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Abstract

Resilience of engineering systems is related to their ability of absorbing both gradual and abrupt changes

under exposure conditions and rapidly recover from disruptions. In this thesis, we develop a general stochas-

tic formulation to model the recovery process and quantify system’s resilience. In particular, we develop

models for time-dependent capacity of a system and the imposed demand, under joint effects of recovery

and shock deterioration processes. Using the developed models, a recovery curve is formulated in terms of

system’s reliability, functionality and work progress. Furthermore, we propose a novel approach for resilience

analysis by defining measures to capture characteristics of recovery curves. The proposed approach makes

a distinction in resilience of systems with different recovery patterns. A numerical example is provided to

illustrate the application of the model.
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Chapter 1

Introduction

Current design approaches of engineering systems are pushing towards options that are resilient under ex-

posure conditions. The definition and quantification of the term resilience vary among different disciplines.

One such definition given by the US Department of Homeland Security (Directive 2011) is “the ability to

adapt to changing conditions and withstand and rapidly recover from disruption due to emergencies.” The

mathematical formulation of the recovery process and resilience analysis are key elements in assessing the

performance of engineering systems and guiding the decision makers to optimally allocate limited resources.

Resilience analysis gives rise to the requirement of developing tangible metrics that integrate major charac-

teristics of a resilient system. The desirable characteristics of a resilient system are, 1) increased availability

for operation, 2) enhanced reliability, and 3) reduced recovery time. Because resilience analysis involves the

formulation of an uncertain recovery process that might also be subject to interrupting shocks, it is of utmost

significance to appropriately treat various sources of the uncertainties.

The probabilistic modeling of the recovery process and resilience analysis of engineering systems have

been the focus of much research over the past decade. The problem has been approached in a number

of different ways. Chang and Shinozuka (2004) quantified resilience in terms of the probability that a

system’s performance loss, right after a disruption, and the corresponding recovery time would be less than

predefined thresholds. Cimellaro et al. (2010) defined a resilience metric in terms of the area bounded

between the recovery curve of a system and the time axis, over a given time horizon. Furthermore, they

suggested different shapes of recovery curves that represent the level of preparedness of a system/society in

responding to a disruption. Decò et al. (2013) used the same resilience metric as in Cimellaro et al. (2010)

and suggested a parametric sinusoidal function for the recovery curve. Uncertainty in a recovery process

is modeled by assigning probability distributions to the parameters of the recovery curves. A Monte Carlo

simulation method is then used to obtain the probability distribution of the resilience metric. Iervolino and

Giorgio (2015) proposed a non-homogeneous Markov process to model the recovery of a system, considering

the possible effects of aftershock disruptions. A finite set of damage states are defined for a system and the

possible transition from each damage state to others, in a unit time interval, is described by means of a
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time-dependent probability matrix, known as a transition matrix.

Though the mentioned works, among others, made significant progress over the years (see, for example,

Hosseini et al. 2016 for a summary of the work in the literature), there remain challenges to be addressed.

In particular, there are two major limitations with current approaches: 1) Predefined, monotonic continuous

recovery curves do not replicate the reality of a recovery process. The progress in the recovery process

does not lead to instantaneous changes in a system’s functionality. For systems that work only after full

restoration of functionality, the recovery curve should be modeled as a step function. Furthermore, for

systems that work with partial functionality, the recovery curve should be modeled as a piecewise constant

function, because recovery activities take time to make impacts on the functionality. On the other hand,

in the stochastic modeling of recovery, using a non-homogenous Markov process, the key problem is the

formulation of the time-dependent transition matrix. However, no practical solution has been proposed for

this problem. 2) The current resilience metrics are insensitive to the shape of recovery curves, given that

the bounded-area between a recovery curve and time axis is fixed.

This thesis develops a general stochastic formulation to model the recovery process and quantify systems’

resilience. In particular, stochastic models are developed for time-dependent capacity of a system and the

imposed demand, under joint effects of recovery process and shock deterioration. Using the developed

capacity and demand models, equations are derived to compute the instantaneous reliability of a system,

the probability distribution of 1) the number of recovery activities to restore a target functionality; 2)

the number of shocks to recover, and 3) time to the end of recovery. Furthermore, a novel approach is

proposed for resilience quantification. In addition, a theory of resilience analysis based on recovery curve

characteristics is also proposed. Each segment of a recovery curve, between two possible successive shocks,

is termed as a cumulative resilience distribution function (CRF). Partial descriptors of the CRFs can be

aggregated to quantify the resilience of a system, which is analogous to probability analysis. In contrast

to current approaches, the proposed resilience metrics (i.e., a set of partial descriptors) is sensitive to the

shape of all recovery curves with the same bounded-area between the recovery curve and the time axis. An

example is presented to explain the proposed formulation.

There are eight chapters in this thesis. Following this Introduction, Chapter 2 describes the resilience

modeling of deteriorating systems. Chapter 3 discusses a general recovery process and the related stochastic

modeling issues. Chapter 4 presents the proposed formulation to model the recovery process and quantify

resilience. Chapter 5 presents solutions of quantities of interest. Chapter 6 provides details on estimation and

calibration of parameters of the model. Chapter 7 presents a numerical example to illustrate the proposed

formulation and Chapter 8 presents conclusions derived from this work.
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Chapter 2

Proposed Mathematical Formulation
for Resilience Analysis and Resilience
Metrics
Assessing the resilience of engineering systems is crucial both for pre-disruption effective mitigation plan-

ning and post-disruption optimal resource allocation. There are many factors that influence resilience of

engineering systems, including the design specifications, the availability of resources needed for the repairs

(e.g., funding and materials), the accessibility of damaged components, preparedness of recovery plans, and

environmental condition during the recovery. Developing a composite resilience metric that integrates all

the influencing factors is critical for optimal decision-making.

In this chapter, we first review the current practices of quantifying resilience, the available metrics, and

their limitations. Then, we propose a new mathematical formulation for resilience analysis that overcomes

the current limitations.

Fig. 2.1.1 shows a typical recovery curve used in the literature to quantify resilience (Bocchini et al.

2012; Bonstrom and Corotis 2014; Cimellaro et al. 2010). An external shock (e.g., an earthquake) at time τI

causes an instantaneous reduction in system’s performance indicator,
^

Q (τ) (e.g., the system’s functionality.)

The residual performance of the system, Qres, depends on the intensity of the shock, design specifications,

and the reliability of the system. Subsequently, the system undergoes a recovery process to restore a desired

performance level (e.g., the original functionality or a higher one, if desired.) After meeting the desired

requirements, the recovery process terminates at time τL. The different factors affecting resilience, listed

earlier, influence the shape of the recovery curve as well as the duration of the process, TR := τL − τI .

Resilience of the system is typically quantified as a function of the shaded area in Fig. 2.1.1. Mathematically,

the typical resilience metric (see, for example,Bonstrom and Corotis 2014; Cimellaro et al. 2010; Decò et al.

2013) is defined as

R :=
´ τL

τI

^

Q (τ) dτ
TR

=
´ TR

0 Q (t) dt
TR

(2.1)

where, we used the change of variable t = τ−τI to define Q (t) :=
^

Q (τ + τI). The limitation of the resilience

metric, R, is that it gives the same value of resilience for different combinations of Q (t) and TR. We explain

this limitation with the following example. Fig. 2.1.2 shows three possible recovery curves. Table 2.2.1
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summarizes their functional forms along with the corresponding TR’s. The three different recovery curves

are associated with different levels of resilience (e.g., the curve Linear 1 might be considered to be the most

desirable recovery.) However, as shown in the last column of the Table 2.2.1, the calculated values of R for

the three recovery curves are the same (i.e., equal to 0.75.)

To address this limitation, we need to develop a set of partial descriptors of Q (t) that capture the

differences in the shape of the recovery curves. Furthermore, it is desirable that the partial descriptors

have simple and clear interpretations. This property can be helpful when comparing different Q (t)’s and

prioritizing resource allocation for the recovery of damaged systems. We propose a new resilience analysis

that describes the recovery process in terms of partial descriptors of Q (t).

To explain the proposed resilience analysis, we first develop the tools for describing the recovery process

and then derive the partial descriptors. The recovery curve Q (t) that we term the cumulative resilience

distribution function (CRF), represents the overall recovery progress by time t. The time derivative of the

CRF represents the instantaneous recovery rate at any given time.

If the CRF is a continuous function of time, the instantaneous recovery rate is described by its resilience

density function (RDF), defined as q (t) := dQ/dt. The RDF is undefined at a finite set of points where the

CRF is not differentiable. We can obtain the recovery progress over an arbitrary interval [tu, tv) ⊆ [0, TR]

as follows:

Q (tu ≤ t < tv) =
tvˆ

tu

q (t) dt (2.2)

If the CRF is a piecewise constant function, we can no longer use the RDF to describe the instantaneous

recovery rate. In such cases, we define the resilience mass function (RMF) as q (t) :=
∑∞
k=1 ∆Q (tk) δ (t− tk),

where ∆Q (tk) := Q (tk)−Q
(
t−k
)
is the size of the jump in CRF at the discontinuity point t = tk; t−k is the

time instant immediately before tk; and δ (·) is the Dirac delta function. Similar to the continuous case, we

can obtain the recovery progress over an arbitrary interval [tu, tv) ⊆ [0, TR] as follows:

Q (tu ≤ t < tv) =
tvˆ

tu

∞∑
k=1

∆Q (tk) δ (t− tk) dt =
∞∑
k=1

∆Q (tk) 1{tu≤tk<tv} (2.3)

where 1{tu≤tk<tv} is an indicator function such that 1{tu≤tk<tv} = 1, when tk ∈ [tu, tv) and 1{tu≤tk<tv} = 0,

otherwise. To reflect that at the time of the shock (t1 = 0) the CRF is equal to Qres (which is typically 6= 0)

we define ∆Q (0) := Qres.

In general, the CRF might be a combination of the previous two cases, where Q (t) is a piecewise

continuous function. In this case, we can write the time derivative of the CRF as
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q (t) = q̃ (t) +
∞∑
k=1

∆Q̃ (tk) δ (t− tk) (2.4)

where, q̃ (t) is the RDF, corresponding to the continuous part of the CRF and
∑∞
k=1 ∆Q̃ (tk) δ (t− tk) is the

RMF, accounting for the discontinuities of the CRF. Accordingly, we can write the recovery progress over

[tu, tv) ⊆ [0, TR] as follows:

Q (tu ≤ t < tv) =
tvˆ

tu

q̃ (t) dt+
∞∑
k=1

∆Q̃ (tk) 1{tu≤tk<tv} (2.5)

The CRFs or RDFs/RMFs of systems provide complete information about the recovery process and, thus,

resilience. To help in the interpretation of the CRF, RDF and RMF, one can see the analogy between their

definitions and those of the Cumulative Distribution Function (CDF), Probability Density Function (PDF)

and Probability Mass Function (PMF) that are used to describe random variables in probability theory (see,

for example, Ang and Tang 2007.)

To capture the degree of disparity between any pairs of recovery curves, we define the measure of recovery

disparity, ∆ (q1, q2), as follows:

∆ (q1, q2) :=
´ TR

0 q1 (t) log2 [q1 (t) /q̄ (t)] dt+
´ TR

0 q2 (t) log2 [q2 (t) /q̄ (t)] dt
Q1 (TR1) +Q2 (TR2) (2.6)

where, TR1 and TR2 are the recovery duration associated with q1 and q2; TR = max (TR1 , TR2); and q̄ (t) :=

[q1 (t) + q2 (t)] /2. The recovery disparity is bounded between 0 and 1 such that ∆ (q1, q2) = 0, when

q1 (t) = q2 (t) for every t ∈ [0, TR] and ∆ (q1, q2) = 1, when the intersection of the supports of q1 and q2 in

the interval [0, TR] is null. The proposed recovery disparity measure is analogous to divergence measures in

probability theory. Specifically, if the CRFs are replaced with CDFs, ∆ (q1, q2) corresponds to the Jensen-

Shannon entropy (Lin 1991). In probability theory, this quantity is used as a measure of difference between

two probability distributions. The applications can be found in approximation of probability distributions,

in signal processing, and in pattern recognition.

Besides the recovery disparity that gives a general comparison of q (t)’s, partial descriptors can be defined

to capture specific characteristics of the recovery process which are of importance in practice. First, we can

define the central measures of the recovery process. We define the center of recovery, ρ, as

ρ :=
´ TR

0 tq (t) dt´ TR

0 q (t) dt
=
´ TR

0 tq̃ (t) dt+
∑∞
k=1 tk∆Q̃ (tk) 1{0≤tk≤TR}

Q (TR) (2.7)

Two other central measures are the median of recovery and the mode of recovery. The median of recovery,
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ρ0.5, is the time instant at which the CRF is equal to Q (TR) /2. The mode of recovery is the time instant cor-

responding to the maximum recovery rate. Mathematically, we can write it as ρmax := arg maxt∈[0,TR] q (t).

We extend our definitions of the partial descriptors and introduce measures of dispersion of the re-

covery process. We define the recovery quantile, ρw, which is the time instant corresponding to the

wth (0 ≤ w ≤ 1) quantile of the CRF. Mathematically, we write the recovery quantile as ρw :=

min {t ∈ [0, TR] : w ≤ [Q (t) /Q (TR)]}. The median of recovery, ρ0.5, is a special case for which w = 0.5.

Using ρw, we can define different measures of dispersion as the length of the intervals
[
ρwi , ρwj

]
, where

0 ≤ wi < wj ≤ 1. We also define an alternative single measure to capture the dispersion that we call the

recovery bandwidth, χ, and mathematically, we write it as

χ2 :=
´ TR

0 (t− ρ)2
q (t) dt´ TR

0 q (t) dt
=
´ TR

0 (t− ρ)2
q̃ (t) dt+

∑∞
k=1 (tk − ρ)2 ∆Q̃ (tk) 1{0≤tk≤TR}

Q (TR) (2.8)

The small values of χ represent a situation in which a large percentage of the recovery process is completed

over a short period of time around ρ. In contrast, the large values of χ describe a situation in which the

recovery process is spread over a long period of time. We can also define the relative recovery bandwidth as

χ/TR, which describes the spread of the recovery process with respect to the total recovery time, and the

bandwidth coefficient as χ/ρ, which describes the spread of the recovery process with respect to the center

of recovery.

Another useful measure is the skewness of the recovery. Mathematically, we can write the recovery

skewness, ψ, as

ψ :=
´ TR

0 (t− ρ)3
q (t) dt´ TR

0 q (t) dt
=
´ TR

0 (t− ρ)3
q̃ (t) dt+

∑∞
k=1 (tk − ρ)3 ∆Q̃ (tk) 1{0≤tk≤TR}

Q (TR) (2.9)

The magnitude of the recovery skewness determines the degree of asymmetry of the recovery with respect

to ρ. Its algebraic sign defines the direction of the skewness. From Eq. (2.9), we can see that ψ = 0, when

the RDF and RMF are symmetric with respect to ρ. Furthermore, ψ > 0, when the RDF and RMF have

longer tails to the right of ρ; and ψ < 0, when the left tails of the RDF and RMF are longer. We can

interpret ψ = 0 as the condition in which the progress in a recovery process has the same pace before and

after ρ. When ψ < 0, the process is slow during the interval [0, ρ) and then it becomes faster over the next

period, [ρ, TR]. This is the most typical case for recovery processes that include a lengthy planning phase

in the post-disruption period. If planning is done ahead of the disruptive event, as pre-disruption planning

and preparation, then we can have ψ > 0 in which the progress picks up quickly and relatively the most

time-consuming portion is the actual repair/reconstruction (faster in interval [0, ρ), and it slows down over

the next interval, [ρ, TR].) We can also define the relative recovery skewness as ψ/T 3
R, which describes the

6



skewness of the recovery process with respect to the total recovery time, and the recovery skewness coefficient

as ψ/χ3, which describes the skewness of the recovery process with respect to the recovery bandwidth.

As a generalization, we can define the nth recovery moment as follows:

ρ(n) :=
´ TR

0 tnq (t) dt´ TR

0 q (t) dt
=
´ TR

0 tnq̃ (t) dt+
∑∞
k=1 t

n
k∆Q̃ (tk) 1{0≤tk≤TR}

Q (TR) (2.10)

Any recovery process can be completely defined in terms of all its ρ(n)’s. However, in practice, typically

ρ and χ are sufficient to characterize a recovery process. We can write ρ and χ as functions of the first two

recovery moments as ρ = ρ(1) and χ =
√
ρ(2) − ρ2.

It is useful to note the analogy between the proposed recovery measures and equivalent ones in probability

theory and mechanics. In particular, ρ, χ, and ψ correspond to the mean, standard deviation, and skewness

of a random variable when the CRF is replaced with a CDF (see, for example, Ang and Tang 2007.) Similarly,

ρ and χ are analogous to the centroid and the radius of gyration of the area under q (t) (see, for example,

Gere and Timoshenko 2001.)

A closer look at the definitions of R and ρ shows that there are similarities in the way the two metrics

quantify the recovery process and, thus, resilience. In particular, the following equation shows that ρ is an

affine function of R:

ρ = Q (TR)−R
Q (TR) × TR (2.11)

Hence, for a given recovery process (i.e., given Q (TR) and TR,) the information that R provides about

resilience is equivalently captured by ρ. However, ρ can differentiate between recovery curves with the same

Q (t) but different TR. In addition, R lacks the extra information that higher order recovery moments like χ

and ψ provide to characterize different Q (t)’s and quantify resilience. To illustrate this point, we calculate

(ρ, χ) for three Q (t)’s in Fig. 2.1.2. The results in Table 2.2 show that, in contrast to R, the pair (ρ, χ) can

characterize the three different Q (t)’s. Furthermore, a decision-maker can use the ρw’s and/or combine ρ

and χ (and, if desired, the higher order moments) to create composite resilience metrics (e.g., ρ ± χ, when

the two values are in the range [0, TR].)

In practice, the recovery process of engineering systems might be interrupted by external shocks at

different time instants (see Fig. 2.1.3). Each shock might cause a sudden reduction in Q (t). The formulation

of the recovery moments in Eq. (2.10) accounts for this situation by letting ∆Q̃ (tk) < 0, when a shock occurs

at t = tk < TR. Alternatively, we can rearrange the terms in Eq. (2.10) to write the overall recovery moments

in terms of the recovery moments
(
ρ(1), . . . , ρ(n))

j
derived for each segment j of Q (t) (see Fig. 2.1.3), that
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follows the jth shock and before the (j + 1)th shock. Using Eqs. (2.7)-(2.10), we can write the overall

recovery moments as follows:

ρ
(n)
tot =

m∑
j=1

ρ
(n)
j × Q (tj+1)

Q (TR) +
m∑
j=1

tnj ×
Q
(
t−j+1

)
−Q

(
t−j
)

Q (TR) (2.12)

where m is the total number of shocks and by convention tm+1 := TR.
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Figure 2.1: A typical recovery curve used in the literature to quantify systems’ resilience
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2.2 Tables

Table 2.1: Functional form of the recovery curves in Fig. 2.1.2 and the associated resilience

Description TR Recovery function R

Linear 1 1 0.5 + 0.5t 0.75

Linear 2 2 0.5 + 0.25t 0.75

S-shaped 3 0.75− 0.25 cos (πt/2) 0.75

Table 2.2: Partial descriptors of resilience for recovery curves in Fig. 2.1.2

Description ρ χ

Linear 1 0.25 0.32

Linear 2 0.25 0.65

S-shaped 0.50 0.59
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Chapter 3

Phases of the Recovery Process and
Their Role in Resilience
Quantification
In this chapter, we argue that different activities in the recovery of engineering systems can generally be

grouped into three phases, which we call 1) recovery planning, 2) recovery execution, and 3) recovery closure.

Next, we explain how the proposed time-dependent performance indicators (e.g., reliability and functionality)

are affected by the recovery activities and the proposed phases.

3.1 Phases of the recovery process

The scope of a recovery process is defined by the magnitude and nature of the damage sustained by the

system. The corresponding recovery process can typically be decomposed into three phases (shown in Fig.

3.3) that we call 1) recovery planning, 2) recovery execution, and 3) recovery closure. These phases can be

sequential or overlapping. The recovery planning phase includes the following activities: identification of the

objectives of the recovery (i.e., where we want to be at the end of the process), development of the recovery

strategies (i.e., definition of the activities that will need to take place in order to reach the desired objectives),

and securing the required resources for the recovery. The recovery execution phase includes activities where

physical progress is made towards achieving the objectives developed in the recovery planning phase. This

phase consumes the majority of the resources (i.e., time, material, and labor.) The recovery closure phase

involves quality control activities to ensure that the recovery completion criteria are met and the system is

ready to be put back into operation.

In the specific case of recovery of a civil engineering structure (e.g., building or bridge) or system/network

(e.g., transportation, water or power network), the three phases of the recovery process correspond to what

is known in construction management as 1) pre-construction, 2) construction, and 3) post-construction

(Klinger and Susong 2006). The pre-construction phase includes planning, designing, deciding on repair

strategies, budgeting financial and other resources, and obtaining work permits from relevant authorities.

The construction phase involves physical onsite activities required to build new or repair damaged compo-

nents. Inspection, quality assurance, safety management, cost and schedule control, and field engineering

functions (e.g., onsite decisions) are also activities in this phase. The post-construction phase involves closing
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activities, like final inspection, handing over, and certification. In mechanical engineering applications such

as installation of a new equipment (e.g., a boiler, compressor, or pump), the above three phases correspond

to 1) design and planning 2) mechanical erection, and 3) commissioning (Wirtz 1987). Likewise, when the

equipment undergoes a reactive maintenance, the three phases correspond to 1) fault detection, 2) system

repairs and 3) recommissioning.

The duration of each recovery phase depends on the level of damage, the preparedness of the recovery

plan, the repairability of the system and the accessibility of the damaged components. Estimation of absolute

and relative duration of each recovery phase can guide how to expedite the recovery process and improve

resilience. For instance, a disaster response plan, prepared before disrupting event strikes, can improve

resilience by saving valuable time in the recovery planning phase. There might be updates in the planning

as new information becomes available during the post-disruption period; however, a general planning can be

developed a head of time. Similarly, a well-designed system could favor repairability over constructability to

save time in the recovery execution phase.

3.2 Tracking performance indicators during recovery

The phases of the recovery process can be divided into a hierarchy of activities. A work breakdown structure

can be designed where activities are further divided up to a required level of detail, based on functional

requirement or available data. The lowest level of activities is where standardized crews, equipment, means,

and methods are defined and relevant data are readily available (see, for example, RS Means database (Means

1996).) Activities in a recovery process have precedence, constraints, and tentative duration associated with

them which give rise to a network of activities (see, Fig. 5). In a typical construction project, the number

of such activities in the network can be as high as several thousands.

In a recovery process, work on individual activities might continuously progress over time; however,

contributions to system performance (e.g., functionality or reliability) occur at discrete time instants when

the activities are completed. The magnitude of each contribution and the completion time of each activity

depend on the activity network, the type of activities, and the metric used by a decision-maker to measure

work progress. For example, the progress might be measured in terms of the expenditure incurred in

completing each activity with respect to the total project expenditure or in terms or the duration of each

activity.

Fig. 3.3 shows a comparison between the actual work progress in a recovery process and the changes in

the reliability and the functionality of the system. The figure illustrates that the work progress might be

near-continuous; however, it is only the completion of a group of activities that contributes to increments
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in the reliability and in the functionality of the system. The completion of the recovery activities in a

group changes both the capacity and the demand on the system (as described in Chapter 4) and, hence,

the reliability (as described in Chapter 5.) Functionality typically has discrete increments when the work

completion and the associated reliability reach specific target values.

The time duration of individual activities and the contribution to the overall work progress can be modeled

as random variables. The initial estimates of the activity duration (derived from available databases and past

engineering experience) can be updated to include the effects of environmental factors, system characteristics,

and resource availability, among other factors. For example, Moselhi et al. (1997) developed a model to derive

the distributions of the activities’ duration, considering the weather impact. Gardoni et al. (2007) developed

a Bayesian formulation to update the work progress estimates as a function of the work completed up to date.

Thus, given a well-defined initial state, a stochastic network of activities can be generated. Furthermore,

the time duration of individual activities and milestones corresponding to change in the reliability and

functionality can be identified. An instance of the stochastic activity network maps to a corresponding

instance of recovery process with respect to progression of work, reliability, and functionality.
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Chapter 4

Proposed Stochastic Formulation of
the Recovery Process

The scope of the present formulation is to model the recovery process of engineering systems that also might

be interrupted by potential external shocks (e.g., aftershocks in case of seismic damage.) System capacity and

demand are the quantities we use to describe the system states and calculate the reliability and functionality

of the system.

Fig. 4.3 shows the sample paths of the time-dependent capacity and demand of a damaged system over

the course of its recovery. The figure shows how the recovery process and the interrupting shocks can affect

the capacity and the imposed demand on the system. We model the recovery process as a series of actions

such that after the completion of each recovery activity group i, the capacity of the system instantaneously

increases by ∆Cri and the demand on the system reduces by ∆Dr
i . The changes in the capacity and demand

due to the recovery activities are occurring at time instances {tri }i∈N. Furthermore, the system is subject

to a sequence of potential interrupting shocks at time instances
{
tsj
}
j∈N. Shock j, occurs at time tsj , and

changes the capacity of the system by ∆Csj and the demand by ∆Ds
j .

In order to develop the mathematical formulation of the capacity and demand on the system, we make

following assumptions:

1. During the recovery process, the effect of gradual deterioration is minimal and can be neglected. This

assumption is justified because the rate of gradual deterioration is typically low with respect to the

recovery rate (i.e., the change in the capacity and demand due to the gradual degradation is negligible

given the general short duration of the recovery phase.) However, we consider the effect of possible

interrupting shocks.

2. The distribution of the inter-arrival times of the recovery activity groups (i.e., tri − tri−1) is independent

of the interrupting shocks. The implication of this assumption is that the occurrence of the interrupting

shocks does not change the recovery rate. In practice, this assumption might be justified noting that

typically the recovery process does not start immediately after the main shock (e.g., main seismic

shock). This time lag in case of seismic events means decreased rate of aftershocks that can significantly

affect the recovery rate. Furthermore, in case of general disruptive events, it might be justifiable to
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assume that the recovery duration is generally short with respect to the inter-arrival times of the main

shocks that can significantly affect the recovery rate.

3. The effects of the recovery process and the interrupting shocks on the capacity and demand are additive

(i.e., ∆Cri and ∆Csj can be added, and similarly for ∆Dr
i and ∆Ds

j .)

4.1 Formulation of capacity and demand models under joint

effects of recovery and interrupting shocks

With reference to Fig. 4.3, the general analytical expression for time-dependent capacity of a system is

written as

C
(
t−
)

= Cres +
Nr(t−)∑
i=1

∆Cri +
Ns(t−)∑
j=1

∆Csj (4.1)

where C (t−) is the capacity of the system immediately before time t; Cres is the residual capacity of the

system at the beginning of the recovery process; Nr (t−) is the number of completed recovery activities by

time t−; ∆Cri is the capacity improvement due to the completion of the recovery activity group i; Ns (t−)

is the number of shocks by time t−; and ∆Csj is the loss of capacity caused by the shock j. Similarly, the

time-dependent demand model, with a sample path shown in Fig. 4.3, is written as

D (t) = Dres + Yj × 1{t=tsj}

Nr(t−)∑
i=1

∆Dr
i +

Ns(t−)∑
j=1

∆Ds
j (4.2)

where, D (t) is the imposed demand on the system at time t; Dres is the residual demand at the beginning of

the recovery process; Yj is the demand that would have imposed by shock j on the intact system; {Yj}j∈N
is modeled as a sequence of independent and identically distributed (i.i.d.) random variables; ∆Dr

i is the

effect of the recovery activity group i on D (t); and ∆Ds
j is the effect of shock j on D (t).

4.2 Termination of the recovery process

Construction projects typically end when all the prescribed activities in the work plan are completed. This

condition is the typical case of the post-event recovery assessment where the level of damage and, thus, the

scope of the work is known with high certainty. Subsequently, the work breakdown structure is designed and

the type and the number of the required recovery activities are determined. Mathematically, this termination

condition corresponds to set N (TR) = n in Eqs. (4.1)-(4.2), where n is the number of determined recovery
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activities. However, in a pre-event recovery assessment (e.g., for the life-cycle analysis) both the level and

the type of damage to the system are unknown. Accordingly, the scope of work and the type and the number

of recovery activities are unknown and can only be described in a probabilistic sense. Thus, we cannot use

the same termination criterion as in the post-event assessment. Instead, we can frame the problem in a

slightly different way. In the post-event assessment, the completion of the recovery process corresponds to

achieving a certain level of reliability. Equivalently, we can say that the recovery process ends when the

event {C (t−)−D (t) > 0} occurs with a prescribed probability level. We can write this event as

C
(
t−
)
−D (t) = Cres −Dres − Yj × 1{t=tsj} +

Nr(t−)∑
i=1

(∆Cri −∆Dr
i ) +

Ns(t−)∑
j=1

(
∆Csj −∆Ds

j

)
> 0 (4.3)

Defining Zres := Cres −Dres, ∆Zri := ∆Cri −∆Dr
i , and ∆Zsj := ∆Csj −∆Ds

j , we rewrite Eq. (4.3) as

C
(
t−
)
−D (t) = Zres − Yj × 1{t=tsj} +

Nr(t−)∑
i=1

∆Zri +
Ns(t−)∑
j=1

∆Zsj > 0 (4.4)

where, Yj and ∆Zsj are statistically dependent, because both are the results of shock j.
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of the recovery and interrupting shocks
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Chapter 5

Estimation of Recovery Quantifiers

Various features of the recovery process can be quantified and used, for example, in system life cycle analysis.

These quantifiers can also serve as the basis to predict and compare system performance for different designs

and operation strategies. Some of the useful features that can be quantified from the proposed model are

the amount of the required work in a recovery process (in terms of the number of recovery activities),

amount of risk involved (in terms of the number of shocks during the recovery process), system down/partial

functionality time (in terms of required recovery time) and resilience of the system (in terms of the partial

descriptors of resilience.)

5.1 Instantaneous reliability

Instantaneous reliability during the recovery process is given by the probability of the system capacity being

greater than the system demand. This can be obtained by calculating the probability of the event represented

in Eq (4.4). At a given time we define the system performance terms of system reliability as Qrel(t). Which

can be written as

Qrel(t) = P
(
C
(
t−
)
−D (t)

)
= P

Zres − Yj × 1{t=tsj} +
Nr(t−)∑
i=1

∆Zri +
Ns(t−)∑
j=1

∆Zsj > 0

 (5.1)

5.2 Number of recovery steps to completion

The number of recovery steps required to fully restore the system performance quantifies the amount of work

required in the recovery process. The probability that the recovery process has not been completed by the

nth recovery activity group can be written as

P (NR > n) = P

Zres − Ym × 1{tsm=trn} +
n∑
i=1

∆Zri +
m∑
j=1

∆Zsj < 0

 (5.2)
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where, m := max
{
j : tsj ≤ trn

}
. Because {tsm = trn} is a zero probability event, we can simplify Eq. (5.2) as

P (NR > n) = P

Zres +
n∑
i=1

∆Zri +
m∑
j=1

∆Zsj < 0

 (5.3)

Defining W s
m :=

∑m
j=1 ∆Zsj and conditioning on {m,W s

m, Zres}, we obtain

P (NR > n | m,W s
m, Zres) = FW r

n|W s
m,Zres (−w − z |W s

m = w,Zres = z) (5.4)

where, FW r
n|W s

m,Zres (·) is the conditional CDF of the random variable W r
n :=

∑n
i=1 ∆Zri . The individual

recovery steps are assumed to be i.i.d.; We can obtain the conditional PDF ofW r
n , fW r

n|W s
m,Zres , by evaluating

the n-fold convolution of the conditional PDF of ∆Zri , f∆Zr
i
|W s

m,Zres , with itself. Accordingly, we can obtain

the unconditional distribution of NR as follows:

P (NR > n) = E{m,W s
m,Zres}

[
FW r

n|W s
m,Zres (−w − z |W s

m = w,Zres = z)
]

(5.5)

where E [·] is the expected value operator.

5.3 Number of interruptions to completion

A recovery process might be interrupted by the external shocks (e.g., earthquake aftershocks.) These events

can extend the amount of work in the initial plan and elongate the recovery time. The probability that the

recovery process has not completed by the time of occurrence of the mth shock can be written as

P (NS > m) = P

Zres − Ym +
n∑
i=1

∆Zri +
m∑
j=1

∆Zsj < 0

 (5.6)

Defining n := max {i : tri ≤ tsm} and conditioning on {n,W r
n , Zres, Ym}, we can write

P (NS > m | n,W r
n , Zres, Ym) = FW s

m|W r
n,Zres,Ym

(y − w − z |W s
m = w,Zres = z, Ym = y) (5.7)

Assuming individual shocks are i.i.d., the conditional PDF of W s
j , fW s

m|W r
n,Zres,Ym

, can be obtained by

evaluating an m-fold convolution of the conditional PDF of ∆Zsj , f∆Zs
j
|W s

m,Zres , with itself. Accordingly, we

can obtain the unconditional distribution of NS as follows:

P (NS > m) = E{n,W r
n,Zres,Ym}

[
FW s

m|W r
n,Zres,Ym

(y − w − z |W s
m = w,Zres = z, Ym = y)

]
(5.8)
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5.4 Time to completion

Time is typically one of the most important variables because of its direct impact on opportunity costs

and performance metrics. If TR is the random variable representing the time to completion of the recovery

process, then the probability that the recovery process has not been completed by time t can be written as

P (TR > t) = P

Zres − Yj × 1{tsm=t} +
n∑
i=1

∆Zri +
m∑
j=1

∆Zsj < 0

 (5.9)

where n := max {i : tri ≤ t} and m := max
{
j : tsj ≤ t

}
. Conditioning on {n,m,Zres} and also removing

the zero-probability event {tsm = t}, we can rewrite Eq. (5.9) as

P (TR > t | n,m,Zres) = FW |Zres (−z | Zres = z)

where FW |Zres (·) is the conditional CDF of the random variable W := W r
n + W s

m. Assuming W r
n and W s

m

are statistically independent, we can find their conditional CDF as their convolution.

5.5 Resilience Metrics

Using the results in Sections 5.1-5.4, we can estimate the resilience partial descriptors defined in Chapter 2.

Because the recovery process is stochastic, the resilience partial descriptors would be stochastic as well. A

predictive estimate of such partial descriptors can be obtained by taking the expected values of the partial

descriptors. For example, the expected value of the center of recovery can be written as

E [ρ] = E{TR,Q(t)}

[∑∞
k=1 tk∆Q̃ (tk) 1{0≤t≤TR}

Q (TR)

]
(5.10)

where, the expected value of ρ can be calculated considering the uncertainty in TR and the possible sample

paths of Q (t). It should be noted, that due to the form of the recovery curves (piecewise constant), Eq.

(5.10) does not have the continuous part.
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Chapter 6

Calibration of Capacity and Demand
Models

The unknown model parameters to be estimated include the parameters of the distributions of random

variables: Nr (t), Ns (t), ∆Cri , ∆Csj , ∆Dr
i , ∆Ds

j , and Yj . We cluster the random variables into two groups:

1) The first group which corresponds to the recovery-related variables includes {Nr (t) ,∆Cri ,∆Dr
i }. 2) The

variables in the second group, which are related to the interrupting shocks, include
{
Ns (t) ,∆Csj ,∆Ds

j , Yj
}
.

The unknown parameters of the variables in the first group can be estimated considering past data and

engineering judgment. As explained in Section 3.2, corresponding to each value of Cres and Dres, a set of

recovery activities can be identified. Kumar et al. (2015) have developed models which can estimate Cres

and Dres, distributions for such a system considering shock and gradual deterioration. A work breakdown

structure can be prepared and contributions of individual activity completion can be calculated. Thus,

to estimate ∆Cri , and ∆Dr
i , only descriptions and number of activities involved in recovery process are

required, which is only dependent on the initial state (Cres and Dres) and system design. To estimate

the rate of re-occurrence of recovery steps, the random activity network (as shown in Fig 6.1) can be

simulated corresponding to a given value of system and environmental factors. A regression model can then

be employed to capture the dependence of the recovery process on system and environmental characteristics.

The regression model is then used to obtain a time dependent rate function which can be used in the recovery

process model.

Parameters of the shock process are dependent on the characteristics of the hazard under consideration.

For example, in the case of a civil engineering structure under seismic hazard, rate of recurrence of the shocks

may correspond to the recurrence rate of the aftershocks experienced post-earthquake. Similarly, ∆Csj and

∆Ds
j are dependent on the fragilities of the structure. Thus, these parameters can be estimated using data

from previous events and simulations using a finite element model of the structure.

To update all the distributions estimated by the process described above a bayesian updating framework

can be used. Gardoni et al. (2007) provided such a framework which uses the approach given by Box and

Tiao (1992). Using which the updated or posterior distribution of a set of parameters can be obtained

considering a recorded set of observation as
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p (Θ |W ) = κL (Θ |W ) p (Θ) (6.1)

where, p (Θ |W ) is the posterior distribution representing our updated status of knowledge about Θ and, in

a sense, tells us what is known about Θ given knowledge from the data, L (Θ |W ) is the likelihood function

representing the objective information on Θ contained in a set of observations, p (Θ) is the prior distribution

reflecting our state of knowledge about Θ prior to obtaining the observations W = (W1, . . . ,WT ), and

κ =
[´
L (Θ |W ) p (Θ) dΘ

]−1 is a normalizing factor.

It should be noted that if the marginal distributions of recovery process parameters are used, the results

correspond to the overall resilience of the system. However, during a post disruptive shock scenario, the

distributions defining the initial state can be updated by incorporating data obtained from inspections. Also

updated conditional distributions of ∆Cr and ∆Dr can be used to get the results for the specific cases.

System performance results from these specific cases can be used to compare repair strategies and optimize

recovery efforts.

Algebraic operations on random variables is a fairly involved process. While solving for the various

recovery quantifiers as explained in Chapter 5, summations of different random variables is encountered.

These summations can be computed by obtaining convolutions of corresponding probability distributions

if the involved variables are statistically independent. The probability distribution of summation of two

statistically independent random variables A and B can be obtained by

fA+B (x) =
∞̂

−∞

fA (a) fB (x− a) dx = (fA ∗ fB) (x) (6.2)

Similarly, for the case of finding the nth scalar integer multiple of A, this is written as

f∑n

i=1
A (x) = (fA1 ∗ · · · ∗ fAn

) (x) = f
(n)
A (x) (6.3)

So, the distribution fnA (x) can be obtained by calculating a n fold convolution of the distribution of A

with itself. Properties of Fourier transformations F {f} can be used to calculate this efficiently. Some of

them are

F {fA ∗ fB} = F {fA}F {fB}

fA ∗ fB = F−1 {F {fA}F {fB}}
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Fast Fourier transformation algorithms are conveniently available in common computational packages,

which makes the implementation of the proposed model efficient.
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6.2 Tables

Table 6.1: Durations and Precedence for activities in a sample recovery process for network in Fig. 6.1

S No. Activity Optimistic Most Likely Pessimistic Predecessor

1 Delay 30 35 60

2 Inspection 2 3 5 1

3 Contracting 15 20 30 2

4 Mobilization 5 7 15 3

5 Erection of Scaffold Abutment 1 2 3 4

6 Erection of temporary Support 1 2 3 4

7 Erection of Scaffold Pier 1 2 3 4

8 Concrete Chipping Abutment 1 2 3 5

9 Epoxy Grouting Abutment 1 2 3 8

10 Mortar Patching Abutment 1 2 3 9

11 Curing Abutment 7 10 15 10

12 Removal of Scaffold Abutment 1 2 3 11

13 Concrete Chipping Pier Top 1 2 3 5,6

14 Epoxy Grouting Pier Top 2 3 3 13

15 Patching Concrete Pier Top 1 2 3 14

16 Curing Pier Top 7 10 15 15

17 FRP Surface Prep Pier 0.5 1 2 16

18 Application FRP Pier 1 0.5 1 2 17

19 Scaffold Adjustment 0.5 1 2 18

20 Application FRP Pier 2 0.5 1 2 19

21 Removal of Scaffold Pier 0.5 1 2 15,20

22 Minor Repair of other components 3 4 5 11,21

23 Demobilization 2 3 4 22
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Chapter 7

Illustrative Example

Parameters for various input variables can be estimated using the process described in Chapter 6. For an

illustration, we assume the input parameters as listed in Table 7.1. Residual Capacity and demand are

assumed to be lognormal because they are assumed to be non negative. Assuming exponential distributions

for ∆Zr and ∆Zs may simplify the calculation process because n-fold convolutions of i.i.d exponential distri-

bution can be easily calculated to be corresponding gamma distributions. Since exponential distribution has

same expressions for mean and standard distribution, it limits the representation of uncertainty in relevant

variables. Hence lognormal distribution is used to model step sizes. For simplicity, we use homogeneous

poisson processes to model number of recovery steps and interrupting shocks.

We measure system performance in terms of reliability. For the purpose of calculating system resilience

we assume Qrel(t) to be equal to system functionality Q(t). Results for the estimation of recovery quantifiers

is shown in Figs. 7.1 to 7.3 and Table 7.2.
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7.1 Figures

Figure 7.1: Complementary CDF of NR, P (NR > n)
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Figure 7.2: Complementary CDF of NS , P (NS > m)
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Figure 7.3: Complementary CDF of TR, P (TR > t)
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7.2 Tables

Table 7.1: Assumed distributions for the model illustration
Variable/Function Description Distribution Parameter

Symbol Value

Cres - Lognormal λC −3.3769

ζC 0.3246

Dres - Lognormal λD −3.5536

ζD 0.4724

∆Zr - Lognormal λr∆Z −4.4755

ζr∆Z 0.3246

∆Zs - Lognormal λs∆Z −4.1290

ζs∆Z 0.4724

Yj - Shifted exponential y0 0.005

µY 0.02

Nr (t) Poisson process - λr 0.5/week

Ns (t) Poisson process - λs 0.2/year

Table 7.2: Resilience metrics obtained for input parameters in Table 7.1

Resilience metric Description Mean Covarience

ρ Center of recovery 11.0908 0.023

χ2 Recovery bandwidth 471.14 0.0449

ψ Recovery skewness 33975 0.0.816
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Chapter 8

Conclusions

This study has introduced a novel approach to quantify resilience of engineering systems. A mathematical

formulation for resilience analysis has been proposed wherein the relevance of various partial descriptors to

the corresponding characteristics of the recovery process has been explained. Resilience metrics have been

improved to provide representative information of recovery characteristics important for decision making.

A stochastic framework to model the recovery process has been created which can both measure and

predict resilience of deteriorating systems. Illustration of the model is provided with detailed instructions

and suggestions on model parameter estimation and calibration. Future work may aim to make the stochastic

recovery model more general by relaxing the assumptions regarding the statistical independence of recovery

and shock interruption processes.
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