocol strands.

5.1 Constrained Protocol Strands Syntax
In this section we extend Maude-NPA’s syntax by adding con-
strained messages, which are terms of the form tCstr ,Numu,
where Cstr is a constraint, and Num is a natural number that iden-
tifies the continuation of the protocol’s execution, among the two
possibilities after an explicit choice point. More specifically, we
extend the ΣSS part of the signature ΣSSP of the Maude-NPA’s
syntax we defined in Section 3 as follows:

• A new sort Cstr represents the constraints allowed in con-
strained messages, that are, the constant “?” for explicit non-
deterministic choice, and equality constructor (“ “ ”), and

disequality constructor (“ ‰ ”) among message expressions
for explicit deterministic choice:

? :Ñ Cstr . “ : Msg MsgÑ Cstr .

‰ : Msg MsgÑ Cstr .

• A new sort CstrMsg for constrained messages, such that
CstrMsg ă SMsg, where SMsg is an existing Maude-NPA sort
denoting signed messages (i.e., messages with + or -). There-
fore, now a strand is a sequence of output, input and constrained
messages.
• A new operator t , u constructs constraint messages as fol-

lows:
t , u : Cstr NatÑ CstrMsg .

We will refer to this extended signature as ΣCstrSSP . Note
that the protocol signature ΣP is contained in ΣSSP , therefore
in ΣCstrSSP . Furthermore, in the constrained semantics we al-
low each honest principal or intruder capability strand to be la-
beled by the “role” of that strand in the protocol (e.g. (Client)
or (Server)). Therefore, strands are now terms of the form
pro, iqru1, . . . , uns, where ro denotes the role of the strand in
the protocol, i is a unique identifier distinguishing different in-
stances of the strands of the same role, and each ui can be a sent
or received message, i.e., a term of the form M˘, or a constraint
message of the form tCstr , Numu. We often omit i, or both ro
and i for clarity when they are not relevant.

5.2 Protocol Specification using Constrained Protocol
Strands

The behavior of a protocol involving choices can be specified using
the syntax presented in Section 5.1 as described below.

Definition 1 (Protocol specification). Given a protocol P , we de-
fine its specification by means of constrained protocol strands, writ-
ten PCstrSS , as a tuple of the form PCstrSS “ ppΣCstrSSP , ESSP q,
PCstrSS q, where ΣCstrSSP is the protocol’s signature (see Sec-
tion 5.1), and ESSP “ EP Y ESS is a set of equations as we de-
fined in Section 3, where EP denotes the protocol’s cryptographic
properties and ESS denotes the protocol-independent properties
of constructors of strands. That is, the set of equations EP may
vary depending on different protocols, but the set of equations
ESS is always the same for all protocols. PCstrSS is a set of con-
strained protocol strands as defined in Section 5.1, representing
the behavior of the honest principals as well as the capabilities
of the attacker. That is, PCstrSS is a set of labeled strands of the
form: PCstrSS “ tpro1 qru1,1, . . . , u1,n1 s & . . . & promqrum,1,
. . . , um,nm su, where, for each rok such that 1 ď k ď i, rok is
either the role of an honest principal, or identifies one of the ca-
pabilities of the attacker. We note that PCstrSS may contain several
strands with the same label, each defining one of the possible paths
of such a principal.

The protocol specification described above can be obtained by
transforming a specification in the process algebra of Section 4.2
as follows. Given a protocol P , its specification in the process
algebra PPA, consists of a set of well-formed labeled processes.
We transform a term denoting a set of labeled processes into a
term denoting a set of constrained protocol strands by the mapping
toCstrSS. The intuitive idea is that, since our process contains
no recursion, each process can be “deconstructed” as a set of
constrained protocol strands, where each such strand represent a
possible execution path of the process.

The mapping toCstrSS is defined in Definition 2 below.

Definition 2 (Mapping toCstrSS). Given a labeled process LP and
a process configuration LPS , we define the mapping toCstrSS :
TΣPAP

pX q Ñ TΣCstrSSP
pX q as:

toCstrSSpLP & LPSq “ toCstrSS*pLP ,nilq & toCstrSSpLPSq

toCstrSSpHq “ H

where H is the empty set of strands. toCstrSS* is an auxiliary
mapping that maps a term denoting a labeled process to a term
that denotes a set of constrained protocol strands. It takes two
arguments: a labeled process, and a temporary store that keeps a
sequence of messages. More specifically, toCstrSS* : TΣPAP

pX q ˆ
TΣCstrSSP

pX q Ñ TΣCstrSSP
pX q is defined as follows:

toCstrSS*ppro, i, jq nil , Lq “ pro, iq r L s

toCstrSS*ppro, i, jq `M . P,Lq

“ toCstrSS*ppro, i, jq P, pL, `Mqq

toCstrSS*ppro, i, jq ´M . P, Lq

“ toCstrSS*ppro, i, jq P, pL, ´Mqq

toCstrSS*ppro, i, jq (if T then P else Qq . R, Lq

“ toCstrSS*ppro, i, jq P . R, pL, tT, 1uqq &

toCstrSS*ppro, i, jqQ . R, pL, t T, 2uqq

toCstrSS*ppro, i, jq pP ? Qq . R, Lq

“ toCstrSS*ppro, i, jq P . R, pL, t?, 1uqq &

toCstrSS*ppro, i, jqQ . R, pL, t?, 2uqq

where P , Q, and R denote processes, M is a message, T is a
constraint, and L denotes a list of messages, i.e., input, output or
constraint messages.

Note that toCstrSS does not modify output and input messages,
since messages are actually terms in TΣP {EP pX q in both the pro-
tocol process algebra, and the constrained forwards semantics.
toCstrSS can be used both as a map between specifications, and
as a map from process configurations and strand sets appearing in
states.

We illustrate toCstrSS with the example below.

Example 5.1. If we apply the mapping toCstrSS to the process in
Example 4.2 we obtain the following term which denotes a set of
strands:

pServerq r t?, 1u, ´phs;N ;G; genpGq;Eq,

` phs; retryq,

´ phs;N 1;G1; genpG1q;E1qq,

` phs;npS?, r1q;G
1; genpG1q; keyGpG1, S?, r2q;

ZpAReq?, G
1, E1, S, r2, S?, HMqqs &

pServerq r t?, 2u,´phs;N ;G; genpGq;Eq,

` phs;npS?, r1q;G; genpGq; keyGpG,S, r2q;

ZpAReq?, G,E, S, r2, S?, HMqqs

A protocol specification in the protocol process algebra can
then be transformed into a specification of that protocol in the
constrained protocol strands described below using toCstrSS.

Definition 3 (Specification mapping). Given a protocol P and
its protocol process algebra specification PPA “ ppΣPAP , EP Y
EPAq, PPAq, where

PPA “ pro1qP1 & . . .&pronqPn

its specification by means of constrained protocol strands is
PCstrSS “ ppΣCstrSSP , EP Y ESS q, PCstrSS q with PCstrSS “

toCstrSSpPPAq.

6. Constrained Forwards Strand Semantics
In this section we extend Maude-NPA’s rewriting-based forwards
semantics in [7] by adding new transition rules for constrained mes-
sages. We refer to this extended forwards semantics as constrained
forwards strand semantics. We show that the process algebra se-
mantics and the constrained forwards strand semantics are label
bisimilar. Therefore, protocols exhibiting choices can be specified
and executed in an equivalent way in both semantics.

In constrained forwards strand semantics, state changes are de-
fined by a set RCstrFP of rewrite rules, such that the rewrite theory
pΣCstrSSP , ESSP , RCstrFP q characterizes the behaviors of proto-
col P .

The set of transition rules RCstrFP is an extension of the tran-
sition rules RFP in [7]. The transition rules are generated from
the protocol specification. A state consists of a multiset of par-
tially executed strands and a set of terms denoting the intruder’s
knowledge. The main differences between the sets RCstrFP and
RFP are: (i) new transition rules are added in RCstrFP to appro-
priately deal with constraint messages, (ii) strands are labeled with
the role name, together with the identifier for distinguishing differ-
ent instances, as explained in Section 5.1, (iii) transitions are also
labeled, similarly as in the protocol process algebra, (iv) the global
counter for generating fresh variables is deleted from the state, in-
stead, special unique names are assigned to fresh variable, which
simplifies our notation.

In the constrained forwards strand semantics we label each
transition rule similarly as in Section 4.3, that is, using labels of
the form pro, i, j, a, nq, where ro, i, a, and n are as explained in
Section 4.3, and j in this case is the position of the message that is
being exchanged in the state transition. Also, similar to Section 4.3,
for transitions that send out messages containing choice variables,
all (possibly infinitely many) admissible ground substitutions for
the choice variables are possible behaviors. A similar mechanism
for distinguishing different fresh variables is used as that explained
in Section 4.3. Since messages are introduced into strands in the
state incrementally, we instantiate the fresh variables incrementally
as well. Recall that fresh variables always first show up in a sent
message. Therefore, each time a sent message is introduced into a
strand in the state, we assign new names to the fresh variables in the
message being introduced. The function MaxStrId for getting the
max identifier for a constrained strand of a certain role is similar to
MaxProcId in Section 4.3.

Since now messages in a strand can be sent or received mes-
sages, i.e. terms of the form m` or m´, as well as constraint mes-
sages tCstr ,Numu, we represent them in the rules below simply
as terms of the form ui when their exact form is not relevant. We
will use the precise form of the message when disambiguation is
needed.

Before explaining the new transition rules for constraint mes-
sages, we show how the transition rules in [7] are labeled.

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

@ proq ru1, . . . , uj´1, u
`
j , uj`1, . . . , uns P PCstrSS ^ ją1 :

tSS& tIKu& pro, iq ru1, . . . , uj´1su

Ñpro,i,j,pujρro,iσq`,0q

tSS& tujρro,iσPI, IKu& pro, iq ru1, . . . , uj´1, pujρro,iσq
`su

IF pujρro,iσPIq R IK
where σ is a ground substitution binding choice variables in uj ,
ρro,i “ tr1 ÞÑ r1.ro.i, . . . , rn ÞÑ rn.ro.iu is a fresh substitution.

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

(F++)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

@ proq ru1, . . . , uj´1, u
`
j , uj`1, . . . , uns P PCstrSS ^ ją1 :

tSS& tIKu& pro, iq ru1, . . . , uj´1su

Ñpro,i,j,ujρro,iσ,0q

tSS& tIKu& pro, iq ru1, . . . , uj´1, pujρro,iσq
`su

where σ is a ground substitution binding choice variables in uj ,
ρro,i “ tr1 ÞÑ r1.ro.i, . . . , rn ÞÑ rn.ro.iu is a fresh substitution.

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

(F+)

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

@ proq ru`1 , . . . , uns P PCstrSS :

tSS& tIKuu Ñpro,i`1,j,pu1ρro,i`1σq
`,0q

tSS& pro, i` 1q rpu1ρro,i`1σq
`s& tu1ρro,i`1σPI, IKuu

IF pu1ρro,i`1σPIq R IK
where σ is a ground substitution binding choice variables in u1,
ρro,i`1 “ tr1 ÞÑ r1.ro.i` 1, . . . , rn ÞÑ rn.ro.i` 1u
is a fresh substitution, i “ MaxStrIdpSS, roq.

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

(F++&)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

@ proq ru`1 , . . . , uns P PCstrSS :

tSS& tIKuu Ñpro,i`1,j,u1ρro,i`1σ,0q

tSS& pro, i` 1q rpu1ρro,i`1σq
`s& tIKuu

where σ is a ground substitution binding choice variables in u1,
ρro,i`1 “ tr1 ÞÑ r1.ro.i` 1, . . . , rn ÞÑ rn.ro.i` 1u
is a fresh substitution, i “ MaxStrIdpSS, roq.

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

(F+&)

$

’

’

’

&

’

’

’

%

@ proq ru1, . . . , uj´1, u
´
j , uj`1, . . . , uns P PCstrSS ^ j ą 1 :

tSS &tujPI, IKu& pro, iq ru1, . . . , uj´1su

Ñ
pro,i,j,u´j ,0q

tSS& tujPI, IKu& pro, iq ru1, . . . , uj´1, u
´
j su

,

/

/

/

.

/

/

/

-

(F-)

$

’

’

’

&

’

’

’

%

@proq ru´1 , u2, . . . , uns P PCstrSS :

tSS& tu1PI, IKuu Ñpro,i`1,1,u´1 ,0q

tSS & pro, i` 1q ru´1 s& tu1PI, IKuu
where i “ MaxStrIdpSS, roq

,

/

/

/

.

/

/

/

-

(F-&)

The constrained forwards strand semantics extends Maude-
NPA’s forwards semantics in [7] by adding transition rules to han-
dle constraint messages, i.e, messages of the form tCstr ,Numu,
where Num can be either 1 or 2. First, we add the two transition
rules below for the cases when such a constrained message comes
from explicit choices. Note that, as a consequence of the well-
formedness, the constraints introduce no new variables, and since
the constraints that we consider are of the form m ‰EP m1 or
m “EP m1, the satisfiability of Cstr can be checked by checking
whether the corresponding ground equality or disequality holds.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

@ proq ru1, . . . , uj´1, tCstr ,Numu, uj`1, . . . , uns P PCstrSS

^j ą 1 :

tSS &tIKu& pro, iq ru1, . . . , uj´1su

Ñpro,i,j,T,Numq

tSS& tIKu& pro, iq ru1, . . . , uj´1, tCstr ,Numusu
IF Cstr

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

(Fif)

$

’

’

’

’

&

’

’

’

’

%

@ proq ru1, . . . , uj´1, t?,Numu, uj`1, . . . , uns P PCstrSS

^j ą 1 :

tSS &tIKu& pro, iq ru1, . . . , uj´1su

Ñpro,i,j,?,Numq

tSS& tIKu& pro, iq ru1, . . . , uj´1, t?,Numusu

,

/

/

/

/

.

/

/

/

/

-

(F?)

The following set of transition rules adds to the state a new
strand whose first message is a constraint message of the form
t?,Numu:

$

’

’

&

’

’

%

@ proq r t?,Numu, u2, . . . , uns P PCstrSS :

tSS& tIKuu Ñpro,i`1,1,?,Numq

tSS & pro, i` 1q r t?,Numu s& tIKuu
where i “ MaxStrIdpSS, roq

,

/

/

.

/

/

-

(F?&)

Definition 4. Let P be a protocol with signature ΣCstrSSP and
equational theory ESSP . We define the constrained forwards
rewrite theory characterizing P as pΣCstrSSP , ESSP , RCstrFP q

where RCstrFP “ (F++) Y (F+) Y (F++&) Y (F+&) Y (F-) Y
(F-&)Y (Fif)Y (F?)Y (F?&).

6.1 Bisimulation between Constrained Forwards Strand
Semantics and Process Algebra Semantics

In this section we show that the process algebra semantics and the
constrained forwards strand semantics are label bisimilar. We first
define PA-State and FW-State, the respective notions of state in
each semantics.

Definition 5 (PA-State). Given a protocol P , a PA-State of
P is a state in the protocol process algebra semantics that is
reachable from the initial state. The initial PA-State is Pinit “

tH | temptyuu.

Definition 6 (FW-State). Given a protocol P , a FW-State of P
is a state in the constrained forwards strand semantics that is
reachable from the initial state. The initial FW-State is Finit “

tH & temptyuu.

The bisimulation relation is defined based on reachability, i.e., if
a PA-State and a FW-State are in the relation HState , then they both
can be reached from their corresponding initial states by the same
label sequence. Note that we only consider states that are reachable
from the initial states.

Definition 7 (Relation HState). Given a protocol P , the rela-
tion HState is defined as: HState “ tpPst ,Fstq P PA-State ˆ
FW-State | D label sequence α s.t. Pinit Ñα Pst , Finit Ñα Fstu.

Recall that a process can be “deconstructed” by the mapping
toCstrSS into a set of constrained protocol strands, each represent-
ing a possible execution path. If a PA-State Pst and a FW-State Fst
are related by HState , then an important observation is that there is
a duality between individual processes in Pst and strands in Fst : if
there is a process in the Pst describing a role’s continuation in the
future, there will be a corresponding strand in Fst describing the
part of the process that has already been executed, and vice versa.
Another observation is that, since the intruder’s knowledge is ex-
tracted from the communication history, following the definition of
HState , the states Pst and Fst have the same communication his-
tory, therefore they have the same intruder’s knowledge. These ob-
servations lead us to the following bisimulation result, whose proof
can be found in Appendix A.

Theorem 1 (Bisimulation). HState is a bisimulation.

7. Constrained Backwards Strand Semantics
In this section we extend Maude-NPA’s symbolic backwards se-
mantics with rules for constrained messages of the form described
in Section 5.1, so that it can analyze protocols exhibiting explicit
choices. We refer to this extended backwards semantics as con-
strained backwards strand semantics. We then show that the con-
strained backwards strand semantics is sound and complete with
respect to the constrained forwards strand semantics presented in
Section 6, and the process algebra semantics presented in Section 4.
This result allows us to use Maude-NPA for analyzing protocols ex-
hibiting choice, including both implicit and explicit choices, and in

particular any protocol specified using the protocol process alge-
bra.

The strand space model used in the constrained backwards
strand semantics is the same as the one already used in Maude-NPA
[6], except for the following differences:

• Maude-NPA explores constrained states as defined in [9], that
is, states that have an associated a constraint store. More specif-
ically, a constrained state is a pair xSt,Ψy consisting of a state
expression St and a constraint, i.e., a set Ψ understood as a
conjunction Ψ “

Źn
i“1ci of constraints.

• Strands are now of the form ru1, . . . , ui | ui`1, . . . uns, where
each uk can be of one of these forms: (i) m` if it is a sent mes-
sage, (ii) m´ if it is a received message, or (iii) tCstr,Numu
if it is a constrained message.

State changes are described by a set R´1
CstrBP

of rewrite rules,
so that the rewrite theory pΣCstrSSP , ESSP , R

´1
CstrBP

q character-
izes the behavior of protocol P modulo the equations ESSP for
backwards execution. The set of rules R´1

CstrBP
is obtained as fol-

lows. First, we adapt the set of rules R´1
BP

in [6] to constrained
states, which is an embedding of rules in R´1

BP
, as shown below:

xtSS & rL |M´, L1s & tMPI, IKuu,Ψy
Ñ xtSS & rL,M´ | L1s & tMPI, IKuu,Ψy (B-)

xtSS & rL |M`, L1s & tIKuu,Ψy

Ñ xtSS & rL,M` | L1s & tIKuu,Ψy (B+)

xtSS & rL |M`, L1s & tMRI, IKuu,Ψy
Ñ xtSS & rL,M` | L1s & tMPI, IKuu,Ψy (B++)

@ rl1, u`, l2s P P :
xttSS& r l1|u`, l2 s& tuRI, IKuu,Ψy
Ñ xtSS& tuPI, IKuuu,Ψy

(B&)

where L and L1 are variables denoting a list of strand messages,
IK is a variable for a set of intruder facts (mPI or mRI), SS is a
variable denoting a set of strands, and l1, l2 denote a list of strand
messages.

Then, we define new transition rules for constrained messages.
That is, we add the reversed version of the following rules:

xtSS& tIK1u& proqrL | t?,Numu, L1su,Ψy

Ñ xtSS& tIK1u& proqrL, t?,Numu | L1su,Ψy (B?)

xtSS& tIKu& proqrL | tM “EP M,Numu, L1su,Ψy

Ñ xtSS& tIKu& proqrL, tM “EP M,Numu | L1su,Ψy (Bif=)

xtSS& tIKu& proqrL | tM ‰M 1,Numu, L1su, pΨ^M ‰M 1qy

Ñ xtSS& tIKu& proqrL, tM ‰M 1,Numu | L1su,Ψy

if pΨ^M ‰EP M 1q is satisfiable in TΣCstrSSP {EP pX q (Bif‰)

Rule (B?) processes a constraint message denoting an explicit
non-deterministic choice with constant “?”. The constraint store is
not changed and no satisfiability check is required.

Rules (Bif=) and (Bif‰) deal with constrained messages asso-
ciated to explicit deterministic choices. Since the only constraints
we allow in explicit deterministic choices are equalities and dise-
qualities, rule (Bif=) is for the case when the constraint is an equal-
ity, rule (Bif‰) is for the case when the constraint is a disequality.
The equality constraint is solved by EP -unification. The constraint
in a constrained state is therefore a disequality constraint, i.e.,
Ψ “

Źn
i“1ui ‰EP vi. The semantics of such a constrained state,

written rrxSt,Ψyss is the set of all ground substitution instances of
the form:

rrxSt,Ψyss “ tStθ | θ P rX Ñ TΣP s^uiθ ‰EP viθ, 1 ď i ď nu

The disequality constraints are then solved the same way as in [9].

Definition 8. Let P be a protocol with signature ΣCstrSSP and
equational theoryEP . We define the constrained backwards rewrite
theory characterizing P to be pΣCstrSSP , ESSP , R

´1
CstrBP

q where
ESSP is same as explained in Section 3.R´1

CstrBP
is the result of re-

versing the rewrite rules t(B-), (B+), (B++), (B?), (Bif=), (Bif‰)uY
(B&).

7.1 Soundness and Completeness of Constrained Backwards
Strand Semantic

The soundness and completeness proofs generalize the proofs in
[7]. Recall that the state in the constrained states of constrained
backwards strand semantics is a symbolic strand state, i.e., a state
with variables. A state in the forwards strand semantics is a ground
strand state, i.e., a state without variables. The lifting relation de-
fines the instantiation relation between symbolic and ground states.
We first extend the lifting relation in [7] with constraints and con-
strained messages. Note that the ui in the definition below can be
sent messages, received messages, or constrained messages.

Definition 9 (Lifting Relation). Given a protocol P , a constrained
symbolic strand state CstrS “ xS,Ψy and a ground strand state
s, we say that s lifts to CstrS , or that CstrS instantiates to s with
a ground substitution θ : pVarpSq ´ tSS , IK uq Ñ TΣP , written
CstrS ąθ s iff

• for each strand :: r1, . . . , rm :: ru1, . . . ui´1 | ui, . . . , uns in
S, there exists a strand rv1, . . . vi´1s in s such that @1 ď j ď
i´ 1, vj “EP ujθ.
• for each positive intruder fact wPI in S, there exists a positive

intruder fact w1PI in s such that w1 “EP wθ, and
• for each negative intruder fact wRI in S, there is no positive

intruder fact w1PI in s such that w1 “EP wθ.
• EP |ù Ψθ.

In the following we show the soundness and completeness of
constrained backwards strand semantics w.r.t. the constrained for-
wards strand semantics. Several auxiliary results and the proofs of
Theorems 2 and 3 below can be found in Appendix B.

Extending the proofs in [7], we first proved how the lifting of
a ground state to a symbolic state induces a lifting of a forwards
rewriting step in the forwards semantics to a backwards narrowing
step in the backwards semantics, i.e., the completeness of one-step
transition. Theorem 2 below then follows straightforwardly.

Theorem 2 (Completeness). Given a protocol P , two ground
strand states s, s0, a constrained symbolic strand state CstrS and
a substitution θ s.t. (i) s0 is an initial state, (ii) s0 Ñ

n s, and
(iii) CstrS ąθ s. Then there exists a constrained symbolic initial
strand state CstrS0, two substitutions µ and θ1, and k ď n, s.t.
CstrS0

k
øµ CstrS , and CstrS0 ą

θ1 s0.

The Soundness Theorem from [7] can also be extended to con-
strained backwards and forwards strand semantics. It shows that the
backwards symbolic reachability analysis is sound with respect to
the forwards rewriting-based strand semantics.

Theorem 3 (Soundness). Given a protocol P , two constrained
symbolic strand states CstrS0,CstrS

1, an initial ground strand
state s0 and a substitution θ s.t. (i) CstrS0 is a symbolic initial
state, and (ii) CstrS0

˚
ø CstrS 1 , and (iii) CstrS0 ą

θ s0. Then
there exists a ground strand state s1 and a substitution θ1, s.t. (i)
s0 Ñ

˚ s1, and (ii) CstrS 1 ąθ
1

s1.

The soundness and completeness results in Theorems 3 and 2
together with the bisimulation proved in Theorem 1 show that the
backwards symbolic reachability analysis is sound and complete
with respect to the process algebra semantics.

Theorem 4 (Soundness). Given a protocol P , two constrained
symbolic strand states CstrS0,CstrS , the initial FW-State Finit,
a substitution θ, and the initial PA-State Pinit s.t. (i) CstrS0 is
a symbolic initial strand state, and (ii) CstrS0

˚
øµ CstrS , and

(iii) CstrS0 ą
θ Finit. Then there exists a FW-State Fst such that

CstrS ą
θ1 Fst , and therefore, there is a PA-State Pst such that

Pst HState Fst .

Theorem 5 (Completeness). Given a protocol P , a PA-State Pst ,
a FW-State Fst , a constrained symbolic strand state CstrS s.t. (i)
Pst HState Fst , (ii) CstrS ą

θ1 Fst . Then there is a backwards
symbolic execution CstrS0

˚
øµ CstrS s.t. CstrS0 is a symbolic

initial strand state as defined in Section 3, and CstrS0 ą
θ Finit.

8. Protocol Experiments
In this section we describe some preliminary experiments2 that
we have performed on protocols with choice using a prototype
extension of the Maude-NPA cryptographic protocol analysis tool.
To validate our approach, we have chosen both simple and complex
protocols exhibiting either nondeterministic choice or deterministic
choice or both.

8.1 Choice of Encryption Type
This protocol allows either public key encryption or shared key
encryption to be used for Alice to communicate with Bob. Alice
initiates the conversation by sending out a message containing the
chosen encryption mode, then Bob replies by sending an encrypted
message containing his session key. The encryption mode is cho-
sen nondeterministically by Alice. Therefore, it exhibits an explicit
nondeterministic choice. Below we show the protocol description:
the first one reflects the case in which public key encryption (de-
noted by PubKey) is chosen.

1. AÑ B : A;B;PubKey

2. B Ñ A : pkpA,B;SKq

3. AÑ B : pkpB,A;SK;NAu

4. B Ñ A : pkpA,B;NAq

The second one reflects the case in which a shared key encryption
(denoted by SharedKey) is chosen.

1. AÑ B : A;B;SharedKey

2. B Ñ A : shkpkeypA,Bq, B;SKq

3. AÑ B : shkpkeypA,Bq, A;SK;NAq

4. B Ñ A : shkpkeypA,Bq, B;NAq

Note thatA andB are names of principals, SK denotes the session
key generated by B, and NA denotes a nonce generated by A.

This protocol can alternatively be specified by treating the en-
cryption mode as a choice variable which can be either public key
encryption or shared key encryption, the continuation of the proto-
col will then be an explicit deterministic choice depending on the
value of this choice variable. For our purposes of evaluating our ap-
proach on protocols with explicit nondeterministic choice, we use
explicit nondeterministic choice here. We analyzed whether the in-
truder can learn the session key generated by Bob, when either the

2 Available at http://www.fan-yang.com/publications/choice.
html

http://www.fan-yang.com/publications/choice.html
http://www.fan-yang.com/publications/choice.html

public key encryption or shared key encryption is chosen, assum-
ing both the principals are honest. For this property, Maude-NPA
terminated without any attack being found.

8.2 Rock-Paper-Scissors
To evaluate our approach on protocols with explicit deterministic
choices, we have used a simple protocol which simulates the fa-
mous Rock-Paper-Scissors game, in which Alice and Bob are the
two players of the game. In this game, Alice and Bob commit to
each other their hand shapes, which are later on revealed to each
other after both players committed their hand shapes. The result of
the game is then agreed upon between the two players according
to the rule: rock beats scissors, scissors beats paper and paper beats
rock. They finish by verifying with each other they both reached the
same conclusion. Thus, at the end of the protocol each party should
know the outcome of the game and whether or not the other party
agrees to the outcome. This protocol exhibits explicit deterministic
choice because the result of the game depends on the evaluation of
the committed hand shapes according to the game rule. Note that
this protocol also exhibits implicit nondeterministic choice, since
the hand shape of the players are chosen by the players during the
game.

The protocol proceeds as follows. First, both initiator and re-
sponder choose their hand shapes and send them to each other using
a secure commitment scheme. Next, they both send each other the
nonces that are necessary to open the commitments. Each of them
then compares the two hand shapes and decides if the initiator wins,
the responder wins, or there is a tie. The initiator then sends the re-
sponder the outcome. When the responder receives the initiator’s
verdict, it compares it against its own. It responds with “finished”
if it agrees with the initiator and “cheater” if it doesn’t. All mes-
sages are signed and encrypted, and the initiator’s and responder’s
nonces are included in the messages concerning the outcome of the
game. The actual messages sent and choices made are described in
more detail below.

1. AÑ B : pkpB, signpA, commitpNA, XAqqq

2. B Ñ A : pkpA, signpB, commitpNB , XBqqq

3. AÑ B : pkpB, signpA,NAq

4. B Ñ A : pkpA, signpB,NBq

5. if pXA beats XBq then R “Win
else if pXB beats XAq then R “ Lose
else if pXB “ XAq then R “ T ie

6. AÑ B : pkpB, signpA,NA;NB :;Rqqq

7. if pR “Win&XA beats XBq
or pR “ Lose & XB beats XAq
or pR “ T ie & XA “ XBq

then B Ñ A : pkpA, signpB,NA;NB ; finished qq
else B Ñ A : pkpA, signpB,NA;NB ; cheater qq

We first tried to see whether the protocol can simulate the game
successfully, so we asked for different scenarios in which the player
Alice or Bob can win in a round of the game. Maude-NPA was
able to generate the expected scenarios, and it did not generate
any others. We then gave Maude-NPA a secrecy attack state, in
which the intruder, playing the role of initiator against an honest
responder, attempts to guess its nonce before the responder receives
its commitment. Finally we specified an authentication attack state
in which we asked if a responder could complete a session with
an honest initiator with the conclusion that the initiator had carried
out its rule faithfully, without that actually having happened. For

both of these attack states Maude-NPA finished its search without
finding any attacks.

One interesting feature of the Rock-Scissors-Paper protocol, is
that, in order verify that the commitment has been opened success-
fully (that is, that the nonce received is the nonce used to create the
commitment, one must verify that the result of opening it is well-.;
that is, that it is equal to “rock”, “scissors”, or “paper”. This can be
done via the evaluation of predicates. First, we create a sort Item
and declare the constants “rock”, “scissors”, and “paper” to be of
sort Item. Then we create a variable X : Item of sort Item. We
then define a predicate item? such that item?X : Item evaluates
to true. Since only terms of sort Item can be unified withX : Item,
this predicate can be used to check whether or not a term is of sort
Item.

8.3 TLS
In Section 1.1 we introduced a simplified version of the handshake
protocol in TLS 1.3 [19]. Even this simplified version produced
a very large search space, because of the long list of messages
and the concurrent interactions of a big amount of choices. We
are however able to check the correctness of our specification by
producing legal executions in Maude-NPA. Unlike TLS 1.3, we
intentionally introduced a “downgrade attack” in our version in
which the attacker can trick the principals into using a weaker
crypto system. However, we have not yet been able to produce
this attack because of the very deep and wide analysis tree (i.e.,
long reachability sequences with many branches) that is produced.
We are currently investigating more efficient ways of managing list
processing.

9. Related Work
As we mentioned in the introduction, there is a considerable
amount of work on adding choice to the strand space model
that involves embedding it into other formal systems, including
event-based models for concurrency [4], Petri nets [11], or multi-
set rewriting [3]. Crazzolara and Winskel model nondeterministic
choice as a form of composition, where a conflict relation is defined
between possible child strands so that the parent can compose with
only one potential child. In [11] Fröschle uses a Petri net model
to add branching to strand space bundles, which represent the con-
current execution of strand space roles. Note that we have taken
the opposite approach of representing bundles as traces of non-
branching strands, where a different trace is generated for each
choice taken. Although this results in more bundles during forward
execution, it makes little difference in backwards execution, and is
more straightforward to implement in an already existing analysis
tool.

We also note that deterministic choice has been included in the
applied pi calculus for cryptographic protocols [2], another widely
used formal model, based on Milner’s pi calculus [17]. The applied
pi calculus includes the rule if M “ N then P else Q, where
P and Q are terms. This is similar to our syntax for determinis-
tic choice. However our long-term plan is to add other types or
predicates as well (e.g.M subsumes N) ; indeed our approach ex-
tends to any type of predicate that can be evaluated on a ground
state. Although the applied pi calculus in its original form does not
include nondeterministic choice, both nondeterministic and proba-
bilistic choice have been added in subsequent work [12].

In addition, Olarte and Valencia show in [18] how a crypto-
graphic protocol modeling language can be expressed in their uni-
versal timed concurrent constraint programming (utcc) model, a
framework that extends the timed concurrent constraint program-
ming model to express mobility. The language does not support
choice, but utcc does, and it does not appear that it would be diffi-

cult to extend the language to incorporate the utcc choice mecha-
nisms.

The Tamarin protocol analysis tool [14] includes deterministic
branching, which was used extensively in the analysis of TLS 1.3
[5]. In particular, it includes an optimization for roles of the form
P.pif T then Q else Rq.S; when backwards search is used, it
is sometimes possible to capture such an execution in terms of
just one strand until the conditional is encountered, thus reducing
the state space. Our approach produces two strands, but since the
process algebra semantics makes it easy to tell whether or not R
behaves “essentially” the same no matter if P or Q is chosen, we
believe we have a pathway for including such a feature if desired.

10. Conclusions
We have provided an extension to the strand space model that
allows for both deterministic and nondeterministic choice, together
with an operational semantics for choice in strand spaces that not
only provides a formal foundation for choice, but allows us to
implement it directly in the Maude-NPA cryptographic protocol
analysis tool. In particular, we have applied Maude-NPA to several
protocols that rely on choice in order to validate our approach.

This work not only provides a choice extension to strand spaces,
but extends tem in other ways as well. First of all, it provides
a process algebra for strand spaces. This potentially allows us
to relate the strand space model to other formal systems (e.g.,
the applied pi calculus [1]) giving a better understanding of how
it compares with other formal models. In addition, the process
algebra semantics gives us a basis for creating a new specification
language for Maude-NPA, which we believe will be more natural
to the user than the current strand-space language.

Another contribution of this work is that it provides a means
for evaluating both equality and disequality predicates in the strand
space model and in Maude-NPA. This allows us to implement
features such as type checking in Maude-NPA, via predicates
such as foocheckpX q, where foocheckp0 : Fooq “ tt, that is,
foocheckpX q succeeds only if X is of sort Foo. This proved to
be very helpful, for example, in our specification of the Rock-
Scissors-Paper protocol as we described earlier. We believe the
expressiveness of Maude-NPA can be further increased at little
cost by extending the types of predicates that can be evaluated, e.g.
by including predicates for subsumption and their negation. This is
another subject for further investigation.

References
[1] M. Abadi. Leslie lamport’s properties and actions. In Proceedings

of the Twentieth Annual ACM Symposium on Principles of Distributed
Computing, PODC 2001, page 15, 2001.

[2] M. Abadi and C. Fournet. Mobile values, new names, and secure
communication. In Conference Record of POPL 2001: The 28th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 104–115, 2001.

[3] I. Cervesato, N. A. Durgin, J. C. Mitchell, P. Lincoln, and A. Scedrov.
Relating strands and multiset rewriting for security protocol analy-
sis. In Proceedings of the 13th IEEE Computer Security Foundations
Workshop, CSFW ’00, pages 35–51, 2000.

[4] F. Crazzolara and G. Winskel. Composing strand spaces. In FST TCS
2002: Foundations of Software Technology and Theoretical Computer
Science, pages 97–108, 2002.

[5] C. Cremers, M. Horval, S. Scott, and T. van der Merwe. Automated
analysis and verification of TLS 1.3:0-RTT, resumption and delayed
authentication. In IEEE Security and Privacy, 2016, to appear: 2016.

[6] S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Crypto-
graphic protocol analysis modulo equational properties. In Founda-
tions of Security Analysis and Design V, FOSAD 2007/2008/2009 Tu-
torial Lectures, LNCS vol. 5705, pages 1–50. Springer, 2009.

[7] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago. A rewriting-
based forwards semantics for Maude-NPA. In Proceedings of the 2014
Symposium and Bootcamp on the Science of Security, HotSoS 2014.
ACM, 2014.

[8] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago. State space
reduction in the maude-nrl protocol analyzer. Inf. Comput., 238:157–
186, 2014.

[9] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago. Symbolic pro-
tocol analysis with disequality constraints modulo equational theories.
In Programming Languages with Applications to Biology and Security
- Essays Dedicated to Pierpaolo Degano on the Occasion of His 65th
Birthday, pages 238–261, 2015.

[10] F. J. T. Fabrega, J. Herzog, and J. Guttman. Strand Spaces: What
Makes a Security Protocol Correct? Journal of Computer Security, 7:
191–230, 1999.

[11] S. B. Fröschle. Adding branching to the strand space model. Electr.
Notes Theor. Comput. Sci., 242(1):139–159, 2009.

[12] J. Goubault-Larrecq, C. Palamidessi, and A. Troina. A probabilistic
applied pi-calculus. In Programming Languages and Systems, 5th
Asian Symposium, APLAS 2007, pages 175–190, 2007.

[13] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo
a set of equations. SIAM J. Comput., 15(4):1155–1194, 1986.

[14] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN
prover for the symbolic analysis of security protocols. In Computer
Aided Verification - 25th International Conference, CAV 2013, pages
696–701, 2013.

[15] J. Meseguer. Conditional rewriting logic as a united model of concur-
rency. Theor. Comput. Sci., 96(1):73–155, 1992.

[16] J. Meseguer. Membership algebra as a logical framework for equa-
tional specification. In WADT 97, pages 18–61, 1997.

[17] R. Milner. Communicating and mobile systems - the Pi-calculus.
Cambridge University Press, 1999. ISBN 978-0-521-65869-0.

[18] C. Olarte and F. D. Valencia. The expressivity of universal timed CCP:
undecidability of monadic FLTL and closure operators for security.
In Proceedings Principles and Practice of Declarative Programming
2008, pages 8–19, 2008.

[19] E. Rescorla. The transport layer security (tls) protocol version 1.3.
Technical Report draft-ietf-tls-tls13-12, IETF, 2016.

[20] S. Santiago, S. Escobar, C. A. Meadows, and J. Meseguer. Ef-
fective sequential protocol composition in maude-npa. CoRR,
abs/1603.00087, 2016.

[21] TeReSe, editor. Term Rewriting Systems. Cambridge University Press,
Cambridge, 2003.

A. Bisimulation Proofs
We prove in this section that the relation HState is a bisimulation.
We first show in Lemmas 1 and 2 some properties of states that
can be related by the relation HState . Lemma 1 shows that if a
PA-State Pst and FW-State Fst are related by HState , then each
individual process in Pst and strand in Fst are related by the
relation HLP Str . Processes and strands related by HLP Str can
have the same future behaviors under same intruder knowledge. In
Lemma 2 we then show that Pst and Fst have the same intruder
knowledge. Following these two lemmas, we prove by case analysis
on the transition labels that the relation HState is a bisimulation

Let us first define the notation of label sequence that we will
use in the proofs.

Definition 10 (Label Sequence). An ordered sequence α of transi-
tion labels is defined by using . as an associative concatenation
operator with nil as an identity. The length of a label sequence α
is denoted by |α|. Given a label sequence α, we denote by α|pro,iq
the sub-sequence of labels in α that have ro as role name, and i as
identifier, i.e. labels of the form pro, i, , , q (is a shorthand for
denoting any term).

We then define the relation HLP Str , which relates a possibly
partially executed labeled process and a constrained strand. Recall
that a process can be “deconstructed” by the mapping toCstrSS into
a set of constrained protocol strands, each representing a possible
execution path. If a labeled process LP is related to a constrained
strand Str by the relation HLP Str , then: (i) LP and Str denote
the behavior of the same role with the same identity in the same
protocol, and (ii) for any strand StrLP , StrLP denotes a possible
execution path of LP iff Str followed by StrLP forms a valid
possible execution path of the protocol.

Definition 11 (Relation HLP Str). Given a protocol P , and a
possibly partially executed labeled process LP of P , a possibly
partially executed constrained strand Str of P , then pLP, Strq P
HLP Str iff toCstrSSpLP q “ &tpro, iqruj`1, . . . , unsρro,iθ |

D ground substitution θ Dproqru1, . . . uj , uj`1, . . . , uns P PCstr

s.t. Str “ pro, iqru1, . . . ujsρro,iθu

Where &tS1, S2, . . . , Snu is a shorthand for a term S1&S2& . . .
&Sn denoting a set of strands. ρro,i “ tr1 ÞÑ r1.ro.i, . . . , rm ÞÑ
rm.ro.iu for fresh variables r1, . . . , rm in ru1, . . . uj , uj`1, . . . ,
uns.

Example A.1. Following Examples 4.2 and 5.1, we show a process
LP and a strand Str that are related by relation HLP Str . LP
(resp. Str) is the labeled process (resp. constrained strand) of the
Server role after making the first explicit nondeterministic choice.

LP “pServer , 1 , 2 q σp`phs; retryq ¨ ´phs;N 1;G1; genpG1q;E1q¨

` phs;npS?, r1q;G
1; genpG1q; keyGpG1, S?, r2q;

ZpAReq?, G
1, E1, S, r2, S?, HMqqq

Str “pServer , 1 q σr t?, 1u,´phs;N ;G; genpGq;Eqs

where σ is a ground substitution to the pattern variablesN ,G, and
E.

Notice the duality between the process description and that of
its constrained strand: the process describes its continuation in the
future, whereas its strand describes the part of the process that has
already been executed.

Lemma 1. Let Pst “ tLP1& . . .&LPn | tIKuu be a PA-
State and Fst “ tStr1& . . .&Strm&tIK1uu be a FW-State, if
pPst ,Fstq P HState , i.e., exists a label sequence α such that
Pinit Ñα Pst , and Finit Ñα Fst , then:

(i) For each labeled process LPk P Pst , 1 ď k ď n, there exists
a strand Strk1 P Fst , 1 ď k1 ď m, such that pLPk, Strk1q P
HLP Str .

(ii) For each strand Strk1 P Fst , 1 ď k1 ď m, there ex-
ists a labeled process LPk P Pst , 1 ď k ď n, such that
pLPk, Strk1q P HLP Str .

Proof. We first prove property (i). If |α| “ 0, since both the
strand set and the process configuration are empty, the statement
is vacuously true.

Now suppose that |α| ą 0. Then without lose of generality,
assume there exists a labeled process LPk “ ppro, i, jq Pkq in
Pst , with i, j ě 1. Then there is at least one label in α of the form
pro, i, , , q (is a short hand for any content), therefore, there is
a strand Stk1 in Fst of the form pro, iqrv1, . . . , vj1 s.

We then show that the above mentioned LPk and Strk1 are
related by HLP Str , i.e., pLPk, Strk1q P HLP Str . Since the state
Fst is reachable from the initial state by the label sequence α,
and Strk1 P Fst, rv1, . . . , vj1 s denotes exactly the sequence of
messages in the unique sequence of labels α|pro,iq. Moreover, j1 “
j ´ 1.

Since the process state Pst is reachable from the initial state
Pinit by label sequence α, there exists a unique process proqPspec
in the specification PPA, and LPk represents all possible behaviors
of proqPspec after the sequence of transitions α|pro,iq. Therefore,
toCstrSSpLPkq “

&tpro, iqruj , . . . , unsρro,iθ |

D ground substitution θ
Dproqru1, . . . , uj´1, uj , . . . , uns P toCstrSSpproqPspecq

s.t. pro, iqru1, . . . , uj´1sρro,iθ “ pro, iqrv1, . . . , vj´1su

By the correspondence between protocol specifications defined in
definition 3 , PCstrF “ toCstrSSpPPAq. Also note that proqPspec
is the only process in PPA that has ro as its role name, therefore,
toCstrSSpproqPspecq “ tproqru1, . . . , uns | proqru1, . . . , uns P
PCstrF u. Therefore, toCstrSSpLPkq “

&tpro, iqruj , . . . unsρro,iθ |

D ground substitution θ,
Dproqru1, . . . , uj´1, uj , . . . , uns P PCstrF
s.t. pro, iqru1, . . . , uj´1sρro,iθ “ pro, iqrv1, . . . , vj´1su.

Therefore, pLPk, Strk1q P HLP Str .
The proof for property (ii) above is similar to the one for prop-

erty (i).

Since the intruder knowledge in a PA-State or FW-State can be
extracted from the historical message exchange sequences, which
are kept track of in the transition labels, the equivalence of label
sequence implies the same intruder knowledge. This property is
shown in the lemma below.

Lemma 2. Given a PA-State Pst and a FW-State Fst such that
pPst ,Fstq P HState , i.e., there exists a label sequence α such that
Pinit Ñα Pst and Finit Ñα Fst , then the contents of intruder
knowledge in Pst and in Fst are syntactically equal.

Proof. In both semantics the only transition rules that add new
elements to the intruder’s knowledge are the ones whose la-
bel is of the form pro, i, j,`m,nq. Therefore, given the two
states Pst and Fst as described above, their intruder’s knowledge
can be computed from the sequence of labeled transitions α as
IK pPstq “ IK pFstq “ tmPI | p , , ,`m, q P αu.

A.1 Proof of Theorem 1.
Based on the lemmas above, we then show that the relation HState

is a bisimulation, i.e., Theorem 1. More specifically,

i) pPinit, Finitq P HState .

ii) For all PA-State Pstn, and FW-State Fstn, if pPstn,Fstnq P
HState , and there exists a PA-State Pstn`1 such that Pstn Ña

Pstn`1, then there exists a FW-State Fstn`1 such that Fstn Ña

Fstn`1 and pPstn`1,Fstn`1q P HState .

iii) For all PA-State Pstn, and FW-State Fstn, if pPstn,Fstnq P
HState , and there exists a FW-State Fstn`1 such that Fstn Ña

Fstn`1, then there exists a PA-State Pstn`1 such that Pstn Ña

Pstn`1 and pPstn`1,Fstn`1q P HState

Proof. (i) Holds for the label sequence nil, since Pinit Ñnil Pinit
and Finit Ñnil Finit, therefore, pPinit, Finitq P HState .

We now prove (ii). If pPstn,Fstnq P HState , by definition of
the relation HState , there exists a label sequence α s.t. Pinit Ñα

Pstn and Finit Ñα Fstn. Suppose there exists state Pstn`1 such
that Pstn Ña Pstn`1. We prove by case analysis on label a that
there exists Fstn`1 such that Fstn Ña Fstn`1. The fact that
pPstn`1,Fstn`1q P HState then follows this by the definition of
relation HState .

In the rest of this proof,ÝÑL ,ÝÑL1 andÝÑL2 denote lists of messages,
M,M 1 and m denote messages, P,Q and R denote processes, PS
denotes a process configuration, SS denotes a set of constrained
protocol strands, IK and IK 1 denote the set of messages in the
intruder’s knowledge.

1) a “ pro, i, j,`m, 0q : if j ą 1, according to the semantics,
Pstn Ña Pstn`1 by applying rule (PA++), Pstn is of the
form tpro, i, jq p`M ¨ P q & PS | tIKuu s.t. there exists a
ground substitution σ binding the choice variables in M s.t.
m “Mσ, Pstn`1 “ tpro, i, j`1qPσ&PS | tm P I, IKuu
and mPI R IK. Since Pstn HState Fstn, by Lemmas 1 and
2, Fstn is of the form tpro, iq r

ÝÑ
L s & SS & tIKuu s.t.

pro, i, jq p`M ¨ P q HLP Str pro, iq r
ÝÑ
L s. Let proqrÝÑL1,

ÝÑ
L2s

be a constrained strand in PCstrSS s.t. there exists a ground
substituion θ s.t. ÝÑL1ρro,iθ “

ÝÑ
L . By the definition of relation

HLP Str and mapping toCstrSS, the first message ofÝÑL2 is`M 1,
s.t. M 1ρro,iθ “ M . Then since Mσ “ m and mPI R IK, the
rule (F++) can be applied for the rewrite Fstn Ña Fstn`1,
where Fstn`1 “ tpro, iq r

ÝÑ
L ,`ms & SS & tmPI, IKuu.

If j “ 1, Pstn Ña Pstn`1 by applying rule (PA&),
there exists a process proq p`M ¨ P q in PPA and a ground
substitution σ s.t. Mρro,iσ “ m. Since toCstrSSpPPAq “

PCstrSS , by the definition of toCstrSS, for all strands of role ro
in PCstrSS , the first message is`M . Without loss of generality,
let Pstn be tPS | tIKuu, and Fstn be tSS & tIK 1uu. Since
the rule (PA&) can be applied, mPI R IK. By Lemma 2,
IK “ IK 1. Moreover, by Lemma 1, MaxStrIdpSS, roq “
MaxProcIdpPS, roq, and since MaxProcIdpPS, roq ` 1 “ i,
by applying the rule (F++&) we get Fstn Ña Fstn`1.

2) a “ pro, i, j,Mσ, 0q: similar to case 1.
3) a “ pro, i, j,´m, 0q: if j ą 1, according to the semantics,

Pstn Ña Pstn`1 by applying rule (PA-), Pstn is of the form
tpro, i, jq p´M ¨ P q & PS | tmPI, IKuu s.t. m “EP Mσ
for some ground substitution σ and Pstn`1 “ tpro, i, j `
1qPσ&PS | tmPI, IKuu. Since PstnHState Fstn, by Lem-
mas 1 and 2, Fstn “ tpro, iq r

ÝÑ
L s & SS & tmPI, IKuu s.t.

pro, i, jq p´M ¨ P q HLP Str proq r
ÝÑ
L s. Let proqrÝÑL1,

ÝÑ
L2s P

PCstrSS s.t. there exists a ground substitution θ s.t. ÝÑL1ρro,iθ
“
ÝÑ
L , then by definition of HLP Str and toCstrSS, the first mes-

sage of ÝÑL2 is ´M 1 s.t. M 1ρro,iθ “ M . Since m “EP Mσ,

rule (F-) can be applied to get the transition Fstn Ña Fstn`1,
where Fstn`1 “ tpro, iq r

ÝÑ
L ,´ms & SS & tmPI, IKuu.

If j “ 1, Pstn Ña Pstn`1 by applying rule (PA&),
therefore, there exists a process proq p´M ¨ P q in PPA and a
ground substitution σ s.t. Mρro,iσ “ m. Without loss of gen-
erality, let Pstn be tPS | tIKuu. Then mPI P IK. Since
toCstrSSpPPAq “ PCstrSS , by the definition of toCstrSS, for
all strands of role ro in PCstrSS , the first message is ´M . By
Lemma 2, mPI is in the intruder knowledge of Fstn. More-
over, by Lemma 1, MaxStrIdpSS, roq “ MaxProcIdpPS, roq,
and since MaxProcIdpPS, roq ` 1 “ i, by applying the rule
(F-&) we get Fstn Ña Fstn`1.

4) a “ pro, i, j, T, 1q: according to the transition rules, Pstn Ña

Pstn`1 by applying rule (PAif1). Therefore Pstn is of the
form tpro, i, jqppif c then P else Qq ¨ Rq & PS | tIKuu,
Pstn`1 “ tpro, i, j ` 1q pP ¨ Rq & PS | tIKuu and
c “EP true. Since Fstn HState Pstn, by Lemma 1, Fstn “
tproq r

ÝÑ
L s& SS & tIK 1uu s.t. pro, i, jq ppif c then P elseQq ¨

Rq HLP Str pro, iq r
ÝÑ
L s. By the definition of the relation

HLP Str and the mapping toCstrSS, there exists proqrÝÑL1, tC, 1u,
ÝÑ
L2s P PCstrSS and a ground substitution θ s.t. ÝÑL “

ÝÑ
L1ρro,iθ,

and Cρro,iθ “ c. Since c “EP true, the rule (Fif) can be
applied for the rewrite Fstn Ña Fstn`1, where Fstn`1 “

ttproq r
ÝÑ
L , tt, 1us & SS & tIK 1uu

5) a “ pro, i, j, T, 2q: similar to case 4.
6) a “ pro, i, j, ?, 1q: if j ą 1, Pstn Ña Pstn`1 by applying

rule (PA?1). Therefore Pstn is of the form tpro, i, jq ppP ?Qq¨
Rq & PS | tIKuu and Pstn`1 “ tpro, i, j ` 1q pP ¨

Rq & PS | tIKuu. Since Fstn HState Pstn, by Lemma 1,
Fstn “ tpro, iq r

ÝÑ
L s& SS & tIK 1uu s.t. pro, i, jq ppP ?Qq ¨

Rq HLP Str pro, iq r
ÝÑ
L s. By the definition of HLP Str and

toCstrSS, there is a strand pro, iqrÝÑL1, t?, 1u,
ÝÑ
L2s P PCstrSS s.t.

ÝÑ
L “

ÝÑ
L1θ. Therefore, rule (F?) can be applied for the rewrite

Fstn Ña Fstn`1, and Fstn`1 “ tpro, iq r
ÝÑ
L , t?, 1us & SS

& tIK 1uu.
If j “ 1, Pstn Ña Pstn`1 by applying rule (PA&).

Therefore, there exists a process proq ppP ? Qq ¨ Rq in PPA.
Since toCstrSSpPPAq “ PCstrSS , by the definition of toCstrSS,
there is a strand of role ro whose first message is p?, 1q
in PCstrSS . Moreover, by Lemma 1, MaxStrIdpSS, roq “

MaxProcIdpPS, roq, and since MaxProcIdpPS, roq ` 1 “ i,
by applying the rule (F?&) we get Fstn Ña Fstn`1.

7) a “ pro, i, j, ?, 2q similar to case 6.

The proof for (iii) is similar.

B. Soundness and Completeness Proofs
In this section we show the soundness and completeness of
transitions in constrained backwards strand semantics w.r.t. the
constrained forwards strand semantics by proving two lemmas
stating the completeness and soundness of one-step transition in
the constrained backwards strand semantics w.r.t. the constrained
forwards strand semantics. The soundness and completeness result
directly follows these two lemmas.

In the proofs of the lemmas we consider only transition rules
added in both semantics to deal with explicit choices, that is, rules
(Fif)Y (F?)Y (F?&) in the constrained forwards strand semantics
and rules t(B?), (Bif=), (Bif‰)u in the constrained backwards
strand semantics. The proof of the soundness and completeness of
one-step transitions performed in the constrained backwards strand
semantics using rules t(B-), (B+), (B++)u Y (B&) w.r.t to one-step
transitions performed in the constrained forwards strand semantics
using rules (F++)Y (F+)Y (F++&)Y (F+&)Y (F-)Y (F-&) is same
as [7], since in these transitions no constraint is involved. Note

CstrS

ąθ

��

CstrS 1oo

ąθ
1

��
s // s1

Figure 1. Lemma 3

that although in [7], Choice Variables were not defined explicitly,
the proof extends to strands with choice variables naturally, since
the lifting relation between a ground state and a symbolic state
does not need to be changed to cover choice variables. Since the
strand labels are irrelevant for the result of this section, we will
omit the strand labels to simplify the notation from now on. Also,
we include the fresh substitution in the substitutions and do not
separate the fresh substitutions explicitly.

First, we recall the definition of a symbolic state and a ground
state.

Definition 12 (Symbolic Strand State). Given a protocol P , a
symbolic strand state S of P is a term of the form:

S “ t :: r11 , . . . , rm1 :: ru11 , . . . ui1´1 | ui1 , . . . , un1 s &

...

:: r1k , . . . , rmk :: ru1k , . . . , uik´1 | uik , . . . , unk s & SS

tw1PI, . . . , wmPI, w11RI, . . . , w1m1RI, IKuu
where for each 1 ď j ď k, there exists a strand rm1j , . . .mij´1,
mij , . . . ,mnj s P PCstrSS and a substitution ρj : X Ñ TΣP pX q
such that m1jρj “EP u1j , . . . , mnjρj “EP unj , SS is a
variable denoting a (possibly empty) set of strands, and IK is a
variable denoting a (possibly empty) set of intruder’s knowledge
facts.

Definition 13 (Ground Strand State). Given a protocol P , a ground
strand state s of P is a term without variables of the form:

s “ tru11 , . . . ui1´1s & ¨ ¨ ¨& ru1k , . . . , uik´1s &

tw1PI, . . . , wmPIu u
where for each 1 ď j ď k, there exists a strand rm1j , . . .mij´1,
mij , . . . ,mnj s P PCstrSS and a substitution ρj : X Ñ TΣP such
that m1jρj “EP u1j , . . . , mijρj “EP uij .

B.1 Proof of Theorem 2
The lemma below extends the lifting lemma in [7] to strands with
constrained messages. The lifting lemma shows how the lifting of
a ground state to a symbolic state induces a lifting of a forwards
rewriting step in the forwards semantics to a backwards narrowing
step in the backwards semantics. The proof of Theorem 2 in Section
7.1 is a straightforward corollary of Lemma 3 below. The Lifting
Lemma is illustrated by Figure 1.

Lemma 3 (Lifting Lemma). Given a protocol P , two ground
strand states s and s1, a constrained symbolic strand state CstrS 1 “
xS1,Ψ1y and a substitution θ1 s.t. s Ñ s1 and CstrS 1 ąθ

1

s1, then
there exists a constrained symbolic strand state CstrS “ xS,Ψy

and a substitution θ s.t. CstrS ąθ s and either CstrS µ
ø CstrS 1

or CstrS “ CstrS 1.

Proof. As has been explained before, we only need to consider the
new rules: (Fif), (F?), (F?&). The proof in [7] is divided in cases,
some of which has specific requirement on intruder knowledge, or
involve changes made to the intruder knowledge. Since all the new
rules we are considering do not have specific requirements on the
intruder knowledge, and do not change the intruder knowledge as
well, so the cases that we need to consider are the following (cases

eq and fq in the proof in [7]), which involve the appearance or non-
appearance of certain strand(s):

e: There is a strand ru1, . . . , uj´1, uj , . . . , uns inPCstrSS , n ě 1,
1 ď j ď n, and a substitution ρ such that ru1, . . . , uj´1, ujsρ
is a strand in s1 and ru1, . . . , uj´1, uj | uj`1, . . . , unsρ is a
strand in S1θ1.

f: There is a strand ru1, . . . , uj´1, uj , . . . , uns inPCstrSS , n ě 1,
1 ď j ď n, and a substitution ρ such that ru1, . . . , uj´1, ujsρ
is a strand in s1 but ru1, . . . , uj´1, uj | uj`1, . . . , unsρ is not
a strand in S1θ1.

Now we consider for the forward rewrite rule application in the
step sÑ s1.

• Given ground states s and s1 s.t. sÑ s1 using a rule in set (Fif),
then there exists a ground substitution τ , variables SS’ and
IK’, and strand ru1, . . . , uj´1, tT,Numu, uj`1, . . . , uns in
PCstrSS , such that s “ tSS1τ&tIK 1τu&proqru1τ, . . . , uj´1τ su,
and s1 “ tSS1τ&tIK 1τu&ru1τ, . . . , uj´1τ, tTτ,Numusu
and Tτ “EP true. Since there exists a substitution θ1 s. t.
CstrS 1 ąθ

1

s1, we consider the following two cases:

Case e) The strand appears in S1θ1. More specifically,
ru1σ, . . . , uj´1σ, tTσ,Numu | uj`1σ, . . . , unσs is a
strand in S1 s.t. σθ1 “EP τ . If the constraint T is an equality
constraint, since Tτ “EP Tσθ1 “EP true, and by the lift-
ing relation, EP |ù Ψ1θ1, rule (Bif=) can be applied for the
backwards narrowing CstrS 1

µ
ø CstrS , and CstrS ąθ s

such that µθ “EP θ1. If the constraint T is a disequality
constraint, since Tτ “EP Tσθ1 “EP true, and by the
lifting relation, EP |ù Ψ1θ1, we have EP |ù Tσθ1 ^ Ψ1θ1.
Therefore, rule (Bif‰) can be applied for the backwards
narrowing, and CstrS ąθ s.
Case f) The strand does not appear in S1θ1. Then θ1 makes
S1 as a valid symbolic strand state of s, i.e., S “ S1 and
CstrS 1 ąθ

1

s.
• Given ground strand states s and s1 s.t. s Ñ s1 using a rule in

set (F?), then we consider the following two applicable cases:
Case e) The strand appears in S1θ1 and thus we can perform
a backwards narrowing step from CstrS 1 with rule (B?),
i.e., CstrS 1; CstrS , and CstrS ąθ

1

s.
Case f) The strand does not appear in S1θ1. Then θ1 makes
CstrS 1 as a valid constraint symbolic state of s, i.e.,
CstrS “ CstrS 1 and CstrS ąθ

1

s.
• Given states s and s1 s.t. s Ñ s1 using a rule in set (F?&), the

proof is similar with using a rule in the set (F?).

B.2 Proof of Theorem 3
We show that Lemma 2 in [7] still holds after extending to
constrained states, and therefore, the soundness of the symbolic
reachability analysis with respect to the forwards rewriting-based
semantics still holds, since the proof of Theorem 3 in Section 7.1
is a straightforward corollary of the lemma below.

Lemma 4. Given a protocol P , two constrained symbolic states
CstrS “ xS,Ψy and CstrS 1 “ xS1,Ψ1y, a ground strand state s
and a ground substitution θ, if CstrS µ

øCstrS 1 and CstrS ąθ s,
then there exists a ground strand state s1 and a ground substitution
θ1 such that sÑ s1, and CstrS 1 ąθ

1

s1.

Lemma 4 is illustrated by the Figure 2.

CstrS

ąθ

��

CstrS 1oo

ąθ
1

��
s // s1

Figure 2. Lemma 4

Proof. We only need to consider the new rules: rule (Bif=), (Bif‰)
and (B?).

1) If CstrS µ
øCstrS 1 using rule (B?), then there are associ-

ated rules in the sets (F?) and (F?&).
2) If CstrS

µ
øCstrS 1 using rule (Bif=), there is a strand

ru1σ, . . . , uj´1σ | tpu “ vqσ,Numu, uj`1σ, . . . , unσs in S,
ru1σ

1, . . . , uj´1σ
1, tpu “ vqσ1, Numu | uj`1σ

1, . . . , unσ
1
s in

S1 s.t. σ “EP σ1µ, Ψ “EP Ψ1µ and uσ “EP vσ, where
ru1, . . . , uj´1, tu “ v,Numu, uj`1, . . . , uns is a strand in
PCstrSS . Since CstrS ąθ s, there is a ground strand ru1σθ, . . . ,
uj´1σθs in s, and EP |ù Ψθ. Therefore, EP |ù Ψ1µθ and
uσθ “EP vσθ. By rule (Fif), sÑ s1, and CstrS 1 ąµθ s1.

If CstrS
µ

øCstrS 1 using rule (Bif‰), there is a strand
ru1σ, . . . , uj´1σ | tpu ‰ vqσ,Numu, uj`1σ, . . . , unσs in S
, ru1σ

1, . . . , uj´1σ
1, tpu ‰ vqσ1, Numu | uj`1σ

1, . . . , unσ
1
s

in S1 s.t. σ “EP σ1µ and Ψ “EP Ψ1µ ^ pu ‰ vqσ1µ,
where ru1, . . . , uj´1, tu ‰ v,Numu, uj`1, . . . , uns is a strand
in PCstrSS . Since CstrS ąθ s, there is a ground strand ru1σθ, . . . ,
uj´1σθs in s, and EP |ù Ψθ. Therefore, EP |ù Ψ1µθ ^ pu ‰
vqσ1µθ. By rule (Fif), sÑ s1, and CstrS 1 ąµθ s1.

	Introduction
	Motivating Example

	Preliminaries
	Overview of Maude-NPA
	A Process Algebra for Protocols with Choice
	Syntax of Protocol Process Algebra
	Protocol Specification in Process Algebra
	Operational Semantics of the Protocol Process Algebra

	Constrained Protocol Strands with Choice
	Constrained Protocol Strands Syntax
	Protocol Specification using Constrained Protocol Strands

	Constrained Forwards Strand Semantics
	Bisimulation between Constrained Forwards Strand Semantics and Process Algebra Semantics

	Constrained Backwards Strand Semantics
	Soundness and Completeness of Constrained Backwards Strand Semantic

	Protocol Experiments
	Choice of Encryption Type
	Rock-Paper-Scissors
	TLS

	Related Work
	Conclusions
	Bisimulation Proofs
	Proof of Theorem 1.

	Soundness and Completeness Proofs
	Proof of Theorem 2
	Proof of Theorem 3

