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ABSTRACT

Virtual machine level record and replay can be used for complex system de-

bugging and analysis, fault-tolerance replication and forensic analysis. Pre-

vious work on performance evaluation of RnR frameworks are not complete

enough due to their narrow focuses. RnR related projects either focus on

performance evaluation of plain record and replay mechanisms or specifically

target the effectiveness of the functionality RnR supports.

In order to identify the performance bottlenecks in the complicated RnR

system and its various applications, this thesis conducts a thorough evalua-

tion and analysis on 3 different modes of RnR, that is, record, replay with

checkpointing and replay with VMI analysis. Both RnR system developer

and users can benefit from our work. With our evaluation results, system

developer can propose more efficient design accordingly, and RnR users can

configure the system properly to achieve expected performance.
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CHAPTER 1

INTRODUCTION

Virtual machine level deterministic record and replay has been well studied

in the past decade. A number of complete implementations [1, 2, 3] of de-

terministic replay systems are available for different production platforms.

Moreover, numerous applications of RnR have been suggested for complex

system debugging and analysis [4, 5, 6, 7, 8], fault-tolerant replication [9, 10],

security and forensic analysis [11, 1, 12, 13, 14], etc. However, despite flour-

ishing study in academia, we haven’t seen deterministic RnR be incorporated

in current production virtualization systems or software stacks. There are

various reasons for it, and performance overhead is one of them.

Previous work on performance evaluation of RnR frameworks and applica-

tions is not complete enough. Different projects have different focuses. RnR

design paper conducts evaluation for plain record and replay execution over-

head, while evaluation in RnR application paper focuses on effectiveness and

robustness of the targeted functionality. Despite the existence of abundant

research results, we find it still difficult to obtain a complete view of the

complicated RnR system and identify performance bottlenecks within the

framework and its different applications.

After surveying a large number of RnR application projects, we summarize

the usages of RnR in two categories as follows. First, checkpointing mech-

anism is commonly used together with RnR to either support fault-tolerant

replication or provide initial consistent system state for debugging. Second,

various VMI analysis techniques are applied at replay stage, to monitor sys-

tem execution or conduct forensic analysis.

In this thesis, we carry out a thorough analysis and evaluation on a virtual

machine level record and replay framework, as well as its two major appli-

cations, i.e. replay with checkpointing and replay with VMI analysis. Our

work is useful from two perspectives. On one hand, with the major sources

of overhead being identified, developers can accordingly propose more effi-
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cient design. On the other hand, with a detailed performance analysis, RnR

users can have a more reasonable performance expectations, and customize

applications to achieve better performance.
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CHAPTER 2

BACKGROUND

2.1 Virtualization

Over the last two decades, thanks to the rapid developing virtualization

techniques, data centers have turned into multi-tennant, dynamically provi-

sionable resources, and cloud computing has been widely adopted.

The concept of virtualization is not new, which can be dated back to

late 1960s, when IBM developed the first system to support concurrent and

interactive access to a mainframe computer. Modern virtualization indicates

techniques that enable multiple operating environments execute on the same

hardware at the same time. In this section, we briefly discuss two main

types of virtual machine monitors and several commonly used virtualization

techniques.

2.1.1 Types of virtual machine monitor

A virtual machine(VM) is an software abstract of physical machine. An

operating system can be installed in the virtual machine and executes as if it

runs on a physical machine. Such operating system is called as “Guest OS”.

The software layer that provides the interface between virtual machine and

underlying hardware is called virtual machine monitor(VMM) or hypervisor.

There are two major types of virtual machine monitors, named as type 1 and

type 2 according to [15].

Figure 2.1 shows different architecture of the two types of VMM. Type

1 VMM, also named as native or bare-metal hypervisor, runs directly on

host hardware. The hypervisor self can be considered as a specialized op-

erating system, which is able to manage CPU, memory, devices, etc. and

provide interface for virtual machine. Example of type 1 VMM includes
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Figure 2.1: Types of Virtual Machine Monitor

Xen [16], VMWare ESX and Microsoft Hyper-V [17]. Type 2 VMM, also

named as hosted hypervisor, runs on conventional operating system as a

normal process, and leverages the host operating system to interact with un-

derlying hardware. Type 2 systems include VMWare Workstation, Virtual

Box, QEMU [18].

2.1.2 Hardware-assisted Virtualization

Full virtualization is used to emulate a complete hardware environment for

virtual machine, so that unmodified operating system can execute in com-

plete isolation. It can be implemented via binary translation and soft-

ware emulation of devices, which suffer significant performance overhead.

Hardware-assisted virtualization, also called accelerated virtualization, is a

platform virtualization approach to enable efficient full virtualization with

the help of extended hardware capabilities. In 2005 and 2006, Intel and

AMD introduces new processor extensions to support hardware virtualiza-

tion, named as Intel VT-x and AMD-V, which simplified virtualization soft-

ware design but offered little speed benefit. Later more features are added

to improve memory management virtualization and IO virtualization via ex-

tented page table(EPT) and virtualized IO.

One of the difficult in vitalization for x86 system is that, certain privi-

leged instructions can not be directly executed in guest system. Hardware
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Figure 2.2: Intel VTx Technology: VMX Mode Transition

assisted virtualization techniques adds extra modes to processors to avoid de-

privileging rings for guest OS, Taking Intel VT-x for example, the processor

supports two kinds of operations: VMX root operation and VMX non-root

operation. In general, VMM executes in root operation, and guest software

runs in non-root operation. Privileged instructions in VMX non-root oper-

ation will be trapped into VMM. Transition between VMX root operation

and VMX non-root is presented in Figure 2.2. Transition from VMX root

operation to non-root is called VMEntry, while the reverse transition is called

VMExit.

2.2 Virtual Machine Introspection

Virtual machine introspection (VMI) is a technique to enable monitoring

guest virtual machine state at hypervisor layer. It is first proposed by

Garfinkel and Rosenblum [19] as a hypervisor-level Intrusion Detection Sys-

tem (IDS). VMI is considered a promising introspecting technique to ensure

security policy enforcement within the untrustworthy operating system for

two reasons. First, the smaller code base of hypervisor makes it a smaller

attack surface compared to extremely complex monolithic operating system.

Second, by operating at a higher privilege level, the hypervisor is isolated

and decoupled from the untrusted guest virtual machine. VMI has become

a relatively mature research topic, with numerous projects.
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However, without OS abstraction and higher level semantics, the hyper-

visor views the guest memory as raw bits or bytes. This problem is known

as “semantic gap” Various techniques have been proposed to “bridge the

semantic gap” by reconstructing guest operating system data structures.

VMI techniques can be divided into two categories depending on whether

it is triggered by interposition. Passive VMI techniques relies on polling

VM state for information with whitelisting or blacklisting. Examples of this

type of VMI include libvmi [20] and VIX [21]. Active VMI revolves around

monitoring checks triggered by certain events (usually in hardware), such as

specific hardware registers or memory regions being accessed. For instance,

Hypertap/Hprobes [22], Livewire [19], Lares [23], SIM [24], Antfarm [25],

Lycosid [26] are commonly used ones.

2.3 Record and Replay

Record and deterministic Replay (RnR) of workloads is a popular architec-

tural technique [27, 28, 29, 30, 31, 32, 1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51, 8, 52, 53, 54, 55, 56, 57, 58, 59, 14, 60]. As

a workload runs, RnR records all the non-deterministic events that can af-

fect the execution and stores them in a log (Record). Later, in a potentially

different platform, the workload is re-executed. At this time, the system

injects the recorded events at the correct times, enforcing a deterministic

execution (Replay). Recent proposals for RnR typically consider two classes

of non-deterministic events: inputs to the workload and the memory-access

interleaving of parallel processors.

RnR can be done at different abstraction layes—e.g., program-level RnR

records and replays one or more programs in isolation, while VM-level RnR

records and replays an entire VM. In this work, we use VM-level RnR [29,

32, 1, 33, 37]. Moreover, we consider uniprocessor hardware. As a result, the

only relevant sources of non-determinism comprise interrupts raised and data

copied by virtual devices into the guest machine. We also assume the widely

used model of hypervisor-mediated I/O, as used in Xen [16] or Qemu [18].

In this case, the hypervisor interposes on all the I/O operations of the guest.

This makes it possible to implement input recording in the hypervisor and

use software-only mechanisms for recording. On the other hand, if the VM
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directly interacted with the hardware (using recent virtualization technolo-

gies such as Intel VT-d [61]), input recording would require hardware support

similar to hardware-assisted RnR (e.g., FDR [54] and DeLorean [41]).

Almost all research papers on RnR list security as one of its principal

use-cases, but there are only a few that investigate use of RnR in a security-

related scenario [1, 11, 13, 32, 14, 60]. ReVirt [1] shows an example of using

VM-level RnR for post-facto offline analysis of a time-of-check to time-of-use

race condition in the Linux kernel that could be exploited to compromise the

kernel. IntroVirt[11] explored using VM-level RnR to determine if systems

were previously exploited once zero-day attacks are discovered. Speck[13]

explored using a combination of OS-level speculation and program-level RnR

to remove security checks from the critical path of a program, and allow

multiple such checks to run in parallel. ParanoidAndroid [14] and Secloud [60]

explored the possibility of maintaining replicas of mobile devices in the cloud,

and then using program-level RnR to perform heavy analysis of the program

executions in the cloud.
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CHAPTER 3

ANALYZING RNR FRAMEWORKS AND
APPLICATIONS

In this chapter, we carry out a thorough analysis and evaluation on a virtual

machine level record and replay framework as well as its two major applica-

tions, i.e. replay with checkpointing and replay with VMI analysis. Efficient

checkpointing mechanism is commonly used together with RnR to support

fault-tolerant replication or provide initial consistent system state for de-

bugging. Various VMI analysis techniques are applied at replay stage to

offload heavyweight security checks from original execution, to monitor sys-

tem execution and conduct forensic analysis. The analysis in this Chapter is

based on the system design, and quantitative evaluation results are shown in

Chapter 5. With the major sources of overhead identified in different system

components, RnR developers can propose more efficient design accordingly.

This chapter first describes the overall design of “insight”, then follows a

detailed discussion of performance implications of each component.

3.1 RnR Framework

“Insight” [3] is a Qemu/Kvm based virtual machine record and replay frame-

work. By leveraging hardware-assisted virtualization technology, the baseline

system without RnR can achieve good performance for most workloads.

“Insight” adds the functionality of record and replay to Virtual Machine

Monitor by modifying Linux KVM hypervisor and the device emulator com-

ponent in QEMU. Figure 3.1 presents the architecture of “insight”, highlight-

ing the components modified by “insight” to a traditional virtual machine

monitor. Specifically, “Insight” configures VMCS(virtual machine control

structure) [62] to trigger VMExits on all these non-deterministic events, and

records or re-injects input values according to which mode it executes on. Ac-

cording to the origin of inputs, non-deterministic events can be categorized
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Figure 3.1: Insight Architecture

into three types: synchronous events, asynchronous events and combined

events. Different types of events vary in the amount of information required

to assist correct replay.

3.1.1 Synchronous Events

Synchronous events are triggered by instructions or functions executed by

the guest system, that will return non-deterministic results. For example,

read timer stamp counter(rdtsc) and get random number(rdrnd). More com-

plicated example is read programmed IO and memory mapped IO. The main

feature of such event is that even though it accesses non-deterministic data,

it is triggered by deterministic code. Therefore, synchronous events will be

faithfully reproduced, if replay follows the original execution path.

In “Insight”, VMCS is configured that rdtsc and rdrnd always trigger

VMExits into hypervisor. During record, the hypervisor logs the return

variable; while during replay, corresponding register or memory address is

overwritten with the logged variable.

3.1.2 Asynchronous Events

Asynchronous events are triggered by external devices to the guest system,

including interrupts from devices such as keyboard, mouse, disk etc., and up-
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dates to guest system memory from emulated devices via either NIC(network

interface card) or DMA. Since QEMU IO thread is running in parallel with

guest thread, asynchronous events need to be carefully scheduled and in-

jected to ensure being replayed at the exact same execution point, at which

the events occurred during record.

“Insight” uses 〈branch counter, instruction pointer, ECX value〉 as sys-

tem timestamp, which is an identical representation of program execution

point [57]. In record, asynchronous events as well as its timestmap is logged.

In replay, “Insight” leverages PMU (performance monitor unit) to trap the

the guest system into hypervisor at correct execution point. Concretely

speaking, the number of instructions to next asynchronous events injection

point is calculated as x, and the instruction counter is set up in a way that it

will overflow after executing x instructions. Meanwhile, VMCS is configured

that VMExit will be triggered once PMU counters overflow. Then in hy-

pervisor, the replay engine will regenerate the interrupts or update memory

using the logged values.

3.1.3 Combined Events

Combined events happen when an asynchronous event triggers execution

of certain functions or instructions in the guest system, leading to several

synchronous events. It is the common case for asynchronous events. For

example, on receiving an network packet, the NIC will generate an interrupt

and copy the content of the packets to the piece of memory address it maps

to. Later, the guest system is preempted and consume the packet by issuing

pio or mmio instructions. DMA-based disk IO event is another example.

Since synchronous events require much simpler logic in terms of both record

and replay, “Insight” deals with combined events efficiently by delaying the

asynchronous event until its following synchronous event.

We show the design details with an example of network traffic events han-

dling as following.

Network IO Events

Figure 3.2 shows a network IO example to illustrate different operations

applied during record and replay.

10



(a) Record

(b) Replay

QEMU
Guest Process

QEMU
IO Process

QEMU
Guest Process

QEMU
IO Process

pkg1 pkg2 pkg3

MMIO

MMIO

Pkg1-3

Time

Figure 3.2: Combined Events Example: Network IO Events

During record, 3 packets arrive consecutively before a MMIO event issued

from guest system. “Insight” modifies eepro100 virtual device driver that,

upon arrival of network packets, content of the packets (pkg1, pkg2 and pkg3

in this case) as well as the associated timestamps are recorded and saved to

logs. The order between the 3 packets is invisible to the guest system.

To ensure correct replay, the happens-before relationship between follow-

ing MMIO events and the receipt of network packets should be preserved.

During replay, as a normal synchronous event, the MMIO event will trap the

guest system into the hypervisor. In the hypervisor, before simply replaying

the MMIO event, number of undelivered network events are checked, pack-

ets content are retrieved from logs, and corresponding memory update are

applied. From guest’s perspective, the arrival of 3 packets and related state

updates are atomic operations during both record and replay.

3.2 RnR Applications

As an effective fault-tolerance solution, several virtual machine checkpointing

algorithms and mechanisms have been proposed, and micro-checkpointing

has been merged to the main stream of QEMU. A valid checkpointing is

11



required to contain consistent cpu, memory and external device states so

that the replication can be later used for continuous execution.

Compared to general virtual machine checkpoints, the major difference

of replay checkpointing is that there is no need to freeze and save device

states, which simplifies checkpointing mechanism to some extent. All the

non-deterministic inputs from external devices are injected from replay logs

instead of QEMU emulated devices. The only exception is disk devices.

“Insight” leverages the Copy-On-Write (COW) based disk format provided

QEMU to avoid recording extremely huge amount of disk access return data.

All disk reads and writes are redirected from/to a temporary image file backed

by original disk image, which is created before system is booted up. In this

case, the initial sate of disk file is kept intact and can be used for multiple

numbers of replays. In addition, only disk access operations as well as their

timestamps need to be recorded, resulting in less log storage overhead.

To efficiently take checkpoints of the system memory, differential check-

points are commonly used if the checkpointing interval is around 10s of mil-

liseconds as follows.

• Guest virtual machine is suspended. Guest memory is set as write

protected.

• CPU state is copied to persistent storage as part of checkpointing and

a snapshot of disk image is created.

• After guest virtual machine is resumed, any write to memory page will

trigger write-protection fault. The accessed page will be copied to the

checkpointing and then reset to writable, so that later modification can

take effect.

There exists large variance in the size of memory checkpoints. The check-

point may only take several megabytes when the guest system is mostly idle

during that period. Note that it can go extremely large to several gigabytes,

which is close to the size of main memory, if heavy workloads actively execute.

3.3 Analysis of Overhead

In this section, we carry out a detailed analysis on record mode, replay mode

with checkpointing and VMI analysis one by one.
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Figure 3.3: Record Overhead Example: rdtsc

3.3.1 Record Overhead

Compared to the baseline virtual machine execution, RnR adds three kinds

of overhead at the record side.

Firstly, in order to capture all non-deterministic inputs and log them within

hypervisor, RnR enforces guest virtual machine to generate extra VMExits,

which can be avoided with certain optimizations though. As discussed be-

fore, synchronous events, which return non-deterministic results, have to be

trapped into hypervisor, leading to the increase of VMExits.

For example, modern kvm leverages “kvmclock”, a paravirtualized clock

source, to enable rdtsc to obtain system-wide clock timer but only executing

within the guest system. Specifically, the guest system set up a range of

shared memory, and asks the hypervisor to write system clock timer to that

memory space at every VMEntry. Figure 3.3 illustrates execution time spent

in guest and hypervisor. We can see in baseline, rdtsc uses the value from

last VMEntry to compute system timer, leading to no VMExits. While, to

ensure deterministic replay, RnR has to record the return value of rdtsc. One

VMExit inevitably needs to be inserted at every read TSC instructions. Each

VMExit takes approximately 5000 cycles round trip, mainly due to context

switch between supervisor mode and guest mode.

The second overhead comes from log management, including log file write

operations. Generally file IO operations take relatively longer time than

computation and memory accesses, and will easily block on the critical path.
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To batch file writes and reduce the number of IO operations, “Insight” saves

log entries and network packets content to a pre-allocated in-memory buffer,

with adjustable size. File writes are only triggered when either the buffer is

full or complicated QEMU user space operation is required. Later evaluation

shows that it induces modest overhead for network non-intensive benchmarks.

The last component of overhead comes from the recording operation itself,

which is copy value from registers or memory to target buffer. This overhead

is ignorable, due to the lightweight memory copy operation it requires.

3.3.2 Replay Overhead

Deterministic replay enforces the guest system to repeat original execution

by repeating all non-deterministic inputs to the system from record and re-

inject them at the exact same point of execution. While in modern CPUs,

it is not trivial to determine the execution point of the guest system. As

discussed before, “Insight” utilizes the hardware performance counters to

implement accurate instruction counting logic. Unfortunately, the impreci-

sion of performance counter complicates the design and introduces significant

overhead.

The hardware performance monitor interface provides support to preempt

guest system execution when a certain performance event occurs, such as

counter overflow. Specifically, “Insight” intends to configure the PMU to

generate an interrupt when instruction retired counter overflows, and the

interrupt then causes VMExit in guest virtual machine, to transfer control

to the hypervisor. However, the deliver of performance counter interrupts can

be delayed for several to hundreds cycles depending on the type of machines.

To ensure replay correctness and robustness, a modified algorithm is designed

to tolerate such imprecision as follows. First the branch retired counter is

used instead of instruction counter, since the former one turns out to be

more reliable. The branch counter is configured to overflow early enough to

account for the non-deterministic length of delivery delay of the interrupt.

After receiving the interrupt, the guest machine is configured to VMExit in

a single-step way until the proper point of execution is reached.

As a result, a large number of VMExits are inserted to achieve precise

instruction count. Therefore replay overhead is closely related to the number

14



of asynchronous events during the execution.

Besides, the other overhead during replay is caused by file operations.

Similar buffer approach is applied to reduce the frequency of file operations

that large number of log entries are read together into in-memory buffer.

Thus log management takes small part in replay overhead.

Checkpointing Overhead

Efficient checkpointing (discussed in Section 3.2) implementation defers mem-

ory copying after virtual machine restart. It reduces the guest machine

downtime and enables parallel execution of guest code and memory copy-

ing operations. Performance overhead due to checkpointing comes from two

parts.

The first part is the overhead introduced during pre-copy stage. Before

memory copying, virtual machine is suspended. Meanwhile, all pages be-

long to guest virtual machine are set as write-protection, and snapshot of

disk image is taken. Different applications suffer similar amount of pre-copy

overhead.

The second part comes from the post-copy stage. After the guest virtual

machine is resumed, its execution is interrupted every time when memory

writes are issued to read-only pages, leading to write protection faults. These

software faults block the guest system execution until the copying of that

page is finished.

The amount of post-copy overhead depends on checkpointing frequency

and workload characteristics. On one hand, with longer checkpointing du-

ration, more dirty pages need to be saved to the checkpointing, leading to

higher checkpointing overhead. On the other hand, post-copy overhead varies

with different system workloads. If the system is idle or executes applications

with small memory footprint, checkpointing has relatively slight influence on

system performance, by benefiting from the parallel copy operations and in-

frequent write-protection faults. On the opposite, there will be relatively

higher performance deviation for systems running heavy workloads.
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Figure 3.4: RnR Overhead Summary

VMI Analysis Overhead

In this thesis, we use synchronous VMI mechanism on commodity hardware

to detect violations of system security invariance. Compared to other asyn-

chronous mechanisms or approaches requiring hardware modifications, inline

checks provide a more consistent view of the whole system for analysis and

support both passive and active introspection. In spite of the higher perfor-

mance overhead caused by the synchronous mechanism, it is still reasonable

to be adopted in replay stage by offloading heavy weight analysis out of the

execution critical path.

One restriction of VMI analysis in replay stage is that, the analysis should

not interfere the guest virtual machine state, leading to replay divergence.

Therefore only threat monitoring and verification are allowed. While Op-

erations such as killing malicious processes are disallowed. Applying VMI

analysis in replay introduces two kinds of overhead.

Firstly, common VMI analysis suffers from “semantic gap”, which re-

quires non-trivial techniques to reconstruct kernel data structures for anal-

ysis. Modern operating system is extremely complex, containing thousands

of different data structure types and a large number of instances of each

type. For example, a typical running instance of Linux kernel was found to

have 231 different types of data structures and 29,488 instances in total, to
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enable scheduling, memory management and IO support [63]. Before apply-

ing analyses accordingly, it is required to accurately extract data structures

information and correctly distinguish different system objects.

A simple operation, to retrieve the process id of current running process,

need to first locate task struct, the data structure for process descriptor, and

then retrieve the process id at the correct offset within the descriptor. More

complicated information retrieval operations may requires traversing several

nested structure pointers.

The other source of overhead comes from the extra VMExits enforced for

the introspection point of interest. Transient malwares violate security poli-

cies temporally, and may slip through the cracks between two consecutive

coarse-grained VMI checks. Therefore, hypervisor needs to enforce VMExits

upon execution of certain operations to capture useful sensitive informa-

tion of the system. Such introspection of interest is pretty useful to apply

vulnerability-specific verifications. In IntroVirt [11], Joshi et al listed exam-

ples of predicates to check buffer overflow, data race condition and missing

authentication. All these require security checks being applied at particu-

lar execution points and their corresponding memory states. VMExits are

inserted to transfer control to hypervisor.

In summary, Figure 3.4 illustrates different kinds of overhead introduced by

the RnR framework to the baseline system. On the record side, RnR causes

extra VMExits by disabling paravirtualization of certain instructions and

functions. Moreover, log management adds modest overhead due to time-

consuming file IO operations. On the replay side, the major overhead comes

from complex instruction counting logic, which is an essential component to

ensure deterministic replay. In addition, pre-copy and post-copy overhead

from checkpointing both slow down the guest virtual machine execution.

Virtual machine introspection further increases the number of VMExits in

replay. Meanwhile, another major overhad comes from the big effort paid to

“bridge the semantic gap” by reconstructing kernel data structures.
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CHAPTER 4

EXPERIMENT SETUP

We evaluates the performance of our recording and replaying modes. For this,

we use Insight [3], a VM RnR tool based on a modified Linux KVM hypervisor

and modifed QEMU devices. Since the KVM hypervisor can leverage Intel

VTx extensions to virtualize the processor in hardware, the performance

numbers from this setup are representative of real-world machines. We do

not use Para-Virtualized (PV) drivers because they are Non-Deterministic

(ND).

Host machine
CPU: Xeon E3-64bit,4-cores,3.1GHz Memory: 8 Gbytes
OS: Ubuntu, Linux kernel 2.6.38-rc8

Guest machine
CPU: uniprocessor Memory: 1 Gbyte
OS: Debian, Linux kernel 3.19.0 Disk: 32 Gbytes

Table 4.1: System configuration for performance evaluation

Benchmark Parameters
apache -n100000 -c20

fileio
–file-total-size=6G –file-test-mode=rndrw
–file-extra-flags=direct –max-requests=10000

make linux-4.0 config with all-no

mysql
–test=oltp –oltp-test-mode=simple
–max-requests=500000 –table-size=4000000

radiosity -p1 -bf 0.005 -batch -largeroom

Table 4.2: Benchmarks executed
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4.1 Record and Replay Setup

We use the same record setup as “Insight” [3], and augment replay with two

functionality, i.e. checkpointing and VMI analysis. Our two replay setups

are discussed as follows.

4.1.1 Replay With Checkpointing

To evaluate the overhead of replay with checkpointing, we reuse the Linux

copy-on-write implementation used during fork system calls. Virtual memory

belonging to the VM is allocated within a user-space QEMU process running

on the host machine. By issuing “fork” system call on QEMU process, all

the memory belongs to that process, including guest system main memory,

is configured with copy-on-write.

4.1.2 Replay with VMI Analysis

Performance of VMI analysis is closely related with the frequency and com-

plexity of the analyses applied. The more frequent and complex analysis

triggeres higher overhead. We evaluate an analysis to list available processes

at every context switch boundary to understand their quantitative effect on

overall performance.

Unfortunately, current Intel VTx extensions do not support exiting on

specified guest execution point. Hence, to measure the performance impact

of replay with VMI analysis, we manually instrument Linux kernel source

code by inserting a debug exception before kernel context switches. The

debug exception is a single byte opcode (0xCC) used to trap instructions

by raising debug exceptions. The VMCS is configured to cause VMExits on

debug exceptions. The analysis itself takes approximately 106 cycles.

4.2 Time Measurement Mechanism

There are two instances of timer within virtualized platform, where one uses

physical clock source and is located in host operating system, and the other

is emulated by virtual machine monitor and mainly used by guest operating
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system. We use the host system wall clock timer to accurately measure exe-

cution time of the guest system. To ensure the timer is started and stopped

at the same system execution point, we manually insert debug interrupt be-

fore and after application execution and write a magic number into register

EAX. Meanwhile, the VMCS is configured to trap every debug interrupt into

hypervisor and the corresponding register value is checked whenever a debug

interrupt is received.
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CHAPTER 5

EVALUATION RESULTS

5.1 Record

The recording scheme records all non-deterministic inputs and generates the

log. In addition, it cannot use para-virtualization (PV). We call the scheme

Rec. Figure 5.1 compares Rec’s execution time to two other setups: no record-

ing with para-virtualization (PV) (NoRecPV) and no recording and no PV

(NoRecNoPV). The bars for each benchmark are normalized to NoRecNoPV.

We see that disabling PV increases the execution time of these benchmarks

by 25-150%. This is because we now have VMExits due to clock reads, disk

IO, and network activity. Apache and fileio are hit the most of the overhead,

while mysql is not impacted as it avoids disk accesses by caching recently-

accessed tables in memory. We need to record these events to be able to

replay deterministically.

Recording (Rec) takes, on average, 28% longer than NoRecNoPV. To un-

derstand their overhead sources, Figure 5.2 shows the slowdown of Rec over

NoRecNoPV and breaks it down into their sources, namely recording timer

reads (rdtsc), port and memory-mapped I/O accesses (pio/mmio), interrupts,

and network packet contents, and saving/restoring the RAS (RAS).

We see that the dominant overhead across all benchmarks is due to record-

ing rdtsc. This event occurs very frequently, especially in fileio and mysql,

where the application itself issues many timer reads to measure transaction

speed. In addition, fileio issues disk command and control signals using pio.

It also has DMA activity, which causes interrupt events to signal file access

completion. Apache receives network packets and uses mmio accesses to the

NIC to retrieve the packets. The more computation-intensive benchmarks

(make and radiosity) have little overhead. Finally, saving/restoring the RAS

induces only 4% overhead on average.
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Figure 5.1: Execution time of recording setups
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Figure 5.2: Breakdown of the Rec overhead over NoRecNoPV

Figures 5.3 show the input log generation rate for all our benchmarks. We

do not compress the data. We see that the rates are typically low. Apache

has the highest input log rate (4 MB/s) because it records packet contents.

5.2 Replay with Checkpoints

Figure 5.4 compares the execution time of various checkpointing replay setups

to recording (Rec). The replay setups use no checkpointing (RepNoChk) or

checkpoint every 5, 1, or 0.2 seconds (RepChk5, RepChk1, and RepChk02).

The bars are nomalized to Rec. From the data, we see that checkpointing

every 1 second (RepChk1) increases the execution time over Rec by 59%.
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Figure 5.4: Execution time of checkpointing replay setups

These results show that checkpointing replay runs at a speed that is

roughly comparable to that of recording. As a result, checkpointing replay

can be on all the time. While checkpointing replay is a bit slower, it can

catch up with recording because busy machines are rarely 100% utilized —

they are often waiting for multiple reasons. During that time, recording slows

down but replay can continue. If the replay gets significantly behind, we can

use backpressure to temporarily stall recorded execution.

The figure also shows that increasing or decreasing the checkpoint period

changes the speed a bit. Interestingly, even without checkpointing, replay

already takes on average 48% longer that Rec.

To understand these effects, Figure 5.5 shows again the slowdown of RepChk1

over Rec and breaks it down into their sources. The sources are those during
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Figure 5.5: Breakdown of the RepChk1 overhead over Rec

recording plus creating checkpoints (Chk).

The breakdown in the figure shows that creating checkpoints contributes

only modestly, on average, to the total overhead. This is why replaying

without checkpointing (RepNoChk) does not save much time over RepChk1.

The actual overhead depends on the memory write characteristics of work-

load; poor memory locality causes more page copies, increasing checkpointing

overhead.

Interestingly, we see that interrupt overhead dominates. The reason is that

interrupts are asynchronous events, while rdtsc, pio/mmio, and network are

synchronous. Identifying the instruction that should get the asynchronous

interrupt injected during replay is time consuming. As indicated in Sec-

tion ??, it requires single-stepping VMExits over several instructions. This

is the reason for the overhead of Figure 5.5.

5.3 Replay with VMI Analysis

Finally, Figure 5.6 compares the execution time of replay with VMI analysis

(RepVMI) to previously shown environments: checkpointing replay (RepChk1)

and recording (Rec). The bars are normalized to Rec. Replay with VMI anal-

ysis needs to trap on every context switch operation. Hence, the slowdown of

this mode directly relates to how many context switches were executed when

running specific workload. We see that replaying apache with VMI analysis
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Figure 5.6: Execution time of alarm replay

at context switch boundary takes 4x longer than recording them. For mysql,

it takes 16x. On the other hand, for filio, make, radiosity, with its modest

kernel activity, it is around 2x.
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CHAPTER 6

CONCLUSION

This thesis presents a detailed performance evaluation and analysis of vir-

tual machine level record and replay framework and its related applications.

Specifically, we evaluate 3 important modes in RnR, i.e. record, replay with

checkpointing and replay with VMI analysis. The latter two modes are two

representative usages of RnR.

According to our detailed analysis and quantitative results, record over-

head mainly comes from the extra number of VMExits, which is caused by

enforcing the guest virtual machine to trap into the hypervisor. It is necessary

to assist logging synchronous non-deterministic inputs. Replay overhead is

mostly caused by the complicated instruction counting logic, which is an es-

sential component to enable replay of non-deterministic events at the exactly

same system execution point as record. We find that accurate instruction

counting algorithm suffers significant performance overhead from the impre-

cision of interrupt delivery mechanism in performance monitor unit. We show

checkpointing overhead is closely related to the checkpointing frequency and

the workload characteristics. Moreover, for replay with VMI analysis, the

frequency and complexity are two major factors that affect overall perfor-

mance.

We hope our results can be useful for both RnR developers and users.

RnR developers can leverage our results to locate the major performance

bottlenecks in the system and accordingly propose more efficient design. RnR

users can have a more reasonable expectations of the system and customize

RnR applications in a more performance efficient way, by setting appropriate

checkpointing intervals or adjusting frequency of VMI analyses.

26



REFERENCES

[1] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“Revirt: Enabling intrusion analysis through virtual-machine logging
and replay,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 211–224, Dec.
2002. [Online]. Available: http://doi.acm.org/10.1145/844128.844148

[2] A. Burtsev, “Deterministic systems analysis,” Ph.D. dissertation, The
University of Utah, 2013.

[3] R. Senthilkumaran and P. Kulkarni, “Insight: A framework for applica-
tion diagnosis using virtual machine record and replay,” 2014.

[4] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling dynamic program
analysis from execution in virtual environments,” in USENIX 2008 An-
nual Technical Conference on Annual Technical Conference, 2008, pp.
1–14.

[5] D. M. Geels, G. Altekar, S. Shenker, and I. Stoica, “Replay debugging for
distributed applications,” Ph.D. dissertation, University of California,
Berkeley, 2006.

[6] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operating sys-
tems with time-traveling virtual machines,” in Proceedings of the annual
conference on USENIX Annual Technical Conference, 2005, pp. 1–1.

[7] G. Lefebvre, B. Cully, C. Head, M. Spear, N. Hutchinson, M. Feeley, and
A. Warfield, “Execution mining,” in ACM SIGPLAN Notices, vol. 47,
no. 7. ACM, 2012, pp. 145–158.

[8] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou, “Flash-
back: A Lightweight Extension for Rollback and Deterministic Replay
for Software Debugging,” ser. USENIX Ann. Tech. Conf., June 2004.

[9] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault tolerance,”
ACM Transactions on Computer Systems (TOCS), vol. 14, no. 1, pp.
80–107, 1996.

[10] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design of a practi-
cal system for fault-tolerant virtual machines,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 4, pp. 30–39, 2010.

27



[11] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen, “Detecting Past
and Present Intrusions Through Vulnerability-specific Predicates,” in
Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles, ser. SOSP ’05. New York, NY, USA: ACM, 2005. [Online].
Available: http://doi.acm.org/10.1145/1095810.1095820 pp. 91–104.

[12] A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, L. T. X. Phan, M. Sherr,
and W. Zhou, “Detecting covert timing channels with time-deterministic
replay,” in 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), 2014, pp. 541–554.

[13] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn, “Par-
allelizing security checks on commodity hardware,” in Proceedings
of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS
XIII. New York, NY, USA: ACM, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1346281.1346321 pp. 308–318.

[14] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
android: Versatile protection for smartphones,” in Proceedings of
the 26th Annual Computer Security Applications Conference, ser.
ACSAC ’10. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1920261.1920313 pp. 347–356.

[15] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Communications of the ACM, vol. 17,
no. 7, pp. 412–421, 1974.

[16] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177,
2003.

[17] A. Velte and T. Velte, Microsoft virtualization with Hyper-V. McGraw-
Hill, Inc., 2009.

[18] “Qemu open source process emulator,” http://qemu.org.

[19] T. Garfinkel, M. Rosenblum et al., “A virtual machine introspection
based architecture for intrusion detection.” in NDSS, vol. 3, 2003, pp.
191–206.

[20] B. Payne and M. Leinhos, “Libvmi,” 2011.

[21] K. Nance, M. Bishop, and B. Hay, “Virtual machine introspection: Ob-
servation or interference?” IEEE Security & Privacy, no. 5, pp. 32–37,
2008.

28



[22] C. Pham, Z. Estrada, P. Cao, Z. Kalbarczyk, and R. K. Iyer, “Reliabil-
ity and security monitoring of virtual machines using hardware archi-
tectural invariants,” in Dependable Systems and Networks (DSN), 2014
44th Annual IEEE/IFIP International Conference on. IEEE, 2014, pp.
13–24.

[23] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An archi-
tecture for secure active monitoring using virtualization,” in Security
and Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 2008, pp.
233–247.

[24] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm monitoring
using hardware virtualization,” in Proceedings of the 16th ACM con-
ference on Computer and communications security. ACM, 2009, pp.
477–487.

[25] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Ant-
farm: Tracking processes in a virtual machine environment.” in USENIX
Annual Technical Conference, General Track, 2006, pp. 1–14.

[26] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Vmm-
based hidden process detection and identification using lycosid,” in Pro-
ceedings of the fourth ACM SIGPLAN/SIGOPS international confer-
ence on Virtual execution environments. ACM, 2008, pp. 91–100.

[27] G. Altekar and I. Stoica, “ODR: Output-Deterministic Replay for Mul-
ticore Debugging,” ser. SOSP, October 2009.

[28] A. Basu, J. Bobba, and M. D. Hill, “Karma: Scalable Deterministic
Record-Replay,” ser. ICS, June 2011.

[29] T. Bressoud and F. Schneider, “Hypervisor-Based Fault-Tolerance,”
ACM Transactions on Computer Systems, vol. 14, no. 1, February 1996.

[30] Y. Chen, W. Hu, T. Chen, and R. Wu, “LReplay: A Pending Period
Based Deterministic Replay Scheme,” ser. ISCA, June 2010.

[31] J.-D. Choi and H. Srinivasan, “Deterministic Replay of Java Multi-
threaded Applications,” ser. SPDT, August 1998.

[32] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling Dynamic Program
Analysis from Execution in Virtual Environments,” ser. USENIX ATC,
June 2008.

[33] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen, “Ex-
ecution Replay of Multiprocessor Virtual Machines,” ser. VEE, March
2008.

29



[34] N. Honarmand, N. Dautenhahn, J. Torrellas, S. T. King, G. Pokam,
and C. Pereira, “Cyrus: Unintrusive Application-Level Record-Replay
for Replay Parallelism,” ser. ASPLOS, March 2013.

[35] N. Honarmand and J. Torrellas, “RelaxReplay: Record and Replay for
Relaxed-Consistency Multiprocessors,” ser. ASPLOS, March 2014.

[36] D. R. Hower and M. D. Hill, “Rerun: Exploiting Episodes for
Lightweight Memory Race Recording,” ser. ISCA, June 2008.

[37] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging Operating
Systems with Time-Traveling Virtual Machines,” ser. USENIX Ann.
Tech. Conf., April 2005.

[38] O. Laadan, N. Viennot, and J. Nieh, “Transparent, Lightweight Ap-
plication Execution Replay on Commodity Multiprocessor Operating
Systems,” ser. SIGMETRICS, June 2010.

[39] T. J. LeBlanc and J. M. Mellor-Crummey, “Debugging Parallel Pro-
grams with Instant Replay,” IEEE Trans. Comp., April 1987.

[40] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen,
and J. Flinn, “Respec: Efficient Online Multiprocessor Replay via Spec-
ulation and External Determinism,” ser. ASPLOS, March 2010.

[41] P. Montesinos, L. Ceze, and J. Torrellas, “DeLorean: Recording and
Deterministically Replaying Shared-Memory Multiprocessor Execution
Efficiently,” ser. ISCA, June 2008.

[42] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas, “Capo: A
Software-Hardware Interface for Practical Deterministic Multiprocessor
Replay,” ser. ASPLOS, March 2009.

[43] S. Narayanasamy, C. Pereira, and B. Calder, “Recording Shared Mem-
ory Dependencies Using Strata,” ser. ASPLOS, October 2006.

[44] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging,”
ser. ISCA, June 2005.

[45] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu,
“PRES: Probabilistic Replay with Execution Sketching on Multiproces-
sors,” ser. SOSP, October 2009.

[46] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “PinPlay:
A Framework for Deterministic Replay and Reproducible Analysis of
Parallel Programs,” ser. CGO, April 2010.

30



[47] G. Pokam, K. Danne, C. Pereira, R. Kassa, T. Kranich, S. Hu,
J. Gottschlich, N. Honarmand, N. Dautenhahn, S. T. King, and J. Tor-
rellas, “QuickRec: Prototyping an Intel Architecture Extension for
Record and Replay of Multithreaded Programs,” ser. ISCA, June 2013.

[48] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A.-R. Adl-Tabatabai,
“Architecting a Chunk-Based Memory Race Recorder in Modern
CMPs,” ser. MICRO, December 2009.

[49] G. Pokam, C. Pereira, S. Hu, A.-R. Adl-Tabatabai, J. Gottschlich,
H. Jungwoo, and Y. Wu, “CoreRacer: A Practical Memory Race
Recorder for Multicore x86 TSO Processors,” ser. MICRO, December
2011.

[50] X. Qian, H. Huang, B. Sahelices, and D. Qian, “Rainbow: Efficient
Memory Dependence Recording with High Replay Parallelism for Re-
laxed Memory Model,” ser. HPCA, February 2013.

[51] Y. Saito, “Jockey: A User-space Library for Record-replay Debugging,”
ser. AADEBUG, September 2005.

[52] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy, “DoublePlay: Parallelizing Sequential Logging
and Replay,” ser. ASPLOS, March 2011.

[53] G. Voskuilen, F. Ahmad, and T. N. Vijaykumar, “Timetraveler: Ex-
ploiting Acyclic Races for Optimizing Memory Race Recording,” ser.
ISCA, June 2010.

[54] M. Xu, R. Bodik, and M. D. Hill, “A ”Flight Data Recorder” for En-
abling Full-System Multiprocessor Deterministic Replay,” ser. ISCA,
June 2003.

[55] M. Xu, R. Bodik, and M. D. Hill, “A Regulated Transitive Reduction
(RTR) for Longer Memory Race Recording,” ser. ASPLOS, 2006.

[56] N. Honarmand and J. Torrellas, “Replay Debugging: Leveraging Record
and Replay for Program Debugging,” ser. ISCA, June 2014.

[57] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, B. Weissman, and
V. Inc, “Retrace: Collecting Execution Trace with Virtual Machine De-
terministic Replay,” in In Proceedings of the 3rd Annual Workshop on
Modeling, Benchmarking and Simulation, MoBS, 2007.

31



[58] O. Laadan, N. Viennot, C.-C. Tsai, C. Blinn, J. Yang, and J. Nieh,
“Pervasive Detection of Process Races in Deployed Systems,” in
Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ser. SOSP ’11. New York, NY, USA: ACM, 2011.
[Online]. Available: http://doi.acm.org/10.1145/2043556.2043589 pp.
353–367.

[59] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen,
“Eidetic systems,” in Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’14.
Berkeley, CA, USA: USENIX Association, 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2685048.2685090 pp. 525–540.

[60] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. Sanders,
“Secloud: A Cloud-based Comprehensive and Lightweight Security
Solution for Smartphones,” Comput. Secur., vol. 37, pp. 215–227, Sep.
2013. [Online]. Available: http://dx.doi.org/10.1016/j.cose.2013.02.002

[61] Intel Corp., Intel Virtualization Technology for Directed I/O,
October 2014, http://www.intel.com/content/www/us/en/intelligent-
systems/intel-technology/vt-directed-io-spec.html.

[62] F. L. D. R. Gil Neiger, Amy Santoni and A. Rich UhligCharlesworth,
“Intel Virtualization Technology: Hardware Support for Efficient Pro-
cessor Virtualization,” Intel Technology Journal, vol. 10, no. 3, August
2006.

[63] J. Rhee, R. Riley, D. Xu, and X. Jiang, “Kernel malware analysis with
un-tampered and temporal views of dynamic kernel memory,” in Recent
Advances in Intrusion Detection. Springer, 2010, pp. 178–197.

32


