
c© 2016 Mohammad Ahmad

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/158314053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CAULDRON: A FRAMEWORK TO DEFEND AGAINST
CACHE-BASED SIDE-CHANNEL ATTACKS IN CLOUDS

BY

MOHAMMAD AHMAD

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2016

Urbana, Illinois

Advisers:

Assistant Professor Rakesh B. Bobba
Professor Roy H. Campbell

ABSTRACT

Cache-based side-channel attacks have garnered much interest in recent liter-

ature. Such attacks are particularly relevant for cloud computing platforms

due to high levels of multi-tenancy. In fact, there exists recent work that

demonstrates such attacks on real cloud platforms (e.g., DotCloud). In this

thesis we present Cauldron, a framework to defend against such cache-based

side-channel attacks. Cauldron uses a combination of smart scheduling tech-

niques and microarchitectural mechanisms to achieve this goal. We are able

to demonstrate improved defenses against both cross-core side channel at-

tacks that target shared caches as well as same-core attacks. Furthermore,

Cauldron is transparent to the user – requiring no modification (or even re-

compilation) of users’ application binaries by integrating directly with the

popular container runtime framework, Docker. Preliminary evaluation re-

sults show that the proposed approach is effective for cloud computing ap-

plications.

ii

To my parents, Afzal and Qudsia Mujtaba, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my advisers, Assistant Professor Rakesh Bobba and

Professor Roy Campbell for their guidance and support during the course of

my degree.

I would like to thank Konstantin Evchenko, Dr. Sibin Mohan, Read Sprabery,

Abhilash Raj and Rodrigo Branco, all of whom collaborated with me on this

project.

I would like to thank my family for their love and encouragement. In

particular, I would like to acknowledge Sadia Ali and Syed Ali for their

advice and support at every step of the journey.

I would like to thank my closest friends at UIUC, Zainab Rahil, Muham-

mad Huzaifa, Aneeq Zaman, Rashid Tahir, Zain Yousaf and Shayan Saeed for

making my time here so enjoyable. Lastly, I would like to thank my under-

graduate advisor, Dr. Fareed Zaffar for encouraging me to pursue graduate

studies. I remain indebted to him for his support.

My degree has been funded by AFOSR and AFRL through the University

Center of Excellence on Assured Cloud computing, by DOE through the

SEL SDN Project and by the Sohaib and Sara Abbasi Fellowship.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Contributions . 2

CHAPTER 2 BACKGROUND . 4
2.1 Virtualization Technologies . 4
2.2 Cache Architecture . 7
2.3 Cache-based Side-Channel Attacks 10

CHAPTER 3 RELATED WORK . 14
3.1 Cache-based Side-Channel Attacks 14
3.2 Defenses Against Cache-based Side-Channel Attacks 15

CHAPTER 4 APPROACH . 18
4.1 System Model . 18
4.2 Attack Model . 19
4.3 Cauldron Design . 19
4.4 Cauldron Implementation . 23

CHAPTER 5 EVALUATION . 25
5.1 Security Evaluation . 25
5.2 Performance Evaluation . 27

CHAPTER 6 FUTURE WORK . 30

CHAPTER 7 CONCLUSION . 32

REFERENCES . 33

v

CHAPTER 1

INTRODUCTION

Cloud computing has rapidly gained adoption over the last few years as or-

ganizations have tried to reduce the complexities and costs associated with

deploying and maintaining a reliable computing infrastructure. It is equally

popular with small companies and start-ups that have relatively fewer re-

sources as with large organizations including the US federal government. In

fact, the federal government has instituted a CloudFirst policy and expects

to spend about a quarter of its $80 billion IT budget on cloud computing ser-

vices [21]. Furthermore, a report by the Carbon Disclosure Project on cloud

computing shows that large US companies (those with more than $1 billion

in revenues) are set to increase their adoption of cloud computing from 10%

to 70% of their IT spending over the next decade and realize a savings of

$12.3 billion in energy costs alone. On the other hand, many cloud service

companies have developed a “multi-tenant” policy where jobs from different

clients can be simultaneously, yet transparently (to each other), executed to

better utilize the underlying hardware resources.

While Infrastructure-as-a-Service (IaaS) clouds enabled by hardware virtu-

alization have been dominant, Platform-as-a-Service (PaaS) offerings enabled

by operating system (OS) level virtualization techniques are fast emerging

as a lightweight and high-performance alternative [23, 25]. OS virtualiza-

tion technology, hereafter generically referred to as Containers1, provides a

lightweight execution environment with better performance and less overhead

than VMs [56, 29].

This rapid adoption and the multi-tenant nature of cloud computing pro-

vide a greater incentive for attackers to target such systems. Recently, cache-

based side-channel attacks have received much attention. It has been shown

1Note that user-space instances in a virtualized OS are refereed to as Containers in
many technologies, other names such as virtual engines, virtual private servers and jails
are also in use.

1

that such attacks are capable of extracting fine-grained information such as

cryptographic keys even in the cloud environment [43, 35, 57, 59]. Some of

the attacks have also been demonstrated on public cloud infrastructures [60].

In fact, with the adoption of lightweight virtualization methods such as Linux

containers [25, 23, 18] such attacks can become easier.

In this thesis, we present the Cauldron framework to defend against cache-

based side-channel attacks in cloud environments based on the aforemen-

tioned lightweight virtualization, viz.,containers.

Cauldron is:

i) easy to deploy,

ii) transparent to end users and

iii) provides increased security against such attacks.

The framework uses a novel combination of hardware and software mech-

anisms to achieve these goals. Specifically, Cauldron does not require devel-

opers to modify their applications or libraries. This makes the application

development process much easier and it can also be used for legacy applica-

tions. In this thesis, we also demonstrate how to integrate our framework

into the Docker [23] container runtime. The solutions proposed in this thesis

are not specific to Docker and are generally applicable to other OS virtualiza-

tion frameworks (container runtimes) such as rkt and LXC [18, 25]. In fact,

they can be applied to cloud environments employing hardware virtualization

technologies such as Xen and KVM [27, 10].

Previous approaches were either limited to defending against same-core at-

tacks [61, 52], limited by the performance of software-based cache-partitioning

[39, 49, 31] or required modifications to applications [39, 42] (refer to Chapter

3 for more details). In contrast, Cauldron defends against both same-core

and cross-core attacks, doesn’t require changes to end-user applications or

libraries, and is easy to deploy while incurring only reasonable overheads.

1.1 Contributions

We design and implement Cauldron, a framework to defend against cache-

based side-channel attacks in the cloud environment. In our security evalua-

2

tion, in Chapter 5, we show that it is able to protect against both same-core

and cross-core cache-based side-channel attacks. By implementing Cauldron

as a loadable kernel module we are able to develop an easy to deploy so-

lution. Furthermore, we design our framework to ensure that it does not

require any changes to be made to user applications, containers or libraries

and integrates cleanly with a popular container runtime, Docker. Finally, we

show that Cauldron is able to achieve all of the aforementioned advantages

using commodity off-the-shelf hardware, while incurring only a reasonable

overhead.

The remainder of this thesis is structured as follows: in Chapter 2 we pro-

vide a background on containers, the Intel cache architecture along with an

introduction to cache-based side-channel attacks. Related work is discussed

in Chapter 3. In Chapter 4 we present our system and attack models along

with the Cauldron implementation. We evaluate the Cauldron framework

in Chapter 5. A discussion on the advantages, limitations and future work

is covered in Chapter 6 and we conclude in Chapter 7.

3

CHAPTER 2

BACKGROUND

Although virtualization technologies attempt to stop any leakage of informa-

tion across clients sharing the same underlying hardware, prior work, such

as [59, 60, 43, 35] has shown that these virtualization technologies are suscep-

tible to cache-based side-channel attacks. In order to fully understand such

attacks, in this chapter, we provide a background of virtualization technolo-

gies, with a focus on containers, the Intel cache architecture and cache-based

side-channel attacks.

2.1 Virtualization Technologies

Today’s Infrastructure as a Service (IaaS) clouds are powered by hardware

virtualization while, on the hand, Platform as a Service (PaaS) offerings

are increasingly adopting containers for tenant isolation. We discuss both

virtualization technologies in detail below.

2.1.1 Hardware Virtualization

In IaaS clouds, such as Amazon EC2 [1], Google Compute Engine [8] and

Azure Virtual Machines [3], clients can spin up virtual machines (VMs) that

attempt to emulate physical machines. As shown in the Figure 2.1a, each VM

has its own operating system along with libraries and application binaries.

Multiple VMs run on top of a Virtual Machine Monitor (VMM) which in

turn runs on physical hardware. The VMM is responsible for multiplexing

hardware resources, such as CPU and memory, between the client VMs that

it hosts. Popular VMM implementations include Xen and KVM [27, 10].

4

(a) Hardware virtualization
stack

(b) OS virtualization stack

Figure 2.1: Comparison between the hardware and OS virtualization stacks

2.1.2 Containers

While hardware virtualization remains popular, public PaaS offerings are

increasingly being powered by container runtimes [60]. In such PaaS offerings

client jobs are run inside containers, as opposed to VMs. Containers can be

seen as light-weight VMs. As shown in Figure 2.1b, unlike VMs, containers

do not have their own OS and instead all containers running on the same

underlying host, i.e., co-located containers, share the host OS. Furthermore,

where appropriate, libraries are also shared between co-located containers to

increase memory efficiency.

The increase in popularity of containers can be attributed to their light-

weight nature because of which, the time to start a container is on the order

of milliseconds in contrast to VMs which can take several seconds to launch.

Similarly, containers also incur a lower performance overhead when compared

to VMs [56, 29]. Powerful container runtimes, such as Docker [23] and rkt [18]

have made containers easy to manage, build and deploy. While, container

registries, like Docker Hub [7] and Quay [16], have made containers easy to

share, further increasing adoption.

In order to virtualize the OS, a container runtime needs to be able to allo-

cate resources to containers and be able to isolate the view of the system from

within containers. To achieve these two goals, container runtimes leverage

Linux kernel functionality, namely, control groups (cgroups) [38] and kernel

namespaces [14] to build containers. Cgroups provide a resource manage-

ment solution while namespaces enable resource isolation. To provide added

5

security, a number of container runtimes support mandatory access control

policies by either integrating with Security Enhanced Linux (SELinux) [19]

or AppArmor [2].

We discuss cgroups and namespaces in greater detail below.

Linux Control Groups (cgroups)

Cgroups enable fine-grained resource management of user-defined groups of

processes [38]. Cgroups present a powerful abstraction for system adminis-

trators by allowing them to limit the amount of system resources, such as

memory and disk I/O, available to different user-defined groups of processes.

Cgroups were merged into the Linux kernel mainline with the kernel version

2.6.24 in early 2008 [6].

Cgroups can be created, deleted and updated using the cgroup virtual

filesystem. Each cgroup has an associated task set that includes the pro-

cesses that are part of the cgroup and on which the cgroup resource allo-

cations apply. Cgroups are arranged hierarchically, where a child cgroup

inherits properties from its parent cgroup. Take for example, a cgroup that

is assigned a 40% share in CPU time and has two child cgroups both of

which are assigned equal shares of CPU time. In such a scenario, the child

cgroups will each be allocated 20% of the actual CPU time. There can exist

multiple cgroup hierarchies in system, where each hierarchy is assigned to a

different system resource [17]. For instance, separate cgroup hierarchies can

be maintained for memory and CPU time. Note that, processes not assigned

to any cgroup are added to the root cgroup.

As mentioned earlier, to manage resource allocation, container runtimes

leverage cgroups. A separate cgroup is created for each container. All pro-

cesses running inside a container are added to the task set of its associated

cgroup. Generally, four system resources, CPU, memory, disk I/O and the

network are managed using cgroups. The memory cgroup tracks and lim-

its the memory pages being used by a cgroup. Weights are assigned to each

cgroup in the CPU subsystem hierarchy to determine the ratio in which CPU

time will be divided between cgroups. The disk I/O cgroup subsystem can

be used to track and throttle I/O operations performed by cgroups. Finally,

the network cgroup enables the assignment of traffic generated by a cgroup

to different traffic priority classes.

6

Namespaces

Namespaces isolate the view of processes within a namespace of a certain

global resource [14]. Any updates made to the global resource by a process

are only visible to other processes within the same namespace but remain

invisible to processes outside of the namespace [11]. PID, Mount, IPC, User,

UTS and Network namespaces are supported by the Linux kernel.

All six of the supported namespaces are utilized to create an isolated view

of the system for each container. By creating a separate PID namespace

for each container, processes within a container are limited to viewing other

processes belonging to the same container. An isolated view of the filesys-

tem hierarchy is created using the Mount namespace. The UTS namespace

is used to create a separate hostname identifier for each container. Separate

interprocess communication resources, such as IPC semaphores and message

queues are created using the IPC namespaces. By leveraging the Network

namespaces a separate network stack is created for every container. This in-

cludes separate routing tables, IP table rules and network interfaces. Finally,

User namespaces are utilized to allow different mappings of a process’s user

ID inside and outside of a container [20].

2.2 Cache Architecture

There can be many types of caches present in a given system, such as CPU,

application and database caches. In this thesis we only concern ourselves

with CPU caches and we hereafter refer to CPU caches as simply, caches.

Since caches are central to the attacks and defenses discussed in this thesis,

we provide an introduction to them here.

For data to be processed, it needs to brought into the processor. Processors

are capable of processing data much faster than it can be read from main

memory. This makes input to the processor the bottleneck [13]. This forms

the motivation for caches, which are a small, high-speed memory that stores

recently accessed data from main memory. Their goal is to reduce the time for

the processor to access memory. In order to be effective, caches exploit spatial

locality i.e., if a memory location is accessed, memory locations around that

location are likely to be accessed in the near future. Keeping this is mind,

each entry in the cache is 64 (or 32) bytes and is referred to as a cache line.

7

Caches fetch complete cache lines from memory instead of single memory

locations.

As compared to main memory, caches are much smaller in size. This is

because caches are more expensive to build. Since caches are smaller than

the main memory, a mapping from lines in main memory to locations in the

cache is required. One approach is to allow any line in memory to map to

any location in the cache. Such an approach requires that when searching

for the presence of a memory address in the cache, the complete cache needs

to be checked. The approach is made infeasible by the need for a very large

number of comparators in its implementation [13]. Caches implementing

this approach are referred to as fully-associative caches. At the other end of

the spectrum are directly-mapped caches where each line in memory maps

to exactly one location in the cache. Although, this approach is easier to

implement, the in-flexibility in mapping significantly hampers performance.

Set-associative caches lie somewhere in between fully-associative and directly

mapped caches.

The set-associative approach, divides the cache into equally sized sections,

referred to as ways. The number of ways supported in the cache is referred

to as the cache-associativity. A line in memory maps to exactly one location

in each of the cache ways and together those locations are referred to as a

cache set. For instance, in a 4-way set-associative cache, each line in memory

maps to four locations in the cache, one in each cache way. By allowing a

more flexible mapping scheme, set-associative caches are able to outperform

directly mapped caches. In particular, they reduce conflict misses i.e., cache

misses that occur when there are empty spaces in the cache, just not in the

required cache set. As compared to fully-associative caches, set-associative

caches are cheaper to implement.

Due to the advantages discussed above, caches in modern Intel proces-

sors are set-associative. In the following subsections we discuss the cache

hierarchy and support for cache partitioning.

2.2.1 Cache Hierarchy

As shown in Figure 2.2, today’s multi-core processors typically have a multi-

level cache hierarchy with a shared last-level cache and private lowest-level

8

Figure 2.2: Cache Hierarchy Overview

and intermediate-level caches. In this thesis, we limit ourselves to modern

Intel architectures that have a three level hierarchy [24]. The first level cache,

L1, is core-private i.e., each core has a separate L1 cache. Furthermore, the

L1 cache is divided into two parts, the L1 instruction cache and the L1 data

cache. The instruction cache is responsible for caching program instructions

while data is stored in the data cache. Similar to the L1 cache, the second

layer, L2 cache is also core-private but unlike the L1 cache, the L2 cache is

integrated, meaning both the instructions and the data share the same cache.

Finally, the L3 or last level cache (LLC) is shared among all the cores. The

L3 cache is integrated as well as inclusive, meaning all the cache lines present

in the lower level caches, L1 and L2, are also present in the L3 cache. As we

move from the L1 to the L3 cache, the size of the cache increases but at the

same time access latency increases as well.

In the remainder of this thesis we assume this 3 level cache architecture.

However, the proposed defense is generically applicable.

2.2.2 Intel Cache Allocation Technology

As discussed in Section 2.2.1, modern Intel cache architectures consist of a

shared L3 cache. The sharing of the L3 cache between all the cores in a

processor means that a misbehaving thread i.e., a thread that continuously

brings new data into the L3 cache but does not reuse any data brought into

the cache, can negatively impact the performance of other threads running

on the system along with the cache efficiency. Other threads are negatively

impacted because the misbehaving thread, continuously evicts the data they

9

brought into the cache.

Considering cases similar to one discussed above, Intel introduced the

Cache Allocation Technology (CAT) which allows the partitioning of the

L3 cache between different cores on a processor. Partitions are assigned on a

per-core basis and threads are limited to evicting cache lines from the parti-

tion allocated to the core that they run on. By assigning a separate partition

to a misbehaving thread, the negative impacts on both, other threads in the

system and cache efficiency, can be mitigated.

Partitions are divided along cache ways. Classes of Service (COS) are

assigned ways of the L3 cache that they can allocate from. This assignment

is done using bit masks written to Model Specific Registers (MSRs). COS

can be allocated overlapping cache ways. Processor cores are then assigned

to COS that determine which cache ways are available to threads running

of the cores. No changes are required to the OS in order to benefit from

CAT. Intel requires that a minimum of 2 cache ways are assigned to a COS.

Importantly, CAT configuration can be changed dynamically by the MSRs

as described above.

On the latest Haswell architecture, the number of partitions is limited to

four [42]. Furthermore, since CAT has been developed with quality of service

(QoS) in mind, threads are able to get a hit for data present in different

partition of the L3 cache. Both these limitations impact Cauldron and we

discuss our solutions to them in Section 4.3.

2.3 Cache-based Side-Channel Attacks

A side-channel is an information leakage channel that can be used by the

attacker to gain insight into the victim application. An access-driven side-

channel attack consists of an attacker, co-located with the victim, that mon-

itors shared microarchitectural components, such as caches, to gain useful

information about the application the victim is running [59]. In this thesis

we focus on access-driven side-channel attacks that leverage caches, as they

have been shown to be able to extract fine-grained information from across

VM or container boundaries (e.g., [46, 50, 60, 59, 37, 32, 43, 35, 57]). The

attacks can be divided according to the cache level they target and the attack

technique they use. Some of the attacks target the L1 cache, while others

10

take advantage of the shared L3 cache. We leave the details of such attacks to

Chapter 3. Instead, here we focus on the high-level attack techniques lever-

aged by cache-based side-channel attacks, namely, the Flush+Reload [57]

attack and the Prime+Probe [46] attack.

Following is a high-level description of these attacks techniques.

2.3.1 Flush+reload

The Flush+Reload attack leverages shared libraries with the victim to

launch a cache-based side-channel attack. Libraries are often shared in PaaS

clouds between co-located containers. Similarly, if the deduplication feature

is enabled in a VMM, libraries can be shared between VMs.

The attacker first identifies a code segment that she is interested in mon-

itoring in a library shared with the victim. The attacker then proceeds by

repeating the following three steps to launch the attack.

1) Flush: the attacker flushes the code segment from the cache,

2) Wait: then waits for a short period of time,

3) Reload: the attacker reloads the code segment, measuring access time.

In step 1, to flush the code segment, the attacker can use the “clflush”

instruction [5] available on x86 processors. The “clflush” instruction, flushes

the cache line passed to it as an argument from all levels of the cache hier-

archy. The attacker is only required to pass the virtual address of the code

segment as a parameter to the “clflush” instruction. The attacker then waits

a short period of time as specified in step 2 and then attempts to reload

the code segment in step 3. By measuring the time it takes the attacker to

reload the code segment, the attacker can determine if it was already present

in the cache or if it was loaded from memory. This determination is made

possible by the noticeable difference in memory and cache access times. On

the machine we use for our evaluation, Intel(R) Xeon(R) CPU E5-2618L v3

@ 2.30GHz, we observe main memory access times to be around 300 CPU cy-

cles where as L3 access times are close to 100 CPU cycles. Since the attacker

flushed the code segment from the cache in step 1, if the attacker observes

an access time representative of a cache access in step 3, the attacker can

11

conclude that the victim had loaded the code segment into the cache while

the attacker waited in step 2. On the other hand, an access time typical

of a memory access in step 3 means that the victim did not load the code

segment into the cache while the attacker waited.

2.3.2 Prime+Probe

Unlike the Flush+Reload attack, the Prime+Probe attack does not

rely on shared libraries. This places the additional burden on the attacker

to determine the target cache line of the victim. The attack follows repeated

iterations of a similar three step procedure to that described earlier.

1) Prime: the attacker loads its own data into the cache,

2) Wait: then waits for short period of time,

3) Probe: then reloads the data from step 1, measuring the access time.

In step 1, the attacker evicts all of the victim’s lines in the cache by loading

a cache-sized chunk of data. The attacker then waits for a short period of

time after loading the data. Then, in step 3 the attacks reloads the same

data it had previously loaded in step 1. By measuring the time it takes

to reload each of the lines, the attacker can determine which of the cache

sets were touched by the victim while the attacker waited in step 2. This is

because when a line is read by the victim, it would replace a line loaded by

the attacker.

After repeated iterations of the aforementioned steps, the attacker can

develop an access pattern for each of the cache sets. As an optimization, the

attacker can then limit itself to monitoring cache sets that have an access

pattern similar to what is expected from the target cache line of the victim.

The Prime+Probe attack can be implemented to target the L1 cache, in

which case the attacker and victim need to be running on the same core.

Furthermore, the attacker is then required to regularly preempt the victim

which can make the attack infeasible. The attack can also be implemented

to target the shared L3 cache, in which case, the attacker and victim can

be running on different cores of the processor and the attacker is no longer

required to preempt the victim.

12

The Prime+Probe attack suffers from greater noise as compared to the

flush+reload attack. This is because, in the former, the attacker’s cache

line(s) can be evicted by any of the victim’s lines that map to the same cache

set. Therefore, there is no guarantee, when the attacker observes a higher

access time, that the victim actually accessed the target cache line. Such false

positives do not occur when launching the flush+reload attack where, by

leveraging shared libraries and the the “clflush” instruction, the attacker is

certain that a lower access time in the reload step, indicates that the target

cache line was accessed by the victim. An advantage of the Prime+Probe

attack is that it is more widely applicable as it does not rely on shared

binaries.

13

CHAPTER 3

RELATED WORK

Side-channel and covert-channel attacks are well known in literature. In

this chapter, we limit our discussion to cache-based side-channel attacks and

defenses against them.

3.1 Cache-based Side-Channel Attacks

Many cache-based side-channel attacks ranging from coarse-grained to fine-

grained, from private lab setting to public cloud settings and from attacks

on VMs on a single core to cross-core have been discussed in literature (e.g.,

[46, 50, 60, 59, 37, 32, 43, 35, 57]). Prime+Probe and Flush+Reload

are common techniques used to launch such attacks. We discussed both of

these techniques in detail in Section 2.3.

Earlier attacks in the literature have focused on non-cloud environments.

Osvik et al. [46] were the first to introduce the Prime+Probe attack and

demonstrate its feasibility by launching an efficient side-channel attack across

process boundaries targeting AES. Percival [48] describes a similar attack on

RSA that leverages hyper-threading. Side-channel attacks in cloud environ-

ments have received much attention over the last few years (e.g., [50, 60, 59,

37, 32, 43, 35]). Zhang et al. [60] were the first to demonstrate a side-channel

attack capable of extracting fine-grained information across containers on a

public PaaS cloud. The attack used the Flush+Reload attack technique.

In addition, the authors were able to show that an attacker can achieve

co-location with a victim container on public PaaS offerings.

Prior to presenting side-channel attacks across containers, Zhang et al. [59]

again leverage cache-based side-channels but this time the attack is launched

across VMs. Although the attack is launched in a lab setting, the fact that

they were able to extract private across VM boundaries, highlights the sig-

14

nificant risks posed by cache-based side-channels. They demonstrate the

attack on top of the Xen hypervisor. Their approach uses the core-private

L1 cache and therefore places the additional burden of frequent preempt-

ing of the victim VM on the attacker. The work serves as a follow-up of

Risentpart et al. [51] where the authors show how to achieve co-location

with a victim VM and build on the Prime+Probe technique to establish

coarse-grained cache-based side-channels across VMs on the public Amazon

EC2 cloud [1].

Similar to [59], a number of previous attacks had built timing channels

using the core-private L1 caches, this required the attacker to be able to

frequently preempt the victim VM. Varadarajan et al. [52] showed that such

attacks could be thwarted by making minor changes to the VMM scheduler.

On the other hand, attacks leveraging the Flush+Reload technique do

not require frequent preemption of the victim VM. Yarom et al. [57] and

Irazoqui et al. [36] demonstrate such attack with the victim and attacker

VMs running on different cores on top of the VMware ESX hypervisor. A

key limitation of such attacks is that they are dependent on memory dedu-

plication, a feature now disabled by default in all popular hypervisors (e.g.,

Xen, KVM, VMware ESX).

In an attempt to overcome the aforementioned limitations, recent work

by Fangfei et al. [43], Irazoqui et al. [35] introduced cross-core shared cache

side-channel attacks using the Prime+Probe attack technique. Both the

attacks leverage huge pages to be able to virtually address the complete LLC.

The attacks showed that cryptographic keys could be extracted across VMs

using the shared LLC without relying on the memory deduplication features.

3.2 Defenses Against Cache-based Side-Channel

Attacks

Many defenses against cache-based side-channels have also been proposed.

Varadarajan et al. [52] introduce a scheduler-based defense against cross-

VM side-channel attacks by incorporating a minimum run-time guarantee

(MRT) along with a per-core state-cleansing action. Once the MRT of VMs

is increased, the attacker is unable to preempt the victim VM frequently

enough so as to extract any fine-grained information. The work by Var-

15

darajan et al. builds on the Düppel system [61] where tenant VMs clear the

L1 cache to protect themselves against cache-based side-channels. However,

both of these methods do not address cross-core side-channel attacks.

Software-based cache-partitioning, viz., page-coloring [58], is used to iso-

late tenants in [39, 49, 31]. Raj et al. [49] evaluate the use of page coloring

and cache-aware core assignment (gang scheduling) albeit as independent

techniques. Godfrey et al. [31] employ software-based cache partitioning

together with cache flushing to defend against cache-based side-channel at-

tacks. However, most of these techniques are limited by the performance

of software-based cache partitioning. In addition, page-coloring based tech-

niques do not support huge pages [9], an important requirement for many

big-data cloud applications.

STEALTHMEM [39] overcomes the performance issue by allocating a se-

cure page to each core to protect small amounts of sensitive data belonging

to the VM running on the core. CATalyst [42] uses Intel’s CAT technol-

ogy in a similar manner. However, similar to STEALTHMEM, as CATalyst

provides a limited number of secure pages to each VM it consequently is

limited to protecting small amounts of sensitive data. More importantly,

both STEALTHMEM and CATalyst require modifications to applications as

sensitive variables need to be identified and annotated to avail the protec-

tion of secure pages. In contrast, we aim to provide isolation for the entire

container and our approach doesn’t require any changes to application code.

This makes it much easier for existing applications to use Cauldron.

As described in Section 2.3, cache-based side-channel attacks require accu-

rate timing information to differentiate between cache hits and misses. This

dependence on timing information has motivated a class of defenses that re-

duce the accuracy of timing information available to tenants. Vattikonda

et al. [53] along with the StopWatch [41] and TimeWarp [44] systems are all

implementations of this idea. By fuzzing the timing information available

to tenants they are able to successfully thwart cache-based side-channel at-

tacks. However, such approaches negatively affect legitimate uses of accurate

timing information.

Launching a successful cross-tenant, cache-based side-channel attack re-

quires attackers to co-locate with the victims. Approaches to defend against

co-location [26, 33, 28] are complementary to our efforts. New cache archi-

tectures to thwart cache-based side-channels [55, 54] face some deployment

16

challenges as they require significant hardware support from chip manufac-

tures. In contrast, Cauldron requires only off-the-shelf commodity hardware.

17

CHAPTER 4

APPROACH

4.1 System Model

We consider a public Platform-as-a-Service (PaaS) or Infrastructure-as-a-

cloud (IaaS) cloud environment. Such a system allows the co-location of

containers belonging to different clients/organizations on the same physical

hardware. The mechanisms and ideas presented here are independent of

the actual container runtime framework but we base our implementation on

Docker [23]. Customers of the cloud framework need to specifically label

the subset of containers that require increased protection from attacks that

Cauldron enables (explained further below).

We also assume that the cloud computing infrastructure is built on com-

modity off-the-shelf (COTS) components that have multiple levels of caches,

some of which are shared. For instance, we carry out our experiments on

the Intel Haswell series of processors that have a three-level cache hierarchy:

private level 1 (L1) and level 2 (L2) caches for each core and a last level (L3)

cache that is shared among all the cores. This is the model of the system that

we use for the remainder of this thesis. However the proposed methodologies

are generally applicable as long as there exists a method to partition the

caches at runtime. For this purpose, we turn to the Intel Cache Allocation

Technology (CAT) [22, 24] that allows us to control the partitioning of the

shared L3 cache. The CAT mechanism is configured using model-specific

registers (MSRs). This can be carried out at runtime in a dynamic fashion

using software mechanisms. On the Haswell series of processors the maxi-

mum number of partitions is limited to four. We provide a more detailed

discussion on the Intel CAT in Section 2.2.2. Like in [40], we also assume

that hyper-threading is disabled on machines hosting secure containers.

18

4.2 Attack Model

As mentioned earlier, we assume that containers from different sources (e.g.,

different organizations) can be co-located on the same underlying machine.

Hence, we assume that an adversary’s container(s) can execute, in parallel,

with those of the ‘victim’. This allows the attacker to launch side-channel

attacks using caches [59, 43, 35]. We consider both cross-core (i.e., attacker

and victim running on different cores on the same processor) and same-core

(i.e., attacker and victim running on the same core). In this thesis, we

specifically focus on Prime+Probe and Flush+Reload attacks, both of

which can be carried out in a public cloud computing infrastructure. We

discuss the attacks in detail in Section 2.3.

We assume that the cloud service providers are, in themselves, not mali-

cious since they have a vested interest in protecting their reputations. For

this thesis, we do not consider attacks that aim to compromise the cloud

computing infrastructure or the underlying operating system(s) – this will

be taken up as part of future work. Containers can also be compromised via

the communication network, e.g., due to a vulnerability in a (web) service

running in a container. These threats are not in the scope of this work as

they are present even while executing in private IT infrastructures owned by

the user. Furthermore, we assume that the list containing the subset of con-

tainers that require the higher resiliency/security is also trusted. Or rather,

a front-end mechanism that accepts the jobs in the first place includes a vet-

ting methodology that is separate from the actual physical hardware running

the containers.

4.3 Cauldron Design

The design goals for the Cauldron framework are as follows: (i) protect

containers from both same-core and cross-core cache-based side-channel at-

tacks; (ii) not require changes to user applications and libraries; (iii) be easy

to adopt and deploy and (iv) incur low performance overheads. Figure 4.1

presents a high-level overview of the framework.

19

Scheduler OS

Cache
Management
Mechanism

CACHE

Core 1

Cache
Partition

Protected
Region

Cache
Partition

Protected
Region

Cache
Partition

Protected
Region

Shared Cache Partition

Unprotected Region

CORES Core 2 Core 3 Core 4 Core 5 Core N

Figure 4.1: System design overview

4.3.1 Protection Model

In the Cauldron framework, clients/tenants are required to tag containers

that need extra care for security – i.e., the clients indicate which contain-

ers are carrying out critical operations or are dealing with sensitive data.

This, along with the information about container organizational ownership,

is the only additional input required from the user(s)1. If a tenant marks a

particular (subset set of) containers as requiring increased security then the

Cauldron framework will ensure that these containers are protected from

side-channel attacks – both, from all containers belonging to other organiza-

tions as well as well as the non-secure containers of the same tenant. In fact,

it is easy to extend Cauldron to support multi-level security (MLS) policies

such as Bell-LaPadula confidentiality policy. This will extend the utility of

this framework to private MLS cloud environments where the tenant contain-

ers all belong to the same organization but may have different security labels.

1We assume that the cloud service provider has a separate mechanism to verify whether
the containers that claim to be from a certain organization are actually so. This is an
orthogonal problem to the one being presented in this paper.

20

4.3.2 Protected Regions

Every host that is part of the Cauldron framework will have two regions –

a protected region and an unprotected region. We leverage the Intel Cache

Allocation Technology (CAT) [22, 24] to partition the host processor into

the above regions. CAT allows us to partition the shared L3 cache among

individual cores. Such partitions are created along cache ways; a minimum

partition size being 2 MB. CAT can be configured at runtime using model-

specific registers (MSRs). This allows us to add, remove or even scale parti-

tions as needed. Hence, each “region” (protected/unprotected) in Cauldron

is defined by: (a) a subset of processor cores and (b) a cache partition that is

private only to those cores. One such set (or maybe more than one depend-

ing on how the system is configured) is marked as the “protected region”.

Hence, containers that are marked as secure/sensitive will be run on the

protected core(s). CAT provides useful partitioning semantics and prevents

cross-core Prime+Probe attacks across partitions. In particular, attack-

ers cannot prime the L3 cache of the victim that is executing on a different

partition since CAT prevents evictions across partitions. However, a trivial

design entirely reliant on CAT will not prevent all side-channel attacks (e.g.,

same-core attacks). Also, Flush+Reload attacks will still succeed since

a process on one core can get hits from content loaded onto the cache from

another partition. Cauldron addresses all of these problems while still taking

advantage of the hardware-supported cache partitioning.

4.3.3 Cache Flushing

Even with hardware cache partitioning, L1 and L2 based side-channel at-

tacks can succeed when the attacker and the victim share the same core [59].

Hence, we use cache flushing mechanisms to prevent such attacks. We use a

software flushing mechanism (details in Section 4.4.3) but many processors

include hardware mechanisms. One way to implement the flush mechanism

would be invoke it within each container just before it relinquishes control.

This would require modifications to the end user application. Moreover, it

also increases inefficiency since, as we shall explain soon, the flushing mech-

anism does not need to run after every protected container.

21

4.3.4 Smart Scheduling

We need to ensure that (a) the sensitive containers are scheduled on to the

protected cores and (b) the number of flushes is minimized. One way to

to improve the isolation and security for the protected region is to assign

only one core for the protected region. However, this may not be practical

as (i) many cloud workloads are multi-threaded and will do better with

multiple cores and (ii) Intel CAT currently only supports a small number of

L3 partitions (maximum of four for this processor). One fix could be to create

multiple protected regions with one core (and associated LLC partition) each.

To ensure cloud applications get access to enough protected cores threads

belonging to a container could be allowed to execute across multiple protected

regions. As for the issue of number of flushes (in the protected regions), one

trivial method could be to initiate a flush mechanism after every sensitive

container executes. Of course, this could result in a lot of wasted resources

since we do not need to flush the cache if two sensitive containers from the

same organization/tenant execute in a back-to-back fashion. Also, we only

flush the cache partition belonging to the protected region(s). This ensures

that other containers do not pay the performance penalty associated with

having their caches flushed. Reducing the size of the LLC that needs to be

flushed is important as LLC sizes have grown to sizes of over 45MB. Flushing

such a large cache securely would be detrimental to system performance.

4.3.5 Preventing Page Sharing

As previously discussed, the Intel CAT technology alone cannot thwart all

cross-container L3 based attacks. To prevent an adversary container from

getting a hit due to page(s) being in the protected L3 partition of the victim

(CAT allows cross-partition hits but not evictions), we should prevent page

sharing. In fact, only containers from the same organization may be allowed

to share pages and even then only if such containers are all marked for pro-

tection. However, it is common for container frameworks to use layered file

systems that share page caches (e.g., AUFS in Docker). While it would be

22

ideal to control this at a finer granularity, in our current design we employ

filesystems that do not use shared page caches (e.g., btrfs, DeviceMapper).

4.4 Cauldron Implementation

Below we outline the details of our implementation.

4.4.1 Protected Regions

In our current implementation, we associate only one core with a protected

region. As shown in Figure 4.1, a machine with an 8-core processor is par-

titioned into 3 protected regions each with one core and their own LLC

allocated with CAT, and one unprotected region with the remaining 5 cores

and a larger partition of LLC. Each protected region is allocated a cache

partition of 2MB. We believe this to be a reasonable choice for cloud ap-

plications [30], and our performance evaluation suggests as much. We will

explore dynamically varying the number and size of protected regions and

the cores associated with them to improve performance of multi-threaded

applications in future work.

4.4.2 Smart Scheduler

In order to ensure Cauldron is easily deployable, we implement all kernel

level scheduler code as a loadable kernel module requiring no changes to the

host kernel. We leverage kernel return probes [12] to hook into the kernel

schedule routine that is called on every context-switch. Once control is passed

to our module, we determine if the container to be scheduled next belongs

to a different organization than the container previously scheduled in this

protected region. If the containers belong to different organizations we flush

the cache, otherwise we immediately return control to the kernel schedule

routine.

23

4.4.3 Cache Flushing

Cauldron employs a software-based mechanism to flush the cache allocated

to a secure partition. For each protected region, we allocate a physically

contiguous array equal to the size of the L3 partition allocated to that region.

This is done at the time our kernel module is loaded into the kernel. During

a context-switch involving containers belonging to different organizations, we

read the elements in this array into the cache. This operation flushes every

cache set in the specific protected region. In order to minimize the overhead

of cache flushing we traverse the array in cache line size steps. This insures

that each cache line allocated to the specific protected partition is touched

only once.

4.4.4 Integration with Docker

We use Docker to manage containers in Cauldron framework. The organi-

zation of a given container is configured using the “–parent-cgroup” option

of the Docker run command. If an organization wants a particular container

to run with the protection of Cauldron, then the parent cgroup of that con-

tainer will be used to differentiate it from containers of other organizations

scheduled on protected cores. Implementing the Cauldron framework in a

popular container runtime like Docker, ensures compatibility with existing

software and allows for easier deployment and integration into the larger

container management ecosystem.

24

CHAPTER 5

EVALUATION

We evaluate our design and implementation in terms of both effectiveness

(the ability of the system to stop attacks) and in terms of the performance

overhead of running containers on a system using our secure design. We

ran our experiments on a Ubuntu 15.04 operating system on top of a CAT-

enabled 8 core Intel(R) Xeon(R) CPU E5-2618L v3 @ 2.30GHz machine with

16 GB memory and a 20MB (shared) L3 cache. We use Docker v1.91 as the

container runtime.

5.1 Security Evaluation

As discussed previously, Flush+Reload attacks across Cauldron partitions

may still succeed if the attacker and victim share pages as using the clflush

instruction the attacker can flush any of the lines in the shared pages from

the cache hierarchy. Since clflush is not a privileged instruction, trapping

it would incur significant overhead; instead Cauldron focuses on the sources

of shared memory the attack leverages. To defend against Flush+Reload

attacks across Cauldron partitions we used a layered filesystem that does

not support page caching of shared layers. As discussed further in Chap-

ter 6, we intend to expand Cauldron to also partition the page cache along

organization boundaries so that containers belonging to the same organiza-

tion can benefit from memory sharing of base layers. To validate that this

approach prevents Flush+Reload attacks from deducing meaningful in-

formation we launched the Flush+Reload attack from [57] on a victim

running GPG decryption across a Cauldron partition. Figure 5.1a shows

access times observed by the attacker when using AUFS, a layered filesystem

using a page cache, and when using DeviceMapper (Figure 5.1b), a layered

filesystem driver that does not support a page cache. As can be seen in it-

25

(a) Using AUFS

(b) Using DeviceMapper

Figure 5.1: Cache access latency over time for the Flush+Reload attack

26

erations 5000 through 12500 and 42500 through 50000 in Figure 5.1a when

using AUFS the attacker observes low access times due to cache hits from

the victim’s LLC partition and will be able to deduce meaningful information

about victim’s computation patterns. However, the attacker will be unable

to derive information when the DeviceMapper storage backend is used as can

be seen by the lack of access time variations in Figure 5.1b.

To validate that Cauldron is able to defend against cross-core Prime-

Probe attacks, we launch the attack from [43] with the attacker and victim

running on different cores in the unprotected partition and then with the

victim running in a separate Cauldron partition. In the attack implementa-

tion, the attacker uses the Prime+Probe technique to monitor the victim’s

access patterns of different cache sets. The attacker then searches the cache

trace for temporal access patterns indicative of the target application. A

high pattern match count on a cache set indicates that the attacker is able

to identify the cache set being used by the target application, in this case

GnuPG version 1.4.13. The attacker can then continue to extract the private

key.

Figure 5.2a shows the pattern match count for the different cache sets when

the attacker and victim run on different cores in the unprotected region. A

high pattern match count for one cache set shows that the attacker is able

to identify the cache set being used by the victim application. Therefore the

attack is successful. On the other hand, minimal pattern matches, shown in

Figure 5.2b indicates that the attack is unsuccessful once we move the victim

to a protected region. This is because it is not possible to prime the LLC

cache of the victim running in a different partition as CAT doesn’t allow

evictions across partitions.

5.2 Performance Evaluation

We have observed promising initial results by running the OpenSSL and Re-

dis Benchmarks using configurations packaged by Phoronix Test Suite [15].

The OpenSSL benchmark tests RSA 4096-bit performance throughput while

the Redis Benchmark tests a variety of operations including getting and set-

ting values, list operations, and a set operation. We ran each benchmark

with 1, 2, 4, and 8 containers assigned to different organizations on the pro-

27

(a) With the victim and attacker running in the unprotected region

(b) With the victim and attacker running in different partitions

Figure 5.2: Pattern match count for the Prime+Probe attack

28

tected partitions of Cauldron and saw less than 1% overhead for the OpenSSL

benchmark and no more than 16% overhead for the worst case Redis Bench-

mark (8 containers running on only 3 cores, at full load). In future work

we will evaluate this further while investigating features such as dynamic

sizing of the secure region (right now Cauldron statically dedicates 3 cores

to running protected containers).

29

CHAPTER 6

FUTURE WORK

Preliminary evaluation results indicate that Cauldron meets its design goals

reasonably well but that there is room for improvement. In particular,

Cauldron is effective in thwarting both Flush+Reload and Prime+Probe

attack types, and in protecting against both same-core and cross-core at-

tacks. Cauldron doesn’t require changes to user applications and libraries

and is also easy to deploy requiring changes only to the host environment

and support for Intel CAT technology which is readily available. However,

the current implementation of Cauldron requires the use of a storage back-

end that doesn’t allow libraries to be shared between containers, in order to

defend against cross-partition Flush+Reload attacks. This may increase

the memory footprint of containers in high density environments. A future

direction is to explore mitigation of this overhead by selectively enabling

shared pages.

Cauldron currently only supports protected partitions with single cores.

This is to ensure that Prime+Probe attacks using the LLC cannot be

launched across cores within a protected region. However, an alternative

approach to dealing with such attacks is to employ constrained- or gang-

scheduling to ensure that only containers belonging to the same tenant can

be running on the cores in a given protected region at any given time. Each

approach has its own advantages and disadvantages. The current approach

of limiting each protected region to one core but allowing cloud workloads to

execute across multiple protected regions will lead to smaller LLC availability

and frequent context switches leading to increased cache-flushing overhead.

The alternative approach on the other hand may lead to underutilization

of processor cores due to gang-scheduling. We will explore the trade-offs

between these two approaches in future work.

Another direction for future work is to attempt further reduce cache-

flushes, say, by increasing the minimum runtime (MRT) of processes and

30

thereby reducing the total number context switches albeit at the expense

of container response time. Previous works [34, 45, 47] have shown that it

is also possible to optimize the number of cache-flushes by minimizing con-

text switches involving processes belonging to different security levels. Other

interesting directions for future work include dynamically adjusting the L3

cache size and cores associated with Cauldron partitions.

31

CHAPTER 7

CONCLUSION

The proliferation of lightweight commodity computing and the slowing down

of Moore’s law could mean that cloud providers may no longer be able to

scale their hardware resources to match the increased demand from their

clients. Hence, there will be an increased likelihood that computing jobs from

multiple organizations could be co-located on the same physical hardware.

This raises serious security and privacy concerns that we hope to mitigate

by use of the Cauldron framework. Cauldron intends to provide isolation

guarantees to application developers; and it does this without requiring any

changes to the applications themselves.

32

REFERENCES

[1] Amazon ec2. https://aws.amazon.com/ec2.

[2] Apparmor. http://wiki.apparmor.net/index.php/Main_Page.

[3] Azure virtual machines. https://azure.microsoft.com/en-us/

services/virtual-machines/.

[4] Chroot. http://man7.org/linux/man-pages/man2/chroot.2.html.

[5] Clfush instruction reference. http://x86.renejeschke.de/html/

file_module_x86_id_30.html.

[6] Control groups introduced in mainstream linux. http:

//kernelnewbies.org/Linux_2_6_24.

[7] Docker hub. https://hub.docker.com/.

[8] Google compute engine. https://cloud.google.com/compute/.

[9] Huge pages. https://lwn.net/Articles/374424/.

[10] Kernel-based virtual machine. http://www.linux-kvm.org/.

[11] Kernel namespaces. https://lwn.net/Articles/531114/.

[12] Kernel probes (kprobes). https://www.kernel.org/doc/

Documentation/kprobes.txt.

[13] Look-aside look-through caches. http://download.intel.com/

design/intarch/papers/cache6.pdf.

[14] Namespaces in operation. https://lwn.net/Articles/531114/.

[15] Phoronix test suite. http://www.phoronix-test-suite.com/.

[16] Quay. https://www.quay.io/.

[17] Redhat introduction to cgroups. https://access.redhat.com/

documentation/en-US/Red_Hat_Enterprise_Linux/6/html/

Resource_Management_Guide/ch01.html.

33

[18] rkt. https://www.coreos.com/rkt.

[19] Selinux. http://selinuxproject.org/page/Main_Page.

[20] User namespaces. http://man7.org/linux/man-pages/man7/user_

namespaces.7.html.

[21] Federal Cloud Computing Strategy. http://www.cio.gov/documents/
Federal-Cloud-Computing-Strategy.pdf, February 2011.

[22] Cache monitoring technology and cache allocation technology.
http://www.intel.com/content/www/us/en/communications/

cache-monitoring-cache-allocation-technologies.html, 2015.

[23] docker. https://www.docker.com/, 2015.

[24] Improving real-time performance by utilizing cache allocation technol-
ogy. http://www.intel.com/content/www/us/en/communications/

cache-allocation-technology-white-paper.html, 2015.

[25] Linux containers. https://linuxcontainers.org/, 2015.

[26] Azar, Y., Kamara, S., Menache, I., Raykova, M., and Shep-
ard, B. Co-location-resistant clouds. In Proceedings of the 6th Edition
of the ACM Workshop on Cloud Computing Security (New York, NY,
USA, 2014), CCSW ’14, ACM, pp. 9–20.

[27] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. Xen and
the art of virtualization. ACM SIGOPS Operating Systems Review 37,
5 (2003), 164–177.

[28] Bijon, K., Krishnan, R., and Sandhu, R. Mitigating multi-
tenancy risks in iaas cloud through constraints-driven virtual resource
scheduling. In Proceedings of the 20th ACM Symposium on Access Con-
trol Models and Technologies (New York, NY, USA, 2015), SACMAT
’15, ACM, pp. 63–74.

[29] Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. An up-
dated performance comparison of virtual machines and linux containers.

[30] Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Al-
isafaee, M., Jevdjic, D., Kaynak, C., Popescu, A. D., Ail-
amaki, A., and Falsafi, B. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. In ACM SIGPLAN Notices
(2012), vol. 47, ACM, pp. 37–48.

34

[31] Godfrey, M., and Zulkernine, M. Preventing cache-based side-
channel attacks in a cloud environment. Cloud Computing, IEEE Trans-
actions on 2, 4 (2014), 395–408.

[32] Gruss, D., Spreitzer, R., and Mangard, S. Cache template
attacks: Automating attacks on inclusive last-level caches. In 24th
USENIX Security Symposium (USENIX Security 15) (Washington,
D.C., Aug. 2015), USENIX Association, pp. 897–912.

[33] Han, Y., Chan, J., Alpcan, T., and Leckie, C. Using virtual
machine allocation policies to defend against co-resident attacks in cloud
computing. Dependable and Secure Computing, IEEE Transactions on
PP, 99 (2015), 1–1.

[34] Hu, W.-M. Lattice scheduling and covert channels. In Research in
Security and Privacy, 1992. Proceedings., 1992 IEEE Computer Society
Symposium on (May 1992), pp. 52–61.

[35] Irazoqui, G., Eisenbarth, T., and Sunar, B. S$A: A Shared
Cache Attack That Works across Cores and Defies VM Sandboxing –
and Its Application to AES. In Security and Privacy (SP), 2015 IEEE
Symposium on (May 2015), pp. 591–604.

[36] Irazoqui, G., Inci, M. S., Eisenbarth, T., and Sunar, B. Wait
a minute! a fast, cross-vm attack on aes. In Research in Attacks, Intru-
sions and Defenses. Springer, 2014, pp. 299–319.

[37] Irazoqui, G., Inci, M. S., Eisenbarth, T., and Sunar, B. Know
thy neighbor: Crypto library detection in the cloud. In Proceedings on
Privacy Enhancing Technologies 2015 (2015).

[38] Jackson, P., and Lameter, C. CGROUPS.

[39] Kim, T., Peinado, M., and Mainar-Ruiz, G. Stealthmem: System-
level protection against cache-based side channel attacks in the cloud.
In Proceedings of the 21st USENIX Conference on Security Symposium
(Berkeley, CA, USA, 2012), Security’12, USENIX Association, pp. 11–
11.

[40] Kim, T., Peinado, M., and Mainar-Ruiz, G. Stealthmem: System-
level protection against cache-based side channel attacks in the cloud.
In Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12) (Bellevue, WA, 2012), USENIX, pp. 189–204.

[41] Li, P., Gao, D., and Reiter, M. K. Mitigating access-driven timing
channels in clouds using stopwatch. In Dependable Systems and Net-
works (DSN), 2013 43rd Annual IEEE/IFIP International Conference
on (2013), IEEE, pp. 1–12.

35

[42] Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser,
G., and Lee, R. B. Catalyst: Defeating last-level cache side channel
attacks in cloud computing.

[43] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. Last-level
cache side-channel attacks are practical. In Security and Privacy (SP),
2015 IEEE Symposium on (May 2015), pp. 605–622.

[44] Martin, R., Demme, J., and Sethumadhavan, S. Timewarp: Re-
thinking timekeeping and performance monitoring mechanisms to mit-
igate side-channel attacks. In Proceedings of the 39th Annual Interna-
tional Symposium on Computer Architecture (Washington, DC, USA,
2012), ISCA ’12, IEEE Computer Society, pp. 118–129.

[45] Mohan, S., Yoon, M.-K., Pellizzoni, R., and Bobba, R. Real-
time systems security through scheduler constraints. In Euromicro Con-
ference on Real-Time Systems (July 2014), pp. 129–140.

[46] Osvik, D. A., Shamir, A., and Tromer, E. Cache attacks and
countermeasures: The case of aes. In Proceedings of the 2006 The
Cryptographers’ Track at the RSA Conference on Topics in Cryptology
(Berlin, Heidelberg, 2006), CT-RSA’06, Springer-Verlag, pp. 1–20.

[47] Pellizzoni, R., Paryab, N., Yoon, M.-K., Bak, S., Mohan, S.,
and Bobba, R. A generalized model for preventing information leakage
in hard real-time systems. In IEEE Real-Time Embedded Technology and
Applications Symposium (April 2015 (accepted)).

[48] Percival, C. Cache missing for fun and profit, 2005.

[49] Raj, H., Nathuji, R., Singh, A., and England, P. Resource
management for isolation enhanced cloud services. In Proceedings of the
2009 ACM Workshop on Cloud Computing Security (New York, NY,
USA, 2009), CCSW ’09, ACM, pp. 77–84.

[50] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. Hey,
you, get off of my cloud: exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM conference on Com-
puter and communications security (New York, NY, USA, 2009), CCS
’09, ACM, pp. 199–212.

[51] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. Hey,
you, get off of my cloud: Exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security (New York, NY, USA, 2009), CCS
’09, ACM, pp. 199–212.

36

[52] Varadarajan, V., Ristenpart, T., and Swift, M. Scheduler-
based defenses against cross-vm side-channels. In 23rd USENIX Secu-
rity Symposium (USENIX Security 14) (San Diego, CA, Aug. 2014),
USENIX Association, pp. 687–702.

[53] Vattikonda, B. C., Das, S., and Shacham, H. Eliminating fine
grained timers in xen. In Proceedings of the 3rd ACM Workshop on
Cloud Computing Security Workshop (New York, NY, USA, 2011),
CCSW ’11, ACM, pp. 41–46.

[54] Wang, Z., and Lee, R. B. New cache designs for thwarting software
cache-based side channel attacks. In Proceedings of the 34th Annual
International Symposium on Computer Architecture (New York, NY,
USA, 2007), ISCA ’07, ACM, pp. 494–505.

[55] Wang, Z., and Lee, R. B. A novel cache architecture with enhanced
performance and security. In Proceedings of the 41st Annual IEEE/ACM
International Symposium on Microarchitecture (Washington, DC, USA,
2008), MICRO 41, IEEE Computer Society, pp. 83–93.

[56] Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T.,
and De Rose, C. Performance evaluation of container-based virtu-
alization for high performance computing environments. In Parallel,
Distributed and Network-Based Processing (PDP), 2013 21st Euromicro
International Conference on (Feb 2013), pp. 233–240.

[57] Yarom, Y., and Falkner, K. Flush+reload: A high resolution, low
noise, l3 cache side-channel attack. In 23rd USENIX Security Sym-
posium (USENIX Security 14) (San Diego, CA, Aug. 2014), USENIX
Association, pp. 719–732.

[58] Ye, Y., West, R., Cheng, Z., and Li, Y. Coloris: A dynamic cache
partitioning system using page coloring. In Proceedings of the 23rd In-
ternational Conference on Parallel Architectures and Compilation (New
York, NY, USA, 2014), PACT ’14, ACM, pp. 381–392.

[59] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. Cross-
vm side channels and their use to extract private keys. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security
(New York, NY, USA, 2012), CCS ’12, ACM, pp. 305–316.

[60] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. Cross-
tenant side-channel attacks in paas clouds. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security
(New York, NY, USA, 2014), CCS ’14, ACM, pp. 990–1003.

37

[61] Zhang, Y., and Reiter, M. K. Düppel: Retrofitting commodity
operating systems to mitigate cache side channels in the cloud. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (New York, NY, USA, 2013), CCS ’13, ACM,
pp. 827–838.

38

