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Abstract 

The biomechanical response of skin can reflect not only health or localized pathology, but also 

systemic disease or an abnormal physiological condition of an individual.  Both the intrinsic 

stiffness of the solid constituents and the time-evolved redistribution of fluid within skin tissue can 

influence the biomechanical response to external forces.  Therefore, it is important not only to 

evaluate the responding skin dynamics upon mechanical perturbation, but also to understand the 

intrinsic viscoelastic properties and fluid dynamics in the skin.  While the clinical diagnosis of skin 

pathologies relies mostly on visual inspection and manual palpation, a more quantitative tissue 

characterization is highly desirable.  Optical coherence tomography (OCT) is an interferometry-

based imaging modality that offers an imaging resolution (cellular level) that surpasses those of 

most standard clinical imaging tools and has shown to be able suitable for in vivo skin imaging.  

Therefore, this thesis investigates OCT-guided characterization of the biomechanical response of 

skin, as well as the viscoelastic properties and the characteristics of local fluid transport.  

Quantitative analysis metrics were developed and demonstrated on in vivo human subjects, and a 

significant difference between the mechanically-perturbed and non-perturbed skins is revealed.  

Additionally, the quantitative results exhibit differences in the post-indentation scenarios between 

the young skin and the aged skin.  Functional OCT techniques, such as optical coherence 

elastography (OCE) and Doppler OCT, are demonstrated to assess the stiffness and fluid dynamics 

of in vivo human tissue as well.  The OCE results successfully reveal the stiffness at different 

anatomical sites, and the Doppler OCT shows the existence of the micro-vessels.  This thesis 

research demonstrates the feasibility of quantitative skin characterization, the assessment of skin 

elasticity, and the revelation of fluid flows.  With these information combined, a more objective 

and potentially more accurate diagnosis tool for skin pathologies may be possible in the future.     
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1 Introduction  

1.1 Overview 

Skin health can reflect important physiological conditions of a person, given that 

abnormalities presented on the skin can be linked to both a localized malignancy (e.g. skin cancer) 

or systemic diseases (e.g. heart failure and diabetes).  Note that skin cancer is the most common 

cancer in the United States [1], heart failure is responsible for 1 in 9 deaths in the United States in 

2011 [2], and diabetes has a 12-14 % prevalence among adults in the United States in 2011-2012 

[3].  The skin of a diseased patient may exhibit changes in biomechanical response, the viscoelastic 

properties, and the fluid content or dynamics within the tissue.  Clinically, the diagnosis of a skin 

abnormality is commonly based on visual inspection or palpation, unless a biopsy is taken.  To 

diagnose fluid retention or edema, typically the physician presses (i.e. introduces a localized 

compression) the skin and observes whether a temporary depression or “pit” is formed.  As for the 

diagnosis of local skin lesions, visual inspection or manual palpation on the skin are commonly 

performed in order to detect the abnormal alteration in skin texture or stiffness (e.g. stiffening or 

softening) of the diseased region.  However, the lack of proper instrumentation or quantitative 

characterization might lead to a more subjective and less accurate diagnostic results.  On the other 

hand, biomedical imaging has been an actively developing field of study which has shown great 

potential for assisting non-invasively in clinical diagnosis.  In this thesis, an optical-imaging-based 

technique is proposed, mainly optical coherence tomography (OCT), to enable quantitative 

evaluation of skin health conditions based on the biomechanical response, viscoelastic properties, 

and fluid dynamics.  To characterize fluid retention, this thesis research proposes several 

quantitative metrics based on the morphological information given in the OCT images.  It is 
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hypothesized that when an external mechanical indentation is introduced, the unbound 

extracellular fluid (ECF) within the skin would be expelled aside and hence reduce the distances 

between the cells or fibrous components.  Therefore, not only the skin deformation, but also the 

optical intensity and the spatial pattern of the OCT images would alter accordingly.  In addition to 

the quantification of the biomechanical response (outcome) of the mechanically perturbed skin, 

this research are also extended to investigate the underlying physical and physiological factors 

(causes) that would affect the spatial and temporal response of the skin.  Two functional extensions 

of OCT, namely the optical coherence elastography (OCE) and Doppler OCT techniques, are 

performed on in vivo human subjects in order to investigate their feasibilities in measuring the 

elasticity and visualizing the fluid flows within tissues, respectively.  It is believed that the 

capability of quantifying the stiffness and the blood flow could assist a more systematic 

understanding of the biomechanical response of the skin, which may potentially enhance the 

accuracy of the diagnosis process in the future.  Moreover, the characterization of both the outcome 

of the skin response and the contributing physical and physiological factors of the skin can be 

conceivably performed via the same OCT system (with a few OCE hardware components added 

and the Doppler OCT algorithm implemented).  Therefore, an integrated OCT system may be 

potentially developed to allow for a quantitative, multifunctional characterization for skin 

biomechanics, which may assist in the clinical diagnosis by providing more information in the 

future.      
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1.2 Skin health and biomechanical response  

1.2.1 Skin structure and functions 

Skin is one of the largest organs in the human body, which serves as the first barrier for 

protecting the body against the outer environment.  It is composed of three main layers, namely 

the epidermis, dermis, and subcutaneous fat (Figure 1.1).  The epidermis (0.06-1 mm) is a stratified 

squamous epithelium which contains keratinocytes that undergo cell division and differentiation 

[4, 5].  The dermis layer (1-4 mm) is a vascularized tissue, composed of supportive cell matrix 

components such as collagen (77%) and elastin (4%) [5, 6], as well as nerves, sweat glands, 

lymphatics cells, and hair follicles [4].  The subcutaneous layer contains fat, which is located 

beneath the dermis and above the fascia [4].  The complex nature of the skin gives rise to its unique 

biological, physical, chemical, and mechanical properties, while each can be related to the health 

condition of skin or the overall body.  Here, this research is focused on the biomechanical response 

of skin to external mechanical forces. 

 

 
 

Figure 1.1. Human skin diagram [7].   Three main layers are shown, including the epidermis, dermis, and subcutaneous 

tissue. 
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1.2.2 Biomechanical properties of skin 

The biomechanical response or properties of bulk skin can be affected by both the intrinsic 

viscoelasticity of the individual skin constituents as well as the overall physiological conditions, 

such as fluid retention or fluid distribution and flow.  The mechanical integrity of skin is mostly 

determined by the dermis.  At the cellular level, the dermis includes a large number of fibroblasts, 

which generate fibrous tissues (e.g. collagen and elastin) and structural proteoglycans [8].  The 

fibrous network can release stored energy and provide resistance to mechanical stress [9].  

Collagen fibers provide mechanical support and the elastin assists in elastic recoil and maintaining 

normal elasticity and flexibility [8, 10].  The dermis is comprised of a thin papillary layer and a 

thicker reticular layer.  The former lies beneath the epidermis and has thin and loosely organized 

collagen, and the deformation of dermal papillae is largely dependent on the behavior of the 

epidermis [11].  In contrast, the latter contains thicker collagen bundles lying in parallel to the skin 

surface, and the collagen fibers, along with the fiber bundles, form a three dimensional interwoven 

network, making the reticular dermis the major layer that provides resilience to skin [11].  Most 

collagens in skin are type I (80%) and type III (15%) [11]. 

Due to the fluid components in skin, other mechanical properties such as viscosity and 

porosity are observed as well.  Apart from the fibrous tissues, the proteoglycans which contain 

glucosaminoglycans (GAGs) make up most of the extracellular fluid (ECF).  The ECF can hold a 

great capacity of water (GAGs can bind 1000 times their volume in water [12]), and functions to 

provide nutrition, hormones, and fluid-based molecules to the dermis [10].  Due to their water-

absorptive nature, proteoglycans can provide hydration, give “fullness” to the skin, and protect the 

skin against compressive loading [8, 10].  This fluid-related property also gives rise to viscosity, 

which describes the time-dependent fluid redistribution in tissue.  Other sources of fluids within 

the skin are those that flow in the vasculature and lymphatics, which can be linked to the 

poroelasticity of skin.  The fluid constituents, whether physically different or not, that reside in 

different compartments (e.g. extracellular space versus micro-vessels) can be modelled as distinct 
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phases, while the deformation of solid components can also be associated with the fluid exchange 

in the soft tissue [13].  

 

1.2.3 Biomechanical response and diseases 

A change in the biomechanical response of skin to an external force could be a result of 

several diseases, reflecting either a systemic or localized abnormality.  The alteration of the overall 

mechanical properties of skin, as discussed earlier, can be related to either a change in the elasticity 

of the solid constituents, or a change in the visco- or poro-elasticity of the fluid components, or 

both.  Localized skin lesions, such as early-stage melanoma, can change the arrangement of 

collagen fibers and induce a local stiffness change [14].  In cancerous skin, malignant melanomas 

and squamous cell carcinomas stiffen the skin, while basal cell carcinomas will soften the skin 

[15].  Connective tissue diseases, e.g. scleroderma and polyfibromatosis, generally reduce tissue 

extensibility as both conditions result in excessive amounts of collagen.  While scleroderma results 

in an accumulation of type I and/or type III collagen within cutaneous tissue, polyfibromatosis 

involves an abundance of type III polymeric collagen within adventitial dermal tissues [9].  Scars, 

such as those induced by burns or poor wound healing, are known to increase skin stiffness [16], 

as various skin scar types (hypertophic, normotrophic, and keloid scar) involve collagen bundles 

arranged in a more parallel manner, compared to that of normal skin [17].   

Fluid retention or swelling can also affect the time dependent biomechanical response of 

skin.  An abnormal accumulation of fluid volume in tissue can lead to edema, which is commonly 

diagnosed by the finding of temporary depressions or “pits” on the skin of the feet, legs, or arms, 

when pressed.  Various physiological processes can lead to edema, including the imbalance of 

fluid pressure, decreased drainage capacity, and increased permeability of the vasculature.  

Normally, fluids carrying nutrients often pass from capillaries to the interstitium to nourish the 

cells before returning to the capillary.  When the blood pressure within capillaries is increased or 

when capillaries become more leaky, fluid will accumulate within the extracellular space and 
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hence swell the tissue [18].  In lymphedema, excessive interstitial fluid is present when the 

drainage capacity of the lymphatic system cannot accommodate the capillary filtration of the 

interstitial fluid [19].  Congestive heart failure can result from a decrease in cardiac output, which 

also disturbs the capacity of the kidneys for excreting sodium and water, and eventually leads to 

water retention and an increase in venous pressure [20].  Type 2 diabetes often induces cardiorenal 

dysfunction [21].  Edema of the lower limbs has also been reported as a symptom for 

thrombophlebitis, which is related to blood clotting and reduced blood flow velocity [22].  Induced 

by different diseases, water retention can take place at different locations in the dermis (e.g. in the 

subepidermal region for lipodermatosclerosis, the deep dermal area for heart failure, and more 

uniformly distributed for lymphedema) [23]. 

 

1.2.4 Biomechanical response and aging 

The variation of skin biomechanical properties in healthy individuals can be large as well, 

due to the large variation in physiological conditions.  Aging, in particular, can contribute 

remarkably to this variation.  Aging involves chronic intrinsic and extrinsic (e.g. photoexposure, 

diet, etc) changes.  Comparing the skin of young adults to that of the elderly, a decreased collagen 

synthesis rate, bundle thickness, content, and organization is exhibited in intrinsically aged skin, 

while photodamaged skin contains thick but fragmented collagen [24, 25].  In addition, aging 

induces an increase in collagen network density (due to the decrease in the extracellular volume) 

and the ratio of collagen type III to type I [25].  In aged skin, elastin fibers degrade due to the 

accumulative damage to existing fibers and the depletion of oxytalan fibers in dermal papillae [25], 

which increases the rigidity but decreases the elasticity and extensibility of skin [24].  The recovery 

time of skin from mechanical depression exhibits great differences (i.e. minutes in young skin 

versus more than 24 hours in aged skin) as well [24].   

The water content, however, was found to increase in photoexposed aged skin.  The water 

molecules in aged skin are mostly unbound (i.e. do not bind to proteins or GAGs), which likely 
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contributes to the dry and wrinkled appearance of aged skin [25].  In addition, a decrease in 

cutaneous perfusion and the number of blood vessels may potentially be related to aged skin as 

well [24, 26].  Infant skin, on the other hand, has been shown to have unique features in both 

structure and function, compared to adults [27].  The collagen in the upper reticular dermis of 

infants is thinner and less dense than in adults, and hence a clear distinction between dermal 

papillae and the reticular dermis is not seen in confocal laser scanning microscopy (CLSM) images 

[28].  Skin hydration increases after birth (possibly due to maturation of sweat glands), and the 

hydration level of the stratum corneum (SC) of older infants (3-12 months or 8-24 months) is 

significantly higher than that of adults [27, 29].  Interestingly, the barrier function of infant skin is 

not fully developed.  A lower natural moisture factor concentration (which maintains the hydration 

level), less lipid levels on the skin surface, and a higher trans-epidermal water loss value are present 

in infants, suggesting that the higher water content in infant skin is potentially regulated by other 

factors, e.g. thinner SC, higher desquamation rate, or surface structure [27].   

In summary, the skin biomechanical response is an important indicator of localized skin 

health, the systemic health condition, and physiological variations between individual humans.  

Therefore, new characterization tools and quantitative metrics for skin will offer the potential to 

assist in the clinical diagnosis, and are highly desirable.   

 

1.3 Optical coherence tomography (OCT) 

1.3.1 Introduction 

Optical coherence tomography (OCT) is a biomedical imaging modality first published in 

1991 and pioneered by Huang et al. [30].  OCT can be regarded as an optical analogue to ultrasound 

imaging, providing high-resolution cross-sectional images of biological samples based on their 

intrinsic optical scattering properties.  However, unlike ultrasound, the speed of light 

(
83 10 m s  ) is too high to allow for time-of-flight pulse detection by current electronical 
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devices.  Therefore, the basic principle of OCT relies on the detection of backscattering light 

intensity by using low coherence interferometry (LCI).   

Typical image resolution of OCT range from 2-10 m, which surpasses that of ultrasound 

imaging (100-200 m), magnetic resonance imaging (500-1000 m), and clinical computed x-ray 

tomography (500-1000 m), but is not as high as that of most microscopes (< 1 m).  In contrast, 

the penetration depth of OCT (1-2 mm) is shallower than most standard clinical imaging 

techniques, but better than that of microscopy (Figure 1.2).  In addition, OCT provides non-

invasive depth-resolved assessment through in vivo tissues due to its use of near infrared 

wavelengths of light.  Overall, OCT enables microscale resolution imaging capabilities while 

allowing in vivo non-invasive clinical imaging, making it an attractive imaging modality in 

biomedicine.  A number of reviews on OCT can be found, such as [31-34].  

 

 
 

Figure 1.2.   Comparison of image resolution and penetration depth of OCT with respect to multiple standard clinical 

imaging modalities [35].  The tradeoff between image resolution and penetration depth can be visualized. 
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1.3.2 Principle 

OCT relies on the interaction between the tissue and ballistic or near-ballistic photons.  

Originating from the refractive index mismatch between different components, the depth-resolved 

reflection sites within the tissue can be mapped via low coherence interferometry (LCI).  By 

assembling numerous adjacent LCI scans acquired across a certain range of lateral locations, a 

two–dimensional OCT image can be obtained.  Usually, an “A-scan” represents one depth-

resolved line scan obtained using LCI, a  “B-scan” refers to a two-dimensional cross-sectional 

image consisting of several A-scans obtained across different lateral locations, and an “M-scan” 

refers to multiple A-scans acquired at the same location over time.    

 

Figure 1.3.  Basic scheme of OCT.  A Michaelson interferometer configuration is shown with major components such as a 

low coherence light source, a reference arm consisting of a reference reflector or mirror, a sample arm, and a detector [33].    
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A basic OCT schematic is shown in Figure 1.3, which consists of a Michaelson 

interferometer with a low coherence, polychromatic light source.  Consider that the electric field 

of the plane wave illumination is    ,
i kz t

iE s k e





  , where the wavenumber is 
2

k



  ( : 

wavelength), the angular frequency is 2  ( : frequency), and the amplitude is  ,s k  .  

When the incident field iE  passes through a beam splitter or a 2-by-2 fiber optic coupler, iE  

would be split into two identical beams, one going to the reference arm and the other to the sample 

arm.  The returning waves ( RE , SE ), though, would vary based on the reflectivity of the object ( Rr ,

Sr ) and the optical pathlength delay ( Rz , Sz ) within each arm.  Assume the tissue sample contains 

N  discrete reflectors along one depth (Error! Reference source not found. (I)), the fields 

eturned from the reference and the sample arm would then be 2

2
Ri kzi

R R

E
E r e  and 

2

12

Sn

N
i kzi

S Sn

n

E
E r e



  , respectively.  The expression of SE  is a result of   2

2

Si kzi
S S

E
r z e   , 

where    
1

N

S S Sn S Sn

n

r z r z z


  , Snr  represents the reflectivity at each refractive index mismatch 

boundary, Snz denotes the path length from the beam splitter,  is the delta function, and   is 

convolution.  The intensity can be obtained by   2, | |
2

R SI k E E


    and eventually can be 

written as [33]       
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(1-1) 

 

Here,  is the responsivity of the detector, and     2| , |S k s k   is the power spectral density 

of the light source.  The first term in the equation is the constant or D.C. signal containing no 

fringes.  The last (autocorrelation) term is independent of the optical path length between the two 

arms and represents self-interference occurring between different reflective layers inside the 

sample.  This is a common artifact in OCT systems and can be reduced by adjusting the reference 

reflectivity.  The second (cross-correlation) term is the signal of interest, which carries the 

interference of the light reflected back from the mirror and that from each reflective boundary 

within the tissue sample.  The main goal of OCT is to extract the reflectivity profile  S Sr z , which 

can be achieved by the use of Fourier-domain OCT, where depth-resolved reflectivity profiles can 

be obtained by the inverse Fourier transform of Equation Error! Reference source not found.).  

ventually, the cross-correlation term as a function of z  can be obtained as [33] 

    .

1

( ) 2 2
4

N

cross corr R Sn R Sn R Sn

n

i z R R z z z z


 



           . (1-2) 

 

Here,  z represents the coherence function, whose Fourier transform becomes  S k according 

to the Wiener-Khinchin theorem.  A factor of 2 is the result of the round-trip distance that the light 

travels.  Illustrated in Error! Reference source not found., one can see that in one A-scan, 

ultiple peaks are present, arising from each reflector boundary within the tissue, and where the 

delta-function (of the reflectivity profile) has been broadened due to the coherence function  z .  
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Therefore, the axial resolution (i.e. point-spread function, PSF) is governed by the full-width half-

maximum (FWHM) of  z .  This also defines the round-trip coherence length 
cl .  For a Gaussian 

beam, cl  is given as [33]    

  2

0
2ln 2

cl


 



, (1-3) 

 

where 0  and   are the center wavelength and the wavelength bandwidth, respectively.  Note 

that cl  is expressed in optical length here.  To convert the optical length to physical length, the 

refractive index of the medium n  that the light passes through should be added to the denominator 

of Equation (1-3) (i.e. 
  2

0
2ln 2

cl
n



 



).  This suggests that to achieve a low coherence length and 

provide high axial resolution in an OCT system, a broadband light source is highly desirable.    

While the axial resolution is confined by the temporal coherence gate, the lateral resolution 

is determined by the confocal gate.  In Figure 1.5, an OCT sample arm beam along with several 

important optical parameters are illustrated (assuming a cylindrically symmetric beam).  The OCT 

sample arm beam travelling through a single-mode fiber can be regarded as a reflection-mode 

confocal microscope, where the fiber works similarly to a pinhole, both illuminating the sample 

and collecting the backscattered light.  Defined by the FWHM of the intensity detected from a 

point reflector located at the focal plane of a reflection confocal microscope, the lateral resolution 

of OCT ( dx ) is provided as [33] 

 
0 00.37 0.37

sin NA
dx

 


   (1-4) 

 

where 0  is the center wavelength and   is half of the angular aperture subtended by the objective 

lens.  It is intuitive to understand the inverse relation between the lateral resolution and the 
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numerical aperture (NA, which equals  sin  ): the tighter the light is focused, the better the lateral 

resolution. 

On the other hand, the axial field-of-view ( axialFOV ) of the OCT beam can then be defined 

as the FWHM of the confocal axial response (intensity detected from a plane reflector at the focal 

plane of a confocal microscope), which is given as [33] 

   2 1

2

0.565 0.565

sin / 2 sin
sin

2

axialFOV
NA

 

 
 

 
 
 

. (1-5) 

 

The equation can be understood as the tighter the beam focused, the smaller the range of depth-of-

field.  In addition, the trade-off between the lateral resolution and the light penetration depth of 

OCT can clearly be seen from Equation Error! Reference source not found.) and Error! 

ference source not found.).  Up to this point, one can see that the axial and lateral resolutions of 

the OCT system are independent of each other. 

 

 

Figure 1.4.  Illustration of the internal reflectors in a tissue sample and the A-scan profile along depth. (I) Discrete 

boundaries caused by refractive index mismatch, along with the incident and backscattered field, are plotted.  (II) Cross-

correlation term obtained from a SD-OCT system is shown.  The zero position in the plot indicates zS=zR, where optical 

path length matches completely.  Both figures are obtained from [33]. 

 



14 

 

 

Figure 1.5.  OCT sample arm and various optical parameters of the OCT system [33]. 

 

The light penetration depth into biological tissue is governed by the scattering and absorption 

characteristics of the tissue sample, which depends on the wavelength of the light.  Most biological 

tissues are heterogeneous and made of different components, such as water, melanin, hemoglobin, 

oxygenated hemoglobin, and proteins.  The wavelength-dependent absorption curves are 

characterized and shown in Figure 1.6.  Melanin and hemoglobin (the main tissue chromophores) 

are less absorptive at wavelengths higher than 700 nm, while water is highly absorptive at 

wavelengths above 1300 nm.  In addition, the red and near infrared (NIR) bands interact with tissue 

in a highly forward-scattering manner (anisotropy parameter g =0.85-0.9, which is close to 1) [32].  

Therefore, the wavelength of the light source for OCT is commonly chosen to be within the 
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“biological window” of tissue, approximately 700-1300 nm, where scattering, rather than 

absorption, dominates.  For example, for eye imaging, a center wavelength near 1300 nm is often 

avoided in order to reduce the high absorption from the large amount of water content in eyes.  

Wavelengths around 800 nm are often used, not only to reduce absorption, but also to afford higher 

imaging resolution at this shorter wavelength within the biological window. 

     

Figure 1.6.  Wavelength-dependent absorption of various tissue biomolecules.  The “biological window” refers to the 

wavelength range around 700-1300 nm, where scattering is more dominant over absorption for most molecules.  Adapted 

from [36]. 

 

1.3.3 OCT system and instrumentation 

Different instrumentation setups are required for OCT systems based on different scanning 

schemes.  Three main types of OCT systems, namely time-domain (TD-OCT), spectral-domain 

(SD-OCT), and swept-source OCT (SS-OCT), are commonly used.   

TD-OCT uses a continuous-wave broadband source to provide low coherence light, while 

the depth-resolved information is probed by moving the reference arm mirror to create a variable 
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time delay in the reflected signal.  The interference signal is then collected via a photoreceiver.  

For both SD-OCT and SS-OCT, the depth-resolved information is encoded in the Fourier domain 

and hence the reference arm mirror is fixed at one location (where the optical path length between 

the two arms is matched).  SD-OCT uses a continuous-wave broadband light source and acquires 

the depth-resolved information simultaneously (with a single data acquisition).  A collimated beam 

encoded with the broadband spectrum is dispersed by the optical grating within a spectrometer, 

allowing different spectral frequencies to be mapped to individual pixels on a line scan camera.  In 

SS-OCT, a light source that can rapidly sweep through a range of wavelengths is utilized.  The 

fringes as a function of time are then detected by one or more photoreceiver(s).  In both schemes, 

the depth-resolved information can be extracted by Fourier analysis of the measured spectral 

interference pattern [33].         

 

1.3.4 Applications in biomedicine 

OCT has been widely applied to the field of biomedicine and has been commercially 

available since 1995.  Its sub-cellular level resolution provides the potential for detecting early 

changes in disease processes, with clear applications for biomedical investigation in 

ophthalmology [37], dermatology [38], oncology [39], cardiology [40], dentistry [41], and 

musculoskeletal diseases [42], to name a few.  In particular, ophthalmic imaging has become the 

most clinically established application of OCT.  For instance, OCT can detect the morphological 

changes within the retinal and further monitor or quantify progression of diseases such as age-

related macular degeneration, macular edema caused by diabetes or retinal vein occlusion, and the 

treatment response of glaucoma patients [37].  In addition, the choroid in posterior segment 

diseases, retinal dystrophy, and intraocular tumors has been investigated with OCT as well [37].      

Although conventional bench-top OCT systems perform well for fixed tissue or for 

ophthalmic imaging, the instrument design of an OCT system can also be adapted for other 
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applications.  Catheter-endoscopes can be integrated into OCT and allow for imaging within 

internal biological lumens or organs, such as ex vivo human artery and in vivo rabbit esophagus 

[43, 44].  The light beam can be delivered with an optics fiber enclosed inside a rotating hollow 

cable, where a gradient index lens (GRIN) and a microprism are encased by a transparent sheath 

at the distal end of the fiber for beam focusing, and reflecting the beam in a perpendicular direction, 

respectively [43, 44].  In addition, OCT has also be engineered into a portable system with a 

handheld scanner, showing potential for point-of-care diagnosis.  The handheld scanner has been 

realized by encasing the sample arm components into a handheld probe [45], while some designs 

also replace the conventional galvanometer-scanners with a small-size microelectromechanical 

system (MEMS) mirror to downsize the probe volume and weight, making the system more user-

friendly [46].  Handheld scanners can also allow for real-time, in vivo imaging, which are suitable 

for intraoperative imaging [47]. 

Other functional extensions of OCT have been introduced as well.  Polarization-sensitive 

OCT (PS-OCT) measures the cross-sectional polarization information, e.g. the phase retardation, 

to reveal the birefringence of linearly organized tissue.  PS-OCT can assist in the diagnosis of 

glaucoma, the evaluation of collagen denaturation in burned skin, and the detection of cancerous 

tissue such as basal cell carcinoma (BCC) or breast tissue [48, 49].  Magnetomotive OCT (MM-

OCT) utilizes magnetic nanoparticles (MNPs) as a dynamic contrast agent, where magnetomotion 

can be modulated by an external magnetic field.  Using MM-OCT, injured vasculature can be 

detected by MNP-labeled platelets [50] and antibody-functionalized MNPs allow for in vivo tumor 

targeting prior to visualization [51].  Optical coherence elastography (OCE) is also a widely 

investigated extension, where the mechanical contrast of tissue is revealed in the sample 

displacement.  OCE has showed potential for disease diagnosis and for tumor margin visualization 
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[52].  The presence of fluid flow or fluid dynamics can be assessed through Doppler OCT or optical 

microangiography (OMAG), which take advantage of the Doppler frequency shift and the blood-

flow-induced modulation of the spectral interferogram, respectively.  Both techniques are capable 

of visualizing and quantifying blood flow or perfusion in vivo [53, 54].      

 

1.4 Statement of work  

This thesis research evaluates the morphological changes of in vivo human skin induced by 

external mechanical indentation using OCT.  In addition, the feasibility of using OCE and Doppler 

OCT to assess the biomechanical properties and fluid dynamics within the tissue are demonstrated, 

which may be the main contributors affecting the skin response during and after indentation.  The 

chapters are organized as follows.  Chapter 2 focuses on the quantitative characterization of the 

skin response before and after indentation, based on the structural features revealed in time-lapsed 

OCT images.  The study design, the algorithm employed, and the quantification approaches are 

detailed, followed by the results of a clinical human study, where the indentation response of both 

adults and infants are presented, discussed, and compared.  In Chapter 3, OCE techniques are 

introduced to enable the assessment of viscoelasticity of the biological tissue and provide 

preliminary datasets acquired from human skin.  In Chapter 4, the fluid dynamics probed by 

Doppler OCT are discussed and in vivo human data are also provided.  Finally, in Chapter 5, the 

conclusions of the current investigation of OCT-guided characterization of human skin 

biomechanics, and the future directions of this line of research, are both included.    
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2 Quantitative analysis of human skin in response to mechanical indentation   

2.1 Introduction and motivation 

The aim of this research is to investigate using OCT the biomechanical and tissue response 

of in vivo human skin after indentation, and define metrics for quantitative analysis.  By applying 

an external mechanical compression on skin, various changes in the empirical parameters, such as 

the optical backscatter intensity and spatial distribution of speckle, are revealed in OCT images.  

It is hypothesized that this may be associated with the viscoelasticity and alteration of local fluid 

dynamics and hemodynamics in the indented sites.  Geometric changes, such as the residual 

deformation and the recovery kinetics of the indented skin, are also observed and quantified.  

Based on these metrics, quantitative analysis was performed for both adult and infant skin data. 

 

2.1.1 Study design  

To investigate the skin response of human subjects with different physiological conditions 

and biomechanical properties, two groups of subjects varying in age were recruited to participate 

in study, including a total of 8 Caucasian female adults (20-32 years of age) and 8 Caucasian 

infants (9-18 months, 4 females and 4 males).  For the adult group, the indentation sites were 

selected on the volar forearm, while the indentation was induced on the dorsal thigh for the infants.  

For each subject, the targeted indented locations were marked prior to the application of the 

indentation force.  The indentation device and procedure is detailed in Section 2.1.2.  For all 

subjects, the indentation force was held on the skin surface for 3 minutes, and the OCT images 

were acquired for the following conditions: before the indentation (pre-indentation), immediately 

after (<10 sec, for simplicity, this is denoted as “0-min”) and after 1, 2, 3, 4, and 5 minutes after 

the indentation (post-indentation).   
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2.1.2 Indentation procedure and devices 

Indentation form an applied external force to the skin was performed in in vivo human 

subject experiments.  Indenters with a dimension shown in Figure 2.1 (I, II) were machined, while 

an elastic band (Seraket® Automatic Tourniquet 48300-770, Propper manufacturing Co., Inc., 

Long Island, NY) was used to hold the indenters in place for 3 minutes (Figure 2.1 (III, IV)).  In 

order to fix the applied strain at 16.7%, the length of the elastic band was adjusted according to 

the circumferences of the body sites of the subjects.  After indentation, the OCT probe was 

immediately (<10 sec) placed at the indented skin sites for image acquisition from 0 to 5 minutes, 

with an image-interval of one minute, in order to track the changes during the recovery process.  

During the imaging session, the subjects’ forearms were rested on a metal-based “hand stand” 

covered with a soft fabric, in order to keep the skin surface flat and stable at all times (Figure 2.1 

(IV)).  

 

 

Figure 2.1. Indentation device and setup.  (I) The geometry and dimension of the custom-made polymer indenter.  (II) A 

photograph of the indenter.  (III) The elastic strap used to hold the indenter in place. (IV) The patient undergoing the 3-

min indentation procedure.   
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2.1.3 Experimental setup 

Two OCT systems, one bench-up and one portable, were involved in this study.  For the 

phantom sample experiment, a home-built bench-top SD-OCT system was used, whereas for the 

in vivo human study, a portable commercial SD-OCT system (Telesto, Thorlabs, Inc.) was used in 

order to better assess the subjects’ skin at various body sites (forearm and thigh for adults and 

infants, respectively).  The specifications of the bench-top system are the same as the one 

previously described [55].  In brief, a superluminescent diode (LS2000B, Thorlabs Inc.) with a 

center wavelength of 1310 nm and a bandwidth of 170 nm was used as the light source.  The axial 

and the lateral resolutions were calculated to be ~ 4.5 μm and ~ 16 μm, respectively.  The portable 

commercial OCT system had a center wavelength and bandwidth of 1310 nm and 100 nm, which 

corresponded to a theoretical axial and lateral resolution of 7.6 μm and 15 μm, respectively.  

During imaging, a relatively slow line scan rate (~ 5.5 kHz) was selected for both systems in order 

to achieve better sensitivity.  The specifications of the two systems are summarized in Table 2.1. 

Table 2.1.  Specification of the two OCT systems used in this thesis research. 

 Bench-top OCT Portable commercial OCT 

OCT Type Spectral-domain Spectral-domain 

Center wavelength 1310 nm 1310 nm 

Bandwidth 170 nm 100 nm 

Axial resolution (in air) 4.5 m 7.6 m 

Lateral resolution 16 m 15 m 

Field-of-view  4 mm × 2.2 mm 6 mm × 2.5 mm 

 

For the portable imaging system, a customized polymer-based attachment was mounted at 

the end of the rigid OCT scanner in order to enable handheld imaging and to keep the working 

distance constant between the sample and the lens.  The physical dimensions of the probe 

attachment are shown in Figure 2.2 (I).  The diameter of the aperture (~2.7 cm) is an order of 

magnitude larger than the width of the indenter tip (~1 mm).  In addition, the ring-shaped edge 
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around the aperture was designed to have a wider area (~24.5 cm2) so that the amount of pressure 

applied at the edge would be reduced.  During the experiment, the probe was held manually not 

only to target the region of interest but also to avoid the weight of the probe resting on the skin 

(Figure 2.2 (III)).  This was also to ensure that the localized-loading-induced fluid dynamics at the 

indented site would not be affected by the perturbation within the surrounding skin region. 

 

Figure 2.2.  The handheld probe and the illustration of the imaging process.  (I) The design and the dimensions of the 

handheld attachment.  The photographs were taken from (left) the side, (top right), the side facing the skin, and (top bottom) 

the side carrying the rigid scanner head.  (II) By mounting the rigid scanner to the attachment, (III) handheld OCT imaging 

was possible.     

 

2.2 Selection of metrics 

The metrics chosen here are broadly categorized into two groups, with one group focusing 

on the quantification of the in-tissue dynamics, and the other group focusing on the skin surface 

kinetics during the pre- and post- indentation time periods. 

A number of algorithms have been proposed to extract the morphological features of 

biological tissues from OCT images [56, 57].  These algorithms can be generally grouped into two: 

one group that is related to the attenuation properties obtained from the backscattered intensity 

profile; and the other group that is associated with the spatial variation or speckle pattern revealed 
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from the OCT images.  Therefore, for the in-tissue parameters, two features for characterization 

are also proposed, namely intensity-based and statistical features.   

 

2.2.1 Intensity-based feature 

Morphological information, as well as many optical properties of the tissue specimen, are 

often encoded in the intensity profiles within OCT images.  Incident on any biological specimen, 

the OCT light intensity would inevitably diminish with depth, either due to the attenuation of the 

propagating ballistic light or due to the system roll-off.  In SD-OCT, system roll-off is a result of 

the lack of sensitivity of the line scan camera detection at higher frequencies, which corresponds 

to deeper regions in an OCT image.  The roll-off of the OCT systems (both bench-top and portable 

handheld OCT setups) were characterized to be negligible within the depth-of-field (decreased ~3% 

within a 2 mm depth range).  Therefore, in this study, the light intensity changes were primarily 

caused by light-tissue interactions.    

Optical attenuation as a function of depth is a combined result of absorption and scattering, 

and the Beer’s Lambert law can be applied to characterize the attenuation coefficient [58],  

t a s    . (2-1) 

where t , a , and s represent the total attenuation coefficients of tissue, absorption, and 

scattering, respectively.  In the near-infrared region, the dominant factor is scattering (i.e. 

s a  ).  As modelled in several studies, biological tissue can be regarded as being composed 

of solid (e.g. proteins, collagen, fibers, cells, etc) and fluid components (e.g. water, blood, 

extracellular or interstitial fluid, etc), while the bulk attenuation coefficient and average refractive 

index can be obtained based on the linear rule of mixture [59, 60].  When a pressure gradient is 

introduced to the tissue, the unbound water or fluids would by expelled aside, which effectively 
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decreases the fraction of the water contained at the indented site.  Since the absorption coefficient 

of water is higher than that of other molecules near 1300 nm (shown in Figure 1.1, biological 

window), the bulk absorption coefficient of the tissue decreases as the water content is reduced 

[59].  On the other hand, the scattering coefficient within the tissue 
s  can be approximated as 

below [60]. 

2.090.3723.28 2
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r nr
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(2-2) 

Here, r and s are the radius and volume density of scattering centers, respectively.  The term g

is the scattering anisotropy factor,  is the wavelength of light, and sn , fn , and moln are the 

refractive indices of the scattering center, the fluid components, and the molecular-induced index 

increase, respectively.  In skin, the refractive indices of the non-fluid components are typically 

greater than that of the fluid components ( collagenn  = 1.55 >> watern  = 1.32 at 1310 nm).  

Compression of the soft tissue induces refractive index matching of the solid components such as 

the extracellular matrix, and hence decreases scattering (i.e. when s f moln n n  , 0s  ).  

However, the compression of the skin thickness at the indentation site would result in an increase 

in the effective scatterers (i.e. the solid components) and the local chromophore concentration, 

which may lead to increasing s  and a .  Yet, overall, less attenuation was observed due to the 

significantly lower thickness ( d ) of the tissue (since the overall attenuation is characterized by 

 a s d   ) [60].  As a result, the OCT signal intensity increases and the depth of the light 

penetration is extended [61].     

 The attenuation coefficient or a similar parameter, e.g. signal slope, has been utilized to 

characterize the attenuation properties of tissues in several studies [62, 63].  However, the 
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compression-induced change of the attenuation coefficient may be subjected to the fit of the 

window size, which may be affected from the greatly reduced sample thickness.  In addition, the 

attenuation coefficient does not necessary carry the information about the absolute intensity 

amplitude.  The same attenuation trend may also arise from regions with different intensities.  

 Therefore, this research focused on the change in the absolute intensity value across a fixed 

area, which provides information regarding both the intensity increase and the enhanced 

penetration depth.  Many studies have investigated the backscattered intensity change caused by 

the water fraction inside the tissue (e.g. the dehydration phenomena) and proposed to apply 

mechanical compression to optical clearing, allowing a larger penetration depth; while a few also 

reported the prolonged clearing effect on human tissue even after the release of a localized stress 

[60, 64].  One study demonstrated how the compression-induced intensity contrast could be used 

to distinguish between an inflamed ex vivo rectum and a tumor-bearing rectum [65].  However, 

rarely have studies implemented the use of the backscattered intensity change to quantitatively 

investigate the post-indentation residual effect on in vivo subjects with varying physiological 

conditions.   

In this study, an intensity-based metric is defined as follows.  For a validation (phantom) 

study, the absolute intensity value was quantified at each compression step.  For the human subject 

study, the ratio of average intensity obtained from the indented region to the unperturbed area was 

chosen to reflect the level of deformation and local fluid transport upon mechanical compression.  

The changing intensity ratio as a function of time was also recorded after the indentation force was 

removed. 
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2.2.2 Statistical feature 

Upon mechanical compression, the tissue becomes denser and hence this change affects not 

only the OCT signal but also the spatial distribution of the speckle.  Here, the hypothesis is that 

the cumulative effect of the increased intensity, decreased attenuation, and a higher volume density 

of speckles can be revealed in a statistical parameter — a coefficient of variation.  

Spatial variation of the tissue structure in OCT images can be extracted in numerous ways.  

Fourier or autocorrelation analysis is a common approach which detects the periodicity or repeated 

pattern of the tissue structure, and this has been applied in OCT data of breast and finger tissues 

[66, 67].  In one study [66], the mean distance between the strong intensity peaks was also used to 

to reveal the spatially periodic signals, which served as a criteria for differentiation between 

adipose, stroma, and tumor.  To differentiate the variation of scatterer sizes, a time-frequency 

transform can be applied, which is often seen in spectroscopic OCT techniques [68].  

Originating from the interference of multiple scattered waves within the confocal gate, 

speckle patterns within OCT images are affected by both the size and the quantity of the scatterers 

within the sample, and hence have been utilized to obtain texture information from tissues [69, 70].  

Texture analysis includes structural, model-based, and statistical approaches, while the latter is 

more widely applied in OCT data [56].  In statistical texture analysis, one can take advantage of 

(1) the co-occurrence matrices (or spatial gray-level dependence matrices, SGLDMs), which 

evaluate the second-order joint conditional probability distribution, describing the probability of 

two pixels with specific intensity levels located at a certain direction [70-72], (2) the grey-scale 

run-length matrices (GLRLMs), which evaluate the number of consecutive pixels at a specific 

direction that expressed the same intensity level [73], or/and (3) the gray-level histogram based 

features [71].  In addition, basic statistics such as the standard deviation obtained after the removal 
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of the OCT signal attenuation slope has been applied for tissue characterization as well [63].  While 

many texture analysis approaches are subjective based on an observer’s choice of parameters 

(window size, direction, etc), fractal analysis provides a more objective option to reflect geometric 

complexity and self-similarity of an object.  Fractal analysis relies on the fractal dimension, where 

the calculation requires dividing the data into different scales of smaller datasets, and obtains the 

number of datasets that contain an intensity above a certain threshold value [74]. 

In the indented skin, optical intensity would increase, and hence standard deviation alone is 

not effective enough for sparseness characterization.  Here, the coefficient of variation (CV) is 

utilized as an alternative statistical parameter, which is also simple and computationally low-cost, 

to characterize the dispersion of the speckle pattern in tissues.  The CV is defined as: 

standard deviation (std)
Coefficient of variation (CV) = 

mean
 (2-3) 

CV is often applied for data homogeneity testing, where in imaging the CV of the speckle 

intensity indicates a relative standard deviation and describes how sparse the speckle is distributed 

at a certain ROI.  Typically, a smaller CV value implies a more homogeneous environment.  

Originally applied to synthetic aperture radar (SAR) imaging, speckle filtering has been carried 

out in an adaptive manner based on the local structural heterogeneity, quantified via CV (i.e. the 

filtering is less effective in the regions with strong structural information, such as edges or lines, 

where the structural features are detected based on CV [75, 76]).  In this way, image enhancement 

is allowed while preserving the main morphological information.  Later, CV-based adaptive 

filtering was implemented in ultrasound imaging of breast or thyroid tissue for speckle 

reduction [77, 78].  Apart from the application of speckle filtering, CV-based homogeneity 

analysis could also help enhance contour detection of the heart cavity in ultrasound imaging  [79] 

and segmentation of SAR images [80].  While many studies have utilized CV as an intermediate 
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step (e.g. using CV to form a coefficient function for filtering purposes [77] or define a certain 

stopping criterion for image segmentation [79, 80]), one study [81] demonstrated the feasibility of 

analyzing macrophage content shown in the OCT data based on the normalize standard deviation, 

which is similar in concept to that of CV.  In this thesis research, CV is quantified for a certain 

ROI to indicate regional structural homogeneity and serves as our statistical feature metric.    

Optical intensity is related to the CV value, while intensity is highly dependent on the light 

attenuation.  Hence, a simple analytic simulation is run to investigate the impact of spatial 

frequency, attenuation coefficient, and DC intensity level on the outcome of the CV.  Assuming 

an A-scan intensity profile is   0.3 sin t
z

total DCI I kz e


    (where z  is the depth), the CV is 

calculated from the standard deviation and the averaged intensity of the entire A-scan under the 

following cases: (1) spatial frequency ( k ) varies, while t  and the DC intensity level ( DCI ) are 

fixed, (2) t varies, while k  and DCI  are constant, and (3) DCI  varies, while k and t are fixed.  

Figure 2.3 shows the results of the above-mentioned cases.  It is observed that CV decreases at 

larger k , lower t , and higher DCI , which are the hypothesized conditions of skin undergoing 

mechanical compression (during compression, a more packed distribution of solid scatterers within 

the ROI would increase k , and the refractive index matching would cause lower t , and hence 

higher DCI , as detailed in Section 2.2.1).  Therefore, it is hypothesized that the CV value of the 

compressed sample sites would have a smaller CV as compared to the non-compressed sites. 

In the phantom study, the change in CV is evaluated during the compression process to 

investigate the clustering effect of speckle upon compression.  In the human study, the CV at the 

indented site was compared to that measured at a non-indented site.  A ratio of the former over the 
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latter was used as the metric of interest, where a value closer to unity indicates that a more similar 

spatial distribution of speckles are observed at both indented and non-indented sites.   

 

 

Figure 2.3.  Simulation of OCT (Left) A-scan intensity signal and (Right) the correspondent CV under various conditions.  

(I) With fixed attenuation coefficient ( t ) and DC intensity level ( DCI ), the CV decreases as the spatial frequency ( k ) 

increases.  (II) With fixed k and DCI , the CV increases with increasing t .  (III) With fixed k and t , the CV decreases 

with increasing DCI . 

 

2.2.3 Surface-geometry feature  

The third metric is based on the indentation-induced spatial and temporal change of the 

deformation on the skin, which may be more directly associated with certain biomechanical and 
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physiological properties.  When external loading is applied to skin at a strain greater than 10% and 

a large deformation is induced, the mechanical response of the skin falls out of the linear regime 

and exhibits nonlinearity.  On the other hand, the history-dependent behavior of the indented skin 

tissue indicates that the skin is not purely elastic (as are most biological materials).  A loaded 

elastic solid would return to its initial shape almost immediately with an unloading stress-strain 

curve identical as that of the loading process [82].  In contrast, a loaded plastic solid would be 

deformed permanently and may be accompanied by material piling-up, which may be related to 

residual stress [83].  Most biomaterials exhibit some viscoelastic nature, where the deformed 

specimen would return to the original state over a certain amount of time, while the history-

dependent characteristics are associated with the redistribution of fluids inside the tissue.  

Conventionally, this can be quantified by the viscosity component  based on creep or stress 

relaxation.  In a creep experiment, a constant stress is applied and an increasing strain as a function 

of time is detected.  The creep retardation time can then be extracted, and represents the viscosity 

to elasticity ratio (
E

 ) of the medium [84, 85].  Alternatively, one can apply a constant strain and 

record the decreasing stress over time, where a relaxation time can be characterized and related to 

E
  [86].  A number of studies have characterized the time-dependent behavior of the edematous 

and non-edematous tissue and reported significant difference between the two cases, which 

indicates the fluid dynamics can be reflected in the viscoelastic response [87-89].  

However, a viscoelastic model may not be sufficient when considering the complex and 

heterogeneous nature of the tissue and the physiological factors accompanying the large 

deformation, such as fluid transport.  Embedded with micro-vessels, skin can be modeled as a 

biphasic material consisting of both solid and liquid, or a poroelastic material [13].  Previous 

research has aimed to associate fluid flow within the tissue with the deformation, using different 
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models and assumptions.  In vascularized soft tissues, the fluid (e.g. water or interstitial fluid) 

residing in different compartments can be modelled as different phases, while the resulting formula 

exhibits a volume change term, linking fluid exchange with tissue deformation [13].  In other 

studies, poroelasticity can be defined based on strain relaxation, where the resulting strain over 

time is observed when the sample is loaded with a ramp or constant displacement [19, 90].     

In this thesis research, local compression with large strain is applied to in vivo skin tissue, 

and hence it is hypothesized that both fluid translocation and a mechanical response resembling 

that of a nonlinear poro-viscoelastic material may present.  The time-dependent mechanical 

response is investigated by applying a fixed strain and measuring the residual strains or 

deformation over time after the indentation process.  It is believed that the residual deformation is, 

at a certain level, coupled with the local fluid dynamics during the post-indentation recovery 

process.  Upon the removal of the indenter, the previously expelled fluids would gradually return 

to their original location.  Since the indenter geometry and the indentation direction were designed 

so that the highest pressure gradient occurs in the axial direction, the focus is on the change in the 

axial deformation.  It is hypothesized that as a larger volume of fluid returns, the remaining axial 

deformation would be smaller.  In addition, a previous study also revealed a significant difference 

between the swollen and the normal tissue based on the compression-induced “pit depth” 

difference between the initial state (immediately after the compression) and the final mechanical 

equilibrium state (after 800 sec of sustained compression) [87].  Therefore, it is hypothesized that 

the residual strain obtained right after the removal of the indenter may be associated with not only 

the elasticity but also the fluid retention level of the skin.  Finally, yet importantly, the fact that the 

analysis is performed merely based on strain indicates that a potentially more cost-effective 

measurement can be given, where force-sensing related hardware may not be necessary.  
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2.2.4 Quantification results of tofu phantoms 

According to the discussion of the in-tissue parameters at Section 2.2.1—2.2.2, it is 

hypothesized that under an external mechanical compression, a porous, soft tissue would exhibits 

an increased optical backscattered intensity and a decreased CV value.  To evaluate the hypothesis 

and performance of the selected metrics, the correlation between compression of a tissue-

mimicking phantom and the change in in-tissue metrics was examined.  A hydrated tofu sample, 

with its protein-based and porous-elastic nature similar to soft tissues, is a common phantom for 

elastic imaging [91, 92] and is utilized here to mimic human skin.   

Here, a plastic plate was placed above the tofu sample and served as flat spatially uniform 

compression source.  OCT images were collected at each axial compression step as certain 

compression displacements were applied.  The resulting OCT data were analyzed by calculating 

the average intensity and the CV within the ROIs.  The processing flow is described briefly as 

follows.  First, preprocessing steps removed the duplicated reflections caused by the plastic surface.  

Sequentially, the phantom surface was allocated by searching for the maximum intensity within 

45 pixels (~176 m) in depth near the initial marked boundary.  Finally, all images were aligned 

according to the surface so that the first row of each image represented the phantom surface.  The 

aligned images were then used for analysis. 

In each aligned image, a total of 8 locations were selected to quantify the average intensity 

and CV values.  Each location was 20 pixels (~78 m) below the phantom surface and 100 pixels 

(~391 m) apart from each other in the lateral direction.  The window size was 51 pixels (~199 

m) in depth and 102 pixels (~398 m) in width. 

The results reveal the alteration of the average intensity and CV change as the compression 

displacement increased from 0 to 65 mm with a step size of 5 mm in the axial direction (Figure 
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2.4).  With increasing compression displacement, an increasing trend in the average intensity and 

a decreasing trend in the CV values was observed, which agree with the stated hypothesis, 

literature [60], and simulation (Figure 2.3).  Therefore, it is suggestive that the intensity-based and 

CV-based metrics are appropriate indicators for the in-tissue changes under mechanical 

compression.    

 

 

Figure 2.4.  Quantitative analysis of a tofu phantom using in-tissue parameters.  The results of the change in (I) averaged 

intensity and (II) CV at the ROIs during mechanical compression are plotted.  A total of 8 measurements were performed 
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at 8 ROIs (N=8), while the red filler circles, the pink box, and the blue box indicate the mean, standard deviation, and 95% 

confidence interval, respectively.   

 

2.3 Data processing for human subject results 

2.3.1 Processing flow description 

All human subject data were acquired with the Thorlab Telesto system and software (OCT 

3.0.7), where standard OCT imaging processing procedures were performed, including offset 

subtraction, apodization, k-linearization/FFT, and scaling.  After setting the dynamic range (22-63 

dB), the image was then saved as an 8-bit grey scale image.  These images were then used as the 

input for further metric extraction, where Matlab (R2013b, MathWorks, Natick, MA) was used as 

the imaging processing tool.   

Regions of interest (ROIs) selected for the analysis of the in-tissue dynamics (e.g. intensity-

based and statistical-based features) were at the dermal layer, where the collagen meshwork and 

elastin fibers were located.  In contrast, the geometric-based parameter was quantified based on 

the deformation measured at the skin surface.  To be more specific, the surface deformation at the 

center of the indentation site was utilized for quantification. 

The data processing flow includes the pre-processing and the main data analysis based on 

the three metrics proposed.  A general overview of the processing procedure is shown in Figure 

2.5. 
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Figure 2.5. Data processing procedure, including the main steps for data pre-processing and the proposed metrics 

for data analysis. 

   

2.3.2 Data pre-processing 

Data pre-processing is a necessary step prior to the main processing and analysis in order to 

avoid partially non-indicative structural features and the presence of eventual outliers in data 

analysis.  Correction for image artifacts and image alignment was the main goal of pre-processing.  

Since artifacts can be caused by the inevitable human subject motion and unremoved skin hair, 

image alignment in the axial and lateral directions are required to correct for skin surface incline 

and to determine the center of the indentation position, respectively.  Note that the location of the 

indentation site is important in this analysis since this approach compares the dynamics under the 

indented sites with the non-indented sites.     

Four major steps for artifact removal and image alignment was included in the pre-

processing steps, namely (1) user-guided initial skin boundary selection, (2) removal of hair 

features and reflection artifacts, (3) detection of the dermo-epidermal junction (DEJ), and (4) 

image alignment.  

(1) User-guided initial surface boundary selection 
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The very first step is to define the initial surface boundary (Si) at the location close to 

but above the skin surface.  This initial boundary is important in this algorithm for two 

reasons.  First, most of the artifacts to be remove (such as any strong reflection and any 

presence of skin hair) could result in an outlier of the morphology information located 

above the skin surface.  Second, the image alignment was performed after the 

segmentation of the epidermis and dermis regions, where the initial estimation of the 

dermo-epidermal junction (DEJ) depends on the location of the skin surface.  Therefore, 

the initial boundary defined at the skin surface (or somewhere close to it) can be utilized 

as a reference line for sequential data pre-processing steps.   

 

Numerous algorithms have been proposed to detect the skin surface and segment the skin 

layers, such as binary thresholding [93], thresholding and polynomial fitting after 

locating the maximum intensity [94], morphological dilation and erosion based on binary 

images [95], a shapelet decomposition algorithm [96], regularized short-path 

extraction [97], and morphological filtering after detecting the high gradient pixels of 

the B-scan images [98].  However, most approaches are either supervised, suitable only 

for a certain type of images, or computationally expensive [57].  On the other hand, 

manual marking of the tissue boundary, though more user-dependent, has still been 

applied in OCT data analysis [57] or served as the “validation” group for computationally 

segmented results [98].  Here, a simple user-guided border detection is applied.  An 

example of the user-defined Si above the skin surface used in this study is shown in 

Figure 2.6. 
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Figure 2.6. OCT image of skin and illustration of the user-defined initial surface boundary.  The OCT image is 

acquired from the skin of an adult at 0 min after indentation.  The user-defined initial surface boundary Si is 

shown as the blue line.  

 

(2) Removal of hair features and reflection artifacts  

The highly reflective hair present on the skin surface may cause shadowing of the skin 

tissue beneath.  In some datasets, there exist strong reflection artifacts originating from 

the mismatch between the refractive index of the air and the skin.  Although index-

matching agents, such as glycerol, are known to be effective in reducing surface 

reflections and artifacts in human skin [99, 100], they were not incorporated in our study 

for several reasons.  Fluid content within the skin may increase with the uptake of 

glycerol. The potential for an increase of water absorption (from the air or deeper skin) 

exists, given that the glycerol is a hydrophilic humectant [100].  Since glycerol diffusion 

happens on the same time scales as these experiments (a few minutes) [99-101], this 

extrinsic factor not only could influence the intrinsic fluid volume but also the fluid 

dynamics (and even the biomechanical properties) in the skin during the experiment.  In 

addition, the presence of glycerol may reduce the friction on the skin, and further affect 

the position stability of the indenter or the pressure applied during the indentation. 
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Instead, most of the morphological artifacts are removed using computational 

approaches.  Here, a binary thresholding approach, modified and improved, and based 

on one previously described and implemented [93], was used where the preservation of 

each A-line was determined based on intensity thresholding.  In each lateral location (x), 

the average intensity of the A-line ( A lineI  (x) ) was calculated within an array range 

( A lineROI  ) of 35 pixels above the initial boundary ( )iS x .  Sequentially, ( )A lineI x  was 

compared to the threshold value ( ThersholdI ) as follows:  If ( )
Threshold

A lineI x I  , the A-line is 

discarded; otherwise, the A-line is preserved.   

 

The selected threshold ThersholdI depended on the intensity distribution across an “air 

ribbon” two dimensional region ( AirROI ) at 15 pixels above iS .  It is determined by:  

thThershold Interquartile y percentileI I I   , (2-4) 

where InterquartileI  and 
thy percentileI   are the interquartile range and the y-th percentile 

intensity at the AirROI , respectively.  Based on a fuzzy-logic-like filtering approach, the 

percentiles for 
thy percentileI   can be decided as   

,Air ,B scan

Air,Air ,B scan ,B scan

Air,Air ,B scan ,B

100 ,            if 50%    (No artifacts)

90  or 95 ,  if 50%  and 10% 

75 ,              if 50%  and 10% 

th Max Max

th th th Max Max Max

th Max Max Max

I I

y I I I I

I I I I



 

 



  

  scan







, 

(2-5) 

 

 

where ,AirMaxI  is the maximum intensity of the AirROI  region, ,B scanMaxI  is the maximum 

intensity of the entire B-scan image ,B scanMaxI  , and AirI is the averaged intensity at 

AirROI .  As the AirI  value increases with more hair/reflection artifacts, a lower 
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percentile can be used for thresholding.  An illustration of the images before and after 

the removal of hair and reflection artifacts is shown in Figure 2.7. 

 

Figure 2.7. Illustration of the effect of hair and reflection artifact removal.  The OCT skin images from a human 

adult at 0 min after the indentation are shown for (I) before and (II) after removing the image artifacts caused 

by the presence of skin hair.     

  

(3) Detection of dermo-epidermal junction (DEJ) 

The detection of the dermo-epidermal junction (DEJ) was performed after estimation of 

the skin surface ( SkinS ), which is defined by locating the maximum intensity along the 

depth range from iS – 20 to iS  at each lateral location.  For the pre-indentation datasets, 

the initial estimation of the DEJ ( iDEJ ) is determined by ,skin smoothedS + d (positive sign 

indicates deeper area), where ,skin smoothedS is the result after moving average filtering SkinS

(window size: 10 pixels) and d is the axial distance between ,skin smoothedS  and a user-

defined point located close to the DEJ region.  In terms of the post-indentation datasets, 

iDEJ  at the indented site (  (x )i Indented SiteDEJ ) was determined by ,skin smoothedS + indentedd , 

where indentedd  is the axial distance between ,skin smoothedS  and another user-defined point 

at the DEJ location (within the lateral range of the indented site, which shows a much 

reduced epidermis thickness).  Sequentially, the maximum intensity was located within 
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a depth range (
iDEJ  – 5 to 

iDEJ  + 5) and defined as iDEJ  .  A moving averaging filter 

(window size: 20 pixels) was then performed on iDEJ   and defined as the final form of 

DEJ .  In Figure 2.8, an example of the final results of 
SkinS and DEJ are provided.    

 

Figure 2.8. Visualization of the boundary detection on OCT skin images.  (I) The skin surface ( SkinS ) and 

(II) dermo-epidermal junction (DEJ) are represented with red lines in structural OCT images shown, respectively.   

  

(4) Image alignment  

As mentioned earlier, this study focused on the indentation-induced alteration within the 

dermis, and hence the images were flattened and aligned according to DEJ , which was 

defined in the previous step.  The aligned result is illustrated in Figure 2.9. 
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Figure 2.9. Aligned OCT image.  The indented skin image was aligned by flattening the image according to the 

defined DEJ. 

Apart from artifact removal and image alignment, the center of the indentation site, in the 

lateral direction, was also determined.  The processing steps are illustrated in Figure 2.10 and are 

detailed as follows.  First, initial selection of the indentation sites ( , indented ix ) was decided manually.  

Afterward, valley detection was performed at the lateral range from , 256indented ix   to 

, 256indented ix    on the detrended ,skin smoothedS   (obtained from moving averaging filtering of skinS  

with a window size of 40 pixels).  The detected valley was then recorded as the center of the 

indented site of the skin image ( indentedx ).  In the in-tissue quantification parameters, indentedx was 

used to decide the “indented site” parameters, as opposed to the surrounding “non-indented site” 

parameters.  As for the geometrical-based quantification metric, the skin residual deformation 

distance was calculated at indentedx .   
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Figure 2.10. Detection of the center of the indented site.  (I) Illustration of the valley detection at the lateral ROI. (II) 

Determination of the final selection of the center of the indentation site, which is indicated with a red line. 

   

2.3.3 Data analysis procedure based on the selected metrics  

After the pre-processing steps, the data analysis becomes straightforward.  Based on the 

defined metrics for quantification (both in-tissue features and surface geometry), the processing 

procedure can be grouped as the following two types.   

(1) In-tissue parameters: intensity ratio and coefficient of variation (CV) ratio 

For the in-tissue metrics, the aligned images were used for quantification, which allows 

all quantification to be performed at the same depth range within the dermis.  Since there 

is interest in comparing the quantitative values obtained at the indented site with those 

from the non-indented site, the characterization can be described using a ratio.  Therefore, 

the metrics used for intensity-based and spatial-distribution-based quantification are: 
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Intensity ratio = indented

non indented

I

I 

 (2-6) 

 

CV ratio = indented

non indented

CV

CV 

. 
(2-7) 

The lateral range of the indented site was chosen from 34indentedx   to 34indentedx   (~400 

m width), where indentedx  is the center of indentation site as defined in the pre-processing 

step.  The lateral ranges (
1,2 lateral range ) of the two non-indented sites, on the other 

hand, were selected from 34non indentedx    to 34non indentedx   , where the center locations 

are , 1, 2 145non indented indentedx x    (~850 m width).  The window size selected for all 

ROIs was the same, which is 400  window m axial range  .  The lateral range was 

fixed at 68 pixels (~400 m), however the axial range is a variable that is a function of 

the initial indentation displacement ( indentationD ) applied on each subject (note that the 

applied strain was fixed, but not the displacement, and hence the displacement would 

vary with the circumference of either the forearm or the thigh of each subject).  The 

physical depth of the axial range was selected to be

 
 250 

1 

applied indentationD
axial range m

cm
  , where  applied indentationD  of the adult forearms and 

that of the infant thighs fell in the range of 0.54 0.72 cm  (  28 47 axial range pix  ) 

and 0.64 0.76 cm (  33 39 axial range pix  ), respectively.  The axial range of the 

collected datasets was designed to be limited to 250 m, a region where single scattering 

dominates [102].  In both parameters, the non-indented site values were represented as 

an average of the values of the two non-indented ROIs (i.e. 
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1 2(  ,  ) (  ,  )

2

lateral range axial range lateral range axial range

non indented

I I
I 


 , 

1 2(  ,  ) (  ,  )

2

lateral range axial range lateral range axial range

non indented

CV CV
CV 


 ).  An illustration of the ROIs 

selected at the indented sites and the two non-indented sites can be seen at Figure 2.11. 

 

Figure 2.11.  Illustration of the ROIs for in-tissue parameter quantification.  The characterizations are 

performed on an aligned image, where the red boxes indicate the windows at the indented (center) and the two 

non-indented (side) sites.  The yellow dashed line indicates the center location of the indented site (xindented).  

 

(2) Skin surface geometry parameter: residual deformation percentage (RD %) 

The residual deformation percentage (RD%) was quantified by the deformation that 

remained on the indented site ( indentedx , as defined in the pre-processing steps), followed 

by a normalization with respect to the initial deformation applied, as shown in the 

following equation 

 

Residual deformation % 100%residual

applied indentation

D

D
  . (2-8) 

 

Here, the residual or remaining deformation ( residualD ) was obtained at indentedx  by 

measuring the distance from the skin surface to the average height of the two piled-up 
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peaks immediately adjacent to the indented site.  Knowing 
indentedx , peak detection was 

sequentially performed at the two neighboring regions, each having a lateral range of 

256 pixels (~1.5 mm in width).  Note that RD % should only be a scaling factor different 

from the residual strain since the initial strain applied in each subject is fixed.  An 

illustration of residualD  quantification at indentedx  is shown in Figure 2.12. 

 

Figure 2.12.  Quantification of the residual skin surface deformation (Dresidual).  Dresidual is quantified at the 

center of the indented site (xindented, the yellow dashed line), measured as the distance between the height of the 

skin surface and the average height of the two “piled” peaks (the two hollow red circles).  The two piled-up 

peak locations were detected within the lateral range from xindented to xindented ±256 (the green lines), respectively.    

2.4 Results of human subjects 

The quantitative results of the human subjects (of both adults and infants) is discussed in this 

section, where the results from the adult forearm and the infant thigh are discuss separately, 

followed by a comparison between the two groups. 

 

2.4.1 Results from the adult forearm 

Here, the in-tissue results from the adult forearm datasets are given in Figure 2.13.  

Comparing the results from before indentation with those right after the removal of the indenter 
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(at 0 min), an increase in intensity ratio (p-value <0.01) is observed, indicating the average 

intensity at the indented site is larger than that of the non-indented sites, which agrees with the 

stated hypothesis.  Plotting the recovery trend with a time interval of 1 min, a trend of fluctuating 

intensity ratios is shown, rather than a clear increase or decrease.  On the other hand, a decreased 

CV value is observed right after indentation, as compared to the before-indentation scenario (p-

values < 0.05), implying that the CV of the indented site is less than that of the non-indented sites, 

possibly due to the more homogeneous pattern caused by localized loading.  From the post-

indentation data, again, no clear trend is observed for the CV ratio.  For both in-tissue parameters, 

the 0-min post-indentation cases show a significant difference as compared to the pre-indentation 

cases, and no apparent change is seen from the first 5 min after the release of the localized loading.  

This is suggestive that the fluids and the deformable tissue components have negligible recovery 

within the 5 min post-indentation period.   

Similar plots are shown for the RD % (Figure 2.14), which describes the skin surface 

geometrical change.  Here, an existence of RD % is observed immediately after the removal of the 

indenter, indicating a delayed re-bound of the skin.  During the post-indentation period, a 

decreasing RD% is observed, indicating that the deformed skin is gradually recovering toward its 

mechanical equilibrium and shape (a flat skin surface).    
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Figure 2.13.  In-tissue parameters for adult forearm skin.  (I) Intensity ratio and (II) CV ratio results for (left) before and 

immediately after indentation, and for (right) 0-5 min post-indentation.  The red line, pink shading and blue shading 

indicate the mean, 95% confidence interval, and one standard deviation, respectively.  * and ** indicate a p-value less than 

0.05 and 0.01, respectively.  Sample size N=8.        

 

 

Figure 2.14.  Residual deformation percentage (RD%) of adult forearm skin.  (Left) Before and immediately after 

indentation and (right) 0-5 min post-indentation.  The red line, pink shading and blue shading indicates the mean, 95% 

confidence interval, and one standard deviation, respectively.  *** indicates a p-value less than 0.001.  Sample size N=8.        
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A summary of the changes in the three parameters (i.e. the intensity ratio, the CV ratio, and 

the RD%) is illustrated using a three-dimensional scatter plot, and the alterations of the in-tissue 

parameters are plotted in two-dimensions (Figure 2.15).  The before and after indentation periods 

show strong differences for all three parameters, and the trend of changes agree with the hypothesis.  

The intensity ratio is observed to be inversely related to the CV ratio.  However, it is worth 

emphasizing that the two metrics represent different meanings, i.e. one focuses on the amplitude 

change of backscattered light signal and the other describes the sparseness of the scatterers.   

 

 

Figure 2.15.  Summary of the adult forearm results.  (Left) Scatter plot comparison of the in-tissue and skin surface 

parameters. (Right) Comparison of the intensity ratio and the CV ratio before (black circles) and 0 min after indentation 

(red circles).       

 

2.4.2 Results from the infant thigh 

Similar figures for the in-tissue and skin surface parameters are plotted for the infant thigh 

datasets (Figure 2.16 and Figure 2.17).  Again, after the release of the indenter, the intensity ratio 

increased (p-values < 0.01) and the CV ratio decreased (p-values < 0.01).  Within the first 5 min 

period after indentation, the intensity ratio and CV ratio both returned toward unity, showing 

obvious recovery trends.  This may indicate a combined result of displacement recovery from 

elastic solids and fluid redistribution over time, reflecting the viscoelastic nature of skin.  However, 
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it is also observed that both the intensity ratio and the CV ratio do not return completely to the 

initial values, suggesting that mechanical equilibrium has not yet been reached in 5 min.    

 

 

Figure 2.16.  In-tissue parameters of infant thigh skin.  (I) Intensity ratio and (II) CV ratio results for (left) before and 

immediately after indentation, and (right) 0-5 min post-indentation.  The red line, pink shading and blue shading indicate 

the mean, 95% confidence interval, and one standard deviation, respectively.  ** and *** indicate a p-value less than 0.01 

and 0.001, respectively.  Sample size N=8.         

 

In addition, a non-zero surface residual deformation is also observed after indentation in the 

infant thigh datasets, and this value decreased (toward 0%) over time (Figure 2.17).       



50 

 

 

Figure 2.17.  Residual deformation percentage (RD%) of infant thigh skin.  (Left) Before and immediately after indentation, 

and (right) 0-5 min post-indentation.  The red line, pink shading and blue shading indicate the mean, 95% confidence 

interval, and one standard deviation, respectively.  *** indicates a p-value less than 0.001.  Sample size N=8.    

 

According to the three-dimensional scatter plot, a difference in the before and the after 

indentation periods is shown.  Again, there is an apparent difference between the two datasets, 

where the post-indentation data show an existence of residual deformation, higher intensity ratio, 

and lower CV ratio.  An inverse relationship between the intensity ratio and the CV ratio is shown 

as well. 

 

 

Figure 2.18.  Summary of the infant thigh results.  (Left) Scatter plot of the in-tissue and the skin surface parameters 

comparison, and (Right) comparison of the intensity ratio and the CV ratio before (black circles) and 0 min after indentation 

(red circles).       
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2.4.3 Inter-group comparison 

Some similarities and some variations can be found when comparing the results from the 

adult forearm with the infant thigh groups (Figure 2.19).  Similar trends for the three metrics under 

the pre- versus post-indentation cases are shown in both groups, indicating the remaining effect of 

the localized compressive force on both types of skin tissues, even upon the release of the external 

force.  However, a larger difference of in-tissue parameters between the pre- and post-indentation 

sets is revealed in the infant group, and the RD% of the infant skin is lower than that of the adult.    

Since an infants’ upper reticular dermis contains collagen that is thin and less dense (sparse) 

[28], with a potentially higher fraction of ECF, mechanical compression would lead to a greater 

increase in volume density of scatterers (e.g. collagen fibers), and therefore a higher intensity and 

CV contrast between the indented and the non-indented sites.  In contrast, the adult skin normally 

has a dense collagen network, and hence the contrast induced by mechanical compression may not 

be as large.  However, the RD% of the infant is lower than that of the adults.  This may suggest 

that the skin rebound is faster in an infant and that the in-tissue metrics are able to show differences, 

although there is less deformation retained in the infant skin.  It is hypothesized that this may also 

be related to the dynamics of the fluids constituents (e.g. ECF or ECM without the fibrous 

structural proteins).  Since the infant skin may have a larger degree of hydration (although mostly 

observed in the stratum corneum [27]) and a larger content of the fluid components (as compared 

to the solid fibers), a small deformation could displace a larger amount of fluid, which can be 

reflected by the contrast shown in the in-tissue parameters.    

As the recovery trend of the two groups is compared, an obvious trend in both the in-tissue 

parameters (toward unity) and in the skin surface parameter (toward 0% residual deformation), is 

only exhibited in the infant thighs.  On the other hand, the in-tissue parameters from the adult post-

indentation periods show values fluctuating around the 0-min value throughout the first 5 min; the 

surface RD% decreases slowly during recovery.  These imply that a faster in-tissue recovery 

mechanism occurred in the infant skin, which may possibly be a result of a faster return of the 
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expelled fluids, sufficient and responsive blood supply to the deformed site, or a faster restoration 

of shape of the solid components in the skin.  The post-indentation recovery results were measured 

within 5 min, which is an arbitrarily chosen experimental period.  However, none of the data 

indicates that the skin has returned to mechanical equilibrium during the 5 min recovery process.  

Therefore, in the future, an experimental time can be extended to beyond 5 min in order to provide 

a more complete temporal characterization of the recovery kinetics.  

 

 

Figure 2.19.  Comparison of the adult forearm (red) and the infant thigh (blue) results for (I) intensity ratio, (II) CV ratio, 

and (III) residual deformation percentage at 0-5 min post-indentation.  The error bars indicate standard error of the mean. 

N=8 for both adult and infant data. 
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2.4.4 Intra-group comparison 

In this section, other physiological factors are introduced and an intra-group comparison is 

performed.  In the adult group, the influence of the subjects’ age and body mass index (BMI) is 

investigated, relative to the indentation results.  Shown in Figure 2.20 (upper row) are the results 

for pre- and 0-min post-indentation results for all adult subjects, sorted by age.  The younger adults 

(age 20-28 yr) show a less dramatic change after indentation for the in-tissue parameters (i.e. the 

intensity and CV ratios) as compared to the older adults (age 30-33 yr).  This is likely due to the 

reduced amount of ECF in the older skin [25], where less mechanical support is provided, and 

hence the alteration in the aged skin remains longer after the release of loading.  Within the younger 

subgroup, no significant variation was found with respect to BMI.  However, in the older subgroup, 

larger pre- and post-indentation changes are seen in the individuals with a BMI < 30.  It is 

hypothesized that this is related to the amount of supporting tissue with higher mass density, such 

as muscle.  In terms of RD%, one can see a higher average for the younger subgroup as compared 

to the older subgroup.  This may be associated with the increased rigidity and decreased 

extensibility of the aged skin [24].  Interestingly, though, within each group, an increasing trend 

of RD% is shown with increasing age. 

Regarding the infant skin data, the indentation results are compared based on the age.  

However, there is no clear trend observed for a conclusive discussion.  This is likely due to the 

large bio-variation among each individual infant, since the skin (at least with the first year of 

infancy) is still undergoing significant maturation processes [27].            
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Figure 2.20.  Intragroup comparison for (upper row) adult forearm and (lower row) infant thigh skin for (I) intensity ratio, 

(II) CV ratio, and (III) residual deformation percentage.  The green and yellow bars indicate pre- and post- indentation (at 

0 min), respectively.  In the (upper row) adult data, the grey and blue shading indicates the subgroups with ages less than 

and above 30-years-old, respectively.  The BMI values are noted on the charts as well.    

 

2.4.5 Other parameters 

Other than the above-mentioned metrics, analysis was also performed based on the lateral 

intensity profile at different depths.  When indenters with different geometric shapes were applied, 

the FWHM of the lateral intensity profile (using Gaussian fit) at different depths also exhibited 

geometric-dependent features.  Shown in Figure 2.21 are the lateral intensity profiles of the skin 

indented by an indenter tip with a triangular or square cross-section.  A gradient of the FWHM in 

depth is observed from the triangular cross-section, while the values remain almost the same in 

depth for the square cross-section.  This is possibly due to the variation of stress along the 
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transverse direction, which results in a geometry-related stress distribution, and hence the 

deformation.  This preliminary data has shown the potential for lateral fluid translocation or shear 

strain characterization in the future.     

 

 

Figure 2.21.  OCT image and lateral intensity profile of the skin tissue indented by an indenter with a (I) square cross-

section and a (II) triangular cross-section.  In the intensity plot, both the intensity profile and the Gaussian fit curve are 

shown, where the blue, green, and red colors correspond to signals obtained from the depths indicated with the blue, green, 

and red dashed lines in the OCT image, respectively.    
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3 Characterization of viscoelastic properties of human skin 

Up to this point, this thesis has presented quantitative analyses of in vivo human skin to 

characterize the effect of mechanical indentation.  Here, this investigation is extended to include 

the contributing factors to the biomechanical response of skin.  Based on assumptions and 

experimental observations, the viscoelastic properties of the solid components and the fluid 

dynamics within the skin tissue are likely the two main factors that significantly affect the 

indentation response of skin.  Therefore, in this and the next chapter, the feasibility of using two 

techniques, optical coherence elastography (OCE) and Doppler OCT, to evaluate the viscoelastic 

properties and the fluid transport within the skin tissue is studied.     

 

3.1 Optical coherence elastography (OCE) and tissue viscoelasticity 

Elastography is an imaging technique which facilitates diagnostic imaging by introducing 

mechanical contrast to biomedical images non-invasively [103].  The success of ultrasound 

elastography (USE) [104, 105] has stimulated extensive elastography studies using other imaging 

modalities such as magnetic resonance elastography (MRE) [106] and optical coherence 

elastography (OCE) [52, 107, 108].  OCE surpasses MRE and USE in the following aspects: 

(1) higher imaging resolution (micrometers), which allows for the discrimination of fine 

morphological features, (2) higher displacement sensitivity (hundreds of nanometers), which 

enables the detection of subtle changes in tissue deformation, and (3) faster image acquisition time 

(sub-seconds) [52].  However, compared to USE or MRE, OCE has a lower penetration depth (1-

2 mm).   

In general, all elastography techniques require a certain mechanical excitation source and 

some means of measuring the resulting deformation or dynamic response.  OCE techniques can be 

categorized in several ways, such as being based on the time-scale of the measurements (static or 
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dynamic), configuration of the excitation source (internal or external), or the motion detection 

approach (phase-dependent or cross-correlation-dependent) [52, 107].   

In terms of mechanical properties, to date, most OCE techniques have assumed the tissue to 

be linear and viscoelastic.  Biological soft tissue is a complex material composed of both fluids 

and solids.  Under certain assumptions, the viscoelastic mechanical response of the tissue can be 

described by empirical rheological models such as the Kelvin-Voigt and Maxwell models.  In the 

Kelvin-Voigt model, the elastic and viscous components coexist in a parallel configuration, while 

the Maxwell model assumes the two components coexist in a serial manner [84].   

Static OCE is a conventional OCE technique that relies on the spatial characteristics of the 

biological material, such as the deformation under a uniform stress field (intuitively, a stiffer 

material exhibits less deformation under the same loading).  Stiffness is a one-dimensional 

characteristic often quantified by the Young’s modulus, which has the widest dynamic range as 

compared to other elasticity parameters [109].  In general, for small deformations of an elastic 

material (usually less than 10% of the original length), the material will respond in a linear 

(Hookean) fashion.  The Young’s modulus E of such a material undergoing a uniaxial deformation 

can be given by             

E



 , (3-1) 

 

where  is the imposed stress that can be obtained by the ratio of force loading to the area (
F

A
  ), 

and  is the fractional change in sample length (
0

l

l



 ) of the material at the axial direction [84].   

The elastic contrast is typically revealed in a strain map in response to a uniform stress field.  Using 

this approach, static OCE has been demonstrated in postmortem aorta and cornea [110, 111], 

ex vivo human breast, lymph node, and ovary [112, 113], and in vivo human skin [114, 115].  

However, strain mapping only provides a relative measurement.  To quantify Young’s modulus, 

techniques such as micro-indentation based on the Hertz contact theory [116], and optical 
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palpation where a translucent compliant silicone stress sensor is placed on the sample surface [117], 

can be implemented.  Most static OCE techniques rely on contact-based, external excitation 

sources, such as a glass plate with a ring actuator or piston [112, 118], or a needle probe 

configuration with the needle inserted into the tissue [119]. 

Viscoelastic features can also be inferred from the characterization of the temporally-

resolved dynamics.  Numerous dynamic OCE techniques have been proposed and investigated, 

while conventionally the target variables of detection include the elastic wave propagation speed 

and the natural/resonant frequency.  Crawling waves have been proposed lately as another 

approach that can be related to the elastic wave velocity, without the need for high imaging speed 

[120].  The elastic wave approach is perhaps a more favorable and common OCE technique since 

a quantitative result (e.g. the Young’s modulus) is achievable and has been demonstrated on in 

vivo samples.  The elastic-wave OCE techniques will be discussed in detail in Chapter 3.2.  The 

natural/resonant frequencies are commonly probed by magnetomotive OCE (MM-OCE), which is 

a variant of OCE that utilizes superparamagnetic magnetomotive nanoparticles (MNPs) as internal 

force transducers, allowing for remote manipulation with an external magnetic field [121].  The 

natural/resonant frequency reflects the sample stiffness and can be detected via mechanical 

transient and spectroscopic responses.  In the transient response method, a step-wise magnetic 

force is exerted on the MNP-loaded tissue, so that the MNPs along with the neighboring tissue 

will be driven by the magnetic force and settle at a new equilibrium position while undergoing an 

underdamped oscillation.  Similarly, when the magnetic field is removed, the MNP-laden tissue is 

released from the magnetic force and the restoring force of the sample microenvironment will 

again result in an underdamped harmonic oscillation around its original equilibrium position [122].  

Solving the equation of motion        mz t z t kz t F t   , the natural frequency ( 0f ) can be 

extracted, which is related to the damping ( ), spring ( k ) constants, and specimen mass ( m ), 

given as:     
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   Using Hooke’s law, Young’s modulus is given by kLE
S

 , where L  is the sample 

thickness L  and S  is the cross-sectional area that the force has been applied to.  If the sample 

mass and shape are relatively constant, with negligible viscosity, a linearity between the natural 

frequency and the square root of the Young’s modulus, 
0f E , can be observed [122, 123].  

Hence, the higher the natural frequency, the stiffer the sample.   

  In dynamic OCE, several excitation configurations have been implemented.  A mechanical 

vibrator and glass plate with mechanical actuators can be used for contact-based excitation [124-

126].  Contact-free excitation configurations have also been utilized, including acoustic radiation 

forces [123, 127], laser-pulses [128], air-puffs [129, 130], or magnetic forces [122, 131].  Recently, 

an approach using magnetic force in a contact-based manner on ex vivo animal tissue has also been 

proposed [132].  Dynamic OCE techniques have been applied to different biomedical applications.  

In elastic-wave OCE, a contact-based external mechanical vibrator is commonly applied to in vivo 

human skin [15, 126].  A contact-free acoustic radiation force (ARF, internal source) and a focused 

air-puff beam (external source) have been applied to gelatin phantoms [133] and ex vivo and in 

vivo cornea [130, 134], and as an internal excitation source, magnetomotive nanoparticles have 

been demonstrated in ex vivo rat liver and chicken muscle tissues [55].  Transient-response MM-

OCE has been applied to various ex vivo rabbit organs, such as muscle, adipose, lung, kidney, heart, 

and liver [131].  Spectroscopic OCE has been performed with a contact-based piezo-actuator on 

ex vivo rat mammary tissue [125] or with remote manipulation of magnetic force on ex vivo human 

breast tissue [135] or blood samples [136].    

The mechanical responses can be detected by motion-tracking techniques such as speckle 

tracking (e.g. cross-correlation or speckle decorrelation [137, 138]) and phase-sensitive OCT [139, 

140], where the latter is more common due to its larger dynamic range and the lower data 

acquisition requirement [52].  Dynamic OCE techniques are commonly performed with phase-



60 

 

sensitive OCT, where the displacement response of the stimulated sample is estimated from the 

phase profile by [122]                        

   
0

4 n
d dt dz dt





 . (3-3) 

 

Here, dt is the time interval between adjacent scans,  d dt  is the phase change, n  is the 

refractive index of the material, 0 is the center wavelength of the OCT light source, and  dz dt

is the displacement induced during the time interval dt .  Recently, Doppler phase variance has 

also been utilized as an alternative way to detect the displacement (especially the transverse 

vibration), which is less affected by the bulk motion or phase wrapping issues [141]. 

 

3.2 Elastic-wave optical coherence elastography (Elastic-wave OCE)  

3.2.1 Principle  

The propagation behavior of elastic waves through materials provides another way to assess 

the biomechanical properties.  Originating from the equation of motion and linked through the 

constitutive equation, shear wave propagation within an isotropic, linear elastic, homogeneous, 

incompressible material can be described by the Helmholtz equation [52, 106] 
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. (3-4) 

 

Here, u is the displacement and   is the sample density.  The shear modulus G  is related to 

Young’s modulus E  through 
 2 1

E
G





 , where the Poisson’s ratio  of soft tissues is typically 

close to 0.5 (  of liquid).  Young’s modulus can then be approximated as 23 3 SE G C   since 

the shear modulus G  can be extracted from the shear wave velocity SC  using [142] 
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Note that the shear modulus can also be calculated from the surface wave velocity.  At 0.5  , 

the shear wave and surface wave velocities give similar results.  However, the two waves are 

conceptually different, as the shear wave represents the wave propagating within the bulk tissue 

and the surface wave describes the wave propagation confined to the surface region (~one 

wavelength in depth [15]).       

In elastic-wave OCE, both an impulse and a harmonic oscillation waveform can be generated 

to propagate through or across the sample, where the group and phase velocities can be used for 

wave velocity calculations, respectively.  When the excitation source has a point-wise 

characteristic in the lateral direction, a phase gradient 
r




 can be obtained by linearly fitting the 

phase profile  with respect to the radial spatial interval r , which can be used to compute the 

empirical phase velocity S

r
C 







  [55].  In one study [55], MNPs were deployed into tissue-

mimicking phantoms and tissue specimens, where the MNPs act as a cylindrical excitation source.  

The sample stiffness can be related to the wavelength of the elastic wave (i.e. a larger wave 

wavelength implies a higher elastic wave traveling speed, and hence the elasticity).  For a 

viscoelastic body, the shear modulus is complex and the frequency-dependent shear wave speed 

(dispersion) can be quantified assuming a certain tissue model.  Using the Kelvin-Voigt model, 

the shear wave speed dispersion can be given as [143] 
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where G  is the real part of the complex shear modulus,   is the angular frequency of excitation, 

  is the mass density, and   is the viscosity.  The viscosity can be inferred from the slope of the 

wave velocity speed dispersion curve – the steeper the slope, the greater the viscosity [55].  When 

0   or the shear modulus is much greater than the viscosity ( G  ), the above equation 

become non-dispersive and reduces to Equation (3-5). 

 

Previously, elastic-wave OCE has been performed in various ways with different advantages 

and limitations.  The mechanical perturbation can be given in the form of a harmonic or impulse 

excitation, while the former ensures a higher wave propagation energy, the latter allows for a 

higher range of frequency response, in theory.  In terms of the configuration of the excitation 

source, a point source can be given by the tip of a mechanical vibrator [126] or a focused air puff 

[129], which allows for spherical wave propagation (the spreading loss is proportional to the square 

of the wave propagation radius 2~ r  [144]).  On the other hand, a line-shaped excitation can be 

performed either in the lateral direction using an external piezo shaker [15], or in the axial direction 

by injecting the magnetic nanoparticles into the sample [55] (Figure 3.1).  This cylindrical-like 

wave propagation preserves a relatively higher energy (the spreading loss is proportional to the 

wave propagation radius 1~ r ).  When an excitation source is located at the sample surface, the 

elastic wave generated is termed a surface or Rayleigh wave (as mentioned earlier).  The depth of 

the surface wave motion z  depends on the wavelength  and the frequency f  of the driving force 

in the following manner. 

z SC

f
   (3-7) 

 

Therefore, the higher the excitation frequency, the shallower the probed depth.  The property 

has been demonstrated and applied previously to obtain the elasticity of different layers of human 
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skin [15].  However, as the authors assumed the skin to be mostly elastic and ignored the viscous 

properties, how to decouple the dispersion caused by the depth penetration of the surface wave 

from the viscous nature of the sample has yet been discussed.  

 

Figure 3.1.  Schematic visualization of various configurations of excitation sources.  (I) Point source (brown circle) excitation 

allows for a spherical wave propagation, where the wave propagates radially in both transverse and cross-sectional views. 

(II)  Line source excitation can be exerted at (left) the transverse plane or (right) the axial direction.  The wave propagates 

radially in the cross-sectional view for the former and in the transverse plane in the latter case.  In all the diagrams here, 

the brown circle or line indicates the excitation source, the blue lines denote the elastic wave propagation, and the black 

line with arrow describes the wave propagation direction.  

 

The detection scheme of the elastic wave velocity could take different forms.  Commonly, 

the displacement on the sample is detected by point-scanning phase-sensitive OCT, where multiple 

M-mode scans were collected across a certain spatial range (M-B mode) with repeated excitation.  

Recently, a line-field scanning scheme has been proposed to acquire the spatial-temporal profile 

of the elastic wave in a single-shot manner, and increase the OCE measurement speed (5 mm in 

less than 15 msec) [145].  While most studies place both the mechanical excitation and 

displacement detection in parallel (both located at the sample surface), one study [141] 

implemented an orthogonal scheme, where the acoustic radiation force (ARF) excitation source is 

placed along the side of the sample and the OCT beam, at one lateral position, detects the wave 
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propagating through various depths over time.  The biomechanical properties of the sample at 

deeper regions could be probed by placing the excitation source at a region beyond the OCT 

imaging depth and measuring the wave propagation delay at the sample surface [141].  Typically, 

most techniques fix the location of excitation and detect the wave propagation at different spatial 

locations.  However, one study [146] proposed to fix the OCT detection beam at one location while 

moving the excitation source through various spatial positions.  It is claimed that this scheme has 

the potential for detecting the shear modulus from speckle-free regions or speckle-less samples, 

such as a crystalline lens.      

 

3.2.2 Results and discussions 

Here, the quantification of Young’s modulus was first demonstrated on tissue-mimicking 

silicone phantoms using contact-based elastic-wave OCE and the results were correlated with 

those from standard mechanical testing.  Then, in vivo human data were collected and the Young’s 

moduli were extracted using the same OCE technique. 

Several room temperature vulcanizing (RTV)-based silicone phantoms were made from a 

mixture of a polydimethylsiloxane (PDMS) fluid, curing agent (RTV-A), and cross-linker (RTV-

B).  The fabrication procedure was similar to the protocol described in [135].  Briefly, a mixture 

of PDMS fluid, RTV-A, and RTV-B were created while titanium dioxide particles (size < 5 μm, 

2 mg/ml) were added to increase optical scattering.  The entire solution was sonicated for one hour.  

Sequentially, the solutions were poured into a Petri dish and placed inside an oven (80 °C) for 8 

hr, resulting in a cylinder-shaped phantom with a diameter of 38 mm and a height of 5 mm.  To 

create phantoms with varying stiffness, the concentration ratios of PDMS fluid:RTV-A:RTV-B 

were selected as 200:10:1, 100:10:1, and 30:10:1 (from soft to stiff).  For the human subject study, 

we recruited a 31-year-old male patient with a BMI of 22.7 whose volar forearm and dorsal hand 

served as the main sites for the OCE measurements.  
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The mechanical properties of the PDMS phantoms were first characterized by the gold 

standard mechanical testing.  Using a conventional uniaxial mechanical indentation instrument 

with a spherical indenter (radius 2.5 mm), the contact mechanics between a sphere and a half-space 

can be described via Hertz contact theory, 
31

2 2
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3
F E R d  .  Here, F  is the loading force, R is 

the indenter radius, d is the indentation depth, and 
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is related to the 

Young’s modulus and the Poisson ratio of the spherical indenter ( sE , s ) at the deformable plane 

( pE , p ) [147].  Assuming a rigid body, sE   and hence
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.  To ensure the 

measurement is performed within the elastic region, data fitting was performed within a small 

depth range (0-5 mm in depth) to ensure a small strain (< 10%).  The Young’s moduli obtained for 

the three PDMS phantoms were determined to be 2.2±0.15 kPa, 7.35±0.32 kPa, and 43.89±11.31 

kPa (mean ± standard deviation), respectively (Figure 3.3 (II)). 

The experimental setup and data acquisition of elastic-wave OCE is described as follows.  A 

force driven at a 153 Hz in a sinusoidal pattern was provided by a piezo-actuator, which was placed 

at the sample surface.  The data collection was performed in such a way that the excitation of the 

piezo-actuator was synchronized with the camera acquisition (Figure 3.2).  The OCT data were 

collected with M-B mode scanning, where a 32.6 msec duration M-mode (91,912 Hz line scan rate, 

3,000 scans per frame) was collected at each lateral location (Figure 3.2). 

  The selected line scan rate guaranteed that the Nyquist sampling criteria would be met.  A 

total of 100 locations were selected within a lateral range of 3.2 mm, where the spatial interval 

between each point scan was 32 m (although the lateral pixel resolution can be increased by 

acquiring data at more points, 100 locations were selected to reduce the total data acquisition time). 
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The time interval between each sequential frame collection was 10 msec.  The total acquisition 

time for one OCE dataset was 4.25 sec.   

 

 

Figure 3.2.  Illustration of the experimental setup and data acquisition for contact-based elastic wave-OCE. (I) The 

schematic of the experimental setup at the sample arm.  A piezo-actuator was placed near the center of the sample at the 

surface to induce repetitive mechanical waves in a sinusoidal manner, while the excitation was synchronized with data 

acquisition.  (II) The data collection was performed in a M-B mode scanning approach, where the elastic wave velocity can 

be extracted from (III) the radius-time plot.   

 

The data processing flow is detailed as follows.  First, standard OCT signal processing 

(background subtraction, resampling, and FFT) was performed.  Sequentially, moving average 

filtering (over 10 pixels) was performed axially before phase extraction.  Then, phase differences 

between adjacent line scans were obtained and unwrapped.  Bandpass filtering was performed at 

10% to 90% of the exciting frequency (153 Hz) to reduce the out-of-band noise.  The filtered 

signals were averaged across 10 rows near the row detected with the maximum amplitude.  The 

signal contrast was then stretched and normalized to fall within the range from 0 to 1.  From the 

r t   plot, the peaks of the wave at each side of the excitation source were detected and utilized  
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for linear fitting in order to obtain the wave propagation velocity  ( S

r
C

t





), where the means  

and deviations of the results were calculated from a total of 6 wave propagations.  To extract the 

Young’s modulus, the mass density of skin was assumed to be 1040 kg/m3 (i.e. 31040 /kg m   ).    

  

The OCE results of the PDMS phantom data are shown in Figure 3.3.  It is observed that the 

stiffer the phantom, the higher the wave propagation speed (the steeper the 
r

t




 slope), which  

correlates with theory.  In addition, the elastic-wave OCE results also correlate with the Young’s 

moduli obtained from conventional mechanical indention testing.  However, the inspection also 

revealed that the standard deviation of the Young’s modulus obtained from the OCE approach is 

larger than that from indentation.  This is possibly due to the wave distortion during propagation, 

the fluctuation of the repetitive excitation waves, and the limited lateral range for wave propagation 

detection (which results in greater variation of the results at the stiffer sample, compared to the 

softer ones). 

From the in vivo human skin results, it is observed that the volar forearm (E: 3±2.58 kPa; Cs: 

0.85±0.43 m/s) is softer than the dorsal hand (E: 46.35±37.95 kPa; Cs: 3.48±1.38 m/s), as can be 

seen from the lower shear wave velocity of the former, compared to the latter (Figure 3.4).  An 

inverse wave propagation direction is shown in the volar forearm data, which is possibly caused 

by the misalignment between the piezo-actuator tip and the OCT beam.  However, it is believed 

that the accuracy of measurement is not significantly affected, given that the forearm stiffness  

characterized through the r
t




  slope still agrees with the Young’s modulus range obtained from 

 the subcutaneous fat layer of the forearm measured in [15].  While the skeletal anatomy is more 

rigid than fat under the dorsal hand skin, it is also expected that the stiffness of the skin obtained 

from the dorsal hand should be higher.  These results demonstrate the feasibility of using elastic-

wave OCE on in vivo human skin.  However, one can also observe a noisier signal in the human 

data.  This is possibly due to the surface geometry and human subject motion during data 

acquisition.  To make the measurement more stable, several approaches could be performed, such 
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as reducing the OCE measurement duration by using a higher frequency driving force, or 

implementing a faster line-field scanning platform [145].  

 

 

 

Figure 3.3. Elastic-wave OCE and indentation testing results of PDMS tissue-mimicking phantoms. (I) The radius-time 

plots from the OCE results for the three samples (from top to bottom, soft to stiff) are shown, where the a steeper r t    

slope indicates a faster wave velocity, seen in the stiffer sample.  (II) The Young’s modulus results obtained from both OCE 

and conventional mechanical testing are comparable and follow a similar trend.  
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Figure 3.4.  Experimental setup and in vivo elastic wave OCE results from the human (I) volar forearm and (II) dorsal 

hand.  A higher elastic wave propagation velocity (steeper r t    slope) is observed from the dorsal hand, indicating 

stiffer biomechanics as compared to the volar forearm. 

 

The intrinsic biomechanical properties of the human skin could affect the responsive 

characteristics of the mechanically-perturbed skin spatially and/or temporally (e.g. for the stiffer 

skin, the same force loading would result in less deformation, and hence a potentially shorter 

temporal window for full recovery).  Therefore, in the future, a systematic understanding of the 

linkage between the viscoelastic properties and the biomechanical response of the skin can be 

performed.  The Young’s modulus of the human subject can be characterized and compared to the 

quantitative morphological analysis results (as discussed in Chapter 2).  In addition, since the 

localized mechanical compression would result in the transport and redistribution of ECF, the 

viscosity-related parameters can be characterized and related to the history-dependent responsive 

dynamics of the skin (e.g. the residual deformation as a function of time) as well. 
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3.3 Finite element methods (FEM)  

3.3.1 Introduction 

Numerous rheological models have been employed for biomechanical characterization, yet 

erroneous results may often appear due to violations of various mechanical assumptions.  One way 

to alleviate this issue is by using the finite element method (FEM), which is an effective numerical 

tool that iteratively approximates the boundary value solutions [148].  In addition, FEM has shown 

to be a useful tool to model samples with complex mechanical properties and geometry, as in the 

practical case of biological tissues.  To date, FEM has been implemented in both static [149, 150] 

and dynamic [135, 151] OCE.  In one study [150], FEM was utilized to study the impact of 

mechanical parameters, the imaging system, and signal processing parameters on the mechanical 

contrast revealed in compressional OCE.  In another study [135], FEM was applied to study the 

frequency response of heterogeneous samples with various mechanical properties. 

3.3.2 Results and discussions 

In this study, the relationship of the indenter geometry to the local compression results on 

human skin was investigated, similar to the research presented in Section 2.4.5.  Both OCT images 

and FEM results were obtained and compared.  In the OCT experiment, two custom-fabricated 

polymer-based indenters with different cross-section geometric shapes (square- and triangular-

shaped) were applied to the same human subject prior to OCT data acquisition.  As discussed in 

Chapter 2, the backscattered light intensity is associated with in-tissue deformation at the indented 

sites.   Meanwhile, an FEM simulation using the COMSOL Multiphysics (v5.2) structural module 

was performed to reveal the stress and displacement distribution within a skin tissue specimen.  

Here, the skin was modeled using a Kelvin-Voigt viscoelastic model and assigned several 

mechanical parameters based on assumptions (Table 3.1).  Since the indenters and the directions 
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of the compressive force were designed so that the maximum pressure gradients induced on the 

sample, as well as the indenter-geometry-dependent stress distributions, would mainly occur along 

depth, the focus was on the FEM simulation results in the cross-sectional plane ( x z  plane).  Two 

types of indenters were modeled with the same cross-sectional dimensions as the indenters used 

in the experiment.  The load was applied to the skin surface and sustained for 3 min.  The resulting 

stress and displacement fields within the simulated skin at t=3 min are shown in Figure 3.5. 

Table 3.1. Input parameters for FEM simulations. 

Parameter Value 

FEM mesh size Fine 

Viscoelastic model Kelvin-Voigt 

Material Skin 

Young’s modulus (E) 150 kPa (within the range of reported human skin stiffness [15, 126])  

Viscosity (η) 4 mPa·s (viscosity of blood [152])  

Poisson ratio () 0.49 

Applied force (F) 20 N (calculated based on the indentation area and the reported pain 

threshold ~1.1 MPa [59]) 

Force sustained 

duration 

3 min 

 

From the FEM results, geometric-dependent stress and spatial displacement distributions in 

the x z  plane are observed.  In the stress field, the highest stress exists at the contacting contour 

between the indenter and the sample, or at the edges of the indenter, in both cases, while the stress 

distribution within the sample are indenter-geometry-related.  Additionally, the in-tissue 

displacement field resembles the indenter-geometry.  These simulation results can be understood 

by considering the variation of contour contact and the change of surface area as the depth of the 

local indentation is increased during the loading process.  Depends on the indenter geometry, the 

contact area between the indenter and the sample surface could either expand (e.g. for the indenter 

with a triangular cross-section) or remain relatively constant (e.g. for the indenter with a square 

cross-section) with an increasing indentation depth.  As a result, the variations in the contact area 
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as a function of the indentation depth could lead to different spatial distributions of stress and 

displacement.  In the cross-sectional plane, a square-shaped indentation introduces a similar 

deformation level across a wider lateral range, while the triangular-shaped indentation induces a 

similar displacement only across a narrow range.  Also, the square-shaped indentation has a larger 

contact area and hence a smaller maximum displacement.  The triangular-shaped indentation has 

a smaller contact area and a larger maximum displacement.  Comparing the experimental OCT 

data to the simulation results, a similar spatial distribution of OCT intensity is observed, in 

comparison to the displacement fields from the FEM results.  This indicates that the OCT 

backscattering intensity could be a suitable metric that reflects the degree of local compression, 

which agrees with the previous hypothesis.  To further quantify the OCT intensity distribution, the 

FWHM of the lateral intensity profile can be applied (as shown in Section 2.4.5).      

Note that only the trend of the deformation distribution are compared in this research, instead 

of the absolute values, due to the lack of knowledge on the empirical parameters such as the actual 

mechanical properties of the sample, the applied stress, and the actual incline of the skin surface 

with respect to the indentation direction, and so forth.  In addition, the skin biomechanical 

properties were simulated rather simply by using a viscoelastic model without considering other 

mechanical features of the skin, such as its poroelasticity (which could be affected by physiological 

factors, such as the blood flow or interstitial fluid transport).  The parameters of the imaging system, 

such as the signal-to-noise ratio (SNR), sampling rate, and displacement sensitivity, and the optical 

properties of the tissue, such as the attenuation properties, were also not taken into account either.  

In the future, the both the empirical characteristics of the human subject and the parameters of the 

imaging system should be obtained in order to improve the simulation accuracy.   
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Figure 3.5.  Experimental OCT and FEM simulation results of human skin following a 3-min indentation induced by 

indenters with (I) square and (II) triangular cross-sectional shapes (t=3min).  The red lines on the CCD images indicate the 

scanning location for the OCT images.  
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4 Characterization of fluid dynamics in human tissue 

4.1 Fluid dynamics inside the tissue 

Several techniques have been proposed for detection and visualization of the existence of 

fluid flow within tissues, including Doppler OCT [153], speckle or phase variance [154], and 

optical microangiography (OMAG) [53].  The basic principle of Doppler OCT is relatively 

straightforward, which simply relies on the detection of the change in optical phases, and hence 

allows for a high displacement sensitivity.  In addition, Doppler OCT technique enables 

quantification of the velocity of fluid flow and detection of the directionality of the fluid flow, 

which are not achievable in the speckle or phase variance methods.  On the other hand, the data 

processing algorithm of Doppler OCT is less complicated than that of the OMAG techniques.  

Therefore, the focus will be on Doppler OCT in this thesis research. 

4.2 Doppler optical coherence tomography (Doppler OCT) 

4.2.1 Principle 

Doppler OCT enables the visualization of the in-tissue fluid flow and the quantification of 

flow direction, where the motion of the moving particle(s) is obtained based on the detection of 

the Doppler frequency shift, d of f f   .  Here, of  is the frequency of the moving object and df  

is the frequency detected, which can be described as d o

c u
f f

c u





 (where c  is the speed of light 

and u is the velocity of the moving particle).  Given that the particle velocity is much smaller than 

that of the light ( u c  ), the frequency shift can be approximated as  d

u
f f

c
   , which is 

proportional to the moving velocity of the object [34]. 
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Expressed with the wave-vector k ,  the Doppler frequency shift detected with OCT can be 

given as  
1

2
d of k k u


    , where 

dk   are 
ok   the detected and moving-object wave-vectors, 

respectively (Figure 4.1).  Thus, the frequency shift can be linked to the particle velocity by:  

0

2 cosu
f




  . (4-1) 

 

Note that the direction of the particle motion is encoded in the sign of the frequency shift, 

where a positive sign ( 0f  ) indicates the particle moving toward the OCT imaging beam and 

a negative signal ( 0f  ) represents the object moving in the opposite direction. 

The Doppler frequency shift can be extracted by the phase change between adjacent A-scans 

detected in OCT data, as shown below [153]. 
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(4-2) 

 

Here, ,j zA is the complex analytic signal obtained at the j -th line scan at depth z , ,j z  is 

the phase extracted from ,j zA , and T  is the time interval between two adjacent line scans.   

 

 

Figure 4.1.  Illustration of a Doppler OCT sample arm and the motion of a moving particle [34].   
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The velocity range that can be probed with Doppler OCT is 0 0
min max~ ~

4 4
u u

n T n T

  




 
, 

which depends on the center wavelength of the light source 0 , the refractive index of the sample 

n , the time interval between successively acquired line scans T , and the range of detectable 

phase (i.e. from phase resolution   to ).  Therefore, certain a priori information, such as the 

velocity range of the targeted flow, are required for Doppler OCT measurements.     

 

4.2.2 Results and discussions 

Here, the Doppler OCT algorithm is first applied on data from a sample with flowing fluid 

to evaluate the performance of this algorithm.  Sequentially, in vivo human gum data were 

processed in the same manner to obtain Doppler phase shift information.  The flow phantom 

consisted of intralipid flowing inside a plastic capillary tube (data acquisition described in [155]), 

while the micro-vessels (with blood flow) residing in the human gum are the main detection target 

for the in vivo data.  Since the micro-vessels are small in size, spatial oversampling was performed 

(i.e. lateral pixel resolution was set to 8 m/pixel while the lateral resolution of the OCT system 

was ~ 16 m).  Additionally, two line scan rates were selected for data acquisition to enable the 

detection of blood flow rates within different ranges (the maximum detectable velocity for the 19.5 

kHz and 30 kHz line scan rates were 2.9 mm/s and 4.6 mm/s, respectively, assuming the refractive 

index of skin to be 1.4).      

Standard OCT signal processing (background subtraction, resampling, and FFT) was 

performed and the resulting complex analytical signals were used for Doppler phase shift 

quantification (using Equation (4-2)).  Phase unwrapping was then performed on the phase shift 

results.  The performance of the algorithm was demonstrated using the intralipid sample, where 
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strong phase shift amplitudes within the capillary tube were observed in the Doppler OCT data, 

while the structural OCT data (intensity profile) does not reveal any fluid flow information (Figure 

4.2). 

 

 

Figure 4.2.  Structural OCT and Doppler OCT results of intralipid flow within a capillary tube.  (Left) The intensity profile 

data reveals only subtle structural information, while (right) the Doppler shift map clearly illustrates the flow dynamics 

within the capillary tube.  The Doppler shift can be converted to fluid flow velocity, as can be seen in Figure 4.3.  

 

From the in vivo human gum data, small regions containing large phase shifts were revealed, 

which may indicate the presence of blood flow (Figure 4.3).  Interestingly, when comparing the 

Doppler signal with the structural OCT image, one can see that the vessel-like structures (black 

holes) shown in the OCT image do not entirely correspond with the locations that exhibit the large 

Doppler phase shifts.  This implies that the vasculature-like structures may not actually be blood 

vessel, or that the vessels do not contain any blood flow moving at a velocity that would fall within 

the detectable range of Doppler OCT under the data acquisition parameters used.     
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Figure 4.3.  Structural and Doppler OCT results for in vivo human gum.  (Bottom left) The OCT images were obtained at 

the lateral location indicated by a white line shown in (upper row) the CCD surface photos.  The Doppler OCT data were 

collected with a line scan rate of (I) 19.5 kHz and (II) 30 kHz, respectively, and hence the fluid flows with different velocity 

ranges are observed.  The black solid arrows in the Doppler OCT images indicate the presence of fluid flow, which 

correspond to the location indicated by the yellow solid arrows in the structural OCT images.  At certain locations, vessel-

like structures are seen in the structural OCT images (indicated with yellow, hollow, dashed arrows), however, obvious 

Doppler signals were not observed in the corresponding locations from the Doppler OCT images (indicated with black, 

hollow, dashed arrows).    

 

Although Doppler OCT has been successfully demonstrated for detecting the vasculature in 

the human gum, there are several limitations.  As mentioned earlier, certain a priori information 

about the fluid flow is required, which possesses challenges for Doppler OCT-based diagnostics.  

In addition, the optical scattering properties of the tissue will also have an impact on the Doppler 

OCT results.  In ophthalmology, Doppler signals can be clearly seen due to the lower-scattering 

tissue in the eye [156].  However, the Doppler results from human skin are typically more vague 

and less obvious [54, 157].  This is possibly because that larger vessels are typically located in 

deeper regions, under more highly scattering skin tissue.  Note that in this study, the Doppler 
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signals were acquired from the gum vessels that are close to the tissue surface, which lowers the 

influence of scattering.   

In the future, the Doppler OCT techniques can be integrated to the skin compression studies, 

with the assistance of a translucent indenter.  As the compressive force could reduce the distance 

between the skin surface and the embedded blood vessels, a reduced optical scattering along with 

the extended penetration depth of light (as discussed in Section 2.2.1) may allow for possible 

detection of microvascular structure in the skin.  Therefore, by implementing Doppler OCT, the 

response of blood perfusion or the microcirculation in the skin tissue to the external mechanical 

loading may potentially be assessed, as demonstrated in a previous study [158] with the use of 

OMAG.  With sufficient oversampling in the lateral direction, not only the morphological changes, 

but also the Doppler phase shifts induced by the fluid translocation, could be revealed in the skin 

as the tissue undergoes mechanical indentation.  As a result, the association between the structural 

alterations (as discussed in Chapter 2) and the local hemodynamics or the temporal characteristics 

of the ECF, could possibly be investigated.        
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5 Conclusions and future directions  

5.1 Conclusions 

In conclusion, this thesis research demonstrated that OCT, along with the quantitative 

analysis and the functional extensions (such as OCE and Doppler OCT) are capable of visualizing 

the biomechanical response, viscoelastic properties, and fluid dynamics within in vivo human 

tissues, especially the skin. 

Quantitatively, three novel metrics (both in-tissue and skin surface related) have been 

developed for OCT image characterization of the skin before and after indentation from external 

mechanical forces.  The proposed metrics were first evaluated using a porous tofu phantom, which 

successively revealed the in-tissue alteration upon compression.  Sequentially, the same metrics 

were applied to in vivo human skin data from both the adult forearm and the infant thigh.  The 

analysis revealed significant differences between the pre- and the post-indentation (0-min) time 

periods, for all metrics.  Moreover, the post-indentation recovery trends manifest observable 

differences between the adult forearm and the infant thigh tissues.  These results suggest that the 

proposed OCT-image-based metrics not only can quantitatively distinguish optical tissue 

properties between indented and non-indented skin, but also have the potential for differentiating 

tissue with different biomechanical and physiological conditions, which may potentially assist in 

disease diagnosis.       

In addition, the physical and physiological factors influencing the biomechanical response 

of skin can be assessed via functional OCT techniques.  Elastic-wave OCE was applied to different 

anatomical sites (volar forearm and dorsal hand) on a human subject and exhibited distinct 

differences between stiffness values, quantified by Young’s modulus.  Additionally, blood flowing 

in micro-vessels in human gum tissue was successfully detected and visualized with Doppler OCT.  
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These demonstrate the functional capabilities of OCT, which, by providing further biomechanical 

and physiological characterization, may potentially increase the accuracy for clinical diagnosis.  

 

5.2 Future directions 

Human skin is a complex tissue and organ which exhibits complicated physical, mechanical, 

biological, and physiological properties.  Subsequently, the mechanically-induced response of 

in vivo skin could be affected by numerous factors.  In the future, a systematic investigation of 

human skin can be performed in order to correlate the quantitative results and analysis (based on 

OCT data) with the viscoelastic properties (by OCE) and/or the vascular distribution and 

hemodynamics (by Doppler OCT).  Additionally, an integrated system combing OCT system, 

OCE hardware components, and Doppler OCT algorithms can conceivably be developed in the 

future, which may enable a multifunctional, quantitative, objective, and informative clinical 

diagnosis tool with potentially improved accuracy.     

Improvements can be made for each technique as well.  For the quantitative analysis, more 

automatic surface detection and image segmentation approaches (e.g. [94]) can be applied, and the 

in-tissue intensity artifacts [100] should also be removed in the pre-processing procedures.  

Moreover, transparent indenters (e.g. glass or plastic-based) and force sensors can be implemented 

in the future so that the alteration “during” indentation can be visualized and investigated, enabling 

a more quantitative assessment of the visco-elastic and poro-elastic properties of in vivo tissue.  

Additional metrics can also be developed based on the lateral spatial distribution of certain features, 

and hence the shear gradient of lateral fluid transport may be characterized as well.  By tracking 

empirical parameters such as stress and the 3-D dimensions of the tissue specimen, FEM 

simulations can be performed with better accuracy. 
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For OCE investigations, a faster imaging scheme (increasing the driving force frequency or 

by line-field scanning [145]) can be applied to diminish the motion artifacts.  More sophisticated 

models that consider poroelastic behaviors or nonlinear material behaviors (e.g. hypoelastic 

models) can implemented in FEM simulations as well [13].  Finally, more stable and higher 

resolution blood flow visualization can possibly be investigated with optical microangiography 

[53] in the future.   

In conclusion, this thesis research demonstrates the feasibility of using OCT-based 

techniques (OCT and its functional extensions) not only to characterize the biomechanical 

response of the mechanically-perturbed skin, but also to assess the underlying physical and 

physiological properties of the in vivo human subjects (in particular, the intrinsic mechanical 

properties and the microvascular flow dynamics).  While the biomechanical properties or the fluid 

dynamics characteristics alone could help reveal certain aspects of the health state of the human 

subjects, a combined knowledge of both may enable a more informative characteristics about the 

pathologies.  In addition, the biomechanical response of the skin, as an outcome affected by both 

the intrinsic stiffness of the solid components and the accumulation level or dynamics of the fluid 

components, can be quantitatively evaluated and effectively associated with the physiological 

conditions of the human subjects.  Collectively, a better understanding of the localized (e.g. the 

skin lesion) and/or the overall health conditions (e.g. heart-failure-induced edema) can be allowed, 

and hence potentially enable a more informative, objective, and quantitative tool for clinical 

diagnosis in the future.   
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